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ABSTRACT 

 

In the current research, various hydrogel formulation comprised of acacia gum (AG), 

polyacrylamide (PAM), and carboxymethyl tamarind kernel gum (CMTKG) were 

fabricated and ciprofloxacin loading were carried out. The evaluation of different 

crosslinker and initiator amount on the swelling ratio of the synthesized hydrogel 

was assessed. Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy 

(SEM), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) techniques were used to characterize the hydrogel. The hydrogel 

swelling and in vitro drug release were evaluated using buffer of pH 1.2 and 7.4. The 

results showed that, in comparison to acidic pH, an alkaline pH produced better 

results for the swelling and in vitro drug release. The ciprofloxacin-loaded 

AG/PAM/CMTKG hydrogel drug release kinetics revealed non-fickian mechanism 

at pH 7.4 and fickian diffusion at pH 1.2, respectively, according to the Korsmeyer–

Peppas model. The pH-dependent behavior of ciprofloxacin-loaded 

AG/PAM/CMTKG hydrogel displayed its possible consequences for site-specific 

ciprofloxacin release. 
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CHAPTER 1 
 
 

INTRODUCTION AND LITERATURE SURVEY 
 
 
 
 

Hydrogel is a three-dimensional network of hydrophilic polymers joined by chemical 

or physical cross-links & have ability to expand without losing its structural integrity. 

Hydrophilic groups like -NH2, -OH, -COOH, -CONH2, -SO3H etc are present in 

these hydrogel network [1].  Hydrogels are useful in biological and pharmaceutical 

applications due to of their excellent absorbency, hydrophilic nature, and softness[2]. 

Hydrogels are a good option for regulated drug administration because to their bio-

adhesive properties, which also improve tissue permeability and drug residence 

time[1]. 

 

In recent years, hydrogels are becoming more and more popular as drug delivery 

vehicles due to their non-toxicity and biocompatibility , especially for oral drug 

delivery[3]. Furthermore, hydrogels that respond to certain environmental conditions 

by changing their volume are referred to as intelligent or smart hydrogels. They 

responds to chemical stimuli like pH, ionic strength or biological stimuli like 

enzymes, DNA and physical stimuli like light, pressure, temperature, and ultrasound 

[1]. However, pH-sensitive hydrogels have been researched widely among all other 

stimuli. The hydrogels, which are pH-sensitive, have weak acidic or basic groups that 

easily ionize at higher or lower pH values, with respect to their pKa values [3], [4].  

 

Polyacrylamide is non-toxic, pH-responsive polymer  which respond to different 

physical and chemical stimuli with notable volume variations [5], [6], [7]. PAM 

hydrogels are recognized for their biocompatible qualities, as they do not cause any 

harm to human fibroblasts. Additionally, these hydrogels show resistance to 

particular bodily enzymes and are neither carcinogenic nor allergic, reducing the 

possibility of mutagenesis effects. As a result, these hydrogels highlight their 

adaptability in a range of biological applications [6]. 

 

Recently, the combination of desired properties from both natural and synthetic 

polymers has led to a recent surge in interest in hybrid hydrogels. TKG and its 

derivatives have been employed as a effective biopolymer substitute for synthetic 

polymers due to its variable solubility, biodegradability, lack of toxicity, and 

susceptibility to microbial breakdown. It is obtained from the seeds of Tamarindus 

indica L. and made up of glucose, galactose, and xylose in a molar ratio of 3:2:1 [8]. 

Numerous TKG-based modified products have been investigated for use in a variety 

of industries, including the food, textile, explosives, plywood, and medical sectors 

[8]. 

 One notable example is the derivative of tamarind kernel gum (TKG), 

carboxymethyl tamarind kernel gum (CMTKG). This chemical modification of TKG 

enhances features such as shell integrity, drug loading efficiency, swelling ratio, bio 
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adhesiveness, and hydrophilicity [9]. CMTKG structural and physicochemical 

properties help them to be used in tissue engineering and medication delivery 

systems[10].It has been widely employed in the fabrication of numerous therapeutics 

agents, including hydrogels, films, nanoparticles, composites, and pellets, in the field 

of drug delivery systems[11]. 

 

Acacia gum is a polysaccharide with a high branch structure that is extracted as a 

dried exudate from the branches and stems of Acacia Senegal [12], [13]. Its major 

structural components are α-L-arabinofuranosyl, ß-D-glucuronopyranosyl, 4-O-

methyl-ß-D-glucuronopyranosyl, and α-L-rhamnopyranosyl units [12].  It is typically 

found in areas that stretch from the Indian Peninsula to West Africa [14], [15]. Acacia 

Gum is widely used in the pharmaceutical and food industries. It exhibits powerful 

antioxidant qualities  due to the presence of  hydrocolloids [13]. 

 

Ciprofloxacin, also known as 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-

quinoline-3-carboxylic acid, is a member of the fluoroquinolone family. Its structure 

consists of a piperazine ring at position 7 and a quinolone core with a fluorine atom 

at position 6 [16], [17], [18], [19]. Ciprofloxacin, like all fluoroquinolones, primarily 

acts by inhibiting DNA gyrase. Gyra A and Gyra B are the two subunits of DNA 

gyrase. Subunit A appears to be the main target of  ciprofloxacin [20]. Ciprofloxacin 

exhibits superior tissue dispersion compared to numerous other drugs in its class due 

to its low binding to plasma proteins. When taken orally, it effectively penetrates the  

majority of bodily fluids and tissues, except for the central nervous system 

(CNS)[21]. The kidneys are primarily responsible for removing ciprofloxacin from 

the body through a combination of tubular secretion and glomerular filtration [20]. 

It's widely used to treat infections of the skin, gastrointestinal tract, and urinary tract 

[18]. 

 

This study focuses on fabrication of ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel using the different crosslinker and initiator concentration. The hydrogels 

were characterized using PXRD, ATR-FTIR, SEM analysis. In stimulated 

physiological solutions with pH values of 1.2 and 7.4, the analysis of drug release 

and swelling was conducted. To investigate the drug release mechanisms, a number 

of kinetic models were used, including Korsmeyer-Peppas, Zero-order, Hixson 

Crowell, First order, Higuchi. 
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Table 1.1: Literature on bio-polymer based hydrogel used in controlled drug delivery 

systems 

 

 

  

Hydrogel Cross linking 

agent 

Application References 

TMC/Sodium 

carboxymethyl xanthan 

gum 

MBA Ciprofloxacin release [22] 

CMTG Citric Acid Moxifloxacin 

hydrochloride release 

[23] 

Gelatin/Poly 

methacrylic 

MBA Salbutamol release [24] 

CMTKG/PAM/PEG MBA Etophylline release [25] 

XG/PAM/PVP MBA Ibuprofen Release [26] 

Acacia gum-

polyvinylpyrollidone/ 

carbopol 

MBA Moxifloxacin [13] 

Sodium Alginate/PVA MBA Diclofenac Sodium 

release 

[27] 

Chitosan/Gelatin Tris(2-(2-

formylphenoxy)

ethyl) 

amine 

metronidazole [28] 
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CHAPTER 2 
 
 

MATERIAL AND METHODS 
 
 
 
 

2.1. Materials 
 

CMTKG (Courtesy Hindustan Gum and Chemicals Ltd., Bhiwani, Haryana), 

ciprofloxacin (Unicure Pvt. Ltd.), potassium persulphate (KPS, Fischer Scientific, 

Bombay, India), N, N'-methylene bisacrylamide (MBA, Merck, Germany), 

acrylamide (AM, CDH, New Delhi) and acacia gum (AG, Thermo Fisher Scientific 

India Pvt. Ltd. Mumbai, India),were utilized as provided. 

 

2.2. Synthesis of AG/PAM/CMTKG hydrogels and ciprofloxacin-loaded 

AG/PAM/CMTKG hydrogel 
 

Different formulations of AG/PAM/CMTKG hydrogels were produced, with varying 

amounts of KPS (B1-B5) and MBA (B6-B9) as displayed in Table 2.1. Specific   

amounts of AG, PAM, and CMTKG were dissolved in distilled water and stirred for 

an hour in order to produce the AG/PAM/CMTKG hydrogels. KPS and MBA were 

then added, and stirring was done continuously for a further hour. After that, the 

solution was placed in a test tube and heated to 60 °C in a water bath for one hour. 

The hydrogel was extracted from the test tube, divided into pellets, and dried for 48 

hours at 60 °C[7]. 

 

A slightly modified version of the same procedure was used to generate a 

ciprofloxacin-loaded AG/PAM/CMTKG hydrogel. Ciprofloxacin was added when 

KPS and MBA were introduced, while the remaining steps followed to the similar 

protocols as depicted in Fig. 2. 

[29]. 

Fig. 2 Synthesis of AG/PAM/CMTKG hydrogels. 
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Table 2.1. Quantity of materials used in the AG/PAM/CMTKG hydrogels synthesis, 

with their swelling ratio. 

 

 

Sample 

Code 

KPS 

(mg) 

MBA 

(mg) 

CMTKG 

(g) 

PAM 

(g) 

AG 

(g) 

Swelling Ratio 

(%) 

pH 1.2 pH 7.4 

B-1 36 12 0.25 0.5 0.2 837 968 

B-2 36 17 0.25 0.5 0.2 746 935 

B-3 36 22 0.25 0.5 0.2 662 863 

B-4 36 27 0.25 0.5 0.2 685 737 

B-5 36 32 0.25 0.5 0.2 615 723 

B-6 18 12 0.25 0.5 0.2 702 857 

B-7 24 12 0.25 0.5 0.2 756 907 

B-8 30 12 0.25 0.5 0.2 801 968 

B-9 42 12 0.25 0.5 0.2 709 815 
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CHAPTER 3 
 
 

EXPERIMENTAL SECTIONS 
 
 
 
 

3.1. Swelling Analysis 
 

The gravimetric technique was employed to determine the swelling ratios of the 

hydrogels [30]. After being dried, hydrogel discs were submerged in phosphate 

buffer saline (pH 7.4) and HCl- KCl buffer (pH 1.2) [31]. The hydrogel was taken 

out of the buffer at a regular interval of 1 hr.  The extra liquid from the hydrogel disc 

was blotted with filter paper, and the discs were weighed. [32]. Again, the discs were 

submerged in the same solution and the swelling was assessed using the given 

equation [28]. 

         Swelling ratio (%) = 
W𝑓 −W𝑖

 W𝑖
∗ 100                                                                                                         (1) 

where the weights of the dry hydrogel sample and the swelled hydrogel sample are 

represented by Wf and Wi, respectively.  [33]. 

 

3.2. Drug encapsulation efficiency 
 

For ciprofloxacin-loaded AG/PAM/CMTKG hydrogel, the drug encapsulation 

efficiency was measured. The 0.1 g ciprofloxacin-loaded AG/PAM/CMTKG  

hydrogel disc were crushed and submerged in a 100 ml pH 7.4 buffer solution for 48 

hr [34]. The absorbance was assessed using a UV-visible spectrophotometer  and the 

amount of ciprofloxacin was determined using a calibration curve  [35]. The stated 

formula was employed to determine the drug encapsulation efficiency (DEE %) 

[36],[34]. 

          DEE % = 
Amount of drug loaded in hydrogel pellet

Theoretical amount of drug in a hydrogel pellet
 ×100                                     (2) 

 

 

3.3. In vitro Ciprofloxacin release 
 

The ciprofloxacin loaded AG/PAM/CMTKG hydrogel was analyzed for an in vitro 

release study in an incubator shaker using buffer solutions with a pH of 1.2 and 7.4. 

At 37°C, a hydrogel was submerged in 100 ml of buffer solution then 3ml of the 

buffer solution were removed after an hour, and the same amount of fresh 

buffer  was added .The study was conducted three times, and a UV-visible 

spectrophotometer was used to measure the absorbance of released ciprofloxacin at 

λmax 277 nm.The ciprofloxacin calibration curve was utilized to ascertain the 

amount of drug present in the  hydrogel [37]. 
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3.4. Kinetic modelling 
 

The kinetic modelling was performed to examine the release of ciprofloxacin from a 

ciprofloxacin-loaded AG/PAM/CMTKG hydrogel using Korsmeyer-Peppas, Zero-

order, Higuchi, Hixson-Crowell and First-order models. Following a comparison of 

each model's coefficient of determination (R2) values, the model that best fits the 

data is the one whose R2 value is closest to unity[38]. 

 

3.5. Characterization 
 

PXRD was examined using CuKα radiation at 2Ɵ range of 10-70° with a Bruker D8 

diffractometer. The ATR-FTIR spectrophotometer (Model: PerkinElmer spectrum 2) 

was used to record ATR-FTIR spectra in the wavenumber range of 450-4000 cm-1. 

The SEM images were obtained using SEM (Model: JEOL Japan Mode: JSM 

6610LV). 

  



8 
 
 

CHAPTER 4 
 
 

RESULTS AND DISCUSSION 
 
 
 
 

4.1. Mechanism of AG/PAM/CMTKG and ciprofloxacin‑loaded 

AG/PAM/CMTKG hydrogel 
 

With varying the amounts of KPS and MBA, the hydrogels were produced by a free 

radical chain polymerization process as depicted in Table 2.1. When KPS break 

down at 60 °C, sulfate radicals were produced. These radicals react with AM by 

cleaving its vinyl bond, in order to produce the radicals. Subsequently, these AM 

radicals attacked other acrylamide molecules to start the propagation, which led to 

the synthesis of PAM. Furthermore, by cleaving the -OH bond, the sulfate radical 

also generates the radical on CMTKG and AG. By connecting these active radicals, 

the MBA further forms the covalent crosslinked bond, generating a three-

dimensional (3-D) AG/PAM/CMTKG hydrogel network .The formation of a three-

dimensional network of ciprofloxacin-loaded AG/PAM/CMTKG hydrogel is 

facilitated by the hydrogen bonding interaction between ciprofloxacin and PAM., as 

depicted in Scheme 4.1 [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.1. Mechanism of ciprofloxacin-loaded AG/PAM/CMTKG hydrogel. 
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4.2. Swelling Analysis 
 

The effect of the initiator and cross-linker amount on the hydrogels swelling is 

displayed in Fig. 4.1 and its data is shown in Table 2.1 

 

4.2.1 Impact of cross-linker 
 

An apparent decrease in the swelling capacity with an increase in MBA amount was 

observed in Fig. 4.1 (a). This observed fall in swelling can be explained by the 

increased crosslink density resulting from the rise in concentration of the crosslinker 

which restricts its capacity to absorb and retain the absorbed fluid effectively. When 

the hydrogel  concentration below than 12 mg, there is no evident crosslinking, 

suggesting that the hydrogel network does not formed [40]. 

 

4.2.2.   Impact of initiator 
 

The MBA concentration maintained at 12 mg, and swelling effects were examined 

for variations in KPS content. The decrease in swelling is observed below 36 mg of 

KPS content, it is explained by the availability of unreacted monomers due to a lesser 

number of initiator free radicals. Additionally, swelling decreases when initiator 

concentrations higher than 36 mg due to the formation of oligomers from the 

subsequent collision of monomer radicals Fig.4.1(b). As a result, the oligomeric 

components became soluble throughout the swelling experiment, which causes 

decrease in overall swelling ratio of hydrogel [29]. 

 

 

Fig.4.1. Impact of (a) MBA, and (b) KPS on the swelling ratio. 

 
 

From the swelling results, it was observed that formulation B-1 exhibits the 

maximum amount of swelling, as illustrated in Fig. 4.2. Additionally, at pH 7.4, all 

hydrogels exhibit better swelling, which is explained by the production of COO− ions 

by the deprotonation of carboxylic acid of CMTKG. There is an increase in swelling 

caused by the relaxation of the polymer framework induced by the repulsion between 
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COO- ions, which creates more space for fluid to enter effectively. On the other hand, 

at pH 1.2, hydrogen bonding between the polymeric chains cause the polymer 

network to compress , which reduces swelling [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2. Swelling plot of AG/PAM/CMTKG hydrogel (B-1) in pH 1.2 and 7.4. 

 

4.3. Drug encapsulation efficiency 
 

Drug encapsulation efficiency of the ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel were evaluated. The drug encapsulation efficiency (%) is calculated to be 

58.17 % for ciprofloxacin-loaded AG/PAM/CMTKG hydrogel. 

 

4.4. In vitro ciprofloxacin release 
 

The in vitro release was done for the ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel, as seen in Fig. 4.3 The maximum amount of ciprofloxacin release from this 

hydrogel was measured at pH 1.2 (16.6%) and pH 7.4 (56.3%). At pH 7.4, there is a 

significantly higher drug release than at pH 1.2, which suggests that the carboxylic 

acid group of CMTKG has deprotonated. These deprotonated carboxylate ions cause 

an electrostatic repulsion that expands the hydrogel network, causes swelling, and 

enhances the diffusion of ciprofloxacin from the hydrogel. On the other hand, 

because of the hydrogen bonds between the polymers, the polymeric network shrinks 

at pH 1.2. Therefore, the swelling ratio decreases, causing a lower ciprofloxacin 

release. Moreover, it was observed that without a burst effect, the ciprofloxacin was 

released from the hydrogels gradually. Its gradual release minimizes the need for 

frequent reductions in dosage by ensuring an ideal and maintained medication level 

over prolonged periods of time. These results imply that the ciprofloxacin-loaded 

AG/PAM/CMTKG hydrogel can be used to achieve the pH-dependent release of 

ciprofloxacin [40]. 
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Fig.4.3. Drug release from ciprofloxacin-loaded AG/PAM/CMTKG hydrogel in pH 

7.4 and 1.2. 

 

 

4.5. Kinetic modelling 
 

To examine the ciprofloxacin release kinetics of the ciprofloxacin loaded 

AG/PAM/CMTKG hydrogel, various types of models were utilized. The 

Korsmeyer–Peppas model has the greatest R2 value out of these models., as observed 

in Table 4.1. The R2 and n-values for the Korsmeyer-Peppas model were found to be 

0.9885 and 0.622, respectively, at pH 7.4. The R2 value and n value at pH 1.2 were 

found to be 0.9947 and 0.3149, respectively., (Fig. 4.4). These n values indicate that 

the Fickian diffusion mechanism is followed for the release of ciprofloxacin at pH 

1.2. On the other hand, non-Fickian diffusion is shown at pH 7.4, indicating that the 

rates of diffusion and polymer chain relaxation were similar [41]. 

 

 

Fig.4.4. Kinetics of ciprofloxacin conforming to the Korsmeyer–Peppas model in (a) 

pH 7.4, and (b) pH 1.2. 
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Table 4.1. Kinetic modelling data of ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel. 

 

 

4.6. Characterisation 
 

4.6.1. PXRD 

 

PXRD was carried out for ciprofloxacin, AG/PAM/CMTKG hydrogel and 

ciprofloxacin-loaded AG/PAM/CMTKG hydrogel as depicted in Fig. 4.5. The sharp 

peak recorded at 2Ѳ values of 11.5, 24.72,19.39, 26.4 in ciprofloxacin, determining 

its crystalline nature [45]. The ciprofloxacin-loaded AG/PAM/CMTKG hydrogel and 

AG/PAM/CMTKG hydrogel possess a broad amorphous band. Additionally, the 

ciprofloxacin-loaded AG/PAM/CMTKG-loaded hydrogel have no extra sharp peaks 

of ciprofloxacin, demonstrating the complete dispersion of ciprofloxacin across the 

amorphous crosslinked network [27].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 

 

Equation 

Swelling Ratio (%)  

Ref. pH 7.4 pH 1.2 

n R2 n R2 

Zero 

Order 

Mt = M∞+ k0t - 0.8859 - 0.9641 [42] 

Korsmey

er–

Peppas 

Mt/M∞ = ktn 

k = kinetic constant 

n = diffusion exponent 

0.622 0.9885 0.3149 0.9947 [24] 

First 

Order 

Log Mt = Log M∞+ 
𝑘𝑡

2.303
 

k = rate constant 

- 0.7659 - 0.8586 [43],

[44] 

Higuchi Mt/M∞ = kHt ½ 

kH = kinetic constant 

- 0.9537 

 

- 0.9697 [26] 

Hixson-

Crowell 

(Mt)
1/3 -(M∞)1/3= kHC.t 

kHC = Hixson Crowell 

constant 

- 0.8248 - 0.8575 [24] 
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Fig.4.5. PXRD of ciprofloxacin, AG/PAM/CMTKG hydrogel (B-1), and 

ciprofloxacin-loaded AG/ PAM/CMTKG hydrogel. 

 

4.6.2 ATR-FTIR 
 

In ATR-FTIR spectra of the synthesized MBA, AG/PAM/CMTKG hydrogel (B-1) 

and ciprofloxacin-loaded AG/PAM/CMTKG are presented in Fig. 4.6. The 

AG/PAM/CMTKG hydrogel and ciprofloxacin-loaded AG/PAM/CMTKG hydrogel, 

showing the peaks at 3438 cm⁻¹ and 3437 cm⁻¹ of   the -OH and -NH overlap 

stretching. The COO- symmetric peak occurred at 1316 cm⁻¹ and 1319 cm⁻¹, and the 

asymmetric stretch observed at 1657 cm⁻¹ and 1659 cm⁻¹ for AG/PAM/CMTKG 

hydrogel and ciprofloxacin-loaded AG/PAM/CMTKG hydrogel. The C-H peak of 

AG/PAM/CMTKG hydrogel and ciprofloxacin-loaded AG/PAM/CMTKG hydrogel 

appears at 2925 cm⁻¹ and 2923 cm⁻¹ respectively [29]. Furthermore , the  appearance 

of C–O–C  peak was seen at 1101 cm⁻¹ and 1097 cm⁻¹ for AG/PAM/CMTKG 

hydrogel and ciprofloxacin-loaded AG/PAM/CMTKG hydrogel [23]. In the MBA, 

the peaks noticed at 1304 cm⁻¹, corresponds to the C-N stretch, shift to 1316 cm⁻¹ 

and 1319 cm⁻¹ in the AG/PAM/CMTKG and ciprofloxacin-loaded 

AG/PAM/CMTKG, signifying reduced conjugation due to cross-linking. As a result, 

the hydrogel comprising AG/PAM/CMTKG and AG/PAM/CMTKG loaded with 

ciprofloxacin has been effectively synthesized. A comparison of the ciprofloxacin-
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loaded AG/PAM/CMTKG hydrogel with the unloaded hydrogel did not reveal any 

extra peak, revealed the physical interaction of the drug and polymer chain  [46]. 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.6. ATR-FTIR of MBA, AG/PAM/CMTKG hydrogel and ciprofloxacin-loaded 

AG/PAM/CMTKG hydrogel. 

 

4.6.3 SEM 
 

SEM of AG/PAM/CMTKG hydrogel and ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel are displayed in Fig. 4.7. The porous and rough surface of the 

AG/PAM/CMTKG hydrogel indicate large fluid absorption and efficient drug 

entrapment. Compared to AG/PAM/CMTKG hydrogel, SEM of ciprofloxacin-loaded 

hydrogel's surface is smoother and less porous because the drug is enclosed within 

the porous hydrogel matrix.[25]. 
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Fig.4.7. SEM of AG/PAM/CMTKG and ciprofloxacin-loaded AG/PAM/CMTKG 

hydrogel. 
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CHAPTER 5 
 
 

CONCLUSION 
 
 
 
 

The pH-responsive ciprofloxacin-loaded AG/PAM/CMTKG hydrogel was fabricated 

and ciprofloxacin controlled released was successfully studied. The hydrogel was 

characterized by using the techniques such as PXRD, ATR-FTIR, and SEM. 

Additionally, the impact of the KPS and MBA amount on the swelling ratio of 

hydrogel was investigated. At pH 1.2 and 7.4, the in vitro drug release and swelling 

analysis were carried out, and found to be higher at pH 7.4. According to the results, 

swelling rises as MBA and KPS content rises, while swelling decreases when KPS 

amount rises above at a certain point. Ciprofloxacin release kinetics at pH 1.2 and pH 

7.4, showed an excellent fit with the Korsmeyer–Peppas model, indicating a Fickian 

diffusion mechanism at pH 1.2 and a non-Fickian diffusion mechanism at pH 7.4. As 

a result, it can be concluded that the fabricated AG/PAM/CMTKG hydrogel can be 

used for the pH-dependent delivery of ciprofloxacin. 
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