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ABSTRACT 

 

In the present work, our first-principles study shows the topological phase transition in 

rare-earth monopnictides GdSb and ternary chalcogenide SnPbSe2 under the influence 

of hydrostatic pressure and biaxial strain. The dynamical and thermodynamical 

stabilities of materials are verified with the applied hydrostatic pressure and biaxial 

strain. The structural, electronic, and topological properties are studied using the density 

functional theory with hybrid functionals. The topological nature has been verified by 

calculating Z2 topological invariants and surface density of states (SDOS).  At ambient 

conditions, both materials show a topological trivial nature, which has been verified by 

the energy band gap in the bulk band structure and (0;000) values of Z2 topological 

invariants. The topological phase transition in GdSb and SnPbSe2 is obtained at 6 GPa 

of hydrostatic pressure and 2% of biaxial strain respectively. The occurrence of inverted 

contribution of orbitals in band inversions near the Fermi level are observed. The non-

zero value of first Z2 topological invariant and presence of Dirac cone in the surface 

state has verified the non-trivial topological nature of materials. However, when we 

further increase the hydrostatic pressure and biaxial strain in these materials, 

respectively, another band inversion in bulk band structure is also observed. The 

calculation of Z2 topological invariants is (0;000) and has verified the trivial nature of 

materials after even number of band inversions.   
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CHAPTER 1 

 

INTRODUCTION  

 

 

Traditionally, the phase transition in solids and liquids in the view of condensed matter 

physics are associated with the change in temperature or pressure. The understanding of 

phases of matter is associated with the process of broken symmetries and this type of phase 

transition occurs with the classical phenomena [1]. On the other hand the quantum phase 

transition phenomena occur at the low temperature and quite difficult to observe e.g. the 

transition of paramagnetic phase to ferromagnetic phase belongs to quantum regime. 

1.1.1 Quantum Hall Effect 

K. Von Klitzing in 1980 discovered the Quantum Hall Effect (QHE), had a great impact on 

condensed matter physics that is not based the conventional idea of broken symmetry [2]. 

According to the phenomena of classical hall effect if there is a material placed in an electric 

field x-direction and if we apply external M.F. along z-direction then according to Lorentz 

force a finite voltage ‘VH’ is induced in the y-direction as shown in Fig. 1.1(a). The measured 

transverse resistance (Rxy) is given by 

         𝑹𝒙𝒚  =    
  𝑽𝒚

𝑰𝒙
      =     

𝑬𝒚

𝑱𝒙
                             1.1 

                                                          

 The resistance (Rxx) can be obtained by measuring the longitudinal resistivity and dividing it 

by appropriate lengths. The plot of resistance w.r.t magnetic field is shown in Fig. 1.1(b). 

 

                 

                           

Fig. 1.1. (a) Hall set-up  (b) Resistance w.r.t. applied magnetic field as observed in Classical 

Hall Effect. [2] 
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In the presence of strong M.F. and at low temperatures and these classical phenomena fails 

and the quantum effects are dominating as shown by resistance plot versus magnetic field in 

Fig 1.2 (a). K. Von Klitzing in 1980 discovers the phenomena of Quantum Hall Effect and 

got Nobel prize in 1985 [2]. From Fig 1.2 (a) the hall resistance Rxy shows plateaus on 

varying the M.F. and these plateaus are robust to impurities present in the sample. Here, 

transverse resistance Rxy known as Hall resistance show plateaus on varying the M.F., which 

takes the value 

                                                 𝑹𝒙𝒚  =    
 𝒉

𝒆𝟐

𝟏

𝒗
    𝒗 ∈ 𝒛                            1.2 

                                                                                                            

 Where v is experimentally observed accurate up to 10-9 decimal places and is independent of 

the geometry of the sample [3]. The longitudinal resistance Rxx also shows the interesting 

behaviour as the form of plateau. The value of Rxx = 0 remains as the Rxy rests on the plateau 

and spikes when Rxy jumps from one to another. It can be said that when Rxx= 0 the system is 

a perfect conductor and the sudden change in Rxx indicating there is resistance that the system 

undergoes a phase transition from metal to insulator. For the understanding of such transition, 

we consider the behaviour of electrons in the bulk as well as surface in the presence of M.F. 

From Fig. 1.2 (b) it can be seen that in the bulk electrons moves in a circular orbit and forms 

cyclotron which are localized and hence insulating.  But, at the boundary the electrons collide 

and bounced back which forms the skipping orbits, made them to move in one direction and 

hence conducting.  

                       

Fig. 1.2. (a) The measured low-temperature resistance w.r.t applied magnetic field and (b) 

Schematic of bulk and edge behaviour of electrons in Quantum Hall Effect. [3] 

For a fixed direction of M.F., motion of electrons at two edges will be in opposite direction, 

known as Chiral edges and exhibit a special feature as they are robust to any kind of 

perturbation as shown in Fig. 1.3. The M.F. break the time reversal symmetry (TRS). 
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Fig. 1.3. (a) Spin-less Quantum Hall bar and (b) its corresponding band structure. [3] 

 

1.1.2  Quantum Spin Hall state and Topological Insulators 

The Quantum Spin Hall (QSH) states is another topological class differrent from the QH 

because of the external M.F. required in QHE, breaks TRS while QSHE does not require an 

external M.F and is TR  invariant [4]. QSH posses a bulk gap but topologically protected 

gapless edge states having a unique helical property of counter–propagating two spin- 

channels per edge in Fig.1.4. The superposition of two mental copies of QH states for up and 

down spins, can be considered to form a QSH state. 

                                               

Fig. 1.4.  (a) Spin-full Quantum Spin-Hall bar and (b) its corresponding band structure. [5] 

 

In the Brillioun zone (BZ), presence of TRS enforces the energy levels to cross each other. 

The crossing of energy levels disables a QSH state to continuously deform into a 

topologically trivial insulator without helical edges, hence distinguishes a topologically 

different state of matter. This type of state is known as ‘ 2D Topological Insulator’ (TI) [5]. 

Bernevig et al. in 2006 predicted it theoretically, for the first time and in 2007, it is 

experimentally observed by Konig et al. in HgTe/CdTe quantum wells [6]. The major 

development in the discovery of TIs lie in the fact that QHE cannot be observed in three-

dimensions (3D), while QSHE can be generalized to three-dimensional TIs [7]. In 2007, Fu 

and Kane predicted the first 3D version of TIs by considering a certain range of compositions 

in Bi1-xSbx alloy [8] and in 2008, Hsieh et al. verified the non-trivial surface spectrum by 

angle-resolved photoemission spectroscopy (ARPES) measurements [9]. Other simpler 
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versions of 3D TIs were also predicted in Bi2Te3, Sb2Te3, and Bi2Se3, where a large bulk gap 

and a solid Dirac cone is observed at the surface [10]. These remarkable features of TIs make 

them susceptible for potential applications in quantum computing [11] and spintronics [12], 

thermoelectric materials [13], chemical catalyst [14].                                                                                                              

 

1.1.3 Topology: 

Topology is a mathematical concept which studies the invariant properties of the geometrical 

objects under smooth deformations. If the two objects are deformed into each other without 

creating any holes in it, then the objects are said to be topological equivalent. The 

distinguishes between two topological classes are done through topological invariant known 

as ‘genus’ which represent the number of holes in the systems [15]. 

For example a sphere with g = 0 can be smoothly transformed into a bowl and a doughnut 

with g = 1 deformed into a coffee cup without creating a hole in it, thus are ‘topologically 

equivalent’. In others words, we can say that two objects having the same genus can be 

deformed into one another, and are ‘topological equivalent’. 

 

Fig. 1.5. Doughnut (g =0) can be transformed into coffee mug (g = 1) and trefoil wire 

 (g =2) are topological equivalent. [16] 

  

1.1.4 Band Inversion in Topological Insulators: 

The crystalline solids in an electronic structure helps in determining the occupation of 

electrons in energy band that helps in determining the macroscopic properties of a material 

such as thermal conductivity and electrical properties of a material. In semiconductor physics 

the materials are mainly classified into three types according to their band theory. 1) Metals 

2) Semiconductor which can be converted into metals by chemical doping and temperature  

3) Insulators. The classification of these materials is done with the help of energy gap present 

between valence and conduction band [17]. Recent discovery in condensed matter physics 

identified new materials known as TIs. They have insulating in their bulk but posses gapless 
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metallic surface states. From the band theory in solids geometry includes understanding of 

topological class of insulators [17].  An insulator is the material where there exists a definite 

gap between its ground state and all excited states. The thought of topological equivalence for 

insulators is based on the principle about adiabatic continuity. According to this, a system will 

stay in its ground state during smooth deformations. In this context, two insulators are 

considered topologically equivalent if they can be connected to each other without closing the 

gap between energy states [18]. However, when the gap closes at a quantum critical point, the 

energy states reverse, leading to a phase transition. Such insulators are then termed 

topologically in equivalent Fig. 1.6 (a). The transition from a trivial to a non-trivial 

topological phase is marked by a band inversion. This process signifies a change in the 

arrangement of energy bands, reflecting a transformation from one topological phase to 

another Fig. 1.6 (b). 

 

Fig.1.6. (a) Energy w.r.t adiabatic deformation for a quantum system (b) Topological in 

equivalence in terms of bands. [18] 

 

The appearance of BI is the primary signature of non-trivial topological behaviour of 

material. Energy gap that closes at the point of conduction band (CB) and valence band (VB); 

bands are inverted at that point is known as BI. This happens at the high symmetric points in 

the BZ at some specific points known as Time reversal invariant points (TRIM). The 

arrangement of energy levels forming the edges of the gap undergoes inversion due to strong 

Spin-Orbit Coupling (SOC), particularly associated with heavier elements [19-20]. TIs are 

insulators in their d-dimensional interior bulk but allows metallic conduction in their (d–1) 

dimensional boundaries. The surface states (SS) are protected by time reversal symmetries 

and robust against small perturbation [21-22]. The SS of these materials contain Dirac cone 

and energy disperses linearly at these points. The presence of Dirac cone further confirms the 
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trivial or non trivial nature of system. The odd number of Dirac cone signifies the topological 

behaviour of material and the even number tells the trivial nature of material. Furthermore, 

we have also calculated the Z2 index, ν0, which can be either 0 (depicting a topologically 

trivial phase) or 1 (indicating a non-trivial phase) according to the Kane and Mele criteria. 

The overall behaviour of 3D TIs requires a set of four Z2 numbers: (ν0; ν1ν2ν3). The indices ν1, 

ν2, and ν3, termed weak indices [23]. Consequently, analyzing surface states and determining 

the Z2 invariant provides information about the material's topological nature. 

1.1.5 Time reversal symmetry: 

A dynamical variable is considered to have Time-reversal Symmetry (TRS) in Classical 

Mechanics (C.M.) if it is invariant under the operation t → -t. For instance, velocity (v), 

momentum (p), and magnetic field are time-reversal variant quantities, location (x) and 

electric field (E) are time-reversal invariant. 

However, in Quantum Mechanics (Q.M.), the replacement of t → -t doesn't represent 

the solution of Schrodinger equation 

                                  𝒊ћ 𝒅ᴪ
𝒅𝒕

= (−
ћ

𝟐𝒎

𝟐
∆𝟐 + 𝑽)ᴪ                         1.3 

                                                                            

 It also doesn't satisfy the position-momentum uncertainty relation. 

                                                            [x, p] = iћ                                              1.4 

                                 [x, p] ≠ iћ                                         1.5 

 To fulfil equations 1.3 and 1.5, ‘i’ needs to be changed to ‘-i’. Note that while there is an 

uncertainty relation between energy and time in Q.M., there is no operator for time. Time-

reversal must therefore be designed in its own context in Q.M., and Wigner proposed that it 

must be anti-linear and properly referred to as Motion Reversal [24]. 

 

1.1.6 Combine effect of space inversion and Time inversion symmetry: 

In an isolated atom, the crystal having space -inversion symmetry results into: 

                                                          E (k, ↑) = E (-k, ↑)                         1.6 

                                                           E (k, ↓) = E (-k, ↓)                        1.7 

and TRS results into: 

                                                          E (k, ↑) = E (-k, ↓)                           1.8 

 

If both equation 1.7 and equation 1.8 are simultaneously satisfied, bands are spin degenerate 

at the same k-point. 

                                                           E (k, ↑) = E (k, ↓)                           1.9 
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i.e., energy is independent of the electron's spin. Hence, spin-splitting is not permissible in the 

bulk of the crystals preserving both space-inversion as well as TRS, thus such solids remain 

spin-degenerate at TR point [25]. Generally speaking, specific locations within the BZ satisfy 

the inversion symmetry. These high points of symmetry meet equation 1.9. They are referred 

to as TRIM points for the reasons that follow. The C.B and V.B meet at a specific location on 

the surface (in k-space) when the surface bands reduce the gap and have two components 

corresponding to the spin projections. For both the C.B and V.B, the two components would 

come together at one of the TRIM points. But the band crossing at TRIM sites is strong and 

unaffected by non-magnetic perturbations because these points are stable while time 

symmetry is preserved [26]. 

 

1.2 Literature Survey 

Theoretical progresses generally lead experimental efforts and help predict new phenomena 

as well as find novel materials in the topological nontrivial matter area. In particular, 

electronic band theory progress, symmetry indicators and relations of pure topology chemical 

bonding have been used to predict and classify the topological nature of electronic states in 

two-dimensional (2D) as well as 3D materials [19]. Through symmetry-driven techniques, 

high-throughput density functional theory (DFT) computations, catalogued crystallographic 

symmetry information, and computational searches across topological quantum chemistry, the 

TL of over 26,000 materials has been investigated. Studies reveal that around 27% of 

materials are expected to be topologically non-trivial [20]. The estimated large number of 

topologically non-trivial electronic structures in these computations indicates that many more 

materials could have existed than what we know from the limited amount of experimentally 

confirmed examples to date. Interestingly, a few of these compounds have never been 

synthesized or theorized using the stem methods while some others have been known for 

decades. New insights have come from interpreting their properties through a topological 

lens. It is the topological quantum chemistry (and other related approaches), which play an 

essential role in finding materials by establishing a direct connection between chemical 

compositions and their topological properties [38]. Future studies aimed at identifying 

topologically non-trivial materials should use principles of design that extend beyond 

heuristic and chemical intuition, especially in the area of materials chemistry. This 

development is in an effort to connect materials as a way enable the material discovery for 

targeted, optimal property-based behaviour that uses its topological features. A significant 
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number of 2D and 3D TIs have been predicted by use of ab initio or first-principles 

calculations [20]. Bi2Se3 [39] and Bi2Te3 [40] belong to some of the oldest families of 3D TIs, 

so a lot has been known about their topological states and properties. Because the crystal 

structures, A2B3 compounds consist of quintuple layers, which are assembled by weak Van 

der Waals (vdW) forces, they have natural cleavage planes without breaking strong bonds that 

bind atoms. The Dirac point of SS in band structure calculation of Bi2Se3 shows near to 

Valence Band Maximum (VBM). This gives raise the emergence of electron flow between SS 

and bulk continuum states at minute separations that destroys the topological transport 

signature. Consequently, obtaining materials with perfect and well-separated Dirac cones 

becomes urgent. 

1.2.1 Topological Semimetals: 

The experimentally observation of Weyl semi-metals (WSMs) have shifting the interest from 

insulating materials to gapless materials after the discovery of TIs. Because of linear band 

crossing investigating the nontrivial topology in gapless material has gained a great attention 

in the condensed matter physics [27-29]. These SMs establish many phenomena such as 

chiral anomaly [30], Weyl fermion quantum transport and magnetoresistance [31-32]. Based 

on their dimensionality and degeneracy of band crossings topological SMs mainly divided 

into three types: Weyl, Dirac and nodal-line SMs. Weyl and Dirac SMs characterizes as zero 

dimensional crossing nodes with two and four fold band degeneracy respectively, while a one 

dimensional crossings gives the nodal-line SMs. Many studies have predicted the existence of 

a three-fold degeneracy, which has also been confirmed experimentally [33]. However, one 

more type of topological SMs has been observed in rare-earth monopnictides, where the not 

linear band crossings, but posses BI near the Fermi energy [34], which makes their origin 

topological in nature, similar to TIs. Moreover, triple point fermion (TPF) have been also 

identified which consists of triply-degenerate nodal point, interconnected with a doubly-

degenerate nodal-line, that gives rise to an exotic fermion [35]. The special characteristic of 

TPF is that, despite Dirac and Weyl fermions, which have a direct analogy to the fermions in 

the Standard Model, these systems cannot be adequately described by their present 

topological invariants. Above the all semi-metallic topological states, nodal line SMs is 

considered as a precursor for other topological phase: convert into Dirac point, can evolved 

into Weyl points or become TIs by the introduction of the SOC or symmetry breaking [36].   
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Fig. 1.7. (a) Weyl node (b) Dirac node (c) Nodal line. [37] 

 1.2.2 Ternary Chalcogenide family: 

 

Theoretical calculations suggest that Tl-based ternary chalcogenides, like TlSbTe2, exhibit a 

Dirac-cone SS cantered at the Γ-point and are expected to represent a 3D TI phase that is 

theoretically well isolated from the bulk continuum [41]. The 3D character of Tl-based 

materials originates from the strong coupling between neighbouring atomic layers within each 

tight binding layer, unlike the typical vdW forces in Bi2Se3. The density functional theory 

(DFT) calculations were conducted in order to probe the electronic structure of a number of 

Tl-based TIs, such as TlAB2(A = Bi, Sb; B = S, Te, Se,) and shows non-trivial behaviour. The 

surface termination plays an important role in TlBiSe2 and TlBiTe2 [42-43]. After that, the 

efforts were spent on the isostructural substitution in TlBiSe2 material itself to keep its TL 

properties. In-based compounds such as InBiTe2 and InSbTe2, which crystallize in the 

TlBiSe2 like structure; they do not have the Dirac cone like feature and it actually means that 

they are topologically trivial [41]. These Tl- based ternary chalcogenide belongs to a 

rhombohedral unit cell with space group 3R m  and contains a primitive unit cell consisting 

four atoms (Tl-Se-Bi-Se-) perpendicular to the threefold axis along [111] of cell. Analogous 

calculations have been done for SnBiSe2, SbBiSe2, Bi2Se2, TlSnSe2 and PbSbSe2 [44]. 

Specifically, all of the materials have an even number of surface states along the (111) 

direction. Such materials are part of weak topological insulators (WTI). The interest in WTIs 

comes partially because their surface states are strongly protected from defects by the 

delocalization of the somewhat helical surface electrons. GaBiSe2 is proved to be a strong 

topological insulator (STI) since it has a single Dirac cone at the Γ-point on the surface. 

PbBiSe2, SnBiSe2, SbBiSe2, Bi2Se3, TlSnSe2, PbSbSe2 etc., WTIs have an even number of 

surface states within the bulk band gap [43-45]. Another family of ternary chalcogenide is 

found to be showing topological behaviour in the ambient conditions as well. The electronic 

structures of TlBiSe2 and TlBiTe2 slabs with different surface terminations are performed 

with the aid of DFT [42]. On flat (polar) Se/Te or Tl-terminated surfaces, the  presence of  
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trivial dangling bond having Dirac cone states in sharp contrast to ARPES experiments on 

TlBiSe2 and TlBiTe2 where no similar trivial state is found near the Fermi energy. Here, in 

the bulk band gap there is an isolated Dirac cone and the rough (nonpolar) surfaces along 

(111) removed trivial SS having equal numbers of Tl and Se (Te) atoms in the surface layer 

of TlBiSe2, TlBiTe2. This result compares remarkably well with experimental outcome. In 

addition, the appearance of superconductivity in bulk TlBiTe2 under p-type doping and 

theoretically-predicted Rashba type nontrivial surface states implied that it could be a 

candidate for driving topological superconductivity [44]. 

1.2.3 Strain and hydrostatic pressure induced Topological phase transition: 

By varying the strength of SOC we can turn normal insulators (NIs) into TIs. This process of 

transition from one topology to another is known as 'topological quantum phase transition' 

(TQPT) [46]. Typically, the strength of SOC is increased with the heavy elements carrying 

high atomic numbers and it can be tuned by chemical doping, or substitution. Non-topological 

insulators which possess a significant SOC shows TQPT in external parameters i.e. under 

pressure/strain, temperature, or electric fields modifying the bulk crystal symmetry, even if 

they cannot be classified as a TI at ambient condition [47]. It remains the best way to do this 

transformation, with respect to other external parameters, especially looking for an efficient 

and clean route of pressure. 

Above the all parameters, the hydrostatic pressure and strain is an important parameter that 

can be used to precisely control the effective hybridization, bond lengths (distances), volume, 

electron density, lattice parameters and crystal field splitting of materials [48]. It maintains 

the charge neutrality in the system. They have a very pronounced effect on the electronic 

band structure by reducing the band gap and derive BI by enhancing the strength of SOC. 

Consequently, for certain 3D NIs having small SOC the crucial electron behaviour 

characteristic of 3D TIs can be electronically accessed in response to applied higher pressure. 

The essential physics underlying this pressure-induced TQPT is the reduction, collapse or re-

opening of band gap in certain materials which has weak SOC with applied external pressure. 

In the room pressure range, their band gap is too large to allow for a band inversion (BI) [46]. 

But at higher pressures, the band gap is reduced and Dirac point emerges as shown in Fig. 1.7 

and the material shows non trivial behaviour. In the last decade, a lot of theoretical and 

experimental efforts have been devoted by condensed-matter physicists to uncovering the 

TQPTs induced pressure. This is particularly relevant in last decades because high-pressure 
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and strain induced TQPT has led to the momentous discovery of a significant enhancement of 

thermoelectricity that demonstrates how crucial this subject can be for society [43]. 

 

Fig. 1.8. Schematic diagram of Band structure at different hydrostatic pressure. [49] 

 

1.2.4 Topological Phase Transition in TlBiS2 and TlSbS2 using strain and             

hydrostatic pressure: 

 
It was reported that many Tl-based III-V-VI can be tuned into TIs from normal insulator with 

the help of pressure and strain. Using first-principles calculations TlBiS2 and TlSbS2 studied 

under the effect of pressure and strain. The first theoretical prediction of a phase transition 

under strain was for HgTe, which sparked great interest in the field of topological insulators 

and catalyzed many experimental efforts that eventually led to proof of concept experiments 

[50-51]. The strain induced topological phase transition has also been explored in various 

studies and shows the versatility of this approach to tune the electronic structure as desired 

topology. 

TlBiS2 and TlSbS2 belong to ternary chalcogenide family having rhombohedral unit cell and 

3R m  space group. From fig. 1.9 below it can be seen that at ambient condition TlSbS2 

shows an energy gap of 0.128 eV at the Γ-points. Further increment on pressure (0-8GPa) the 

energy gap closes first closes and then reopens. At ambient conditions there is no BI occurs in 

the system shows topological trivial in nature. On 2 GPa at Γ-points the inverted contribution 

of Tl and S p-orbital shows in the conduction and valence band respectively; a BI occurs 

which signify the non-trivial nature of material. When we further increase the pressure even 

number of BI occurs at 5 GPa and the materials shows trivial in nature which can be further 
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verify with the help of parity analysis. TlBiS2 also displays topological property under the 

effect of hydrostatic pressure and strain [52]. 

 

Fig. 1.9 band structure of TlSbS2 at (a) 0 GPa (b) 2 GPa (c) 3GPa (d) 5GPa (e) 8 GPa hydrostatic 

pressure [53]. 

 
1.2.5 Pressure induced TQPTs in rare-earth monopnictides family: 

 
The rare-earth monopnictides LnX (Ln = a rare earth element; X= As, Sb, Bi) a family of 

materials which has recently attracted great interest in scientific community. These 

compounds have shown very striking signatures of XMR (extremely large magnetoresistance) 

and superconductivity [54-55].  LaBi, CeBi also possessed topological properties and 

protected by SS [56]. Consequently, the existence of protected SS in these compounds 

implies that they might be suitable nodes for novel electronic effects-qualities which render 

them potentially useful to many other applications. This will allow insights into their 

electronic and magnetic properties that might help identify new materials with purpose-

designed functionalities applicable in next-generation electronic devices and quantum 

technologies [48]. LaBi [57], LaSb [58] and LaAs [55], surprisingly show giant 

magnetoresistance (XMR) effects which are ideal for sensor applications or even in spintronic 

devices. But the origin of these XMR in composites is still open to debate. Possible models 

include electron-hole-compensation or non-trivial band-topology.  



13 
 

It is reported that YbAs shows TQPT under the effect of hydrostatic pressure. By using first-

principles calculations at ambient conditions this material shows trivial nature as shown in 

Fig. 1.10 below. When we increase the pressure at 6 GPa an BI can be observed at the X-point 

i.e. a small contribution of d-orbital of Yb in valence band and p-orbital of As in conduction 

band is found and the parities also switched at that point. 

  

Fig. 1.10 Band structure of YbAs at (a) ambient pressure (b) 6 GPa hydrostatic pressure. [59] 

 

The presence of Dirac cone in the surface states also confirms the non-trivial behaviour of 

material. YbAs shows topological behaviour till 39.5 GPa, after that the system returns to its 

initial state [59].  LaAs [55], LaSb [58], YBi [60] also shows topological behaviour under the 

influence of pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

CHAPTER 2 

 

METHODOLOGY 

 

 

 

 

2.1 Many body problem 

This chapter has covered the theoretical approach used to characterize the topological features 

of materials. To calculate topological invariants, crystalline solids must have an exact 

electronic structure. The precise electrical structure of solids can be obtained by solving the 

Schrödinger equation for a large number of particles. But a lot of particle wave functions 

comprise a large number of variables, making it hard to solve this Schrodinger equation. To 

understand the many body problem let us consider Schrodinger equation for this system [54]: 

                                                    H ᴪ (R, r) = E ᴪ (R, r)                                    2.1 

Where `H ' represents the many-body Hamiltonian, ᴪ (R, r) represents the wave function for 

the positions of nuclei (R) and electrons (r), respectively, corresponding to an energy eigen 

value `E' .On ignoring the relativistic effects ,Hamiltonian for such a system is difficult to 

solve. Here the situation is more complicated because many electrons are interacting with 

multiple nuclei. So several approximations are taken to solve many body problem and density 

functional theory comes (DFT) in picture [61]. 

 

2.2 Density Functional Theory: 

In the wave function-based approach, the many-body wave function relies on the coordinates 

of all electrons within a system. For a system containing 'N' electrons, the wave function 

involves '4N' variables, accounting for the three-dimensional spatial coordinates and spin 

coordinates for each electron. This comprehensive dependence on individual electron 

coordinates makes solving the Schrödinger equation exceedingly complex and 

computationally intensive [62]. 

To mitigate this complexity, Density Functional Theory (DFT) was introduced. DFT reduces 

the problem by employing the electron density as a fundamental variable. The electron 

density represents the integral of the square of the wave function over all 'N-1' electrons. Each 

spin density of a system becomes a function of only three spatial coordinates, regardless of 

the system's size. The utilization of density as a variable in solving the many-body problem is 

the core principle of DFT. This approach revolutionized computational quantum mechanics 
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by simplifying calculations and making them more feasible for larger systems. In recognition 

of their pivotal contributions to this field, Walter Kohn and John Pople were awarded the 

Nobel Prize in Chemistry in 1998 for their work on Density Functional Theory [63]. 

The Hohenberg-Kohn theorem states that the ground-state electronic density uniquely 

determines the ground-state wave function of a many-electron system, and vice versa, for a 

given external potential. This theorem essentially asserts that all observable properties of an 

interacting many-electron system can be expressed as functional of the electronic density. 

 
 Fig.2.1. The representation of the theme of Density functional theory [63]. 

 

The Hohenberg-Kohn theorem highlights a crucial aspect of the functional; The electron 

density that minimizes the overall functional energy corresponds to the true electron density 

associated with the complete solution of the Schrödinger equation. If we were acquainted 

with the accurate functional form, we could iteratively adjust the electron density until the 

functional's energy is minimized, providing a method for determining the pertinent electron 

density. In practice, we apply the variational principle using approximate functional forms. 

Using the Born-Oppenheimer approximation, the nuclei of the treated molecules or clusters 

are taken to be stationary, creating a static external potential V in which the electrons are 

travelling. Then, a wavefunction Ψ (r1, …, rN) meeting the many-electron time-independent 

Schrödinger equation can be used to describe a stationary electronic state. 

Ĥ Ψ = [T̂ + V̂nu-e + V̂e-e] Ψ  

        = [ Σi=1,2,..,N ((- ħ2/2mi)∇i
2) + Σi=1,2,..,N (Vnu-e(ri)) + Σi<jVe-e(ri, rj)] Ψ  

        = E Ψ                                                                                                  (2.2) 

Where, for the system of N electrons, Ĥ (Hamiltonian operator), E denotes the overall energy, 

T̂ denotes the kinetic energy operator, V̂nu-e denotes the potential energy operator 

corresponding to the external field due to the positively charged nuclei and V̂e-e denotes the 

operator corresponding to inter-electronic interactions. The operators T̂ and V̂e-e are identical 

for any N-electron system and for this reason, are called universal operators. The operator 

V̂nu-e depends on the specifics of a particular system. Owing to the inter-electronic interaction 
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term corresponding to V̂e-e, this many-particle equation is not separable into one-particle 

equations. 

The application of DFT allows to map the many-particle problem, containing V̂e-e, to a one-

particle problem free from V̂e-e. The electron density n(r), a crucial quantity in DFT, is given 

for a normalized Ψ by 

             n(r) = N ∫ d3r2 … ∫ d3rNΨ*(r, r2, …, rN) Ψ(r, r2, …, rN) .                       (2.3) 

              Ψ0= Ψ[n0],                                                                                             (2.4) 

The fact that the wave function is a functional of n0(r) immediately leads to the finding that 

the expectation value of an observable Ô when the system is in the ground state is also a 

functional of n0(r) 

O[n0] = ⟨Ψ[n0] | Ô | Ψ[n0] ⟩                                                          (2.5) 

Further, it is possible to explicitly write the contributions due to the external potential 

 ⟨Ψ[n0] | V̂nu-e| Ψ[n0] ⟩ as: 

Vnu-e[n0] = ∫Vnu-e(r) n0(r) d3r                                                       (2.6) 

This argument can be extended and the contribution due to the external potential may be 

expressed as: 

                   Vnu-e[n] = ∫Vnu-e(r) n(r) d3r                                                   (2.7) 

T[n] and U[n] are referred to as universal functionals, but Vnu-e[n] being dependent on the 

specifics of the given system is referred to as a non-universal functional. Having specified a 

system, the minimization of the functional 

                E[n] = T[n] + Ve-e[n] + ∫Vnu-e(r) n(r) d3r                                  (2.8) 

The objective is to minimize the energy functional concerning n(r). The minimization process 

of the energy functional results in the determination of the ground-state electron density (n0), 

subsequently determining all other observables associated with the ground state. 

The Lagrangian method of multipliers offers a solution to the variational problem of 

minimizing the energy functional E[n]. To initiate the process, we examine an energy 

functional that does not incorporate the inter-electronic interaction energy 

Eeq[n] = ⟨Ψeq[n]| T̂ + V̂eq | Ψeq[n] ⟩,                               (2.9) 

where T̂ denotes the operator corresponding to the kinetic energy, and , V̂eq denotes the 

operator corresponding to the equivalent potential in which the particles are travelling. Eeq can 

be used to generate the following Kohn-Sham equations for this auxiliary, noninteracting 

system: 

                  [-(ħ2/2m) ∇2 + Veq(r) ]φi (r) = εiφi (r),                                     (2.10) 
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which gives the orbitals φi that mimic the electron density n(r) of the actual many-particle 

system 

                      N(r) = Σi=1,2,..,n | φi (r) |2.                                                     (2.11) 

The equivalent single-body potential may be expressed as 

                 Veq(r) = Vnu-e(r) + ∫(n(r’)/|r-r’|) d3r’ + VEC[n(r)],                     ( 2.12) 

Where the first term Vnu-e(r)is the extrinsic potential, the second term is the Hartree term 

expressing the inter-electronic Coulombic interaction, and the third term VEC denotes the 

exchange-correlation potential. Here the entirety of the many-body interactions is 

incorporated in the exchange-correlation potential VEC. The task of finding the solution to the 

Kohn-Sham equation is approached in an iterative self-consistent fashion. Initially, a starting 

guess for n(r) is made following which the corresponding Veq is determined and the Kohn-

Sham equations are solved for the φi. Using these φi’s a new electron density is determined 

and the aforementioned sequence of steps is repeated. Up until convergence, this process is 

repeated [63-64]. 

 

2. 3 Exchange correlation functional 
 

The actual form of the exchange-correlation functional, whose existence is guaranteed by the 

Hohenberg-Kohn theorem, remains unknown. However, there is a specific scenario in which 

we can precisely derive this functional: the uniform electron gas. In this instance, we assume 

that the electron density remains constant at all points in space. While this may seem limited 

in relevance to real materials, which exhibit variations in electron density defining chemical 

bonds and contributing to material properties, the uniform electron gas offers a practical 

means to apply the Kohn-Sham equations. 

In this approach, we derive the exchange-correlation potential by setting it at each position to 

be the known exchange-correlation potential from the uniform electron gas at the electron 

density observed at that particular position. This is accomplished by analyzing the same 

system employed in the Kohn-Sham equations. Through the Kohn-Sham formulation of 

Density Functional Theory (DFT), the total energy is expressed as follows 

             Etot, KS-DFT =  - ( ½ ) Σi ∫ Ψi
* (r)∇2 Ψi(r)d3r– ΣJ∫ (ZJ/|r-RJ|) n(r) d3r +   

                                (½)∫∫(n(r) n(r’)/|r-    r’|) d3rd3r’ + EEC + (½) ΣI≠J ((ZIZJ)/|RI-RJ|)     (2.13) 

The first right-hand term side expresses the electronic non-interacting kinetic energy, the 

second term expresses the nuclei-electron interaction energy, the third term expresses the 

Coulombic inter-electronic interaction energy, the next term expresses the exchange-

correlation energy and the fifth term expresses the inter-nuclei interaction energy. The 
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orbitals and the electron density n = Σ|Ψi |2
 are attained by self-consistently solving the Kohn-

Sham equations: Self consistently solving Kohn-Sham equations yields the orbitals Ψi and the 

electron density n = Σ|Ψi |2 that may be used for the determination of Etot, KS-DFT : 

           (- (½)∇2– ΣJ (ZJ/ |r-RJ|)) + ∫ (n(r’)/|r-r’|) d3r’ + vEC (r)) Ψi(r) = εi Ψi(r).            (2.14) 

The exchange-correlation energy functional EEC and potential 𝜈EC=𝛿EEC/𝛿n are the only 

terms in Etot, KS-DFT, and the Kohn-Sham equations that are not precisely known. As a result, 

the correctness of the estimated characteristics is primarily dependent on the EEC and 𝜈EC 

estimates. A multitude of exchange and correlation approximations have been developed. 

They can be divided into several categories, including gradient approximation (GGA), local 

density approximation (LDA), meta-generalized gradient approximation (meta-GGA), and 

hybrid approximations [64]. 

 

2.4 Generalised Gradient Approximation: 

 

When the exchange-correlation functional was expanded in terms of the gradient of the 

density through the Taylor series and terminated it at some order. Such an approximation is 

known as gradient expansion approximation (GEA) this was initiated by Herman in 1969 

[65]. It turned out that such an approximation often gave worse results and did not provide 

any improvement over local density approximations. This was because the gradients of the 

density in real system become very large; as a result, such expansions break down. it was also 

found that the GEA does not satisfy most of the sum rules. Later only, it was realized that 

there was no need of such an expansion and it was possible to construct exchange–-

correlation functional, which was a functional of density as well as its gradient and satisfied 

the sum rules. This could be written as   

Exc [n↑, n↓] = ∫ 𝒅𝟐 𝒓 𝒇(𝒏 ↑ (𝒓), 𝒏 ↓ (𝒓), 𝜵𝒏 ↑, 𝜵𝒏 ↓)                    (2.15) 

2.5 Perdew-Burke-Ernzerhof (PBE): 

 

PBE is the relaxed generalized gradient approximation (GGA) proposed by Perdew-Burke-

Ernzerhof and is one of the most often used exchange-correlation functional in DFT. PBE 

functionals improves on the local density approximation (LDA) by including gradient of the 

electron density in the calculation of exchange and correlation energies [66]. This functional 

has proven quite effective in modeling many materials properties covering a much broader 

spectrum of systems with higher accuracy than LDA, especially for molecular structures, 

surface energies, and some solids . 
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2.6 Modified Becke-Johnson (MBJ): 

 

MBJ is an improved exchange-correlation functional by Tran and Blaha, It is developed to 

address some of the shortcomings of conventional functionals for predicting band gaps, 

especially in semiconductors and insulators. The standard GGA or meta-GGA functional is 

corrected to more accurately represent the energies and electronic band gaps in MBJ. This 

functional has boasts greater accuracy in predicting band gaps for wide array of materials than 

the other functional, especially when the standard functional are not able to provide 

reasonable result [66]. 

 2.7 Heyd-Scuseria-Ernzerhof (HSE): 

 

HSE06 is a hybrid functional which mix GGA with a portion of Hartree-Fock exchange. 

Heyd, Scuseria, and Ernzerhof proposed this to address the shortcomings described before 

with this method especially with materials with strongly correlated electrons or systems with 

significant charge transfer. The general hybrid meta-GGA functional employs a fraction of 

the exact exchange (as in HF theory) with the GGA exchange-correlation, to provide a more 

exact balancing of the description of both localized and delocalized electron behavior. The 

HSE06 hybrid functional is known to better describe properties such as band gaps, electronic 

structures of solids and materials with strong electron correlations, in a more accurate way 

than the pure GGA functional for certain systems [67]. 

2.8 Energy cut off: 

A new parameter cut off energy released to perform the DFT calculations. In most codes like 

VASP default cut-off energy is associated with every element in pseudo potential files i.e., 

ENMAX Therefore, although the energy is not explicitly defined, the calculation will employ 

the atom's pre-defined ENMAX. When calculating a system with more than one atom, the 

maximal ENMAX is considered by default. We define the Energy cut-off 1.3 ENMAX in the 

input of VASP to assure that the results will be stable and converged in all the above steps. 

 

2.9 k-mesh sampling: 

 

One of the most crucial pieces of the band theory of solids is the Brillion Zone (BZ). In 1976 

Monkhorst and Pack proposed a scheme to produce 'k' points special to specific irreducible 

Brillion Zone (IBZ). Its corresponding region in the reciprocal space is the IBZ that 

reproduces the full BZ with some symmetries. The IBZ has a number of advantages, 
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particularly for symmetric systems where it has a large reduction in computational effort 

when integrating over k-space. The usage of IBZ is to do the integrals in the smaller space 

(useful when your systems possess symmetries) such that typically much less work is needed 

to the computationally requirements. It is important to mention that the amount of 

computational time overall calculations depends on the number of 'k' points only inside the 

IBZ. However, the initial 'k'-point mesh should be carefully selected for getting better 

accuracy and convergence of the calculations. Thus, the convergence in the selection of the 'k' 

points is necessary to obtain accurate results from DFT calculations, which then affect the 

reliability and accuracy of the predicted properties [68]. 

2.10 Z2 Topological Invariant: 

To verify the topological phase transition in GdSb we computed the Z2 topological invariant 

using the product of parities at all TRIM points. In 3D as the system holds both inversion and 

TRS symmetry, there are four Z2 topological invariant ν0; (ν1ν2ν3) and the value of ν0 can be 

calculated according to Kane and Mele criteria according to the following relation: 
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 Here, δ is representing the parities of all the filled occupied bands at TRIM points. The value 

of ν0 =1 corresponds to the topological phase transition in the system and ν0 = 0 signifies the 

weak or trivial nature of the system. By determining the remaining three invariants we can 

identify the true nature of the system, if either of them comes to 1 then the system 

corresponds to weak topological insulator otherwise if all are zero tells the trivial nature of 

material [23]. 

       2.11 Parity 

              Parity is defined as the reflection of a coordinate about origin. It is a transformation that flips 

the sign of one spatial- coordinate i.e., x to –x. In quantum mechanics, the Parity operator, 

always commutes with the Hamiltonian if the potential is symmetric and therefore they have 

a common set of eigenstates. 

P^| L, Lz > = (-1)l | L, Lz >       (2.17) 
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 Here, l is the orbital angular quantum number; L and Lz are the operators for the total angular 

orbital moment and its component in the z direction respectively. The orbital quantum 

number has the values of 0, 1, 2, 3.... for s, p, d, f orbitals respectively. 

2.12 VASP 

The Vienna Ab Initio Simulation Package, commonly referred to as VASP, is a tool 

employed for conducting ab initio quantum mechanical calculations. This involves the use of 

Vanderbilt pseudopotentials or the projector augmented wave method, coupled with a plane 

wave basis set. VASP solves the many-body Schrödinger equation approximately by solving 

the Kohn-Sham equations (in the framework of DFT) or by solving the equations (in the 

framework of the Hartree-Fock approach). Additionally, certain hybrid functionals that inherit 

aspects from both the Hartree-Foch approach and the DFT are also available. VASP 

calculates key quantities through plane wave basis: single-electron orbitals, charge density, 

and local potential. The interactions between the electrons and ions are either expressed with 

the help of the projector augmented wave method or with the help of norm-conserving or 

ultrasoft pseudopotentials [61]. The VASP code carry out calculations using 4 necessary input 

files, which are INCAR, POTCAR, POSCAR and KPOINTS. 

 

2. 13 Phonopy package: 

 

Phonon dispersion spectrum was shown to visualize the phonon frequencies by the Phonopy 

package to check the dynamical stability of the system. This is made using the harmonic and 

quasi harmonic approximation, where the atom in the crystal frame oscillates around the 

equilibrium positions. First, new equilibrium lattice constants (from VASP) were set and used 

to define the supercell (including symmetry of the system) using Phonopy. Using VASP 

finite-displacement method took advantage of this and was finally able to compute Force 

Constants for the new supercell. Phonopy was used to provide calculations of post-processing 

the dynamical matrix after extracting the force constants from VASP output. Then, using this 

dynamical matrix, we calculated the phonon frequencies at given q-points, resulting in a 

dynamical stability of the system. 

 

2.14 Wannier90 packages: 

 

This package Wannier90 was developed by Mosto et al. used in the tight-binding context for 

Wannier Functions (WFs) in the original Works of Wannier for tight-binding Hamiltonians in 2008 
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[61]. Finally, the MLWFs are used to determine several sophisticated electronic properties like 

Fermi surface, Berry Curvature and Anomalous Hall Conductivity in a more efficient and rigorous 

way.It should be emphasized that Wannier90 can only process VASP inputs produced through the 

VASP2WANNIER90 interface. Input flags in VASP to generate inputs for Wannier90. The use of 

VASP is well documented elsewhere. The basic usage of Wannier90 is mainly through four input 

files; wannier. win: a file holding the important information for the atomic coordinates and cell 

parameters. wannier. mmn: file provides the information on the bands (the same one as in 

wannier. win) and their overlaps. wannier.amn: In wannier.amn file the information is number of 

bands as pointed in wannier.win) and their projections. wannier.eig: The eig file is a file that 

contains Kohn-Sham (KS) eigenvalues (in eV), at each point in the Monkhorst-Pack k-mesh. These 

set of files work together to allow researchers to perform calculations and post-processing analysis 

on MLWFs, within materials, to explore complex electronic properties and states [69]. 
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                                          CHAPTER 3 

The TPT in rare-earth monopnictide GdSb 

 

3.1 Abstract: 

 

In our present work, we study the topological phase transition in rare-earth monopnictides 

GdSb using first principles calculations, under the influence of hydrostatic pressure. 

Likewise, all other materials of this family, it also crystallizes in rocksalt type NaCl-crystal 

structure for the entire study of pressure range. The structural phase transition occurs at 26.1 

GPa and the material transforms into CsCl-type structure. The structural, electronic, and 

topological properties are studied using the hybrid density functional theory. At ambient 

conditions the material shows topological trivial in nature which is well matched with the 

experimental results. The topological phase transition is studied under the effect of external 

parameter pressure.  The occurrence of BI inversion at 6 GPa shows the non-trivial 

topological behaviour of material. The presence of Dirac cone along the surface state 

confirms the topological behaviour of material. Moreover, Z2 topological invariant is also 

calculated for investigating the true nature of material using the product of parities at TRIM. 

When we further increase the pressure the material shows another band inversion near the 

Fermi level at Γ as well as X points. The GdSb shows its trivial state at 12 GPa as confirmed 

by the even no. of Dirac cone in the surface state. The zero values of first Z2 topological 

invariant confirms that the system returns back to its initial state.  

We examined the GdSb material in the current work, which belongs to a member of the rare 

earth monopnictides family, and we experimentally validated that it is a trivial topological 

semimetal in nature at ambient condition. It is well known that rare earth monopnictides 

shown interesting behaviour topologic properties and superconductivity under the effect of 

strain and pressure. GdSb has been reported to show non trivial topology under the effect of 

strain, yet there is no theoretical investigation of topological behaviour of material with the 

effect of pressure. These theoretical and experimental investigations provide a feasible way to 

study the topological behaviour GdSb with an external hydrostatic pressure. The topological 

states are observed having an inversion of band in the electronic structure which can be 

further confirmed by calculating the Z2 topological invariant by calculating the product of 

parities at time reversal invariant point with various pressure ranges. The surface Dirac cone 

is projected for confirming the nature of different surface state. 
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3.2 Computational details: 

 

Within the context of PAW, as implemented in the VASP, first principles calculations are 

carried out to examine the structural and electrical properties of material at different pressures 

using density functional theory. The structural optimization are performed GGA) [65] of PBE 

[66] until forces are smaller than 0.001 eV. The exchange correlations energy are calculated 

using GGA-PBE as well as HSE06 For the plane wave basis placed in the electronic structure, 

the total cut off energy of 240 eV is employed. All calculations take into consideration the 

influence of SOC, with the exception of ionic optimization, and the overall energies converge 

to 10−6 eV. For sampling the Brillouin zone in rocksalt primitive unit cell 7× 7× 7 k-mesh is 

used. The system's enthalpy is computed using GGA within a pressure range of 0-27 GPa, 

whereas the band structure computations are executed within a pressure range of 0-12 GPa. 

The dynamical stability of the material is confirmed by phonon calculations by performing 

the phonon dispersion curve using the PHONOPY code [69] under various pressure range. By 

employing the product of parities at TRIM locations, the Z2 topological invariants were 

calculated in accordance with the Kane and Mele criteria [23].  

   

3.3   Results and discussions: 

 

Similarly to other rare earth monopnictides, GdSb similarly crystallizes in a NaCl-type 

rocksalt crystal structure at ambient conditions. Its space group is 𝐹𝑚3̅𝑚 and its atomic 

positions are (0, 0, 0) for Sb and (0.5, 0.5, 0.5) for Gd, as illustrated in Fig. 3.1 (a). Our 

optimized lattice parameter is 6.248 Å which is consistent with experimental reports.  

 

   

 

Fig.3.1. Crystal structure of GdSb (a) NaCl-type (b) CsCl- type (c) The BZ of GdSb with 

(001) plane (yellow color).  
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At high volumetric pressures the crystal structures convert from NaCl to CsCl-type showing 

structural phase transition (SPT). The enthalpy of both crystal structures at 0-27 GPa has been 

determined in order to make sure its SPT. The stability of structure having lower enthalpy H 

= E+ PV (where E denotes the total energy, P = pressure and V= volume of the unit cell) at a 

given pressure is more stable. At ambient pressure NaCl has more stable than CsCl which lies 

lower to the CsCl curve as shown in Fig.3.2 (a). When we increase the pressure the enthalpy 

of both structures increases as defined in above equation and crossover at 26.1 GPa showing 

that CsCl is more stable at that pressure, which is known as transition pressure in Fig.3.2 (b). 

Moreover, phonon dispersion at various applied pressures using the Phonopy code verifies the 

material's dynamic stability. At ambient condition the material is dynamical stable as 

confirmed by the lack of negative frequency as shown in the Fig. 2(c). Furthermore, we have 

also checked its dynamical stability at pressure 26.1 GPa and we can say that the material is 

also stable at this pressure range illustrated in Fig.3.2 (d). 

   

                    

 

 

Fig.3.2. (a) Enthalpy of GdSb as function of pressure for NaCl-type to CsCl-type structure. (b) 

Variation in relative volume of GdSb as a function of pressure. The phonon dispersion of 

GdSb at (c) 0 GPa, (d) 26.1 GPa. 
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After determining the stability of crystal structure, we investigate true nature of material 

calculating their band structures at ambient conditions using two functional GGA-PBE and 

HSE06. Band structure plotting is done along the high symmetric points X to Γ, Γ to L, L to X, 

X to W because it contains TRIM points in the BZ. From Fig. 3.3 (b) at ambient condition 

using PBE there is an overlapping of band occurred at X and Γ points. The valence band has 

mainly contribution from the Sb p-orbital and conduction band has mainly contribution from 

Gd d orbital. The even number of band inversion signifies the topological semimetallic nature 

of material. On the other hand, using HSE06 there is an energy gap occurs at ambient 

condition illustrated in Fig. 3.3 (c). Near the Fermi level the p-orbital of Sb and d-orbital of 

Gd are mainly contributed. The lack of band inversion is consistent of the material's 

topological triviality, which is consistent with our observations. The lack of Dirac cone in 

surface state also confirms the trivial nature of material as shown in Fig. 3.3 (d). Hence, we 

can say that we predict the true state of material at ambient conditions.    

                                

 

 

 

Fig. 3.3. The band structure of GdSb with inclusion of SOC effect using (a) GGA-PBE, (b) 

Projected density of states (c) HSE06 (d) The surface state. The Fermi level is set to 0 eV. 
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We examine the electronic band structure in the pressure range of 0–12 GPa to investigate the 

topological phase transition in material under hydrostatic pressure. It is widely recognized 

that the PBE functional can produce unphysical band structure predictions when pressure 

increases; therefore to determine the accurate nature of material we used HSE06 for our 

further calculations.  From Fig. 3.4 (a) it can be seen that at 6 GPa there is a contribution of 

Sb p-orbitals and Gd d-orbitals in the conduction and valence band respectively. The inverted 

contribution in the electronic band structure creates an inversion of band at X-point which is 

the primary signature of non-trivial topological behaviour of material. The topological phase 

transition also verified by calculating surface state of the material. The presence of Dirac cone 

along the (001) shown in Fig. 3.4 (b) plane confirms the non-trivial behaviour of GdSb.    

 

       

Fig. 3.4. (a) Band structure of GdSb with the inclusion of SOC effect using HSE06 functional 

at 6 GPa.  (b) The surface state. The Fermi level is set to be 0 eV. 

 

The system remains its topological state up to 11 GPa. When we further increase the pressure 

another band inversion occurs at Y points as shown in Fig 3.5 (a). The even number of band 

inversion corresponds to either weak or trivial nature of material which can be further 

ensuring by calculating their Z2 topological invariant. Two Dirac cones are seen in the bulk 

band structure at a certain position in the projection of the surface Brillouin zone, as shown in 

Fig. 3.5 (b-c). This observation validates the trivial nature of the material. 
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Fig. 3.5. (a) Band structure of GdSb with the inclusion of SOC effect using HSE06 functional 

at 12 GPa.  (b, c) The surface state. The Fermi level is set to be 0 eV. 

 

3.4 Z2 topological invariants 

The parities of material under the various pressure ranges are described in Table 3.1 as shown 

below: 

Table 3.1: The parities at all TRIM points in BZ at various pressure range. 

 

At ambient condition using PBE the system shows an even no. of band inversion the 

electronic band structure which shows the semimetal behaviour of material. Furthermore, the 

topological behaviour of material is confirmed by the value of first Z2 topological invariant. 

From the table it can be seen that the value of ν0 comes to be 0 which confirms the 

topological trivial nature of material also agree with the experimental results, so we predict 

the true nature of material at ambient condition. When we increase the pressure the at 6 GPa 

Hydrostatic 

Pressure 

No. of band inversion 3X 4L Γ Z2 

invariants 

0 GPa No inversion - + - (0;000) 

6 GPa One inversion + + - (0;000) 

12 GPa Even no. of inversion - + - (1:000) 
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an band inversion occurs in the system that shows the non trivial topology.  The parity of the 

highest occupied band at X-point switched and hence product of parities changes from 

positive to negative. The change in product of parities, switch first Z2 topological invariant 

from zero to one (according to equation 2.16) which confirms the non-trivial topological 

phase in the system.  Furthermore, when we increase the pressure up to 12 GPa, a second 

inversion in bulk band structure is observed at Γ -point and hence parity of highest occupied 

band at this point switched. This change in parity affect the product of parities and it becomes 

positive again. The positive product of parities of all occupied bands concludes first Z2 

topological invariant (ν0) to be zero again. The first Z2 topological invariant is zero and even 

number of band inversions can direct the system either weak or trivial topological nature. 

This can be decided by remaining three topological invariants which follows the equation 1. 

The value of (ν1ν2ν3) comes out to be zero confirms that the system returns backto its trivial 

state. The Fig. 4 (d) shows that how the values of first Z2 topological invariant changes with 

the effect of pressure. 

 

3.5 Conclusion: 

 

We have systematically investigated the structural, electrical, and topological properties of 

the material utilizing first principles methods using hybrid functional (HSE06) and GGA-PBE 

under the influence of hydrostatic pressure. At first, we have checked the structural stability 

of the material and finds that a structural phase transition occurs at 26.1 GPa the system 

transforms from NaCl to CsCl type crystal structure. The dynamical stability of material is 

verified with the help of phonon dispersion curve. The lack of negative frequency confirms 

the dynamical stability of material under various pressure ranges. At ambient condition the 

system shows topological trivial nature and matched with the experimental results. The trivial 

behaviour of material is also confirmed by the lack of Dirac cone and first Z2 topological 

invariant. The topological phase transition in GdSb is studied under the external pressure. At 

6 GPa a single band inversion occurs in the electronic band structure shows non trivial 

topological nature. The parities switched at X-point and the non-zero value of Z2 invariant 

verify the non trivial state of material. The presence of Dirac cone confirms topological 

behavior of the material. On further increases the pressure an even no. of band inversion 

occurs at the X- as well as Γ-points and the system return to its initial state. The even number 

of Dirac cone establishes the trivial nature of GdSb which is further verified by the zero value 

of Z2 topological invariant.  
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CHAPTER 4 

A first-principles study of strain-driven structural, dynamical, and 

topological properties of novel Sn-based ternary chalcogenide SnPbSe2 

 

4.1 Abstract: 

As mentioned in the preceding aspects, there is a strong need of isolated Dirac cone in the 

A2B3 compounds because in these type of system there is a flow of electron from bulk to 

surface state. Therefore, the topological properties are breaks. Following the isostructural 

substitution we have studied the topological phase of ternary chalcogenide SnPbSe2 using 

first-principles calculation. Here, we have reported a topological phase transition in SnPbSe2 

under the effect of biaxial strain. The structural optimization, dynamical stability and 

electronic structure properties are analyzed and a topological band inversion is observed at 

2% of biaxial strain. The Z2 topological invariants are calculated with the help of the product 

of parities of all the occupied wave functions at TRIM points. This topological phase 

transition provides an ideal platform for further experimental work. 

 

4.2 Computational details 
 

The DFT [63] based electronic structure calculations were performed within the PAW [] 

method as implemented in the VASP [67]. The structural optimization was performed using 

GGA with the help of PBE functional. The Fermi level broadening was done using the 

Gaussian smearing method and set at a width of 0.001eV. The exchange and correlation 

energy were calculated with the help of GGA-PBE as well as mBJ [64] functionals. The 

effect of SOC is included in all calculations except in ionic optimization and the total energies 

are converged to 10−6 eV. A plane-wave cut-off energy and optimized Monkhorst-Pack type 

k-mesh of 320 eV and 7×7×4, respectively were used.  The phonon calculations of SnPbSe2 

were performed using the PHONOPY code [68]. The Z2 topological invariants were 

computed using the product of parities at TRIM points as per the Kane and Mele model [23].  

 

4. 3 Results and discussion 

The material SnPbSe2 belongs to the III-V-VI2 Tl-based family having a rhombohedral crystal 

structure with space group 3R m (166). The optimized lattice parameters for rhombohedral 

structure are a=b=4.343 Å and c=21.262 Å. This material can be realized as a sequence of 

hexagonally closed packed layers in the order Sn-Se-Pb-Se, where Pb and Sn layers are 



31 
 

sandwiched in the middle of Se layers as shown in Fig. 3.1(a). The primitive unit cell having 

four atoms is used to avoid band folding in the calculation of the bulk band structure as 

shown in Fig. 4.1(b). The crystal structure holds inversion symmetry where both Sn and Pb 

layers act as inversion centers that allow us to perform the calculation of the parities of the 

Bloch wave functions at the TRIM point. 

 

         

 

Fig.4.1. the crystal structure of SnPbSe2 in (a) conventional unit cell (b) primitive unit cell. 

The phonon dispersion spectrums of SnPbSe2 (c) at ambient condition and (d-e) applied 2% 

of uniaxial and biaxial strain. 

 

  Further, we analyzed the lattice dynamical stability of the SnPbSe2 using phonon dispersion 

relation. At ambient conditions, this material shows negative frequencies that lead to the 

unstability of the material as shown in Fig.4.1(c). However, a small uniaxial stain along the c-

axis or biaxial strain along equal lattice parameters reduces the negative frequency and 

increases the dynamical stability of the material. We observed that 2% of both uniaxial and 

biaxial strain makes this material dynamically stable with no negative frequency observed as 

shown in Fig. 4.1(d-e).  
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To identify the ground state electronic nature of SnPbSe2 at ambient conditions, we have 

calculated the bulk electronic band structure of this material using GGA-PBE functional with 

the effect of SOC. The band structure calculations are performed along the Z-F-Γ-L-Z 

momentum path in the irreducible Brillion zone which contains the eight TRIM points of the 

bulk material.  It can be observed in Fig.4.2(a) that the p-orbitals of both Se and Pb mainly 

contributed to the valence band and the conduction band of this material near the Fermi level. 

An even number of band inversions near the Fermi level are observed which establishes the 

topological trivial nature of this material. Although, in general, it is observed that GGA-PBE 

underestimates the ground state of materials so we also analyze the ground state of material 

with more accurate functional i.e., TB-mBJ with inclusion of the effect of SOC. The TB-mBJ 

functional identified the true nature of the material and it was found that SnPbSe2 shows a 

topologically trivial semiconductor nature Fig.4.2 (b) with a band gap of 0.136 eV.  

 

   

Fig.4.2. the electronic band structure of SnPbSe2 at ambient condition using (a) PBE+SOC 

and (b) mBJ+SOC functionals. The Fermi energy is set to 0 eV.  

 

To predict the topological phase transition, we have analyzed the bulk band structure of 

SnPbSe2 under strained conditions. When we implemented the uniaxial strain along the c-axis 

of the material, no bulk band inversion was observed within the limit of experimental 

evidence of strain in materials []. However, we apply the 2% biaxial stain along the equal 

lattice parameter directions, a bulk band inversion is observed Fig. 4.3(a) at F-point. It should 

be noted that this material shows dynamical stability at above mentioned strained condition. 

An inverted contribution Fig. 4.3(a) of the p-orbital of Pb and p-orbital of Se in the valance 

and conduction band, respectively, established the above claim.  At this condition, a reduction 

in the energy gap between the valance and conduction band at the Γ-point is also observed but 

band there is no band inversion. When we further increase the biaxial strain up to 3%, another 

band inversion at the Γ-point is also observed Fig. 4.3(b). Now, the inverted contribution of 
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the p-orbital of Pb and Se in the valance and conduction band, respectively, established an 

even number of bulk band inversion in this material at 3% biaxial stain. Now, this even 

number of band inversion shows that the system can be in the weak topological or topological 

trivial state, which should be further analyzed.   

 

 
 

Fig.4.3. the electronic band structure of SnPbSe2 using TB-mBJ functional (a) at 2% biaxial 

strain (b) at 3% biaxial strain. The Fermi energy is set to 0 eV. 

   
 Z2 topological invariant 

 

 To confirm the topological phase transition in SnPbSe2 under the biaxial strain, we have 

calculated its Z2 topological invariants at eight TRIM points. The product of parities at all 

TRIM points at different strained conditions is shown in Table 2. At ambient conditions, the 

product of parities is positive which shows that first Z2 topological invariant ν0 comes out to 

be 0 as calculated from equation 2.16. This observation verifies the topological trivial nature 

of the material observed in the bulk band structure. Under the condition of 2% biaxial strain 

the product of parities becomes negative and hence it changes the value of the first Z2 

topological invariant to 1 from 0. The non-zero value of the first Z2 topological invariant 

established the non-trivial topological state of SnPbSe2 at 2% biaxial stain. On further 

increasing the strain up to 3%, the product of parities becomes positive, and the first Z2 

topological invariant becomes 0. But, the even number of band inversions can study with the 

remaining three Z2 topological invariants i.e., (ν1ν2ν3). The product of parities calculated with 

different coplanar TRIM points is found to be positive.  Hence all the remaining Z2 

topological invariants with positive product of parities (equation 2) become zero. This shows 

that the material becomes topologically trivial with an even number of band inversions 

observed in the bulk band structure. The variation of the first Z2 invariant as a function of 

applied biaxial strain is represented in Fig. 4.4.  
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Table 4.1. The product of parities of all valance bands at TRIM points and Z2 invariants under 

conditions. 

 

 

Fig.4.4. The first Z2 topological invariant (ν0) as a function of applied biaxial strain. 

 

 4.4 Conclusion  

 

Using a first-principles based approach, we have studied the structural, dynamical and 

topological properties of the ternary chalcogenide SnPbSe2 under applied uniaxial and biaxial 

strain. This material exists in a rhombohedral crystal structure with a topologically trivial 

semiconductor nature having an energy band gap of 0.136 eV. This material has shown 

dynamical unstablility at ambient conditions due to the existence of negative frequencies in 

the phonon dispersion relation. Under the applied uniaxial and biaxial 2% stain, this material 

becomes dynamically stable. At ambient conditions, this material has a topologically trivial 

nature with p-orbital of Sn and Pb mainly contributing near the Fermi level in the conduction 

and valance band, respectively. There is no topologically non-trivial nature observed with 

uniaxial stain along the c-axis. When we applied the 2% biaxial stain along the equal lattice 

direction of the material, a bulk band inversion at the F-point was observed and the material 

became topologically non-trivial. Further increase in biaxial stain up to 3% makes the system 

topologically trivial with an even number of band inversions. This topological phase 

transition from trivial to non-trivial and again from non-trivial to trivial with applied biaxial 

 3Z 3F Γ L Z2 invariants 

GGA-PBE + - - + (0;000) 

TB-mBJ + + + + (0;000) 

2% Biaxial strain + - + + (1:000) 

3% biaxial strain + - - + (0:000) 
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stain has been verified with Z2 topological invariants. The zero and non-zero values of the 

first Z2 topological invariant are calculated with the help of the product of parities at all TRIM 

points corresponding to even and odd numbers of band invasions, respectively. This study 

confirms the topological phase transition in ternary chalcogenide SnPbSe2 with applied 

biaxial stain. The applied biaxial stain in this study is within the experimental framework 

observed in materials and can be utilized to guide a pathway for experimentally tuned 

topological properties in this material. 
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