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ABSTRACT 
Owing to its many benefits, such as high energy density, affordability, availability, and 

good safety profiles, vanadium-based oxides have attracted much attention. With its 

comparatively better electrical characteristics, vanadium pentoxide has been the most 

stable of the several families of vanadium oxides and has been the focus of numerous 

research for more than 20 years. We have investigated V2O5 in detail in the current 

work. We have synthesized the sample using the solid-state sintering technique, 

starting with pure V2O5 as a precursor. XRD, FESEM, Raman, FTIR, PL, BET, and 

Nquist spectroscopy are among the analytical methods that have been used to describe 

the V2O5 sample. Structural and phase analyses have been carried out using XRD. The 

morphological and microstructure have been examined using FESEM. V2O5 

nanoparticles have been found to exhibit rotational, vibrational, and other states by the 

use of Raman spectroscopy. FTIR identified the bonds. The existence of oxygen 

vacancies on the surface was verified by PL spectroscopy. The porosity and surface 

area of the sample have been examined using BET analysis, and the charge transfer 

mechanism and the ionic current production in the HEC have been investigated using 

Nyquist and I-V polarization plots. The green energy produced does not discharge 

poisonous or dangerous materials into the environment. Hence, the current study has 

proven the manufacture of a V2O5-based HEC and observed no significant negative 

environmental impact from the energy produced by V2O5 HEC. 
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CHAPTER 1 

Introduction 
 

V2O5, an n-type semiconductor is gaining interest in several ways with α-V2O5 

standing out due to its elevated oxygen states [1]. Several polymorphic phases, such 

as α-V2O5, β-V2O5, & γ-V2O5, have crystal structures that are orthorhombic, 

tetragonal, or monoclinic, respectively [2]. To address the challenges associated with 

V2O5 electrical characteristics & its applications as a cathode-active material in 

batteries, a great deal of research has been done [3] [4]. To solve energy difficulties & 

expedite the transition to sustainable energy systems, it is imperative to investigate a 

range of energy harvesting techniques, such as hydro, solar, etc. To realize their full 

potential, these sectors are undergoing intensive investigation [5]. 

Scientists & researchers have looked into & analyzed a broad range of alternatives 

throughout the years, including transition metal oxides, sulfides, nitrides, etc [6]. ZnO, 

CuO, TiO2, SnO2, & V2O5 are examples of MOS that are widely utilized in gas sensors, 

batteries, catalysts, & other devices. Because of its great sensitivity, low cost, quick 

reaction time, & long-term stability, MOS has attracted a lot of attention in gas sensing 

applications [7]. Vanadium-based oxides have shown to be a promising class of 

materials among those previously studied. Vanadium is an extremely common element 

in nature, & since it interacts with oxygen so fast at high temperatures, it is hard to 

keep it in its metal state. Vanadium’s electrical arrangement results in a variety of 

valence states, which cause oxidation to develop in the oxidation states from V5+ to 

V3- [8]. The crystalline formations & exceptional physical properties of vanadium 

oxide nanostructures are widely recognized [9]. Vanadium monoxide, vanadium 

dioxide, vanadium sesquioxide, and vanadium pentoxide, with valences of +2, +3, +4, 

& +5, respectively, are the most often found oxides that have a single oxidation 

characteristic [10]. 
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Figure 1.1 Structure of V2O5 

 
Moreover, the formation of various oxides such as V8O15, V7O13, & V6O11 

(combination of V4+ & V3+) & mixed valence oxides like V6O13 (combination of V5+ 

& V4+) is facilitated by oxygen vacancies in the corresponding phase [11]. The primary 

reason for the increased interest in these materials is the metal-insulator transition seen 

in vanadium oxides, such as VO, V2O3, VO2, & V2O5 [12]. Significant investigation 

has been conducted into their potential applications in sensors, electrical switches, & 

improvements to optical, thermochromic, & electrochemical capabilities as a result of 

this phenomenon [13-15]. Surprisingly V2O3 is commonly utilized as a catalyst for 

chemical looping dry reforming of methane, water splitting, and other processes, and 

it may even find usage in aqueous Zn metal batteries [16]. In the meanwhile, VO2 finds 

use in temperature sensors, gas sensors, optical photodetectors, & other devices [1]. 
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For the purpose of creating V2O5 nanostructures, a number of synthesis techniques 

have been developed, such as hydrothermal, sol-gel, ball milling, CVD, atomic layer 

deposition, etc. Despite being time-consuming, the solid-state sintering process is the 

most popular among these methods because of its affordability, ease of use, and 

environmental friendliness [17]. Many V2O5 nanostructures such as NPs, NRs, NWs, 

NSs, etc., have been created & investigated over time. It has been noted that these 

synthesis methods have demonstrated the critical roles that temperature & synthesis 

methods play in the formation of various nanostructures [9]. 

The capabilities of V2O5 were examined in this work, with a focus on the synthesis 

technique for nanostructure development. We deliberately selected the solid-state 

sintering process because it provides a practical & cost-effective way to produce V2O5 

NPs. We can manufacture V2O5 at a low cost & high production rate with this 

technology [18]. We improved our grasp of the processed sample’s qualities by 

carefully analyzing their structural & morphological characteristics using several 

characterizations. After a thorough study, we concluded that this material possesses 

the ability for energy harvesting applications. 

As the depletion of non-renewable resources like oil, wood biomass, & coal due to 

industrial & population growth is causing a severe energy crisis, green energy 

alternatives are needed to increase energy production without causing air pollution or 

carbon dioxide [36]. The most promising technique among others is water-based 

technology for green electricity production. HEC uses the dissociation of water 

molecules on the surface to generate electricity by redox process between the Zn anode 

& Ag cathode [37]. 
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Figure 1.2 Illustrated diagram of V2O5 based Hydroelectric Cell 
 

This indicates that the green electrical energy created does not discharge poisonous or 

dangerous materials into the environment. In order to confirm water dissociation at 

ambient temperature & achieve a notable electrical output, the current study has 

proven the manufacture of a V2O5-based HEC by substituting ferrite material and 

observed no significant negative environmental impact from the energy produced by 

V2O5 HEC [38] [39]. 
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CHAPTER 2 

EXPERIMENTAL SECTION 

2.1 Material & Method used: - 
 

Vanadium pentoxide of analytical grade (99.6%) was utilized precisely as supplied by 

Sigma Aldrich. 

Solid State Reaction Method: - 
 

Solid state synthesis, sometimes referred to as the ceramic technique, is a chemical 

process that starts with solid materials and ends with the formation of a new solid 

substance with a predetermined structure. The end products of this method, which 

include thin-film, polycrystalline materials, glasses, etc, are widely used in the energy 

and electrical systems domains. 

In this process, fine-grain metallic combinations are mixed completely, formed into 

pellets, and heated to specified temperatures for a certain amount of time. A lot of 

metallic compounds, including metallic oxides combined with salts, require harsh 

conditions, like high pressure and temperature, to start operations in a melted flux or 

a rapidly condensed vapor phase. 

In a solid-state process, the evaluation of the reaction rate is crucial. Solid-state 

processes must finish as there are few ways to purify the resultant solids. In solid-state 

synthesis, several factors affect the pace of reaction, such as the thermodynamic 

properties related to nucleation and reactions, as well as the structure, organization, 

and rate of diffusion. The chemical and physical properties of the final products are 

largely determined by the chemical precursors and processing methods performed. 

2.2 Synthesis of V2O5 powder: - 
 

The solid-state method of synthesis began with the use of pure V2O5 powder as the 

precursor, as shown in Figure 2.1. To obtain the ideal fineness, the analytical grade 



6  

powder was first carefully grounded for an hour straight with the help of mortar and 

pestle. The sample was then calcined for two hours at 450 ˚C in a muffle furnace to 

remove any remaining contaminants. Additionally, five more hours of hand-grinding 

were used for further refining. The powder was then annealed for five hours at 350 ˚C, 

and then sintered for two hours at 500˚C in order to further refine its crystal structure 

and promote the formation of a nanoporous structure. The result of these procedures 

was the powder that was obtained after sintering, which was the ultimate product. 
 

 

 
Figure 2.1 Schematic diagram showing the synthesis process of V2O5 

nanoparticles using solid-state sintering method 

2.3 Fabrication of V2O5 based Hydroelectric Cell: - 
 

Using a hydraulic press machine, the previously synthesized pre-sintered sample was 

formed into a square pellet with dimensions of 2×2 cm2, as shown in Figure 2.2. To 

create defects in the material, the resulting pellet was sintered for two hours at 500 ˚C 

to harden it. Defects were made on the surface of this oxygen-deficient square pellet 

to facilitate the advantageous dissociation of water molecules. On both sides of the 

pellet, electrodes consisting of Zn as the anode and Ag as the cathode were 

constructed. Zn sheets were adhered to the other side of the pellet for hydroelectric 
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characterization, and conducting Ag paint was applied in a grid-like pattern. In the 

end, to create a completely functional HEC, an electrical connection was made to the 

pellet. 
 

Figure 2.2 Image of fabricated hydroelectric cell 
 

2.4 Characterization Techniques: - 
 

The generated V2O5 powders were analyzed within the 10˚‒80˚ range using a Bruker 

D8 X-ray diffractometer configured with Cu‒Kα radiation at a wavelength of 

0.154nm. XRD was used to investigate the crystal structure of the sample. 
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Figure 2.3 Cu-Kα radiation, λ= 1.5406 Å, Make Bruker, Model: D8 Discover 

 
Using field emission scanning electron microscopy (FESEM, JEOL JSM-6610LV) at 

an accelerating voltage of 10 kV, surface morphology was examined. Raman 

spectroscopy using a photoluminescence spectrometer and a diode laser to provide a 

fixed excitation wavelength of 325 nm, photoluminescence measurements were 

carried out. 
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Figure 2.4 Photograph of JEOL Japan Mode: JSM 6610LV SEM 

 
Furthermore, data from Fourier transform infrared spectroscopy was obtained for the 

specimen. The Brunauer-Emmett-Teller nitrogen adsorption isotherm (Quanta chrome 

instrument, Nova 2000e) was used to determine the pore’s specific surface area, 

volume, size, & other relevant parameters for the V2O5 sample. The generated HEC 

of V2O5 was measured for voltage and current using a digital multimeter. Using a 3- 

electrode configuration, a bioelectrochemical workstation was utilized to get the 

Nyquist plots of V2O5-based HEC. 
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Figure 2.5 Photograph of Perkin Elmer Two–Spectrum FTIR spectrometers 
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CHAPTER 3 
 

Result and Discussion 
 

3.1 XRD analysis of V2O5: - 
 

The XRD measurements as seen in Figure 3.1 verified the sample’s crystallinity and 

structure, showing that the V2O5 sample had an orthorhombic crystal structure. Bragg 

peaks were observed at 15.3˚, 20.3˚, 21.6˚, 26.1˚, 30.9˚, 32.2˚, 34.2˚, 41.2˚, 41.8˚, 

45.4˚, 47.2˚, 47.7˚, & 51.8˚ in the diffraction pattern, which corresponded to different 

crystallographic planes, such as (200), (001), (101), (110), (400), (011), (310), (002), 

(102), (411), (302), & (601). When compared to the standard JCPDS no. 00-041-1426 

for V2O5, the acquired data matched it fairly [19]. Additionally, no more peaks were 

seen, suggesting that the solid-state method of V2O5 production was effective. 
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Figure 3.1 XRD pattern of as-synthesized V2O5 nanoparticles 

 
The crystallite size was determined utilizing the Debye-Scherrer equation: 

 
𝐷	=	𝐾.	 𝜆

	
𝛽.cos	𝜃	

	
where K is the Scherrer constant with a value of 0.9, λ=0.154 nm is the wavelength of 

incident radiation, β is the full-width half maxima, & θ is the Bragg’s angle. D in the 

equation represents the material’s crystallite size. It was determined that the V2O5 

sample’s crystallite size was 22.81 nm. In addition, the following equations were used 

to estimate the strain (ε) & dislocation (δ): 

𝜀	=	𝛽⁄4.	tan	𝜃	
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𝛿	=	1⁄𝐷2	

	
According to the calculations, the values were 2.05 nm-2 for δ×10-3 & 5.75 for ε×10-3. 

Figure 3.2 shows the Williamson-Hall plot, which was utilized to validate the 

estimated lattice strain and crystallite size [20] [21] [22]. 
 

 
Figure 3.2 Williamson‒Hall (W‒H) plot of V2O5nanoparticles 

 
3.2 FESEM analysis of V2O5: - 

 
A thorough look at the surface morphology & porosity of the sample post-synthesis is 

provided by the FESEM picture shown in Figure 3.3. In addition to being evenly 

dispersed, tightly packed NPs, it depicts the existence of aggregated grains with large 

holes [23]. The average diameter of the NPs is 81.6 nm, with a range of 40‒90 nm 

[24]. The complex structure & nanoscale properties of the synthetic V2O5 material are 

highlighted by this observation [25]. 
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Figure 3.3 FESEM of V2O5 nanoparticles 
 

3.3 Raman spectroscopy of V2O5: - 
 

The vibrational modes inside the sample were found using Raman spectroscopy 

examination of the V2O5 NPs, as shown in Figure 3.4. The spectra show that α‒V2O5 

specific Raman-active modes are present. At 991 cm-1, the maximum intensity Raman 

peak mode corresponding to V=O, is seen. This is explained by the displacement of O 

atoms by double bonds. At 137 cm-1, bend vibrations at B3g were detected, and further 

low-frequency unique peaks at 188 cm-1 were attributed to the O‒V‒O bending 

vibration modes [9] [26]. 
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Figure 3.4 Room temperature Raman spectra of V2O5 nanoparticles 
 

Furthermore, at V=O peaks, the Ag mode of oscillating atoms was seen at 277 cm-1, 

297 cm-1, & 402 cm-1. In contrast, high-intensity peaks were found at 473 cm-1, 522 

cm-1, & 692 cm-1, respectively, in the vibration modes of Ag [27] [28]. 

3.4 FTIR spectroscopy of V2O5: - 
 

The existence of functional groups & different interactions within the 410‒4000 cm-1 

range of V2O5 NPs were investigated using FTIR absorption spectra in combination 

with KBr medium. As shown in Figure 3.5, 3 absorption bands were found in the 450‒ 

1200 cm-1 frequency range [21]. Double coordinated O vibrations (V‒O‒V) are 

associated with the lower frequency peak at 829 cm-1 whereas stretching vibrations of 

terminal O bonds (V=O) are connected with the significantly higher frequency peak 

at 1013 cm-1. Besides, V‒O stretching correlates with the peak at 613 cm-1 [29] [30]. 
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Figure 3.5 FTIR of V2O5 nanoparticles 

 
Higher frequencies between 1600 & 3500 cm-1 were where vibrations linked to water 

molecule adsorption were found. In particular, the band at 3414 cm-1 indicates the 

stretching vibrations of water molecules adsorbed onto the surface, whereas the band 

at 1630 cm-1 indicates the bend vibrations of adsorbed water molecules [31] [32]. 

3.5 PL spectroscopy of V2O5: - 
 

One of the most remarkable features of semiconductors is their luminescence. 

Electrons move from the valence band to the conduction band when exposed to light 

that has a wavelength that is equal to or less than the absorption onset. Photons are 

released as the system relaxes [33]. PL examination was performed on the produced 

sample to verify the existence of O vacancies on the surface. Using an excitation 

wavelength of 325 nm, emission spectra in the 340‒640 nm range were acquired 
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during PL observations of V2O5 NPs [34]. The PL spectrum of V2O5 NPs is shown in 

Figure 3.6. It shows a clear green emission peak at 539 nm, along with 2 other peaks 

at 413 nm & 468 nm, respectively, in the violet-blue emission area. 
 

 
Figure 3.6 PL spectra of V2O5 nanoparticles 

 
Transitions between the valence & conduction bands are shown by the green emission 

peak, which is correlated with V vacancies [21]. In the meanwhile, the emission peak 

at 413 nm results from the transition between the valence band & the V interstitial 

energy level. In addition, the as-prepared V2O5 NPs exhibit a greater electron 

concentration & a constant green light emission at room temperature, indicating their 

possible use in solar cells and light-emitting diodes [35]. 
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3.6 BET analysis of V2O5: - 
 

The BJH-derived distribution of the pore size v/s pore volume of V2O5 NPs is shown 

in Figure 3.7. The porosity & surface area of the material were determined using the 

BET model. 
 

 
Figure 3.7 BJH Pore size v/s pore volume distribution of V2O5 nanoparticles 

 
We have determined the adsorption-desorption isotherms with N2 gas as the probing 

gas. The N2 adsorption-desorption isothermal curve in Figure 3.8, in accordance with 

the IUPAC convention depicted a type Ⅴ isotherm that followed the H1 type hysteresis 

loop for V2O5. 
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Figure 3.8 Nitrogen adsorption-desorption isotherm of V2O5 nanoparticles 
 

The type Ⅴ isotherm is distinguished by its hysteresis loop, which is linked to weak 

adsorbate-adsorbent interactions at low relative pressure & capillary condensation in 

mesopores [40] [41]. Mesoporous size distribution was observed in V2O5. The 

cumulative pore volume for V2O5 is determined to be 0.156 cm3g-1 at a relative 

pressure of (P/Po) for pores with a radius of less than 13.56 nm. Specific surface area 

of V2O5 is calculated to be 23.89 m2g-1 via the multipoint BET method [42] [43] [25]. 

3.7 EIS of V2O5: - 
 

The Nyquist impedance response in an HEC provides information on the charge 

transfer mechanism, which is better understood with the use of EIS. The Nyquist curve 

offers unambiguous information on the ion diffusion that takes place in an HEC. The 

V2O5 HEC’s wet state Nyquist curve is displayed in Figure 3.9, & the Nyquist plot is 
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used to compare the imaginary & real components of impedance in terms of frequency 

[44] [45]. 
 

 
Figure 3.9 Nyquist plot of V2O5 HEC in wet condition 

 
When the V2O5 HEC cell is wet, its resistance curve shows an extraordinarily high 

value of around 106 Ω. The resistance of HEC has been established by the semicircular 

fitting of the resultant Nyquist curve [34] [36]. The semicircle displays the Rct in the 

higher frequency range, while the interception of the impedance on the Z-real axis 

indicates the Rs of the electrodes & electrolyte. Moreover, the produced V2O5 NP’s 

sloping tail in the low-frequency region demonstrated enhanced capacitance behavior 

& ion diffusion at the electrode interface [46] [47]. 
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CHAPTER 4 
 

Hydroelectric Cell 
 

4.1 Hydroelectric Properties: - 
 

Small power generators called hydroelectric cells mostly produce energy from water. 

These are, to put it simply, water-activated cells. Low voltage, water activation, & 

environmental friendliness are a few of the fundamental characteristics of 

hydroelectric cells. The chemical reaction inside the cell that produces electricity is 

sparked by adding water as an activation agent. Because of the low voltage generated, 

this method is perfect for small-scale applications such as powering calculators and 

toys. HEC uses the water-splitting process to change water molecules into hydroxide 

& hydrogen ions. Unlike conventional batteries, HECs don’t need an extra electrolyte, 

which makes it possible to produce green energy more sustainable & raises the cell’s 

efficiency. 

4.2 Water-Splitting Method: - 
 

The hydroelectric cell’s water-splitting mechanism is a basic electrochemical 

reaction that powers the production of clean, sustainable electricity, also known 

as water electrolysis. In this process, electrical energy is used to breakdown 

water molecules into hydrogen and oxygen. 

Two half reactions are: 

1. Oxidation at the anode: 

2H2O → O2 + 4H+ + 4e- 

2. Reduction at the cathode: 

 
4H+ + 4e- → 2H2 

The overall equation is: 
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2H2O → O2 + 2H2 
 

This reaction takes place at the anode & cathode of a hydropower cell & is 

fuelled by electrical energy. The oxygen gas produced at the anode is a valuable 

byproduct, while the hydrogen gas produced at the cathode may be used as a 

clean fuel source. 

One of the main areas of research & development for renewable energy 

technologies is the efficiency & scalability of this water-splitting process. The 

full potential of this exciting electrochemical route may be realized by 

optimizing the catalysts, battery & operating parameters. 

4.3 Working Mechanism: - 
 

The two primary processes that drive the operation of an HEC are ionic conduction 

and the room-temperature adsorption of water molecules on the surface of V2O5 [48]. 

With its nanoporous structure and unsaturated oxygen-deficient surface covered with 

Ag in a grid pattern on one side, the specially-made V2O5 hydropower square pellet 

functions as an inert cathode, while the Zn sheet connected on the other side functions 

as an anode [49]. At room temperature, a few drops of DI water were put on the pellet 

surface, divided the water molecule into OH- & H3O+ ions [50]. While the hydronium 

ions hop to the Ag cathode, which absorbs electrons from the anode, the hydroxide 

ions migrate toward the Zn anode, releasing 2 electrons [51]. Diffusion across surfaces 

& capillaries is how these ions travel. Water molecules split at the oxygen vacancies 

& on the unsaturated cations that are present on the surface of V2O5 [36]. Since 

electrons are stuck at these oxygen vacancies, these vacancies function as hanging 

bonds. The water molecules are drawn to the trapped electrons, & the charged 

vacancies and coulombic attraction between surface cations weaken the O‒H bond in 

the molecules. 
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Figure 4.1 Dissociation of water molecules on the surface of HEC 

 
Now, the unsaturated cation surface splits the OH- ions, drawing them out and leaving 

behind H3O+ ions. Due to the confinement of these H3O+ ions in the V2O5 HEC 

nanopores, a strong EF is formed inside the pores. Further spontaneous dissociation of 

water molecules takes place on the surface due to the strong EF. An electrolytic or 

Groutthus chain reaction forms the OH- layer, which is created by chemidissociation 

and the subsequent hopping of H+ ions for conduction [51]. The splitting of water 

molecules caused by the generation of potential differences throughout the sample 

results in an EF, which is controlled by the subsequent electrochemical reaction 

process at the appropriate electrodes [52]. 
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Figure 4.2 Schematic diagram of working of V2O5 HEC 
 

Dissociation on surface defects of the HEC: 

4H2O → 2OH- + 2H3O+ 
Oxidation at the Zn anode: 

Zn + 2OH- → Zn (OH)2 + 2e- 

Eoxd = -0.76V 

Reduction at Ag cathode along with H2 gas liberation: 

2H3O+ + 2e- → H2(g) + 2H2O 
Ered = 0.22V 

Ecell = 0.98 V is the net voltage produced by the electrodes. Voltage & current are 

produced in the cell by this ongoing redox reaction between the electrodes. 

 
4.4 I-V Polarization: - 

 
The effect of defect enhancement on water molecule splitting & the resulting 

production of ionic current is examined using the I-V polarization plot of the V2O5 

HEC. 
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Figure 4.3 I-V Polarization curve and energy generated by V2O5 HEC dipped in 

DI water 

After submerging the V2O5 pellet in DI water, the generated voltage & current were 

measured and plotted. The V2O5-based HEC produced maximum Isc ~ 7.06 mA. When 

both electrodes prevail equilibrium & there is no current flow in the cell, the voltage 

generated by the HEC is described by the maximum Voc ~ 1 V measured at point A as 

shown in Figure 4.3. Based on the acquired data, 7.06 mW is the maximum power of 

the manufactured HEC [54]. 

Three distinct zones have been seen in the I-V polarization curves of electrochemical 

cells: 

(i) The activation loss region (AB region), also known as the low current 

density region, where the voltage rapidly declines. The primary reason it 

occurs is that in order to start the electrochemical reaction at the electrodes, 

some activation energy must be used to cross the energy barrier. 
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(ii) The linear zone is represented by the ohmic loss region (BC region), also 

known as the moderate current density region, which is in charge of 

stopping the ionic flow. This loss results from the resistance that ions 

encounter when they travel through the material’s porous surface & gather 

at the electrodes. 

(iii) The mass concentration loss region (CD region), also known as the high 

current density region, results in a sudden decrease in voltage with current 

because of the buildup of ions on the electrode surface; in other words, 

concentration loss occurs when there is not enough ion available for the 

electrodes during the hyperactive state. 

Ultimately, these sections elucidate the kinetics of the electrochemical cell process [52] 

[53]. Thus, the net output voltage of the V2O5 based HEC is determined by: 
Vout = Eopen cell – Vactivation – Vohmic – Vconcentration 

Where open cell voltage is Eopen cell and Vactivation, Vohmic, and Vconcentration are 

overvoltage losses. 

 
4.5 Water consumption in HEC 

 
Charge of an electron, e= 1.6 x 10-19C. 

1 C = 6.242 x 1018 electrons. 

1 ampere = 6.242 x 1018 electrons per second. 

In 15.3mA, the number of electrons per second, n would be equal to, 

15.3 x 10-3 x 6.242 x 1018 = 95.502 x 1015 

Open circuit voltage of the cell = 0.98V 

One mole of electrons is equivalent to 96,485C/mole 

So, the charge transfer in 15.3 mA = e x n 

= 1.6 x 10-19 x 95.502 x 1015 

= 15.280 x 10-3 C 

Hence, the number of moles will be= 15.280 x 10-3 / 96485 

= 1.583 x 10-7mole 

We know, one mole contains 18mL of water. 

So, quantity of water(mL) dissociating = 18 x 1.583 x 10-7 mL 
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= 2.849 x 10-6mL 

= 2.85μmL 

Therefore, 2.85μmL of water is required to generate 15.3 mA current for 1 

second. 
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CHAPTER 5 

Conclusion 

Vanadium pentoxide nanoparticles (V2O5 NPs) were successfully and precisely synthesized 

using the solid-state sintering process. Comprehensive analyses using X-ray diffraction (XRD) 

and Raman spectroscopy confirmed that the synthesized sample possessed an orthorhombic 

structure with a dominant α- V2O5 phase. The sample exhibited enhanced crystallinity, with an 

average crystallite size measured at 22.81 nm. Further, field emission scanning electron 

microscopy (FESEM) scans revealed an average grain diameter of 81.6 nm, which corroborated 

our findings regarding the crystallinity and structural integrity of the V2O5 NPs. 

Fourier-transform infrared (FTIR) spectroscopy provided additional insights, showing 

distinctive peaks indicative of stretching vibrations between vanadium (V) and oxygen (O) 

atoms in the V2O5 nanoparticles. These vibrations are characteristic of the V2O5 molecular 

structure, further validating the successful synthesis of high-purity V2O5 NPs. 

Interestingly, photoluminescence (PL) measurements revealed significant changes in the 

oxidation states of the V2O5 nanoparticles. This observation suggests the presence of various 

oxidation states within the V2O5 lattice, which can influence the material’s electronic and optical 

properties, making it potentially useful for various applications in electronics and photonics. 

Additionally, the specific surface area of the synthesized V2O5 NPs was calculated to be 23.89 

m²/g. This relatively high surface area is advantageous for applications requiring extensive 

surface interactions, such as catalysis, sensing, and energy storage. The electrical performance 

of the V2O5 NPs was also evaluated, revealing a maximum electric current of 7.06 mA and an 

output power of 7.06 mW. These findings highlight the potential of V2O5 NPs in electronic 

applications where efficient electrical conductivity is essential. 

The cost-effectiveness of synthesizing V2O5 NPs through the solid-state sintering process, 

combined with their environmentally friendly nature, presents a viable option for the fabrication 

of hybrid energy cells (HECs). This synthesis method not only reduces production costs but also 

minimizes environmental impact, aligning with the growing demand for sustainable and green 

energy solutions. 
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Overall, the successful synthesis and comprehensive characterization of V2O5 nanoparticles 

underscore their potential in various technological applications. The orthorhombic structure with 

a dominant α-V2O5 phase, high crystallinity, and substantial surface area make these 

nanoparticles suitable for use in green energy generation and storage devices. Their electrical 

properties, coupled with the ability to undergo significant changes in oxidation states, further 

expand their applicability in advanced electronic and optoelectronic devices. 

The study highlights the potential of V2O5 NPs in contributing to clean energy solutions. Their 

synthesis is not only cost-effective but also aligns with environmental sustainability goals, 

making them an attractive option for the development of hybrid energy cells. The detailed 

structural, optical, and electrical characterizations provide a strong foundation for future 

research and development in this field, paving the way for innovative applications in green 

energy and beyond. 

In conclusion, the precise synthesis and thorough characterization of V2O5 nanoparticles 

demonstrate their significant potential in various high-tech applications. Their unique properties, 

combined with cost-effective and environmentally friendly production methods, make them an 

excellent candidate for advancing green energy technologies. This research paves the way for 

future innovations that leverage the exceptional qualities of V2O5 NPs for sustainable and 

efficient energy solutions. 
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