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ABSTRACT 
 

Plasma turbulence is a phenomenon that occurs in a variety of astrophysical, space plasmas 

and fusion energy. It is generated by several factors including shearing flows, density gradients, 

currents, and temperature, and is essential for particle heating and energy dissipation. A broad 

variety of waves (like plasma waves, lower hybrid wave, upper hybrid wave, magnetosonic 

wave, whistler wave, alfven wave etc) can be supported in plasma by the collective motion of 

charged particles. These waves are very important for the dynamics and behaviour of plasma 

systems. These wave modes are responsible for the various astrophysical phenomena like 

turbulence, magnetic reconnection, cascading heating, and acceleration of plasma particles. 

The objective of this proposed thesis is to investigate the amplification of beam driven whistler 

waves from background noise levels, resulting from the energy of the beam. This amplification 

is expected to reach a significant amplitude, leading to the emergence of nonlinear effects 

caused by the ponderomotive force. Consequently, these nonlinear effects are anticipated to 

induce the localization of whistler waves, ultimately leading to the development of a turbulent 

state. On the account of this nonlinear ponderomotive force, the whistler wave gets localized 

and density cavities and humps are formed. For understanding the nonlinear stage of the wave 

growth and the saturation, we consider the nonlinear interaction of a high-frequency whistler 

wave with a low-frequency wave such as ion acoustic waves (IAWs), magnetosonic waves 

(MSWs) are considering the ponderomotive nonlinearity due to the whistler wave. Using the 

two-fluid approach, nonlinear dynamical equations have been derived. Additionally, to solve 

the model equations, numerical simulation is used, with the pseudo-spectral technique for 

spatial integration and the finite difference method for temporal integration to explain the 

localization, turbulence, spectral break, and spectral indices in power spectrum. Also, 

fluctuations in whistler’s electric field shows that it is turbulent in nature.  

 Further, for a better understanding of the physics behind whistler wave localization, a semi-

analytical model has been developed. Also, this simplified model has been investigated for the 

whistler’s convergent and divergent behaviour. Numerical outcomes of the study show the 

whistler turbulence in the magnetic reconnection sites created by the electron beam and show 

localized structures and whistler fluctuations, which are to the observations of Zhao et al. [1]. 
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It is thought that Whistler waves, which are generated at electron scales, have a significant 

impact on the microphysics of magnetic reconnection in the electron diffusion area. So, 

additionally, the thesis also intends to study the generation of whistler coherent structures 

formation and later whistler turbulence generation at magnetic reconnection site due to the 

energetic electron beam (as observed by Magnetospheric Multiscale Mission (MMS)) along 

with the influence of magnetic island. Nonlinear processes, such as ponderomotive force, 

density change, and the existence of magnetic islands, might be considered the cause of whistler 

turbulence. To determine the transverse scale sizes of coherent structures, a semi-analytical 

model has also been devised. Transverse scale of localized structures in the presence of pre-

existing magnetic islands are modified by power of whistler wave. We also analyze the contour 

plot of magnetic field lines, which serves as a spatial representation of the breaking and 

reconnection of magnetic field lines, leading to the release of trapped magnetic energy. 

Simulation outcomes shows the nonlinear evolution of multiple X-O points in the presence of 

magnetic islands shows chaotic structures at later time and may be responsible to the generation 

of turbulence. We have also shown the evolution of current sheet, their scale size of the order 

of electron skin depth. The corresponding power spectrum is also evaluated and discussed its 

relevance with Biskamp observations. Regarding the mechanics and energetics of the 

reconnection process, the separatix's characteristics are a useful source of knowledge. Along 

with this, we have also studied the formation of thermal tail of energetic electrons, which may 

be responsible for the heating and acceleration of plasma particles.    

 

 

 



 List of Publications 

 

 
 

viii 
JYOTI, Delhi Technological University, Delhi, India 

LIST OF PUBLICATIONS 

 

International Journals 

1. Jyoti, Suresh C. Sharma, Neha Pathak, and R. P. Sharma, "Beam-driven whistler mode 
nonlinear saturation and turbulence in the magnetopause", Physics of Plasmas 29, 
092104 (2022) https://doi.org/10.1063/5.0098108. 
 

2. Jyoti, Suresh C. Sharma, and R. P. Sharma, "Localization and turbulence of Beam-
Driven Whistler wave with Magnetosonic wave in Magnetopause", Physics of 
Plasmas 30, 022904 (2023) https://doi.org/10.1063/5.0134920. 
 

3. Jyoti, Suresh C. Sharma, and R. P. Sharma, "Localization of beam generated whistler 
wave and turbulence generation in reconnection region of magnetopause", Physics of 
Plasmas 31(2), 022902 (2024) https://doi.org/10.1063/5.0169397. 
 

4. Jyoti, Suresh C. Sharma, and R. P. Sharma, “Localization of beam generated whistler 
wave and turbulence generation in reconnection region of magnetopause” Physica 
Scripta 99(3), 035610 (2024) https://doi.org/10.1088/1402-4896/ad289a. 
 

5. Jyoti, Suresh C. Sharma, and R. P. Sharma, “Coherent structures of Beam-driven 
whistler mode in the presence of magnetic islands in magnetopause” The European 
Physical Journal Plus 139(3), 270 (2024) https://doi.org/10.1140/epjp/s13360-024-
05036-y. 
 
 

 

 

 

 

 

 

 



 List of Publications 

 

 
 

ix 
JYOTI,  Delhi Technological University, Delhi, India 

 

International/National peer reviewed proceedings 

1. Presented a paper entitled, "Solitary structures associated with parallel 

whistler field at magnetopause”, in the 48th EPS Conference on Plasma Physics-

2022", at the Maastricht Exhibition & Congress Centre in Maastricht, the 

Netherland. 

2. Poster Presented a paper entitled, "A Schematic study of nonlinear whistler 

wave in magnetopause region through numerical simulation” in the 2nd 

International Conference on Plasma Theory and Simulations (PTS -2022)", 

Department of Physics, University of Lucknow, India. 

3. Poster Presented a paper entitled, "Beam-driven whistler turbulence in solar-

wind” in the International Conference on Advances in Science and Technology in 

21st century (ICAST)", Department of Science, Markanda National College, 

Shahabad, Markanda, Haryana. 

4. Presented a poster entitled, “Magnetic Reconnection and Particle 

Acceleration by Beam-Generated Whistler Wave in Space Plasmas”, in the 

USO-PRL Solar Physics Workshop (USPW-2023) on the “Multi-scale 

Phenomena on the Sun: Present Capabilities and Future Challenges” held from 

3rd-5th April, 2023 by the USO-PRL, Udaipur, India. 

5. Poster Presented a paper entitled, "Nonlinear Evolution of Beam-Generated 

Whistler wave in the Magnetopause” in the 3rd International Conference on 

Plasma Theory and Simulations (PTS -2023)", School of Physical Sciences, 

Jawaharlal Nehru University, New Delhi – 110067, India. 

 

 

 



 List of 
Publications 

 

 
 

x 
JYOTI,  Delhi Technological University, Delhi, India 

 

6. Jyoti, Suresh C. Sharma and R.P. Sharma presented a poster entitled, “Beam-

driven whistler turbulence in the presence of magnetic islands at magnetic 

reconnection sites”, 2nd International Conference on International Conference 

on Atomic, Molecular, Material, Nano and Optical Physics with Applications 

(ICAMNOP–2023), Department of Applied Physics, DTU 2023, India, 20th - 

22nd December, 2023. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Contents 

 

xi 
JYOTI, Delhi Technological University 

 

CONTENTS 
                         Page 

No. 

Certificate………………………………………………………………………………. i 

Candidate’s Declaration………………………………………………………………. ii 

Acknowledgement……………………………………………………………………… iii 

Abstract………………………………………………………………………………… vi 

List of Publications…………………………………………………………………….. viii 

List of Figures………………………………………………………………………….. xiv 

List of Tables……………………………………………………………………………  xviii 

 

Chapter 1: Introduction and Literature Review……………………………..1-23  

 1.1 Background .................................................................................................... 1 

1.2       Wave modes in plasmas ................................................................................. 2 

1.3 Solar and Magnetospheric plasmas ............................................................... 5 

1.4 Turbulence ..................................................................................................... 7 

1.5 Magnetic Reconnection ................................................................................. 8 

1.5.1 Magnetic Reconnection and Turbulence ............................................... 9 

1.6 Spacecraft observations................................................................................. 9 

1.7 Theoretical models ...................................................................................... 11 

1.7.1 Single Particle Model ........................................................................... 11 

1.7.2 Single-fluid theory ................................................................................ 12 

1.7.3 Magnetohydrodynamics (MHD) Model ............................................... 13 

1.7.4 Two-Fluid theory .................................................................................. 14 

1.7.5 Statistical approach.............................................................................. 15 

1.8 Objective of the Thesis ................................................................................ 15 

     1.9       Organization of Thesis Work……………………………………………………………………16 

1.10 References………………………………………………………………………………………………..18 

 

 

 



 Contents 

 

xii 
JYOTI, Delhi Technological University 

 

   

  

Chapter 2: Beam-driven Whistler mode Nonlinear……………………….24-50  

 `2.1      Introduction ................................................................................................... 24 

2.2 Model Equations............................................................................................ 27 

2.2.1 Whistler dynamics in presence of beam ............................................... 27 

2.2.2 Ion Acoustic wave (IAW) ........................................................................ 31 

2.3 Numerical Simulation .................................................................................... 34 

2.3.1 MNLS model .......................................................................................... 35 

2.3.2 Modified Zakharov System of Equations (MZSE) .................................. 37 

2.4 Semianalytical Model .................................................................................... 41 

    2.5    Summary and Conclusion………………………………………….………………………….44 

Refernces  

 

   

  

Chapter 3:  Localization and turbulence of Beam-Driven…………………51-71 
 

  3.1 Introduction .................................................................................... 51 

3.2 Model equations ............................................................................. 54 

3.2.1 2D Whistler dynamics ............................................................. 54 

3.2.2 Magnetosonic waves (MSWs) ................................................. 56 

3.3 Numerical Simulation ..................................................................... 58 

3.4 Semianalytical Model ...................................................................... 64 

3.5    Summary and Discussion…………………………………………………………….67 

Refernces  

 

  

Chapter 4: Localization of Beam Generated whistler wave ………………72-93  

  4.1        Introduction .................................................................................................. 72 

4.2 Dynamics of Model ........................................................................................ 75 

4.2.1 Beam-driven whistler wave dynamics ................................................... 75 

4.2.2 Ion Acoustic wave (IAW) dynamics ....................................................... 78 

4.3 Numerical Simulation and Result Discussion ................................................ 80 

4.4 Semianalytical model .................................................................................... 84 

 



 Contents 

 

xiii 
JYOTI, Delhi Technological University 

 

     4.5    Summary and Conclusion…………………………………………………………………………..87 

References  

   

Chapter 5: Coherent Structures of Beam-Driven Whistler…….…………93-113  

5.1 Introduction ............................................................................................................. 93 

5.2 Analytical model ...................................................................................................... 95 

5.2.1 Whistler dynamics in the presence of beam ................................................... 95 

5.2.2 Magnetosonic waves dynamics (MSWs) ......................................................... 98 

5.3 Numerical Simulation and Result Discussion .......................................................... 99 

5.4 Semianalytical model ............................................................................................. 104 

     5.5    Summary and Conclusion………………………………………………………………………………106 

References  

 

 

Chapter 6: Nonlinear propagation of Whistler-mode…...……………….114-130  

 6.1 Introduction ................................................................................................. 114 

6.2            Analytical model .......................................................................................... 116 

6.2.1 Whistler dynamics in the presence of beam ....................................... 116 

6.2.2 Magnetosonic waves dynamics (MSWs) ............................................. 119 

6.3 Numerical Simulation and Result Discussion .............................................. 120 

6.4 Semianalytical model .................................................................................. 123 

6.5   Summary and Conclusion………………………………………………………………………….126 

 

References   

  

Chapter 7: Summary, Conclusion and Future Scope…………………….130-131  

7.1 Conclusion………………………………………………….……………130 
 

 
 
 

   

Appendix  ………………………………………………………………131-146 
 
 

 

 



 List of Figures 

 

xiv 
JYOTI, DELHI TECHNOLOGICAL UNIVERSITY 

 

LIST OF FIGURES 

 

Fig. No. 
 Page 

No. 

Chapter: 1 

 1.1  State of matter. .......................................................................................................... 1 

 1.2 Debye shielding .......................................................................................................... 2 

 1.3 Image of solar wind .................................................................................................... 5 

 1.4  Interaction of sun earth system. ................................................................................ 6 

1.5  Kolmogorov scaling ………………………………………………………………...8 
 

Chapter: 2 

 2.1  The evolution of the electric field 2
( , )xE x z  at different times in the x-z plane for 

modified nonlinear schr𝐨̈dinger equation (in normalized units). ............................ 31 

 2.2  Electric Field v/s time for modified nonlinear schr𝒐̈dinger equation (in normalized 

units). ....................................................................................................................... 32 

 2.3   FFT plot of electric field against frequency for modified nonlinear schr𝒐̈dinger 

equation (in normalized units). ............................................................................... 33 

 2.4 The evolution of the electric field 2
( , )xE x z  at different times in the x-z plane for 

modified Zakharov equation (in normalized units). ................................................ 33 

 2.5 Electric field fluctuations and density fluctuations for modified Zakharov equation 

at T=50. ................................................................................................................... 34 

 2.6  Power spectra of Electric field intensity of whistler wave 2

kE against normalized 

wave vector k  for modified nonlinear schr𝒐̈dinger equation (in normalized units).

 ................................................................................................................................. 35 

 2.7   Power spectra of Electric field intensity of whistler wave 2

kE against normalized 

wave vector k  for modified Zakharov equation (in normalized units). ................. 36 

 
 
 

 
 

 

 



 List of Figures 

 

xv 
JYOTI, DELHI TECHNOLOGICAL UNIVERSITY 

 

 2.8  Power spectra of Electric field intensity of whistler wave 2

kE against normalized 

wave vector k  for modified nonlinear schr𝒐̈dinger equation in quasi-steady state (in 

normalized units) on 512 512 grid size. ....................................................................... 37 

 2.9  Power spectra of Electric field intensity of whistler wave 2

kE against normalized 

wave vector k  for modified nonlinear schr𝒐̈dinger equation in quasi-steady state (in 

normalized units) on 4096 4096 grid size. ............................................................... 37 

          2.10   The evolution of the electric field 2
( , )xE t z  at different times in the t-z plane 

for modified nonlinear schr𝒐̈dinger equation in quasi-steady state (in normalized 

units). ....................................................................................................................... 38 

          2.11  The intensity distribution of the electric field of a whistler wave in the x-z 

plane (in  normalized units)……………………………………………………………. 41 

 

Chapter: 3 

 3.1  The normalized spatial evolution of whistler’s electric field in 3D in the 

magnetopause by the MNLS model at (a) t=0, (b) t=29, (c) t=22, (d) t=40, (e) t=48, 

and (f) t=50 .............................................................................................................. 52 

 3.2  Evolution of electric field fluctuations with time by the MNLS 

model…………………52 

 3.3   The normalized spatial evolution of whistler’s electric field in 3D in the 

magnetopause by the MZSE model at (a) t=0, (b) t=20, (c) t=25, (d) t=32, (e) t=45, 

and (f) t=55.  ............................................................................................................ 53 

3.4  3D spatial plot of density cavitation at t=40 with accumulation and depletion regions 

as acquired by numerical simulation…………………………………………………… 

 

3.5 2D spatial plot of density cavitation and electric field fluctuations for MZSE at t=40. 

 

3.6 (a) Evolution of electric field fluctuations’ power spectra at t=59 by the MNLS model.  

(b) Evolution of electric field fluctuations’ power spectra at t=53 by the MZSE model. 

 

3.7 (a) Power spectra of the electric field intensity of the whistler wave 2

kE  against 

normalized wave vector k for the modified nonlinear schr𝒐̈dinger equation in quasi-

steady state (in normalized units) on 4096 4096  grid size. (b) The evolution of the electric 



 List of Figures 

 

xvi 
JYOTI, DELHI TECHNOLOGICAL UNIVERSITY 

 

field 2
( , )xE t z  at different times in the t-z plane for the modified nonlinear schr𝒐̈dinger 

equation in quasi-steady state (in normalized units). 

 

3.8  The normalized electric field intensity variation of the pump wave in the x-z plane 

obtained by the semi-analytical model after incorporating the density harmonics from 

simulation results. 

 

Chapter: 4 

 4.1  The projection plot of nonlinear whistler wave in the presence of magnetic islands 

and perturbation in the background density for different times: (a) t=0, (b) t=3, 

(c) t=8, and (d) t=10, for modified nonlinear Schrodinger equation (in normalized 

units). .................................................................................................................. 52 

 4.2  Contour plot (left panel) and current sheet (right panel) of nonlinear whistler in 

the presence of magnetic islands and perturbation in the background density for 

different 

        times (in normalized units). ............................................................................... 52 

 4.3   (a) Ensemble averaged power spectra of Normalized field intensity of nonlinear 

whistler wave 2

kE  against normalized wave vector k for modified nonlinear 

Schrödinger equation (in normalized units) in the presence of magnetic island 

effects. (b) Ensemble averaged power spectra of Normalized field intensity of 

nonlinear whistler wave 2

kE  against normalized wave vector k for modified 

nonlinear Schrödinger equation (in normalized units) in the absence of magnetic 

island effects....................................................................................................... 53 

 

 

Chapter: 5 

 5.1  The spatial evolution of vector potential in x-y plane (a) t=0, (b) t=5, and (c) t=15, 

for modified nonlinear Schr ödinger equation (in normalized units). 

……………….…….71 

 5.2 Evolution of contour plot of vector potential (Left panel), and current sheet formation 

(Right panel) in the x-y plane at different times. 

………………….………………………….……….72  



 List of Figures 

 

xvii 
JYOTI, DELHI TECHNOLOGICAL UNIVERSITY 

 

 5.3 Evolution of contour plot of vector potential (left panel), and current sheet formation 

(right panel) in the x-y plane at different times. 

...............................................................................................................73 

 5.4  Power spectra of Normalized field intensity of whistler wave against normalized 

wave vector k for Modified Nonlinear Schrödinger equation (in normalized units). 

……………………………………………………….……………………74 

 

Chapter :6 

 6.1  Contour plot (left panel) and current sheet (right panel) of nonlinear whistler wave 

at different times………………………………………………………104 

 6.2  Top panel: time evolution of electric energy spectrum. The bottom panel: 

magnetic (blue) and electric (Red) energy spectra. The vertical dashed black line 

shows the electron gyroscale………………………………………………………106 

 

 

 

Appendix  

2A Dispersion relation of 2D whistler wave in the presence of perturbed density    

……………………………………….  

3A   Dispersion relation of 2D whistler wave in the presence of perturbed density as well as 

perturbed field …………………………………….. 

4A   Dispersion relation of 3D whistler wave in the presence of perturbed density as well as 

perturbed field …………………………………………….. 

      

 



 List of Tables 

 

 
 

xviii 
Jyoti, Department of Applied Physics, Delhi Technological University, Delhi, India 

LIST OF TABLES 
 

Table No.  Page No. 

Chapter 3 

3.1 Testing of invariants with Grid points 64…………………………………………….58 

3.2 Testing of invariants with time steps 55 10dt   (This step size 55 10dt    is also used  

for the finite difference method to monitor the invariants of NLS equation to  

desired accuracy)………………………………………..……………………………….58 

3.3 Parameters used for initial conditions in numerical simulations…….………………59 

3.4 Various parameters used for numerical simulations………………….……………...59 

 

Chapter 4 

4.1 Testing of invariants with time steps with Grid points 2048 (This step size is also 

 used for the finite difference method to monitor the invariants of NLS equation to 

 desired accuracy)……..…………………………………………………………………79 

 4.2 Testing of invariants with Grid points………………………………………………81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction                                                              Chapter 1 

1 

 Jyoti, Delhi Technological University 

 

CHAPTER -1 

Introduction and Literature Review 

1.1 Background 
Along with solid, liquid, and gas, plasma is often referred to as "the fourth state of matter".  

When energy is applied, a liquid will boil and turn into a gas; similarly, heating a gas will 

create plasma. In general, plasma holds similarities to gaseous state, however, it differs from 

gases in various respects. Any ionized gas is not considered to be plasma. The first need for 

an ionised gas to behave like plasma is that it be quasineutral. If the system's physical 

dimension L is significantly bigger than the Debye length D , the plasma shows quasineutral 

behaviour. The second requirement is that the number of charged particles in the Debye 

sphere i.e., Dn 3   be significantly more than unity (where n is the plasma number density and 

D is the Debye length). Debye length is defined as the distance over which significant charge 

separation may occur. Thus, we can say plasma is quasi-neutral gas of charged particles such 

as electrons, ions and neutral particles whose shows the collective behaviour and behaviour 

of these charged particles governed by the electric and magnetic field which is generated by 

other moving charged particles.  These requirements ensure that the plasma behaves 

collectively, allowing it to move as a fluid rather than as a collection of distinct charge 

particles. 

 

Figure 1.1  State of matter. 
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Figure 1.2 Debye shielding 

1.2 Wave modes in plasmas 

There are many distinct waves modes feasible owing to the collective behaviour of 

plasmas. The plasma is electrically conductive due to the free charges, making it vulnerable 

to electromagnetic fields. Plasmas, where electromagnetic and electrostatic waves of various 

frequencies may propagate, are abundant with wave phenomena. The behaviour and 

characteristics of plasmas are greatly affected by these wave modes. When describing linear 

wave events in homogeneous plasmas, it is typically sufficient to compute the dispersion 

relation, where the frequency ( )k  is correlated with the wavenumber k . These waves' phase 

and group velocities are described by  

                                (k) ˆv = kph k

             and     v =g

d

dk

 .     

The phase velocity, aligned with the wave vector k, determines the direction and magnitude 

of the wave front or phase propagation (x.t)=k.r- (k)t  . However, the group velocity may 

deviate from the phase velocity, indicating the direction of energy and information transfer 

within the wave.                          

Space is the natural laboratory to study these waves in magnetized plasmas. These wave 

modes display distinct dispersive properties depending on the plasma conditions. These 

plasma modes are of great research interest as they play an imperative role in various 

nonlinear phenomena in space and astrophysical plasmas. The dynamics of the system under 

consideration is influenced by the nature of nonlinearity employed and the dispersive 

properties of the medium. Here are a few plasma wave modes that are often seen like whistler 

waves, Langmuir wave, alfven wave, kinetic alfven wave, upper hybrid wave, lower hybrid 

waves, ion acoustic waves and nonlinear interaction of these wave modes[2]–[7] contributes 

to formation of turbulent cascade modes. Among these wave modes, it is tremendously 

assumed that in space and laboratory plasmas, a whistler wave plays a vital role.  
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Whistler waves are a particular kind of electromagnetic wave that can exist in the 

magnetosphere and ionosphere of the earth. Whistler waves can be generated artificially by 

human activities such as radio transmissions and are frequently linked to natural occurrences 

like lightning strikes. Also, whistler wave can be generated by electron beam, temperature 

instabilities, and current-driven plasma instabilities[8]–[13]. Frequency of whistler wave lies 

in the range of 
LH ce    , where 

LH is the lower hybrid frequency and 
ce  is the electron 

cyclotron frequency. The electromagnetic waves under consideration exhibit right-hand 

polarization and can propagate either parallel or obliquely to the background magnetic field 

in the rest frame of the plasma. The dispersion relation of the whistler wave is given by [14] 

                                               2 2 2 2 2 2 2 2
0 (1 ) 0.e z i A zk k k v E        

And,  the dispersion relation of the whistler wave under the conditions, 0 0 0 00,x y zk k k k     

and 
0 1ek   , 

0ce   is given by [15]  

                                                        
22

2 0
0 2

0 0

1 .
( )

pe

ce

k
c


  

 
    

  

Alfvén waves are a specific type of plasma wave that develops in magnetized plasmas, such 

as those found in astrophysical environments like the magnetosphere of the Earth, the corona 

of the Sun, and other planetary plasmas. Named after the Swedish physicist Hannes Alfvén, 

who won the 1970 Nobel Prize in Physics for his significant contributions 

to magnetohydrodynamics (MHD)[16] and plasma physics, these waves are named after him. 

Alfven wave are low frequency electromagnetic wave, propagating parallel to ambient 

magnetic field. These are nondispersive wave, having dispersion relation =k z Av .  

Here 0

04A
i

Bv
n m

 
 
 

 is the velocity of Alfven wave. 
0B  is the background magnetic field, 

im  is the mass of ions, and 
0n  is the unperturbed number density. However, when its 

perpendicular wavelength becomes similar to the ion gyroradius or the electron inertial 

length, they exhibit dispersive nature.  

An et al.[17] have examined the stimulation of electrostatic beam mode and whistler waves in 

a beam-plasma system. It was found that electrostatic beam-mode waves are confined within 

the beam, but whistler waves have the ability to propagate outside the beam, resulting in the 
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dissipation of energy. Many observations have been reported for the excitations of whistler 

waves by the electron beam in a magnetized plasma[1], [18].  

Gary et al.[9] investigated the many implications that the whistler-anisotropy instability plays 

in whistler turbulence using particle-in-cell simulations. They discovered that the whistler-

anisotropy instability can operate as a turbulence-regulating mechanism in the kinetic range 

via wave-particle interactions. 

 Whistler-mode waves are a prominent type of plasma waves that have been extensively 

studied due to their major influence on the structure of the dissipation zone and the 

effectiveness of reconnection. Consequently, they have received substantial study interest and 

attention[19], [20]. In previous observations, Whistler mode waves have been detected in 

proximity to the X line during magnetopause crossings. Additionally, numerical modeling has 

been conducted to further investigate this phenomenon. As a result, a theory has emerged 

suggesting that these waves may serve as a mediator in the reconnection process[21]. In 

recent times, there has been a study conducted on the process of coalescence of several 

magnetic islands that were first formed in an extended current sheet. The focus of this study 

was mostly on the scaling of the inner structural size of the coalesced islands and the 

subsequent progressive heating of the plasma[22]. Cerri et al.[23] also showed that the 

presence of large-scale turbulent motions leads to the establishment of a scaling of -5/3 

spectrum at ik 1  by the pressure strain interaction. Simultaneously, these turbulent motions 

contribute to the production of current sheets, which serve as sites for magnetic reconnection 

events. Also, they examined the contribution of electron-scale current sheets to particle 

energization associated with magnetic reconnection. In addition to the whistler wave modes, 

the magnetosonic wave (MSW) modes are also expected to be a significant contender for the 

purpose of particle heating and acceleration in space plasmas [24]–[27].  

These waves are of significant importance in numerous nonlinear phenomena that manifest in 

space and astrophysical plasmas. mainly, these phenomena manifest as non-thermal 

distributions inside plasma. Plasma acceleration and particle heating in many systems are 

reliant upon their important roles. The nonlinear features of these waves are of significant 

interest in study, both from theoretical and experimental perspectives. 
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1.3 Solar and Magnetospheric plasmas 

Solar wind is a stream of energetic charge particles that flows outward from the solar 

corona. The corona is the sun's outer atmosphere, which has a temperature of roughly 106 K 

(the sun's surface temperature is 6000 K). This solar wind stream is made up of fast, energetic 

protons and electrons. Because of the sun's million-degree atmosphere, gravitational forces 

are insufficient to hold the charged particles in place, and they pour out into space in all 

directions. This gravitationally unbound plasma is pushed by the pressure gradient between 

the corona and the inner heliosphere, which drives the solar wind. The solar magnetic field is 

extended into interplanetary space, where it is known as the interplanetary magnetic field 

(IMF). The IMF amplitude is around 5-10 nT, while the density of the solar wind plasma is 

approximately 10 cm-3. There are three types of solar wind based on their parameters: Fast 

wind is normally between 450 and 700 km/h, slow wind is between 200 and 400 km/h, and 

intermittent solar wind is between 200 and 400 km/h. It is considered a very turbulent 

medium with large-scale field fluctuations.  

Figure 1.3 Image of solar wind  

Turbulence in the solar wind is a 

common factor in the movement of 

energetic particles across the solar-

terrestrial system. The most difficult 

difficulties in space plasmas are solar 

wind acceleration and heating [28]–

[30].  

 

Figure 1.4  Interaction of sun earth    
system. 

The magnetosphere develops by the 

interaction of solar wind and the Earth's 

magnetic field. This interaction takes 

place at approximately an astronomical 

unit (1AU) from the Sun. Around this 

point, the pressure caused by the Earth's 
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magnetic field is balanced by the pressure created by solar wind plasma. As a result, the solar 

wind circulates throughout the magnetosphere. The Earth's magnetosphere is a complex 

arrangement of particle populations that are confined inside a certain region. This 

confinement is facilitated by the presence of free energy, which is supplied by the solar wind. 

As a result of this interaction, internal convection processes are induced within the 

magnetosphere. Particle anisotropies and free energy for plasma waves are driven by 

convection of particle populations into the stronger field of Earth's dipole. Multiple couplings 

between the varied particle populations occur from the multiple plasma instabilities, leading 

to a complicated evolution of those distinct particle populations. The Earth's magnetosphere 

is classified into three distinct areas, each with its own particle population. The first region is 

the extended field "magnetotail" on the Earth's nightside. The principal particle populations 

observed in the magnetotail include the ion plasma sheet, the electron plasma sheet, the cusp-

mantle (comprising ions and electrons), and the polar wind (comprising ions and electrons). 

The "outer dipole" is the second region, where the ion and electron plasma sheets, substorm-

injected ions and electrons, the electron and ion radiation belts, cloak ions and electrons, and 

polar-wind ions and electrons all are found. The third region, referred to as the "inner dipole," 

is located in close proximity to the Earth. It encompasses various components, including the 

plasmasphere, which consists of ions and electrons, the ion plasma sheet, substorm-injected 

ions, as well as the electron and ion radiation belts. The plasmapause, which is the outside 

limit of the dense, cold plasmasphere, is the barrier between the inner and outer dipole 

regions.  

The relevance of plasma waves on the emergence of the solar wind as well as the evolution 

and interactions of the Earth's magnetosphere's numerous particle populations is 

overwhelming. The magnetospheric and solar-wind systems are comprised of many electron 

and ion populations, which mostly interact through plasma waves. Energy transfer has been 

recognized as a critical concern in the field of space plasma physics. Previous measurements 

have revealed the existence of many wave modes, including the Dispersive Alfvén wave, 

whistler waves, ion cyclotron waves, and lower hybrid waves, as well as their role in particle 

heating and acceleration. Various processes for energy transmission have been 

hypothesized in the literature, including wave-wave interaction, wave-particle contact, 

vortical structures, turbulence, and magnetic reconnection. 
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1.4 Turbulence  

Turbulence is an inherent characteristic of both space and astrophysical plasma and is defined 

as a combination of random fluctuations occurring across many scales. The aforementioned 

fluctuations can manifest as changes in velocity, density, as well as electric and magnetic 

fields. Turbulence theory illustrates the process by which energy is transferred from larger 

length scales to smaller length scales, ultimately leading to its dissipation [31]–[34]. The 

transfer of energy is based on the wave-particle interaction [35] and wave-wave interaction 

[36], [37].  Turbulence plays a significant role in the process of particle heating in space and 

astrophysical plasmas, including the emergence of stars, galaxies, and cosmic rays, among 

others. The energy cascade mechanism can be illustrated with the power density spectrum, 

which is characterized by frequency and wavenumber. In general, the energy spectrum can be 

classified into three distinct ranges. The initial range pertains to a significant scale, referred to 

as an injection range, which is alternatively recognized as an energy-containing scale. The 

second range is commonly referred to as the inertial range. At this particular scale, the 

turbulence has achieved a quasi-steady state, wherein the time needed for energy transfer is 

shorter than the time required for diffusion. The third aspect pertains to the dissipation range, 

when fluctuations undergo a transformation into thermal energy, leading to the heating of 

particles. 

In 1941, Kolmogorov proposed a theoretical framework to describe the distribution of kinetic 

energy across various scales in the context of incompressible isotropic turbulence [38]. 

According to Kolmogorov's hypothesis, the energy density E(k) is contingent upon both the 

energy dissipation rate (per unit volume) and the wave number. Kolmogorov derived a 

scaling law using dimensional analysis, which suggests that in the inertial range, the 

distribution of energy follows a scale of k-5/3. The study conducted by Biskamp and Welter  

[39] involved the examination of 2D electron magnetohydrodynamics (EMHD) turbulence by 

numerical simulation. The researchers observed that the power spectrum of the turbulence 

adhered to Kolmogorov scaling i.e., kE k 5/ 3~   for 
ek 1  , and  kE k 7/ 3~   for 

ek 1  .  In a 

recent study conducted by Zhao et al.[1] the phenomenon of whistler turbulence was 

identified at magnetic reconnection sites. The researchers hypothesize that the creation of this 

turbulence is attributed to powerful electron beams resulting from magnetic reconnection. 
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Figure 1.5 Kolmogorov scaling 

Solar wind is the natural laboratory to explain the plasma turbulence [35]. The coupling 

mechanism between waves might be regarded as a potential contributor to the production of 

turbulence. The manifestation of turbulence extends beyond the solar wind, since it is also 

detected within the magnetosphere [40], [41] and at magnetic reconnection locations within 

the magnetosphere [31], [42]. 

 

1.5 Magnetic reconnection 

Magnetic reconnection is a key mechanism of energy conversion that takes place in various 

laboratory and astrophysical plasmas. The process of reconnection involves the conversion of 

magnetic energy into kinetic and thermal energy by altering the structure of the magnetic 

field across current sheets [43]. The findings from particle simulations suggest that the 

majority of magnetic energy is converted into ion kinetic energy during the process of 

magnetic reconnection involving a solitary X line [44], [45]. Hence, the acquisition of 

significant kinetic energy by electrons during magnetic reconnection remains an unresolved 

enigma.  

Magnetic reconnection within the Earth's magnetosphere is triggered by the influence of solar wind. 

The phenomenon in question is often attributed to its role in causing disruptions inside the 

magnetosphere of the Earth, namely manifesting as substorms and magnetic storms. Magnetic 

reconnection can potentially enable a flow of solar wind plasma and electromagnetic energy into 
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the magnetosphere through either low- or high-latitude magnetopause reconnection. Within the 

magnetotail lobes, the process of magnetic reconnection effectively transforms the stored energy 

into the internal and kinetic energy of the plasma. In the context of controlled nuclear fusion, this 

process serves as a hindrance to the magnetic confinement of the fusion fuel. Magnetic 

reconnection occurs in an area of a current sheet, or neutral sheet, where magnetic fields of opposite 

polarity approach to combine. 

1.5.1 Magnetic Reconnection and Turbulence  

Magnetic reconnection is a phenomenon wherein the conversion of magnetic energy into 

plasma kinetic energy occurs rapidly. Satellite measurements have revealed that a significant 

portion, ranging from 20% to 50%, of the magnetic energy that is released undergoes 

conversion into electron kinetic energy [46]. Furthermore, this conversion process also plays 

a role in facilitating the emergence of turbulence. This phenomenon is accountable for the 

process of plasma heating and plasma acceleration. It is therefore essential to quantify the 

role of turbulence in reconnection; Although, turbulence and reconnection appear to be 

closely related and it is known that turbulence impacts reconnection, the mechanics of their 

interaction is still not entirely established. 

Many authors have explored how turbulence affects the rate of reconnection, specifically how 

the already present turbulence might change Sweet-Parker reconnection and how turbulence 

may form because of reconnection. Forced turbulence experiments indicate that turbulent 

reconnection is quicker than laminar reconnection, and the reconnection rate rises with 

increasing turbulence level. Additionally, magnetic reconnection itself causes turbulence, 

which feeds back on itself.  

1.6 Spacecraft observations 

Observations demonstrate that magnetic reconnection occurs in the magnetosphere at the 

MHD, ion, and electron scales. The Magnetospheric Multiscale (MMS) mission was started 

in 2015 to study magnetic reconnection processes at the terrestrial magnetopause and 

magnetotail. It expands the study of magnetic reconnection at the electron scale in 

Earth's magnetosphere boundary regions [47]. Over the past decade, there has been a 

significant advancement in the understanding of waves and turbulence associated with 

reconnection. This progress has been made possible by the utilization of high-resolution 

multi-point in situ data. The initial breakthroughs in this field were made by the Cluster and 

THEMIS missions, and more recent findings have been obtained from the Magnetospheric 
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Multiscale (MMS) mission [21], [48]–[51]. Recently, spacecraft such as THEMIS and Cluster 

data have detected whistler-mode waves around reconnection sites [21], [52], [53] and cause 

electron acceleration in reconnection [54]. Li. et al. [55] analyze reconnection event observed 

by the Magnetospheric Multiscale (MMS) mission at the earth's magnetopause. In the course 

of this occurrence, the spacecraft traversed the reconnection current sheet that extends 

between the magnetospheric and magnetosheath regions. Notably, the presence of whistler 

waves was detected on both the magnetospheric and magnetosheath sides. Previous 

observations have shown the importance of various waves in the vicinity of reconnection 

sites of magnetosphere like upper hybrid wave/Langmuir wave [56] , Electrostatic solitary 

wave [48], lower hybrid waves [57] etc.  

Based on empirical data obtained from spacecraft observations and supported by numerical 

simulations, it has been observed that separatrix zones tend to generate rapid electron beams, 

a phenomenon that is frequently characterized by instability. Waves approaching the plasma 

frequency, such as Langmuir, beam-mode, or UH waves, are suggested for fast weak beams. 

Both Langmuir waves and upper hybrid waves have been reported in magnetotail 

reconnection from Wind and Cluster observations [56], [58].  

The findings of whistler mode waves in the magnetic reconnection zone at the dayside 

magnetopause were reported by Zhao et al. [1] .They utilized data from the magnetospheric 

multiscale (MMS) mission to provide evidence for the excitation of whistler waves by 

electron beams in the medium energy range. 

The process of reconnection facilitates the transmission of energy from the solar wind to the 

Earth's magnetosphere, as well as the subsequent release of energy in the magnetotail. 

Eastwood et al. [31] presented observations of both electric and magnetic field fluctuations 

within a magnetic reconnection ion diffusion area in the Earth's magnetotail using Cluster 

spacecraft data.  Chaston et al. [59]  accomplished a study on THEMIS data and revealed the 

presence of a turbulent spectrum in the vicinity of the magnetopause reconnection location. 

The spectrum, which comprises a range of wavenumbers from the ion gyro-radius to the 

electron inertial lengths, exhibits a scaling of k-3/2 in the inertial range. Beyond a certain 

breakpoint, at smaller scales, the spectrum becomes steeper with a spectral index of k-3. The 

flow of energy via a turbulent cascade can be characterised by the involvement of either 

kinetic Alfvén waves, whistler waves, or the interplay between both types of waves.  
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1.7 Theoretical models 

The momentum expression for every particle in the vicinity of the electromagnetic field is 

used to describe the dynamics of the plasma. Explaining the plasma dynamics would be a 

very difficult procedure in practice. Consequently, many models that make use of 

approximations have been used to characterise the plasma state. Various models are employed 

to characterize the state of plasmas, depending on the specific problem at hand. These models 

include the single particle approach, the kinetic theory, and the fluid theory. The utilization of 

a single-particle methodology offers microscopic a vantage points of the plasma, wherein the 

movement of an individual charged particle is considered within the context of electric and 

magnetic fields. When dealing with many particles, the single-particle approach can be more 

time-consuming. More crucially, this approach cannot be applied to dynamical circumstances 

in which the plasma currents and charges produce self-consistent fields. For this scenario, the 

plasma motions can be signified numerically using kinetic theory. For some purposes, the 

fluid description is preferable to kinetic theory, because the kinetic theory's seven 

independent variables can make both analytical and numerical computations difficult. 

1.7.1 Single Particle Model  

To investigate low-density plasma, a single particle model is defined. The current of charged 

particles is minimal and has no effect on the electromagnetic fields. This method is an initial 

stage towards understanding plasma collective behaviour. This approach is only applicable to 

magnetized plasmas when the applied external field is substantially stronger than the 

magnetic field created by charged particle motion. The momentum equation for charge 

species in the presence of an external field is as follows:  

1
.

dv
m q E v B

dt c
    
 

  
 

Here, m, v and q are the mass, velocity, and charge of charged particles respectively. 

In the presence of magnetostatic field along the z-axis, the particle will gyrate in a circular 

motion perpendicular to the magnetic field with gyroradius ( gr ) expressed as: 

g
g

v
r


 , here v is the velocity of charged particle in x-y plane, and ( / )g qB m  is the 

gyrofrequency. If velocity part parallel to the external field, the particle will undergo a helical 

path.  
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1.7.2 Single-fluid theory   

When the density of plasma is high enough then the whole plasma may be considered as a 

single fluid theory is known as magnetohydrodynamics (MHD) which applies to the study of 

very low frequency phenomena in highly conducting magnetized fluids. 

1.7.3  Magnetohydrodynamics (MHD) Model 

Plasma is treated as a single fluid in the MHD model, with all particles moving at the same 

velocity. As a result, the thermal and fluid velocity of plasma particles are ignored in this 

case. 

Finally, the electron frequency is estimated to be greater than the characteristic plasma 

frequency. The linear combination to describe the plasma as a fluid, like liquid mercury, with 

a mass density  , and an electrical conductivity 1


. These are the equations of 

magnetohydrodynamics (MHD). 

For a quasineutral plasma with singly charged ions, we can define the mass density  , 

current density j, and mass velocity v as follows: 

 =n ( ).i eM n m n M m                                                   (1.1) 

1
( ) .i e

i i e e

Mv mv
v n Mv n mv

M m


  


                                    (1.2) 

( ) ( ).i e e i ej e n v n v ne v v                                                 (1.3) 

The equation of motion incorporates a gravitational force component to account for the non-

electromagnetic force exerted on the plasma. The ion and electron plasma can be expressed in 

the following manner: 

( ) .i
i i ie

v
Mn en E v B p Mng P

t


     


                                  (1.4) 

( ) .i
e e ei

v
mn en E v B p mng P

t


      

                                 (1.5) 

Now adding above two eqs. we obtained,  

( ) ( ) ) ( ) .i e i e in Mv mv en v v B p n M m g
t


      


                                          (1.6) 
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The electric field has cancelled out as we have collision terms =-ei ieP P  

Further simplifying above equation one can obtain the single fluid equation describing the 

mass flow given below: .i

v
j B p g

t
 

   


                                                           (1.7) 

The electric field does not appear explicitly because the fluid is neutral. An alternative 

equation can be derived by considering a distinct linear combination of two fluid equations. 

First, we multiply equation (1.4) by the variable m and equation (1.5) by the variable M. 

Then, we subtract the later equation from the former equation. 

Mm ( ) ( ) ( ) ( ) .i e i e i i ein v v en M m E en mv Mv B m p M p M m P
t


           


                       (1.8)        

Using eqs. (1.1), (1.2) and (1.3), eq. (1.8) becomes 

   Mm
( ) .i e i e

n j
e E M m ne j m p M p en mv Mv B

e t n
                

                                   (1.9) 

The last term of eq. (1.9) can be simplified as: 

( ) ( )= ( ) .i e i e e i i e

j
mv Mv Mv mv M v v m v v v M m

n ne


                                                      (1.10) 

Dividing eq. (1.9) by e , we have now, 

1
( ) .i e

Mmn j
E v B j M m j B m p M p

e e t n



                  

                                          (1.11) 

The 
t




 term can be neglected in slow motions, where inertial effects are unimportant. In the 

limit / 0m M  , then eq. (1.11) becomes, 

 1
.eE v B j j B p

ne
                                                                                             (1.12) 

This eq. (1.12) is called as Ohm’s law describes the electrical properties of the conducting 

fluid. The term j B is called the Hall current term. It often happens that this last term are 

small enough to be neglected; then Ohm’s law can be written as: 

              .E v B j                                              (1.13) 
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Equation of continuity for mass   and charge   are easily obtained from the sum and 

difference of the ion and electron equations of continuity. Thus, the set of MHD equations 

consists of following equations 

                                                .
v

j B p g
t

 
   


                               (1.14)  

                                                   .E v B j                                            (1.15) 

                             .( ) 0.v
t

 
 


                                           (1.16) 

                                        . 0.j
t


 


                                         (1.17) 

This equation of set together with Maxwell’s equations is often used to describe the 

equilibrium state of the plasma. Although it can be utilized for determining plasma waves, it 

is significantly less precise than the two-fluid equations we have been utilizing. The 

simplicity of the MHD equations exceeds their drawbacks for resistivity-related problems. 

Astrophysicists working on cosmic electrodynamics, hydrodynamicists working on MHD 

energy conversion, and fusion theorists working with complex magnetic geometries have all 

extensively utilized the MHD equations.  

1.7.4 Two-Fluid theory  

When the plasma density is high, it becomes an impossible task to follow the trajectory of 

each particle and to predict plasma behaviour. Fortunately, when collision between plasma 

particles becomes very frequent each species can be treated as a fluid described by local 

density, velocity and temperature. Here, the identity of individual species is neglected and 

only the motion of fluid elements is considered. In this approach, the plasma is treated as a 

mixture of two or more interpenetrating fluids depending on the number of plasma species. 

Here, Euler equations (continuity, momentum and energy equations) are used for each fluid. 

The continuity and momentum equations for species are following as: 

Continuity equation      .( ) 0.j
j j

n
n v

t


 


  

Momentum equation       .j
j j j j j j j j

v
m n v v q n E v B p

t

 
       

   
. 
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where jn , jq , jv , jp and jm  are the number density, charge on species, flow of velocity, 

pressure,  and mass of jth species, respectively.  

 

1.7.5 Statistical approach  

The statistical technique is commonly employed to describe the macroscopic behavior of 

plasma, given its composition of a significant number of interacting particles. In this context, 

the distribution function for the system of particles is introduced, and the relevant kinetic 

equations that dictate the evolution of the distribution function in the phase space are 

subsequently solved. An example of a kinetic equation is the Vlasov equation, which assumes 

negligible close collisions and describes the interaction of charged particles through self-

consistent internal electromagnetic fields. 

 

1.8 Objective of the Thesis 

It is widely recognised that the formation of coherent structures results in the development of 

turbulence. Several turbulence studies have been conducted based on nonlinearity via 

coherent structure creation. Various plasma waves have been seen in the neighbourhood of 

the X-line at reconnection sites and pointed out as key potential in turbulence generation in 

magnetopause at reconnection sites. This chapter presents a proposed model wherein the 

amplification of beam driven whistler waves occurs from the initial noise level, resulting 

from the energy of the beam. The amplification process leads to the attainment of a 

significant amplitude, wherein nonlinear effects arising from the ponderomotive force 

contribute to the localization of whistler waves. Ultimately, this localization process leads to 

the emergence of a turbulent state. For understanding the nonlinear stage of the wave growth 

and the saturation, we consider the nonlinear interaction of a high-frequency with a low-

frequency wave, considering the ponderomotive nonlinearity due to the high frequency wave. 

This nonlinear coupling of waves results in the emergence of coherent structures, which 

shows the generation of turbulence. For better understanding of localization concept, we also 

study the semianalytical model.  

  

1.9 Organization of Thesis Work 
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The thesis holds seven chapters and brief chapter-wise summary of proposed thesis work is as 

follows: 

 CHAPTER 1: Introduction and literature review 

This chapter presents background on plasma dynamics including different theories to 

describe these dynamics. A brief introduction to plasma-supporting wave modes, along with 

solar and magnetospheric plasmas, has been presented. Some keywords are defined, and the 

outcomes of spacecraft observations are also discussed. This chapter also discusses the 

motivation for doing the current analysis and the thesis outline. 

CHAPTER 2: Beam-driven whistler mode nonlinear saturation and 

turbulence in the magnetopause 

 

For understanding the nonlinear stage of the wave growth and the saturation, we consider the 

nonlinear interaction of a high-frequency whistler wave with a low-frequency IAW, taking 

into account the ponderomotive nonlinearity due to the whistler wave.  

This chapter presents a proposed model wherein the amplification of beam driven whistler 

waves occurs from the initial noise level, resulting from the energy of the beam. The 

amplification process leads to the attainment of a significant amplitude, wherein nonlinear 

effects arising from the ponderomotive force contribute to the localization of whistler waves. 

Ultimately, this localization process leads to the emergence of a turbulent state. Using the 

Two-fluid approach, nonlinear dynamical equations have been derived. Additionally, to solve 

the model equations, numerical simulation is used, with the pseudo-spectrum technique for 

spatial integration and the finite difference method for temporal integration. Further, for a 

better understanding of the physics behind whistler wave localization, a semianalytical model 

has been developed. Also, this simplified model has been investigated for the whistler's 

convergent and divergent behaviour. The outcomes of the numerical simulation of the 

coupled system are shown here. These results show the localization of whistler waves and 

spectra of turbulence applicable to the magnetopause regime, which is consistent with the 

observations. The formation of the filamentary structure indicates the generation of 

turbulence. 
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CHAPTER 3: Localization and turbulence of Beam-Driven Whistler 

wave with Magnetosonic wave in Magnetopause 

 

In this problem, non-linear interactions of high frequency whistler wave and low frequency 

magnetosonic wave has been considered. Since MSWs is an electromagnetic wave, we have 

considered perturbation in density as well as in magnetic field. Further localized structures 

and turbulent spectra of non-linear whistler wave has been studied. To study the convergent 

and divergent behaviour of non-linear whistler wave, a semianalytical method is investigated.  

 

CHAPTER 4: Localization of beam generated whistler wave and 

turbulence generation in reconnection region of magnetopause. 

 

For this problem, we develop a model based upon the two-fluid approximation to study 

whistler dynamics, propagating in the medium with the pre-existing chain of magnetic islands 

and under the influence of background density perturbation originate from ponderomotive 

nonlinearity of wave. Dynamics of nonlinear whistler have been solved with pseudo-spectral 

approach and finite difference method with modified predictor-corrector method and Runge 

Kutta method for the semianalytical model. Also, we observed that power of whistler wave 

also impacts the scale size of coherent structures and current sheet dimension. 

 

CHAPTER 5: Coherent structures of Beam-driven whistler mode in 

the presence of magnetic islands in magnetopause. 

The primary objectives of this study are to draw attention to significant achievements in our 

understanding of whistler turbulence generation at magnetic reconnection due to the intense 

electron beam to be observed by magnetospheric multiscale mission (MMS) (Zhao et al., 

2021 [23]) along with the influence of magnetic island. A beam-driven whistler wave has 

been simulated in three dimensions to do this. The whistler wave in this model originates as 

noise owing to the energy of the beam and rises to a large amplitude, where nonlinear 
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processes from the ponderomotive force drive the whistler wave to localize, which ultimately 

results in the turbulent state. We have also studied the power spectra which is used to study 

the formation of thermal tail of energetic electrons.  

 

    CHAPTER 6: Nonlinear propagation of whistler-mode in the 

presence of magnetic islands in the magnetopause. 

The motivation of this paper is to study the nonlinear interaction of 3D whistler wave with 

magnetosonic wave in the presence of magnetic island at magnetic reconnection sites due to 

the perturbation in wave’s own amplitude. From numerical simulation results, we observed 

localization plots, contour plots, power spectra and current sheet of non-linear whistler wave. 

The current sheet deeds as a location for intense plasma heating, energy dissipation and 

particle acceleration 

 

      CHAPTER 7: Summary, Conclusion and Future Scope of the Thesis 

Work 

This chapter summarizes the thesis work and presents its key results. This chapter also 

discusses the potential extension of the current work as well as other chances to succeed. 
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CHAPTER-2  

Beam-driven Whistler mode Nonlinear saturation and Turbulence in the 

Magnetopause 

2.1 Introduction 
 

Turbulence is ubiquitous in the universe and has been commonly observed in space plasma. To 

study turbulence, space plasma provides the natural laboratory. Turbulence is a state in which 

nonlinear interactions, such as cascades to finer scales, result in a chaotic structure and 

dynamics in fluids and plasmas. It is considered that turbulence acts as the energy source for 

particle acceleration[1] and energization in space plasmas[2]. Turbulence theory explains the 

injection of energy at larger length scales to the smaller length scales and at last, it is 

dissipated[3]–[6]. The cascading of energy is based on the wave-wave interaction[7], [8] and 

wave-particle interaction[9]. Magnetic reconnection is a basic energy conversion mechanism 

in which magnetic energy is transformed into plasma kinetic and thermal energy by rearranging 

magnetic topology. Magnetic reconnection plays a vital role in space and the astronomical 

plasmas like magnetopause[10], [11], solar-wind[12], magnetosphere, solar corona, and 

laboratory space-plasmas[13], [14]. Magnetic reconnection and turbulence are two 

interconnected processes[15], [16], but their relationship has not been fully understood so far 

now and a lot of research is going on to understand their interconnection. 

 Plasma supports numerous wave modes like whistler wave, lower hybrid wave (LHW), Alfven 

waves, magnetosonic waves, upper hybrid wave (UHW), and ion-acoustic wave (IAW) which 

have implications in energetics in space and laboratory plasmas[17]–[19]. Several astronomical 

phenomena can be explained by these different wave modes[20], [21]. At the magnetic 

reconnection sites, various waves including whistler-mode have been observed along with the 

energetic electron beam generation by magnetic reconnection[22], [23]. Whistler waves are 

significant in magnetic reconnection and turbulence, according to observation and simulation 

research. Whistler waves can be generated by lightning, electron beam[24]–[27], and current-

driven plasma instabilities [28],[29]. An et al. [30] have examined the stimulation of  

 



Beam-driven whistler mode………………...           Chapter 2 

25 

Jyoti, Delhi Technological University 

electrostatic beam-mode and whistler waves in a beam-plasma system and discovered that 

electrostatic beam-mode waves are contained within the beam, whereas whistler waves can  

escape the beam, carrying energy away with them. A lot of observations have been reported 

for the excitations of whistler waves by the electron beam in a magnetized plasma[28], [31], 

[32]. Furthermore, the wave-particle interaction of the whistler wave is vital in energizing the 

relativistic electrons[33], [34]. 

          Many researchers have studied the whistler turbulence generation around 

magnetopause[35], [36]. THEMIS, POLAR, and Cluster spacecraft have also observed the 

whistler wave turbulence in magnetopause [37]–[39]. Many observations have been reported 

in the literature regarding the whistler turbulence[40]–[42]. Biskamp et al.[43]  studied the 2D 

electron magnetohydrodynamics (EMHD) turbulence by numerical simulation and reported the 

power spectrum follow Kolmogorov scaling i.e, 5/3
kE k   for 1ek   and 7/3k   for 1ek  . 

Galtier et al.[44] presented the weak turbulence theory and conclude that nonlinear interactions 

of whistler waves transfer the energy. The recent studies observed the parallel propagating 

whistler waves[45], [46] and oblique whistler waves in different regions of 

magnetosphere[47]–[49]. Recently, Zhao et al.[50] have observed the whistler turbulence at 

magnetic reconnection sites and it is expected that energetic electron beams by magnetic 

reconnection are responsible for the generation of this whistler wave turbulence. They observed 

the beam-driven whistler waves in the dayside magnetosphere using the data of 

Magnetospheric Multiscale (MMS) mission[50], [51] and observed the maximum growth rate 

of the wave at 0.53ek   in the wave frequency range 0.1 0.5ce ce  . Here, k  is the wave 

number, e  is the electron skin-depth, and ce  is electron gyrofrequency. They also observed 

the whistler turbulence and presented the power spectra distributions of the electric and 

magnetic fields. But it is not clear how the beam energy generated by magnetic reconnection 

is used to excite the whistler wave from noise level and then reaches a turbulent state. The 

motivation of the present work is to understand this process of beam-driven whistler wave from 

noise and reaching to the turbulent state. In the literature, some work has been reported in the 

context of beam-driven turbulence but the specific studies related to beam-driven whistler 

localization and turbulence have not been reported to the best of our knowledge. In the context 

of solar wind, beam-driven upper hybrid turbulence[52] has been studied. Krafft et al.[53] have 

studied the coupled dynamics of parallel propagating (propagation wave vector along static 



Beam-driven whistler mode………………...           Chapter 2 

26 

Jyoti, Delhi Technological University 

magnetic field) whistler wave and low-frequency wave and observed the different aspects of 

modulational instabilities and whistler solitions. Krafft et al.[32] have observed the evolution  

 

of the beam-whistler wave system but turbulence and turbulence scaling have not been studied. 

Goldman et al.[54] have studied the localization and turbulence of the Langmuir wave by using 

the 1-D Vlasov simulation code. In a beam-plasma system, observations of filamentary 

structure and strong turbulence for the electron cyclotron wave are reported[55]. Recently, 

Choi et al.[56] have observed the whistler waves using the fast Fourier transform, analyzed the 

electron velocity distribution function, and shows strong electrostatic fluctuations.  

 In this present work, we have proposed a model in which beam-driven whistler wave will grow 

from the noise level due to the energy of the beam and will attain a large amplitude such that 

nonlinear effects due to ponderomotive force will lead to the localization of whistler waves and 

finally this will lead to the turbulent state. For understanding the nonlinear stage of the wave 

growth and the saturation, we consider the nonlinear interaction of a high-frequency whistler 

wave with a low-frequency IAW, taking into account the ponderomotive nonlinearity due to 

the whistler wave. Using the Two-fluid approach, nonlinear dynamical equations have been 

derived. Additionally, to solve the model equations, numerical simulation is used, with the 

pseudo-spectrum technique for spatial integration and the finite difference method for temporal 

integration. Further, for a better understanding of the physics behind whistler wave localization, 

a semianalytical model has been developed. Also, this simplified model has been investigated 

for the whistler's convergent and divergent behaviour. The outcomes of the numerical 

simulation of the coupled system are shown here. These results show the localization of 

whistler waves and spectra of turbulence applicable to the magnetopause regime, which is 

consistent with the observations[50]. The formation of the filamentary structure indicates the 

generation of turbulence. 

The following is the layout of the paper: - 

In section II, the Basic formulation of the model is presented. In section III, model equations 

are solved numerically and simulation results are presented. A semianalytical method is 

presented in section IV. Summary and conclusion have been given in section V. 
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2.2 Model Equations 
Taking background density variations into consideration, the suggested theoretical model 

explains whistler turbulence in plasma at magnetopause. Whistler turbulence caused by 

electron beams has been assumed to be well-developed in this study. The model accounts for  

 

density fluctuations, plasma response at high and low frequencies, fast and slow wave 

dynamics, as well as other nonlinear and linear processes such as ponderomotive force effects 

and wave coupling. 

The analysis that follows is divided into two parts. The dynamical equation for a high-

frequency wave, such as a whistler wave, is first obtained. The dynamics of the low-frequency 

ion acoustic wave and its connection with the whistler wave are covered in the second half. 

The two-dimensional whistler wave system with electron beam is described by using the two-

fluid model where the beam-driven whistler with positive in our computational reasons. As a 

result, an instability growth rate ' 0  is introduced phenomenologically in the dynamics of 

whistler. 

2.2.1 Whistler dynamics in presence of beam 
Two fluid models are used to obtain the dynamical equation for whistler wave (2D plane) 

propagating in the x z  plane with wave vector ˆ ˆx zk k x k z 


,  in a magnetized plasma with an 

ambient magnetic field along the z-axis. 

 The basic equations that are used to obtain the whistler dynamics are 

 Wave equation  

2
2

2 2 2

4 1
( . ) .

J E
E E

tc c t

  
    

 

  
                                                                              (2.1) 

Equation of motion for electrons 

0( . ) ( ).e
e e e e

v e
m v v eE v B

t c

        

                                                                             (2.2)  

Equation of motion for ions 

0( . ) ( ),i
i i i i

v e
m v v eE v B

t c

       

                                                                                (2.3) 
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where em , im  denotes the mass of an electron and ion, ev , iv  denotes the velocity of the electron 

and ion, e  denotes the charge on the electron, and 0B denotes the background magnetic field. 

Using Eqs. (2.2) and (2.3), velocity components are obtained, and then i i e eJ n ev n ev 
  , we can 

find the components of Eq. (2.1): 

x-component 

 

2 2 2
2 0 0 0

2 2 2 2 2 2 2
0 0

0 0
2 2 2 2 2 2

0 0

( ) ( )

               0.
( ) ( )

z x
ci i ce e

ci ce
y x z z

ci i ce e

k E
c

i i
E k k E

  
     

   
     

 
       

 
     

                           (2.4) 

y-component 

0 0
2 2 2 2 2 2

0 0

2 2 2
2 2 0 0 0

2 2 2 2 2 2 2
0 0

( ) ( )

          0.
( ) ( )

ci ce
x

ci i ce e

x z y
ci i ce e

i i
E

k k E
c

   
     

  
     

 
  

  
 
        

                        (2.5) 

z-component 

 
2

2 0
2 2

1
0.x z x x z

e

k k E k E
c




 
     
 

                                                                    (2.6) 

where 0
ce

e

eB

m c


 
 
 

 is the electron gyrofrequency of wave and 
2

2
04

e
e

c m

n e




 
 
 
 

  is the 

collisionless electron skin depth, 0n is the background number density and c  is the velocity of 

light.  

 Now, Combining Eqs. (2.4), (2.5), and (2.6) and applying conditions 1ik  , we get 

2 2
2 2 20 0

2 2 2 2 2 2 2 2
0 0

20 0
2 2 2 2 2 2 2 2 2

0 0 0 0

2
2 2 20

2 2 2
0

1 1

( ) ( )

1

( ) ( )

0
( )

z x x
i e ce e ce e

ci ce ci ce
x x

i e ce i e ce e

x z x
e ce

k k k E

i i i i
k E

k k k E

 
       

     
          


  

   
              
   

          
 
    

                (2.7) 

After solving Eq. (2.7), we obtain the following equation 
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 2 2 2 2 2 2 2 2 2 2
0 0 (1 ) 0.ce e z i A xk k k v E                                                              (2.8) 

The first component is non-resonant, while the whistler wave dispersion relation is the final 

term. 

                                 2 2 2 2 2 2 2 2
0 (1 ) 0.e z i Ak k k v                                                   (2.9) 

Further, the dynamical Equation in terms of the electric field (please see appendix-A) can be 

written as, 

2 6 6 6
4 4 4

2 4 2 4 2 2 2 2

4 4 2 4 4
2 2 2 0

2 2 2 2 2 2 4
0

2

           2 2 ,
4

x x x x
e e e

x x x x
e e i

i

E E E E

t x t z t x z t

E E B E E

n mx t z t z x z

  

  


   
   

       
     

             

                  (2.10) 

where 
2
0

04A
i

B
v

n m

 
 
 
 

 is the speed of the Alfven waves. It is also mentioned here that beam 

driven growth is also considered then ,
d d

dt dt
   

 
(for detailed explanation please see 

appendix-A and neglecting higher order terms). 

After getting perturbation in the background number density from 0n  to 'n , the above equation 

becomes 

6 6 62
4 4 4

2 4 2 4 2 2 2 2

4 4 2 4 4
2 2 2 0

2 2 2 2 2 2 4

2 2

           2 2 ,
4 '

x x x
x e e e

x x x x
e e i

i

E E E
E

tt x t z t x z t

E E B E E

n mx t z t z x z

   

  


     
             

     
             

                    (2.11) 

Here 'n  is the modified density, i.e., 0'n n n  , and n  is the modification in number density. 

Thus we can rewrite the above equation 

6 6 62
4 4 4

2 4 2 4 2 2 2 2

4 4 4 4
2 2 2 2

2 2 2 2 2 2 4
0

2 2

           2 2 1 .

x x x
x e e e

x x x x
e e i A

E E E
E

tt x t z t x z t

E E E En
v

nx t z t z x z

   

  

     
             

     
              

                      (2.12) 

For this Eq. (2.12), the following envelope solution is assumed. 

                            0 0 0ˆ ˆ( )( , , ) x zi k x k z t
x xE E x z t e   .                                                           (2.13) 
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We get the dynamical equation of a nonlinear whistler wave propagating through plasma by 

considering the effect of a strong whistler wave on the background density and inserting the 

above-mentioned solution into Eq. (2.12) 

2 2
4 4 4 4 2 2 2 2 2 4 2 2 2 2 2 4 2

0 0 0 0 0 0 0 0 0 02 2

2 3 4 2 2 4 2 2 2 2 2 2 3 4 2 2 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
0

2 (1 2 2 )  ( 4 ) (4 4 )

2 ( 2 2 2 ) 2 ( 2 2
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x x x
e x e z e x e z e x i A z e z

x
x e x z e e x x z i A z e z x e
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i k k k k k k v i k k k
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0
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x x
e z z x i A z i A i A x z z x e

i A z x x
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z x z
n
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n
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 
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    
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

   (2.14) 

where 0 0,  x zk k are whistler wave vector components related to the background magnetic field 

are given below. 

2 2 2
0 0 0x zk k k   and ,  e i   are the skin depth of electrons and ions. 

Using the normalizing parameter,   

01/ .nt   

2 3 4 2 2 4 2 2 2 2 2
0 0 0 0 0 0 0 0 0

4 4 4 4 2 2 2 2
0 0 0 0 0

2 ( 2 2 2 )
.
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    

    


   
 

Thus, the equation in normalized dimensionless form is given as 

' 2 ' 2 ' ' ' 2 '
' ' '

1 2 3 4' '2 '2 ' ' ' '
0

2 0,
E E E E E E n

i c c i i c c E i E
nt x z x z x z

 
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                
    (2.15)  

where Eq. (2.15) represents the normalized dynamical equation for the whistler wave which 

leads to turbulence. Here ' is introduced to describe the beam instability driving the beam-

driven whistler wave. The growth rate of the beam-driven whistler i.e., ' 0  is incorporated 

phenomenologically and its value consistent with the observations reported by Zhao et al.50 

will be used in simulations here. 

where  
2 4 2
0 0

1 4 4 4 4 2 2 2 2 2
0 0 0 0 0

4
.

2 (1 2 2 )
e x

e x e z e x e z n

k
c

k k k k x

 
    




   
  



Beam-driven whistler mode………………...           Chapter 2 

31 

Jyoti, Delhi Technological University 

 
2 2 2 2 4 2

0 0 0
2 4 4 4 4 2 2 2 2 2

0 0 0 0 0

(4 4 )
.

2 (1 2 2 )
i A z e z

e x e z e x e z n

v k k
c

k k k k z

  
    




   
     

          
2 2 2 4

0 0 0 0
3 4 4 4 4 2 2 2 2

0 0 0 0 0

(4 8 )
.

2 (1 2 2 )
i A x z z z e

e x e z e x e z n n

v k k k k
c

k k k k z x

  
    




   
 

          
2 2 2 2

0
4 4 4 4 4 2 2 2 2

0 0 0 0 0

9
.

2 (1 2 2 )
i A z

e x e z e x e z

v k k
c

k k k k


    


   

 

 and  '

0




  is the normalized growth rate. 

 0.5083 ce   is the growth rate of beam-driven whistler waves. 

2.2.2 Ion Acoustic wave (IAW) 
Consider a low-frequency ion-acoustic wave propagating parallel to the background magnetic 

field 0B  along the z -axis i.e., 0 0 ˆB B z


, ˆzk k z


. The basic equations that are used to obtain the 

IAW dynamics are: 

The equation of motion 

0
0

( )j j j
j j j j j

v q n
m q E v B T F

t c n


     



     ,                                                               (2.16) 

The continuity equation  

.( ) 0j
j j

n
n v

t


 



  ,                                                                                                  (2.17) 

where jv is the velocity of the species (j represents e for electrons and i for ions) of IAW and 

jF is the ponderomotive force of the high-frequency whistler wave. 

When we take the parallel component of the linearized form of Eq. (2.16) for the ions and 

assume, the quasi-neutrality along with the response of electrons, we get 

            
2
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,iz s i iz ez

i

v c n F F

t n z m

   
       

                                                                              (2.18)                                                                                   
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 where 
1/2

( )B e i
s

i

k T T
c

m

 
 
 

 is the speed of IAW, Bk  is the Boltzmann Constant. ,  Te iT  are the 

temperature of electron and ion, respectively. ezF ( )izF is the component of ponderomotive force 

in z-direction produced by whistler wave.  

Differentiating Eq. (2.17) w.r.t to time again, we get 

                 
2 2

02
0.i izn v

n
t zt

 
 
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                                                                                          (2.19) 

Combining Eq. (2.18) and (2.19), we obtain the nonlinear dynamical equation of IAW  
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                                                   (2.20) 

Equation (2.20) can be rewritten as 
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2
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.                                                                  (2.21) 

Now, the Ponderomotive force of the whistler wave is defined as 

             ( *. ) ( * ).j
j j j j j w

q
F m v v v B

c
    

                                                                     (2.22) 

 Here ' 'j  denote the charged species i.e., electron and ion. Thus  jm , jv  and jq  are the mass, 

velocity, and charge of the electron and ion, respectively. c is the speed of light and wB  is the 

magnetic field due to the whistler wave. 

The velocity component of the whistler wave due to electron can be written as 
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Similarly, the velocity component of the whistler wave due to ion can be written as 
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Obtaining the ponderomotive force components owing to whistler wave by substituting the 

value of whistler wave velocity components in Eq. (2.22). 
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 where 2 2 2 2 2
1 0 0( ) .z e cek          

To obtain the dynamical equation of IAW, substitute the value of ezF  and izF in Eq. (2.21), 
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                             (2.31) 

This is the non-linear dynamics of IAW. 

We may obtain the normalized dimensionless equation of IAW by using the normalized 

parameter as in whistler wave dynamics, 
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5 62 2 2
0

,x

n
c c E

nt z z

    
        

                                                                       (2.32) 

where 
2

2
5 2

.n
s

n

t
c c

z
   
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and 
2 2 2 2 2 2 2 2 2

2 21 1 0 0 1
6 02 2 2 2 2

0 1 0

( 2 ) (1 3 )( )
.

( )
ce ce ci ce

n
e i ce n

c n e z
m m t

         
   

     
   

  

when we take the adiabatic response then Eq. (2.32) reduces to  

         26

0 5

.x

cn
E

n c
                                                                                                          (2.33) 

Using the normalized electric field, we obtained  

 

1

22 2 2 2 2 2
0 1 0

2 2 2 2 2 2 2 2 2 2
0 1 1 0 0 1

( )

( 2 ) (1 3 )( )
s e i ce n

n

ce ce ci ce n

c m m t
E

n e z

   
        

 
 

      
 , 

Now Eq. (2.15) becomes  

' 2 ' 2 2
2 ' '4 6

1 2 3' '2 '2 ' ' ' '
5

' ' ' '
' 2 0.

c cE E E E E E
i c c i i c E E i E

ct x z x z x z
     

       
      

   (2.34) 

2.3  Numerical Simulation 
To study the nonlinear dynamics of whistler, we have 

(i) MNLS (Modified Nonlinear Schrödinger Equation) model by studying Eq. (2.34). 

(ii) Modified Zakharov System of Equations (MZSE) by studying Eq. (2.15) and Eq. 

(2.32). 

The pseudo-spectral approach was used to solve these normalized dimensionless equations. 

For the temporal evolution, a finite difference approach with a step size is also used

55 10t    (Step size is normalized by 46.4 10 secnt
  ). Equations have been solved in the 

periodic domain (10 10 )  using the grid size (512 512)  but in very special cases it is 

(4096 4096) also. 

To solve these equations numerically, the imposed initial condition is: 

0( , ) (1 cos( ))(1 cos( ))x x zE x z a x z      .                                                        (2.35) 

Here, 0 0.5a   is the initial amplitude of the whistler wave and 0.1   is the magnitude of the 

perturbed electric field. The perturbation in wave-number 0.2,  0.2x z   . 



Beam-driven whistler mode………………...           Chapter 2 

35 

Jyoti, Delhi Technological University 

To begin, the algorithm's accuracy was tested by translating the model equation into the 

nonlinear Schrödinger equation (NLS) and the plasmon number's consistency i.e., 2
.kN E

k
   

This is conserved with an accuracy of the sixth decimal place. 

 The parameters used for this numerical simulation are- 

0 45B nT ,              3
0 21n cm ,            54.2 10eT K  ,     3 17.9 10  secce rad   , 0 0.2 ce  , 

51.16 10e cm   , 0.5ek  , 6 1
0 2.98 10xk cm   , 6 1

0 1.72 10zk cm   ,     0.9n ex  ,          1.32n ez  ,        

1
0nt  . 

From these parameters, we obtain 1 0.2681c   ,    2 1.0080c  ,    3 2.4398c  , 4 1.1698c  ,  

5 5
5 61.5413 10 ,  c 5.4 10c     . 

2.3.1 MNLS model   
For this, numerical simulation was carried out for Eq. (2.34). The outcomes of nonlinear 

temporal evolution are discussed here. The development of localized structures and 

corresponding fluctuations have been studied. The energy is initially limited within the whistler 

wave, but over time, nonlinear structures emerge.  As time passes, intense localization occurs, 

resulting in a chaotic structure that is distributed in the x z  plane. The ratio of magnetic 

fluctuation to the background magnetic field in the whistler turbulence is 0.0382.  Figure 2.1 

shows the electric field intensity patterns of the whistler wave. In fig. 2.1(a), whistler temporal 

evolution has been studied using snapshots taken at different times at grid size 512 512 . With 

time, the intensity of the electric field grows in the initial phase due to pumped whistler wave. 

When the amplitude of the whistler becomes large, the ponderomotive force due to the whistler 

becomes appreciable and coupling with low frequency starts operative. Therefore, background 

density modification takes place. This leads to nonlinear dynamics of whistler waves and its 

localized structure formation process starts. This process continues and these structures interact 

with each other to form sub-localized randomly distributed structures.  
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Figure 2.1 The 

evolution of the electric 

field 2
( , )xE x z  at 

different times in the x-

z plane for modified 

nonlinear schr𝒐̈dinger 

equation (in normalized 

units). 

Figure 2.2 Electric Field 

v/s time for modified 

nonlinear schr𝒐̈dinger 

equation (in normalized 

units). 

   Figure 2.2 depicts the 

evolution of the electric 

field over time. Here, 

electric field and time are 

in dimensionless units
87.9 10nE   StatV/cm, 

46.3 10 secnt
  ).  It can be seen that the behaviour of the electric field is turbulent. It is observed 

that the peak value of whistler fluctuations is of the order of 3 (mV/m) for the present 

parameters. In fig. 2.3, we have presented the Fourier transform of whistler field with frequency 

by using the data of simulation as presented in fig. 2.2. It is obvious from fig. 2.3, that 

turbulence exists in the range of frequency from 0.1 cef  to 0.5 cef  and the main power is still near 

pump whistler frequency but several peaks also present which are having power in the 

turbulence stage. Therefore, our outcomes have a close relationship with those observed by 

Zhao et al.[50] as mentioned below: 

1) It is to be noted that Zhao et al.[50] have also observed the whistler turbulence in the 

magnetic reconnection region generated by electron beam and reported that solitary 

waves exist (parallel electric field). In our case also we observed the localized structures 
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in Fig. 2.1 (Here we have converted all the components of electric field in terms of xE

by using their linear relationship). 

2) They also observed the maximum amplitude of whistler fluctuations is of the order of 

3.5 (mV/m) and in our case also, observed the maximum amplitude of whistler electric 

field of the order of 3 (mV/m) [see Fig. 2.1] which is quite nearly to the observations 

of Zhao et al.[50]. 

3) Zhao et al.[50] also studied the electric power spectra distribution (PSD) of whistler 

waves as presented in their figure 6(c). It shows the maximum power spectra 

distribution (PSD) nearby whistler frequency 0.2 cef  (as observed by us in Fig. 2.3 of 

present paper). Moreover, it is clear from the fig. 2.3 that all the intense peaks of electric 

field fluctuation occur in the range 0.1 0.5ce cef f  as reported by Zhao et al.[50]     

 

Figure 2.3  FFT plot of electric field 
against frequency for modified 
nonlinear schr𝒐̈dinger equation (in 
normalized units). 

 

 

 

2.3.2 Modified Zakharov System of Equations (MZSE) 
In this model, two coupled independent Eqs. (2.15) and (2.32) are solved. The modified density 

in whistler dynamics is due to density perturbation in IAW as a result of high amplitude whistler 

wave ponderomotive force. Whistler waves have nonlinear effects that may lead to localization. 

Numerical simulation was carried out for this coupled normalized dimensionless equation. The 

electric field intensity patterns owing to the whistler wave are depicted in Fig. 2.4. We have 

taken different times to illustrate the localized structure formation. 
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Figure 2.4 The 
evolution of the 
electric field 

2
( , )xE x z  at 

different times in 
the x-z plane for 
modified Zakharov 
equation (in 
normalized units). 

 

 

 

 

Figure 2.5 Electric 
field fluctuations 
and density 
fluctuations for 
modified Zakharov 
equation at T=50. 

 

 

 

Fig. 2.5 depicts the electric field amplitude variation and density fluctuations for the modified 

Zakharov equations. As a result of ponderomotive force, electric field is trapped in the region 

of density cavity. The top panel of the Fig. 2.5 shows the electric fluctuations for the modified 

Zakharov equations and the bottom panel is for density fluctuations (density cavitation and 

humps) for MZSE and MNLS (red dotted line for MNLS and solid blue line for MZSE). From 

this Fig. 2.5, we see that MZSE has a slightly different value of density than MNLS as expected. 

It is to be mentioned that density fluctuations for MNLS have been plotted by using eq. (2.33). 

Turbulence can be studied by cascading of energy and cavitation process using ZSE as done 

by Doolen et al.[57]. They predict the formation of localization Langmuir states (cavitons) that 

are trapped in density depletions (cavities) by Zakharov system of equations (ZSE). Nicholson 

et al.[58]  studied the turbulence by NLS and ZSE, in which electric field evolves via 

modulational instability and finally saturates into a set of solitons. Sharma et al.[59]  also 
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studied the Langmuir turbulence in ionosphere by cascading of energy and cavitation process 

by Zakharov-Boussinesq system of equations (ZBSE) and Zakharov system of equations 

(ZSE). In our present model also, turbulence is generated by cavitation and renucleation 

process by using MNLS constituted by high-frequency whistler wave and low-frequency ion 

acoustic wave. Although we have shown that turbulence by localization plots (see Fig. 2.1), 

FFT of electric field versus time (Fig. 2.3), in addition to these we have plotted a wavenumber 

spectrum on grid size ( 512 512 ) for modified nonlinear Schrodinger equation and modified 

Zakharov equations averaged between T= 49-60 and at T=40-50, respectively as shown in Fig. 

2.6 and fig 2.7.  

Figure 2.6 Power spectra of 
Electric field intensity of 
whistler wave 2

kE against 

normalized wave vector k  
for modified nonlinear 
schr𝒐̈dinger equation (in 
normalized units). 

In the present study, constant 

growth rate of beam-driven 

mode has been considered 

and, the quasi-steady state has 

not been achieved at this time and will not be achieved for further time also. 

Figure 2.7 Power spectra of 
Electric field intensity of 
whistler wave 2

kE against 

normalized wave vector k  
for modified Zakharov 
equation (in normalized 
units). 

Therefore, the question of 

discussing power spectra 

doesn’t arise but we are 

planning to overcome this 

shortcoming of the model in future by considering the growth rate whistler-intensity dependent 

(instead of taking growth rate constant). However, to visualize the turbulent spectra, when 

amplitude of the whistler wave is large enough, we switch off the growth rate of beam-driven 
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mode. Then, remodelling Eq. (2.34) into one-dimensional model, we obtain the following 

equation-  

' 2
26 4

2' '2 '
5

' '
' 0.

c cE E E
i c i E E

ct z z

  
   

  
                                                             (2.36) 

The Eq. (2.36) is simulated for grid size ( 512 512 ) to ( 4096 4096 ). Fig 2.7 & fig 2.8 depicts 

the power spectrum. The actual power spectrum in the present study is shown by a solid curve 

and we just give the scaling reference line with red (for -5/3 scaling) (as reported in literature). 

In this figure, we also get steeper spectra which can’t be compared to Biskamp et al.[43] scaling 

because we are not considering the dissipation range, as viscosity and damping are not 

included. It will be more regressive in future work where dissipation range is taken into account 

in whistler propagation. By using the general dimensional argument of Kolmogorov-

Obokhov[60],                                            

2 2

3
[ ]

u l

t t


 
  
 

 

   
2 3

(1 )
2

[ ]D u l
E

k t

 
  
 

 

where   is the energy dissipation rate and E  is the total energy. When we equate these two 

terms, we can obtain the correct scaling of (1 ) 5/3.DE k   

Figure 2.8  Power 

spectra of Electric 

field intensity of 

whistler wave 2

kE

against normalized 

wave vector k  for 

modified nonlinear 

schr𝒐̈dinger 

equation in quasi-

steady state (in 
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normalized units) on 512 512 grid size. 

Figure 2.9 Power 
spectra of Electric 
field intensity of 
whistler wave 2

kE

against normalized 
wave vector k  for 
modified nonlinear 

schr𝒐̈dinger 
equation in quasi-
steady state (in 
normalized units) on 
4096 4096 grid size. 

 

 

 

Fig. 2.10 shows the localization of whistler wave with high amplitude depicting the presence 

of turbulence.  

Figure 2.10 The evolution of 

the electric field 2
( , )xE t z  at 

different times in the t-z plane 

for modified nonlinear 

schr𝒐̈dinger equation in quasi-

steady state (in normalized 

units).  

 

 

2.4 Semianalytical Model 
          For a better understanding of the physics behind this localization of field, we have 

developed a simplified model i.e., the semianalytical model. Using this model, we have also 

calculated the characteristic transverse scale size of the localized structure.  
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    For this steady-state model, we have to consider that whistler and IAW are propagating in 

the x-z plane. For this circumstance, we obtained from Eq. (2.11) the following form:                                                                                          

 
2

2
0

exp 0,x x
x x i

E E n
P Q E E k z

z nx

  
       

                                                  (2.37)  

 where P and Q are constants defined as: 

 
 

2 2 4 2 2 4 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0

0 2 2 2 2
0

2 2 2 2
2 .

9

z e x e e x i A z i A

z

i A z

k k k v k v
P ik

v k k

       


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    

and    
2 4 2
0 0

2 2 2 2
0

4
.

9
e x

i A z

k
Q

v k k

 


   

This Eq. (2.37) is the usual equation obtained for the self-focusing of the beam. 

we assume the variation in this model, xE in terms of eikonal function ' 's  as follows: 

 0 ( , )
.0 ( , ) zik s x z

xE E x z e                                                                                             (2.38) 

We get the following expression by substituting the solution of Eq. (2.38) into Eq. (2.37) and 

then separating the real and imaginary parts, we obtain 

22
220

0 0 0 02
exp( ' ) 1 0.z x

ES S
iP E Q Qk E E E

z xx


               
                         (39) 

 And      
2

0 0
0 0 0 02

0

2 exp 0.z z i
z

E EiP S S
Qk Qk E E k z

k z x x x

  
   

   
                      (40) 

Furthermore, assuming that Eqs. (2.39) and (2.40) are solved in the form of a Gaussian beam 

profile, the following can be written as: 

                          
2 2

2 00
0 2 2

1 0 1

exp .i

E x
E k z

f r f

 
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 
                                                                 (2.41) 

                          
2

1( ) ( ).
2

x
S z z                                                                                    (2.42) 

Substituting Eq. (2.41) and Eq. (2.42) in Eq. (2.40), we obtain 

  1
1

1

.
dfa

f dz
                                                                                                                           (2.43) 
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Here, 0r  is the transverse scale size of the whistler wave in the x-direction, 1  is the slowly 

varying function of z, and 1f  is the beam width parameter of the wave. 

2 2 4 2 2 4 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0

2 4 2
0 0

(2 2 2 2 )
.

4
z e x e e x i A z i A

e x

k k k v k v
a

k

       
 

   
   

For obtaining the beam width parameter, substitute the Eqs. (2.41), (2.42) in Eq. (2.39), then 

equating the coefficients of 2x  and then we obtain the following dimensionless form of 

equation as: 

2 2 22
00 001 2

2 2 3 2
1 2 10 1 1

2 1
4 exp ,d

i

R E Ed f a
k z

a a fd r f f

 


   
     

     
                                     (2.44) 

where  2
0 0d zR k r  is the diffraction length and  

d

z

R

 
 
 

, is the distance of propagation. 
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and   
2 4 2
0

2 2 2 2 2
0

4
.

9
e x

i A z

k
a

v k k
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

  

Eq. (2.44) describes the variation of beam width parameter( 1f )  with the distance of 

propagation (  ) and it is solved by using the Runge-Kutta method with the following boundary 

condition: 1 0
1

z
f


  and 1

0

0
z

df

d 

 . It has two terms on the right-hand side with opposite signs. 

The first one is for the diverging term and the second one is for the nonlinear term. This 

equation signifies that there is competition between these two terms because both are of 

opposite signs. First-term is the diffracting term that gives the divergence and the second term 

is the non-linear term that arises due to the ponderomotive force acting on electrons. Fig. 2.11 

depicts the electric field intensity distribution of a whistler wave in the x-z plane. Here, 
7

01 3.41 10  (200 )er cm   . The electric field is very low 310 StatV/cm due to which power is 

also decreasing so diffraction term dominates till 1f  , as z propagates intensity increases of 

term exp( )ik z  and again f  decreases less than one and intensity increases as a result focusing 

increases. 
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Figure 2.11  
The intensity 
distribution of 
the electric 
field of a 
whistler wave 
in the x-z 
plane (in 

normalized 
units). 

2.5 Summary and Conclusion 
To understand the generation of whistler turbulence in the magnetic reconnection site[50], we 

have developed a nonlinear model based on (magnetic reconnection generated) electron beam 

generated whistler wave and low-frequency IAW.  By using the beam-driven positive growth 

rate for whistler as reported by Zhao et al.[50], we have first presented the initial phase of 

instability development where the beam transfers energy to the whistler wave which is having 

almost a noise level initial amplitude and slowly grows to large amplitude. When the amplitude 

of the whistler becomes large, the ponderomotive force due to the whistler becomes appreciable 

and coupling with low frequency starts operative. Therefore, background density modification 

takes place. This leads to nonlinear dynamics of the whistler wave and its localized structure 

formation process starts. This process continues and these structures interact with each other 

to the formation of sub-localized randomly distributed structures. Thus, whistler turbulence is 

developed. In the present study, a constant growth rate of beam-driven mode has been 

considered. The quasi-steady state has not been achieved at this time and will not be achieved 

for further time also. To study a fully turbulent state, the system must go into quasi-steady state. 

For this, the growth rate of beam-driven mode is considered to be zero (growth rate is switched 

off). Then remodelling the Eq. (2.34) into one-dimensional model and taking one more run for 

Eq. (2.36) with grid size ( 512 512 ) to ( 4096 4096 ). The outcomes of this numerical simulation 

indicate the presence of turbulence. We have presented the whistler electric power spectra 
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having intertidal range scaling followed by steeper scaling. This impacts the heating and 

acceleration of plasma particles in the magnetopause by changing the formation of localized 

structures and turbulent spectrum. In future, we are planning to do work by varying the growth 

rate of the beam-driven mode. To understand the underlying physics behind localizations, we 

have also developed a semianalytical model and estimated the transverse scale size of these 

structures. This is of the order of few-electron skin-depth ( 0.9 e ). It is to be mentioned here that 

this simplified semianalytical model is useful only in predicting the localized whistler structure 

and not the turbulent features which are only predicted by numerically solving nonlinear 

dynamical equations of whistler and IAW. Overall, because of nonlinear interactions, the 

power-law frequency fluctuation of the electric field spectrum gives the strong impression that 

this noise represents a fully evolved turbulence process, with electric field energy cascading to 

higher and higher frequencies. We may conclude from the preceding analysis that the 

interaction between the whistler wave and the IAW contributes to the energy cascade at lower 

scales via the production of localized structures, as mentioned above and demonstrated in our 

current investigation. 

 In the present model, we have not included the magnetic reconnection effects by including 

magnetic islands and current sheet formation on whistler turbulence. This work we are planning 

to do in future. In conclusion, our findings will contribute to a better quantitative understanding 

of beam-driven whistler-mode waves in the context of turbulence.  
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CHAPTER-3 
Localization and turbulence of Beam-Driven Whistler wave with 

Magnetosonic wave in Magnetopause 

3.1 Introduction  

In space plasma physics, heating and acceleration of plasma particles have been an active 

research era. Numerous suggestions have been put up to explain the heating and acceleration 

of plasma particles in space plasmas, but the underlying processes are still not fully understood. 

It is considered that plasma turbulence is a leading contender for particle and energy 

transmission[1], [2]. Turbulence is crucial in space plasmas because it cascades energy from 

larger to smaller scales, ultimately leading to dissipation and particle heating[3]–[7]. In 

laboratory, space, and astrophysical plasmas, magnetic reconnection is thought to emerge in a 

variety of applications. Magnetic reconnection is a fundamental plasma process of energy 

conversion mechanism, which involves changing the magnetic topology to convert magnetic 

energy into plasma kinetic and thermal energy. There is significant evidence that in 

magnetized plasmas, magnetic reconnection and turbulence are likely connected[8]–[11].  

The earth’s magnetosheath is the highly turbulent and heated region bounded by the bow shock 

and the magnetopause. Thus, it provides better conditions to investigate plasma turbulence, 

transport, and dissipation, which are the major unresolved issue in the modern space era. 

Several wave modes exist in the space plasmas[12]–[17] and non-linear interaction of these 

wave modes contribute to the formation of turbulent cascade modes. Among these wave modes, 

it is tremendously assumed that in space and laboratory plasmas whistler wave[18] plays a vital 

role. Whistler waves are observed in the magnetotail, radiation belts, and dayside 

magnetopause, among other areas of the space plasma[19]–[22]. Along with whistler wave 

modes, the magnetosonic wave (MSW) modes are also anticipated to be a prominent candidate 

for heating and accelerating the particles in space plasmas[23]–[26]. Recently, the generation 

of low-frequency MSWs through wave‐wave interactions has been reported in earth 

magnetosheath[27]. For more analysis, the 2D PIC simulation studied the magnetosonic 

turbulence and observed the cascading of energy which might contribute to the localized 

steepening of magnetic fluctuation of MSWs mode[28].  

Recently, Zhao et al.[29] observed the beam-driven whistler wave in the magnetopause region. 

They observed the solitary structures of whistler exist at cef  (where cef  is the electron 



Localization and turbulence of Beam-driven ………..  Chapter 3 

52 
 Jyoti, Delhi Technological University 

gyrofrequency). Krafft et al.[30] have studied the beam-driven Langmuir turbulence involving 

density fluctuations. Reeves et al.[31] have experimented with beam-plasma interactions to 

study and characterize fundamental wave-particle interactions by generating whistler waves 

using a modulated electron beam. Narita et al.[32] observed whistler turbulence on electron 

scale in the solar-wind region along with the magnetic power spectrum. Broadband spectrum 

of whistler mode, magnetic field fluctuations have been observed in the vicinity of 

magnetopause[33]. Karpman et al.[34] studied the nonlinear theory of localized whistler wave 

structures by non-linear Schrödinger system of equations (NLS) which leads to the formation 

of density enhancements that trap whistler waves. Das et al.[35] demonstrated the turbulent 

spectrum of whistler wave via nonlinear coupling of whistler waves with magnetosonic 

perturbations, thereby leading to the formation of nonlinear coherent structures. This 

broadband spectrum at magnetopause may result from a cascade of spectral power from low to 

high frequencies as the result of gradient-driven instabilities. 

Biskamp et al.[36] studied the electron magnetohydrodynamic (EMHD) turbulence and studied 

the various wave modes and also observed turbulent structures and the energy spectrum kE , 

follows the Kolmogorov-type scaling, 5/3~kE k   for 1ek   and 7/3~kE k   for 1ek   by high-

resolution numerical simulations. After that, Das and Diamond[37] examined the EMHD 

turbulence and linear properties of whistler waves through numerical simulation. 

It is evident from the literature that the energy cascade arises from turbulence and also weak 

turbulence theory is mediated by the non-linear interactions of whistler waves[38]. Langmuir 

turbulence is studied by nonlinear Schr𝑜̈dinger equation (NLS) and Zakharov equations (ZSE), 

numerically solved for an initial condition through modulational instability and finally 

saturates into solitons structure[39]. Doolen et al.[40] used Zakharov system of equations 

(ZSE), and Sharma et al.[41] used Zakharov-Boussinesq’s equations to study the Langmuir 

turbulence using cascading of energy and cavitation process.  

Although, Non-linear whistler wave along with solitons, radiation, self-focussing, and 

modulational instability has been studied in past by Karpman[34]. Later on, a few scientists 

also worked on wave turbulence. Although, a lot of studies have been done on whistler waves 

as discussed above but to the best of our knowledge specific research on beam-driven whistler 

turbulence has not been revealed. Recently, Jyoti et al.[42] studied beam-driven whistler 

turbulence on account of nonlinear density perturbations by ion-acoustic waves (IAWs). They 

studied the nonlinear structures and turbulence by cavitation process by modified Zakharov 
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system of equations. But in the magnetopause reconnection region along with Whistler waves, 

magnetosonic waves (MSWs) are frequently observed and these MSWs have magnetic 

perturbations along with density perturbations. Therefore, Jyoti et al.[42] work is not applicable 

in these realistic situations because magnetic perturbations may provide significant 

contributions to nonlinear structure formation and turbulence generation in the presence of 

beam. 

Motivated from the previous studies, in the present work we have provided a model to explain 

how energetic electron beams (generated by the magnetic reconnection process) leads to 

whistler turbulence in the magnetic reconnection region of the magnetopause, as seen by the 

Magnetospheric Multiscale Mission (MMS)[29]. The intense electron beam source has been 

used in place of the magnetic reconnection mechanism in this instance.  

Here, we have proposed a model in which the beam-driven whistler waves are studied.  From 

the energy of the beam, the amplitude of beam-driven modes grows from the noise level to the 

higher values such that ponderomotive force will create the nonlinear effects in the whistler 

waves which leads to the localization and turbulence of whistler waves. 

For this purpose, we have proposed that the number density of pump whistler wave becomes 

disturbed in the presence of the MSWs, and the components of ponderomotive force of whistler 

are taken into account in the MSWs dynamics (Since MSWs is an electromagnetic wave, we 

have considered perturbation in density as well as in magnetic field i.e., 0 0,  n n n B B B    

). Then, the governing equations of the whistler wave and the MSWs are framed in the form of 

coupled nonlinear equations. For these nonlinear equations, numerical simulation is carried out 

using the finite difference with modified version of predictor-corrector method for temporal 

integration and the pseudo-spectral method for spatial integration. The outcomes of the 

numerical simulation show the localization and turbulent state of whistler wave. The objective 

of our current work is to examine the localized structure and turbulent spectra in the 

magnetopause region.  

The paper is organized as follows: Section 2 presents the model equations, which present the 

derivation part of the dynamical equation of the whistler wave and the magnetosonic wave. 

Section 3 presents the numerical simulation. Section 4 presents the semianalytical method. 

Section 5 concludes the results, conclusion, and future recommendations of the current work 
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3.2  Model equations 

The proposed theoretical model describes whistler turbulence in plasma near the magnetopause 

by taking background density fluctuations into account. In this work, Whistler turbulence 

induced by electron beams was believed to be well-developed. We have taken into account low 

and high-frequency plasma responses, density fluctuations, slow and fast wave dynamics 

including other linear and non-linear processes like wave coupling and ponderomotive force. 

The analysis consists of two parts. Initially, the dynamical equation of high-frequency whistler 

waves is solved. Later, the dynamical equations of MSWs and the relationship between low-

frequency MSWs and high-frequency whistler waves are discussed. 2D whistler wave system 

using an electron beam is characterized by a two-fluid model, considering positive growth rate 

of beam-driven whistler in our computation. Hence, phenomenologically, an instability growth 

rate ' 0   is into whistler dynamics.  

3.2.1  2D Whistler dynamics  

 The whistler wave dynamical equation is obtained using a two-fluid model. The whistler wave 

is propagating in a magnetized plasma with the magnetic field along the z-axis and wave vector, 

0 0ˆ ˆx zk k x k z 


. Here, 0 ( )B B B  is the magnetic field, 0B  the background magnetic field, and 

B  the perturbation in the magnetic field.  

 The governing dynamical equation of whistler wave can be written as (please see the appendix-

A for a detailed derivation of whistler’s dispersion relation) 
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For this Eq. (3.2), the following envelope solution is assumed. 

                            0 0 0ˆ ˆ( )( , , ) x zi k x k z t
y yE E x z t e   .                                                                (3.3) 

Since, the nonlinear whistler wave dynamical equation is achieved by considering the effect of 

a strong whistler wave, substituting Eq. (3.3) in Eq. (3.2) -  
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                                 (3.4) 

where, 0 0,  x zk k are wave vector components related to the background whistler magnetic field 

Using the normalizing parameter,   

01/ .nt   
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Thus, the normalized dimensionless form of Eq. (3.4) is as 

' 2 ' 2 ' ' ' 2 '

1 2 3' '2 '2 ' ' ' '

' ' ' '
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     
   

                                   (3.5)  

where Eq. (3.5) depicts the normalized dynamical equation for the beam-driven whistler wave 

which leads the turbulence. To describe the beam instability, we have incorporated 

phenomenologically '  represents normalized growth rate and in our simulations 0.5083 ce   

which is consistent with the observations of Zhao et al.   

where  
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 and  '

0




  where  0.5083 ce   is the normalized growth rate, where  0.5083 ce   is the 

beam-driven whistler wave growth rate. 

3.2.2  Magnetosonic waves (MSWs) 

Consider a magnetosonic wave propagating in the x-direction, i.e., 0 ˆxk k x


 along with the 

background magnetic field in the z-direction, i.e., 0 ˆB B z


. The electric field is polarised in y-

direction i.e., ˆyE E y


. The dynamical equation for the magnetosonic wave is obtained from the 

basic equations that are given below: 

Equation of motion 

( . ) ( ) .j j
j j j j j j

v q
m v v q E v B F

t c

 
       

                                                                        (3.6) 

Equation of continuity 

.( ) 0j
j j

n
n v

t


 



                                                                                                        (3.7) 

Faraday’s law 

1 B
E

c t


  




                                                                                                            (3.8) 

Ampere’s -Maxwell’s equation 

4 1 E
B J

c c t

 
  



 
,                                                                                                    (3.9) 

where j denotes the particle species ( j i  for ion and e for the electron) and , , ,j j j jm v q T denotes 

the mass, velocity, charge, and temperature of the species respectively. 0n  is the background 

density. jF is the ponderomotive force due to the whistler wave given below: 



Localization and turbulence of Beam-driven ………..  Chapter 3 

57 
 Jyoti, Delhi Technological University 

( *. ) ( * ).j
j j j j j

q
F m v v v B

c
    

                                                                                        (3.10) 

Using the velocity components of electron and ion (please see the appendix-1 for velocity 

components) in Eq. (3.10), and then using Eq. (3.7) with approximation ,ci  then we 

obtained the following form of equation: 

2 2

62 2
0

ey iy

i

F Fn
c

n x mt x

    
          

,                                                                        (3.11) 

Further, on putting the values of ponderomotive components in Eq. (3.11), we obtain the 

following equation:  

2 2 2
2

6 72 2 2
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y

n
c c E

nt x x

   
      

,                                                                            (3.12)                                       

where 6 7,c c are the constant, whose value is given below: 
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 is the speed of the sound wave. And, 2 2 2 2 2
1 0 0( ) .e cek         

Now, using the same normalizing parameter as we have used in the dynamics of whistler wave 

i.e., ,n nx z  and nt . After taking the adiabatic response of Eq. (3.12), we obtain 

1
2 2

6
2

0 7

1 n
n

n

c x
E

n c t

  
   
   

 

we obtain the following normalization equation,       

   
27

6

' y

c
n E

c
                                                                                                                   (3.13) 

 using this Eq. (3.13) in Eq. (3.5), we obtain 

' 2 ' 2 ' ' ' 2 '
2 ' ' ' '7 4

1 2 3 5' '2 '2 ' ' ' '
6

 2 0,y

c cE E E E E E
i c c i i c E E c nE i E

ct x z x z x z
     

        
      

                     (3.14)  
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3.3 Numerical Simulation 

Using the 2D pseudo-spectral approach, numerical simulation has been performed. We 

implemented a pseudo-spectral method for space integration (in x-direction) having periodic 

length 2 /x xL   , and a finite difference method with modified version of Gazdaz43 

predictor-corrector method (in z-direction) for time evolution. For solving the system of 

dimensionless equations, authors have studied the algorithm of nonlinear Schr𝑜̈dinger (NLS) 

equation into following two steps- 

(i) The testing of invariants plasmon number 2

k
k

N E  with grid points and time steps is 

given below (NLS) 

Table 1. Testing of invariants with Grid points 64 

Time steps (dt) -510  610  710  810  

N 9.99999997 9.999999996 1.00000000007 1.00000000007 

 

Table 2. Testing of invariants with time steps 55 10dt   ( This step size 55 10dt    is also 

used for the finite difference method to monitor the invariants of NLS equation to desired 

accuracy) 

 

Grid points 64 128 256 512 

N 9.9999991 9.999997 9.9999994 9.9999998 

 

(ii) modified for present case and applied to magnetopause parameters below:- 

For numerical simulation, equations have been solved in the periodic domain (10 10 )  with 

the grid size (512 512) . The initial conditions used for the numerical simulations is given in 

Eq. (3.15) and their parameters are listed in Table 3. 

                0( , ) (1 cos( ))(1 cos( ))y x zE x z E x z      ,                                                  (3.15)  

Table 3. Parameters used for initial conditions in numerical simulations. 

Parameters Initial amplitude 

0E  

Perturbed electric field 

  

Perturbation in wavenumbers 

x  z  
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(Normalized by 
1

nx ) 

(Normalized by 
1

nz ) 

Values 0.5  0.1 0.2  0.2  

 We have presented the results of the numerical simulation of dimensionless equations (3.5), 

(3.12), and (3.14) applicable to the magnetopause region.  For application purposes, the typical 

parameters for numerical simulations are given in Table 4. 

Table 4 Various parameters used for numerical simulations. 

Parameters  Values  

Background magnetic field, 0B  54.5 10 G  

Background density, 0n  3
0 21n cm  

Normalized magnetic field nB , and 

electric field nE  

61.60 10nB G  and  

76.8 10nE   StatV/cm 

,  z  and tn n nx  5 5 4 1.05 10 , 1.54 10 , 6.31 10 .n n nx cm z cm t s       

Constants  1 0.2681,c   2 1.0080,c  3 2.4398c  , 4 1.1698,c 

0.1775nc  , 5
6 1.5413 10c   ,  5

7 5.4 10c   . 

                                                                                                                                                                        

   For solving the set of dimensionless Eqs. (3.5), (3.12), and (3.14), we have developed two 

models: 

a) Modified Nonlinear Schrödinger Equation (MNLS model) 

b) Modified Zakharov System of Equations (MZSE model) 

After checking the accuracy of the algorithm, it has been modified for the set of dimensionless 

equations, which is used to study the nonlinear coupling of whistler and magnetosonic waves. 
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Figure 3.1 The 

normalized spatial 

evolution of whistler’s 

electric field in 3D in 

magnetopause by MNLS 

model at (a) t=0, (b) 

t=29, (c) t=22, (d) t=40, 

(e) t=48, (f) t=50. 

First, we present the 

results of the numerical simulation of MNLS model. For MNLS model, the numerical 

simulation of equation (3.14) was carried out. Fig. 3.1 depicts the spatial evolution of electric 

field intensity of whistler in x-z plane. The figure shows that at an initial time, the electron 

beam imparts energy to the system and localized structures are formed with increasing 

amplitude. But, at later stage when whistler amplitude reaches its peak value then system transit 

to the turbulent regime and we get chaotic structures. These localized structures are the results 

of the ponderomotive force nonlinearity-driven density modification.  

Figure 3.2  Evolution 

of electric field 

fluctuations with 

time by MNLS 

model. 

Fig. 3.2 depicts the 

fluctuations of 

electric field with 

time. it shows the turbulent whistler and for the present computation, whistler fluctuations peak 

value is around 1.8mV/m for the present parameters. We have also checked that most of the 

power is near the pump frequency of whistler in the frequency band 0.1 0.5ce cef f as observed 

by Zhao et al.[29]. 
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Figure 3.3 The 

normalized spatial 

evolution of 

whistler’s electric 

field in 3D in 

magnetopause by 

MZSE model at 

(a) t=0, (b) t=20, 

(c) t=25, (d) t=32, 

(e) t=45, (f) t=55. 

 

Fig. 3.3 depicts the spatial evolution of electric field intensity of whistler wave for MZSE 

model.  Initially, electron beam imparts energy to the system and at later stage when whistler 

attains peak value of its amplitude then system transit to the turbulent regime, and 

corresponding localized structures are formed. Fig. 3.4 depicts the 3D spatial evolution of the 

density profile at normalized time t=50. It shows the density cavities and humps in the real 

space associated with the MSW induced by ponderomotive nonlinearity of whistler waves. The 

low-frequency MSWs perturbation couples nonlinearly with the pump whistler wave as a result 

of ponderomotive force. The whistler wave contributes energy to the perturbation as a result of 

this nonlinear interaction. Due to the low-frequency MSW's disturbance of the background 

density, the whistler's phase velocity is altered. Whistler waves get focussed and defocused as 

a result of phase velocity variation, which localises the wave field. 

Figure 3.4 3D spatial 

plot of density 

cavitation at t=40, with 

accumulation and 

depletion regions as 

acquired by numerical 

simulation.  
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Consequently, whistler breaks down into filamentary structures. This localization process 

reveals energy exchange between pump whistler and magnetosonic waves. Fig. 3.5 illustrates 

the density fluctuations and amplitude variation of electric field for the MZSE. As a 

consequence of ponderomotive force, electric field gets trapped in the density cavity region. 

The modified Zakharov equation’s electric fluctuations are shown in the top panel of Fig. 3.5, 

and density fluctuations (density cavitation and humps) for MZSE and MNLS are shown in the 

bottom panel (red and blue dotted lines correspond to MNLS and MZSE, respectively). This 

graphic demonstrates that MZSE and MNLS have slightly different density values, as would 

be expected. It should be noted that Eq. (3.12) was used to plot density fluctuations for MNLS.  

Figure 3.5 2D spatial plot of 

density cavitation and 

electric field fluctuations for 

MZSE at t=40. 
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Figure 3.6   Evolution of electric field fluctuations  

power spectra at t=59 by MNLS model.        
 Figure 3.7   Evolution of 
electric field fluctuations power 
spectra at t=53 by MZSE model. 

Fig. 3.6 and 3.7 depict the wavenumber spectrum on (512 512) grid size for MNLS and MZSE 

model for time ensembled average T=50-60 and at T=53 respectively. In the current analysis, 

the constant growth rate of beam-driven mode ( 0.5083 )ce   has been taken into account, and 

the quasi-steady state has not yet been achieved and won’t be for some time. Therefore, it is 

unnecessary to explain the power spectra but we are planning to do our next problem by 

overcoming this shortcoming by considering the intensity-dependent growth rate. But after the 

whistler wave’s amplitude is large enough to be seen, the beam-driven mode’s growth rate is 

switched-off. Then remodeling Eq. (3.14) from 2D to 1D in the form of the following equation- 

' 2 ' '
2 ' '7 4

2 5' '2 '
6

 0,y

c cE E E
i c i E E c nE

ct z z

  
    

  
                                                         (3.316) 

Then we simulated Eq. (3.16) for grid size (4096 4096) . The power spectra (Fig. 3.8 of whistler 

waves have been studied to investigate the energy cascading from larger to lower scales due to 

the localization process. The ensemble average for several electric field power spectra at the 

dynamic time range is implemented graphically for the quasi-steady state. The plot of 

ensembled averaged 2

kE  against k  has been considered in this study, which is indicative of 

the power possessed by spatial modes between normalized time t=65-80, consisting of 15 

spectra [Fig. 3.8]. Fig. 3.9 depicts the localized structure of whistler waves with high amplitude. 
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Figure 3.8 Power spectra of 

Electric field intensity of 

whistler wave 2

kE  against 

normalized wave vector k for 

modified nonlinear 

Schrödinger equation in 

quasi-steady state (in 

normalized units) on 

4096 4096  grid size. 

 

 

Figure 3.9  The 
evolution of the electric 

field 
2

( , )yE t z  at 

different times in the t-
z plane for modified 
nonlinear Schrödinger 
equation in quasi-
steady state (in 
normalized units). 

 

3.4 Semianalytical Model 

          We have created a semianalytical model, to help us better grasp the physics underlying 

this localization of field. Also, we have determined the characteristic transverse scale size of 

the localized structure using this model. 

For this steady-state model, whistler and MSWs propagation in the x-z plane must be 

considered. In this case, we deduced the following form from Eq. (3.5)- 

 
2

1 2 3 42
0 0

exp 0,y y
y y y i

E E n B
a a a E a E E k z

z n Bx

      
            

                                                              (3.17)  

 where a1, a2, a3, and a4 are constants defined as: 
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Self-focusing of the beam is described by Eq. (3.17).  

By taking the variation in electric field yE in terms of function eikonal ‘s’ as follows 

0 ( , )
.0 ( , ) zik s x z

yE E x z e                                                                                              (3.18) 

Now, Using Eq. (3.18) into Eq. (3.17) and equating the real and imaginary parts, we obtain 

22
220

1 0 2 2 0 0 02
exp( ' ) 1 0.z x

ES S
ia E a a k E E E

z xx


               
                                     (3.19) 

 And      
2

0 01
2 0 2 0 0 02

0

2 exp 0.z z i
z

E Eia S S
a k a k E E k z

k z x x x

  
   

   
                                 (3.20) 

Additionally, assuming the solution of Eqs. (3.19) and (3.20) are of Gaussian beam profile, we 

have 

                          
2 2

2 00
0 2 2

1 0 1

exp .i

E x
E k z

f r f

 
  

 
                                                               (3.21) 

                          
2

1( ) ( ).
2

x
S z z                                                                            (3.22) 

Substituting Eqs. (3.21) and (3.22) in Eq. (3.20), we obtain 

  1
1

1

.
dfa

f dz
                                                                                                                 (3.23) 

2 2 4 2 2 4 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0

2 4 2
0 0

(2 2 2 2 )
.

4
z e x e e x i A z i A

e x

k k k v k v
a

k

       
 

   
   

Here, 1  is the slowly increasing function of z, 0r  is the characteristic transverse scale size of 

the whistler wave along with x-direction, and 1f  is the beam width parameter of the wave. 
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Substituting Eqs. (3.21), (3.22) in Eq. (3.19) and equating coefficients of 2x , we obtain the 

dimensionless form beam width parameter- 

2 2 22
00 001 2

2 2 2 3 2
1 2 10 0 1 1

2 1
4 exp ,d

i

R E Ed f a
k z

a a fd r r f f
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     
                                                         (3.24) 

Where  2
0 0d zR k r  is the diffraction length and  
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, is the distance of propagation. 
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Eq. (3.24) depicts the variation of 1f (beam-width parameter) and  ( distance of propagation). 

Using the Runge-Kutta method with the boundary conditions: 1 0
1

z
f


  and 1

0

0
z

df

d 

 , Eq. 

(3.24) is solved. On the right side, there are two words with opposing signs. First, there is one 

for the diverging term, and then there is one for the nonlinear term. The fact that both 

components in this equation have opposing signs indicates that they compete. The first term, 

which causes the divergence, is a diffracting term. The second term, which results from the 

ponderomotive force acting on the electrons, is non-linear. Fig. 3.10 depicts the electric field 

intensity distribution of a whistler wave in the x-z plane. Here, 7
01 3.41 10  (200 )er cm   . The 

electric field is very low 310 StatV/cm due to which power is also decreasing so diffraction 

term dominates till 1f  , as z propagates intensity increases of term  exp( )ik z  and again f  

decreases less than one and intensity increases as a result focusing increases. 
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Figure 3.10 The 
normalized electric 
field intensity 
variation of pump 
wave in x-z plane 
obtained by the semi-
analytical model after 
incorporating the 
density harmonics 
from simulation 
results. 

 

 

 

3.5 Summary and Discussion 

In the current analysis, we have studied the MNLS and MZSE model involving the nonlinear 

interactions of high-frequency whistler wave and low-frequency MSWs, where the coupling 

among these waves is due to ponderomotive nonlinear force. However, in this scenario, the 

energetic electron beam source has replaced the magnetic reconnection mechanism. As a result, 

the dynamics of beam-driven whistler-mode have been set up with the reckoning that it will 

mount up from the noise level due to beam energy to large amplitude such that nonlinear effects 

due to nonlinear ponderomotive force will lead to the localization of whistler wave, and 

ultimately, to the turbulent state. On the account of this nonlinear ponderomotive force, 

whistler wave gets localized and density cavities and humps are formed. Our attention will be 

drawn to three key aspects of plasma turbulence: its existence, scaling rules, the contribution 

of small-scale coherent structure to plasma heating, and the effect of density fluctuations on 

the rate at which turbulent energy cascades. In our current analysis, the cavitation and 

renucleation process generates turbulence by using the MNLS model established by low-

frequency MSW and high-frequency whistler. Numerical simulation has been done to study all 

these aspects. Also, quasi-steady state has not been achieved due to the constant growth rate of 

beam, so to study the quasi-steady state of the system, we remodel the simulation Equation 

(Eq. (3.14)) into t-z domain for grid size (4096 4096) . The consequences of this numerical 

simulation manifest the presence of turbulence. We have also examined the power spectra of 

whistler wave (Fig. 3.8) in 1D for grid size (4096 4096) . For 1ek  , the power spectrum 
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follows scaling 5/3~ k   , and for 1ek  , it follows scaling 7/3~ k  , known as Kolmogorov’s 

scaling as reported in the literature which may result in the particle acceleration and heating of 

particles. We have also devised a semianalytical model and determined the transverse scale 

size of these structures to help us comprehend the physics that underlies localizations. 

Consequently, owing to nonlinear interactions, the power-law fluctuation of the electric field 

spectrum gives a huge impact that this noise is a well-grown turbulence process, with electric 

field energy cascading to higher frequencies. The depth of this is in the range of few-electron 

skin ( 0.19 e ). The outcomes of the study show the whistler turbulence in the magnetic 

reconnection sites created by the electron beam and show localized structures and whistler 

fluctuations which are to the observations of Zhao et al.[29]. 

The effects of magnetic islands and current sheet generation on whistler turbulence due to 

magnetic reconnection have not been accounted for in the existing model. We want to carry 

out this task in the future. In conclusion, our research will help to improve the quantitative 

knowledge of whistler-mode waves generated by beams of light in turbulent environments. 
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CHAPTER-4  
 

Localization of Beam Generated whistler wave and turbulence generation in 

reconnection region of magnetopause 

4.1 IntroducƟon  
One of the most important plasma phenomena is known as magnetic reconnection, which includes 

a swift topological switch in the magnetic field and an effective conversion of magnetic energy to 

the kinetic energy. In laboratory, space, and astrophysical plasmas, magnetic field lines alter their 

topology and transform magnetic energy into plasma particles by acceleration and heating. 

Magnetic reconnection may be seen in the generation of solar flares, coronal mass ejections, and 

the interface of solar winds with the Earth's magnetosphere, and it is considered to originate during 

the formation of stars[1]–[8]. The astonishing potential of astrophysical plasmas to establish 

magnetic structure ultimately leads to the accumulation of magnetic energy inside stressed areas, 

including current sheets. During the process of magnetic reconnection, which results in a 

reconfiguration of the magnetic field as well as high-speed flows, thermal heating, and nonthermal 

particle acceleration, this stored energy is frequently released explosively[9]–[15]. Also, a review 

article on the theory of magnetic reconnection has been reported earlier[16]. Recently, the 

coalescence process of numerous magnetic islands originally created in an extended current sheet 

has been studied, with a particular emphasis on the scaling of the size of the inner structure of the 

coalesced islands and the accompanying progressive plasma heating process[17]. The reconnection 

can be examined in situ through space applications and laboratory studies[18]. However, only in 

situ space observations can offer precise data on the fields and particle distribution functions. 

In space plasma, turbulence is prevalent and is recognized to play a significant role as it cascades 

energy from large to smaller scales, ultimately leading to dissipation and particles heating. There is 

mounting evidence that in magnetized plasmas, magnetic reconnection and turbulence are closely 

related[19]–[22]. The Earth's magnetosheath, magnetopause, and magnetotail are all potential sites 

for magnetic reconnection[23], [24]. Many authors have explored how turbulence affects the rate 

of reconnection, specifically how turbulence already present might change Sweet-Parker 

reconnection and how turbulence may form because of reconnection[19]. Forced turbulence 

experiments indicate that turbulent reconnection is quicker than laminar reconnection, and the 

reconnection rate rises with increasing turbulence level [25].  
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Additionally, magnetic reconnection itself causes turbulence, which feeds back on itself. Many 

previous studies investigated the turbulence described as the nonlinear evolution of field and large-

scale islands produced at reconnection zones producing the multiple X-O point[26]. Eastwood et 

al.[27] reported the spacecraft observations of turbulence generated by the magnetic reconnection 

and fluctuations in electric, magnetic field followed by power law of scaling -5/3 and -8/3. Dynamic 

alignment models[28]–[30] of turbulence tend to anticipate perpendicular spectral indices close to 

-3/2, whereas the original 'GS95' model[31], which does not include dynamic alignment, predicts a 

spectral index of -5/3. Surprisingly, it has yet to be determined quantitatively which of these two 

types of models is true. The new perspective on reconnection relevant in space and astrophysical 

contexts, where plasma is generally in a fully turbulent regime is numerically analysed by 

simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large 

number of X-type neutral points where magnetic reconnection occurs[32]. Numerical and analytical 

studies suggest that when magnetic reconnection events occur within the turbulent plasma, they can 

disrupt these idealized scaling laws[30], [33]. Franci et al.[34]  provide numerical evidence that 

magnetic reconnection can act as a driver for the onset of the sub-ion turbulent cascade. But 

Adhikari et al.[35] gives a new direction on relation of reconnection and turbulence, they examine 

the properties of energy transfer in reconnection and turbulence and found that the energy transfer 

in both simulations is found to be structurally very similar, with most of the energy transfer 

occurring through incompressive channels. This provides evidence that reconnection dynamics 

involves energy transfer analogous to standard turbulence. Recently Adhikari et al.[36] extend the 

turbulence diagnostics to the case of guide field reconnection and determine how the degree of 

magnetic shear modifies the turbulence-like properties of reconnection. Although turbulence and 

reconnection appear to be closely related and it is known that turbulence impacts reconnection, the 

mechanics of their interaction is still not entirely established.  

Different wave modes are detected in earth’s reconnection region, like whistler wave[37]–[43], 

electron cyclotron waves[38], [44], kinetic Alfvén waves[45], [46], upper hybrid waves[47], [48], 

lower hybrid waves[49], [50], and electrostatic solitary waves[51]–[53]. Several waves, including 

whistler-mode, have been seen at the magnetic reconnection regions generated due to the energetic 

electron beam[41], [54]–[56]. Recently, whistler-mode has been reported at Mars[57] and their 

generation mechanism in magnetic reconnection is based on in situ measurements from Mars 

Atmosphere and Volatile Evolution Mission (MAVEN). Cerri et al. also observed that large-scale 

turbulent motions establish a scaling of -5/3 spectrum at 1ik   and, at the same time, feed the 
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formation of current sheets where magnetic reconnection occurs[58]. They also investigated the role 

of fast magnetic reconnection in the development of a quasi-steady turbulent state by means of 2D-

3V high-resolution Vlasov–Maxwell simulations. In past, Stenflo et al.[59] reported the nonlinear 

coupling of electron whistler mode and magnetosonic waves but without considering the concept 

of magnetic island and found the relevance to the non-thermal fluctuations in magnetic field which 

lead to the plasma heating. 

 The present work related to whistler wave generation and it’s development into localized coherent 

structures in the presence of magnetic islands is motivated by Zhao et al.[55] work in which the 

coherent structures of whistler wave at magnetic reconnection locations has been reported due to 

intense electron beams. Using findings from the Magnetospheric Multiscale (MMS) mission, they 

studied the whistler waves generated by intense electron beam in the dayside magnetosphere and 

observed the maximum growth rate of the wave at 0.53ek   within the frequency band of 

0.1 0.5 .ce ce   Here, e  is the electron skin-depth, k is the wave number, and ce  is electron 

gyrofrequency. Although, at initial stage these structures are coherent, but it is expected that at later 

stage it might be turbulent. To the best of our knowledge, no particular research concerning beam-

driven whistler localization and turbulence has been documented in the previously reported work, 

despite a few works having been described in the framework of beam-driven turbulence[60], [61] 

but without taking the influence of magnetic islands.  

The main goals of this study are to illustrate significant developments in understanding the 

generation of whistler wave due to the intense electron beam at magnetic reconnection as observed 

by magnetospheric multiscale mission (MMS)[55], and under the influence of magnetic island. In 

order to achieve this, a three-dimensional model of a beam-driven whistler wave has been 

developed. In this model, the whistler wave initiates out owing to the beam’s energy and grows to 

a huge amplitude, where nonlinear effects from the ponderomotive force cause the whistler wave to 

localize, which ultimately causes the turbulent state. To grasp the nonlinear phase of wave 

development and saturation, we take into account the nonlinear interaction of a low-frequency ion 

acoustic wave (IAW) and a high-frequency whistler wave, as well as the ponderomotive 

nonlinearity caused by the whistler wave. Along with this, we are also analyzing the dynamics of 

nonlinear whistler wave in the presence of magnetic islands. Then, the governing equations for the 

IAWs and the whistler wave are then formulated as coupled nonlinear equations and numerically 

solved with the pseudo-spectral method for spatial integration and a modified version of predictor-

corrector method for temporal integration.  
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The content of this paper is organised as- In section 2, dynamics of 3D whistler wave generated by 

intense electron beam is derived. Dynamics of ion acoustic wave is discussed in section 3. 

Numerical simulation methods and results obtained from simulation are discussed in section 4. In 

order to understand the basic physics behind the localization we have also studied the semianalytical 

model in section 5. Summary and conclusion of our current research work is given in section 6. 

4.2 Dynamics of Model 
4.2.1 Beam-driven whistler wave dynamics 
The dynamical equation for a 3D whistler wave with an ambient magnetic field along the z-axis in 

a magnetized plasma propagating in the x, y, and z planes with a wave vector ˆ ˆ ˆx y zk k x k y k z  


, is 

derived utilizing two fluid models. The governing dynamical equation of 3D whistler wave in terms 

of electric field can be written as (the detailed derivation has been given as Appendix-A)  
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For this Eq. (4.2), the following envelope solution is assumed.  

0 0 0 0ˆ ˆ ˆ( )( , , , ) x y zi k x k y k z t

z zE E x y z t e    .                                                                                        (4.3) 

By taking into account the impact of a whistler wave on the background density and relieving the 

aforementioned solution into Eq. (4.2), we can obtain the dynamical equation of a nonlinear 

whistler wave propagating through plasma 
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                          (4.4) 

where 0 0,  x yk k and 0 zk are wave vector components of whistler related to the background magnetic 

field are given as, 2 2 2 2
0 0 0 0x y zk k k k  . Here 'n  denotes the modified density, i.e., 0'n n n  , and 

0

n

n

  

denotes the pertubation in plasma density due to non-linear whistler wave. we have used the relation 

of the magnetic field and vector potential 0

0 0

.y z

z

B A

B A

 
 

 
 ( zA , is the vector potential associated with 

magnetic field.)  

    Eq. (4.4) in normalized dimensionless form is given as 
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                                   (4.5) 

where Eq. (4.5) represents the whistler wave's normalized dynamical equation, which causes 

turbulence. The normalizing parameter are- 

01/ .nt   
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In this section, the beam instability that generates the whistler wave will be described. The growth 

rate of whistler wave generated by an energetic electron beam, i.e., is included phenomenologically 

and its value corresponding with the data published by (Zhao et al., 2021[55]) will be utilized in 

simulations here. The field perturbation due to magnetic islands field is incorporated in our model 

[62], 
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. So, using the profile of field perturbation Eq. (4.5) modifies as- 
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

  is the normalized growth rate.  0.5083 ce   is the growth rate of beam-driven whistler 

waves.  
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4.2.2 Ion AcousƟc wave (IAW) dynamics 
Consider a low-frequency ion-acoustic wave propagating parallel to the background magnetic field 

0B  along the z -axis i.e., 0 0 ˆB B z


, ˆzk k z


. To establish the IAW dynamics, the following key 

equations are used: 

The equation of motion 

0
0

( ) .j j j
j j j j j

v q n
m q E v B T F

t c n


     



                                                                            (4.7) 

The continuity equation  

.( ) 0.j
j j

n
n v

t


 



                                                                                                        (4.8) 

where jF  denotes the ponderomotive force of the high-frequency whistler wave and jv denotes the 

velocity of the species (j stands for an electron's velocity ‘e’ and ‘i’ for an ion's velocity) of IAW. 

When we assume the quasi-neutrality along with the response of the electrons and use the parallel 

element of the linearized version of Eq. (4.7) for the ions, we obtain 
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 where 
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 denotes the IAW’s, Bk  denotes the Boltzmann Constant. ,  Ti eT  are the 

temperature of ion and electron, respectively. ezF ( )izF  denotes the constituent of ponderomotive 

force in z-direction formed by whistler wave.  

Differentiating Eq. (4.8) w.r.t to time again, we get 
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                                                                                    (4.10) 

Combining Eq. (4.9) and (4.10), we obtain the nonlinear dynamical equation of IAW  
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                                                      (4.11) 

Equation (4.11) can be redrafted as 
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Now, the Whistler Wave's Ponderomotive Force is stated as 
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c
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                                                                   (4.13) 

Here, the charged species (ions and electrons) are indicated by ' 'j . Thus jq , jv  and jm denotes the 

charge, velocity, and mass of ion and electrons, respectively. Magnetic field due to the whistler 

wave is denoted by wB and c denotes the speed of light. 

The whistler wave's velocity component owing to electrons may be expressed as 
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In a similar manner, the velocity element of the whistler wave generated by an ion may be expressed 

as 
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Relieving the value of the whistler wave velocity components in Eq. (4.13) to obtain the 

ponderomotive force components[63] related to whistler waves. 
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By substituting the value of izF and ezF  in Eq. (4.12), one may derive the dynamical equation of 

IAW,                                  
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The above Eq. (4.20) represents the non-linear dynamics of IAW. By applying the 

normalized parameter just like in dynamics of whistler wave, one may establish the 

normalized dimensionless equation of IAW. 
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                                                                         (4.21) 
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Eq. (4.21) simplifies to when we assume the adiabatic response. 

         213

0 12

.z

cn
A

n c
                                                                                                  (4.22) 

Using the normalized electric field, we obtained  
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Now Eq. (4.6) becomes  
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       (4.23) 

The values of numerical constants are given in below- 

3
0 21 ,n cm  0 45 ,B nT  42 ,eT eV  235 ,IT eV  52.5 10 / sec,pe rad   37.9 10 / sec,ce rad    

4.31 / sec,ci rad   72.14 10 / sec,Av cm   71.6 10 / sec,sc cm     64.9 10 ,i cm    51.16 10 ,e cm     

31.5 10  cm,nE G   61.02 10 ,n nx y cm    61.5 10 ,nz cm       0.015sec,nt   0 0.5,b   

1 0.0155,c   6
2 3 1.02 10 ,c c     6

4 1.5 10 ,c    10
5 6 2.5 10 ,c c    11

7 2.0 10 ,c     11
8 9 7.2 10 ,c c      

10 12.41,c   11 7.04,c   5
12 1.6 10 ,c     3

13 3.9 10 .c    

4.3 Numerical SimulaƟon and Result Discussion 
To solve the dynamics of nonlinear whistler wave numerical simulation has been performed. Firstly, 

the accuracy of code has been checked by studying the algorithm of nonlinear Schr𝑜̈dinger (NLS) 

equation and consistency of plasmon number, 2

k
k

N E  upto sixth decimal number in to two steps-   
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(i) The testing of invariants plasmon number 2

k
k

N E  with time steps and grid points is given 

below (NLS) 

 

Table 1. Testing of invariants with time steps with Grid points 2048 (This step size is also used for 

the finite difference method to monitor the invariants of NLS equation to desired accuracy) 

Time steps (dt) Plasmon number, N 

-510  9.99999997 

-610  9.999999996 

-710  1.00000000007 

-810  1.00000000007 

 

Table 2. Testing of invariants with Grid points 

Grid points 256 512 1024 2048 

N 9.9999991 9.999997 9.9999994 9.9999998 

 

(ii) Modified for present case and applied to magnetopause parameters below:- 

Then, pseudo-spectral method and finite difference method with the step size of 55 10dt    have 

been used in the periodic domain of (10 10 10 )     with the grid size of (128 128 128).  The initial 

condition imposed for numerical simulation consists of sequential X-O points represents the 

magnetic reconnection[64] is: - 

                    ( , ) cos(2 2.3) cos( 4.1)zE x y x y                                                                       (4.24) 

 

Figure 4.1 The projection plot of 

nonlinear whistler wave in the 

presence of magnetic islands and 

perturbation in the background 

density for different times (a) t=0, 

(b) t=3, (c) t=8, and (d) t=10, for 

modified nonlinear Schr𝐨dinger 

equation (in normalized units). 
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Furthermore, we hypothesize that a 3D whistler wave originates within an already-existing 

reconnection point. Field perturbation owing to the whistler wave as well as density modification 

caused by ponderomotive force nonlinearity are both responsible for the spatial fluctuation of the 

whistler wave field.  At initial level, structures formed are coherent but with increase of the time 

evolution this will give rise to generation of whistler turbulence as shown in figure 4.1.  

Figure 4.2 Contour plot (left 

panel), and current sheet (right 

panel) of nonlinear whistler in the 

presence of magnetic islands and 

perturbation in the background 

density for different times. 

Plotting the contour plot of electric 

field lines can be utilized to reveal the 

existence of magnetic islands created by reconnection. We then examine the the spatial evolution 

of current sheet of whistler wave with t in the presence of reconnection induced magnetic islands 

as well as background density fluctuations. Figure 4.2 illustrates the contour plot (in left panel of 

figure 4.2), and current density (right panel of figure 4.2) of nonlinear whistler wave in the presence 

of magnetic islands and perturbation in the background density in x-y plane at different times. The 

figure clearly illustrates that for the very initial stage, the current is having a smooth or symmetric 

distribution, as time progresses, we observe that the appropriate X-O structures get deformed, and 

we eventually reach a wholly chaotic pattern. As a result, these chaotic structures may be 

responsible for the creation of whistler turbulence. 

Figure 4.3  (a) Ensemble averaged power spectra of Normalized field intensity of nonlinear 

whistler wave 2

kE against normalized wave vector k for modified nonlinear Schro ̈dinger 

equation (in normalized units) in the presence of magnetic island effects. (b) Ensemble averaged 

power spectra of Normalized field intensity of 

nonlinear whistler wave 2

kE  against normalized wave 

vector k for modified nonlinear Schro d̈inger equation 

(in normalized units)   in the absence of magnetic island 

effects. 
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The quasi-steady state has not yet been reached and won't be for some time since the constant growth 

rate of the beam-driven mode was taken into account in the 

present investigation. As a result, addressing power 

spectra is not relevant, but we would like to improve the 

present model in future by taking into account the growth 

rate whistler intensity-dependent (instead of taking 

constant growth rate). When the whistler wave's amplitude 

is sufficient, we turn off the growth rate of the beam-driven 

mode so as to examine the turbulent spectra. So, to examine the ensemble averaged power spectrum 

for quasi-steady state, we write Eq. (4.23) as given below- 

2 2
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2 2
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z z z z z

z z
z z
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z x yx y
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    
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 
  

   

                                    (4.25) 

Simulating Eq. (4.25) for grid size (512 512)  and periodic domain is (10 10 )   by imposing the initial 

condition of Biskamp and welter (1989)[64]  and then we investigated the ensemble averaged spectra 

in the presence of magnetic islands (anisotropic current sheet formation also) as shown in figure 4.3a. 

It shows the variation of 2

kE  with k  at z=43-50 i.e., there are 7 spectra. We just give the scaling of 

reference lines (red and green scaling lines for -1.2 and -7/3 scaling) and actual power spectra is given 

by solid curve line. Due to the presence of magnetic islands it slightly different from Kolmogorov 

scaling of -5/3. But in the absence of magnetic islands, power spectrum follows the Kolmogorov 

scaling in the inertial range that has scaling of -5/3 and after that spectrum is steeper, shown in figure 

4.3b as we have done in our earlier work[61]. It is to be mentioned here that scaling is different from 

-5/3 when magnetic islands are present. This is on account of current thinking fact[33], [65] that in the 

presence of magnetic island, MHD turbulence is fundamentally different from that envisioned in the 

Kolmogorov-like theory. This happens since the anisotropic, current-sheet become the sites of 

magnetic reconnection (magnetic islands) before the formal Kolmogorov dissipation scale is reached. 

As a consequence of the wave's dispersive features, this power spectrum's steepening at smaller scales 

signifies energy transfer from larger to smaller length scales. This specific spectral index will promote 

the emergence of thermal tails of energetic particles which causes the acceleration of the particles. The 

repetitive interaction between charged particles and localized structures can lead to energization using 

the Fokker-Planck equation (also called second order Fermi acceleration)[66], [67]. In this method, the 

repetitive interaction between charged particles and magnetic clouds generated by turbulence lead to 
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the acceleration of charged particles. There are Various mechanism have been used to accomplish the 

study of acceleration of charged particles[68]. The current study presents the localized structures of 

non-linear whistler wave based on the nonlinear coupling and turbulence generation. In this chaotic 

scenario, charged particles gain energy from localized structures by interacting repetitively, leading to 

particles acceleration which is similar to Fermi acceleration mechanism. To describe the repetitive 

interaction of charged particles with the localized structures, a quasi-linear diffusion equation is used, 

and it is provided by the following formula[69]. 

( ) .
f f

D v
t v v

     
   

 

Here, ( )D v  denotes the velocity space diffusion coefficient, and ( , )f t v  denotes the velocity 

distribution function. The velocity distribution function can be independent of time if the 

observation time is large as compared to the ponderomotive nonlinearity setting up time. In this 

context, the relation between spectral index  , and distribution function ( )f v [70], [71] is given 

below- 

                                                     2( ) .f v v                                           (4.26) 

In our current analysis 2.3  , therefore 0.3( )f v v  which leads to the formation of thermal tail of 

energetic electrons.  

4.4 SemianalyƟcal model 
In order to understand the basic physics behind the localization of whistler wave we have 

investigated the semianalytical model, also by using this model we can estimate the critical size of 

coherent structures. Now, by modifying Eq. (4.4), we obtain following Eq., 
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Or we can rewrite above equation in simplified equation as- 
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Where, 
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Now we are assuming the envelope solution of electric field 0 ( , , )
00 ,zik s x y z

zE E e  and putting this 

envelope solution in Eq. (4.28) we obtained the following equation- 
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            (4.29) 

Further separating the real and imaginary part of Eq. (4.29) 
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 Further assuming the gaussian profile for initial distribution of wave i.e., 
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Using Eq. (4.30) in Eq. (29b), and collecting the terms of 2x  and 2y  we obtain following Eqs.  
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Here 01r  and 02r  represents the current sheet size of whistler wave in x and y direction, respectively; 

1( )z  and 2 ( )z  represents the slowly varying function, and 1f , 2f  represents the beam width 

parameter of the whistler wave. Now, for obtaining the beam-width parameters, use Eq. (4.30) in 

Eq. (4.29a) with paraxial approximation i.e., 2 2
01 1, 02 2 x r f y r f   and then equating coefficients of 

2 2 and yx , we obtained the following Eq.  
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where 2
0 01/  and Rd d zz R k r   . Eqs. (4.32) & (4.33) are solved for the plain wavefront imposing 

following initial conditions- 
2 2

1 2
1 22 2

0,  1
f f

f f
 

 
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 
 at z=0. When power of whistler wave  2'

00E  

is zero, then Eqs. (4.32) and (4.33) becomes quadratic and gives the transverse scale size of localized 

structures of whistler wave along x-axis and y-axis i.e., 01 027.5 ,  5.2 .e er r    Further, when we take 

finite value of power  2'
00 1E  , then the transverse scale size of localized structures of whistler 

wave along x-axis and y-axis i.e., 01 020.8 ,  0.63 .e er r    Also, by using Ampere’s law  2 '
00J E  , 

we have studied the current sheet size. One can calculate the transverse scale size of current sheet 

comes out 01

3
r  and 02

3
r  along x-axis and y-axis respectively. Therefore, transverse scale size of 

current sheet is 4.3 e , and 3 e  along x-axis and y-axis respectively. As a result, it shows how the 
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whistler power also influences the scale size of coherent structures and current sheet dimension. 

Recently, Leonenko et al.[72] reported the scale size of super thin electron-scale current sheet in 

earth’s magnetotail. Also, Bruch et al.[73] reported the scale size of whistler’s localized structures 

of the order of (10 20) e  at the magnetic reconnection sites in the magnetopause. 

4.5 Summary and Conclusion 
Numerous waves have been observed so far in the reconnection region. The magnetic reconnection 

zone near the dayside magnetopause exhibits implications of beam-driven whistler mode waves, 

according to observed data from the MMS[55]. This article deals with the study of beam-driven 

whistler wave dynamics due to modified background density and with the modified background 

field of fully developed chain of magnetic islands. Furthermore, these equations are normalized and 

resolved using finite difference method and pseudospectral method. The outcomes of the numerical 

simulations illustrate that nonlinear whistler wave propagating in the magnetic islands gets localized 

and current sheets are formed having transverse scale size of the order electron inertial length. 

Although, Stenflo et al.[59] also investigated the nonlinear coupling of waves but in the absence of 

magnetic islands. Also, they have considered the linear growth rate of the system and their results 

are relevant to non-thermal magnetic field fluctuations which lead to plasma heating. But, in our 

model, we studied the nonlinear saturation of waves in the presence of magnetic islands. The 

outcomes of the numerical simulation are summarized here. 

1) Simulation results reveal the localization of whistler wave. The resolution of the numerical model 

under consideration is of the order 2.15 ,e  i.e.,  {  } /  nSystem length x Grid size , which is appropriate 

enough to resolve the structures which are formed. And, in our analysis, localized structures are of 

the order of 3 e . These localized structures of the magnetic field offer a lane for energy cascading 

from large to small scale spatial size. 

2) Contour plot of electric field or sketching electric field lines can be utilized to reveal the existence 

of magnetic islands created by reconnection. We then examine the spatial evolution of current sheet 

of whistler wave with t in the presence of reconnection induced magnetic islands as well as 

background density fluctuations. Which illustrates that for the very initial stage, the current is 

having a smooth or symmetric distribution, as time progresses, we observe that the appropriate X-

O structures get deformed, and we eventually reach a wholly chaotic pattern. These chaotic 

structures may be responsible for the creation of whistler turbulence. 

3) We investigated the ensemble averaged spectra of whistler wave to observe the energy cascading 

from larger to lower scale due to localization process. We just give the scaling of reference lines 
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(red and green scaling lines for -1.2 and -7/3 scaling respectively) and actual power spectra is given 

by solid curve line.  

Also, we observed that power of whistler wave also impacts the scale size of coherent structures 

and current sheet dimension. From semianalytical model, we have also calculated the transverse 

scale size of whistler’s localized structures and the current sheet size. When the power of whistler 

wave is zero, then scale size of current sheet is of the order of 7.5 e , and 5.2 e  along x-axis and 

along y-axis respectively. Further, When the power of whistler wave is finite, then scale size of 

current sheet is of the order of 4.3 e , and 3 e  along x-axis and along y-axis respectively.   

 The outcomes demonstrate whistler turbulence at magnetic reconnection locations produced by the 

electron beam as well as localized structures and whistler fluctuations that correspond to 

observations reported by Zhao et al.[55]. This causes the heating and acceleration of plasma 

particles in the magnetopause. Moreover, the nonlinear implementations of coupled waves are 

already ongoing and could further support to the validity of the model. As a result, our study will 

enable us to gain a better quantitative understanding of whistler-mode waves produced by energetic 

electron beams in turbulent circumstances. 
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CHAPTER-5  
 

Coherent Structures of Beam-Driven Whistler mode in the presence of Magnetic 

Islands in the Magnetopause 

 

5.1 Introduction 
Turbulence and magnetic reconnection are essential plasma processes that have a complicated and 

intricate relationship in which reconnection jets can be a driver for turbulence, and turbulence may 

produce small-scale reconnection events as a fundamental element of the nonlinear dynamics and 

disrupt existing magnetic reconnection events [1–5]. Both phenomena are present throughout the 

Universe in a variety of plasmas, including astrophysical (such as galaxy clusters [6], accretion discs 

[7], and interstellar medium [8,9]), heliospheric (such as the solar corona [10], planetary 

magnetospheres [11–13] and solar wind [14,15]), and laboratory plasmas [16,17]. 

In many astrophysical environments, magnetic reconnection is an energy conversion process that 

results in energetic phenomena like geomagnetic storms and aurora, solar flares and coronal mass 

ejections, x-ray flares in magnetars, and magnetic interactions between neutron stars and their 

accretion discs. A more extensive understanding of reconnection is a crucial goal for plasma physics 

on Earth and in space, yet most situations are too remote, too hot, or too tiny to allow for 

comprehensive in situ observations [18].  Numerous spacecraft missions have studied the Earth's 

magnetosphere; some of these missions made multipoint measurements in and near areas with 

collisionless magnetic reconnection [19–24]. Turbulence is common and is understood to play a 

crucial role in space plasma as it cascades energy from large to small scales, ultimately resulting in 

dissipation and particle heating. The evidence for the intimate relationship between magnetic 

reconnection and turbulence in magnetized plasmas is growing [4,5,25]. It has been observed that 

magnetic spectrum scaling exhibits Kolmogorov scaling of -5/3 in reconnection as well as in 

turbulence which provides evidence that reconnection dynamics involves energy transfer analogous 

to standard turbulence [26]. Several review articles discuss the way how turbulence can become the 

host of reconnecting current sheet and how reconnecting current sheet can drive turbulence [27–30].  

It is known that several wave modes are connected to reconnection at the dayside magnetopause such 

as upper hybrid wave [31], lower hybrid wave, magnetosonic wave [32]  kinetic Alfven wave [33], 

electrostatic solitary wave [34,35],  whistler mode waves [36–41]. Whistler-mode waves are among 
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them, and due to their prominence as the mostly seen and significant plasma waves that may influence 

the dissipation region's structure and the effectiveness of reconnection, they are the subject of the 

most research and attention [42,43]. Whistler mode waves have been seen in the past close to the X 

line during magnetopause crossings and have also been numerically modelled, which has given rise 

to the hypothesis that the waves may act as a mediator in the reconnection process [37].   

The features of reconnection that develop in a turbulent environment in both three dimensions and 

two dimensions have been extensively studied in recent literature [44,45]. These studies frequently 

concentrate on reconnection rates, dimensionality, and spectra, as well as on additional topics such 

as violations of flux freezing in turbulence with reconnection-related consequences. Also, it is 

reported that strong turbulence is generated by nonlinear coupling of large amplitude unstable plasma 

modes, by the explosive reorganization of large-scale magnetic fields [46]. In this article, main 

emphasis is on the formation of coherent structures and how the turbulence is excited in astrophysical 

and laboratory plasmas. More recent studies reported the small-scale turbulence-driven magnetic 

reconnection in Earth’s magnetosheath and revealed a novel type of reconnection, known as electron-

only reconnection can occur [47]. Recently, some observational evidence reported that correlation 

length of the turbulence can impact the nature of turbulence-driven reconnection, thus influencing 

the small-scale nonlinear dynamics and dissipation of turbulent fluctuations [48]. Some researchers 

investigated the semi-collisional regime of the plasmoid instability analytically and numerically, 

which is an extension of a Sweet-Parker sheet of the semi-collisional tearing mode [49]. 

Whistler coherent structures have been reported at magnetic reconnection sites with the expectation 

that an intense electron beam is responsible for the generation of coherent structures [50]. Also, they 

reported the generation of whistler waves by a strong electron beam (generated by reconnection 

process) in the dayside magnetosphere reconnection region and analyzed data from the 

Magnetospheric Multiscale  Mission (MMS); the highest growth rate of the wave was found to be at 

~ 0.53ek  within the frequency range of 0.1 0.5 .ce ce   Further, it might be expected that at later on 

stage, these structures results in the whistler turbulence. However, it is worth pointing out again that 

whistler-mode waves in the reconnection region are mostly reported and studied in the vicinity of the 

Earth. As far as we are aware, there is not too much reporting of beam-driven whistler-mode waves 

in the reconnection region at the magnetopause.  

The primary objectives of this study are to understand the formation of the whistler coherent structure 

and current sheet formation at magnetic reconnection site due to the intense electron beam (as 

observed by magnetospheric multiscale mission (MMS)) along with the influence of magnetic island. 
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A beam-driven whistler wave has been simulated in three dimensions to do this. The whistler wave 

in this model originates from noise owing to the energy of the beam and rises to a large amplitude, 

where nonlinear processes from the ponderomotive force drive the whistler wave to localize, which 

ultimately results in the turbulent state. To better understand the nonlinear stage of wave development 

and saturation, we take into account the nonlinear interaction of a high-frequency whistler wave with 

a low-frequency MSWs, accounting for the ponderomotive nonlinearity fetched by the whistler wave. 

The evolution of whistler localized structures and current sheets is illustrated by the results of 

numerical simulations based on theoretical modelling. Nonlinear processes, such as ponderomotive 

force, density change, and the existence of magnetic islands, might be considered the cause of 

whistler coherent structures. To determine the scale size of coherent structures and current sheets, we 

have studied the semianalytical model also.  

The layout of the article is as follows: - the model equations of whistler wave and magnetosonic 

waves are derived in section 2. In section 3, we discussed the numerical methods, techniques, and 

conditions which we have used for the numerical simulation work and the results of numerical 

simulation.  A semianalytical model is discussed in section 4 for understanding the concept of 

localization. Finally, section 5 explains the summary and conclusion of this article. 

5.2 Analytical model  
5.2.1 Whistler dynamics in the presence of beam 

The dynamical equation for a 3D whistler wave with an ambient magnetic field along the z-axis 

in a magnetized plasma propagating in the x, y, and z axis with a wave vector ˆ ˆ ˆx y zk k x k y k z  


, is 

derived utilizing two-fluid models. The governing dynamical equation of 3D whistler wave in 

terms of vector potential can be written as (the detailed derivation has been given as Appendix-A)   
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where 0
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Additionally, it is reported that beam-driven growth rate is taken into account then, the 

aforementioned equation becomes  d d

dt dt
   
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( please see appendix),  
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For this Eq. (5. 2), the following envelope solution is assumed.  

0 0 0 0ˆ ˆ ˆ( )( , , , ) x y zi k x k y k z t

z zA A x y z t e    .                                                                        (5.3) 

By considering the impact of a whistler wave on the background density and relieving the 

aforementioned solution into Eq. (5.2), we can obtain the dynamical equation of a nonlinear 

whistler wave propagating through plasma.   
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where 0 0,  x yk k and 0 zk are wave vector components of whistler related to the background magnetic 

field are given as, 2 2 2 2
0 0 0 0x y zk k k k  . Here 'n  denotes the modified density, i.e., 0'n n n  , and 

0

n

n

  

denotes the perturbation in plasma density due to non-linear whistler wave. We have used the 

relation of the magnetic field and vector potential 0

0 0

.y z

z

B A

B A

 
 

 
 

 ( zA , is the vector potential associated with the magnetic field) 

    Eq. (5.4) in normalized dimensionless form is given as 
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                                  (5.5) 

where Eq. (5.5) represents the whistler wave's normalized dynamical equation. In this section, the 

beam instability that generates the whistler wave will be described. The growth rate of whistler 

wave generated by an energetic electron beam, that is included phenomenologically and its value 

corresponding with the data published by Zhao et al. [50]) will be used in simulations here.  To 

get the dynamical equation, we introduce the field perturbation due to magnetic islands profile, 

since the magnetic reconnection is visualized within the framework of magnetic island as 

mentioned by Fitzpatrick et al. [51],  
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.                                                                                            (5.6) 

So, using the profile of field perturbation Eq. (5.5) modifies as- 
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                                    (5.7) 
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  is the normalized growth rate.  0.5083 ce   is the growth rate of beam-driven 

whistler waves. The normalizing parameters are- 
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5.2.2 Magnetosonic waves dynamics (MSWs) 
Consider a magnetosonic wave propagating in the x-direction, i.e., 0 ˆxk k x


 along with the background 

magnetic field in the z-direction, i.e., 0 ˆB B z


. The electric field is polarised in y-direction i.e., ˆyE E y


. The dynamical equation for the magnetosonic wave is obtained from the basic equations such as the 

equation of motion, continuity equation, Faraday’s law, and Ampere’s -Maxwell’s equation following 

the procedure used by Jyoti et al. [52] as 
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where 12 13,  c c are the constant whose value is given below: 
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 is the speed of the sound wave. And, 2 2 2 2 2
1 0 0( ) .e cek         

Now, using the same normalizing parameter as we have used in the dynamics of whistler wave i.e., 

,n nx z  and nt . After taking the adiabatic response of Eq. (5.8), we obtain 
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we obtain the following normalization equation,       
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 using this Eq. (5.9) in Eq. (5.7), we obtain 
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          (5.10)  

This is the model equation of dynamical system of 3D nonlinear whistler in the presence of magnetic 

islands. 

Parameters used in numerical simulations are: 

3
0 21 ,n cm  0 45 ,B nT  42 ,eT eV  235 ,IT eV  52.5 10 / sec,pe rad   37.9 10 / sec,ce rad    

4.31 / sec,ci rad   72.14 10 / sec,Av cm   71.6 10 / sec,sc cm     64.9 10 ,i cm    51.16 10 ,e cm     

85.03 10  cm,nA G   61.02 10 ,n nx y cm    61.5 10 ,nz cm       0.015sec,nt    

The values of numerical constants are given below- 

1 0.0155,c   6
2 3 1.02 10 ,c c     6

4 1.5 10 ,c    10
5 6 2.5 10 ,c c    11

7 2.0 10 ,c     11
8 9 7.2 10 ,c c      

10 12.41,c   11 7.04,c   5
12 1.6 10 ,c    14

12 7.2 10 ,c    14
13 3.43 10 .c    

5.3 Numerical Simulation and Result Discussion 
For solving the dynamics of Eq. (5.10), we have developed modified nonlinear Schr𝑜̈dinger model 

(MNLS). To solve Eq. (5.10) numerically, we have used the 3D pseudospectral method. For space 

integration  having periodic length 2
x

x

L



 and 2
y

y

L



 , pseudospectral approach and finite difference 

approach for time evolution utilizing a modified version of the predictor-corrector method has been 
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used [53]. For doing numerical simulation, periodic domain (10 10 10 )     and grid size 

(128 128 128)   of the system are used. The model equation has been transformed into the nonlinear 

Schrodinger (NLS) equation to evaluate its accuracy, by testing the consistency of the plasmon 

number up to order of 610 and then we modify this code according to our problem and run this code 

for two cases. 

Case 1.  The initial condition for numerical simulation consists of sequential X-O points as below 

and used by [54] : - 

                                               ( , ) cos(2 2.3) cos( 4.1)zA x y x y                                     (5.11) 

Figure 5.1 shows the spatial evolution of normalized vector potential over time in the x-y plane and 

at a fixed z. Furthermore, we assume that a 3D whistler wave originates from reconnection region 

that already exists. The spatial fluctuation of the whistler wave field is generated by density 

modification caused by ponderomotive force nonlinearity as well as field disruption due to the 

whistler wave.  Initially, the structures generated are coherent, but as time progresses, it is expected 

that this will result in the development of whistler turbulence, as seen in Figure 5.1.  

 

Figure 5.1  The spatial evolution of vector potential in x-y plane (a) t=0, (b) t=5, and (c) t=15, 

for modified nonlinear Schr𝒐̈dinger equation (in normalized units). 
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Figure 5.2  Evolution of 

contour plot of vector 

potential (Left panel), 

and current sheet 

formation (Right panel) 

in the x-y plane at 

different times. 

To locate magnetic 

islands produced by 

reconnection, one might 

plot the contour plot of 

vector potential or draw 

magnetic field lines. The rise of magnetic flux, which is associated with the current density function 

by Ampere's law, is then calculating by looking at the spatial development of the current density 

function. The contour plot of the vector potential (Left panel) in the x-y plane at various time is shown 

in Figure 5.2, along with the current density (Right panel). As time goes on, we see that the relevant 

X-O structures starts modifying, and finally, a completely chaotic pattern is obtained.                            

Case 2. The initial condition for numerical simulation consists of a single O-point represents the 

magnetic reconnection [51]  is: -                                                      

                                       
2

0
0

cos( )
2

zA x
b ky

A

  
   
 

.                                                                    

Figure 5.1  Evolution of 

contour plot of vector 

potential (left panel), and 

current sheet formation 

(right panel) in the x-y 

plane at different times. 

Figure 5.3 depicts the 

contour plot of vector 

potential (left panel) and current sheet (right panel) formation at different times. In left panel, initially 

magnetic field lines forms a single O-structures. As time passage, this single O-point emerges into 
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multiple O-points associated with X-points in this way X-O structures are formed with increasing 

amplitude. Formation of separatix between X and O points is clearly visible in this figure.  In right 

panel, we have shown the temporal evolution of current sheets. By using the relation of 2
zj A  , 

current density can be obtained. Bhat et al. [49] have observed the contour plot of vector potential as 

presented in figure 4 of their paper at different times. At intial stage, the system is just before the 

plasmoid formation but after that plasmoids (small islands) are formed, and due to the highly 

symmetric configuration of magnetic field, the plasmoid is stuck in the middle of current sheet 

(reconnection sites). Later on stage, these plasmoid well into the nonlinear stage. In our analysis also, 

it might be expected that as the time evolves plasmoids are formed.   

Quasi-steady state of system 

As the constant growth rate of the beam-driven mode was taken into account due to which quasi-

steady state has not yet been attained and won't be for furthermore time. So, to see the turbulent power 

spectra we switch off the growth rate term and then remodel our system Eq. (5.10) into the following 

form 
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                                                    (5.12) 

Then solving Eq. (5.12) numerically with the pseudospectral method for space integration (along x-

direction and y-direction) and finite difference method for time evolution (along z-direction). After 

that simulating this Eq. (5.12) for higher grid size (512 512) . Power spectra obtained from numerical 

simulation is shown in figure 5.4. The obtained power spectra show an approximate scaling of 5/3k 

[consistent with Biskamp et al. [55]] in inertial range and 7/3k   at the shorter wavelength, we get 

steeper spectra. This power spectra illustrate the signature of turbulence. The charged particles can 

be accelerated by this energy.   
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Figure 5.2  Power spectra of 

Normalized field intensity of 

whistler wave against normalized 

wave vector k for Modified 

Nonlinear Schr𝒐̈dinger equation 

(in normalized units). 

Numerous kinds of processes, such 

as Fermi acceleration, resonant 

wave-particle acceleration, and acceleration through radiative-resonant interactions, have been 

proposed in the literature to examine the acceleration of charged particles in plasmas. In this work, 

we investigate the production of the thermal tail of energetic electrons, which may be the cause of 

the electron acceleration and heating, from the power-law scaling of turbulence generation. The 

interaction between localized structures and plasma particles may be understood with the aid of the 

Fokker-Plank equation. Particle energization can result from these kinds of random and frequent 

interactions. Second-order Fermi acceleration [56,57] is the mechanism behind this.  

To investigate the interactions between strongly localized fields (structures) and plasma particles, one 

can utilize the quasi-linear diffusion equation. The expression for quasi- linear diffusion equation is 

given below [56,58] 

                             ( ) .
f f

D v
t v v

     
   

                                                                       (5.13) 

Here, ( , )f t v  denotes the velocity distribution function and ( )D v  denotes the velocity space 

diffusion coefficient. When the observation time is longer than the characteristic time of setting 

up of ponderomotive nonlinearity, the distribution function 𝑓(𝑣,𝑡) can be assumed as time 

independent. In this context, the relation between spectral index  , and distribution function ( )f v

[59] is given below- 

                                                     2( ) .f v v                                                                (5.14) 

In our current analysis 2.3  , therefore 0.3( )f v v  it leads to the formation of thermal tail of 

energetic electrons. Therefore, this enhances the thermal tail segment of the distribution function 

and paves the way for thermal heating of the particles. 
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5.4 Semianalytical model  
In order to understand the basic physics behind the localization of whistler wave we have 

investigated the semianalytical model, also by using this model we can estimate the critical size 

of coherent structures and current sheet scale size. For simplification, we have considered a steady-

state model. Now, by modifying Eq. (5.4), we obtain the following Eq., 
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Or we can rewrite the above equation in simplified equation as- 
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where, 
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Now we are assuming the envelope solution of vector potential 0 ( , , )
00 ,zik s x y z

zA A e  and putting this 

envelope solution in Eq. (5.16) we obtained the following equation- 
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Further separating the real and imaginary parts of Eq. (5.17) 
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 Further assuming the Gaussian profile for initial distribution of wave i.e., 
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Using Eq. (5.20) in Eq. (5.19), and collecting the terms 2x  and 2 ,y  we obtain the following Eqs.  
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Here 01r  and 02r  represents the current sheet size of whistler wave in x and y direction, respectively; 

1( )z  and 2 ( )z  represents the slowly varying function, and 1f , 2f  represents the beam width 

parameter of the whistler wave. Now, for obtaining the beam-width parameters, use Eq. (5.20) in 

Eq. (5.18) with paraxial approximation i.e., 2 2
01 1, 02 2 x r f y r f   and then equating coefficients of 

2 2 and yx , we obtained the following Eq.  
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where 2
0 01/  and Rd d zz R k r   . Eqs. (5.22) & (5.23) are solved for the plain wavefront imposing 

following initial conditions- 
2 2

1 2
1 22 2

0,  1
f f

f f
 

 
   

 
 at z=0. When the power of whistler wave 

 2'
00A  is zero, then the transverse scale size of localized structures along the x-axis and y-axis are 

obtained as 01 027.5 ,  5.2 ,e er r    respectively. Further, when we take the finite value of power 

 2'
00 1A  , then the transverse scale size of localized structures along the x-axis and y-axis are 

obtained as, 01 020.8 ,  0.63 ,e er r   respectively. Also, by using Ampere’s law  2 '
00J A  , we have 

studied the current sheet size. One can calculate the transverse scale size of the current sheet comes 

out to be of the order of 01

3
r  and 02

3
r  along the x-axis and y-axis, respectively. Therefore, when 

power is finite then transverse scale size of current sheet is 0.46 e , and 0.346 e  along the x-axis 

and y-axis, respectively. When power is zero then transverse scale size of current sheet is 4.33 e , 

and 3 e  along the x-axis and y-axis, respectively.  As a result, it shows how the whistler power 

also influences the scale size of coherent structures and current sheet dimension. Recently, the 

scale size of super thin electron-scale current sheet in the Earth’s magnetotail has been reported 

[60]. Also, Bruch et al. [61] reported the scale size of whistler’s localized structures of the order 

of (10 20) e  at the magnetic reconnection sites in the magnetopause. 

5.5 Summary and Conclusion 
This paper investigates the coherent structures, and current sheet of beam-driven whistler wave 

in Magnetopause in the presence of magnetic islands. The dynamics of the beam-driven whistler-

mode has been established under the presumption that it would rise from the noise level caused 

by the beam energy to a large amplitude, where nonlinear effects caused by nonlinear 

ponderomotive force would lead to the localization of the whistler wave and, ultimately, the 

turbulent state. The nonlinear interaction between high-frequency whistler wave and low-

frequency magnetosonic wave have been taken into consideration. The dynamical equation for 

the system is developed using the two-fluid model. The pseudo-spectral approach is utilized for 
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spatial integration and the finite difference method is used for temporal integration in order to 

solve the model problem. The results of the numerical simulations show that nonlinear whistler 

waves propagating in magnetic islands get localized, and current sheets with transverse scale sizes 

on the order of electron inertial length are evolved. We have also studied the power spectra which 

is utilized to study the formation of thermal tail of energetic electrons. The outcomes of the 

numerical simulation are concluded below.  

1) The findings of the simulation show that the whistler wave localizes from noise level to 

significant amplitude. Chaotic and localized structures in Figure 5.1 are an indication of 

coherent structures. These magnetic field localizations provide a pathway for energy to 

cascade from large to small-scale spatial sizes. 

2) To identify magnetic islands produced by reconnection, contour plots of vector potential 

or sketches of magnetic field lines might be used. Single O-point emerges into multiple 

O-points associated with X-points in this way X-O structures are formed with increasing 

amplitude. Emergence of new field associated with these X-O structures is seen. In order 

to comprehend the expansion of magnetic flux, which is associated with current density 

function by Ampere's law, it is also necessary to look at the spatial development of current 

density function. The necessary X-O structures begin to deform over time, and eventually, 

a chaotic pattern is reached. We observed that in our simulation, current sheets likewise 

grow into turbulent state. 

3) Separatix plays a crucial part in magnetic reconnection by drawing a line dividing areas 

of magnetic field lines with varied connectivity. It serves as a location for the breaking 

and reconnection of magnetic field lines, which causes the release of magnetic energy that 

has been trapped. Regarding the mechanics and energetics of the reconnection process, 

the separatix's characteristics are a useful source of knowledge. 

4) The observed spectral power indices show a scaling nearly -5/3 in inertial range [agrees 

with Biskamp et al. [55] observations] and at smaller scales, we observe steeper spectra 

of the scaling of nearly -7/3. This power spectra illustrate the signature of turbulence. The 

charged particles can be accelerated by this energy.   

5) Energy transfer is facilitated by the formation of turbulence through interactions with 

whistler-localized structures with plasma particles. We hypothesize that the particle 

acceleration and plasma heating at the magnetopause might be caused by these 

interactions enhancing the thermal tail of energetic electrons. 
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6) We concluded that whistler wave power exerts an effect on the scale size of coherent 

structures as well as the dimension of the current sheet. We have also determined the 

current sheet size and the transverse scale size of whistler's localized structures using the 

semianalytical model. When the power of whistler wave is finite, then scale size of current 

sheet is of the order of 4.3 e  and 3 e  along x-axis and along y-axis, respectively. 

Furthermore, when the power of whistler wave is zero, then scale size of current sheet is of 

the order of 7.5 e  and 5.2 e  along the x-axis and along y-axis, respectively. It means that 

transverse scale of localized structures in the presence of pre-existing magnetic islands is 

modified by the power of whistler wave. The physics behind this association may be further 

explored in further studies. 

Although, spectra in quasi steady state are nearly of the order of -5/3 in inertial range [which is in 

agreement of Biskamp et al. [55]] and then at shorter wavelength we obtain steeper spectra of the 

scaling factor nearly of the order of -7/3 but development of turbulent state is the unique point of this 

study in which we studied the current sheet formation & this current sheet emerges into turbulent state. 

A detailed analysis of all different possibilities that are encountered in the beam-driven turbulence 

generation, Plasmoid formation, and heating and acceleration of plasma particles is beyond the scope 

of this paper and will be left to future work. 
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CHAPTER-6 
Non-linear propagation of Whistler-mode in the presence of Magnetic Islands 

in the Magnetopause 
  

 

6.1 Introduction 
Magnetopause is a perfect in-situ laboratory for examining non-linear and turbulent processes in a 

magnetized plasma fluid due to its wide range of spatial and temporal length scales coupled to a 

mixture of waves, fluctuations, structures, and non-linear turbulent interactions. Various spacecraft 

observations found that reconnection occurs associated with the turbulence in the Earth’s 

magnetosheath [1]–[3]. Because of the magnetopause’s important role in magnetic reconnection 

and the resulting transfer of plasma and energy into the magnetosphere it has been the focus of 

many studies [4]–[6], and missions like Magnetospheric Multiscale Mission (MMS), Cluster, and 

THEMIS, which have delved deeper into the current sheet structure and its formation. It has been 

proposed that wave-particle interactions in high energy circumstances, which cause the 

dissipation, are caused by plasma turbulence. Numerous phenomena and processes, including 

particle energization, magnetic field dynamics, and the transfer of mass and energy across the 

boundary, are significantly affected by the existence of plasma turbulence in the magnetopause. 

Recent discoveries of thin (electron scale) layers [7], [8] at the magnetopause have gained new 

insights into magnetopause physics and have increased the hope of using the multi-satellite 

mission Cluster to solve the mystery of reconnection [9], [10].  

Magnetic reconnection is a ubiquitous phenomenon happening in space, and laboratory plasmas 

and studied in various space regions like solar wind [11], magnetosphere [12]–[17] etc. The 

creation of solar flares, coronal mass ejections, and the interaction of solar winds with the Earth's 

magnetosphere are all examples of magnetic reconnection [18]–[21] and it is thought to have 

originated during the star-forming process. The astonishing potential of astrophysical plasmas to 

establish magnetic structure leads to the accumulation of magnetic energy inside stressed areas, 

including current sheets. This stored energy is frequently released explosively during the magnetic 

reconnection process, which causes a reconfiguration of the magnetic field as well as high-speed 

flows, thermal heating, and nonthermal particle acceleration [22]–[24].  
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It is extensively understood that turbulence, which frequently occurs in space plasma, plays a vital 

role in the dissipation and heating of the particles as it cascades energy from large to small scales. 

There is growing evidence that magnetic reconnection and turbulence are strongly connected in 

magnetized plasmas [25]–[28]. Numerous investigators have studied how turbulence influences 

the flow of reconnection, especially how existing turbulence may impact Sweet-Parker 

reconnection and how turbulence may develop because of reconnection [29]. Using numerical 

simulations and theoretical considerations, electron-only magnetic reconnection has been 

investigated [30]–[33]. Numerous studies cover several aspects concerning how turbulence can 

host reconnecting current sheets and how reconnecting current sheets can trigger turbulence [26], 

[34], [35]. The emergence of irregular variations in the magnetic field is an additional aspect of 

turbulence in magnetized plasmas that is ubiquitous [36], [37]. For many years, researchers have 

examined the turbulence spectrum of magnetic field fluctuations at enormous inertial 

magnetohydrodynamic scales. Whistler cascade, which moves energy from large 

magnetohydrodynamic scales to smaller ones, is governed by the Kolmogorov power law [38], 

[39]. Also, it is observed that magnetic spectrum scaling exhibits Kolmogorov scaling of -5/3 in 

reconnection as well as in turbulence which provides evidence that reconnection dynamics 

involves energy transfer analogous to standard turbulence [40].  

One of the main aims of this study is to investigate the role of electron-scale current sheets in 

particle energization and to analyze the scope of which particle energy conversion may be related 

to magnetic reconnection. To achieve this, we examine the whistler at magnetic reconnection sites 

caused by an energetic electron beam (as observed by Magnetospheric Multiscale Mission 

(MMS)) in the presence of magnetic islands and nonlinearity associated with waves. For this, we 

develop a model of beam-driven whistler wave originating from the noise caused by the energy of 

beam and rising to a large amplitude, where nonlinear effects from ponderomotive force drive the 

nonlinear whistler wave. In this model, the nonlinear dynamics of 3D whistler wave with 

magnetosonic wave have been solved in the presence of nonlinearity as well as the ponderomotive 

force and we introduce the constant growth rate of beam driven whistler wave. The results of 

numerical simulations carried out using theoretical modeling provide a glimpse of the evolution of 

magnetic field lines in the form of contour plots and current sheets formation. Also, we have 

studied the power spectrum for the quasi-steady state. 

The article is set up as follows: - In section 2, the model equations for whistler and magnetosonic 

waves are developed. The numerical methodologies, approaches, and circumstances that we 

employed for the numerical simulation work, as well as the outcomes of the numerical simulation, 
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were covered in section 3 of the article. In section 4, we discussed a semianalytical model to 

analyze the scale size of current sheets. Section 5 covers the article's summary and conclusion in 

detail. 

6.2 Analytical model  

6.2.1 Whistler dynamics in the presence of beam 
The dynamical equation for a 3D whistler wave with an ambient magnetic field along the z-axis in 

a magnetized plasma propagating in the x, y, and z-axis with a wave vector ˆ ˆ ˆx y zk k x k y k z  


, is 

derived utilizing two-fluid models. The governing dynamical equation of 3D whistler wave in 

terms of vector potential can be written as (the detailed derivation has been given as Appendix-A)   
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depth. Additionally, it is reported that beam-driven growth rate is considered then, the 

aforementioned equation becomes  d d
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              (6.2) 

For this Eq. (6.2), the following envelope solution is assumed.  
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0 0 0 0ˆ ˆ ˆ( )
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   .                                                                       (6.3) 

The dynamical equation governing the nonlinear whistler wave traveling through plasma has been 

formulated by taking into consideration the influence of a whistler wave on the background 

density and substituting the solution into Eq. (6.2).  
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where 0 0,  x yk k and 0 zk are wave vector components of whistler related to the background 

magnetic field are given as, 2 2 2 2
0 0 0 0x y zk k k k  . Here 'n  denotes the modified density, i.e., 

0'n n n  , and 
0

n

n

  denotes the perturbation in plasma density due to non-linear whistler wave. 

We have used the relation of the magnetic field and vector potential 0
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    Eq. (6.4) in normalized dimensionless form is given as 
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                                  (6.5) 

where Eq. (6.5) represents the whistler wave's normalized dynamical equation, which causes 

turbulence. In this section, the beam instability that generates the whistler wave will be 

described. The growth rate of whistler wave generated by an energetic electron beam, which is 

included phenomenologically, and its value corresponding with the data published by (Zhao et 

al., 2021 [41]) will be utilized in simulations here. To get the dynamical equation, we introduce 
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the field perturbation due to magnetic islands profile, since the magnetic reconnection is 

visualized within the framework of magnetic island as mentioned by Fitzpatrick & Waelbroeck, 

2005 [42],  
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So, using the profile of field perturbation Eq. (6.5) modifies as- 
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whistler waves. The normalizing parameters are- 
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6.2.2 Magnetosonic waves dynamics (MSWs) 
Consider a magnetosonic wave propagating in the x-direction, i.e., 0 ˆxk k x


 along with the 

background magnetic field in the z-direction, i.e., 0 ˆB B z


. The electric field is polarized in y-

direction i.e., ˆyE E y


. The dynamical equation for the magnetosonic wave is obtained from the 

basic equations such as the equation of motion, Faraday’s law, continuity equation, and Ampere’s 

-Maxwell’s equation following the procedure used by [43] as 

             
2 2 2

2

12 132 2 2
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c c A

nt x x

   
      

                                                                          (6.8)                                      

where 12 13,  c c is the constant, whose value is given below: 
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 is the speed of the sound wave. And 2 2 2 2 2
1 0 0( ) .e cek         

Now, using the same normalizing parameter as in the whistler wave dynamics, i.e., ,n nx z  and nt . 

After taking the adiabatic response of Eq. (6.8), we obtain 

      213

0 12

.z
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A

n c
                                                                                  (6.9)  

we obtain the following normalization equation,       
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                                                                                (6.10)                         

 using this Eq. (6.9) in Eq. (6.7), we obtain 
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This is the model equation of dynamical system of 3D nonlinear whistler in the presence of 

magnetic islands. 

Parameters used in numerical simulations are: 

3
0 21 ,n cm  0 45 ,B nT  42 ,eT eV  235 ,IT eV  52.5 10 / sec,pe rad   37.9 10 / sec,ce rad    

4.31 / sec,ci rad   72.14 10 / sec,Av cm   71.6 10 / sec,sc cm     64.9 10 ,i cm    51.16 10 ,e cm     

85.03 10  cm,nA G   61.02 10 ,n nx y cm    61.5 10 ,nz cm       0.015sec,nt    

The values of numerical constants are given below- 

1 0.0155,c   6
2 3 1.02 10 ,c c     6

4 1.5 10 ,c    10
5 6 2.5 10 ,c c    11

7 2.0 10 ,c     11
8 9 7.2 10 ,c c      

10 12.41,c   11 7.04,c   5
12 1.6 10 ,c    14

12 7.2 10 ,c    14
13 3.43 10 .c    

6.3 Numerical Simulation and Result Discussion 
For solving the dynamics of Eq. (6.11), we have developed a modified nonlinear Schr𝑜̈dinger 

model (MNLS). To solve Eq. (6.11) numerically, we have used the 3D pseudospectral method. For 

space integration having periodic length 2
x

x

L



 and 
2

y
y

L



 , a pseudospectral approach and finite 

difference approach for time evolution utilizing a modified version of the predictor-corrector 

method have been used [44] For doing numerical simulation, periodic domain (10 10 10 )     and 

grid size (128 128 128)   of the system are used. The model equation has been transformed into the 

nonlinear Schrodinger (NLS) equation to evaluate its accuracy, by testing the consistency of the 

plasmon number up to order of 610 , and then we modify this code according to our problem and 

run this code. The initial condition for numerical simulation consists of a single O-point 

representing the magnetic reconnection (Fitzpatrick & Waelbroeck, 2005 [42]): - 

2

0

cos( )
2

z
z

A x
A ky

A

  
   
 

        Here, zA is the initial amplitude of the wave.  

             

                

Figure 6.1  Contour plot (left 
panel) and current sheet 
(right panel) of nonlinear 
whistler wave at different 
times. 
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Figure 6.1 depicts the contour plot of vector potential (left panel) at different times. Magnetic field 

lines initially develop into a single O structure. Over the time, this single O-point reassembles into 

several O-points linked to X-points, forming X-O structures with increasing amplitude. In this 

figure, the formation of a separatix between the X and O locations is evident. In right panel, we 

have shown the temporal evolution of current sheets. By using the relation of 2
zj A  , current 

density can be obtained.  

Power spectrum 

Since the beam-driven mode's continuous growth rate was taken into consideration, the quasi-

steady state has not yet been reached and will not be for some time. Therefore, we switch off the 

growth rate part from our system's equation (6.11) to see the turbulent power spectrum.  

2 2 2 2
213

7 2 3 5 6 8 92 2
12

0.z z z z z z z
z z

cA A A A A A A
ic c c ic ic c c A A

z x y x z y z cx y

      
       

       
                        (6.12) 

After that, Eq. (6.12) is solved numerically utilizing the pseudospectral approach for spatial 

integration (along the x- and y-direction) and the finite difference method for time evolution 

(along the z-direction). Then simulating this Equation (6.12) for a higher grid size (512 512) . 

Figure 6.2 illustrates the power spectra. The top panel of Figure 6.2 shows the time evolution of 

electric energy spectrum. It approaches a power-law spectrum following the Kolmogorov scaling 

i.e., close to 5/3k  in the inertial range after that we obtain a steeper spectrum. The bottom panel 

shows the magnetic (blue) and electric (red) at time range, 65-80. The energy spectra have been 

computed with the 2D Fourier decomposition of magnetic and electric fields. The observed power 

law behavior is in the range of 0.1 1ek  . These power spectra illustrate the signature of 

turbulence. The charged particles can be accelerated by this energy.  
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Figure 6.2  Top panel: 

time evolution of 

electric energy 

spectrum. The bottom 

panel: magnetic (blue) 

and electric (Red) 

energy spectra. The 

vertical dashed black 

line shows the electron 

gyroscale. 

The acceleration of charged particles in plasmas has been studied using a variety of methods, 

including Fermi acceleration, resonant wave-particle acceleration, and acceleration through 

radiative-resonant interactions. In this study, we examine the development of the thermal tail of 

energetic electrons, which may be the root of the electron acceleration and heating, caused by the 

power-law scaling of turbulence generation. By using the Fokker-Plank equation, it is possible to 

comprehend how localized structures and plasma particles interact. Particle energization can result 

from these kinds of random and frequent interactions. This is accomplished using second-order 

Fermi acceleration [45], [46].  

The quasi-linear diffusion equation may be used to examine the interactions between strongly 

localized fields (structures) and plasma particles. Here is an expression for the quasi-linear 

diffusion equation [46], [47].  
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                                               ( ) .
f f

D v
t v v

     
   

                                                       (6.13) 

Here, ( , )f t v  denotes the velocity distribution function, and ( )D v  denotes the velocity space 

diffusion coefficient. When the observation time is longer than the characteristic time of setting up 

of ponderomotive nonlinearity, the distribution function ( , )f t v  can be assumed as time 

independent. In this context, the relation between spectral index  , and distribution function ( )f v  

[48] is given below-  

                                                     
2( ) .f v v                                                                (6.14) 

In our current analysis 2.3  , therefore 0.3( )f v v  it leads to the formation of the thermal tail of 

energetic electrons. Therefore, this enhances the thermal tail segment of the distribution function 

and paves the way for the thermal heating of the particles.  

6.4 Semianalytical model    
It is critical to comprehend the creation and behaviour of current sheets in magnetic reconnection 

in a variety of astrophysical and lab plasma systems. So, to understand the formation of current 

sheet and their size, we have studied a simplified model named as semianalytical or steady-state 

model. For simplification, we have modified Eq. (4), and obtained the following Eq., 
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Or we can rewrite the above equation in simplified equation as- 
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where,  
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Now we are assuming the envelope solution of the vector potential 0 ( , , )
00 ,zik s x y z

zA A e  and putting 

this envelope solution in Eq. (6.16) we obtained the following equation- 
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                    (6.17) 

Further separating the real and imaginary parts of Eq. (6.17) 
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 Further assuming the Gaussian profile for the initial distribution of wave i.e., 
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Using Eq. (6.20) in Eq. (6.19), and collecting the terms 2x  and 2 ,y  we obtain the following Eqs.  
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Here 01r  and 02r  represents the length and width of current sheet, respectively; 1( )z and 2 ( )z  

represents the slowly varying function, and 1f , 2f  represents the beam width parameter of the 

whistler wave. Now, for obtaining the beam-width parameters, use Eq. (6.20) in Eq. (6.18) with 

paraxial approximation i.e., 2 2
01 1, 02 2 x r f y r f   after that equating coefficient of 2 2 and yx , we 

obtained the following Eq.  
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where  2
0 01/  and Rd d zz R k r   . Eqs. (6.22) & (6.23) are solved for the plain wavefront imposing 

the following initial conditions- 
2 2

1 2
1 22 2
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f f

f f
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 
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 
 at z=0. When the power of the whistler 

wave  2'
00A  is zero, then the length and width of the whistler’s localized structures are obtained 

as 01 020.9 ,  1.2 ,e er r    respectively. Further, when we take the finite value of power  2'
00 0.5A  , 

then the length and width of the whistler’s localized structures are obtained as, 

01 0215 ,  15.63 ,e er r   respectively. Also, by using Ampere’s law  2 '
00J A  , we have studied the 

current sheet size. One can calculate the length and width of the whistler’s localized structures of 

the current sheet comes out to be of the order of 01

3
r  and 02

3
r , respectively. Therefore, when 

power is finite then the length and width of whistler’s localized structures of current sheet is 8.6 e , 

and 9.03 e , respectively. When power is zero then the length and width of whistler’s localized 

structures of current sheet is 0.52 e , and 0.69 e , respectively.  As a result, it shows how the whistler 

power also influences the scale size of current sheet. Recently, scale size of super thin current 

sheets in the Earth’s magnetotail has been reported which is of the order of few (1–5) gyroradii of 

thermal electrons [49]. Also, the scale size of whistler wave’s structures of the order of (10 20) e  

has been reported at the magnetic reconnection sites in the magnetopause [50]. Electron-scale 
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current sheets has been reported in the vicinity of Earth’s magnetosheath, solar corona and other 

astrophysical system [51]. 

6.5 Summary and Conclusion  
This study focuses on the effect of the perturbed background density and magnetic islands on the 

whistler wave at the site of magnetic reconnection. We proposed a model of beam-driven whistler 

wave originating from the noise caused by the energy of beam and rising to a large amplitude, 

where nonlinear effects from ponderomotive force drive the whistler wave. The model equation to 

represent the coupling of whistler wave and magnetosonic wave has been developed with the help 

of a two-fluid model. To address the model concern, the pseudo-spectral approach is employed for 

spatial integration, and the finite difference method is used for temporal integration. The outcomes 

of the numerical simulations are discussed below: 

1) Separatrix plays a key role in magnetic reconnection by forming a line separating portions 

of magnetic field lines with varying connectivity. It acts as a site for the breaking and 

reconnecting of magnetic field lines, resulting in the release of accumulated magnetic 

energy. The features of the separatrix are a helpful source of information for the 

mechanism and energetics of the reconnection process. 

2) Contour plots of vector potential or drawings of magnetic field lines may be used to locate 

magnetic islands caused by reconnection. A single O-point evolves into many O-points 

associated with X-points, forming X-O structures with increasing amplitude. It is possible 

to observe the emergence of a new field linked with these X-O structures. To understand 

the expansion of magnetic flux, which is associated with current density function by 

Ampere's law, the spatial development of current density function must also be considered. 

Over time, the essential X-O structures begin to distort, resulting in a chaotic pattern. 

Because of these chaotic structures, whistler turbulence will occur. In our simulation, we 

discovered that current sheets also get turbulent. 

3) In this model, the beam-driven mode's continuous growth rate was taken into 

consideration; the quasi-steady state has not yet been reached and will not be for some 

time. So, to see the turbulent spectrum, quasi-steady state has been achieved by switching 

off the growth rate of beam. The estimated spectral power indices reveal a scaling of 

nearly -5/3 in the inertial range [which agrees with the observations of (Biskamp et al. 

[38]] and steeper spectra of nearly -7/3 at smaller scales. This power spectrum depicts the 

turbulence signature. This energy may be used to accelerate charged particles. 
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4) We observe that electron-scale current sheets contribute significantly to the particle 

energization [49] as determined by semianalytical model. Also, we observed that whistler 

wave influences the scale size of the current sheet. When the power of the whistler wave 

 2'
00A  is zero, then the length and width of whistler wave’s structures are obtained as 

01 020.9 ,  1.2 ,e er r    respectively. Further, when we take the finite value of power

 2'
00 0.5A  , then the length and width of whistler wave’s structures are obtained as, 

01 0215 ,  15.63 ,e er r    respectively. In addition, by using Ampere’s law  2 '
00J A  , we 

have studied the current sheet size. One can calculate the length and width of the current 

sheet comes out to be of the order of 01

3
r  and 02

3
r , respectively. Therefore, when 

power is finite then the length and width of current sheet is 8.6 e , and 9.03 e , respectively. 

When power is zero then the length and width of current sheet 0.52 e , and 0.69 e , 

respectively.  As a result, it shows how the whistler power also influences the dimension 

of whistler wave’s structure and its current sheet dimension. 

Even though spectra in quasi-steady state are nearly around the order of -5/3 in the inertial range 

[which is consistent with (Biskamp et al., 1996 [38])], At shorter wavelengths, we obtain steeper 

spectra with scaling factors on the order of -7/3, but the development of turbulent state is the 

unique aspect of our work in which we explored the formation of current sheets and how they 

emerge into turbulent states. The current sheet deeds as a location for intense plasma heating, 

energy dissipation and particle acceleration. Further, a detailed analysis of all different possibilities 

that are encountered in the beam-driven turbulence generation, and heating and acceleration of plasma 

particles is beyond the scope of this paper and will be left to future work. 
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CHAPTER-7   

Summary, Conclusion and Future Scope 

This chapter provides a summary of the conclusions derived from the current research and 

sheds light on potential future directions. 

Turbulence illustrates the inherent characteristics of space and astrophysical plasma. The 

phenomenon under consideration encompasses a diverse array of fluctuations, including those 

related to field, velocity, and density. These fluctuations occur across a broad spectrum of 

length scales and temporal scales. Within the context of space plasma, a multitude of processes 

have been proposed to facilitate the transfer of energy from larger scales to smaller scales. 

Magnetic reconnection and turbulence are considered to be the primary factors for elucidating 

particle heating and acceleration phenomena. The association between magnetic reconnection 

occurrences and diverse plasma waves and turbulence is widely acknowledged in the scientific 

community. Various wave modes, such as whistler wave, kinetic alfven wave, lower hybrid 

wave, upper hybrid wave, magnetosonic wave, ion acoustic wave, electron acoustic wave, and 

electrostatic solitary wave, have been often seen in the Earth's magnetosphere. Hence, the 

establishment of a nonlinear wave-based model is crucial for elucidating the physics underlying 

the formation of turbulence in the magnetosphere region and reconnection locations inside the 

magnetosphere. The study conducted in Chapter 2 and Chapter 3 focuses on the amplification 

of beam driven whistler waves from background noise levels, resulting from the energy of the 

beam. This amplification is expected to reach a significant amplitude, leading to the emergence 

of nonlinear effects caused by the ponderomotive force. Consequently, these nonlinear effects 

are anticipated to induce the localization of whistler waves, ultimately leading to the 

development of a turbulent state. Also, fluctuations in whistler’s electric field shows that it is 

turbulent in nature.  

Moreover, to enhance comprehension of the physics behind the localization of whistler waves, 

a semianalytical model has been created. Furthermore, extensive research has been conducted 

on the simplified model to examine its convergent and divergent behavior in relation to whistler 

wave. The study's numerical results demonstrate the presence of whistler turbulence within the  
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magnetic reconnection sites generated by the electron beam. These outcomes also reveal the 

existence of localized structures and fluctuations associated with the whistler phenomenon. 

Also, we have examined the generation of whistler coherent structures formation and later 

whistler turbulence generation at magnetic reconnection site due to the energetic electron beam 

(as observed by Magnetospheric Multiscale Mission (MMS)) along with the influence of 

magnetic island in chapter-3,4 & 5. Additionally, it was noticed that the power of the whistler 

wave has an impact on the scale size of coherent structures and the dimension of the current 

sheet. The transverse scale size of whistler's localized structures and the current sheet size have 

also been determined using a semianalytical model. In the present study, constant growth rate 

of beam-driven mode has been considered and, the quasi-steady state has not been achieved at 

this time and will not be achieved for further time also. So, we have examined the power-

spectrum for quasi-steady state follows the Kolmogorov scaling. As a consequence of the 

wave's dispersive features, this power spectrum's steepening at smaller scales signifies energy 

transfer from larger to smaller length scales. This specific spectral index will promote the 

emergence of thermal tails of energetic particles which causes the acceleration of the particles. 

The results gained from the study are relevant to the observations made in the vicinity of the 

reconnection location in the magnetopause. Therefore, the examined wave interactions 

generate minor-scale fluctuations that are anticipated to induce particle heating and/or 

acceleration. The physical process responsible for turbulence in reconnection sites may be of 

significant interest. 

The injection of energetic particles is well recognized as a crucial mechanism for the transport 

and dissipation of energy in the upper atmosphere. The phenomenon of energy release and its 

correlation with magnetic substorms has been a persistent challenge in the study of the 

Magnetopause. Still, the underlying principles of physics governing particle acceleration 

remain a subject of concern. In the future, it would be beneficial to investigate the potential 

interaction between whistler waves and other modes such as the lower hybrid mode, upper 

hybrid mode, and slow magnetosonic wave. This research could provide valuable insights into 

the formation of turbulence, plasmoids  and the mechanisms involved in the release of energy 

at reconnection locations in the Earth's magnetopause. 



 

131 
 

APPENDIX 

Appendix 2A: Dispersion relation of 2D whistler waves 

   Two fluid models are used to obtain the dynamical equation for whistler wave (2D plane) 

propagating in the x-z plane with wave vector ˆ ˆx zk k x k z 


,  in a magnetized plasma with an 

ambient magnetic field along the z-axis. 

 The basic equations that are used to obtain the whistler dynamics are 

Wave equation  

2
2

2 2 2

4 1
( . ) .

J E
E E

tc c t

  
    

 

  
                                                                                  (2.A1) 

Equation of motion for electrons 

0( . ) ( ).e
e e e e

v e
m v v eE v B

t c

        

    
                                                                           (2.A2)  

Equation of motion for ions 

0( . ) ( ),i
i i i i

v e
m v v eE v B

t c

       

    
                                                                              (2.A3) 

Using Eqs. (2.A2), we obtain the velocity components of electrons as follows, 

0.( )e e
e e e

e e

dv v eE e
v v v B

dt t m m c

 
     



      ,                                                  (2.A4) 

Where 0 1e e ev v v 
    

0 0ev  


No drift in equilibrium 

E 


perturbed electric field 

B 


perturbed magnetic field,  

From eq. (2.A4) we obtain- 0 1 1 0 e e
e e

eE e
i v v B

m m c
 

   
    

Since 0
ce

e

eB

m c
 


 ,  above eq. becomes 
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0 1 1 ˆ e e ce
e

eE
i v v z

m
   


                                                                 (2.A5) 

x -component of eq. (2.A5),      0 1 1 x
e x e y ce

e

eE
i v v

m
  


                                       (2.A6) 

y -component of eq. (2.A5),     
0 1 1

y
e y e x ce

e

eE
i v v

m
  


   

Or        1
1

0 0

 y e x ce
e y

e

eE v
v

m i i


 

 

                                                     (2.A7) 

Substituting eq. (2.A7) into eq. (2.A6), we obtain 

0
1 2 2 2 2

0 0

.
( ) ( )

ce
e x x y

e ce e ce

ie e
v E E

m m

 
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

 
 

                                   (2.A8) 

Now substituting eq. (2.A8) in eq. (2.A7), we obtain  

                     0
1 2 2 2 2

0 0

.
( ) ( )

ce
e y x y

e ce e ce

e ie
v E E

m m

 
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 z -component of eq. (2.A5),    1
0

.z
e z

e

eE
v

im
                                                  (2.A10)  

 Similarly, the velocity component of the whistler wave due to ion can be written as 

                  0
2 2 2 2
0 0
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ix x y

i ci i ci

ie e
v E E

m m
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Now electron current density, 1 1e e eJ n ev 
  , and x, y and z-component of current density due 

to electrons are given as follows,                                                    

                                  
2
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i E Ee
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2

1
0

z
e z e

e

e E
J n

m i
                                                   (2.A16) 

Similarly, x, y and z-component of current density due to ions are given as follows,                                                   

2
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i E Ee
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i z i
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e E
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Now, from eq. (2.A1) we obtain the ,x y  and z components of wave equation, 

x -component of wave equation,   
2

2
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Using equation of current density, 1 1x i i x e e xJ n ev n ev   in above equation, we obtain 

                    
2 22
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2 2 2 2

( )4 1
.x i i x e e x xzE n ev n ev EE
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Substituting the values 1i xv  and 1e xv  from (2.A8) and (2.A11), we obtain 
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y -component of wave equation,  
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z -component of wave equation, 
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From these linear relationship we have, 
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Combining Eqs. (2.A21)-( 2.A23), with assumptions 1ik   and neglecting displacement 

current, we obtain 
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On solving above equation, we obtain 
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From Eq. (2.A25), the dynamical equation of whistler wave can be written as  
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Moreover, this is the same equation as given in eq. (2.9) in the manuscript. It is also 
mentioned here that beam driven growth is also considered then from equation of motion, 
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, neglecting higher order terms. 
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Appendix 3A: Dispersion relation of 2D whistler waves 

The whistler wave dynamical equation is obtained using a two-fluid model. The whistler wave 

is propagating in a magnetized plasma with the magnetic field along the z-axis and wave vector, 

0 0ˆ ˆx zk k x k z 


. Here, 0 ( )B B B  is the magnetic field, 0B  the background magnetic field, and 

B  the perturbation in the magnetic field.  

To determine the whistler dynamics, the following basic equations are used: 
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Equation of motion for ions 
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Using Eqs. (3.A2), we obtain the velocity components of electrons as follows, 
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Where 0 1e e ev v v 
  

 

0 0ev  


No drift in equilibrium  

B


and E


 represents the perturbed magnetic field and electric field respectively. 

From eq. (3.A4) we obtain- 0 1 1 0 1 0
0

 ( ) ( )e e e
e e e

eE e e B
i v v B v B

m m c m c B

 
     

      

Since 0
ce

e

eB

m c
 


 ,  above eq. becomes 

0 1 1 1
0

ˆ ˆ ( ) ( )e e ce e ce
e

eE B
i v v z v z

m B

      


                                                                  (3.A5) 



 

137 
 

x -component of Eq. (3.A5),      0 1 1
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y -component of Eq. (3.A5),     0 1 1
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We obtain Eq. (3.A8) by using Eq. (3.A7) into Eq. (3.A6), 
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Now substituting Eq. (3.A8) in Eq. (3.A7), we obtain  
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z -component of eq. (3.A5),    1
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Similarly, the velocity component of ions can be expressed as 
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Now electron current density, 1 1e e eJ n ev 
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, and x, y, and z-component of current density due 

to electrons are-                                                   
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   Similarly, x, y, and z-component of current density due to ions are-                                                   
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                                                 (3.A17) 
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Now, from eq. (3.A1) we obtain the ,x y , and z components of wave equation, 

x -component of wave equation,   
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Using equation of current density, 1 1x i i x e e xJ nev n ev   in the above equation, we obtain 
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Substituting the values 1i xv  and 1e xv  from (3.A8) and (3.A11), we obtain 

2
2

2
2 22

2 2 2 2

2
2

2

1

4 1
 + ,

1

x ci
y

i i
ci

x xz

x ce
y

e e
ce

E ee
E

m t m

tE EE

x z tx c c tE ee
E

m t m

t










  
              

                 

 
                           (3.A20) 
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y -component of wave equation,  
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z -component of wave equation, 

       
2 2 2

2 2 2 2

1 1
0.z x

e

E E
x zx c t 

   
        

                                                                         (3.A23) 

From these linear relationships we have, 
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Combining Eqs. (A21)-(A23), by assumptions 1ik   and neglecting displacement current, 

we obtain 
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On solving above equation, we obtain 
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From Eq. (3.A25), The whistler wave's dynamical equation is expressed as 
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APPENDIX 4A: DISPERSION RELATION OF 3D WHISTLER WAVE 

The dynamical equation for a 3D whistler wave with an ambient magnetic field along the z-

axis in a magnetized plasma propagating in the x, y, and z planes with a wave vector 

ˆ ˆ ˆx y zk k x k y k z  


, is derived utilizing two fluid models. 

To establish the dynamics of whistler wave, the following key equations are used: 

 Wave equation  
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                                                                               (4.A1) 

Equation of motion for electrons 
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Equation of motion for ions 
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where em  im  denotes the mass of an electron and ion, iv , ev  denotes the velocity of the ion 

and electron, 0B denotes the background magnetic field, and e denotes the charge on the 

electron. Where 0 0 0 ˆˆ( )z yB B z B y  , denotes the background magnetic field along z direction 

and also 0yB denotes the magnetic field owing to the presence of magnetic islands (at the 

reconnection sites). 

Velocity components of whistler wave are derived using Eqs. (4.A2) and (4.A3), 
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Where 0 1e e ev v v 
  

, 0 0ev  


No drift in equilibrium 

 0 0 ˆˆz yB B z B y 


, background magnetic field. 

 We can write the x-component of Eq. (4.A4) as: 
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Similarly, y-component of Eq. (4.A4) is: 
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                                                                                     (4.A6) 

z-component of Eq. (4.A4) is: 
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From Eq. (4.A6) 

1
1

0 0

 .y e x ce
e y

e

eE v
v

i m i


 

 

 
                                                                                       (4.A8) 

Using Eqs. (4.A8) and (4.A7) in Eq. (4.A5), we can obtain the x-component of whistler 

wave’s velocity due to electron. 
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y-component of whistler wave’s velocity due to electron, 
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z-component of whistler wave’s velocity due to electron, 
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Similarly, we can obtain the components of whistler wave’s velocity due to ions, 
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And,
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Now, use these velocity components in driving the current density, by using relation, 
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,  and then substitute in Eq. (4.A1), 

x-component of Eq. (A1), 
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y-component Eq. (4.A1), 
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z-component Eq. (4.A1), 
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where 0
ce
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m c
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 is the electron gyrofrequency of wave, 0n denotes the background 

number density, c denotes the velocity of light and 
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  is the collisionless 

electron skin depth. 

 Now, Compounding Eqs. (4.A15), (4.A16), and (4.A17) and applying conditions 1ik  , 

we get, 
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     (4.A18) 

After solving eq. (4.A18), we obtain the dynamics of 3D whistler wave in the presence of 

magnetic island in terms of electric field under the condition 
2

2 ce cit
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. Now, we can write 

the dynamical equation of 3D whistler in terms of electric field. 
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(4.A19) 

Also, we can write above equation in following form which is the dispersion relation in the 

presence of magnetic islands,  



 

146 
 

2 2 2
0 02 2 2 2

0
0

( )
(1 ) 0.

4
i z z y y

e z
i

k k B k B
k E

n m


 



 
    

 
                                                                                    (4.A20) 

Here, 0 0 0 ˆˆ( )z yB B z B y  , denotes the background magnetic field along z direction and also 0yB

denotes the magnetic field owing to the presence of magnetic islands (at the reconnection sites), 

and in the absence of magnetic islands, one can get the usual dispersion relation of whistler 

wave given below 

                                 2 2 2 2 2 2 2 2
0 (1 ) 0.e z i A zk k k v E                                                        (4.A21)           

Moreover, it is emphasized that the equation of motion is then used to examine beam-driven 

evolution. 
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, neglecting higher order terms. 

The dispersion relation of the whistler wave under the conditions, 

0 0 0 00,x y zk k k k     and 0 1ek   , 0ce   

 The eq. (4.A21) modifies to    2 4 2 2
0 0 .z i Ak v                                                            (4.A22) 

It should be noted that this formulation (equation (4.A22)) is identical to the dispersion 

relation of a circularly polarised wave[58]. (The widely recognised dispersion function of a 

circularly polarised whistler wave[58] is given as 
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Now, after neglecting the displacement current and taking the conditions 0 0 0 00,x y zk k k k   , 

0 1ek     and 0ce   into account, it reduces 2 2
0 0 .z e cek    Further, using 2

i A e cev    and hence 

the similarity). 
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