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ABSTRACT

The recent COVID-19 pandemic has revealed weaknesses in our readiness to address
emerging viral threats, stressing the urgent need for sustainable strategies to combat
such outbreaks. Nucleoside analogs, an important class of antiviral drugs, have shown
their effectiveness, but their synthesis often relies on hazardous organic solvents,
presenting significant sustainability challenges and environmental concerns. This
study aims to tackle these challenges by exploring the potential of deep eutectic
solvents (DESs) as eco-friendly alternatives for the greener manufacturing of these
life-saving therapies.

The research begins by providing a comprehensive overview of the SARS-CoV-2 virus
lifecycle, identifying key targets where nucleoside analogs can effectively intervene to
disrupt viral replication. This fundamental understanding serves as a crucial
foundation for the development of potent antiviral candidates against COVID-19 and
future coronavirus threats, ensuring their targeted and efficient action.

DESs, an emerging class of solvents derived from renewable bioresources such as
sugars and organic acids, offer unique solvation properties while being non-toxic and
biodegradable. The focus of this work is on synthesizing and optimizing DESs
composed of glucose combined with tartaric acid or citric acid as sustainable media
for the production of nucleoside analogs.

The research focuses on using optimized deep eutectic solvents (DES) as more
environmentally friendly alternatives to traditional solvents typically used in the
synthesis, purification, and formulation of nucleoside analogs.

This comprehensive analysis aims to demonstrate that DES are a practical solution. By
combining bio-based DES with potent nucleoside analogs, this work presents an
environmentally responsible approach to sustainably producing important therapies
against viral threats such as COVID-19. This approach enables us to safeguard public
health by providing these essential pharmaceuticals while minimizing their
environmental impact.
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CHAPTER 1

INTRODUCTION

1.1 Overview and Significance:

In late December 2019, an outbreak of an unidentified respiratory illness occurred in
Wuhan, Hubei, China. Patients exhibited symptoms such as fever, cough, shortness of
breath, and myalgia. Subsequently, independent laboratories identified the causative
agent as a novel coronavirus, SARS-CoV-2 [1]. Coronaviruses, first characterized in
1960, constitute a diverse family of enveloped viruses with single-stranded RNA
genomes [2]. They are classified into four genera: Alpha, Beta, Delta, and Gamma.
SARS-CoV-2 is a betacoronavirus closely related to the virus responsible for the 2003
SARS outbreak. The virus predominantly targets the respiratory system by binding to
ACE2 receptors in the lungs. Complications may include acute respiratory distress
syndrome (ARDS) and multi-organ dysfunction. This virus has an incubation period
ranging from 2 to 14 days and primarily spreads via respiratory droplets generated
during coughing and sneezing. On March 11, 2020, the World Health Organization
declared COVID-19 as a pandemic due to the significant number of global cases and
fatalities. As of April 2024, over 775 million confirmed cases and 7 million deaths
have been recorded [3]. The pandemic has resulted in profound social and economic
consequences, leading to widespread implementation of lockdown measures.
Nucleoside analogs have emerged as a promising area of focus for therapeutic
interventions against COVID-19 owing to their broad-spectrum antiviral activity and
capacity to overcome resistance [4].

1.1.1 Nucleoside analogs

Nucleoside analogs are artificially synthesized compounds designed to mimic the
structure of natural nucleosides. They find widespread application in medical contexts,
primarily as antimicrobial [5], antineoplastic [6], and antiviral agents [7]. These
analogs are often derivatives of natural nucleosides and their synthesis involves
modifying the molecular structure through three specific methods which are given
below [8]:

1. Heterocyclic base modification:

The first method involves changing nucleobases by adding different moieties or
substituting the base with another nitrogen-containing heterocycle. These changes lead
to synthesizing nucleoside analogs like AL-335, Azvudine, Ribavirin, Molnupiravir,
and Favipiravir. Altering the nucleobase gives unique properties to the analogs, making
them effective against specific viruses or cellular processes.



2. Sugar Modification:

The alternative approach involves altering the D-ribofuranosyl component of
nucleosides. This can be accomplished through the addition of various substituents,
the removal of hydroxy groups at the C-2' and C-3' positions, the elimination of
hydrogen atoms at these positions, the introduction of oxygen &/or sulphur atoms, or
the replacement of the oxygen atom with sulphur. Another common variation is the
substitution of the D-ribofuranosyl moiety with a cyclopentane or cyclopentene ring.
This modification leads to the synthesis of nucleoside analogs such as Abacavir,
Remdesivir, & Acyclovir, giving specific properties to the analogs and impacting their
effectiveness and target specificity.

3. Addition of the Phosphate group to the hydroxyl group at the C-5 position:

The third method involves adding a phosphate group to the hydroxy group at the C-5'
position of the nucleoside. This addition improves the medicinal properties of the
nucleoside analog by adding one or more phosphate groups. Phosphorylation is an
important change observed in AZT, a nucleotide inhibitor used against viruses like
HIV. It ensures that the nucleoside analog is activated and included in cellular
processes, making it a crucial strategy in developing antiviral and therapeutic drugs.

1.1.2 Rationale for using Nucleoside analogs against SARS-CoV-2

The global COVID-19 pandemic has emphasized the critical requirement for effective
antiviral therapeutics. Nucleoside analogs, a category of antiviral medications, have
surfaced as a promising treatment in our battle against this ailment. These agents have
demonstrated efficacy in combating viral infections such as HIV, herpes, and hepatitis
C by selectively targeting the viral RNA-dependent RNA polymerase (RdRp), an
important enzyme in viral replication [9]. Remdesivir, a nucleoside analog initially
designed for Ebola, has exhibited effectiveness against SARS-CoV-2 & has obtained
emergency use authorization, confirming the potential of this drug class.

Ongoing research is concentrating on structurally modifying nucleoside analogs to
improve their antiviral strength and effectiveness, particularly against COVID-19.
Furthermore, these medications can be employed in combination with other antiviral
agents, potentially resulting in synergistic effects and enhanced treatment outcomes.
Initiatives to develop nucleoside analogs for oral administration are also underway,
which would improve accessibility and facilitate outpatient treatment, a critical
consideration for managing COVID-19 cases.

Nucleoside analogs have well-established safety profiles in the treatment of various
viral infections. This existing safety data could accelerate their utilization against
COVID-19 following detailed studies. With their ability to inhibit viral replication
through targeted mechanisms, coupled with promising clinical data and ongoing
optimization efforts, nucleoside analogs represent a highly compelling therapeutic
approach deserving of strong support in the battle against the COVID-19.



1.2 Viral Life Cycle and Drug Targets

The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, goes through
several important phases during its life cycle that allow it to reproduce and propagate
within host cells [Fig 1].

The SARS-CoV-2 virus initiates infection by entering host cells through viral-cell
membrane fusion. This process is dependent on the binding of the viral spike (S)
protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) [10]. The
host protease TMPRSS2 primes the S protein for fusion by cleaving it into the S1 and
S2 subunits [11]. S1 facilitates ACE2 binding, while S2 mediates the fusion of viral
and host cell membranes, enabling the viral genome to enter the cell cytoplasm.

Upon entry, SARS-CoV-2 takes over the host machinery to replicate its genome and
synthesize viral proteins. The viral genome is a single-stranded positive-sense RNA of
approximately 30 kilobases, encoding structural proteins such as spike (S), membrane
(M), envelope (E), and nucleocapsid (N), as well as non-structural proteins (NSPs).
Two large polyproteins, ppla and pplab, are translated from the viral genome. These
are cleaved by viral proteases (3CLpro and Mpro) into 16 NSPs that constitute the
replication-transcription complex (RTC) [12]. Key enzymes in the RTC include the
RNA-dependent RNA polymerase (RdRp, NSP12), which initiates viral replication by
generating negative-sense RNA copies from the positive-sense genome to act as
templates for new genome synthesis [13]. It operates in combination with cofactors
NSP7 and NSP8. The helicase (NSP13) unwinds RNA duplexes, while the
proofreading exonuclease (NSP14) enhances replication accuracy by eliminating
mismatched nucleotides. NSP14 and NSP16 methylate the 5' cap of viral mRNAs,
safeguarding them from degradation by host cells. NSP16 functions with the cofactor
NSP10 [14]. Several NSPs participate in capping the viral mRNAs, including NSP13
(helicase/triphosphatase), NSP14 (N7-methyltransferase), and NSP16 (2'0-
methyltransferase). This cap allows viral mRNAs to escape detection by the host's
innate immune system [15].

Following the synthesis of viral proteins and genomic RNA, the subsequent stages
involve virion assembly and release from the host cell. At the endoplasmic reticulum
and Golgi complex, the viral structural proteins M, E, and N drive the assembly of new
virions incorporating the viral genome and spike protein [16]. The assembled virus
particles are released from the host cell through one of three mechanisms: 1) budding
through the plasma membrane, 2) secretion via exocytosis, or 3) cell lysis and rupture.
Upon release, the new virions can infect other cells and spread the viral infection [17].

The viral RARp and methyltransferases are crucial targets for antiviral drugs such as
nucleoside analogs (e.g., remdesivir, molnupiravir, favipiravir, ribavirin). By
inhibiting these enzymes through mechanisms like chain termination & mutagenesis,



the drugs can effectively disrupt viral replication and hold promise as COVID-19
therapeutics.
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Fig 1 Life cycle of SARS-CoV-2

The exploration of the SARS-CoV-2 life cycle highlights the significance of the viral
RNA-dependent RNA polymerase (RdRp) & methyltransferase as crucial targets.
Inhibiting these targets can effectively hinder viral transmission. Nucleoside analogs
demonstrate potent inhibition of these enzymes, suggesting their potential as
promising therapeutics for COVID-19. The next section will present comprehensive
explanation of the mechanisms of action employed by nucleoside analog drugs in
targeting the methyltransferase & RdRp activities of the virus.

1.3 Mechanism of Action of Nucleoside Analogs as Antivirals

1.3.1 Nucleoside Analogs as RARP inhibitor

In order for nucleoside analogs to exhibit efficacy against viral infections, they require
enzymatic modification by cellular kinases. These kinases catalyze the conversion of
nucleoside analogs into their active triphosphate form. Upon reaching their active
state, the nucleoside analogs act through competitive inhibition of viral polymerases.
This process can be accomplished via following pathways:

Chain Termination
It mainly occurs as a result of these methods.:

Obligate Chain Termination: In antiviral therapy, it is a process that stops the
replication of viral DNA or RNA chains by incorporating a nucleoside analog. This



mechanism is specific to nucleosides lacking the 3'-hydroxyl group, which is essential
for linking the next incoming nucleotide [18]. Antiviral agents like Tenofovir,
Acyclovir, & Abacavir follow this mechanism to effectively combat DNA viruses and
retroviruses. [Fig. 2].
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Fig 2 Nucleoside Analogs That Work by Obligate Chain Termination

Non-Obligate Termination: Nucleosides that induce non-obligate chain termination
possess a 3’-hydroxyl group capable of incorporating incoming nucleotides. Islatravir,
Azvudine, Balapiravir, & Adafosbuvir are examples of nucleoside analogs that operate
via this mechanism. [Fig. 3].
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Fig 3 Nucleoside Analogs That Work by Non-Obligate Chain Termination

Delayed Termination: In this mechanism of action, termination does not occur
immediately but instead takes place after the addition of a few more nucleotides. This
process results in a delay but ultimately leads to the termination of the chain.
Nucleosides that function through delayed chain termination possess a 3'-hydroxyl
group, enabling the continued integration of incoming nucleotides. However, due to
steric hindrances at neighbouring positions, each subsequent addition occurs at a slow
pace. Eventually, after 2-4 additions, further incorporation terminates. Compounds

such as Entecavir, Remdesivir, & others exhibit this type of termination mechanism
[Fig. 4] [19].
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Fig 4 Nucleoside Analogs That Work by Delayed Chain Termination

Lethal Mutagenesis

This approach used against RNA viruses involves increasing the error rate during
the virus's replication. This higher mutation rate can weaken the virus's essential
genes and eventually lead to its death. Nucleoside analogs can cause mutations
in RNA by changing the base pairing patterns. When these nucleoside analogs
are introduced into the RNA synthesis process, they add to the accumulation of
mutations in the virus, weakening it and making it harder for it to replicate.
Nucleoside analogs like ribavirin, favipiravir, & molnupiravir have shown that
this approach works [Fig 5-6] [20]. However, there are risks, such as the virus
becoming resistant and potential adverse effects like cancer and birth defects. So,
careful consideration and ongoing research are needed before using this
approach.
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1.3.2 Nucleoside analogs as Methyltransferase inhibitor

Methyl Transferases inhibition: The genomes of RNA viruses contain
methyltransferase enzymes that are crucial for capping viral RNA, allowing it to
mimic host mRNA. This enables viruses to evade the host cell's immune response,
improve mRNA translation, and promote stability. Due to their high conservation, viral
methyltransferases are a promising target for antiviral drug development. Guanosine
analogs like RBV disrupt the GTP binding site of viral enzymes & endogenous elF4E,
reducing viral RNA capping efficiency. Additionally, newly developed Flex analogs
of acyclovir have shown greater inhibition of flavivirus methyltransferase compared
to the endogenous enzyme [21].

1.4 Prominent Nucleoside Drugs for COVID-19
1.4.1 Remdesivir

Remdesivir, also known as GS-5734, received approval from the US FDA on October
22, 2020, as a primary treatment for SARS-CoV-2 in adults. It has demonstrated
significant antiviral potential in laboratory experiments against various viruses,
including MERS-CoV, EBOV, SARS-CoV, and SARS-CoV-2 [22]. Remdesivir, a 10-
cyano-substituted adenosine nucleotide analog, acts as a monophosphorylated prodrug
metabolized by the body into an active nucleoside triphosphate, known as GS-443902
(a natural counterpart of ATP), through the action of intracellular kinase. This active
form inhibits viral RNA-dependent RNA polymerases early in viral infection,
competing with endogenous nucleotides for viral RNA incorporation via RNA-
dependent RNA polymerase. Once integrated into the RNA chain, remdesivir does not
immediately terminate the chain, as the presence of 3’OH allows the addition of three
more nucleotides until RNA chain termination (delayed chain termination).
Additionally, remdesivir may induce lethal mutagenesis, as remdesivir triphosphate
mimics ATP. The delayed chain termination mechanism may shield remdesivir from
removal from the RNA chain by viral proofreading proteins due to the presence of 3—
5 additional natural nucleotides.

1.4.2 Favipiravir

The orally bioavailable prodrug favipiravir, also referred to as T-705, received initial
approval in Japan in 2014 for treating influenza virus infections. Favipiravir has gained
significant interest due to its antiviral potential as a candidate therapy for both the
treatment and prevention of COVID-19. In vitro studies by Wang et al. demonstrate
that favipiravir markedly inhibits SARS-CoV-2 with an EC50 of 61.88 uM and
moderate selectivity (SI = 6.46). In SARS-CoV-2-infected hamsters, favipiravir
exhibits potent dose-dependent effects, leading to notable improvements in lung
histology [23].

Favipiravir undergoes a series of enzymatic phosphorylation steps to convert to its
active form, favipiravir-ribofuranyl-triphosphate (Favipiravir-RTP). Of note, the
binding mechanism of Favipiravir-RTP to the replicating SARS-CoV-2 RNA strand
differs from that of remdesivir-RTP. Specifically, it inhibits the RNA-dependent RNA



polymerase (RdRp) of the influenza virus. Acting as a purine analog, it is incorporated
in place of guanine & adenine. Post-incorporation, favipiravir-RTP acts as a mutagen,
hindering the coronavirus's self-repair capabilities. Given the low cytosine content in
the SARS-CoV-2 genome, favipiravir-RTP increases pressure on the CoV nucleotide
content. By disrupting the virus's cytopathic effects, reducing viral RNA levels, and
preventing the spread of infectious particles, favipiravir-RTP exerts a beneficial impact
on SARS-CoV-2.

1.4.3 Molnupiravir

Molnupiravir, also known as EIDD-2801 or MK-4482, is an oral antiviral drug
developed by Plemper's group for treating COVID-19. It is a novel prodrug of p-D-
N4-hydroxycytidine (NHC, EIDD-1931) and targets the RdRp, making it effective
against various viruses including influenza A, HCV, EBOV, Venezuelan equine
encephalitis virus, SARS-CoV, and SARS-CoV-2 [24]. Molnupiravir received
approval for use in the UK in November 2021 and emergency use authorization from
the FDA in December 2021 for treating mild to moderate COVID-19 in high-risk
adults with no alternative treatment options. When used with favipiravir (FVP),
molnupiravir shows a significant cooperative effect in the SARS-CoV-2 hamster
infection model. Molnupiravir quickly converts to its active form, molnupiravir-TP or
MTP, through cellular kinases. The MTP acts as a substrate for the viral RdRp and
triggers lethal mutagenesis.

1.4.4 Ribavirin

Ribavirin, a nucleoside antiviral medication discovered in the 1970s, exhibits broad-
spectrum antiviral activity against DNA and RNA viruses [25]. It is authorized for
treating hepatitis C, often in combination with other drugs. Inside cells, ribavirin
undergoes phosphorylation to form its monophosphate and triphosphate derivatives.

The antiviral mechanism of ribavirin involves multiple actions, including host-targeted
mechanisms such as inhibition of inosine monophosphate dehydrogenase (IMPDH)
and modulation of the host immune response. It also demonstrates virus-targeted
effects by interacting with RNA capping enzymes, inhibiting viral RNA-dependent
RNA polymerases (RdRp), and inducing viral lethal mutagenesis. The inhibition of
IMPDH, critical for DNA and RNA synthesis, accounts for ribavirin's efficacy against
a broad spectrum of viruses. Its immunomodulatory effect alters host T-cell responses,
and its interference with RNA capping triggers the activation of the host immune
response against foreign viral RNA. Ribavirin's interaction with RdRp inhibits viral
RNA synthesis. Lethal mutagenesis is another mechanism by which ribavirin increases
the mutation rate of RNA viruses to non-viable levels, making them incapable of
maintaining genetic information.

1.4.5 Sofosbuvir

Sofosbuvir, a nucleotide analog approved for the treatment of hepatitis C virus (HCV)
infection, also known as GS-7977 or SOF, was developed by Pharmasset Ltd in 2010
and later acquired by Gilead Sciences. The drug underwent various preclinical and
clinical trials to advance its development. Upon entering the host cell (hepatocyte),



sofosbuvir is converted into its active form of nucleoside triphosphate by a cellular
enzyme. Its primary mode of action involves inhibiting the NS5B RNA-dependent
RNA polymerase of HCV, leading to chain termination and inhibiting the virus's
replication through the disruption of the hydrogen bonding network. Despite its
efficacy against HCV, sofosbuvir has shown potential as an antiviral candidate against
SARS-CoV-2 due to the similarity in their positive-stranded RNA structures. In a study
involving hospitalized COVID-19 patients receiving sofosbuvir treatment, no
significant reduction in viral load was observed compared to a control group [26].
Therefore, larger clinical trials are necessary to determine the efficacy of this treatment
approach.

1.5 Synthesis of Nucleoside Analogs

Focusing specifically on the solvents used in the synthesis of nucleoside analogs like
remdesivir, molnupiravir, and favipiravir, we can identify several hazardous and
environmentally concerning solvents that demand replacement with greener
alternatives.

For the synthesis of remdesivir [Fig 7], solvents such as Tetrahydrofuran (THF) and
Dichloromethane (CH>Cl,) are employed. THF, widely used in organic synthesis, is
highly volatile, flammable, and contributes to air pollution and environmental
degradation. Exposure to THF vapors can cause respiratory irritation and adverse
health effects [27]. Similarly, CH2Cl», also known as methylene chloride, is classified
as a potential carcinogen and can contribute to environmental pollution due to its
volatile nature, potentially causing adverse health effects with prolonged exposure.

In the synthesis of molnupiravir [Fig 8], solvents like Isopropyl alcohol (IPA) and
Methyl tert-butyl ether (MTBE) are used. IPA is a flammable solvent that can
contribute to air pollution and poses fire hazards, with exposure to its vapors causing
respiratory irritation and other health effects [28]. MTBE, a volatile organic compound
(VOC) and flammable solvent, can also contribute to air pollution and is associated
with potential health risks upon exposure.

For the synthesis of favipiravir [Fig 9], ethanol is used as a solvent. Ethanol is a volatile
organic solvent that can contribute to air pollution and greenhouse gas emissions, in
addition to being flammable and posing fire hazards [29].

While these solvents offer favorable properties for organic synthesis, their hazardous
nature and potential for environmental pollution highlight the need for greener
alternatives. The use of volatile organic solvents like THF, CH2Clz, IPA, MTBE, and
ethanol raises concerns about air pollution, greenhouse gas emissions, and potential
health risks to workers through inhalation or skin contact. They can contribute to
environmental degradation, climate change, and pose safety hazards due to their
flammability. Moreover, the generation of solvent waste streams creates challenges in
terms of proper disposal and treatment, with improper handling and disposal leading
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to environmental pollution, water source contamination, and potential harm to
ecosystems.

Addressing these solvent-related concerns in the synthesis of these crucial antiviral
compounds is a significant step toward more sustainable and environmentally
responsible manufacturing practices within the pharmaceutical industry, aligning with
the principles of green chemistry and promoting a safer and healthier environment for
workers and the general public.

To mitigate these issues, it is essential to explore greener and more sustainable solvent
alternatives. Potential replacements could include bio-based solvents derived from
renewable sources, ionic liquids, supercritical fluids, or deep eutectic solvents (DES).
These alternative solvents often exhibit favourable properties, such as low volatility,
non-flammability, and biodegradability, while minimizing environmental impact and
reducing safety risks.
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(b) TMSCN, TMSOT{, CH,Cl,, 78 °C, 5 h (65%; f:a = 89:11);
(¢) BCly CH,CL, —78 °C, 1 h (74%); (d) NMI, (MeO);P=0,
THE, 0 °C (21%); (e) chiral HPLC.

Fig 7 Synthesis of Remdesivir [30]
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Fig 9 Synthesis of Favipiravir [32]
1.6 Research Gap

The synthesis of nucleoside analogs has gained significant interest due to their wide-
ranging applications in pharmaceutical and biomedical fields. However, traditional
synthetic routes often involve the use of hazardous organic solvents, raising
environmental and safety concerns. Additionally, some nucleoside analogs with
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complex structures or specific functional groups are challenging to synthesize
efficiently, resulting in low yields and high production costs.

In recent years, deep eutectic solvents (DESs) have emerged as promising alternatives
to traditional organic solvents. These unconventional solvents possess unique
properties, such as adjustable polarity, low volatility, and good solubilizing ability,
making them attractive candidates for various chemical processes. Despite their
potential advantages, the application of DESs in nucleoside analog synthesis remains
largely unexplored.

This gap in the literature presents an opportunity to explore the feasibility and benefits
of using DESs as solvents for nucleoside analog synthesis. By utilizing the unique
properties of DESs, such as their tunability, hydrogen-bonding capabilities, and
potential for improved reaction kinetics, it may be possible to develop more
sustainable and efficient synthetic routes for targeted nucleoside analogs.

Exploring DESs in this context could lead to several advantages, including:

o Improved reaction yields and selectivity, especially for challenging nucleoside
analog syntheses.

o Reduced environmental impact and enhanced safety compared to traditional
organic solvents.

o Potential cost savings through the use of renewable or waste-derived DES
components.

o Opportunities for discovering new reaction pathways or mechanisms
facilitated by the unique solvent properties of DESs.

This study aims to connect nucleoside analog synthesis with deep eutectic solvents,
potentially creating a more sustainable and effective method for producing important
pharmaceutical compounds. Additionally, it could contribute to a better understanding
and wider application of DESs in organic synthesis.

1.7 Proposed Objectives:

To address these gaps, the following objectives are proposed in the present work:

1. To explore the potential of deep eutectic solvents as alternative solvents for organic
synthesis reactions.

2. To synthesize selected deep eutectic solvents as potential alternative solvents for

the synthesis of nucleoside analogs.

To optimize the reaction conditions in the synthesis of deep eutectic solvents.

4. To potentially use the synthesized deep eutectic solvents in the synthesis of
nucleoside analogs.

98]

1.8 Deep Eutectic Solvents

In the search for sustainable & environmentally friendly alternatives to traditional
organic solvents, deep eutectic solvents (DESs) have emerged as a promising class of
innovative solvents. These unique solvents, typically composed of binary or ternary
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mixtures of compounds that primarily interact through hydrogen bonds, have attracted
significant attention in the field of green chemistry because of their distinct properties,
versatility, & potential applications across various domains.

When these compounds are combined at a specific molar ratio, they form a eutectic
mixture. The term "eutectic" comes from the Ancient Greek gbtnktog or eutektos,
which means easily melted [33]. A eutectic point signifies the chemical composition
& temperature at which a mixture of two solids becomes fully molten at the lowest
melting temperature in comparison to either compound.

The definition of a deep eutectic solvent is a topic of debate. Various reported
definitions fail to distinguish them from other mixtures, as all mixtures of immiscible
solid compounds have a eutectic point, & many compounds can form hydrogen bonds
when combined. To address this, Martins et al. recently defined a deep eutectic solvent
as "a mixture of two or more pure compounds for which the eutectic point temperature
is below that of an ideal liquid mixture, presenting significant negative deviations from
ideality (AT2>0)," where AT2 represents the temperature depression, the difference
between the ideal & real eutectic points [34].

It is important that a decrease in temperature results in a liquid mixture at the required
operating temperature, regardless of the mixture's composition. The absence of a fixed
composition allows for even more adjustability in these systems. Deep eutectic
solvents (DESs) usually form when two or more compounds are mixed, with at least
one serving as a hydrogen bond donor (HBD) & the other as a hydrogen bond acceptor
(HBA). This interaction, primarily through hydrogen bonding but also involving van
der Waals forces, ionic interactions, & entropy contributions, leads to a significant
reduction in the lattice energy of the system, causing the observed depression in
melting point. The exact nature of these interactions & their contributions to the
behavior of DESs are still under research & discussion [35].

DESs offer economic, environmental, & performance benefits, which could
revolutionize various industries. One advantage of DESs over conventional solvents is
their versatility & adjustability. By selecting the HBD & HBA components & adjusting
their molar ratios, it is possible to fine-tune the physicochemical properties of the
resulting DES. This adjustability allows for the optimization of DESs for specific
applications, making them potential "designer solvents." Tailoring the properties of
DESs to meet the requirements of various processes & reactions presents an
opportunity for improving efficiency, selectivity, & sustainability in various industries
[36].

1.8.1 Comparison with Ionic liquids:

DESs possess several desirable properties similar to ionic liquids (ILs), including
negligible vapor pressure, high thermal stability, non-flammability, & a wide liquid
range. However, DESs have additional benefits such as ease of preparation, low cost,
& generally lower toxicity. In contrast to ILs, which are often synthesized through
complex & energy-intensive processes, DESs can be easily prepared by mixing the
HBD & HBA components without the need for further purification steps. This
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straightforward preparation, combined with the affordability of the starting materials,
makes DESs an appealing option for large-scale industrial applications [37].

The constituents of DESs are often obtained from renewable sources, such as choline
chloride, urea, glycerol, lactic acid, carbohydrates, polyalcohols, amino acids, &
vitamins. This not only contributes to their low cost & biodegradability but also
reduces their environmental impact & toxicity, making DESs an attractive alternative
to traditional organic solvents & ionic liquids. The use of renewable & naturally
occurring components aligns with the principles of green chemistry & sustainable
development, further enhancing the attractiveness of DESs as environmental friendly
solvents.

The unique properties & potential applications of DESs have led to extensive research
efforts aimed at understanding their practical applications. Various experimental
techniques, such as nuclear magnetic resonance (NMR) spectroscopy, X-ray
diffraction, infrared (IR) spectroscopy, & differential scanning calorimetry (DSC),
have been employed to characterize the structure & dynamics of DESs. Additionally,
computational methods, including molecular dynamics (MD) simulations & quantum
chemical calculations, have proven to be powerful tools for gaining insights into the
microscopic interactions & dynamics of these solvents.

1.8.2 Classification of Deep Eutectic Solvents:

The understanding & systematic study of DESs have been facilitated by several
classification systems based on the nature of their constituents & the interactions
involved in their formation. The most widely adopted classification system was
introduced by Abbott et al., which categorizes DESs into four main types based on the
general formula Cat"'XzY, where Cat" represents a cation (typically an ammonium,
phosphonium, or sulfonium cation), X" is a Lewis base (usually a halide anion), Y is a
Lewis or Brensted acid, & z is the number of Y molecules interacting with the
corresponding anion [Fig. 10].

Type I DESs: These DESs are formed by mixing a quaternary ammonium or
phosphonium salt with a metal chloride, such as zinc chloride or tin chloride. They are
similar to the well-studied metal halide/imidazolium salt systems & are often
considered as a subclass of ionic liquids. Examples of Type I eutectics include the
chloroaluminate/imidazolium salt melts & ionic liquids formed with imidazolium salts
& various metal halides, including iron (II) chloride, silver chloride, copper(I)
chloride, lithium chloride, cadmium chloride, copper (II) chloride, tin (IT) chloride,
zinc chloride, lanthanum chloride, yttrium chloride, & tin (IV) chloride.

Type II DESs: This type of DESs involves the use of hydrated metal halides instead
of non-hydrated metal halides as in Type I. The hydrated metal halides are combined
with quaternary ammonium salts, such as choline chloride, to form the eutectic
mixture. The cost-effectiveness of many hydrated metal salts, along with their natural
resistance to air & moisture, makes them suitable for large-scale industrial processes.
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Type III DESs: This class of deep eutectic solvents (DESs) has been extensively
researched & widely investigated. These solvents are formed by combining a
quaternary ammonium or phosphonium salt with a hydrogen bond donor (HBD) such
as amides, carboxylic acids, alcohols, or carbohydrates. The most common example is
the mixture of choline chloride & urea, often known as "reline." Other widely studied
HBDs include glycerol, ethylene glycol, malonic acid, succinic acid, & carbohydrates
like fructose & glucose. The wide variety of available HBDs makes this class of DESs
highly adaptable, allowing for easy customization of physical properties for specific
applications.

Type IV DESs: In this category, transition metal halides, such as zinc chloride or
aluminium chloride, are combined with HBDs like urea, ethylene glycol, or acetamide
to form the eutectic mixture. These DESs have been studied for applications involving
the processing of metal oxides & the synthesis of various materials.

In addition to these four types, a new class of DESs, referred to as Type V, has been
introduced by Coutinho & coworkers. These DESs consist solely of non-ionic,
molecular HBAs & HBDs, such as the mixture of thymol & menthol. The depression
of the melting point is caused by strong hydrogen bonding interactions between the
non-ionic components. This type of DES broadens the range of potential components
& offers more opportunities to adjust the properties of these solvents by combining
different non-ionic hydrogen bond donors & acceptors.
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metal halides i | ChCI + FeCl,
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Fig 10 Classification of Deep Eutectic Solvents

The concept of natural deep eutectic solvents (NADESs) has emerged, involving the
use of naturally occurring compounds such as sugars, sugar alcohols, amino acids, &
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organic acids as hydrogen bond donors (HBDs) & hydrogen bond acceptors (HBAs).
NADESSs can be classified into five main groups [38]:

1. lonic liquids: Made of an acid & a base, such as choline chloride & lactic acid.

2. Neutral: Made of only sugars or sugars & other polyalcohols, such as glucose
& glycerol.

3. Neutral with acids: Made of sugar/polyalcohols & organic acids, such as
glucose & oxalic acid.

4. Neutral with bases: Made of sugar/polyalcohols & organic bases, such as
glucose & choline chloride.

5. Amino acids-containing NADESs: Made of amino acids & sugars/organic acids,
such as proline & lactic acid.

Recently, cyclodextrins, non-toxic cyclic oligosaccharides, are being used as HBAs to
form liquid supramolecular mixtures at room temperature, expanding the scope of
DESs.

The reported DESs may not necessarily fit into one of these categories, given the
versatility & the wide range of potential starting compounds. As the field continues to
evolve, new classification systems may emerge to accommodate the diverse range of
DESs being explored.

In addition to the classification based on constituents, DESs can also be categorized
based on their hydrophobicity. While the majority of DESs are hydrophilic, a new class
of hydrophobic DESs has been introduced, which are based on the use of hydrophobic
compounds such as tetrabutylammonium bromide, menthol, thymol, & fatty acids as
HBAs, along with long alkyl chain alcohols & carboxylic acids as HBDs. These
hydrophobic DESs exhibit unique properties & can be used in extraction processes &
as alternatives to organic solvents in various chemical reactions.

Furthermore, deep eutectic solvents can be synthesized using active pharmaceutical
ingredients (APIs) like ibuprofen, lidocaine, & phenylacetic acid. These solvents are
termed therapeutic deep eutectic solvents (TDESs) & exhibit potential applications in
pharmaceutical formulations & drug delivery systems.

The diverse range of DESs & their classification systems are indicators of the
complexity & versatility of these solvents. As ongoing research in this field continues
to progress, it is expected that novel classes & subcategories of DESs will emerge,
broadening the scope of potential applications & facilitating the systematic design of
these innovative solvents for specific purposes.

1.8.3 Applications of Deep Eutectic Solvents

The exceptional properties of deep eutectic solvents have led to their use in a wide
variety of areas, transforming numerous industries and processes [Fig. 11] [39].
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1. Pharma & Medical Research

2. Biocatalysis

3. Chemical Separations &
Environmental remediation

4. Biomass Processing

5. Biomolecules Folding & Dynamics

6. Nanoparticles Engineering

7. Advanced Energy Storage
Technologies

8. Metallurgical & Electrochemical
Processes

I I

ii.

iii.

Fig 11 Application of Deep Eutectic Solvents

Pharma & Medical Research: Deep eutectic solvents (DESs) are being
recognized for their potential in pharmaceutical & medical research as they can
significantly enhance the solubility of poorly soluble drugs. Research has shown
that DESs can increase solubilities up to 22,000 times higher than water for
certain drug compounds. This improved solubility has the potential to lead to
the development of more effective drug delivery systems. Furthermore, DESs
have been studied as co-solvents to improve drug solubility & as carriers for
time-release antibacterial dental composites, demonstrating their versatility in
biomedical applications.

Biocatalysis: DESs offer several attractive properties for biocatalytic reactions
involving enzymes. They have the ability to accommodate a wide variety of
substrates, enzymes, & other bioactive solutes. Additionally, many DESs are
composed of naturally occurring compounds like choline chloride, sugars,
amino acids, & alcohols, making them environmentally friendly & potentially
biocompatible. Researchers have studied the use of DESs as reaction media, co-
solvents, or suspensions in enzymatic synthesis, particularly in the production
of biofuels & other biochemicals. Studies have shown that enzymes can
maintain high activity & stability in DES systems, which makes them promising
alternatives for traditional organic solvents.

Chemical Separations & Environmental remediation: DESs have shown
promising applications in various chemical separation processes &
environmental remediation. Their tunable properties, low volatility, &
environmentally friendly nature make them attractive alternatives to
conventional volatile organic solvents. DESs have been investigated for liquid-
liquid extraction of azeotropic mixtures, CO2 capture & sequestration, &
desulfurization of fuels. Their capacity to selectively dissolve compounds &
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extract specific components from mixtures has resulted in their utilization in
these separation processes. Additionally, DESs have shown potential for the
extraction & recovery of valuable compounds from dilute aqueous solutions,
showing their versatility in environmental remediation applications.

Biomass Processing: The utilization of DESs in biomass processing has
attracted significant attention due to their ability to dissolve, extract, & facilitate
the production of value-added products from lignocellulosic biomass. DESs
have been used as pretreatment solvents to break down & extract lignin & other
biopolymers from plant-based materials. They have also been used for
extraction of natural chemicals, such as flavonoids & saponins, from plants.
Additionally, DESs have demonstrated the ability to convert carbon dioxide into
calcite nanoparticles, providing new opportunities for carbon capture &
utilization. The eco-friendly characteristics & tunability of DESs make them
promising alternatives to conventional harsh solvents used in biomass
processing.

Biomolecules Folding & Dynamics: DESs have become a valuable tool for
investigating the characteristics of biomolecules such as proteins, enzymes, and
nucleic acids. Researchers have explored how DESs impact the conformation,
activity, and thermal stability of these biomolecules, providing valuable insights
into their behaviour in these unique solvent systems. Various techniques,
including circular dichroism, fluorescence spectroscopy, differential scanning
calorimetry, and computational methods such as molecular dynamics
simulations, have been utilized to examine biomolecular interactions and
dynamics in DESs. These studies have shown that DESs have the potential to
either stabilize or destabilize biomolecular structures, influence folding
pathways, and modify the kinetics of unfolding processes, depending on the
specific composition and conditions of the DES.

Nanoparticles Engineering: DESs have various applications in
nanotechnology, particularly in synthesizing and dispersing nanoparticles,
nanocomposites, and nanomaterials. Their ability to dissolve metals and
metalloids, along with their adjustable properties, makes DESs a promising
medium for nanomanufacturing processes. Researchers have employed DESs
for electrochemically depositing nanostructured metal films, self-assembling
nanoparticles, and dispersing carbon nanotubes, graphene, and other
nanomaterials. The unique characteristics of DESs, such as high ionic
conductivity and low toxicity, have facilitated the development of innovative
nanomaterials with enhanced properties and reduced environmental impact.
Advanced Energy Storage Technologies: DESs have generated significant
interest for use in advanced energy storage technologies, specifically as
electrolytes for lithium-ion batteries and redox flow batteries. Their reduced
flammability, wide temperature range, and high ionic conductivity make them
promising alternatives to traditional electrolytes. Research indicates that DESs
can achieve broad electrochemical stability and favorable characteristics for
lithium-ion battery applications. Furthermore, DESs have been investigated as
electrolytes for redox flow batteries, which are utilized in large-scale energy
storage systems. The non-toxic and environmentally friendly properties of
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DESs, combined with their adjustable features, present opportunities for the
development of safer and more sustainable energy storage technologies.
Metallurgical & Electrochemical Processes: DESs have found significant
applications in the fields of metallurgy and electrochemical processes since
their early days. They have shown impressive solubility for metals and metal
salts, as well as high electrical conductivities, making them suitable solvents for
a wide range of metallurgical applications. These applications include metal
extraction and recycling, ore refining, electroplating, and electrodeposition
processes. The efficient and precise ability of DESs to dissolve and deposit
metals has led to their investigation in processes such as metal dissolution,
deposition, and processing. Furthermore, DESs have been studied for use in
electrochemical applications like electropolishing and electrochemical
machining, indicating their potential in the metallurgical and electrochemical
industries.
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CHAPTER 2

EXPERIMENTAL WORK: GREEN SYNTHESIS OF
NUCLEOSIDE ANALOGS USING DEEP EUTECTIC SOLVENTS
(DES)

2.1 Materials and Methods
D-Glucose (LR grade), Tartaric acid (LR grade) & citric acid (LR grade)

Tartaric Acid

OH O

HO
OH

a{ﬁ\%

Glucose-tartaric
acid DES

e

CH,OH g SusE

Glucose-Citric
acid DES

HO OH
OH

Citric Acid

Fig 12 Synthesis of Deep Eutectic Solvents
2.1.1 Synthesis of Glucose-Tartaric Acid Deep Eutectic Solvent (DES)

The glucose-tartaric acid DES was synthesized by carefully weighing out D-(+)-
glucose and L-(+)-tartaric acid according to molar ratios of 1:1, 1:2, and 2:1. The
weighed solid components were quantitatively transferred into separate clean, dry
round-bottom flasks.

An appropriate amount of distilled water was added to each flask, and a magnetic stir
bar was introduced. Each round-bottom flask containing the solid mixture was securely
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positioned on a heating plate equipped with a temperature controller and a magnetic
stirrer set to 300 rpm.

For the 1:1 molar ratio, two separate syntheses were carried out - one with the solid
mixture heated and stirred at 60°C for 40 minutes, and the other at 80°C for 40 minutes.

For the 1:2 molar ratio, two syntheses were performed - one with heating and stirring
at 80°C for 60 minutes, and the other at 90°C for 60 minutes.

The 2:1 molar ratio mixture was heated and stirred at three different temperatures:
60°C, 80°C, and 120°C, each for 60 minutes.

After each heating cycle, the molten mixture was allowed to cool undisturbed to room
temperature, forming a homogeneous liquid DES. The resulting cooled liquids were
carefully evaluated for yield [Fig. 12] [40].

2.1.2 Synthesis of Glucose-Citric Acid Deep Eutectic Solvent (DES)

The synthesis of the glucose-citric acid DES was carried out using molar ratios of 1:1,
1:2, and 2:1. Precisely weighed amounts of D-(+)-glucose and citric acid were
quantitatively transferred into separate clean, dry round-bottom flasks.
An appropriate amount of distilled water was added to each flask, and a magnetic stir
bar was introduced. The flasks were then immersed in a water bath, and the mixtures
were continuously stirred at 300 rpm using a magnetic stirrer.

For the 1:1 molar ratio, three separate syntheses were carried out - one with heating
and stirring at 60°C for 40 minutes, another at 80°C for 60 minutes, and the third at
90°C for 60 minutes.

For the 1:2 molar ratio, the mixture was heated and stirred at 60°C for 60 minutes, and
another synthesis was performed at 80°C for 60 minutes.

The 2:1 molar ratio mixture was3 heated and stirred at two different temperatures:
60°C and 80°C, each for 60 minutes.

The heating and stirring process continued until clear, homogeneous, and viscous
liquids were obtained, indicating the successful formation of the glucose-citric acid
DESs. The formed DESs were carefully evaluated for yield [Fig. 12] [40].

2.2 Optimization of DES

The synthesis conditions, including the molar ratio of glucose to tartaric acid, reaction
temperature, and time, were optimized. The investigated parameters are summarized
in Table 1.
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Table 1 Optimization studies for Glucose-Tartartic Acid DES

S. Glucose-Tartaric | Reaction =~ Magnetic =~ Temperature | Yield
No. Acid time rotation °O) (%)
(min) speed (rpm)
1. 1:1 40 300 60 72
2. 1:1 40 300 80 77
3. 1:2 60 300 60 80
4. 1:2 60 300 80 88
5. 1:2 60 300 90 85
6. 2:1 60 300 60 74
7. 2:1 60 300 80 78

The optimization of molar ratio, reaction temperature, and time was carried out for the
synthesis of the glucose-citric acid DES system, as shown in Table 2.

Table 2 Optimization studies for Glucose-Citric Acid DES

S. | Glucose-Citric acid | Reaction | Magnetic Temperature | Yield
No time rotation speed = (°C) (%)

: (min) (rpm)

1. L1 40 300 60 87

2. 111 60 300 80 92

3. 11 60 300 90 89

4. 12 60 300 60 86

5. 12 60 300 80 88

6. 2:1 60 300 60 82

7. 21 60 300 80 85

The optimal synthesis conditions for the glucose-tartaric acid & glucose-citric acid
DES systems were determined based on the observations from these optimization
experiments.



23

CHAPTER 3

RESULTS & DISCUSSION

The optimization table provides valuable insights into the synthesis conditions for two
distinct deep eutectic solvents (DESs): glucose-tartaric acid DES and glucose-citric
acid DES. The data presented in the table helps in the identification of the optimum
conditions for achieving the highest yield of each DES.

3.1 Glucose-Tartaric Acid Deep Eutectic Solvent

According to the data collected, the glucose-tartaric acid deep eutectic solvent (DES)
achieved its highest yield (88%) when synthesized at a molar ratio of 1:2
(glucose:tartaric acid), a reaction time of 60 minutes, & a temperature of 80°C (Entry
4). These specific reaction conditions seem to be the most optimal for producing the
glucose-tartaric acid DES with the maximum yield.

The observation of a slight decrease in yield to 85% at a temperature of 90°C (Entry
5) suggests that elevated temperatures may have an adverse impact on the formation
or stability of the deep eutectic solvent (DES). Furthermore, at temperatures of 60°C
and 80°C, molar ratios of 2:1 (glucose:tartaric acid) resulted in reduced yields of 74%
and 78%, respectively (Entries 6 and 7). This implies that a higher proportion of
tartaric acid relative to glucose is advantageous for optimizing the yield of this specific
DES.

3.2 Glucose-Citric Acid Deep Eutectic Solvent

Upon analysis, it was determined that the most favorable parameters for the synthesis
of the glucose-citric acid deep eutectic solvent (DES) were a molar ratio of 1:1 for
glucose to citric acid, a reaction duration of 60 minutes, & a temperature of 80°C.
Under these conditions, the highest yield of 92% was achieved, indicating the optimal
synthesis of the glucose-citric acid DES.

At higher temperatures, such as 90°C (Entry 3), the yield of the system remained
relatively high at 89%, indicating potential thermal stability compared to the glucose-
tartaric acid deep eutectic system (DES). However, deviations from the 1:1 molar ratio
led to decreased yields. For instance, a 1:2 molar ratio at 60°C and 80°C resulted in
yields of 86% and 88% (Entries 4 and 5), while a 2:1 molar ratio at the same
temperatures led to yields of 82% and 85% (Entries 6 and 7)
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So, it can be said that the most favourable parameters for the production of glucose-
tartaric acid deep eutectic solvent (DES) were determined to be a 1:2 molar ratio of
glucose to tartaric acid, a 60-minute reaction time, a magnetic rotation speed of 300
rpm, and a temperature of 80°C, resulting in an 88% yield of the target product. For
the synthesis of glucose-citric acid DES, the optimal conditions involved a 1:1 molar
ratio of glucose to citric acid, a 60-minute reaction time, & a temperature of 80°C,
yielding a 92% product yield.

The results offer significant understanding into the synthesis conditions that can be
utilized to optimize the production of these two deep eutectic solvents (DESs), which
hold promise for diverse applications including as solvents, catalysts, or additives in
industrial processes.
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CHAPTER 4

FUTURE PROSPECTS & CONCLUSION

4.1 FUTURE PROSPECTS

Nucleoside analogs have become a crucial category of antiviral medications, with
substances such as remdesivir playing a significant role in the global fight against the
COVID-19 pandemic. Nevertheless, the production of these complex compounds
often depends on conventional organic solvents, which can be harmful to health,
dangerous, & environmentally disturbing. Optimization investigations carried out with
glucose/tartaric acid & glucose/citric acid deep eutectic solvents (DESs) have revealed
a promising substitute, indicating a potential shift towards more sustainable and
environmentally friendly production of nucleoside analogs.

In the field of nucleoside analog synthesis, using traditional organic solvents presents
major challenges. Solvents such as dichloromethane, tetrahydrofuran, and N,N-
dimethylformamide are frequently used, but they are derived from non-renewable
sources, are highly toxic, and contribute to environmental pollution. Moreover, these
solvents often require thorough purification and disposal procedures, further
increasing the overall environmental impact and operational expenses.

Deep eutectic solvents, on the other hand, represent a significant advancement towards
greener chemistry. These solvents are composed of readily available, bioderived
components like sugars and organic acids. They are inherently biodegradable, non-
toxic, & can be synthesized using simple, energy-efficient processes.

Future efforts should focus on utilizing the unique properties of these DESs to develop
more sustainable & efficient synthetic routes for a broad spectrum of nucleoside
analogs. By expanding the range of substrates beyond the initial model reactions,
researchers can unlock the true potential of these DES systems for a wide range of
antiviral drug candidates targeting not only COVID-19 but also other viral threats like
HIV, hepatitis, and influenza.

The systematic exploration will be important in comprehending how these bio-derived
deep eutectic solvents (DESs) enable effective synthesis of nucleoside analogs.
Utilizing computational simulations and empirical methodologies may explain the
complex hydrogen-bonding networks & solvation environments within the DES
environment, offering detailed molecular-level insights into reaction pathways and
transition states. This understanding could guide the strategic development of next-
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generation DESs for specific nucleoside analog targets, ultimately improving reaction
kinetics, selectivity, and yields.

Moreover, the unique properties of these DESs, such as their high thermal stability and
tunable polarity, present opportunities for process intensification strategies.
Combining with advanced technologies like continuous-flow reactors, microwave-
assisted synthesis, or advanced manufacturing platforms could lead to more efficient
and scalable production of nucleoside analogs. By taking the advantage of these
intensified processes, pharmaceutical companies may be able to reduce manufacturing
costs, minimize waste generation, and achieve higher output. This could ultimately
result in more affordable and accessible antiviral therapies.

Addressing the challenges of waste minimization and solvent recycling will be cruicial
in realizing the full environmental and economic benefits of DES-based nucleoside
analog synthesis. Collaborative efforts should focus on developing effective strategies
for recovering and reusing these bioderived solvents after synthesis, potentially
through membrane separations, advanced distillation techniques, or other innovative
solvent recovery methods. By implementing closed-loop systems, the environmental
footprint of nucleoside analog production could be significantly reduced, & thereby
aligning with the principles of green chemistry and circular economy.

While the optimization studies focused on glucose/tartaric acid and glucose/citric acid
DESs, the large chemical space of deep eutectic solvents remains largely unexplored
for this application. Systematic screening and evaluation of other bioderived DES
compositions, which incorporate different sugar, acid, and salt components, could help
uncover superior or complementary solvent systems for nucleoside analog synthesis.
This expanded DES toolkit has the potential to offer tailored solutions for specific
nucleoside targets, effectively addressing challenges related to solubility, reactivity,
and selectivity.

Moreover, the concepts illustrated in these DES (Deep Eutectic Solvent) systems may
have the potential to be expanded beyond nucleoside analogs to other categories of
medications and high-quality chemicals. The distinctive solvation characteristics and
adjustable properties of deep eutectic solvents offer possibilities for environmentally
friendly synthesis across a diverse set of molecular objectives, thereby contributing to
the objectives of eco-friendly chemistry and environmental sustainability within the
chemical sector.

4.2 CONCLUSION

The increasing environmental concerns and the necessity for cost-effective chemical
processes have led to a significant focus on developing sustainable alternatives to
traditional organic solvents. This research concentrated on the synthesis and
optimization of two deep eutectic solvent (DES) systems, namely glucose-tartaric acid
& glucose-citric acid, with potential applications in the synthesis of nucleoside
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analogs, a class of compounds known for their potent antiviral properties against
emerging viral pathogens such as coronaviruses.

A comprehensive literature review highlighted the crucial role of nucleoside analogs
in inhibiting viral replication processes. Compounds like remdesivir, favipiravir,
ribavirin, sofosbuvir & molnupiravir have shown promising antiviral activities by
using their structural similarities to natural nucleosides and disrupting vital stages of
the viral life cycle. However, the conventional synthesis of these compounds often
involves the use of hazardous organic solvents, necessitating the exploration of more
sustainable synthetic methodologies.

The synthesis of the glucose-tartaric acid and glucose-citric acid DESs was achieved
through the optimization of various parameters, including molar ratios, reaction
temperatures, and times. Extensive optimization studies were conducted to identify the
ideal combination of these factors, ensuring the formation of homogeneous, clear, and
viscous DES formulations with high yields.

While the actual synthesis of nucleoside analogs using the prepared DESs was not
conducted in this study, the identification of a research gap and the proposal of future
research prospects were key components. The lack of exploration of DESs as
alternative solvents in nucleoside analog synthesis was emphasized, presenting an
opportunity to investigate the feasibility and potential benefits of these innovative
solvents in this domain.

The utilization of DESs in the synthesis of nucleoside analogs could potentially offer
several advantages, including improved reaction yields and selectivity, reduced
environmental impact, enhanced safety, and potential cost savings. By exploiting the
unique properties of DESs, such as their tunability, hydrogen-bonding capabilities, &
potential for improved reaction kinetics, it may be possible to develop more
sustainable and efficient synthetic routes for targeted nucleoside analogs.

Furthermore, exploring DESs in this context could lead to the discovery of new
reaction pathways or mechanisms facilitated by the unique solvent properties of these
systems, potentially unlocking novel synthetic routes or enabling the synthesis of
previously inaccessible nucleoside analogs. This could contribute to the broader
understanding and application of DESs in organic synthesis and pharmaceutical
chemistry, paving the way for their adoption in other chemical research and industry
areas.

While this dissertation has laid the groundwork for future investigations, several
challenges and limitations must be addressed. Thorough optimization of the DES
systems for specific nucleoside analog syntheses, comprehensive evaluation of
reaction kinetics and mechanisms, and rigorous economic viability and scalability
assessment will be crucial. Additionally, the toxicity profiles & environmental impact
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of the DESs should be thoroughly evaluated to ensure their true sustainability and
safety.

In conclusion, this study has underscored the potential of deep eutectic solvents as
promising alternatives to conventional organic solvents in the synthesis of nucleoside
analogs. By bridging these two research areas, this work has opened avenues for
further exploration and collaboration, contributing to the development of sustainable
and efficient synthetic methodologies for these vital pharmaceutical compounds. The
findings and future prospects outlined in this work facilitate continued research efforts,
encouraging innovation, and addressing the global need for effective and
environmentally responsible chemical processes.
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Abstract

The COVID-19 pandemic has been a major reason behind the increased research aimed at the identification of effective
antiviral agents. Among these, Nucleoside analogs have shown a promising effect on the inhibition of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus replication, the pathogen of COVID-19. Nucleoside analogs are
synthetic compounds designed to mimic natural nucleosides, the building blocks of RNA and DNA. This review provides a
comprehensive examination of the pivotal role nucleoside analogs play in combating SARS-CoV-2 infections. These
analogs function by incorporating into the viral RNA during replication, disrupting the synthesis process and preventing the
virus from proliferating. Researchers have identified multiple nucleoside analogs exhibiting robust antiviral efficacy against
SARS-CoV-2, including remdesivir, favipiravir, and molnupiravir. This review explores the mechanisms of action,
pharmacokinetics, and safety profiles of these nucleoside analogs. Furthermore, it discusses the challenges and limitations
associated with their use, including the emergence of resistant viral strains and potential side effects. Additionally, the review
delves into ongoing research efforts to optimize nucleoside analogs for enhanced efficacy and reduced adverse effects. In
summary, the article aims to enhance our overall understanding of nucleoside-based treatments by combining information
about their chemistry, mechanisms of action, and activation pathways. The goal is to contribute to advancements in
addressing emerging viral threats in the future.

Keywords Nucleosides * Analogs * SARS-CoV-2 - Viral replication * Multi-Drug Resistant strains

Introduction

During the final days of December 2019, a breakout of a
respiratory disease originating from an unknown source took
place in Wuhan, situated in Hubei, China [1, 2]. The prevalent
symptoms observed in the patients included fever, cough,
shortness of breath, and muscular fatigue [3, 4]. In a matter of
days after the COVID outbreak, several independent labora-
tories successfully identified the responsible agent behind this
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pneumonia as a newfound coronavirus, SARS-CoV-2 [5].
SARS-CoV-2 has an incubation period ranging from 2 to
14 days and it primarily spreads through the respiratory tract
via respiratory droplets released during coughing and sneezing
by people infected with this disease [6, 7].

On 11 March 2020, more than 118 thousand cases and
4291 deaths were reported from 114 countries, which made
WHO declare COVID-19 a pandemic [8, 9]. As of August
2023, over 769 million confirmed cases including over 6.9
million deaths have been reported to WHO [10]. Along with
these deaths, the world has faced the social and economic
effects of the pandemic as well. It significantly disrupted
normalcy worldwide as the governments had to lock down
the cities/countries [7, 11, 12].

Coronaviruses (CoVs), first discovered in 1960 [13, 14]
form a varied family of enveloped viruses with positive-
sense single-stranded RNA genome [15] and helically
symmetrical nucleocapsid, can be classified into four
genera: Alpha coronavirus, Beta coronavirus, Delta cor-
onavirus, and Gamma coronavirus. The first two genera
mainly infect mammals, Gamma coronaviruses mainly
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Table 1 Natural nucleosides found in the polynucleotides RNA and DNA (known as Ribonucleosides and Deoxyribonucleosides respectively)
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target birds, and Delta coronaviruses are distinctive
in their capacity to infect both birds and mammals
[16, 17].

Amidst the challenges posed by the pandemic, the quest
for effective treatments against SARS-CoV-2 has intensi-
fied, prompting a surge in research focusing on nucleoside
analogs which emerged as a ray of hope. These compounds
mimic the structure of nucleosides essential for viral repli-
cation, making them promising candidates for antiviral
therapies. These compounds, known for their broad-

@ Springer

spectrum applicability against various viral strains and
their ability to overcome resistance, have become a focal
point in the search for therapeutic solutions against COVID-
19 [18, 19]. The present article provides a comprehensive
overview of the mechanisms by which nucleoside analogs
target key stages of viral replication, including viral entry,
genome replication, and protein synthesis. It delves into the
structural and functional properties of these analogs, eluci-
dating how they interfere with viral processes and inhibit
viral propagation (Table 1).
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Chemistry of nucleosides

The term “nucleoside(s),” introduced by Levene and Jacobs
in 1909, originally pertains to nucleic acids. They were
initially isolated by breaking down nucleic acids and are the
building blocks of nucleic acids DNA & RNA. Natural
nucleosides are composed of either a purine base (like ade-
nine and guanine) or a pyrimidine base (such as cytosine,
uracil, and thymine) coupled with a pentose sugar residue
(either P -D-ribofuranose or B-D-deoxyribofuranose) [20].

Nucleoside analogs

Nucleoside analogs are synthetic compounds that mimic the
structure of natural nucleosides. They are commonly used in
medical applications, particularly as antibacterial [21-23],
anticancer [24-26] and antiviral agents [27-29]. Nucleoside
analogs interfere with normal cellular processes such as DNA
replication and transcription by being incorporated into
growing DNA or RNA chains. This interference inhibits the
growth of cancer cells or the replication of viruses making
them valuable in pharmaceutical treatments. Presently, over 30
nucleoside analogs have been approved for public use [30].

These analogs can be modified versions of natural
nucleosides. The process of synthesis of nucleoside analogs
involves changing the structure of natural nucleosides
through three distinct methods [31]:

Heterocyclic base modification

The first method involves the modification of nucleobases
by adding various substituents or substituting the base with
a different nitrogen-containing heterocycle. By manipulat-
ing the nucleobase, the analogs gain unique structural fea-
tures that confer specific advantages. For example
Molnupiravir’s mutagenic activity can be attributed to the
substitution of the nucleobase with a modified isoxazole
ring. This mutagenic activity results in its broad-spectrum
antiviral effects [32]. Ribavirin, on the other hand, inhibits
viral RNA synthesis by adding an amide group to the
guanine base, which enhances its ability to do so. This
mechanism contributes to its effectiveness against various
RNA viruses [33]. Finally, Favipiravir’s inhibitory effects
on the viral RNA-dependent RNA polymerase are due to
the pyrazine ring replacement of the purine base. This
inhibition of the viral polymerase is key to its broad-
spectrum antiviral activity [34].

Sugar modification

The second method is the modification of the D-ribofuranosyl
component of nucleosides. This is achieved by adding

different substituents, removing hydroxy groups at the C-2’
and C-3’ positions, eliminating hydrogen atoms at these
positions, introducing oxygen and/or sulphur atoms, or
replacing the oxygen atom with sulphur. Remdesivir, a
nucleotide prodrug with a cyclopentane sugar mimic, is a
potent antiviral drug against SARS-CoV-2 [35]. The sub-
stitution of the D-ribofuranosyl moiety with a cyclopentane
ring contributes to its potent antiviral activity. Abacavir lacks
the 3’-hydroxyl group present in the natural nucleoside, which
enhances its potency against HIV reverse transcriptase [36].
The replacement of the D-ribofuranosyl moiety with an
acyclic linker confers selectivity for viral over cellular
enzymes, making Acyclovir a selective inhibitor of viral DNA
polymerases over cellular DNA polymerases [37].

Addition of Phosphate group to the hydroxyl group
at C-5’ position

The third method involves phosphorylation of the hydroxy
group at the C-5’ position of the nucleoside. This phosphor-
ylation step enhances the pharmacological properties of the
nucleoside analog by adding one or more phosphate groups.
Phosphorylation is a critical modification observed in AZT, a
nucleotide inhibitor used against viruses such as HIV. It
ensures the activation and incorporation of the nucleoside
analog into cellular processes, making it an essential strategy
in the design of antiviral and therapeutic drugs.

Rationale for using nucleoside analogs
against SARS-CoV-2

Nucleoside analogs have emerged as a potential therapeutic
strategy in the fight against COVID-19 owing to their
ability to impede viral replication and their broad-spectrum
antiviral activity against various viruses. Their successful
application in HIV, Herpes, and Hepatitis C has demon-
strated their efficacy and safety [38]. These analogs target
the viral RNA-dependent RNA polymerase (RdRp), which
is essential for viral replication, by acting as competitive
inhibitors or alternative substrates, disrupting the RdRp’s
functioning and preventing viral RNA synthesis and repli-
cation. Remdesivir, initially developed for Ebola, has
showcased the potential of this class of drugs against
SARS-CoV-2, exhibiting potent inhibitory effects on
SARS-CoV-2 replication in vitro and showing clinical
benefits in COVID-19 patients, leading to its emergency use
authorization [39]. Structural modifications to the nucleo-
side scaffold can enhance binding affinity to the viral RdRp,
increase intracellular stability, and improve bioavailability,
thus optimizing their antiviral potency, selectivity, and
drug-like properties [40]. Nucleoside analogs can be used in
combination with other antiviral agents or therapeutic
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approaches, potentially enhancing their efficacy and redu-
cing the risk of resistance development [41]. Some analogs,
like molnupiravir and AT-527, are being developed for oral
administration, improving accessibility and convenience for
outpatient treatment. Although the development and eva-
luation of nucleoside analogs require rigorous preclinical
and clinical studies, their broad-spectrum antiviral activity,
established safety profiles, and potential for prophylactic
use make them promising candidates in the ongoing global
effort to manage and treat COVID-19.

Viral life cycle and drug targets

The SARS-CoV-2 virus, responsible for the COVID-19 pan-
demic, undergoes various critical stages in its life cycle that
allow it to replicate and propagate inside host cells. These key
steps, which have been extensively studied, are as follows:

Viral fusion

SARS-CoV-2 is a type of beta coronavirus that has five
structures, namely spike (S), membrane (M), envelope (E),
nucleocapsid (N), and hemagglutinin-esterase dimer (HE)
glycoproteins [42, 43]. The virus enters host cells through
either endosomes or plasma membrane fusion. In both
mechanisms, the virus uses the S protein to bind to the host
cell membrane and the angiotensin-converting enzyme 2
(ACE2) as the entry receptor [44-47]. ACE2 shows high
specificity for SARS-CoV-2 and binds strongly with it, which
may explain its easy transmission from human to human.

Recent studies have shown that the attachment between
the S protein and ACE2 is activated by a host protease
called transmembrane serine protease 2 (TMPRSS2)
[48, 49]. TMPRSS2 also plays a role in the proteolytic
cleavage of the S protein into S1 (globular domain) and S2
(biomembrane-anchored stalk domain) subunits [50-55].
The S1 segment allows the CoV to attach to ACE2, while
the S2 assists the fusion of the virus inside the host cell
[56, 57]. ACE2 plays a vital function in facilitating viral
infection, thereby limiting its defensive influence in the
lungs and heart [58].

ACE2 and TMPRSS?2 play a crucial role in allowing the
virus to enter the host cells by facilitating the fusion pro-
cess. These proteins are the primary targets for drug
development for a certain class of drugs known as Fusion
inhibitors [48, 59]. Fusion inhibitors are a type of antiviral
medication that can hinder the fusion process and prevent
viruses from infecting the host cells. There are several drugs
available, including umifenovir and camostat mesylate
besides monoclonal antibodies that have demonstrated
antiviral fusion inhibitory activity against SARS-CoV-2
[60, 61].
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Replication and transcription

Once the fusion process occurs, the protein envelope is
removed, and the genetic material of SARS-CoV-2, along
with its nucleocapsid, enters the host cell cytoplasm
[48, 62, 63]. Coronaviruses have the largest genomes among
all RNA viruses, ranging from 26.4 to 31.7 kilobases, with a
high guanine-cytosine content [64]. The SARS-CoV-2 gen-
ome is a single-stranded RNA of 30 kilobases with 14 open
reading frames (ORFs) encoding different conserved genes,
including ORFla, ORF1b, S, E, M, and N protein regions.
ORFla and ORF1b produce two critical polypeptides, ppla
and pplab. The ppla encodes for spike (S), membrane (M),
envelope (E), and nucleocapsid (N) proteins (located at the 3’
end) and is important for the integrity of virus protein. In
contrast, the pplab encodes integral non-structural proteins
(NSPs) pivotal for the development of the intricate replicase
machinery, NSPs 1-16 [65, 66]. These polypeptides are also
processed by viral enzymes, chymotrypsin-like protease
(3CLpro) and main protease (Mpro), to yield non-structural
proteins (NSPs 1-16), which encode for endoribonuclease
activity and play a vital role in viral replication and tran-
scription [67]. Protease inhibitor drugs, such as Lopinavit/
Ritonavir, have been shown to inhibit viral proteases [68].

Replication pathway

The process of replicating SARS-CoV-2 involves three
main steps: RNA synthesis, template proofreading, and
capping [69]. To achieve these steps, several NSP com-
plexes are critical for the virus, including NSP12 (RNA-
dependent RNA polymerase; RdRp), NSP13 (zinc-binding
helicase; HEL), NSP14-16 complex (mRNA capping),
NSPs14 (RNA proofreading), NSP15 (uridylate-specific
endoribonuclease activity (NendoU)), and NSP7-NSP10
(non-structural proteins) [69-76]. All of these components
are present in the host cell endoplasmic reticulum com-
plexed with the transcription enzyme of SARS-CoV-2,
leading to the production of new genome molecules,
including sub-genomic (sg) messenger RNAs [77, 78].

RNA polymerization and proofreading

RNA polymerization is a process that involves the catalytic
activity of NSP12 coordinated with NSPs7-8 as cofactors
[58]. The conserved N-terminal domain of NSP12 (NiRAN)
is found to be showing nucleotidylation activity across most
coronaviruses. The bifunctional protein NSP 14 plays a
crucial role in RNA proofreading and mRNA capping. NSP
14 consists of two domains: the N-terminal domain and the
C-terminal domain. Former shows exoribonuclease activity
(DEDD guanine)-methyl exo-nucleases family) for proof-
reading, whereas the latter has N7 transferase activity for
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viral mRNA cap synthesis [58]. The cap structure has an
N7-methylated GTP molecule connected through a 5'-5
triphosphate bond, transcribed by the foremost nucleotide
[71, 75].

Capping machinery

The capping machinery responsible for the stability of
mRNA and dodging host immune response consists of
NSPs 13, 14 &16, and cofactor NSP10 [79, 80]. NSP13
plays a vital role in initiating mRNA capping by acting as a
multifunctional helicase and hydrolyzing NTPs. It also
unwinds RNA duplexes in the 5°-3” direction and possesses
RNA 5’-triphosphatase action [73]. Ultimately, NSP16, in
complex with NSP10, terminates the mRNA capping pro-
cess. NSP16 belongs to the O-methyl Transferase category
and features a reversed f hairpin at its carboxyl end.

The NSP13 helicase, NSP14 GTPase, NSP15 N7-Methyl
Transferase, and NSP16 2’-O-Methyl Transferase synthe-
size a nascent RNA strand with a capl structure at its 5’ end
[75, 81].

The various non-structural proteins (NSPs) involved in
the process of viral RNA replication are crucial for the
formation of new viral particles. Nucleoside drugs, such as
Remdesivir, Favipiravir, Ribavirin, Sofosbuvir, Molnupir-
avir, etc. have shown potential as antiviral candidates
against SARS-CoV-2 by inhibiting these NSPs [82]. These
drugs can inhibit the RdRp (NSP12) through mechanisms
like chain termination and lethal mutagenesis [19].
Remdesivir also acts by escaping the proofreading of the
ExoN (NSP15). Nucleoside analogs, like Ribavirin, also
demonstrate their activity against methyltransferases [40].

Assembly of virions

The host’s endoplasmic reticulum and Golgi apparatus play
a vital role in assembling viral RNAs and associated pro-
teins into virions for SARS-CoV-2 [83]. The M and E
proteins combine to form virus-like particles, which are
further enhanced by the N protein in the endoplasmic reti-
culum and Golgi apparatus. Additionally, the new virions
also contain the S protein [84].

Virion release

An infected cell releases virus particles in one of three
ways: budding, exocytosis, or cell death. Budding is the
process by which undeveloped virus particles are released.
The N protein interacts with the virus’s E protein (which is
glycosylated) at the host cell membrane, allowing the
proper orientation for budding to occur. This process can
occur in the plasma membrane, endosomal, nuclear, or
perinuclear membranes [58]. The release of the virions

which are matured in ER or Golgi complex takes place via
Exocytosis. Sometimes the virus can damage the host cell
machinery, causing the release of lysosomes. This can lead
to the death of the cell and the release of virus particles. The
new virus particles are then released from the host cell in
vesicles through exocytosis [83, 85]. These particles can
either infect other healthy cells or be shed into the envir-
onment through the mouth or breathing, possibly infecting
other individuals.

The SARS-CoV-2 life cycle study highlights the viral
RNA-dependent RNA polymerase (RdRp) and methyl-
transferase as critical targets, inhibition of which can
impede viral propagation. Nucleoside analogs potently
inhibit these enzymes, positioning them as promising
COVID-19 therapeutics. The following section will elabo-
rate on the mechanisms of action employed by these
nucleoside analog drugs in targeting the RdRp and
methyltransferase activities of SARS-CoV-2.

Nucleoside analogs as RdARP inhibitor

For nucleoside analogs to be effective against viral infec-
tions, they require modification by cellular enzymes called
kinases. These enzymes convert the nucleoside analogs into
their active form, which is a triphosphate. Once the
nucleoside analogs are in their active form, they function by
competitively inhibiting the viral polymerases [29]. This
process can be achieved through the following pathways:

Chain termination
It majorly occurs following these methods:
Obligate chain termination

It is a process in antiviral treatment that involves stopping
the growth of a viral DNA or RNA chain once a nucleoside
analog is incorporated into it. This mechanism only occurs
in nucleosides that lack the 3’-hydroxyl group, which is
required for attaching the next incoming nucleotide [86].
Antivirals such as Acyclovir, Tenofovir, and Abacavir use
this mechanism to combat DNA viruses and retroviruses
effectively (Fig. 1) [87]. RNA viruses are less affected by
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Fig. 1 Nucleoside Analogs that work by obligate chain termination

@ Springer



Medicinal Chemistry Research

Fig. 2 Nucleoside Analogs
which work by non-obligate
chain termination

Azvudine

antiviral drugs as RNA-dependent RNA polymerases
choose substrates based on the presence of a 2'-hydroxyl
and exhibit selectivity for the existence of a 3’-hydroxyl
[88, 89]. Additionally, the nucleic acids incorporated can be
eliminated efficiently through pyrophosphorolysis [90].

Non-obligate termination

Nucleosides that cause non-obligate chain termination
have a 3’-hydroxyl group that can add incoming nucleo-
tides (Fig. 2). It is further divided into these classes

i. Translocation Inhibition: Nucleosides that operate
through this mechanism possess a 3’-hydroxyl.
However, they are unable to continue adding to the
growing chain due to substituents on adjacent carbons
that cause steric hindrance [87]. These nucleosides are
known as pseudo-obligate terminators and include 4°-
modified nucleosides such as azvudine (also known as
FNC), islatravir, balapiravir, and AL-335 [91-94].

ii. Inhibition of Chain Elongation via Disruption of
Hydrogen Bonding Network:

Nucleoside Analogs (NAs) that are 2’-methylated,
such as sofosbuvir and bemnifosbuvir, have strong
antiviral properties. This is because they disrupt the
hydrogen-bonding network during ribonucleotide
incorporation into viral RdRp [95]. Sofosbuvir, which
has a high resistance barrier against HCV, is a non-
obligate chain terminator that demonstrates this
mechanism [96]. Bemnifosbuvir is also effective
against coronavirus RdRp, which further emphasizes
the potential of this class of drugs [97].

iii. Polymerase Backtracking: T1106 is a nucleoside
analog that mimics purine bases. It has been found
to disrupt the movement of viral polymerase. Based
on the Cryo-EM data, when influenza virus poly-
merases use two T1106 molecules in the RNA chain,
it causes the polymerase to backtrack. This results in
removing the recently added nucleotides, including
both the molecules of T1106, from the nucleotide
entry channel. This release of nucleotides leads to the
termination of RNA synthesis [98].
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Fig. 3 Nucleoside Analogs that work by delayed chain termination

Delayed termination

In this case, the termination is not immediate but occurs
after adding a few more nucleotides. It delays the process
but eventually leads to chain termination. Nucleosides that
operate through delayed chain termination have a 3’-
hydroxyl group, allowing for further integration of incom-
ing nucleotides. However, due to steric hindrances at
adjacent positions, each subsequent addition takes place
slowly. Eventually, after two to four additions, further
incorporation stops. Drugs like Entecavir, Remdesivir, etc.
show this type of termination (Fig. 3) [99, 100].

Lethal mutagenesis

It is a strategy used against RNA viruses & works by
increasing the error rate during the virus’s replication process.
This elevated mutation rate can weaken the virus’s essential
genes and eventually lead to its death. Nucleoside analogs can
induce mutagenesis in RNA. They introduce base modifica-
tions, which create different base pairing patterns. When these
mutagenic nucleoside analogs are introduced into the primer
strand, they become part of the template strand during RNA
synthesis. This process further contributes to the accumulation
of mutations in the viral genome, which ultimately weakens the
virus and compromises its ability to replicate successfully
[101]. Nucleoside analogs such as ribavirin, favipiravir, and
molnupiravir have demonstrated the effectiveness of this
strategy (Figs. 4 and 5) [102]. As these nucleoside analogs do
not work as chain terminators, these are less likely to be
removed from the viral RNA by the action of ExoN [103]. This
strategy is effective, but it also carries risks, such as the
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emergence of resistant strains and potential adverse effects like
carcinogenesis and teratogenicity. Therefore, careful con-
sideration and ongoing research validation are necessary before
its application [104].

Nucleoside analogs as Methyltransferase
inhibitor

Methyl Transferases inhibition: Viral RNA genomes encode
methyltransferase enzymes which are essential for the
capping of viral RNA. It ensures a resemblance between the
viral RNA and the host intrinsic mRNA. As a result, viruses
can avoid the host cell’s immune response, enhance the
translation efficiency of mRNA, and ensure stability. These
viral methyltransferases being highly conserved, become a
promising target for the development of antiviral agents.
Guanosine analogs such as RBV occupy the GTP binding
site of both viral enzymes and endogenous eIF4E, reducing
the efficiency of viral RNA capping and inhibiting viral
RNA capping [105-108]. Flex analogs of acyclovir have
recently been developed, which have demonstrated even
greater inhibition of flavivirus methyltransferase compared
to the endogenous enzyme [109]. These compounds exhibit
submicromolar activity but also have micromolar toxicity
[19].

Prominent nucleoside drugs for COVID-19
Remdesivir

Remdesivir, created by Gilead Sciences Inc. and also
known as GS-5734, was approved by the US FDA on
October 22, 2020, for use as the main treatment for SARS-
CoV-2 in adults [110]. Remdesivir has shown considerable
antiviral promise in laboratory settings against a variety of
viruses, including SARS-CoV, MERS-CoV, EBOV, and
SARS-CoV-2 [111, 112]. The drug’s ECs, values, which

are 0.069, 0.090, 0.012, and 0.77 uM against these respec-
tive viruses, serve as a measure of its potency [113-115].

Remdesivir is a 10-cyano-substituted monopho-
sphoramidate prodrug of adenosine analog, that requires
metabolic activation within target cells to exert its antiviral
activity. The activation process begins with the uptake of
RDV into the cells. Once inside, the enzyme carbox-
ylesterase 1 (CES1) hydrolyzes RDV, removing one of the
masking groups. The resulting metabolite then undergoes
further hydrolysis catalyzed by the enzyme cathepsin A
(CatA), forming the alanine intermediate metabolite called
MetX. MetX is then acted upon by the enzyme histidine
triad nucleotide-binding protein 1 (HINT1), which hydro-
lyzes MetX to form the monophosphate nucleoside GS-
441524. The monophosphate nucleoside GS-441524 is
subsequently subject to consecutive phosphorylation reac-
tions mediated by cellular phosphotransferases. First, it is
phosphorylated to form the diphosphate nucleotide, which
is then further phosphorylated to generate the active tri-
phosphate form, GS-443902 (Fig. 6). This active tripho-
sphate metabolite, GS-443902, acts as a potent and selective
inhibitor of multiple viral RNA polymerases, including the
RNA polymerase of SARS-CoV-2, the virus responsible for
COVID-19. By inhibiting the viral RNA polymerase, GS-
443902 effectively blocks the replication of the virus,
thereby exerting its antiviral activity [116-122].

This active form inhibits viral RNA-dependent RNA
polymerases during the early stages of a viral infection
competing with endogenous nucleotides for viral RNA
incorporation via RNA-dependent RNA polymerase. Being
incorporated into the RNA chain, remdesivir does not
immediately terminate the chain [123]. The presence of 3’-
OH allows the addition of 3 more nucleotides until the RNA
chain termination (delayed chain termination) [119, 124]. In
addition to this primary mechanism, Remdesivir may also
impact the virus through lethal mutagenesis (Remdesivir
triphosphate mimics ATP) [125]. The delayed chain ter-
mination mechanism might protect Remdesivir from
removal from the RNA chain by viral proofreading proteins
due to the 3-5 additional natural nucleotides [126].
Remdesivir is poorly bioavailable in oral form and has a
short life so it must be administered intravenously
[125, 127-129].

Favipiravir

The orally accessible prodrug favipiravir, also known as 6-
fluoro-3-hydroxy-2-pyrazine-carboxamide (T-705), was
initially authorized for use in Japan in 2014 for the treat-
ment of infection caused by influenza virus. It exhibits a
wide-ranging antiviral impact on various viruses, including
influenza A (HIN1) [130], HSN1 [131], Rift Valley fever
virus [132], yellow fever virus [133], West Nile virus [134],
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Fig. 6 Activation of Remdesivir
prodrug [121] .
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Fig. 7 Activation of Favipiravir prodrug [139]

foot-and-mouth disease virus [135], and Punta Toro virus
[136] in animal models. Favipiravir has drawn a lot of
attention because of its antiviral potential as a potential
treatment and prevention for developing COVID-19 [137].
Favipiravir significantly suppresses SARS-CoV-2 in vitro
according to Wang et al., with an EC5y of 61.88 uM and
moderate selectivity (SI = 6.46) [123]. Favipiravir exhibits
a potent dose-dependent impact on SARS-CoV-2-infected
hamsters, resulting in appreciable improvements in lung
histology [138].

Favipiravir undergoes a sequence of enzymatic phos-
phorylation steps to convert into its active state, favipiravir-
ribofuranyl-triphosphate (Favipiravir-RTP). The initial rate-
limiting step in the activation of favipiravir involves the
conversion of the drug to its monophosphate form, favi-
piravir-ribofuranosyl-5’-monophosphate (favipiravir-RMP),
by the host enzyme hypoxanthine-guanine phosphor-
ibosyltransferase (HGPRT) [139]. Subsequently, the
monophosphate favipiravir-RMP is further metabolized by
host cell enzymes to generate the pharmacologically active
triphosphate form, favipiravir-RTP (Fig. 7) [140]. It speci-
fically blocks the RNA-dependent RNA polymerase (RdRp)
of the influenza virus [141]. It functions as a purine analog
and is incorporated instead of guanine and adenine
[142, 143]. Following incorporation, favipiravir-RTP acts
as a mutagen and can inhibit the coronavirus’s ability to
repair itself. The SARS-CoV-2 genome has a low cytosine
content, and favipiravir-RTP increases the pressure on the
CoV nucleotide content. By inhibiting the virus’s cytopathic
effect, reducing the amount of viral RNA, and preventing
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the spread of infectious particles, favipiravir-RTP has a
beneficial effect on SARS-CoV-2 [143].

Molnupiravir

Molnupiravir, also known as EIDD-2801 or MK-4482, is a
promising oral drug developed by Plemper’s group for the
treatment of COVID-19. It is a novel isobutyryl ester pro-
drug of B-D-N*-hydroxycytidine (NHC, EIDD-1931) that
targets the RdRp, making it a broad-spectrum therapeutic
against several viruses including EBOV, influenza A, HCV,
Venezuelan equine encephalitis virus, SARS-CoV, and
SARS-CoV-2 [144, 145]. Molnupiravir has been approved
for use since November 2021 in the UK and FDA approved
this drug in December 2021 for its emergency use in the
treatment of mild to moderate COVID-19 in adults who are
at high risk of disease progression to severe, and for whom
alternative permitted treatment options are unavailable or
clinically unsuitable [118, 146]. When used in combination
with favipiravir (FVP), molnupiravir displays a notable
cooperative effect in the SARS-CoV-2 hamster infection
model [145].

Molnupiravir undergoes a swift conversion into its tri-
phosphate form, known as molnupiravir-TP or MTP, by the
action of cellular kinases [118]. The initial step in this
process involves the hydrolysis of the isopropyl ester moi-
ety by the human carboxylesterase enzyme CES2. This
generates the metabolite N-hydroxycytidine (NHC). After
its formation, NHC undergoes three sequential phosphor-
ylation steps catalyzed by cellular kinases that are yet to be
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Fig. 8 Activation of
Molnupiravir prodrug [147]
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Fig. 9 Tautomers of the activated form of molnupiravir [150]

identified. These steps lead to the production of the NHC
monophosphate, diphosphate, and ultimately the active
NHC triphosphate metabolite (Fig. 8) [147, 148]. The tri-
phosphate can then be used as a substrate by the viral RdRp
and induces lethal mutagenesis or error catastrophe [149].
The tautomerisation of the oxime molecule to the enamine
form provides the analog with two base-pairing opportu-
nities. These two isomers mimic uridine & cytidine
respectively (Fig. 9). Different isomeric forms of molnu-
piravir have the potential to increase G-to-A and C-to-U
transition mutations in the course of viral replication, which
can significantly increase the drug’s effectiveness in com-
bating SARS-CoV-2 [150].

Nevertheless, it’s crucial to emphasize that molnupiravir
is approved for brief usage (up to 5 consecutive days) and is
discouraged for pregnant women or young patients (under
the age of 18 years) due to the risk of fatal toxicity as well
as bone & cartilage toxicity. [151].

Ribavirin

Ribavirin is a nucleoside antiviral drug discovered in the
1970s, which is known for its wide-ranging antiviral
activity against both DNA and RNA viruses [152]. It is
approved for the treatment of hepatitis C, often in combi-
nation with other drugs [153]. Structurally, ribavirin con-
sists of a typical ribose connected to a triazole aromatic ring
with a rotatable amido group. Ribavirin undergoes intra-
cellular phosphorylation by adenosine kinase to form riba-
virin monophosphate (RMP), which is then further
phosphorylated by nucleoside mono- and diphosphate
kinases to generate ribavirin triphosphate (RTP), the pri-
mary intracellular metabolite of ribavirin (Fig. 10) [33,
154, 155].

Ribavirin’s antiviral mechanism comprises multiple
actions, including host-targeted mechanisms, such as inhi-
bition of inosine monophosphate dehydrogenase (IMPDH)
and regulation of the host immune response [33]. It also
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exhibits virus-targeted effects, interacting with RNA cap-
ping enzymes, inhibiting viral RNA-dependent RNA poly-
merases (RdRp), and inducing viral lethal mutagenesis
[152].

The inhibition of IMPDH (crucial for DNA and RNA
synthesis) explains ribavirin’s effectiveness against a wide
range of viruses. Its immunomodulatory effect alters host
T-cell responses, and its interference with RNA capping
leads to the activation of the host immune response against
foreign viral RNA. Ribavirin’s interaction with RdRp
inhibits viral RNA synthesis [152].

Ribavirin also causes lethal mutagenesis which increases
the mutation rate of RNA viruses to non-viable levels,
rendering them unable to maintain genetic information
[156].

The docking analysis demonstrated that ribavirin can
bind to the SARS-CoV-2 replication enzyme (RdRp) with
comparable binding energy to native nucleotides, indicating
its potential to hinder the virus’s replication process [157].
However, ribavirin’s similarity to adenosine and guanosine
presents challenges in terms of selectivity and toxicity, often
leading to side effects like severe anaemia [158]. In con-
clusion, ribavirin’s capability to emulate both adenosine and
guanosine allows it to interact with various critical enzymes
and mechanisms in virus replication. While it demonstrates
broad-spectrum antiviral activity, efforts to develop com-
pounds with similar mutagenic properties but improved
selectivity are desirable to reduce side effects.

Sofosbuvir

Sofosbuvir, a nucleotide analog that has been primarily
approved for the treatment of hepatitis C virus (HCV)
infection also known as GS-7977 or SOF (specifically
known as PSI-7977), was developed by Pharmasset Ltd in
2010, later acquired by Gilead sciences which took care of
the advancement of the drug in various preclinical and
clinical trials [159, 160].

Upon entering the host cell (hepatocyte), sofosbuvir is
converted by a cellular enzyme into an active form of the
nucleoside triphosphate. The initial stage of activation
involves stereospecific hydrolysis of the carboxyl ester
prodrug by the enzymes cathepsin A (CatA) and/or car-
boxylesterase 1 (CES1), producing the alaninyl phosphate
metabolite PSI-352707. The amino acid moiety is then
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removed from PSI-352707 by the enzyme histidine triad
nucleotide-binding protein 1 (HINT1), forming the mono-
phosphate PSI-7411. HINT1 is confirmed to be responsible
for this conversion. The monophosphate PSI-7411 subse-
quently undergoes two sequential phosphorylation steps,
catalyzed by the enzymes UMP-CMP kinase and nucleoside
diphosphate kinase, to produce the diphosphate PSI-7410
and finally the active triphosphate form PSI-7409 (Fig. 11).
The active triphosphate primarily functions by inhibiting the
NS5B RNA-dependent RNA polymerase of HCV (follow-
ing a mechanism that involves the inhibition of the hydro-
gen bonding network) which plays a crucial role in virus
replication [161-165].

However, Sofosbuvir, effective against HCV, becomes a
potential antiviral candidate against SARS-CoV-2, which
shares a similarity in having a positive-stranded RNA. In a
study involving COVID-19 patients who were hospitalized
and received this treatment, there was no significant
reduction in the viral load compared to a control group [16].
Therefore, larger clinical trials are needed to determine the
effectiveness of this treatment plan.

Future prospects

As we look ahead to the future of SARS-CoV-2 treatment,
nucleoside analogs are showing promise in the fight against
the virus. However, there are both potential advancements
and obstacles to consider. Nucleoside analogs, which use
lethal mutagenesis to disrupt viral replication, have proven
effective, but concerns about potential side effects require
researchers to evaluate and refine these compounds for a
safer profile. Resistance to antiviral drugs remains a chal-
lenge, and to address this, the future of nucleoside analogs
involves strategic approaches such as combination therapies
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or developing novel analogs with different mechanisms of
action.

Researchers are exploring various strategies to develop
more effective treatments against COVID-19. One of these
strategies involves developing dual-acting nucleoside ana-
logs that can simultaneously target multiple viral compo-
nents or processes. By designing molecules that inhibit the
viral RNA-dependent RNA polymerase (RdRp) while also
disrupting other essential viral functions, such as the SARS-
CoV-2 helicase or protease, researchers aim to achieve
potent antiviral effects and potentially create a higher barrier
to resistance development. Another promising approach is
to target host factors required for viral replication. This
dual-targeting approach could lead to potent antiviral
activity while reducing the risk of resistance. Furthermore,
the combination of nucleoside analogs with other ther-
apeutic modalities, such as host-directed therapies, may
unlock synergistic antiviral effects and help prevent the
emergence of drug-resistant viral variants. Exploring these
combination approaches in preclinical and clinical studies
will be a priority for future research.

Improving the pharmacokinetic properties of nucleoside
analogs, such as enhanced tissue distribution and prolonged
half-life, will be crucial to optimize their therapeutic effi-
cacy. Strategies like the development of lipophilic prodrug
formulations could enhance the delivery of these com-
pounds to the primary sites of SARS-CoV-2 infection and
maintain sustained antiviral concentrations.

Personalized medicine is becoming increasingly impor-
tant, as patient response to treatment can vary. Research is
underway to identify individual genetic factors influencing
responses to nucleoside analogs, paving the way for tailored
treatment approaches that maximize therapeutic benefits.

Global accessibility and affordability remain imperative,
and efforts are needed to overcome logistical and financial
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barriers to ensure that nucleoside analogs reach all corners
of the world, especially in resource-limited settings. Colla-
borations between pharmaceutical companies, governments,
and international organizations are crucial to achieving
equitable access and affordability for all.

By leveraging these innovative design strategies,
researchers aim to develop the next generation of nucleoside
analogs that can offer improved potency, selectivity, phar-
macokinetic properties, and the ability to overcome resis-
tance challenges, ultimately enhancing the arsenal of
effective treatments against COVID-19.

Conclusion

This review highlights the crucial role of nucleoside analogs
in combating COVID-19. Looking ahead, there is promise
in the development of new analogs with better antiviral
properties, which offers hope for more effective treatments.
However, there are also challenges that must be addressed.
Antiviral resistance is a persistent threat, which requires
vigilant surveillance and adaptable strategies. Safety con-
cerns are also important to consider in drug development to
ensure patient well-being. Additionally, navigating the
complex landscape of regulatory frameworks presents a
hurdle to the widespread adoption of these promising
agents. Despite these challenges, there is a call to action.
Researchers must continue exploring nucleoside analogs to
unravel new therapeutic dimensions. Interdisciplinary col-
laboration is crucial to bring together the realms of virology,
pharmacology, and regulatory science. Sustained research
efforts will be the cornerstone in overcoming hurdles and
realizing the full potential of nucleoside analogs in the fight
against COVID-19. In conclusion, this review not only
captures the current state of knowledge but also serves as a
guide for future endeavours. The journey toward effective
antiviral strategies is ongoing, and the importance of
nucleoside analogs in this narrative cannot be denied.
Through collective efforts and unwavering dedication, we
move forward with the shared vision of a healthier, more
resilient global community.
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