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“Smoking-Induced Genetic Drivers of Latent Tuberculosis Reactivation Unveiled 

by Single-cell RNA Sequencing Analysis”  

Ishita Sehgal 

Delhi Technological University, Delhi, India  

Email: ishi.sehgal2000@gmail.com 

 

ABSTRACT 

 

Tuberculosis (TB), a formidable infectious disease caused by Mycobacterium 

tuberculosis, remains a significant global health challenge. While many individuals 

harbor a latent form of the infection, certain risk factors, such as cigarette smoking, can 

result in the reactivation of latent tuberculosis into an active and transmissible state. This 

phenomenon underscores the critical need to elucidate the molecular mechanisms by 

which smoking modulates the host immune response, rendering individuals more 

susceptible to tuberculosis reactivation. 

Single-cell RNA sequencing (scRNA-seq) was employed to comprehensively profile the 

transcriptomic landscape of immune cells from individuals with active tuberculosis, 

including a subset of smokers. By leveraging cutting-edge computational approaches, 

we identified distinct gene expression signatures and cellular subpopulations that were 

differentially expressed in smokers compared to non-smokers. 

Through rigorous bioinformatic analyses, key genes and pathways were uncovered 

associated with smoking-induced dysregulation of inflammatory responses and immune 

cell function, providing mechanistic insights into their heightened susceptibility to 

tuberculosis reactivation. 

Our findings pinpoint potential therapeutic targets and biomarkers for early detection 

and personalized management of tuberculosis, particularly in the context of smoking-

related risk. 
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CHAPTER 1 

 

 INTRODUCTION 

 

 

Tuberculosis (TB), a persistent global health threat caused by Mycobacterium tuberculosis 

(M. tb.), continues to afflict millions of people globally, disproportionately impacting 

vulnerable populations. While significant advancements have been made in understanding 

the disease pathogenesis, a major challenge remains in elucidating the cellular and 

molecular mechanisms underlying the reactivation of latent TB infection (LTBI), 

particularly in individuals who are exposed to the risk of smoking. 

 

Smoking is a potent risk factor that increases the likelihood of LTBI reactivation and 

progression to active TB disease. However, the intricate interplay between smoking, host 

immune response, and the transcriptional dysregulation of immune cells, primarily 

monocytes, remains poorly understood. This critical gap hinders the development of 

targeted interventions and diagnostic approaches tailored for smokers with LTBI, a 

population that is at elevated risk of disease reactivation. 

 

Single-cell RNA sequencing (scRNA-seq) was performed to address this particular 

challenge. This cutting-edge technology enables the transcriptional profiling of individual 

cells at an unprecedented resolution. The primary objective was to delineate the distinct 

transcriptional signatures and regulatory pathways in monocytes that are affected by 

chronic exposure to smoking, consequently influencing their phenotypes, functional 

plasticity, and susceptibility to subversion by M. tuberculosis. 

 

By employing a comprehensive scRNA-seq workflow, the transcriptomes of Peripheral 

blood mononuclear cells (PBMCs) isolated from a cohort of TB patients stratified by 

smoking status were analyzed. This approach allowed for the deconvolution of discrete 

monocyte activation states, differentiation trajectories, and functional phenotypes 
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influenced by smoking and TB infection. Integrating computational approaches for 

dimensionality reduction, clustering, and differential expression analysis, we identified a 

panel of smoking-modulated genes and pathways that may contribute to the heightened risk 

of LTBI reactivation observed in smokers. 

 

Our findings revealed a constellation of transcriptional alterations in essential monocyte 

markers, including CD93, CD14, and CCR2, which are implicated in immune regulation, 

inflammatory responses, and bacterial clearance mechanisms. Notably, the altered 

expression of these genes was significantly associated with smoking exposure and 

suggested their potential role as biomarkers or therapeutic targets for overcoming the 

detrimental effects of smoking on TB control. 
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CHAPTER 2  

 

LITERATURE REVIEW  

 

2.1 The Enduring Challenge of Tuberculosis 

 

Mycobacterium tuberculosis (M. tb.) is the bacillus responsible for causing Tuberculosis 

(TB), which continues to be a persistent health threat in many developing nations. TB 

remains a significant public health concern, affecting vulnerable populations 

disproportionately in settings with limited resources despite substantial advancements in 

diagnosis and treatment (Pai et al., 2016). A major obstacle is Latent TB Infection 

(LTBI), where individuals harbor the bacteria without active symptoms. The WHO 

estimates that around a quarter of the global population has LTBI, serving as a reservoir 

for potential active cases, which makes the diagnosis and treatment of LTBI a crucial 

step in the course of action to stimulate an overall decline in worldwide TB infection and 

achieve its elimination to prevent future disease (Houben & Dodd, 2016). 

 

2.2 Latent TB Infection  

 

M. tb. infection occurs when the tubercle bacilli, originating from an individual with active 

disease, enter the lungs of an uninfected individual (Delogu et al., 2013). The bacteria 

replicate within immune cells called macrophages, leading to their spread and eventual 

granuloma formation. The granuloma, referred to as the Ghon complex, serves as M. tb.’s 

protective "sanctuary" during latent tuberculosis infection, where the bacteria remain 

dormant for years or even a lifetime, establishing a dynamic balance with the host's 

immune system (Alsayed & Gunosewoyo, 2023; Kiazyk & Ball, 2017; Tufariello et al., 

2003). Given that immunosuppression, smoking, and other predisposing factors can cause 

the dormant bacteria to reactivate and cause active TB disease, LTBI represents a 

persistent reservoir for potential reactivation (Alavi-Naini et al., 2012),. 
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2.3 Smoking as a potential risk factor for Tuberculosis Reactivation 

 

Smoking is a major recognized risk factor for lung cancer, chronic obstructive 

pulmonary disease (COPD), and other respiratory infections like tuberculosis (TB) 

(Alavi-Naini et al., 2012).  

 

The World Health Organization (WHO) states that exposure to ambient air pollutants 

from multiple sources, such as particulate matter, burning biomass fuels, and tobacco 

smoking, has been associated with a number of harmful health effects in humans. 

Studies conducted across the globe have shown that exposure to ambient air pollutants, 

such as smoke from wildfires and tobacco smoke, is linked to a higher risk of 

tuberculosis. Several theories have been proposed to explain the potential mechanisms 

underlying this association, suggesting that ambient particulate matter may impair the 

human immune system, thereby increasing the risk of latent tuberculosis infection 

(Yanbaeva et al., 2007; Stevenson et al., 2007). Specifically, smoking has been 

postulated to compromise pulmonary immunity against the bacteria (Lin et al., 2007; 

Maurya et al., 2002; Slama et al., 2007; Toxics | Free Full-Text | Smoking Exposure and 

the Risk of Latent Tuberculosis Infection, n.d.).  

 

2.3.1 Cells Affected 

 

One important protein, CD14, is mostly expressed by monocyte/macrophage lineage 

cells. It is essential for the innate immune response against intracellular pathogens. 

(Ayaslioglu et al., 2013; Layre et al., 2014).  

 

Studies have found that high tobacco consumption or cigarette smoking has been 

associated with elevated levels of leukocytes, monocytes, neutrophils, and lymphocytes, 

where monocytes show the highest dysregulation (Pedersen et al., 2019). However, 

current research in this area is limited by the diverse nature of monocytes and the 

inability to accurately identify specific transcriptional programs within different 
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subpopulations that may drive smoking-induced susceptibility to TB reactivation (Scriba 

et al., 2022). 

 

2.4 TB Diagnosis challenges 

 

Latent TB is recognized by the existence of Mycobacterium tuberculosis in the host 

without an active illness, and it poses a diagnostic challenge due to the bacteria's 

dormancy. Tuberculin skin tests (TST) and interferon-γ release assays (IGRA) are 

widely being used as diagnostic techniques for detecting tuberculosis (Mwaba et al., 

2020). Unfortunately, both of these methods have several limitations when it comes to 

identifying latent TB infection. This underscores the necessity for a comprehensive 

diagnostic approach that integrates multiple tools and a meticulous clinical evaluation to 

accurately identify latent TB cases, especially in the context of smokers (Dey & Bishai, 

2014; Qiu et al., 2021).  

 

2.5 RNA Sequencing 

 

The entire collection of RNA transcripts that are present in a cell at a particular stage of 

development or physiological state is referred to as the transcriptome (Conesa et al., 

2016; Stark et al., 2019). Deciphering the transcriptome is essential in understanding the 

genome's functional components, clarifying the molecular makeup of cells and tissues, 

and learning more about the mechanisms underlying disease and developmental 

processes  (Love et al., 2014; Trapnell et al., 2013). 

 

Numerous technologies, including microarrays, have been developed to infer and 

quantify the transcriptome. The reliance on pre-existing genomic sequence data, high 

background noise from cross-hybridization, and a constrained dynamic range of 

detection because of background signals and signal saturation are some of the limitations 

of these techniques. Transcriptome analysis has been completely transformed by the 

introduction of new high-throughput sequencing techniques, such as RNA Sequencing. 
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These techniques offer a potent method for mapping and quantifying transcriptomes, 

which has clear advantages over conventional techniques (Z. Wang et al., 2009). 

 

2.5.1 Overcoming the limitations of bulk RNA sequencing with Single-Cell RNA 

Sequencing  

 

Bulk RNA sequencing (Bulk RNA-seq) is a crucial tool for comprehending gene 

expression in intricate biological samples. Nonetheless, it can overshadow the disparities 

between different cell types and states by averaging the gene expression of numerous 

cell types. This drawback sparked the advent of single-cell RNA sequencing (scRNA-

seq). This innovation facilitated the separation of individual cells, the amplification of 

their RNA, and the following sequencing and examination of their transcriptomes 

(Hwang et al., 2018).  

 

In the context of this study to determine the impact of smoking on Tuberculosis, scRNA-

seq holds immense potential to determine the molecular mechanisms underlying the 

detrimental effects of cigarette smoke on the host’s immune response to M. tb. infection 

(Burusie et al., 2020). By profiling the transcriptomes of individual immune cell types 

from individuals with LTBI, with and without smoking exposure, a comprehensive 

understanding of the smoking-induced cellular and molecular changes that may 

contribute to TB reactivation and disease progression can be achieved. 

 

2.5.2 Advantages of single-cell RNA sequencing over Bulk RNA sequencing 

 

Single-cell RNA sequencing is a powerful tool that allows us to discover and define new 

cell types and subtypes that were previously undetectable in large-scale analyses. By 

studying individual cells, this technique reveals the transitional states that cells go 

through during their processes of differentiation and disease progression (Jovic et al., 

2022; Yu et al., 2021). 
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Studying the active pathways and gene interactions in individual cells can uncover new 

potential treatment targets. Creating computational tools to analyze single-cell 

information has been essential, with methods like clustering and dimensionality 

reduction being the key. Integrating single-cell data from techniques like scRNA-seq 

with other forms, such as single-cell proteomics, offers a complete view of cellular 

biology. By studying individual cells, we can find clues about disease markers and 

possible treatment targets. This knowledge can be used to create personalized 

diagnostics and treatment methods that are linked to each patient’s specific cellular 

characteristics.(Li & Wang, 2021; Yu et al., 2021). 

 

 

2.5.3 Single-cell RNA sequencing Data Analysis using R 

 

With its robust ecosystem of specialized packages and libraries, R is an open-source 

programming language and software environment for the graphical and statistical 

analysis of data. It has gained widespread adoption as a tool for scRNA-seq data analysis 

(Huber et al., 2015; Lun et al., 2016). 

 

2.6 Study Objectives and Significance 

 

This study is designed to understand the underlying mechanisms of what is happening in 

people who smoke and have TB by using a new set of data (molecular/genomic 

approaches), analyzing the manner by which tobacco smoke is signaling the reactivation 

of tuberculosis, and the subsequent immune responses that follow. This is to achieve the 

following goals: 

 

1. Analyze the effect of smoking exposure on the transcriptional profile of immune cells 

from latent tuberculosis-infected individuals. 
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2. Determine the functional states and crosstalk of immune cell subsets, including 

macrophages, T cells, and many other immune-related factors that act together to 

combat M. tb. infection under the influence of smoking. 

  

3. Uncover potential molecular markers or signatures that may be associated with the 

risk of LTBI reactivation or disease progression in smokers as new therapeutic 

biomarkers. 
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CHAPTER 3  

 

METHODOLOGY  

 

3.1 Data Collection  

 

The sequencing data for this analysis was obtained from the Single Cell Portal database, 

a publicly accessible repository for high-throughput genomic data (Tarhan et al., 2023). 

Before proceeding with the analysis, several preprocessing steps were performed to 

determine the sequencing data's quality and reliability. These included trimming the 

low-quality bases, removing adaptor sequences, and filtering out the reads that did not 

meet specific quality thresholds. 

 

3.2 Data Analysis 

 

The dataset was analyzed using the R package “Seurat”, a widely used package designed 

for QC analysis, and exploration of scRNA-seq data. Some of the analysis was done 

using the Python package Scanpy, a scalable toolkit for analyzing single-cell gene 

expression data (Amezquita et al., 2020). 

 

3.3 Functionality of scRNA Workflow 

 

To determine the heterogeneity from single-cell transcriptomic measurements and to 

integrate diverse types of single-cell data, Seurat uses advanced statistical models: 

 

• Seurat Object: It acts as a container that stores the single-cell data, including the 

Count Matrix (containing the number of RNA molecules (reads) for each gene in 

each cell), Metadata (information about the cells), and Analysis Results (Outputs 

from various computations performed on the data like dimensionality 

reduction—PCA or clustering results) (Butler et al., 2018). 
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• Quality Control and Filtering: Seurat allows you to easily explore QC metrics 

and filter cells based on any user-defined criteria (Subramanian et al., 2022).  

 

A few QC metrics commonly used include: 

 

▪ Number of unique genes detected in each cell 

▪ Low-quality cells  

▪ Cell doublets or multiplets 

▪ Percentage of reads mapping to mitochondrial genome 

▪ Low-quality/dying cell 

 

• Normalization: Normalization is an essential step in analyzing the single-cell data 

in order to address variations in sequencing depth and technical noise, which can 

impact the accuracy of subsequent analysis. Log Normalize, a function in the Seurat 

R package, normalizes single-cell RNA sequencing information. It eliminates 

technical discrepancies among the cells. To achieve this, the counts for each gene in 

a cell are divided by the total counts for that specific cell, accounting for the 

differences in sequencing depth. A scale factor then adjusts the resulting values to 

calibrate the overall scale of normalized data. Finally, the log1p function is applied 

to these normalized values (Hafemeister & Satija, 2019). 

 

• Finding Variable Features: The vst method in Seurat’s FindVariableFeatures 

function is used to identify highly variable genes in the data (Peng et al., 2024). 

 

• Scaling the data: The data was scaled prior to performing dimensionality reduction, 

such as PCA. The ScaleData() function adjusts the expression of each gene to have a 

mean of 0 and variance of 1 across the cells (Hafemeister & Satija, 2019). This is 

done in order to ensure that highly expressed genes do not have more influence in 

the subsequent analyses.  
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• Dimensionality Reduction: It is a technique used to reduce the number of variables 

or features in a dataset. It is useful in dealing with high-dimensional data, as it can 

help overcome the problem of dimensionality, reduce computational complexity, and 

improve model performance. The Seurat package provides several dimensionality 

reduction methods, such as the Principal Component Analysis (PCA), which 

identifies a set of orthogonal linear combinations (principal components) that explain 

the majority of the variance in the data (Sun et al., 2019). These components capture 

the most significant sources of variation in the dataset. The first component is the 

primary direction that accounts for the greatest amount of variation in the data, 

followed by the rest of the components with less variations. 

 

• Find Neighbours and Clustering: Higher resolution results in an increased number 

of clusters, with a default value of 0.8. This process involves identifying distinct 

subgroups within the dataset, where cells within the same cluster are highly similar 

while those in different clusters are markedly different (Zhuang et al., 2022). The K-

nearest neighbor of each cell can be computed using the FindNeighbors() function. 

Then, we conducted graph clustering with the FindClusters() function. This will 

provide each cell with a specific number based on its cluster (Zhang et al., 2023). 

 

• Non-Linear Dimensionality Reduction: Seurat uses multiple types of non-linear 

dimensionality reduction methods, including the UMAP method: 

 

▪ Uniform Manifold Approximation and Projection (UMAP) is a method for 

reducing the dimensionality of data while maintaining its underlying structure. 

This technique measures similarities between data points based on their topology 

and creates a graph to approximate the data (Yousuff et al., 2024). Therefore, 

UMAP creates a lower-dimensional representation of the original data. 
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• Differential Expression Analysis: Differential expression using the Seurat 

package's statistical methods was performed to identify marker genes that distinguish 

specific cell populations or subpopulations. This analysis enabled us to characterize 

the unique transcriptional signatures associated with distinct cell states or conditions, 

such as smoking status. 

 

3.4 Visualization 

 

Different visualization techniques were utilized to interpret the scRNA-seq data. I 

generated Violin plots, Feature plots, Dim plots, Variable Feature plots, Elbow plots, 

Heat maps, UMI plots, and more to visualize the analysis's results. 
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CHAPTER 4 

 

 RESULT AND DISCUSSION  

 

4.1 Visualization of the number of RNA, number of features, percentage of 

mitochondria, and percentage of ribosomal proteins via Violin Plot (Vln Plot) and 

Feature Scatter plot 

 

The number of counts of RNA (represented by nCount_RNA), number of features 

(represented by nFeature _RNA), percentage of mitochondria (represented by 

percent.mt), and percentage of ribosomal proteins (represented by percent.rb) per cell 

across the sample is represented via Violin and Feature Scatter plots. 

 

A number of quality control metrics are first evaluated to determine the integrity and 

reliability of single-cell RNA sequencing data, such as counts of RNA (nCount_RNA), 

the number of features (nFeature_RNA), the percentage of mitochondrial gene 

expression (percent.mt), and the percentage of ribosomal protein genes (percent.rb) per 

cell across the sample. Violin plots and feature scatter plots are used to visualize and 

examine the distribution of these metrics. Violin plots provide a comprehensive view of 

the probability density of the data and allow for the identification of potential outliers or 

skewed distributions. Feature scatter plots give a two-dimensional representation of the 

relationship between any two variables and enable the assessment of potential 

correlations or patterns within the dataset (Mothe & Martha, 2023).  

 

Moreover, these visual representations help researchers gain insights into the quality of 

scRNA-seq data. For instance, cells with a high percentage of mitochondrial gene 

expression of ribosomal protein genes may indicate issues like cellular stress or 

degradation. Similarly, cells with extremely low or high counts of RNA or features may 

be indicative of technical faults or biological outliers.  
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Fig. 4.1: a) Violin Plot representing nCount_RNA, nFeature_RNA, percent.mt, 

percent.rb across the samples; b) Feature Scatter Plot for nCount_RNA vs 

nFeature_RNA; c) Feature Scatter Plot for percent.rb vs nCount_RNA; d) Feature 

Scatter Plot for percent.mt vs percent.rb; e) Feature Scatter Plot for percent.mt vs 

nCount_RNA 
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4.2 Visualization of the Top Highly Variable Genes via the Variable Feature Plot 

 

The Variable feature plot, also known as the mean-variance plot or the dispersion plot, is 

a visualization tool used to analyze single-cell RNA sequencing data. It helps to identify 

the highly variable genes or features across the dataset (Y. Wang et al., 2023).  

 

The relationship between the geometric mean (x-axis) and the residual variance (y-axis) 

of expression of each gene or feature is shown in this plot (Fig. 2). The residual variance 

quantifies the departure from the expected mean-variance relationship, indicating the 

degree of variability for each gene, whereas the geometric mean of expression represents 

the average expression level across all cells. As seen in Fig. 2, the most variable genes or 

factors are those with moderate to high expression levels. These genes or features are 

often highlighted or colored differently than others. The plot highlights several 

important genes or cell markers, including CLC, HBA1/TUBB1, HBA2, and HBB. 

 

This remarkable diversity of genes is particularly interesting because it is possible that 

they will be differentially expressed in different cell types or conditions. This provides 

important information about the cellular mechanisms by which smoking affects and 

reactivates tuberculosis. 
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Fig. 4.2: Variable Feature Plot expressing the Top Highly Variable Genes across the 

sample data 

 

4.3 Visualization of Linear Dimensional Reduction (PCA) via VizDimLoadings 

Plot, Dim Plot, and Dim Heatmap Plot 

 

A popular method for linear dimensionality reduction used in the analysis of single-cell 

RNA sequencing (scRNA-seq) data is Principal Component Analysis (PCA) (Tsuyuzaki 

et al., 2020). This method allows one to visualize and investigate the underlying cellular 

heterogeneity and potential subpopulations by identifying the most important sources of 

variation in the high-dimensional gene expression data. 

 

In this study, the PCA results are visualized with the help of three plots: the 

VizDimLoadings plot (represented by Fig. 3a), the Dim plot (represented by Fig. 3b), 

and the Dim Heatmap Plot (represented by Fig. 3c). These plots provide insights into the 

gene loadings, cell distribution, and individual gene contributions to the principal 

component (PCs) loadings, respectively. 
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A. The VizDimLoadings plot represents the gene loadings for each principal 

component. It can identify the genes that contribute the most to each PC’s 

evolution. For example, the top genes in PC_1 exhibit high loadings, suggesting 

that they may be relevant in incorporating the observed variation in the data set. 

 

B. Dim plot is a scatter plot of the distribution of cells along the first two principal 

components (PC_1 and PC_2). This plot shows the possible clusters or 

subpopulations because cells with similar transcriptome profiles tend to group 

together. 

 

C. Lastly, the Dim Heatmap plot depicts the cell embeddings across multiple 

principal components. Each panel in the plot represents a two-dimensional 

projection of the cells onto the respective PC pairs. The intensity of the colors in 

the plot can be compared to the density of cells in a region to identify potential 

substructures or trajectories in the data. 

 

 

With the help of these complimentary PCA visualizations, insights can be gained into 

the gene signatures responsible for cellular heterogeneity, identify possible 

subpopulations/groups, and determine relationships between cells based on their 

individual transcriptome profiles (Townes et al., 2019). 
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Fig. 4.3: a) VizDimPlot Representing grouped genes in PCs; b) DimPlot PCA; c) 

DimHeatmap for PCs (1:6) 
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4.4 Visualization of Dimensionality of the Dataset via Elbow Plot 

The dataset's Dimensionality is determined via an Elbow Plot. It shows the number of 

clusters forming an elbow-like shape and the possible number of groups. It helps 

determine how many PCs we need to capture the majority of the variations in the data, 

which in this case is 10. 

 

 

Fig. 4.4: Visualization of Elbow Plot for determining the Dimensionality of the dataset 

4.5 Visualization of Non-Linear Dimensionality Reduction and Comparison with 

Linear Dimensional Reduction via Dim Plot 

The Non-Linear Dimensionality Reduction is expressed via Dim Plot using the UMAP 

algorithm. The high-dimensional dataset is reduced to a low-dimensional plot that 

retains much of the original information (Yousuff et al., 2024). Single-cell RNA 

sequencing datasets contain thousands of gene expression counts for each cell. This 

information is then condensed down to two or three dimensions, allowing each to be 

represented on a two- or three-dimensional plot. The UMAP and t-SNE algorithms are 

very similar as they are manifold learning algorithms. 
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Fig. 4.5: Visualization of PCA Plot and UMAP Plot via Dim Plot 

 

4.6 Visualization of Clusters  

Using FindAllMarkers reveals all the markers present, and grouping them by clusters 

reveals all the types of biomarkers and the number of clusters present, which is 

expressed via Dim Plot. According to our study, specific biomarkers and genes of 

interest are visually expressed using a Violin Plot and Feature Plot. 

 

Cluster Analysis reveals ten different clusters present across the sample dataset. Tissue-

specific markers are highly expressed in the cluster for at least one tissue and not highly 

expressed in some other tissue. Cluster marker analysis is done with expression to 

associate gene expression with cluster identity. 
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Fig. 4.6: Visualization of Clusters using Dim Plot 

 

4.7 Visualization of Top Markers Expression 

 

Fig. 4.7  displays violin plots, which serve as a reliable visual tool for quantifying the 

expression levels of important cell markers (namely, lung monocyte markers) across 

various experimental settings or cells in the smoker's TB dataset (Tanious & Manolov, 

2022). The violin plots display the expression levels of many important markers in 

certain cell types, including CD93, CD14, FPR1, CCR2, LTF, and HLA-DRA. 

 

The violin plot of CD93, a marker linked to immune cell activation and differentiation, 

demonstrates stable expression levels across the dataset, with minimal fluctuations. 

 

Likewise, the expression of the model recognition receptor CD14, which is implicated in 

the innate immune response, has a pretty consistent pattern, while certain identities 

display slightly elevated levels of expression. 
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Chemotaxis and inflammatory response-associated formyl peptide receptor 1 (FPR1) 

exhibit highly variable expression patterns between identities, suggesting that changes in 

activation or functional status can occur in specific cell subsets. 

 

Furthermore, due to a few potential outliers, the expression of CCR2, a chemokine 

receptor involved in inflammation and monocyte recruitment, appears to be relatively 

constant in most of the identities.  

 

The antimicrobial and immunomodulatory lactoferrin (LTF) marker shows a wider 

range of expression levels, indicating possible differences in the functional states of 

specific cell subsets. 

 

Lastly, there is a distinct expression pattern for the major histocompatibility complex 

class II molecule HLA-DRA, which is essential for antigen presentation and adaptive 

immune responses. One identity, representing a particular cell type (CD14+ monocyte in 

this case), shows significantly higher levels than the others. 

 

Notably, out of the six markers, CD93, CD14, and CCR2 show the maximum 

consistency in terms of expression levels across the entire dataset.  
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Fig. 4.7: Highly Expressed Lung Monocytes Markers visualized using Violin Plot 
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Fig. 4.8: Visualization of Top Markers Expression via Feature Plots 

 

 

Fig. 4.9: Heat Map representing the sample expressions of genes across all 10 clusters 
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4.8 Visualization of Cell Proportion and Unique Molecular Identifier (UMI) Plot 

 

The cell proportions plot shows the relative abundance of various cell types within the 

sample. This plot shows that CD14+ monocytes are the most common cell population in 

the smokers' tuberculosis dataset, indicating their possible significance in the immune 

system's reaction to smoking-related illnesses and tuberculosis.  

 

The Unique Molecular Identifier (UMI) plot shows the distribution of UMI counts 

across cells, allowing one to evaluate the complexity and quality of the data (Chen et al., 

2018; Sena et al., 2018). The UMI plot in this dataset supports the number of CD14+ 

monocytes, emphasizing their importance in smoking and tuberculosis. 

 

 

Fig. 4.10: UMI Plot showing CD14+ Monocytes as the most abundant cells present in 

the sample 
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CHAPTER 5  

 

CONCLUSION AND FUTURE PROSPECTS 

 

 

An important discovery from the Single-cell RNA Sequence analysis of the TB dataset 

from smokers is the upregulation of CCR2, CD14, and CD93 expression. These can act 

as potential lung biomarkers associated with smoking-induced latent TB reactivation. 

 

To trigger the natural immune response against diseases such as Mycobacterium TB, it 

is crucial to have monocytes and macrophages that carry the pattern recognition receptor 

CD14. Individuals who smoke experience elevated levels of CD14+ monocyte 

expression in their lungs. These results are consistent with previous studies showing that 

smoking can recruit immature inflammatory monocytes into the airspaces, creating an 

environment that is favorable for M. tb. proliferation (Ayaslioglu et al., 2013; Corleis et 

al., 2022). 

 

The migration and trafficking of monocytes depend on the chemokine receptor CCR2, 

which is generated by monocytes and other immune cells. Research indicates that 

smokers have higher-than-normal levels of CCR2 in their lungs, which may help attract 

monocytes to the site of inflammation and increase the inflammatory response (Samstein 

et al., 2013). This procedure upsets the delicate equilibrium that controls the sickness 

and may lead to a recurrence of tuberculosis. 

 

The transmembrane protein CD93, which is connected to immunology and endothelial 

cell integrity, may be able to recognize a portion of recently recruited pulmonary 

monocytes linked to smoking, according to research by Jagatia et al (Jagatia & Tsolaki, 

2021). Given the high expression of this gene in the data set, chemokines that bind to 

CCR2 most likely have an impact on monocyte recruitment. CD93 may influence the 

development of the immune system throughout the pathophysiology of TB, given its 
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association with both inflammation and the immunological response (Mälarstig et al., 

2011). 

 

Examining the ways in which smoking, CD93, and TB reactivation interact and 

contribute to the disruption of the host-pathogen balance is necessary in order to fully 

understand the interaction between these three variables. Elevated levels of CD93 might 

potentially affect the stability of endothelial cells and the vascular response, both of 

which are critical for immune cell migration to infection sites. However, long-term 

inflammation caused by smoking and dysregulated CD93 may break the delicate balance 

needed to manage latent tuberculosis, which might hinder immune cell migration and 

worsen endothelial dysfunction. Consequently, the compromised function of the 

endothelium and altered immune environment promote the reactivation of latent TB, 

highlighting the dual role of CD93 in both avoiding infection and potentially 

aggravating the effects of the disease. 

 

The results of this work on the connection between smoking, immunological 

dysregulation, and latent tuberculosis reactivation using single-cell RNA sequencing 

analysis provide interesting directions for further investigation and possible treatment 

approaches (Pan et al., 2023). The identification of important molecular players, 

including CD14, CCR2, and CD93, has opened the door to more study of the underlying 

mechanisms and the potential use of these targets as therapies. 

 

The findings of the study provide opportunities for developing better biomarker panels 

and diagnostic instruments in addition to therapeutic choices. Researchers could create 

more precise and comprehensive risk assessment models that would identify people who 

are more likely to experience latent tuberculosis reactivation due to smoking or other 

environmental exposures by combining the identified biomarkers with other pertinent 

factors, such as clinical and demographic data. 
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Furthermore, combining scRNA-seq data with other omics techniques, such as 

proteomics and metabolomics, may help us better comprehend the cellular and 

molecular environment of smoking-induced tuberculosis reactivation. By using a multi-

omics approach, we can find new pathways, biomarkers, and therapeutic targets that 

could help us better understand this intricate disease process. 
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