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Discovery and Drug Repurposing to Target STATs in Glioblastoma
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ABSTRACT

Background
Glioblastoma, or Glioblastoma multiforme (GBM), is a primary central nervous
system glioma that remains incurable due to the lack of effective treatments. This
approach, encompassing both drug discovery and drug repurposing, presents a
promising strategy against GBM. The JAK/STAT signaling cascade holds a pivotal
role in various tumor-promoting functions and is implicated in the pathogenesis and
progression of GBM. This study aims to inhibit this pathway by targeting STAT3
and STAT1 using an in-silico approach to identify potential inhibitors. The research
focuses discovering the phytocompounds derived from various Indian medicinal
plants known for their therapeutic applications and re-purposing FDA approved
drugs directly derived from Drug Bank database. Phytochemicals from these plants
were manually collected and curated based on their blood-brain barrier permeability
using Swiss ADME. Molecular docking was conducted with PyRx, and docking
scores were validated through CB-Dock2. Binding interactions were visualized with
PyMOL and Discovery Studio. Additionally, ADMET analysis was performed using
Swiss ADME and the PkCSM tool, while carcinogenicity and toxicity to cancer cell
line was assessed with CarcinoPred-EL and CLC-Pred 2.0.

Results
Five phytocompounds, withametelin, isowithametelin, anolobine, withasomidienone
and xylopine along with three FDA approved tirilazad, telmisartan and mizolastine
were identified with some inhibitors showing promising pharmacological properties
such as blood-brain barrier permeability, against STAT3. Most of these compounds
also demonstrated strong binding affinity with STAT1 as well.

Conclusion
Some of the compounds derived from selected medicinal plants and few FDA
approved drugs have the potential for being the potential drug candidates in the
treatment of GBM. Their favorable docking scores indicate strong binding with
targets and effective drug-like properties, qualify them as potential inhibitors of both
STAT3 and STAT1.
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CHAPTER - 1

INTRODUCTION AND LITERATURE REVIEW

1.1. Overview
Brain tumors are extremely aggressive and deadly forms of cancer with incidence
rate of 6-7 cases per 100,000 people annually. Gliomas, comprising approximately
50% of all brain neoplasms, are predominant and most common type of cancer
afficting the central nervous system [1], [2]. Gliomas are infiltrative tumors
originating from glial cells, affecting the adjacent brain tissue. Glial tumor
infiltration leads to frequent recurrence, rendering gliomas resistant to diverse
therapeutic approaches. These tumors are classified into distinct sub-types and grades,
determined by histopathological characteristics, along with molecular and genetic
markers. The principal types of gliomas include oligodendrogliomas,
oligoastrocytomas, and astrocytomas, with astrocytomas being the most prevalent.
Astrocytomas, deriving from astrocytes, are further classified into four grades based
on their proliferative capacity and the severity of clinical severity [3], [4], [5].
Gliomas range from the least malignant Grade I, slow-progressing Grade II, rapidly
progressing Grade III, to the most malignant Grade IV, also called glioblatoma or
glioblastoma multiforme (GBM) categorised by WHO [6], [7].

Glioblastoma, the most prevalent glioma, ranks among the most aggressive tumors. It
is characterized by a high recurrence rate and dismal survival statistics, with a
median overall survival and mean progression-free survival of around 14 months and
7 months following diagnosis [8], [9]. Although the incidence of glioblastoma is
considerably lower compared to other cancer types, these tumors have garnered
significant attention due to their poor prognosis and the limited success of current
treatments. Even after decades of substantial research and investment, there remains
an urgent need for more effective treatments and novel therapeutic strategies for
treatment of glioblastoma [10], [11]. Numerous factors contribute to the significant
resistance of glioblastoma to existing therapies, with one of the primary causes being
the dysregulation of signaling pathways that directly or indirectly drive
tumorigenesis. Notably, the JAK/STAT pathway has emerged as a crucial molecular
nexus in GBM cells, with increasing evidence underscoring its pivotal role in driving
both tumor progression and treatment resistance [12].

Phytochemicals, characterized as non-conventional nutrients found in plant-based
foods, offer protective effects with minimal side effects, playing pivotal roles in
disease prevention. A notable area of interest lies in exploring the relationship
between phytochemicals and cancer, as they exhibit the capacity to regulate cell
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cycle dynamics, curb tumor cell proliferation, and influence tumorigenesis through
their involvement in diverse signaling pathways [13], [14].

In order target this pathway, we performed this study utilizing computational
approaches to explore novel compounds and repurpose existing ones. The study
performed aims to screen and evaluate compounds that have the potential to bind to
and inhibit STAT3 and STAT1 thereby disrupting its signaling pathway providing
new treatment options for GBM. To uncover potential compounds, we leveraged
phytochemicals sourced from Indian medicinal plants and FDA approved drugs
renowned for their diverse therapeutic attributes. These agents not only endorse
novel and alternative avenues for cancer chemotherapy and may also enhance the
therapeutic efficacy of of a diverse range of medications.

1.2. Glioblastoma:

1.2.1 Basic Outline
Gliomas are infiltrative tumors and represents different types of primary malignant
neoplasms of CNS, originating from glial cells or cancer stem cells. Among these,
GBM or glioblastoma is most malignant, accounting for about 60-70% of gliomas.
Designated as a grade IV tumor by the WHO, GBM stands as the predominant brain
neoplasm affecting various age groups. GBM is categorized into three major
subtypes based on histopathology and into four major sub-types according to gene
expression profiles. Additionally, it is further subdivided according to the mutational
status of the IDH (isocitrate dehydrogenase) genes [15], [16]. Although the incidence
of glioblastoma is relatively low, affecting 3.19 people per 100,000, its extremely
low survival rate has garnered significant research interest. Only 5% of those
diagnosed with glioblastoma are expected to survive for at least five years [17]. The
recurrence of GBM, despite advances in treatment, is driven by its resistance to
diverse therapies, the constraints of surgical resection, and the absence of targeted
interventions. These factors collectively contribute to the decrease in survival rates
observed in patients [18], [19].

1.2.2 Clinical Presentation and Distribution of Glioblastoma
A comprehensive clinical history is essential for GBM patients as their symptoms
mimic those of benign or malignant brain tumors. Typically, these neurological
symptoms develop progressively over a period of time, requiring a high level of
suspicion for GBM due to symptom overlap with infectious or inflammatory
conditions [20].

GBM predominantly occurs in the supratentorial region, accounting for 85% of cases.
In contrast, it is found in the brainstem and spinal cord in less than 5% of cases, with
the brainstem being the least affected at under 3%. In the context of glioblastoma
cohorts, the frequency and patterns of clinical presentations include intracranial
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hypertension in 30% of cases, motor deficits and epilepsy each in 20%, altered
sensorium in 17%, confusion manifests in 15%. Additionally, both visual and speech
deficits are identified in 13% of cases within these cohorts [21].

1.2.3 Histopathology & Pathphysiology
Histologically, GBM is distinguished by small, polygonal to spindle-shaped cells
with acidic cytoplasm and vague cellular boundaries. The nuclei, distinguished by
their oval or elongated forms, exhibit aggregated hyper-chromatic chromatin and
multiple distinct nucleoli, along with significant nuclear pleomorphism. The presence
of intranuclear inclusions with binuclear and multinucleated cells characterizes this
malignancy [22]. During vascularization, GBM forms new vessels that resemble
renal glomeruli, with endothelial cells that are phenotypically distinct, exhibiting
focal overlap, hyperplasia and heterogeneity in size and shape. The newly developed
vessels oftenly have numerous Weibel-Palade bodies and thrombi, while also
exhibiting two distinct patterns of necrotic areas [23], [24] . Glioblastoma is marked
by undifferentiated cells, pronounced cellular variability and shows elevated mitotic
activity, extensive vascularization, immune escape, marked tumor heterogeneity,
significant local invasiveness and necrosis [24], [25].

In addition to these factors, the immune-privileged environment within the CNS,
devoid of antigen-presenting cells and lymphatics, worsens its the prognosis. In
GBM, malignant cells display angiogenesis, abberant proliferation and rapid growth
driven by genetic and epigenetic mutations, crucial for understanding tumor
dynamics and treatment resistance. GBM is categorized into primary and secondary
tumors depending on whether the initiating mutations occur in stem cells or mature
neural cells, respectively. Genetic alterations induce varied biochemical shifts,
including gene suppression or over-expression compared to healthy brain cells,
resulting in cellular and extracellular matrix alterations that contribute multiform
nature of the disease [26], [27], [28], [29].

1.2.4 Treatment Strategies
The infiltrative and intricate nature of GBM along with resistant glioblastoma stem
cells, tumor heterogeneity and the formidable BBB, presents significant challenges in
treatment, highlighting the urgent need for innovative therapeutic approaches [30],
[31].

The prevailing gold standard for GBM treatment comprises surgical resection,
succeeded by radiotherapy and temozolomide chemotherapy, which can extend
survival in younger patients up to 202 weeks [32], [33]. This multimodal anti-cancer
strategy, integrating surgery, radiotherapy, and chemotherapy aims to achieve tumor
regression and maximize disease-free survival. Additionally, anti-angiogenic gene
therapy targeting the VEGF-dependent pathway, adjuvant therapies to enhance short
term survival and hormone treatments inhibiting the JNK-dependent signaling
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pathway offer promising adjuncts. Bevacizumab, a humanized IgG1 monoclonal
antibody, has demonstrated significant anti-GBM efficacy, improving patient
outcomes in combination with chemotherapy, and has received accelerated approval
for recurrent GBM [34], [35], [36].

Emerging therapeutic strategies include cancer vaccines, immune checkpoint
inhibitors, CAR T-cell therapy and viruses involved in oncolysis, all showing
potential to enhance GBM patient survival [37], [38]. Despite the development and
ongoing refinement of multiple therapies, a comprehensive and universally effective
treatment approach remains to be fully realized, necessitating continued research and
innovation in GBM treatment modalities.

1.3. JAK-STAT Signalling Pathway

1.3.1 General Review
The JAK/STAT signaling is a pivotal cellular communication cascade regulating
diverse downstream processes in response to various cytokines and growth factors
[39], [40], [41]. In addition to regulating gene expression, this pathway governs cell
proliferation, differentiation, activation, autophagy and apoptosis [42], [43]. It plays
a crucial role in regulating growth, hormonal release, tumor progression and
inflammation. Any impairment in this pathway can lead to a range of illnesses, such
as cancer, inflammatory and neurodegenerative disorders [44], [45].

1.3.2 Components
This evolutionary conserved cascade structurally contains trans-membrane receptors,
receptor associated JAKs and STATs. The JAK family encompasses four proteins
whereas the STAT family includes seven distinct proteins [46].

JAKs are tyrosine kinases linked to ligand-receptor complexes, activated by growth
factors and cytokines, composed of four domains. The FERM and SH2 domains
facilitate JAK binding to receptors, while the pseudo-kinase domain modulates
kinase domain activity essential for receptor tyrosine phosphorylation [47], [48],
[49]. STATs are downstream signaling molecules featuring six structurally
conserved domains. At either end there are N-terminal domain and transcription-
activation domain (TAD) interspersed with coiled-coil domain (CCD), DNA-binding
domain (DBD), connection/linker domain and SH2 domain [50].

STAT homodimerization and nuclear transfer is facilitated by N-terminal domain
which operates independently, even in unphosphorylated state [51], [52], [53]. The
coiled-coil domain composed of multiple alpha-helices, interacts to transcription
factors and co-activators and contributes in nuclear translocation [54], [55], [56]. The
DBD is is essential for recognizing and binding to regulatory sequences of target
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genes as well as regulating nuclear import and export [57] . The linker domain links
DBD to SH2 domain, a highly conserved structure binding to specific
phosphotyrosine motifs at the activated receptor complex and facilitates protein-
protein interactions [58], [59], [60]. The TAD at the C- terminus contains
phosphorylation sites critical for STAT activation and can prevent auto-
phosphorylation [61].

Fig. 1.1 Comprehensive representation of STAT3 protein domains and their
functional roles.

1.3.3 Physiology
JAK-STAT Pathway activation commences with the binding of ligands, leading a
structural change in the receptor that promotes dimerization. This event facilitates the
recruitment and binding of JAK proteins to specific sites on the receptor.
Subsequent non-covalent binding of STAT proteins via their Src homology domains
which mediates phosphorylation of tyrosine residues of the receptor. Once bound,
STAT proteins become activated, forming dimers or even tetramers. These activated
STATs complexes translaocate to the nucleus to function as transcription factors,
thereby modulating gene expression [62], [63], [64], [65].
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Fig. 1.2 JAK/STAT Signaling Pathway

1.3.4 STAT3 and GBM
Out of other STAT protein, STAT3 a pivotal role in various biological functions. It
regulates factors critical in cancer processes such as cell growth, apoptosis, cancer
stemness, immune regulation, metastasis and tumorigenesis [66], [67], [68], [69]. Its
involvement in these processes and the pathogenesis of multiple malignancies,
particularly in the invasive growth of gliomas, makes it a promising therapeutic
target [70], [71]. Research indicates that phosphorylated STAT3 (p-STAT3) is
implicated in invasion and metastasis and is present in approximately 60% of human
GBM cohorts [72]. In GBM, STAT3 activation is linked to several regulators,
including BMX (bone marrow kinase X), which is upregulated in GBM stem cells
and epidermal growth factor which results in imbalancing of STAT3 pathway [73]
[74]. The GBM microenvironment, characterized by high levels of IL-6 and other
inflammatory factors, directly activates STAT3, thereby promoting GBM growth and
migration. STAT3 contributes to invasion by upregulation of pro-invasive factors
and facilitating the development of aggressive phenotype through interaction with
VEGF and HIF-1[75], [76]. Aberrant STAT3 activation is associated with increased
recurrence rates, invasiveness, and migration activity following radiotherapy due to
the activation of downstream signaling pathways [77], [78]. In-vitro settings have
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shown that STAT3 inhibitors exert inhibitory effects on GBM cells. However, many
known STAT3 inhibitors, such as ursolic acid, face challenges including high
toxicity, impermeability to the blood-brain barrier and rapid metabolization,
rendering them unsuitable for clinical application in GBM therapy [79], [80]. A
recent study demonstrated that the synergy of STAT3 inhibition and radiation
therapy reprogrammed the tumor micro-environment immunologically, markedly
enhancing animal survival and and highlighting the critical role of an intact immune
response for the efficacy of STAT3 inhibition [81].

As STAT3 is known to exhibit progression of GBM, targeting STAT3 could be an
effective therapeutic approach. Combining STAT3 inhibitors with conventional
therapies may enhance the current treatment outcomes for GBM.

Fig. 1.3 Illustration of STAT3 pivotal role with diverse tumor hallmarks

1.3.5 STAT1 and GBM
STAT1, the first discovered transcription factor of the STAT family plays role in
IFN signaling [82], [83], [84]. STAT1 is integral to numerous functions, such as cell
growth, proliferation and tumor development [85]. In gliomas role of STAT1 is
intricate. Previous STAT1 has been recognized for its tumor-suppressive functions
with studies indicating that STAT1 upregulation leads to reduced glioma cell
proliferation and migration while promoting apoptosis [86], [87]. However, recent
research has revealed contradictory findings. For instance, IGFBP-3 is involved in
the pathogenesis of GBM, induces STAT1 overexpression in glioma cells.
Additionally, IL-8 in the GBM microenvironment facilitates mesenchymal transition,
migration and invasion via the STAT1/HIF-1α/Snail pathway and IFN-γ signaling
which enhances GBM cell migration, also elevates STAT1 levels [88], [89], [90].
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A study highlights that STAT1 expression is linked to GBM aggressiveness and its
down-regulation mitigates this aggressiveness, suggesting STAT1 as a potential
therapeutic target against GBM [91].
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CHAPTER - 2

METHODOLOGY

2.1. Sources
Databases: PubMed, PubChem, IMPAAT 2.0, PubChem, Protein Data Bank (PDB),
UniProt
Software: Open Babel, PyRx, CB-Dock2, Discovery Studio, PyMOL

2.2. Workflow
From literature review, STAT3 was recognised an potential target for the discovery
of novel phytochemicals having the inhibitory effect, for targeting the JAK/STAT
cascade in GBM. For identification of ligands molecules, the plants were selected
with multiple therapeutic applications. The structure of plant specific phytochemicals
was retrieved from IMPPAT 2.0 and then filtered out based on blood-brain barrier
permeability (BBB). Alongside 3,674 FDA approved drugs were also taken. These
selected candidates were considered as ligands for the further investigation. The
workflow sequential process in Fig. 2.1.

2.3. Molecular docking

2.3.1 IMPPAT 2.0
IMPPAT 2.0 stands as the most comprehensive manually curated database of
phytochemicals, compiled by digitizing extensive data on traditional Indian
medicinal plants. This platform highlights the connections between plants, their
respective parts, phytochemicals and therapeutic applications. This integrated
resource, IMPPAT 2.0 underscores the knowledge inherent in traditional Indian
medicine and supports natural product-based drug discovery.

2.3.2 Data Extraction
For ligand data extraction, 30 Indian medicinal plants with wide range of activities
such as anticancer, anti-inflammatory, antimalarial, anti-allergic, anti-diabetic, anti-
nociceptive, analgesic, antimicrobial, cytotoxic, antioxidant, antilipidimic,
hepatoprotective, vasorelaxant, antitumor, neuroprotective, antibacterial, anti-
proliferative, antifungal, antiulcer, anti-diarrhoeal, immunomodulatory, anti-pyretic,
antiplasmodic, antihistaminic, antihelmintic, astringent, anti-hyperglycaemic, anti-
spasmodic and others mentioned in the table 2.1 were selected. The 3D .pdb structure
of phytochemicals specific for each plant was downloaded from IMPAAT 2.0 by
making individual entry. The structure of reference compound, curcumin identified
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by literature survey were retrieved using IMPAAT 2.0 of ID IMPHY007574 in
3D .sdf format. For FDA-approved drugs, the compounds were downloaded from
DrugBank, using napabucasin as the reference drug with its structure obtained from
PubChem. The target protein STAT3 is downloaded from Protein Data Bank (PDB)
in .pdb format.

Table 2.1 List of phytocompounds derived from IMPPAT 2.0

Name of
medicinal
plant

Family Number
of
entries

Source of
phytochemicals

Activity Reference

Albizia
lebbeck

Fabaceae 108 Bark, flower,
fruit, leaf, root,
seed, wood

Anticancer,
anti-nociceptive,
anti-inflammatory,
antimalarial,
anti-allergic,
neuroprotective

[92], [93],
[94], [95],
[96]

Anona
squamosa

Annonaceae 441 Bark, rooot, fruit,
leaf, seed, stem,
whole plant

Analgesic,
anti-inflammatory,
antimicrobial,
antioxidant,
antilipidimic,
hepatoprotective,
vasorelaxant,
antitumor

[97]

Arnebia
euchroma

Boraginaceae 29 Plant
cells/culture,
root

Anti-bacterial,
anti-proliferative,
anti-inflammatory,
antioxidant

[98], [99],
[100]

Asparagus
officinalis

Asparagaceae 51 Flower, leaf, root,
seed, shoot

Anti-diabetic,
anticancer,
antifungal,
antimicrobial

[101],
[102],
[103]

Asparagus
racemosus

Liliaceae 40 Bark, flower,
fruit, leaf, root,
wood,

Antiulcer,
antioxidant,
antidiarrhoeal,
antidiabetic,
immunomodulatory,
antitumor

[104],
[105]

Bauhinia
racemosa

Fabaceae 20 Bark, root, seed,
stem, wood

Analgesic,
antipyretic,
anti–inflammatory,
anti-plasmodic,
antimicrobial,
antihistaminic

[106],
[107],
[108],
[109]

Bidens
pilosa

Asteraceae 190 Flower, leaf, root,
stem

Anti-proliferative,
anti-inflammatory,
anti-diabetic,
antioxidant,
antimalarial

[110],
[111],
[112],
[113]

Butea
monosperm
a

Fabaceae 77 Bark, flower,
plant exudate,
root, seed, whole

Antitumor,
antimicrobial,
anti-helmintic,

[114],
[115]
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plant anti-inflammatory,
astringent

Calotropis
gigantea

Asclepiadacea
e

89 Aerial part, bark,
flower, leaf, plant
exudate, root,
seed, stem

Anti-inflammatory,
antioxidant,
anticancer

[116],
[117]

Cardiosper
mum
halicacabu
m

Sapindaceae 32 Leaf, root, seed Antipyretic,
antimalarial,
antioxidant,
antiulcer, anti-
hyperglycaemic,
antispasmodic,
antitumor

[118],
[119],
[120]

Cedrus
deodara

Pinaceae 189 Bark, flower,
leaf, plant
exudate, root,
seed, wood,
whole plant

Anti-inflammatory,
anti-
hyperglycaemic,
antimicrobial,
anti-apoptotic,
immunomodulatory,
antimalarial,
antiulcer,
anticancer, analgesic

[121]

Centella
asiatica

Apiaceae 97 Aerial part, leaf,
whole plant

anti-inflammatory,
antipsoriatic,
antiulcer,
immunostimulant,
cardioprotective,
antitumor, antiviral,
antioxidant

[122],
[123],
[124],
[125],
[126],
[127],
[128]

Cinnamom
um
zeylanicum

Lauraceae 515 Aerial part, bark,
leaf, fruit,

anti-inflammatory,
anti-microbial,
cardio-protective

[129]

Clerodendr
um
glandulosu
m

Lamiaceae 9 Leaf, root antioxidant,
hepatoprotective

[130],
[131]

Croton
tiglium

Euphorbiaceae 33 Seed Antibacterial,
antifungal,
analgesic,
anti-inflammatory,
anti-HIV, antitumor

[132],
[133],
[134],
[135]

Datura
innoxia

Solanaceae 53 Aerial part,
flower, fruit, leaf,
root, seed, stem

Analgesic,
anthelmintic,
anti-inflammatory

[136]

Datura
metel

Solanaceae 104 Aerial, leaf, part,
stem, bark, root,
flower, fruit,
seed, whole plant

Anti-proliferative,
anti-inflammatory,
antioxidant,
antipyretic,
analgesic

[137],
[138],
[139],
[140],

Euphorbia
hirta

Euphorbiaceae 129 Aerial, part, bark,
flower, leaf, plant
exudate, root,
stem, whole plant

Anthelmintic,
antimicrobial,
antimalarial,
antispasmodic

[141]

Gymnema Asclepiadacea 119 Fruit, leaf Antioxidant, [142],
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sylvestre e anti-diabetic,
antimicrobial,
anti-inflammatory,
anticancer

[143]

Inula
racemosa

Compositae 48 Root Anti-inflammatory,
analgesic,
anticancer

[144]

Magnolia
grandiflora

Magnoliaceae 240 Bark, flower,
leaf, seed, stem,
wood

Antimicrobial,
anticonvulsant,
muscle relaxant,
anti-inflammatory,
analgesic

[145],
[146],
[147],
[148]

Moringa
oliefera

Moringaceae 200 Bark, stem,
flower, root, fruit,
leaf, seed, whole
plant

Antioxidant,
anticancer,
anti-inflammatory

[149]

Plantago
major

Plantaginaceae 46 Aerial part,
flower, leaf, root,
seed, whole plant

Hepatoprotective,
anti-
hypercholesteremia,
anti-atherosclerosis,
anti-inflammatory,
analgesic,
antimicrobial,
anticancer

[150],
[151],
[152]

Pterocarpus
marsupium

Fabaceae 71 Bark, root, seed,
whole plant,
wood

Antihelminthic,
antipyretic,
anti-inflammatory,
aphrodisiac,
antiulcer

[153]

Semecarpu
s
anacardium

Anacardiaceae 35 Fruit, leaf, seed,
whole plant

anti-atherogenic,
anti-inflammatory,
antioxidant,
anti-reproductive,
anti-carcinogenic
central nervous
system stimulating,
hypoglycemic,

[154]

Taxus
wallichiana

Taxaceae 181 Bark, fruit, leaf,
Root, stem, wood

Analgesic,
anti-inflammatory,
immunomodulatory,
antispasmodic,
antiallergic,
anticonvulsant,
anti-osteoporotic,
anti-cociceptive

[155],
[156]

Urtica
dioica

Urticaceae 69 Flower, leaf,
plant
cells/culture,
rhizome, root,
trichome

Antioxidant,
anti-inflammatory,
hypoglycemic,
antiulcer,
cardiovascular
protective,
repression of
prostate-cell
metabolism,
proliferation

[157],
[158]

Vernonia Asteraceae 57 Aerial part, Antimicrobial, [159],



13

2.3.3 Ligand Preparation
For preparation of ligands, the downloaded compounds were converted from .pdb
file to SMILE files using a versatile and open source toolbox, Open Babel. Then all
these compounds were loaded in Swiss ADME to check BBB permeability. The data
obtained from Swiss ADME was analyzed manually and the BBB permeable
compounds were considered as ligands and used for docking purpose. In case of
FDA approved, once the structure of drugs were obtained, Open Babel was used to
convert the retrieved compounds into .sdf format for docking.

2.3.4 Protein Preparation
For preparation of protein, protein structure having PDB ID 6TLC with resolution of
2.90 Å is retrieved from PDB. PyMol was used to open the downloaded .pdb file and
the protein is checked for errors and corrections were made, in which the mono-
bodies and extra-chain was removed. Furthermore, the water molecules are removed
and the gaps will filled, modified STAT3 protein structure was saved in .pdb format.

2.3.5 PyRx
PyRx, an open source software is used for virtual screening of libraries for
identification of potential drug targets. It is a substantial collection of various
software which makes it a valuable asset for computer aided drug discovery. For the
study performed Open Babel is used for importing ligand files and vina wizard for
the docking purpose.

2.3.6 Docking
Docking is performed after preparation of ligands and protein. The .sdf file of ligands
and the protein structure was uploaded in PyRx. The inbuilt Open Babel converts the
ligands to .pdbqt format after energy minimization. The protein molecule is first
loaded and then converted to macromolecule. Subsequently, the ligands and protein
were chosen, and the grid-box dimensions were adjusted to ensure the entire protein
was encompassed within the grid box after utilizing the forward option. Once the
docking is completed the results were saved as output files and .csv files which were
further analyzed.

cinerea flower, leaf, root,
seed, whole plant

antipyretic,
anti-helmentic,
anti-inflammatory,
analgesic

[160]

Vitex
negundo

Verbenaceae 228 Bark, flower,
fruit, leaf, root,
seed, stem

Antihelmintic,
anti-inflammatory,
anti-proliferative,
antioxidant

[161],
[162]

Withania
somnifera

Solanaceae 129 Leaf, root, seed Anticancer,
anti-inflammatory,
antioxidant

[163],
[164]
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2.4. Docking Analysis
For the selection of efficient ligands .csv files for each plant were analyzed and the
potential ligands were identified based on the docking score. To identify efficient
FDA-approved drugs, the drugs with highest affinity were first selected by
analyzing .csv files. Among these, the drugs that are permeable to the blood-brain
barrier (BBB) were then identified and subjected to further analysis.

2.5. Docking Result Validation
To validate the results CB-Dock2 was employed, an advanced blind docking server
designed for virtual screening.

2.6. Protein-Ligand Interaction Visualization
The output files of the selected ligands were analyzed using Discovery Studio
platform and PyMOL for 2D and 3D interactions with the the protein. These
platforms enable the visualization of ligand binding sites on proteins, detailing the
number of interacting residues, as well as identifying the specific amino acids
involved in these interactions.

2.7. ADME Analysis
The physiochemical, drug likeliness and pharmacokinetic properties of hit
compounds were evaluated by Swiss ADME, a web tool that offers free access to
quick and reliable predictive models. It involves analysis of BBB permeability, total
molecular weight, rotatable bonds, hydrogen acceptor, hydrogen donor, topological
polar surface area, lipophilicity, GI absorption, cytochrome P450 enzyme inhibition,
solubility, bioavailability and lipinski’s rule of 5.

2.8. Toxicity and Carcinogenicity Analysis
For evaluation of toxicity, another freely available web tool pkCSM used for making
rapid pharmacokinetic properties prediction. For the study, it was used for
determining the oral rat acute toxicity LD50 and max. human tolerated dose. For
carcinogenicity testing, the web-based tool CarcinoPred-EL was utilized. This
advanced platform integrates three novel ensemble learning models to predict
whether compounds are carcinogenic or non-carcinogenic. Therefore, various
properties of the hit compounds were analyzed just by input of SMILES extracted
from IMPPAT 2.0 in each tool.

2.9. In-silico based Cancer Cell Cytotoxicity Analysis
CLC-Pred (Cell Line Cytotoxicity Predictor) 2.0 is an effective web tool which
mediates in-silico prediction of cytotoxic effect of chemical and natural compounds
against hundreds of cancer cell lines and normal cell lines. It involves use of PASS
technology and make predictions based on the structural formula. For this analysis,
we input the SMILES representations of the lead compounds into CLC-Pred 2.0
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[165]. The results obtained includes cytotoxicity data against various tumor types,
but we focused specifically on the cytotoxicity against gliomas and glioblastoma and
cytotoxicity data was recorded in terms of Pa > Pi values.

2.10. STAT1 docking with lead compounds
Following multiple analysis, the identified hit compounds were docked to the STAT1
(1YVL) protein, whose structure was obtained from the PDB. The protein was
prepared similarly to STAT3 and docking was performed using PyRX.

Fig. 2.1 Overview of performed methodology
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CHAPTER - 3

RESULT AND DISCUSSION

3.1. Result

3.1.1 Docking Result
The blood brain permeable phtyochemicals derived from 30 Indian medicinal plants
undergoes molecular docking along with the reference compound curcumin. The
docking score of 6.5 kcal/mol was obtained for the reference compound with STAT3.
For identification of effective STAT3 inhibitor the compounds with binding affinity
of 8.1 kacl/mol or lower were considered. Among the phytochemicals sourced from
30 different plants, only those from 9 plants met the desired criteria outlined in the
table 3.1. The phytochemical with the most negative docking score, indicating the
most stable ligand-protein complex, was derived from the Datura metel plant with an
IMPAAAT ID, IMPHY003277. This compound emerged as the most potent inhibitor,
boasting a docking score of -8.9 kcal/mol.

Table 3.1 Binding affinities of compounds within threshold range

Medicinal plant IMPPAT ID Phytochemicals Binding Affinity
Anona squamosa IMPHY005339 Anolobine -8.7

IMPHY001483 Xylopine -8.5
IMPHY001885 Annosquamosin D -8.4
IMPHY001469 Anonaine -8.4
IMPHY000175 Annosquamosin B -8.3
IMPHY001853 Aporphine -8.2
IMPHY005314 Norlaureline -8.2
IMPHY002753 Liriodenine -8.1
IMPHY013006 Michelalbine -8

Arnebia euchroma IMPHY007551 Deoxyshikonin -8.2
Asparagus officinalis IMPHY012274 Sarsasapogenin -8.1

IMPHY003711 Yamogenin -8.1
Calotropis gigentea IMPHY003772 Uzarigenin -8.1
Datura metel IMPHY003277 Withametelin -8.9

IMPHY010687 Isowithametelin -8.8
IMPHY004278 Datumetelin -8.2

Magnolia grandiflora IMPHY005339 Anolobine -8.7
IMPHY001469 Anonaine -8.4
IMPHY002753 Liriodenine -8.2
IMPHY014895 Sesamin -8

Pterocarpus
marsupium

IMPHY001869 Liquiritigenin -8.2
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For FDA-approved drugs, elbasvir showed the most negative binding energy score of
-10 kcal/mol, while the reference compound scored -7.5 kcal/mol. A threshold of ≤ -
8.5 kcal/mol was set based on the number of drugs with high affinity. Compounds
within this range were then analyzed for BBB permeability using Swiss ADME. Ten
compounds met the criteria, with the top three drugs tirilazad, telmisartan and
mizolastine with binding affinity -9.5 kcal/mol, -9.1 kcal/mol and -9 kcal/mol were
selected for further investigation and mentioned in Table 3.2.

Table 3.2 Leading FDA drugs exhibiting best affinity

S. No. FDA Approved Drug Binding Affinity (kcal/mol)
1. Tirilazad -9.5
2. Telmisartan -9.1
3. Mizolastine -9

3.1.2 Validation Result
Upon validating the top five phytocompounds and top three drug candidates with
CB-Dock2, notably significant values were obtained, with differences between the
scores from PyRx and CB-Dock2 being approximately ≤ 0.5 kcal/mol. The docking
score of the reference compound, curcumin was -7.3 kcal/moland napabucasin was -
8.1 kcal/mol for curcumin. The docking scores of these compounds were mentioned
in the Table 3.3 and 3.4.

Table 3.3 Comparison of phytocompound binding scores from PyRx and CB-Dock2

Target Protein IMPPAT ID PyRx CB-Dock 2
STAT3 IMPHY003277 -8.9 -9

IMPHY010687 -8.8 -9.3
IMPHY005339 -8.7 -8.7
IMPHY000630 -8.6 -9
IMPHY001483 -8.5 -8.7

Table 3.4 Comparison of FDA approved drugs binding scores from PyRx and CB-
Dock2

Target Protein FDA Drug PyRx CB-Dock 2
STAT3 Tirilazad -9.5 -9.2

Telmisartan -9.1 -9.0
Mizolastine -9 -8.5

Utrica diocia IMPHY002029 Luteoxanthin -8.4
Withania somnifera IMPHY000630 Withasomidienone -8.6

IMPHY004033 Solasodine -8.1
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3.1.3 Protein-Ligand Interaction Result
The 2D and 3D interactions of the top five phytocompounds and best three drug
candidates with STAT3 were analyzed using Discovery Studio and PyMOL, utilizing
output files from PyRx as detailed below. Furthermore, interaction of reference
compounds are also included.

Table 3.5 Interacting residues of STAT3 with leading phytocompounds and reference
compound

S.No. IMPPAT ID Interacting Residues
1. IMPHY003277 Arg325, Gln326, Pro256, Ser514, Gly253, Asp334, Pro333,

Pro336, Ala250, Cys251, Gln247, Glu324, Trp243, Asn257,
Leu260, Cys259

2. IMPHY010687 Asp334, Cys251, Ser514, Ala250, Gln247, Asn257, Trp243,
Glu324, Leu260, Cys259, Arg350, Arg325, Pro336, Pro333

3. IMPHY005339 Leu 438, Val490, Arg397, Ser381, Glu435, Leu436, His437,
Asp369, Lys370, Thr440

4. IMPHY000630 Arg325, Gly253, Asp334, Thr515, Ser514, Pro333, Pro336,
Gln326, Gln247, Ala250, Asn257, Cy251, Trp243, Glu324,
Leu260, Cys259

5. IMPHY001483 Asp371, Leu438, Thr440, Asp369, His437, Lys370, Glu435,
Leu436, Ser381, Arg379, Val490

6. Curcumin Lys370, Thr440, His457, Glu455, Asp369, His437, Glu435,
Leu436, Ser372, Val490, Arg379, Asn491, Leu438, Lys488

Curcumin

IMPHY003277
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IMPHY010687

IMPHY005339

IMPHY000630
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IMPHY001483

Fig. 3.1 Representation of 3D interactions between the selected reference
compounds and phytocompounds with STAT3

Table 3.6 Interacting amino acids of STAT3 with leading FDA drugs and reference
compound

S.No. Compound Interacting Residues
1. Tirilazad Thr346, Gln326, Pro336, Arg325, Cys251, Asp334, Glu324,

Cys259, Leu260, Trp243, Asn257, Gln247, Ala250, Pro256,
Gly254, Pro333, Pro330, Cys328

2. Telmisartan Cys328, Thr346, Cys259, Leu260, Glu324, Asn257, Trp243,
Gln247, Pro256, Ala250, Cys251, Gly253, Asp334, Ser514,
Ile252, Pro333, Met329, Pro330, Arg325, Pro336, Trp474

3. Mizolastine Asn257, Pro336, Arg325, Cys328, Pro333, Asp334, Cys251,
Ser514, Pro256, Glu324, Leu260, Cys259, Trp243, Gln247,
Ala250, Gln326

4. Napabucasin Ser381, Leu438, Asp371, Thr440, Lys370, Asp369, Arg379,
Val490, His437, Leu436

Napabucasin
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Tirilazad

Telmisartan

Mizolastine

Fig. 3.2 Representation of 3D interactions between the selected reference
compounds and FDA drugs with STAT3
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3.1.4 ADME Analysis Result
The ADME evaluation of both the top phytocompounds and selected drugs was
conducted utilizing the Swiss ADME software. The tables mentioned below presents
the data on the physicochemical properties, drug-likeness, and pharmacokinetics of
the identified compounds. The bioavailability radar diagrams of these
phytochemicals and BIOLED-EGG images were also recorded and referenced in Fig.
3.3 and 3.4.

Table 3.7 Physiochemical properties exhibited by selected phytocompounds

IMPAAT ID Total
Molecular
Weight
(g/mol)

Rotatable
bonds
(RB)

Hydrogen
acceptor
(HA)

Hydrogen
donor
(HD)

Topological
Polar
Surface
Area
(TPSA)
(in Å²)

Consensus
LogP

IMPHY003277 436.58 1 4 0 52.60 4.72
IMPHY010687 436.59 1 4 0 52.60 4.70
IMPHY005339 281.31 0 4 2 50.72 2.47
IMPHY000630 438.60 3 4 1 63.60 4.80
IMPHY001483 295.33 1 4 1 39.72 2.88

Table 3.8 & 3.9 Drug likeliness and pharmacokinetic properties of leading
phytocompounds

IMPAAT ID GI
absorption

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

IMPHY003277 High No No Yes No No
IMPHY010687 High No No Yes No No

IMPHY005339 High Yes No No Yes Yes
IMPHY000630 High No No Yes No No
IMPHY001483 High Yes Yes No Yes Yes

IMPAAT ID Solubility
class

BBB
permeant

Lipinski’s rule of 5 Bioavailability
score

IMPHY003277 Moderately
soluble

Yes Passed
(1 violation)

0.55

IMPHY010687 Moderately
soluble

Yes Passed
(1 violation)

0.55

IMPHY005339 Moderately
soluble

Yes Passed
(0 violation)

0.55

IMPHY000630 Moderately
soluble

Yes Passed
(1 violation)

0.55

IMPHY001483 Moderately
soluble

Yes Passed
(0 violation)

0.55
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IMPHY003277

IMPHY010687

IMPHY005339

IMPHY000630
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IMPHY001483

Fig. 3.3 Bioavailability radar diagrams and BOILED-EGG images of
phytocompounds derived by ADME analysis

Table 3.10 Physiochemical properties exhibited by selected FDA drugs

FDA Drugs Total
Molecular
Weight
(g/mol)

Rotatable
bonds
(RB)

Hydrogen
acceptor
(HA)

Hydrogen
donor
(HD)

Topological
Polar
Surface Area
(TPSA)
(in Å²)

Consensus
LogP

Tirilazad 624.86 6 5 0 72.88 5.98
Telmisartan 514.62 7 4 1 72.94 4.70
Mizolastine 432.49 5 4 1 70.05 3.28

Table 3.11 & 3.12 Drug likeliness and pharmacokinetic properties of leading FDA
approved drugs

FDA Drugs Solubility class BBB
permeant

Lipinski’s rule of 5 Bioavailability
score

Tirilazad Poorly soluble Yes Passed
(1 violation)

0.55

Telmisartan Poorly soluble Yes Failed
(2 violation)

0.85

Mizolastine Moderately
soluble

Yes Passed
(0 violation)

0.55

FDA Drugs GI
absorption

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

Tirilazad High No No No No No
Telmisartan Low No Yes No No Yes
Mizolastine High No Yes Yes Yes Yes
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Fig. 3.4 Bioavailability radar diagrams and BOILED-EGG images of mizolastine
derived by ADME analysis

3.1.5 Toxicity and Carcinogenicity Analysis Result
The summary of results for selected phytochemical compounds and FDA drugs were
presented in Table 3.13 and 3.14.

Table 3.13 Toxicity and carcinogenicity exhibited by phytocompounds

Table 3.14 Toxicity and carcinogenicity exhibited by FDA drugs

3.1.6 Cancer Cell Line Toxicity Analysis Result:
The only activities where Pa exceeds Pi are considered viable for an effective
compound. The results were expressed as probabilities of being active (Pa) and
inactive (Pi). For all hit compounds, Pa was found to be greater than Pi. The recorded
results of hit compounds are detailed in the Table 3.15 and 3.16.

IMPAAT ID Oral rat acute
toxicity LD50
(mol/kg)

Max. tolerated dose
human (log
mg/kg/day)

Carcinogenicity

IMPHY003277 1.926 -0.446 No
IMPHY010687 1.926 -0.446 No
IMPHY005339 1.402 -0.614 No
IMPHY000630 2.25 -0.272 No
IMPHY001483 3.531 -0.34 Yes

FDA Drugs Oral rat acute
toxicity LD50
(mol/kg)

Max. tolerated dose
human (log
mg/kg/day)

Carcinogenicity

Tirilazad 2.873 -0.599 No
Telmisartan 2.482 -0.407 No
Mizolastine 2.777 0.178 No
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Table 3.15 Cancer cell line toxicity shown by selected phytocompounds

IMPPAT ID Cancer
Cell Line

Disease
description

Tissue/Organ Tumor type Pa>Pi

IMPHY003277 C6 Glioma Brain Glioma 0.425 > 0.060
XF498 Glioma Brain Glioma 0.095 > 0.034

IMPHY010687 C6 Glioma Brain Glioma 0.436 > 0.010

SF-539 Glioblastoma Brain Glioblastoma 0.198 > 0.144

U-251 Astrocytoma Brain Astrocytoma 0.870 > 0.004

IMPHY005339 SF-295 Glioblastoma Brain Glioblastoma 0.555 > 0.018

SF-539 Glioblastoma Brain Glioblastoma 0.340 > 0.047

SF-268 Glioblastoma Brain Glioblastoma 0.296 > 0.075

SNB-75 Glioblastoma Nervous
system

Glioblastoma 0.204 >
0.175

Hs683 Glioma Brain Glioma 0.073 > 0.052
IMPHY000630 SNB-19 Astrocytoma Brain Astrocytoma 0.175 > 0.048

C6 Glioma Brain Glioma 0.164 > 0.094
IMPHY001483 SF-295 Glioblastoma Brain Glioblastoma 0.562 > 0.017

SF-539 Glioblastoma Brain Glioblastoma 0.354 > 0.042

A172 Glioblastoma Brain Glioblastoma 0.351 > 0.108

SF-268 Glioblastoma Brain Glioblastoma 0.311 > 0.068

U-251 Astrocytoma Brain Astrocytoma 0.220 > 0.150

SNB-19 Astrocytoma Brain Astrocytoma 0.141 > 0.079

Hs683 Glioma Brain Glioma 0.077 > 0.042

Table 3.16 Cancer cell line toxicity shown by selected FDA approved drugs

FDA Drugs Cancer
Cell Line

Disease description Tissue/
Organ

Tumor type Pa>Pi

Tirilazad SNB-19 Astrocytoma Brain Astrocytoma 0.120 > 0.116

Telmisartan XF498 Glioma Brain Glioma 0.081 > 0.063

Mizolastine Hs 683 Oligodendroglioma Brain Glioma 0.295 > 0.224
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3.1.7 Docking Results with STAT1
Among the five selected phytocompounds, IMPHY010687 exhibited the highest
binding affinity of -9.1 kcal/mol with STAT1. It was followed by IMPHY000630
and IMPHY003277. The remaining two compounds showed lower docking scores
with STAT1. Comparative docking results of these compounds with STAT1 and
STAT3 are summarized in the Table 3.17.

Among the FDA-approved drugs listed in the Table 3.18, mizolastine shows the
highest activity with a value of -9.5 kcal/mol, outperforming both tirilazad and
telmisartan.

Table 3.17 Comparison of docking scores for STAT1 with selected phytocompounds

Table 3.18 Comparison of docking scores for STAT1 with selected FDA drugs

FDA Approved Drugs
Compounds STAT3 STAT1
Tirilazad -9.5 -8.9
Telmisartan -9.1 -8.1
Mizolastine -9 -9.5

3.2. DISCUSSION
STAT3 is an oncogenic signal transducer involved in regulates the expression of
various genes which significantly shows association with various tumor hallmarks as
well as glioblastoma. This study targets this STAT3 and involves two investigations:
one focusing on phytocompounds and the other on FDA-approved drugs.

For the first study, Curcumin, a renowned anticancer compound found in the
Curcuma longa plant, was used as a reference drug for identifying potential lead
compounds. Curcumin is known to regulate the JAK/STAT pathway by reducing or
inhibiting STAT3 phosphorylation and preventing its translocation to the nucleus in
various cancer cells [166], [167]. Additionally, it has been shown to suppress the
activity of STAT1, JAK1, and JAK2 in microglial cells [168]. The reference
compound achieved binding score of 6.5 kcal/mol and a validation docking score of
7.3 kcal/mol using CB-Dock2. A docking threshold of -8.1 kcal/mol or lower, was
established to identify natural STAT3 inhibitors.

Phytochemicals
IMPAAT ID STAT3 STAT1
IMPHY003277 -8.9 -8.7
IMPHY010687 -8.8 -9.1
IMPHY005339 -8.7 -7.6
IMPHY000630 -8.6 -8.8
IMPHY001483 -8.5 -7.1
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Table 3.1 shows the phytochemicals within binding affinity scores within the
threshold range. Out of them top 5 phytocompounds, withametelin or daturilin and
ID IMPHY003277 has most negative binding energy. Withametelin (IMPHY003277)
and isowithametelin (IMPHY010687) are the phytocompounds derived from the leaf
of Datura metel plant belonging to class of steroids based on chemical classification.
Withametelin was found to possess antifungal and neuroprotective activity along
with cytotoxic effect against various cancer cell lines [169], [170], [171].Similarly,
isowithametelin also have cytotoxic activity and cancer chemopreventive potential
[172]. Anolobine (IMPHY005339) is an alkaloid derived from annona squamosa and
magnolia grandiflora possess antimicrobial properties. Other compounds investigated
included Withasomidienone (IMPHY000630), a steroid isolated from the roots of
Withania somnifera, and Xylopine (IMPHY001483), another alkaloid derived from
Annona squamosa.

In another study involving FDA-approved drugs, napabucasin was used as a
reference. This small molecule is known to reduce the expression of STAT3 and
genes related to stemness, and it plays specific roles in regulating the cell cycle,
proliferation, invasion and apoptosis [173].

FDA-approved drugs retrieved from DrugBank, along with a reference drug, were
subjected to docking. Napabucasin achieved a docking score of -7.5 kcal/mol. A
threshold of ≤ -8.5 kcal/mol was set for selecting inhibitor drugs. Those meeting the
threshold underwent BBB analysis, resulting in 10 compounds. The top three -
tirilazad, telmisartan, and mizolastine which were selected for further analysis.
Further docking validation using CB-Dock2 confirmed these compounds as effective
inhibitors of the target protein.

The physicochemical properties of lead compounds are critical for assessing drug-
likeness. Key among these properties is the molecular weight, which should ideally
be ≤ 500, adhering to lipinski's rule of five, that also limits hydrogen bond donors to
5 and acceptors to 10 [174]. Lipophilicity, measured by the partition coefficient,
should be less than 5. Another crucial factor influencing a molecule's bioavailability
is its topological polar surface area (TPSA), which should ideally be less than 140 Å²
to enhance oral bioavailability. For this study, the consensus Log Po/w value,
calculated as the average of predictions from five different models in Swiss ADME,
was used to evaluate lipophilicity. Given these considerations, the lead compounds
exhibit excellent physicochemical properties.

The study of drug likeliness and pharmacokinetic properties of the selected
compounds underscores that all lead compounds exhibit moderate water solubility
and high gastrointestinal absorption while adhering to Lipinski's rule with minimal
violations. Additionally, it underscores the essential need for all drugs to cross the
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blood-brain barrier, as failing to do so greatly impedes the treatment of neural
disorders [175]. The enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6, and
CYP3A4, members of the Cytochrome P450 family, are pivotal in metabolizing
numerous drugs. Inhibition of these enzymes can result in significant drug toxicity,
underscoring their importance in the pharmacokinetics [176]. Except xlyopine
(IMPHY001483), all the compounds were non-inhibitor of these enzymes.

The Table 3.10, 3.11 and 3.12 illustrates the pharmacological profiles of leading
FDA-approved drugs. Mizolastine exhibits better physicochemical properties than
tirilazad and telmisartan, both of which possess high molecular weights, with
tirilazad also having lipophilicity beyond the threshold. In terms of drug-likeness and
pharmacokinetics, tirilazad and mizolastine conform to lipinski's rule of five, with a
bioavailability score of 0.55. Tirilazad and telmisartan are effective cytochrome
P450 enzyme inhibitors but exhibit poor solubility, whereas mizolastine shows
moderate solubility.

PkCSM was used for predicting oral rat acute toxicity LD50 and max. tolerated dose
in human. The carcinogenicity assessment was performed using CarcinoPred-EL.
These analysis indicates phytocompound xlyopine (IMPHY001483) is unsuitable
compound due to its carcinogenicity. The toxicity assessment of the chosen
compounds unveils their respective toxicity profiles. Notably, the analysis indicates
that among the FDA-approved drugs, telmisartan, tirilazad, and mizolastine exhibit
non-carcinogenic properties.

The results of the cancer cell line toxicity analysis were positive, as each
phytocompound and the selected drug exhibited a Pa value higher than its Pi value.
Specifically, compounds anolobine (IMPHY005339) and xylopine (IMPHY001483)
demonstrated toxicity to various glioblastoma cancer cell lines.

In both studies, we explored the potential of phytocompounds and FDA drugs,
known to be potent STAT3 inhibitors, against STAT1, given that both STAT3 and
STAT1 are upregulated in GBM and play significant roles in JAK/STAT pathway
and various cancers. We found that all the FDA approved drugs and three of
phytocompounds exhibited strong binding affinity with STAT1, yielding promising
results.

https://doi.org/10.1517/17425240902780166.
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CHAPTER - 4

CONCLUSION, FUTURE PROSPECTS AND SOCIAL IMPACT

Glioblastoma, the deadliest of all gliomas attracts significant global interest despite
its relatively low incidence rate due to its heterogeneous nature and high recurrence.
Extensive research is underway to develop more effective and non-resistant therapies
to control and mitigate GBM progression. To contribute to these efforts, two
synergistic studies were conducted using an in-silico approach to identify effective
targets and discover novel inhibitors. The first study focused on natural inhibitors,
while the second utilized FDA-approved drugs. Both approaches aimed to target the
identified protein more efficiently, ensuring greater safety and fewer side effects
compared to other inhibitors.

This method utilizes molecular docking, ADME analysis, toxicity, carcinogenicity
and cancer cell line toxicity studies to investigate the potential of phytochemicals
from Indian medicinal plants and currently known FDA-approved drugs. The results
indicate that both the phytocompounds and FDA-approved drugs effectively inhibit
STAT3 and STAT1, crucial signal transducers in the JAK-STAT signaling pathway,
which are significant in the context of Glioblastoma.

Based on molecular docking studies, the phytocompounds withametelin
(IMPHY003277), isowithametelin (IMPHY010687), anolobine (IMPHY005339),
withasomidienone (IMPHY000630) and xylopine (IMPHY001483) have been
identified as potent inhibitors. For FDA-approved drugs, tirilazad, telmisartan, and
mizolastine were identified as effective candidates with superior docking scores
compared to selected phytocompounds. The ability of these compounds to cross
BBB could enhance their therapeutic effectiveness. Comprehensive analysis of
physicochemical properties, drug-likeness, and pharmacokinetics revealed that
phytocompounds generally performed better than FDA-approved drugs, with only
the phytocompound xylopine (IMPHY001483) acting as an inhibitor of most drug-
metabolizing enzymes. Toxicity and carcinogenicity assessments showed xylopine
(IMPHY001483) being carcinogenic along with the relative toxicity profiles of
selected compounds. In-silico cancer cell line toxicity tests indicated that all selected
candidates were toxic to various brain tissue cell lines, but phytochemicals were
overall more effective, showing toxicity to a wider range of brain tissue cell lines.
Finally, these potential candidates were docked with STAT1, yielding good docking
scores for all except anolobine (IMPHY005339) and xylopine (IMPHY001483).
Comparing the results of phytocompounds and FDA drugs, FDA drugs were clear
winners based on molecular docking scores. However, in other pharmacological
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analysis, the phytocompounds demonstrated better performance. Moreover, further
studies are needed for validation and examination of these findings.

Identifying potential targets and inhibitors for glioblastoma holds immense promise
for transforming patient care and the broader healthcare landscape. By developing
more effective therapies, there is a potential to significantly extend survival rates and
enhance the quality of life for glioblastoma patients. This breakthrough could also
alleviate the burden on healthcare systems by providing better treatment options, thus
optimizing resource allocation and streamlining patient management. Moreover, the
prospect of personalized treatment plans tailored to individual patients offers hope
and empowerment to those facing this challenging diagnosis. Furthermore,
successful identification of these targets and inhibitors has the potential to catalyze
increased awareness, research, and investment in glioblastoma treatment, ultimately
fostering collaboration and innovation within the scientific community. Overall, this
advancement has the capacity to drive profound social impact by improving patient
outcomes, reducing healthcare burdens, raising disease awareness and empowering
researchers and clinicians in the ongoing fight against glioblastoma.
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