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Abstract

This thesis provides efficient and higher-order methods for solving singular convection-

diffusion perturbation problems. A differential equation is singularly perturbed when

some or all of its highest-order derivatives are multiplied by a small parameter, known

as the perturbation parameter. When limiting the perturbation parameter to a value of

zero, the solution to such problems reveals a multiscale character, which adds stiffness

to the problem. This results in the formation of boundary layers. In these layers, the

physical variable varies rapidly across small domains. As a result of the presence of

layer phenomena, theoretical methods cannot accurately approximate the solution. These

methods are only pertinent to a subset of problems, and prior knowledge of the solution’s

behaviour is required. Consequently, it is an intriguing task to develop uniform numerical

methods for solving such problems.

This thesis aims to develop higher-order defect correction methods for the solution

of four distinct kinds of convection-diffusion problems. Combining a stable, low-order,

precise, and computationally inexpensive upwind difference scheme with a higher-order,

less stable modified central difference operator is possible in these methods. In addition

to being free of directional bias, the process is also unconditionally stable and converges

uniformly. This technique can be utilised in an adaptive procedure to refine the mesh

in non-smooth regions. For a convection-diffusion problem, a defect correction method

over an adaptive mesh produces uniform second-order convergence. For a convection-

diffusion problem with a discontinuous coefficient and point source, a defect correction

method combining a simple upwind scheme and a central difference scheme at all mesh

points over the Bakhvalov Shishkin mesh is studied. A posteriori error estimates are

established, yielding second-order convergence at all mesh points. Then, a parabolic

convection-diffusion problem with a large shift is solved by utilising an implicit Euler

scheme in time variable on a uniform mesh and a defect correction method comprised

of the upwind scheme and the modified central difference scheme in space variable on a

non-uniform mesh. The second order of spatial convergence and the first order of tem-

poral convergence are obtained. Finally, a parabolic convection-diffusion problem with

xi



xii Abstract

a discontinuous convection coefficient and a source is solved using an implicit difference

scheme in time on a uniform mesh and a defect correction scheme based on a finite dif-

ference discretisation over an adaptive mesh in space. Estimates of parameter uniform

error reveal uniform convergence of first-order in time and second-order in space. Based

on the contribution of this study, we suggest future research directions for analysing more

complex problems.
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3.1 Maximum absolute error (ÊN) and order of convergence (P̂N) for example

3.6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Comparison of maximum absolute error (ÊN) and order of convergence
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Chapter 1

Introduction

1.1 Perturbation Theory

Differential equations are ubiquitous in mathematical modelling and describe various

physical processes in science and engineering. By expressing the relationship between the

rate of change of a variable and the variable itself, differential equations provide a power-

ful tool for understanding and predicting how systems evolve over time and space. They

allow us to solve and analyse complex problems associated with the underlying physical

phenomena and provide insight into the behaviour and dynamics of the corresponding

systems. Their significance spans various disciplines, making them an indispensable tool

for scientific inquiry and technological advancement.

In scientific disciplines, when dealing with mathematical models of physical phe-

nomena, we often attempt to deal with the essential quantities while ignoring the neg-

ligible ones that involve small parameters. However, a natural question concerning the

role of the omitted terms arises. Does the presence or omission of such terms affect the

solution or the information obtained from the mathematical model? Perturbation theory

helps us answer this. It is a mathematical framework employed to analyse and understand

the effects of disturbances or changes in a system due to these small parameters known

as perturbation parameters. It allows researchers to refine their understanding of systems

by considering both the simplified, unperturbed models and the more complex, perturbed

counterparts. This approach plays a crucial role in fields such as physics, engineering,

and applied mathematics, offering a nuanced perspective on the behaviour of systems in

the presence of subtle influences. The perturbation problems are categorised broadly into

regular and singular perturbation problems.

1



2 Introduction

Let D be an open bounded set with smooth boundary Γ and D̄ denotes its closure.

Consider the boundary value problem

Pε : Lεu := L0 + εL1 = f (x, ε); x ∈ D and u(Γ) is given. (1.1.1)

Here ε is a small parameter such that 0 < ε ≪ 1,Lε is a differential operator, and f (x, ε) is

a given real-valued smooth function. We assume that, for each ε, Pε has a unique smooth

solution u := uε(x). Denote by P0 the corresponding degenerate equation obtained by

setting ε = 0 in (1.1.1) and by u0 the smooth solution of P0.

Definition 1.1.1. Problem Pε is called regularly perturbed with respect to some norm

∥ · ∥ if there exists a solution u0 of problem P0 such that

∥ uε − u0 ∥→ 0 as ε→ 0.

Otherwise, Pε is said to be singularly perturbed with respect to the same norm.

Here ∥ · ∥ is the supremum norm (or maximum norm) defined for every continuous func-

tion g : Ω̄→ R as

∥ g ∥Ω̄= sup
{
|g(x)| : x ∈ Ω̄

}
.

Example 1.1.2. Consider the algebraic problem Pϵ:

5x2
ϵ + ϵxϵ − 3 = 0, 0 < ϵ ≪ 1. (1.1.2)

The roots of Pϵ reads

xϵ =
−ϵ ±

√
ϵ2 + 60

10
. (1.1.3)

It follows from (1.1.3) that as ϵ → 0, the roots xϵ become ±

√
3
5

. Clearly, xϵ = ±

√
3
5

are

the roots of the corresponding degenerate problem P0. Thus, Pϵ is a regular perturbation

problem.

Example 1.1.3. Consider the boundary value problem Pϵ:

u′′ϵ (x) + 2ϵu′ϵ(x) − 4uϵ(x) = 0 with uϵ(0) = 0, uϵ(1) = 1 and 0 < ϵ ≪ 1. (1.1.4)

The solution of Pϵ reads

u(x) := uϵ(x) =
eλ1 x − eλ2 x

eλ1 − eλ2
, where λ1 = −ϵ +

√
ϵ2 + 4, λ2 = −ϵ −

√
ϵ2 + 4. (1.1.5)

Moreover, note that lim
ϵ→0

uϵ =
sinh(2x)
sinh(2)

:= u0. Clearly, u0 is the solution of the correspond-

ing degenerate problem P0. Thus, Pϵ is a regular perturbation problem.
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Example 1.1.4. Consider the boundary value problem Pϵ:

−ϵu′′ϵ (x) + u′ϵ(x) = 1, x ∈ (0, 1) with u(0) = u(1) = 1 and 0 < ϵ ≪ 1. (1.1.6)

The solution of Pϵ reads

u(x) := uϵ(x) = x −
e(− 1−x

ϵ ) − e(− 1
ϵ )

1 − e(− 1
ϵ )

. (1.1.7)

The solution uϵ considered as function of two variables uϵ : [0, 1] × (0, 1) → u(x, ϵ)

satisfies

lim
x→p

lim
ϵ→0

u(x, ϵ) = p = lim
ϵ→0

lim
x→p

u(x, ϵ), ∀p ∈ [0, 1).

Although

lim
x→1

lim
ϵ→0

u(x, ϵ) = 1 , 0 = lim
ϵ→0

lim
x→1

u(x, ϵ).

The solution uϵ as a function of two variables exhibits a singularity at the point (1, 0)

in the (x, ϵ)-plane. Since, ∥uϵ − u0∥ ↛ 0 uniformly throughout the entire domain as ϵ

approaches zero, Pϵ is a singular perturbation problem.

Perturbation theory becomes a powerful ally when navigating the complexities

of convection-diffusion problems, where the interplay of transport phenomena poses a

unique set of challenges. In mathematical modelling for fluid dynamics and heat transfer,

convection and diffusion are key players, each influencing the system in distinct ways. In

this context, perturbation theory allows us to dissect these complex problems by intro-

ducing small parameters that capture nuances in the convective and diffusive processes.

The tailored approach proves invaluable in fields ranging from environmental science to

engineering, offering a lens through which we can unravel the layered dynamics of fluid

flow and heat transfer.

1.2 Singular Perturbation Problems

Singular perturbation problems (SPPs) are of common occurrence in nature. Typically

these problems arise in modelling of various complex phenomena such as chemical-

reactor theory [187], bio-chemical kinetics [157], gas porous electrodes theory [251],

quantum mechanics [37], Reissner-Mindlin plate theory [11], Michaelis-Menton the-

ory for enzyme reactions [197], drift diffusion equation of semiconductor device [250],

diffraction theory [55], usimulation of oil extraction from underground reservoirs [73],

magneto-hydrodynamics duct problems at Hartman number [91], atmospheric pollution

[226], water quality crisis in river networks [34], mathematical model of liquid crystal

material [203], heat transportation problems with large Peclet numbers [193], financial
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modelling of option pricing and corporate liabilities [33], predator-prey population dy-

namics [153], optimum control problems in certain resistance-capacitor electrical circuits

[136]. The study of singular perturbation problems is imperative because of their great

practical value.

1.2.1 Historical Overview

Fluid mechanics in the 19th century developed in two directions: theoretical hydro-

dynamics and hydraulics. The former originated from Euler’s equations for inviscid flows,

reaching a high level of comprehensiveness. However, the results of this classical science

starkly contrasted with experimental findings, illustrated by the famous contradiction of

d’Alembert. The d’Alembert paradox was only resolved in a revolutionary 1904 paper by

L. Prandtl, who showed that no matter how small the viscosity, viscous effects can never

be neglected [10, 222]. More precisely, the determining factor is the Reynolds number

Re, a dimensionless measure of the relative importance of inertial to viscous forces in

the flow. Prandtl postulated that for certain kinds of high Reynolds numbers or nearly

frictionless flows, for example, the flow past a streamlined body like an airfoil, the vis-

cous effects would be confined to thin regions called boundary layers. In specific high Re

flows, like the flow around a bluff body like a sphere, viscous effects aren’t limited to thin

layers. In these cases, the impact of viscosity is more dramatic than its low value might

initially suggest.

However, the aerodynamic boundary layer was first defined by Prandtl [222].

Friedrichs and Wasow coined the term singular perturbation in their work [80]. In 1957, in

a fundamental paper [284], M. I. Vishik and L .A. Lyusternik studied linear partial differ-

ential equations with singular perturbations, introducing the famous Vishik-Lyusternik

method. From that moment on, an entire literature has been devoted to this subject

[150, 138, 122, 117, 241]. The critical concept of boundary layers has now spread to

many other fields; boundary layers often arise in what is known as singular perturbation

problems [10, 222]. For a deeper dive into the historical overview, an introduction to

Prandtl’s resolution of the paradox concerning flow past a thin plate, and other classi-

cal examples, the interested reader is encouraged to explore an exciting general article

“Ludwig Prandtl and boundary layers in fluid flow-How a small viscosity can cause large

effects" by J. H. Arakeri and P. N. Shankar [10].

1.2.2 Classification of Singular Perturbation Problems

The singular perturbation problems are further classified into the following two

broad categories:
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1. Singular perturbation problem of cumulative type: These problems are charac-

terised by a small perturbation parameter ϵ whose effect becomes apparent after a

substantial period, generally after an interval of order O
(

1
ϵ

)
. For example, consider

the motion of a satellite orbiting the Earth, where the spherically symmetric grav-

itational field is the dominating force. The satellite’s motion would be periodic if

the gravitational field were the sole factor acting on it. However, small influencing

forces from factors such as the thin atmosphere, moon, distant sun, and other stars

significantly alter the satellite’s motion after many orbital revolutions due to their

cumulative effect.

2. Singular perturbation problem of layer type: Characterised by a small pertur-

bation parameter ϵ, these problems exhibit small spatial regions known as layer

regions where the solution undergoes abrupt variations. The solution unveils a mul-

tiscale character, introducing stiffness to the problem over a short interval. Mean-

while, away from these layers, the solution behaves regularly and varies gradually.

The classification of these problems further depends on the location of the layers,

leading to different categories.

(a) Singular perturbation problems of boundary layer type: In these prob-

lems, the layer region is adjacent to the boundary of the domain. Researchers

commonly refer to this region as the boundary layer, a term Prandtl originally

introduced in fluid mechanics. Shock waves are another term for these phe-

nomena in gas dynamics. These layers are typically known as skin layers in

electric applications. On the other hand, in mathematics, it sometimes goes

by the name of Stoke’s surfaces.

(b) Singular perturbation problems of interior layer or free layer type: In

these problems, the layers are located within the domain, away from the bor-

ders. Therefore, these layers are sometimes known as interior layers or free

layers. Several factors might cause the occurrence of these interior layers, in-

cluding turning points, non-smooth coefficients, non-smooth initial/boundary

conditions, non-linearities, or a lack of borders.

In this thesis, we consider singular perturbation problems of layer type. It is crucial to

determine the actual location, width and strength of all the existing layers within the so-

lution to determine the solution to the problem [212]. The characteristics of the layers,

including their strength, width, and location, depend on whether the singular perturbation

problem is of convection-diffusion or reaction-diffusion type. The coefficients and ini-
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tial/boundary conditions stated in the problem also play an essential role. We will now,

therefore, look at the classification of singular perturbation problems as follows:

1. Convection-diffusion problems: Convection-diffusion problems model physical

phenomena involving convection, reaction, and diffusion processes. In these prob-

lems, the order of the degenerate equation reduces by one. Let us consider a two-

point boundary value problem on a unit interval Ω = (0, 1)
−εu

′′

ε (x) + u
′

ε(x) = 0, x ∈ Ω

uε(0) = u0, uε(1) = u1,

where u0, u1 ∈ R are some given constants and 0 < ε ≪ 1. The exact solution of

the problem is uε(x) =
u1e−1/ε − u0

e−1/ε − 1
+

u0 − u1

e−1/ε − 1
e−(1−x)/ε. The corresponding degen-

erate equation is of order one, and we can impose only one boundary condition. It

needs to be clarified which of the two possible boundary conditions we can impose.

Since the characteristic direction aligns with the positive x-axis, we cannot impose

a boundary condition at x = 1. The corresponding degenerate problem reads
v
′

0(x) = 0, x ∈ Ω

v0(0) = u0,

and its solution is v0(x) = u0. Therefore, a boundary layer will form near x = 1

unless the boundary value of uε at x = 1 agrees with the value of the reduced

solution v0 at x = 1. Thus we may say that the solution exhibit only one boundary

layer of width ε in the neighbourhood of x = 1.

2. Reaction-diffusion problems: Reaction-diffusion problem models physical phe-

nomena involving both reaction and diffusion processes. In these types of problems,

the order of the degenerate equation reduces by two. Let us consider a two-point

boundary value problem defined on a unit interval Ω = (0, 1)
−εu

′′

ε (x) + uε(x) = 0, x ∈ Ω

uε(0) = u0, uε(1) = u1,

where u0, u1 ∈ R are the given constants and 0 < ε ≪ 1. The exact solution of the

problem is uε(x) =
u1 − u0e−1/

√
ε

1 − e−2/
√
ε

e−(1−x)/
√
ε+

u0 − u1e−1/
√
ε

1 − e−2/
√
ε

e−x/
√
ε. Note that the cor-

responding degenerate equation has order zero. Consequently, we cannot impose

any boundary conditions on its solution. The exact solution of the degenerate equa-

tion is v0(x) = 0. Therefore, a boundary layer will appear at x = 0 unless u0 = 0.
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Similarly, a boundary layer will occur at x = 1 unless u1 = 0. The layer correc-

tion function e−x/
√
ε in the solution suggests that the solution has a steep gradient

in (0,
√
ε) but not in (

√
ε, 1). The behaviour of e−(1−x)/

√
ε is analogous. Therefore,

we may have two boundary layers of width
√
ε, each at outflow boundary regions.

However, one or no boundary layer may occur for special choices of boundary con-

ditions.

In this thesis, we study singular perturbation problems of convection-diffusion type. To

gain an understanding of the strength and location of layers in the solution of convection-

diffusion problems, consider the model convection-diffusion problem defined on a unit

interval (0, 1)

−ϵu′′(x) + a(x)u′(x) + b(x)u(x) = g(x), x ∈ (0, 1) (1.2.1)

where 0 < ϵ ≪ 1 is the perturbation parameter and appropriate boundary conditions

are specified. The rules presented in Table 1.1 serve as a valuable resource for inferring

information regarding the strength and location of boundary and interior layers appearing

in the solution of the problem (1.2.1). If a(x) = 0, the problem (1.2.1) transforms into a

reaction-diffusion problem. In that case, Table 1.2 provides helpful information regarding

the strength and location of the interior and boundary layers in the solution for reaction-

diffusion equations.

1.3 Methods for Solving Singular Perturbation

Problems

To solve singularly perturbed problems, researchers commonly employ two principal

methods: asymptotic methods and numerical methods.

1.3.1 Asymptotic Methods

The asymptotic methods are widely used in mathematics to obtain precise approx-

imations for solving singular perturbation problems. These methods offer a straightfor-

ward approach to accurately determining an approximation for the solution. In this study,

the analysis of the problem’s limiting behaviour is conducted through asymptotic expan-

sion methods. The solution is then approximated by constructing an asymptotic series,

which is expressed in terms of the small perturbation parameter ϵ, such as

u = u0 + ϵu1 + ϵ
2u2 + · · · .
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Table 1.1: Strength and location of boundary and interior layers for singularly per-
turbed convection-diffusion problems

Smoothness of functions Value of the

function

Strength and location of

b(x) a(x) f (x) a(x) Boundary

Layer

Interior Layer

Smooth < 0,∀x ∈ Ω Strong, at x = 0 —

Smooth > 0,∀x ∈ Ω Strong, at x = 1 —

Smooth Discontinuous

at x = d ∈ Ω

< 0,∀x ∈ Ω Strong, at x = 0 Weak, on right

side of x = d

Smooth Discontinuous

at x = d ∈ Ω

> 0,∀x ∈ Ω Strong, at x = 1 Weak, on left

side of x = d

Smooth Discontinuous at x = d ∈ Ω < 0,∀x ∈ Ω Strong, at x = 0 Weak, on right

side of x = d

Smooth Discontinuous at x = d ∈ Ω > 0,∀x ∈ Ω Strong, at x = 1 Weak, on left

side of x = d

Smooth Discontinuous at x = d ∈ Ω > 0, x ∈ (0, d)

and

< 0, x ∈ (d, 1)

— Strong, on both

side of x = d

Smooth Discontinuous at x = d ∈ Ω < 0, x ∈ (0, d)

and

> 0, x ∈ (d, 1)

Solution is unbounded

— = 0 SPP is of reaction-diffusion type

Table 1.2: Strength and location of boundary and interior layers for singularly per-
turbed reaction-diffusion problems

Smoothness of functions Strength and location of

b(x) f (x) Boundary Layer Interior Layer

Smooth Strong, at both endpoints

x = 0 and x = 1

—

Smooth Discontinuous

at x = d ∈ Ω

Strong, at both endpoints

x = 0 and x = 1

Strong, on both sides

of x = d
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Here u0, u1, u2, · · · are sufficiently smooth functions. The values of u0, u1, u2, · · · can be

obtained by substituting u into the given equation after doing term-by-term differentiation.

After substitution, the first few terms are solved to get u0, u1, u2, · · · and form an ap-

proximate solution to the problem. The asymptotic solution accurately approximates the

solution to the problem over a large portion of the domain, i.e., the outer region, but is in-

accurate over the small region, i.e., the layer region, because the effect of the perturbation

term in the problem is not negligible in this region. However, the straightforward asymp-

totic expansion leads to a differential equation of lower order than the original differential

equation, and the solution fails to satisfy all the boundaries or the initial conditions.

Thus, the method of asymptotic expansion fails to adequately approximate the exact

solution of the singular perturbation problem. This limitation of the asymptotic expansion

method is removed by using the following methods:

1. Method of matched asymptotic expansions: This methodology involves obtain-

ing two complementary solutions within their respective regions, namely inner so-

lution and outer solution, by treating a specific portion of the domain as a distinct

perturbation problem. In subsequent steps, the solutions obtained from various re-

gions within the domain are patched or matched to obtain an approximate solution

that encompasses the entire domain. The process of matching the inner and outer

solutions was initiated through the utilisation of a stretching transformation [79].

In the 1950s, researchers refined and implemented this method to address various

physical problems [155, 151, 208, 125, 126, 285, 286]. One can refer to the follow-

ing literature to gain a deeper understanding of this method: [280, 210, 135].

2. Method of multiple scales: This method focuses on developing uniformly valid

approximations for solving singular perturbation problems by applying multiple

scales for the independent variable. Including additional terms involves introduc-

ing new independent variables to eliminate secular terms and ascertain a uniformly

approximate solution. Cole [31] introduced this idea in the late 1950s, and has since

been thoroughly investigated and analysed in various examples. After that, this ap-

proach has been extensively applied in solving a number of singular perturbation

problems, as documented in various studies [134, 110, 152, 259, 60, 54, 28]. The

multiple scales method has been found to provide a notable advantage when solving

nonlinear problems [148]. However, introducing additional slow scales can lead to

potential ambiguities in the perturbation series solution, which must be carefully

addressed, as demonstrated in [31].
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3. WKB approximation: This method is employed to obtain a global approxima-

tion for solving linear singular perturbation problems. The proposed methodology

suggests an exponential dependence of the solution on the boundary layer, a valid

assumption for linear singular perturbation problems. This assumption greatly sim-

plifies obtaining an asymptotic approximation for the solution. The methodology

entails first identifying an approximate set of linearly independent solutions com-

bined using the superposition principle to generate a general solution. In contrast

to other asymptotic approaches, such as matched asymptotic expansions or mul-

tiple scales, the boundary conditions are generally solved exactly at the end of

the process rather than being approximated. This method, known as the Wentzel-

Kramers-Brillouin (WKB) method, was first utilised in the 1920s to approximate

solutions to the Schrödinger equation. The method’s historical development is doc-

umented in [104], whereas reference [249] provides extensive mathematical details.

The WKB method has been widely employed in quantum and solid mechanics, as

shown by its applications in the respective fields [37] and [266]. Moreover, this

approach has been extensively employed in solving various singular perturbation

problems [92, 143, 2].

4. Other Methods: In addition to the aforementioned prominent asymptotic meth-

ods, several other asymptotic methods can be applied to both linear and nonlin-

ear problems. For linear problems, some of these methods include the Poincaré-

Lindstedt method [137, 214, 30, 181, 44, 201], the method of strained parame-

ters [202, 258, 265], the method of periodic averaging [53, 124, 4], and the lin-

earised perturbation method. For nonlinear problems, there are methods such as the

variational iteration method [100, 103], the modified Poincaré-Lindstedt method

[101, 174, 227, 6], the homotopy perturbation method [207, 102, 1], the parameter

expansion method [239, 291] and the perturbation-iteration methods [12, 184, 203].

Books [282, 263, 31, 209] contain more information on the progressive develop-

ments in the asymptotic theory of singular perturbations.

The asymptotic expansion method applies to a limited range of problems and necessitates

the user’s knowledge of the location and width of the boundary layer. Furthermore, this

method must be optimally designed to solve two-dimensional problems efficiently. The

validity of the asymptotic approximation for complex one-dimensional nonlinear prob-

lems is limited to small perturbation parameter values. One must thoroughly understand

the expected solution behaviour to implement these methods successfully. This serves as
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a source of motivation for individuals to employ numerical methods to solve such prob-

lems.

1.3.2 Numerical Methods

Numerical methods are employed to obtain an approximate solution for problems

that are typically unsolvable using closed-form solutions. These methods are designed

to solve a wide range of problems and offer quantitative information about the problem.

Because these methods are quantitative, their solutions differ significantly from the qual-

itative solutions provided by asymptotic methods.

Over the last few decades, researchers have developed several numerical approaches

for solving singular perturbation problems. Computational methods and parameter uni-

form numerical methods are two broad categories for these methods. When the pertur-

bation parameter is set to a critical value, the standard finite difference, finite element, or

finite volume methods, collectively called classical computational methods, are found to

be insufficient on uniform meshes and require an extremely large number of mesh points

to generate accurate numerical solutions [99]. The reason behind this limitation of the

computational methods is the presence of steep gradients in the boundary layer(s) of the

analytical solution. These methods fail to reduce the maximum point-wise error until the

mesh size and the singular perturbation parameter have the same order of magnitude. On

the other hand, refining the mesh size to the order of the perturbation parameter increases

the number of mesh points and the related computing cost. Hence, the major constraint of

the computational method is the domain discretization’s dependency on the perturbation

parameter. Therefore, to construct robust computational methods that are independent of

the perturbation parameter in terms of discretization, error, and order of convergence is

desirable. These methods are known as parameter uniform numerical methods. The pa-

rameter uniform methods are broadly classified into two main categories: the fitted finite

difference operator and the fitted mesh method.

A brief survey enumerating the chronological developments in both classical com-

putational methods and parameter-uniform numerical methods is as follows.

1. Finite Difference Methods : The finite difference method (FDM) is a widely recog-

nised and commonly used approach for estimating the solution of a singular pertur-

bation problem. It is a straightforward technique that has been extensively studied

and applied in various fields of research. The introduction of numerical applica-

tions can be traced back to the late 1960s, aligning with the minicomputers. These

minicomputers offered a convenient platform for tackling complex problems. The
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discretization technique employed in this method involves partitioning the domain

of interest into a mesh or grid. In the process, the differential equation is trans-

formed by substituting all the derivatives with algebraic differential quotients. For

example, the derivative
dz
dx

may be replaced by first-order forward difference quo-

tient
dz
dx

∣∣∣∣∣
i
≈

zi+1 − zi

h
or by a second-order central difference quotient

dz
dx

∣∣∣∣∣
i
≈

zi+1 − zi−1

2h

where ui is the value of u at the mesh point i and h is the mesh spacing. By substi-

tuting the derivatives at all interior mesh points with their corresponding values, a

system of algebraic equations is formed, where u′i s represent the unknowns. After

implementing the boundary conditions, the system will exhibit a correspondence

between the number of unknowns and interior nodes within the mesh. The val-

ues of these unknowns can be obtained by solving the system of equations by direct

methods or iterative methods such as the Gauss-Seidel method, Jacobi method, Suc-

cessive over-relaxation method, or other advanced techniques.

The development of a three-point difference scheme on a uniform mesh for a one-

dimensional two-point singular perturbation boundary value problem was first in-

troduced in [218]. The approach employed consisted of finding mesh regions where

the difference between the computed solution and its adjacent value exceeded a pre-

determined threshold value. An iterative procedure was applied to increase the con-

centration of mesh points at these identified locations. Additionally, a smoothing

approach was applied to mitigate the accuracy loss resulting from sudden changes

in mesh spacing. The Gauss elimination method was employed to solve the system

of linear algebraic equations that were derived from the difference scheme. The nu-

merical results obtained, demonstrate that the computed solution converged to the

exact solution. Later, this method is extended to solve a class of nonlinear problems

[219]. These methods require strict constraints on the mesh spacing to maintain

stability when the perturbation parameter is very small. For example, consider the

following singular perturbation boundary value problem:

−ϵu′′(x) + a(x)u′(x) + b(x)u(x) = g(x), x ∈ (0, 1), u(0) = u0, u(1) = u1.

Here ϵ is a perturbation parameter, a(x), b(x) and g(x) are smooth functions satis-

fying a(x), b(x) ≥ 0 on (0, 1). It was discovered that the central difference scheme,

implemented on a uniform mesh {xi = ih} with mesh spacing (h = 1/N), becomes
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unstable and oscillates when a(xi)h/2ϵ > 1 [62]. The authors proposed imple-

menting an upwind scheme to solve the stability problem [113]. In this proposed

scheme, the conventional first derivative is substituted with a one-sided difference

method, either forward or backward, instead of the central difference approach. The

selection between forward or backward difference depends upon the sign of a(x) at

a specific mesh point xi. The scheme is referred to as the Il’in-Allen-Southwell

scheme [5]. It was observed that the upwind scheme demonstrated stability and

exhibited better convergence in comparison to the central difference scheme. The

scheme under consideration is widely recognised as the first fitted operator scheme.

However, it is important to note that this scheme does have certain limitations, it

exhibits first-order uniform convergence in the outer region.

In [63], a class of SPPs is solved by using an upwind finite difference method. The

author compared the asymptotic behaviour of the solution obtained from the dif-

ference scheme with the exact solution. Later, the authors extended this method to

solve second-order ordinary differential equations [64]. They obtained elementary

estimates for the solution and its derivatives by using the maximum principle [225].

In [3], the upwind method is further refined and used to solve SPPs with systems of

equations. In this method, a parameter was introduced in the difference equation,

and it was chosen in such a way that an accurate approximation for the reduced

problem is obtained in the interior region as well. Later, this method is extended to

solve SPPs with internal turning points [24].

In [13], the authors modified the upwind scheme to enhance its accuracy for

convection-diffusion SPPs. This modified scheme achieved second-order accuracy,

similar to the central difference scheme, while preserving the stability properties of

the upwind scheme. This modification improved the accuracy of the solution and

provided better convergence properties.

In [84], the author developed a family of uniformly accurate finite difference

schemes for convection-diffusion SPPs using the high-order differences with iden-

tity expansion (HODIE) framework [177, 61]. The discretization error analysis was

carried out using the stability results from [205]. The theoretical analysis showed

that the uniform convergence of any order could be achieved, depending on the

smoothness of the data. Achieving higher-order convergence with this scheme re-

quired additional evaluations of the data.

In [70], the exponential box scheme is introduced to solve singularly perturbed

convection-diffusion problems. This scheme combined the exponential difference



14 Introduction

operator [5] with Keller’s box scheme [132] to achieve a stable and second-order

accurate approximation of the solution. Later in [32], the authors proved that the

exponential difference, when applied on a uniform mesh with a mesh size of h, pro-

vides uniformly second-order accuracy for solving convection-diffusion problems.

This result demonstrated that the exponential box scheme is reliable and accurate

across the entire computational domain, ensuring consistent second-order accuracy

of the approximation.

In [75], it is shown that for convection-diffusion SPPs, the fitted finite difference op-

erator is only necessary for the layer region, while the solution in the outer region

can be accurately approximated using the standard fitted operator. This observation

allowed for more efficient computation by reducing the computational cost in the

outer region. In [76], the author investigated a variety of finite difference schemes

to derive sufficient conditions for uniform convergence. He showed that these con-

ditions are not only satisfied by uniformly convergent schemes but also by a more

general class of upwind schemes.

In [17], the authors solved a singularly perturbed reaction-diffusion problem using

the finite difference method on a non-uniform mesh. The non-uniform mesh was

constructed by using a continuous mesh generating function ψ : Ω̄ → [0, 1], which

is defined as

ψ(t) =


χ(t) := −σϵ

β
ln(1 − t/q), t ∈ [0, τ],

ϕ(t) := χ(τ) + ψ′(τ)(t − τ), t ∈ [τ, 1/2],

1 − ψ(1 − t), t ∈ (1/2, 1],

where the transition point τ is the solution of the nonlinear problem (1 − 2τ)ϕ′(t) =

1 − 2χ(τ). The mesh generated by this method is known as the Bakhvalov mesh.

This mesh is considered to have a complicated structure, and extending the mesh to

solve the singularly perturbed partial differential equations (PDEs) is difficult.

In [255], the author developed a scheme based on the integro-interpolation method

[246] to solve a class of singularly perturbed differential equations of ordinary

type and parabolic type. The scheme was developed on a mesh similar to the

Bakhvalov mesh and exhibited third-order convergence for ordinary differential

equations and first-order convergence for partial differential equations. In [287],

the author generalised the Bakhvalov mesh for the finite-difference discretization

of one-dimensional nonlinear reaction-diffusion SPPs. This generalisation extended

the use of the Bakhvalov mesh to handle nonlinear problems and achieved a uniform

second-order convergence.
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In [85], an exponentially graded mesh was employed for two-point singularly per-

turbed boundary value problems. The graded mesh divided the domain into three

regions: the inner region with an extremely fine mesh, the transit region where the

mesh geometry changes from fine to coarse, and the outer region with a uniform

mesh. The number of mesh points in the inner region was significantly higher (ap-

proximately k times) than the number of mesh points in the outer region. Various

finite difference schemes were applied on the graded mesh and uniform conver-

gence of fourth-order was achieved. However, the complexity involved in creating

the graded mesh made it challenging to extend the mesh to higher dimensions.

Considering this limitation, in [256] G. I. Shishkin introduced a relatively simple

mesh known as the Shishkin mesh, which could be conveniently extended to higher

dimensions. For convection-diffusion problems, he proposed a piecewise uniform

mesh with a transition point defined as τ = min
(

1
2 , ϵτ0 ln N

)
, where τ0 ≥ p/α. The

parameter p characterises the order of convergence of the numerical method. The

mesh Ω̄ = {xi}
N
i=0 is constructed by dividing both subintervals [0, τ] and [τ, 1] into

N/2 equal subintervals if a boundary layer is present near the left endpoint of the

domain. When ϵτ0 ln N > 1
2 , (for sufficiently large N compared to 1/ϵ), this mesh

transforms into a uniform mesh. Similarly, if there is a boundary layer near the right

endpoint, the domain Ω̄ divided into [0, 1 − τ] and [1 − τ, 1] each with N/2 equal

subintervals, to obtain a piecewise uniform mesh. For reaction-diffusion problems,

the transition parameter τ is defined as τ = min
(

1
4 ,
√
ϵτ0 ln N

)
, where τ0 ≥ p/α. A

piecewise uniform mesh is constructed by discretizing the domain Ω̄ = [0, 1] into

[0, τ], [τ, 1−τ], [1−τ, 1], where the subintervals contain N/4, N/2 and N/2 equally

spaced mesh points, respectively. It is important to note that one limitation of the

Shishkin mesh is that it requires prior knowledge about the location and width of

the boundary layers. All these meshes, Bakhvalov [17], Vulanović [287], Gartland

[85], and Shishkin [256], are constructed based on a priori information about the

width and location of the layers in the exact solution and are thus known as apriori

meshes.

In [179], the author introduced a posteriori mesh, which does not require prior in-

formation about the width and location of the layers in the exact solution. The

method involves computing an approximate solution on an arbitrary mesh and then

using the error estimate, based on the difference derivatives of the computed solu-

tion to determine a monitor function. This monitor function helps in achieving mesh

equidistribution. Authors in [26] further developed this idea by proposing a moni-

tor function that combines a constant term with an appropriate power of the second
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derivative of the singular component of the solution. This choice of monitor func-

tion improved the mesh equidistribution and enhanced the accuracy of the numeri-

cal solution. In [141, 162], the authors utilised the arc-length monitor function for

mesh equidistribution to solve convection-diffusion problems. In [220], the author

introduced numerical methods based on exponential finite difference approxima-

tions with fourth-order accuracy for solving one and two-dimensional convection-

diffusion problems. A nonlinear two-point SPP is considered in [120]. The authors

employed quasi-linearisation to linearise the original nonlinear equation for each

linear case. Then, they used a cubic spline difference scheme on a variable mesh

to approximate the linear equations. Continuing their work, the authors in [121]

developed an exponentially fitted difference scheme using spline in compression

for solving twopoint singularly perturbed boundary value problems. In [163], the

author presented a survey on layer-adapted meshes for convection-diffusion prob-

lems, emphasising the importance of using appropriate grids to achieve uniform

convergence.

In [252], the authors introduced a finite difference scheme for discretizing singularly

perturbed boundary value problems. The presented scheme is a combination of the

simple upwind scheme and the central difference scheme on a Shishkin mesh. It is

observed that the proposed scheme exhibited higher-order convergence compared

to the simple upwind scheme alone.

In [82], the authors presented defect correction scheme based on finite difference

discretizations over Shishkin mesh to solve a singularly perturbed convection diffu-

sion problem. The method combines the stability of the upwind difference scheme

and the higher-order convergence of the central difference scheme and results in a

higher order stable scheme. Authors in [81] solved a singularly perturbed linear

convection–diffusion problem using defect correction scheme over some Shishkin

type of meshes. The method is shown to be convergent, uniformly in the diffu-

sion parameter, of second order in the discrete maximum norm. In [94], authors

presented defect correction method by combining first order upwind scheme and

second order modified central difference scheme to solve a singularly perturbed

convection-diffusion problem in one-dimension.

In [133], the author analysed a defect correction method for a one-dimensional

convection-diffusion problem without turning points. He showed that the kth ap-

proximation obtained using the defect correction method converges uniformly with
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a rate of O((ϵ0 − ϵ)k + h2), where ϵ0 is of the order O(h) in outer regions. However,

the error estimates degrade to O(1) in the inner regions.

In [247], the authors presented an adaptive finite difference method to solve singu-

larly perturbed convection-diffusion problems. The authors combined a first-order

upwind and a second-order central scheme to achieve a higher order of convergence.

In [164], the author discretized a singularly perturbed convection-diffusion problem

using a simple first-order upwind difference scheme on general meshes. He derived

an expansion of the error of the scheme that enables uniform error bounds with re-

spect to the perturbation parameter in the discrete maximum norm for both a defect

correction method and the Richardson extrapolation technique.

In [217], the authors considered a self-adjoint two-point singularly perturbed

boundary value problem. They employ a fitted finite difference scheme on a

Shishkin mesh for solving the problem by reducing it to normal form. While the

authors in [176] proposed a non-standard finite difference scheme for solving self-

adjoint two-point singularly perturbed boundary value problems using Micken’s

finite difference method.

In [274], the authors introduced a spline difference scheme that uses quadratic and

cubic splines for discretizing reaction-diffusion problems on a non-uniform mesh.

In [275], the authors discretized reaction-diffusion problems using quadratic splines

on a piecewise uniform Shishkin mesh and achieved an almost second-order accu-

racy in the discrete maximum norm. In [109], the authors used a cubic spline differ-

ence scheme on Bakhvalov mesh to solve reaction-diffusion problems. The result

obtained using the Bakhvalov mesh was found to be superior to that achieved with

the Shishkin mesh.

In [25], the author presented a cubic spline in compression to solve two-point sin-

gularly perturbed boundary value problems. In [139], the author analysed that the

arc-length monitor function does not yield satisfactory numerical approximations

for reaction-diffusion problems. It has been observed that an optimal choice of the

monitor function not only depends on the discretization technique and the norm of

the error to be minimised but also on the nature of the problem.

Authors in [233] applied exponential splines to generate an almost second-order

uniformly convergent difference scheme on standard Shishkin mesh for semi-linear

reaction-diffusion problems. The method exhibits uniform convergence of almost

second-order in discrete maximum norm. Later, they devised an exponential spline

difference scheme on piecewise uniform Shishkin mesh [234].
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In [235], the authors used spline in compression to generate second and fourth-order

uniformly convergent numerical techniques for singularly perturbed boundary value

problems. To deal with Robin-type boundary conditions, authors in [200] applied

the central difference method on the regular region of standard Shishkin mesh and

cubic splines to discretize the layer region.

In [9], the authors considered a one-dimensional steady-state convection-diffusion

problem with Robin boundary conditions. To discretize the problem, they use stan-

dard upwind finite difference operators on Shishkin meshes. Furthermore, the au-

thors in [51] developed a finite difference scheme for solving a one-dimensional

time-dependent convection-diffusion problem with initial-boundary conditions.

They employed the classical Euler implicit method for time discretization and the

simple upwind scheme on a Shishkin mesh for spatial discretization.

In [196], the authors investigated the effect of Richardson extrapolation on two fitted

operator finite difference methods (FOFDM), (FOFDM-I) [217] and (FOFDM-II)

[176]. They found that FOFDM-I achieved fourth-order accuracy for moderate val-

ues of the perturbation parameter, while it attained second-order accuracy for small

values of the perturbation parameter. However, they observed that Richardson ex-

trapolation did not improve the order of convergence for FOFDM-I. For FOFDM-

II, which is uniformly second-order convergent, the order of convergence can be

improved up to fourth-order by using Richarson extrapolation. In [166], the au-

thor proposed a compact fourth-order finite difference scheme for solving two-point

reaction-diffusion SPPs on a Shishkin mesh.

In [116], the authors proposed a numerical approach to solve the singularly per-

turbed time-dependent convection-diffusion problem in one spatial dimension.

They employed a semi-discretization technique by applying the backward Euler

finite difference method in the temporal direction. To discretize the resulting set

of ordinary differential equations, they utilised the midpoint upwind finite differ-

ence scheme on a non-uniform mesh of Shishkin type in the spatial direction. In

[95], the authors proposed a method in which domain decomposition was com-

bined with higher-order difference discretization for solving two-point singularly

perturbed boundary value problems of convection-diffusion type. In [59], the au-

thors used the same scheme combination as in [200] on an equidistributed grid.

Their approximation scheme uses cubic splines for the mixed-boundary conditions

and the classical central scheme elsewhere.
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In [96], the author proposes a higher-order numerical scheme to solve singularly

perturbed reaction-diffusion problems. The proposed scheme is a combination of a

fourth-order numerical difference method and a classical central difference method.

In [146], the authors presented a parameter-uniform numerical method on equidis-

tributed meshes for solving a class of singularly perturbed parabolic problems with

Robin boundary conditions. The discretization consists of a modified Euler scheme

in time, a central difference scheme in space, and a special finite difference scheme

for the Robin boundary conditions.

In [88], a parameter-uniform numerical method is constructed for singularly per-

turbed Robin type parabolic convection-diffusion problems having boundary turn-

ing points. The problem is discretized by means of the implicit Euler method in

time and the non-standard finite difference method in space on a uniform mesh.

Moreover, the non-standard finite difference method is used to discretize the Robin

boundary conditions. While in [254], the authors deal with a singularly perturbed

two-dimensional steady-state convection-diffusion problem with Robin boundary

conditions.

In [195], the authors considered a time-dependent singularly perturbed reaction dif-

fusion problem. They employ the classical backward Euler method to discretize

the problem in time and a fitted operator finite difference method in space. In [93],

the authors proposed a classical upwind finite difference scheme on layer-adapted

nonuniform meshes to solve singularly perturbed parabolic convection-diffusion

problem. In [194], the authors proposed a uniformly convergent FDM for a cou-

pled system of singularly perturbed ordinary differential equations of convection-

diffusion type. It was proved that the proposed discrete operator satisfies the sta-

bility property in the maximum norm. In [228], the author presented a survey of

non-standard FDMs.

In [86], the authors proposed an adaptive finite difference technique using the cen-

tral difference scheme on a layer-adapted mesh for a linear second-order singularly

perturbed boundary value problem. It was shown that the proposed technique has

fourth-order convergence. In [180], the authors considered singularly perturbed de-

generate parabolic convection-diffusion problems in two-dimension. They used an

alternating direction implicit finite difference scheme to discretize the time deriva-

tive and an upwind finite difference scheme to discretize the spatial derivative.

In [206], the authors introduced a hybrid difference scheme for solving singu-

larly perturbed convection-diffusion problems. Their scheme combined the up-
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wind scheme on the coarse part of the Shishkin mesh with the central difference

scheme on the fine part. In [87], the authors considered a singularly perturbed

fourth-order differential equation with a turning point. They used the classical fi-

nite difference scheme on an appropriate piecewise uniform Shishkin mesh to solve

the problem. In [58], the authors proposed a second-order uniformly convergent

numerical method for a singularly perturbed parabolic convection-diffusion initial-

boundary-value problem in two-dimension. They used a fractional-step method in

the time direction, while a finite difference scheme was used in the spatial direction.

In [260], a higher-order Richardson extrapolation scheme is presented for solving a

singularly perturbed system of parabolic convection-diffusion problems. Whereas

in [175], a septic B-spline method is presented for solving a self-adjoint singularly

perturbed two-point boundary value problem.

In [115], the authors presented a second-order robust method for solving singularly

perturbed Burgers’ equation. In [83], a specific class of parabolic singularly per-

turbed convection-diffusion problems is investigated. The problem is discretized

using the backward Euler scheme in the temporal direction and the upwind scheme

on a Harmonic mesh in the spatial direction. In [147], the authors introduce a

high-order convergent numerical method for singularly perturbed time dependent

problems using mesh equidistribution. The discretization is based on the backward

Euler scheme in time and a high-order non-monotone scheme in space. In [198], nu-

merical approximations are computed for the solution of a system of two reaction-

convection-diffusion equations by a fitted mesh finite difference method. In [261],

authors conducted a numerical investigation of an initial-boundary-value problem

for a singularly perturbed system of two equations of convection-diffusion type.

The authors proposed a numerical method that combined a spline-based scheme

with a Shishkin mesh and achieved second-order uniform convergence. While in

[262], the authors present a uniformly convergent numerical technique for a time

dependent singularly perturbed system of two equations of reaction-diffusion type.

The proposed numerical technique consists of the Crank–Nicolson scheme in the

temporal direction over a uniform mesh and the quadratic B-splines collocation

technique over an exponentially graded mesh in the spatial direction. In [204],

the authors considered singularly perturbed elliptic convection-diffusion differen-

tial equations in two-dimensions. They discretized the problem by using an upwind

difference scheme on a modified exponentially graded Bakhvalov mesh. Further,

in [296], the authors analysed a higher order numerical method for a class of two-

dimensional parabolic singularly perturbed problem of convection-diffusion type
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for the case when the convection coefficient is vanishing inside the domain. The

Peaceman–Rachford scheme is used on a uniform mesh for time discretization, and

a hybrid scheme is applied on the Bakhvalov–Shishkin mesh for spatial discretiza-

tion. In [52], the authors deal with one-dimensional linear parabolic singularly per-

turbed systems of convection-diffusion type. The diffusion term in each equation is

affected by a small positive parameter of different magnitudes. The numerical algo-

rithm combines the classical upwind finite difference scheme to discretize in space

and the fractional implicit Euler method together with an appropriate splitting by

components to discretize in time.

In [215], the authors considered a second-order singularly perturbed Volterra

integro-differential equation. On a layer adapted Shishkin mesh, the problem is

solved using finite difference schemes. Whereas in [216] author presents a fitted

mesh finite difference method for solving a singularly perturbed Fredholm integro-

differential equation.

2. Finite element methods: The finite element method (FEM) is a widely employed

numerical approach for approximating solutions to ordinary differential equations

and partial differential equations. In this method, the dependent variable u in the

differential equation is approximated by a function uh that is constructed as a lin-

ear combination of basis functions S as u ≈ uh =
∑

i uiS i. The basis functions,

S i, are chosen such that they form a set of functions that span the solution space.

The coefficients of the basis functions, ui, represent the unknowns that need to be

determined. These coefficients correspond to the values of the solution at specific

mesh points, i. By substituting the approximation uh into the original differential

equation, the problem is transformed into a system of algebraic equations. This

system is then solved to determine the values of the coefficients ui, which in turn

define the approximate solution uh. The finite element method offers flexibility in

choosing the shape and size of the basis functions, allowing for adaptability to com-

plex geometries and varying solution behaviour. It is widely used in various fields

of engineering and applied sciences for solving a wide range of problems governed

by differential equations.

In the late 1970s, researchers initiated the use of Petrov-Galerkin techniques, a

modified version of the Finite Element Method (FEM), for the purpose of resolv-

ing singular perturbation problems (SPPs). In [301], the authors acknowledged

the necessity of employing distinct methodologies to tackle SPPs through the use

of finite element analysis. A Finite Element Method technique resembled the up-
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wind scheme by integrating upwinding into the test function. The objective of this

change was to achieve a solution for SPPs that is free from oscillations. In [185], the

author presented a Finite Element Method formulation that reduces to a simple up-

wind scheme in the asymptotic scenario. This formulation was specially designed

for the numerical solution of singularly perturbed Ordinary Differential Equations

(ODEs).

In [268], the authors applied the FEM with a Petrov-Galerkin approach using expo-

nential basis elements to solve conservative non self-adjoint singularly perturbed

boundary value problems. The method has first-order convergence in L∞ and

second-order convergence at the nodes. The Authors in [71] introduced an adap-

tive streamline diffusion finite element method for solving stationary convection-

diffusion problems by using shock capturing artificial viscosity technique.

In [47], the authors introduced a FEM that utilised piecewise linear and quadratic

basis functions to solve second-order differential equations. Further, in [106],

the authors used an upwind finite element scheme for two-dimensional convec-

tive transport equations. Author in [281] proposed a FEM technique employing

piecewise polynomials of degree at most k to solve two-point singularly perturbed

boundary value problems. The proposed method provided parameter-uniform error

estimates of O(hk+1) in the maximum norm, indicating convergence rates that de-

pended on the mesh size h. In [107], the authors conducted a survey summarising

various FEMs and upwind schemes employed to solve convection-dominated flow

problems.

In [272], the authors applied Galerkin FEMs using a piecewise polynomial ba-

sis functions on a Shishkin mesh to obtain optimal convergence results for high-

order elliptic two-point singularly perturbed boundary value problem of reaction-

diffusion type. They also achieved uniform convergence results for a family of

Galerkin FEMs on a Shishkin mesh for high-order elliptic two-point singularly per-

turbed boundary value problems of convection-diffusion type [273].

In [159], the author utilised Galerkin FEM on a Bakhvalov-Shishkin mesh to solve

a linear two-dimensional convection-diffusion problem. It was shown that better

error estimates were obtained on the Bakhvalov-Shishkin mesh compared to the

Shishkin mesh. Further, in [299], the author studied superconvergence approxima-

tions of singularly perturbed boundary value problems of reaction-diffusion type

and convection-diffusion type. He obtained superconvergence with an error bound
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of O((N−1 log(N + 1))p+1) in a discrete energy norm by applying the standard finite

element method of any fixed order p on a modified Shishkin mesh.

In [78], the authors applied Galerkin FEM to solve elliptic convection-diffusion

problems. They analysed the superconvergence property of the method on a

Shishkin mesh and determined that it was almost first-order accurate in the energy

norm. In [48], the authors proposed a multiscale FEM to approximate the solution

to elliptic SPPs with high contrast coefficients using coarse quasi-uniform meshes.

The method achieved first-order convergence in the energy norm and second-order

convergence in the L2 norm. Authors in [114] compared the performance of He’s

homotopy perturbation method with that of FEM for solving the two-dimensional

heat conduction equation. Results proved that there was excellent agreement be-

tween the analytical results obtained using the homotopy perturbation method and

the numerical results obtained using FEM, proving the accuracy and reliability of

FEM in solving heat conduction problems.

In[178], authors proposed the direct discontinuous Galerkin (DDG) finite element

method, using piecewise polynomials of degree k ≥ 1 on a Shishkin mesh to solve

convection-dominated singularly perturbed two-point boundary value problems.

Authors proved the consistency, stability and convergence of order k (up to a loga-

rithmic factor) in an energy-type norm. In [45], authors proposed the local discon-

tinuous Galerkin (LDG) method with piecewise polynomials of degree at most k >

0 over three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-

type and Bakhvalov-type to solve singularly perturbed convection-diffusion prob-

lem posed on the unit square in R2. In [46], authors solved a singularly perturbed

convection–diffusion problem, posed on the unit square in (R2) whose solution has

both exponential and characteristic boundary layers using the local discontinuous

Galerkin (LDG) method on Shishkin meshes.

In [298], the authors solved a singularly perturbed convection-diffusion equation

using linear FEM on a Shishkin mesh. They utilised symmetries in the convective

term of the bilinear form over adjacent intervals to achieve superconvergence of

almost second-order accuracy in general cases. This research highlighted the po-

tential for improving the accuracy and efficiency of FEM through the exploitation of

specific problem structures and symmetries. In [293], the authors construct a finite

volume element method on the Shishkin mesh for solving a singularly perturbed

reaction-diffusion problem. In [231], the authors introduce numerical methods for

singularly perturbed convection-diffusion problems with a turning point. As a re-
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sult of the turning point, the problem typically exhibits exponential-type boundary

layers or a cusp-type interior layer. They develop non-symmetric discontinuous

Galerkin FEM with interior penalties for both cases. Usual Shishkin mesh is in-

voked for the problem with boundary layers, whereas generalised Shishkin type

mesh is used to tackle the interior layer of cusp-type.

In [105], the author proposed a FEM that utilised a combination of quadratic trial

and cubic test functions to solve the steady-state convection-diffusion equation. A

series of papers were published investigating the selection of test spaces to sym-

metrize the associated bilinear form; see, e.g., [20, 22, 21, 23]. The goal was to

obtain an optimal approximate solution similar to the ones achieved by applying

Galerkin methods to symmetric problems.

In [267], the author presented a FEM approach for solving a non self-adjoint SPP. In

[240], the author achieved optimal convergence results for the two-point singularly

perturbed boundary value problem of convection-diffusion type in the energy norm.

The analysis was conducted on a Bakhvalov mesh.

In [65], a convection-dominated diffusion problem is solved by combining the FEM

or FDM with the method of characteristics. The authors derived optimal order er-

rorestimates in L2 and W1,2 for the FEM and various error estimates for a variety of

FDMs. The concept of hinged elements was introduced in [211]. These elements

were essentially piecewise linear finite elements that could vary according to prob-

lem data and were used to solve one-dimensional linear non self-adjoint two-point

singularly perturbed boundary value problems.

Comprehensive discussions on the theoretical foundations and practical implemen-

tations of FEM for various problems can be found in several books; see, e.g.

[40, 35, 15]. These references extensively cover the theory and applications of

FEM.

3. Finite volume methods: The finite volume method (FVM) is a numerical tech-

nique used to approximate the solution to partial differential equations (PDEs). In

this method, the domain is discretized into mesh elements known as control vol-

umes. The PDE is integrated over each control volume to obtain a set of balance

equations. These balance equation are then discretized into a set of algebraic equa-

tions, resulting in a system of equations with discrete unknowns. The system of

equations can be solved either exactly or approximately using direct or iterative

methods such as the Gauss-Seidel method and the Jacobi method. Iterative meth-

ods iteratively update the values of the unknowns until a desired level of accuracy
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is achieved. Direct methods, on the other hand, solve the system of equations in

one step but may be computationally expensive for large systems. The FVM is an

integral scheme, similar to the FEM, whereas FDM is a differential scheme. In

FVM, the integral form of the PDEs is used to construct the discrete equations,

whereas FDM approximates the derivatives directly using finite difference approx-

imations. Differential schemes are generally faster than integral schemes, but inte-

gral schemes, such as FVM, have the advantage of being more accurate than their

differential counterparts when dealing with irregular meshes. For a detailed descrip-

tion of FVM, several books are available as references. [190] provides a detailed

description of cell-vertex FVMs, [154] focuses on FVMs for hyperbolic problems,

and [182] covers FVMs for general PDEs, providing a comprehensive overview of

the method and its applications.

1.4 Plan of the Thesis

In this thesis, we study, analyse and develop the numerical methods for solving vari-

ous models of singularly perturbed convection-diffusion boundary value problems. As

discussed in the preceding sections, an adaptive discretization approach may adapt to

situations with different physical and dynamic properties by varying the resolution, or-

der, and type of discretization. It is generally used with an adaptive numerical method

that balances the solution accuracy and the associated computational cost. Therefore,

an appropriate numerical method and the discretization technique accurately solve the

problem and improve convergence. Taking this into account, in this thesis, we propose

higher-order defect correction methods to solve singularly perturbed convection-diffusion

problems. We apply the proposed methods to solve four different convection-diffusion

problems of varying complexity.

The thesis is organized as follows: Chapter 2 presents a higher-order defect correc-

tion method to solve a class of singularly perturbed convection diffusion equations that

reads

Lu(x) = −ϵu
′′

(x) + a(x)u
′

(x) + b(x)u(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = 0,

 (1.4.1)

where 0 < ϵ ≪ 1 is the perturbation parameter, a(x) ≥ 2α > 0 and b(x) ≥ β ≥ 0.

The function a(x), b(x) and g(x) are sufficiently smooth functions. The defect correction

method is presented over polynomial-Shishkin mesh to solve the problem. The method

combines an inexpensive, lower-order stable, upwind difference scheme and a higher-

order, less stable central difference scheme. The mesh is designed in such a way so that
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most of the mesh points remain in the regions with rapid transitions. The proposed nu-

merical method is analysed for consistency, stability and convergence. An extensive theo-

retical analysis is presented, which establishes that the method is second-order uniformly

convergent and highly stable. The convergence obtained is optimal because it is free

from any logarithmic term. The rigorous numerical analysis of the proposed method on

Shishkin, Bakhvalov Shishkin, Vulanovic-Improved Shishkin and polynomial Shishkin

mesh establishes the supremacy of the proposed scheme.

Chapter 3 presents defect correction method to solve singularly perturbed

convection-diffusion problem with discontinuous coefficient and point source which is

given as

Lu(x) = −ϵu′′(x) − (a(x)u(x))′ + b(x)u(x) = g(x) + γδc, x ∈ (0, 1),

u(0) = u(1) = 0,

 (1.4.2)

where δc is the shifted Dirac-delta function δc(x) = δ(x − c) with c ∈ Ω. Assume that ϵ ∈

(0, 1], a(x) ≥ α1 > 0 for x ∈ (0, c), and a(x) ≥ α2 > 0 for x ∈ (c, 1). Let α = min{α1, α2}.

The function b(x) is assumed to be sufficiently smooth and satisfies

b(x) ≥ 0 and b(x) − (a(x))′ ≥ 0, x ∈ [0, 1]. (1.4.3)

A higher-order defect correction methods consists of upwind difference scheme and cen-

tral difference scheme at all mesh points over Bakhvalov Shishkin mesh is proposed to

solve the problem. A posteriori error alaysis is presented in L∞-norm. The error estimates

of the proposed numerical method satisfy parameter-uniform second-order convergence

on the layer-adapted grid. The numerical analysis confirms the theoretical error analysis

and reveals parameter-uniform second-order convergence in discrete maximum-norm.

Chapter 4 proposes the defect correction method to solve a class of singularly per-

turbed parabolic convection-diffusion problem with a large shift that reads

ut(x, t) − ϵuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t) + c(x)u(x − 1, t) = g(x, t),

u(x, t) = r0(x), (x, t) ∈ [0, 2] × {t = 0},

u(x, t) = r1(x, t), (x, t) ∈ [−1, 0] × [0,T ],

u(x, t) = r2(t), (x, t) ∈ {x = 2} × [0,T ],


(1.4.4)

where 0 < ϵ ≪ 1, a, b, c and g are sufficiently smooth functions such that a(x) > α > 0,

c(x) > 0, b(x) ≥ 0. The solution to the problem considers the present state of the physical

system and its history. The proposed method combines an inexpensive, lower-order sta-

ble, upwind difference scheme and a higher-order, less stable central difference scheme

at some grid points. The mesh has been chosen so that most of the mesh points remain

in the regions with rapid transitions. Whereas an implicit finite difference scheme is used
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to discretize the time variable. The proposed numerical method has been analysed for

consistency, stability and convergence. Theoretical analysis is performed to obtain consis-

tency and error estimates. The method is uniformly convergent and second-order accurate

in space and first-order in time. We do not use asymptotic expansions of discretization

errors in our analysis. Numerical results agree with the theoretical estimates and indi-

cate that the defect correction technique can improve accuracy for singular perturbation

problems.

Chapter 5 presents defect correction method to solve a class of singularly perturbed

parabolic convection-diffusion problem with discontinuous convection coefficient and

source which is given as

Lu(x, t) = ϵuxx(x, t) + a(x)ux(x, t) − b(x)u(x, t) − ut(x, t) = g(x, t),

(x, t) ∈ (0, c) × (0,T ] ∪ (c, 1) × (0,T ],

u(x, 0) = r0(x), x ∈ [0, 1],

u(0, t) = r1(t), t ∈ [0,T ],

u(1, t) = r2(t), t ∈ [0,T ],


(1.4.5)

where 0 < ϵ ≪ 1 is the perturbation parameter, b(x) is a sufficiently smooth function such

that b(x) ≥ β ≥ 0 on [0, 1], the convection coefficient a(x) and the source term g(x) are

sufficiently smooth functions on (0, c) ∪ (c, 1) satisfying

|[a](c)| ≤ C, |[g](c)| ≤ C. (1.4.6)

The problem is discretized using defect correction method over non-uniform Bakhvalov

Shishkin mesh in space. Moreover, the time variable is discretized using an implicit finite

difference method. The error analysis indicates that the numerical solution is uniformly

stable and shows parameter-uniform second-order convergence in space and first-order in

time. The results of numerical experiments corroborate the theoretical findings and verify

the optimal accuracy of the proposed scheme.

Finally, Chapter 6 concludes the thesis with a summary of the work highlighting

its significant contributions. It opens the discussion about future research directions and

points out the challenging steps towards analysing more complicated problems.





Chapter 2

Convection-Diffusion Problems

2.1 Introduction

Singularly perturbed convection-diffusion problems constitute a class of mathematical

models that arise in various fields of science and engineering. These problems involve the

simultaneous interaction of convection and diffusion phenomena, and a small parameter

characterizes them, which multiplies the highest-order derivative term in the governing

equations. This small parameter introduces a significant disparity in the scales of the

convection and diffusion processes leading to boundary layers. The solution of these

equations exhibits a multiscale character since the corresponding degenerate system fails

to satisfy the given boundary data. There are narrow regions across which the solution

changes rapidly and displays layer behaviour.

Standard numerical methods on uniform meshes fail to consistently approximate so-

lutions in these layer regions. The classical finite difference or finite element methods con-

structed on uniform meshes are unsuitable for solving singularly perturbed convection-

diffusion problems [253]. The stable upwind difference scheme is first-order uniformly

convergent in the discrete maximum norm on a layer-adapted grid. On the other hand, the

formally second-order convergent central difference scheme oscillates in domains where

the perturbation parameter is small compared to the local step size [99]. In fact, for prob-

lems with a strongly asymmetric differential operator, the usual discretizations are either

unstable, inaccurate or direction-dependent. For example, the higher-order accurate dif-

ferences based on Petrov-Galerkin weighting are strongly direction-dependent because

they depend on the equation’s flow direction [111]. Symmetric schemes, like the finite

difference method or the usual Galerkin methods with symmetric weighting functions, are

either unstable or only first-order accurate [99, 19, 89].

29
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The search for a uniform numerical approximation led to the advent of fitted mesh

methods defined on layer-adapted grids [230, 173]. Bakhvalov first proposed layer-

adapted meshes in the context of reaction-diffusion problems [17, 240, 39]. Later on,

special meshes were investigated extensively for convection-diffusion problems. That in-

cludes Shishkin’s piecewise equidistant meshes [140], meshes that are based on equidistri-

bution [27, 98, 97], Gartland type meshes [85], Bakhvalov-Shishkin mesh [159, 300] and

Vulanović improved Shishkin mesh [288, 290]. Further development leads to the layer-

adapted meshes defined using a recursive formula. Examples are the Gartland-Shishkin

meshes [243] or the graded meshes analysed in [66, 127, 161, 38, 294] and others. The

two major classifications of layer-adapted meshes are a priori and posteriori. A priori

mesh depends on advanced knowledge of the width and location of layers present in the

solution. A priori grid appears an attractive choice being easy to generate and less expen-

sive in terms of computational cost. Nevertheless, the prerequisites for the same are too

restrictive.

In this context, Bakhvalov [18] was the first to propose a mesh for a class of reaction-

diffusion problems. However, the process of mesh construction is too complex to consider.

A relatively simple piecewise uniform mesh proposed by Shishkin [257] too had a draw-

back of waning the order of convergence by a logarithmic factor. Indeed, mesh generation

depends heavily on a priori information about the location and width of the layers. Typi-

cally, the information required is not available in advance. The upwind schemes are one

of the most straightforward and stable discretization schemes. However, they are more

dissipative according to the flow. It uses the values upstream to evaluate the property on

the boundaries and depends on the flow direction. First-order upwind schemes are easily

convergent but are at most first-order convergent [168, 156].

In contrast, higher-order upwind methods are highly accurate but more difficult to

converge [283]. In addition to convergence and accuracy, numerical diffusion can be a

significant problem with upwind schemes. It may produce false results, particularly mass

diffusion problems with high Peclet numbers, i.e. singular perturbation problems [248].

An essential challenge in the numerical solution of the singular perturbation problem is

the different approximations required in the smooth part of the solution and the boundary

or interior layers.

Many researchers have tried to provide consistent numerical approximations to

singularly perturbed convection-diffusion equations using a defect correction method

[108, 168]. In [72], the singularly perturbed convection-diffusion problem is solved us-

ing an iterative method based on defect correction. A convection-diffusion problem is

also studied in [14]. In [94], authors used a defect-correction parameter-uniform numeri-
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cal method for solving a convection-diffusion equation. Furthermore, the time-dependent

Navier-Stoke equation was solved using the defect correction method [149, 188]. This

method is also suitable for singularly perturbed delay differential equations [189].

The analysis of the special methods for singularly perturbed convection-diffusion

problems is a growing area of research and has yet to see much development in the litera-

ture. This chapter presents a defect correction method to overcome some of the limitations

of numerical methods and obtain higher-order accurate solutions for convection-diffusion

problems. Besides, the chapter presents rigorous consistency, stability and convergence

analysis of the proposed scheme and illustrates numerical results.

2.2 Problem description

Consider the non-homogeneous boundary value problem

Lu(x) = −ϵu
′′

(x) + a(x)u
′

(x) + b(x)u(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = 0,

 (2.2.1)

where 0 < ϵ ≪ 1 is the small perturbation parameter, a(x) ≥ 2α > 0 and b(x) ≥ β ≥ 0.

The function a(x), b(x) and g(x) are sufficiently smooth functions. The operator L satisfies

the maximum principle [225] and the problem (2.2.1) has a unique solution [166]. More-

over, the solution of (2.2.1) admits a decomposition into regular and singular components

that reads

u(x) = υ(x) + ω(x). (2.2.2)

The regular component υ satisfies Lυ = g(x) and the singular component ω satisfies

Lω = 0 where |ω(0)| ≤ Ce−α/ϵ and |ω(1)| ≤ C [99, pp. 23]. Further, we may obtain

Lemma 2.2.1. Let x ∈ (0, 1) and q ∈ N. Then

|υ(k)(x)| ≤ C and |ω(k)(x)| ≤ Cϵ−ke−α((1−x)/ϵ) for 0 ≤ k ≤ q.

Proof. The proof follows from [186]. □

The derivatives of the solution to problem (2.2.1) depend on the negative powers of

the perturbation parameter. Moreover, the error estimates generated by classical schemes

depend on bounds for these derivatives. Consequently, it fails to hold for arbitrarily small

values of the perturbation parameter. It is indeed the principal layer function ω0(x) =

γe(−α(1−x)/ϵ) which causes the trouble. As in [82], the singular component is split into two

parts written as ω := ω0 + ω1 where ωk
1 = O(ϵ−k+1) and ω0 satisfies a constant-coefficient

differential equation.
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Remark 2.2.2. (a) In general, one can assume homogeneous boundary conditions by

substracting from u a smooth function κ that satisfies the original boundary conditions

[99]. For example, given Drichlet boundary conditions u(a) = ρa and u(b) = ρb, take

κ(x) = ρa
x − b
a − b

+ ρb
x − a
b − a

and set ũ(x) = u(x) − κ(x). Then ũ is the solution of a differential equation of the same

type but with homogeneous boundary conditions.

(b) Also, one can assume without loss of generality that x ∈ [0, 1] by means of the linear

transformation x→
x − a
b − a

.

2.3 Mesh description

Let N ∈ N be an even integer. Consider the mesh ΓN := {0 = x0 ≤ x1 . . . xN−1 ≤ xN = 1},

which is equidistant in [0, xN/2] and graded in [xN/2, 1]. Let τ =
2ϵϕ ln N

α
≤ 1/2 and

ϵ ≤ CN−1. Partition [0, 1] into two mesh subintervals so that ΓN = [0, 1 − τ] ∪ [1 − τ, 1].

Here, xN/2 = 1−τ is the mesh transition point separating the coarse and fine mesh regions.

The mesh takes N/2 points in interval [0, 1 − τ] such that x0 = 0 and xN/2 = 1 − τ. The

remaining N/2 points lie in the interval [1 − τ, 1] such that each step size hi = xi − xi−1

satisfies hi ≥ hi+1 for i = N/2 + 1, · · · ,N − 1. The mesh turns dense as we move towards

the layer region and capture the exponential boundary layers in the solution, and one

can stimulate the solution precisely. The layer-adapted mesh generated on [1 − τ, 1] is

based on a mesh-generating function [242]. Let λ be the mesh-generating function that is

monotonically increasing satisfying λ(1) = 1 and λ(1/2) = ln N. Then, for ti = i/N, the

mesh points are given by

xi =


(
1 −

2ϵ log N
α

)
2i
N

for 0 ≤ i ≤
N
2
,

1 −
2ϵ
α
λ(ti) for

N
2
+ 1 ≤ i ≤ N.

Define mesh-characterising function ψ such that ψ = e−λ. Here, we are omitting indices

for mere simplicity. Table 2.4 illustrates the mesh-characterising feature for different

classes of layer-adapted meshes [166, 242, 158]. The polynomial-Shishkin mesh is the

generalised mesh and lies in the centre of this work. One can obtain the original Shishkin

class of mesh by setting m=1. The resulting mesh reads

xi =


(
1 −

2ϵ log N
α

)
2i
N

for 0 ≤ i ≤
N
2
,

1 −
2ϵ
α

(2t)m log N for
N
2
+ 1 ≤ i ≤ N.
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Table 2.1: Mesh generating and characterising functions of different layer adapted meshes

[166].

Mesh ψ(t) max |ψ′| max λ′

Shishkin-type meshes N−2t C log N C log N

Bakhvalov-Shishkin meshes 1 − 2(1 − N−1)t C CN

Polynomial-Shishkin meshes N−(2t)m
C(log N)1/m Cm log N

Lemma 2.3.1. The step size hi of ΓN satisfies hi ≤ CN−1 for all i = 1, 2, . . .N.

Proof. For 1 ≤ i ≤ N/2 the proof is trivial. In the case N/2 + 1 ≤ i ≤ N, we have

hi =
2ϵ
α

N−1 max λ′(ti).

Since λ(ti) = log N(2ti)m, λ′(ti) = m log N(2ti)m−1. Consequently, we obtain

hi =
2ϵ
α

m log N(2ti)m−1 =
2ϵ
α

m log N2m−1
( i
N

)m−1

≤ CN−1 for m ≥ 2.

□

2.4 The difference scheme

For i ≥ 1, a function Zi and step size hi define [264]

D+Zi :=
Zi+1 − Zi

hi+1
, D−Zi :=

Zi − Zi−1

hi
and D0Zi :=

Zi+1 − Zi−1

hi+1 + hi

as the forward, backward and central difference approximation to first-order derivatives.

A difference approximation for a second-order derivative is defined [264] to be

D+D−Zi :=
2

hi+1 + hi

(
Zi+1 − Zi

hi+1
−

Zi − Zi−1

hi

)
.

The upwind operator for problem (2.2.1) takes the form

L1
NZi =


Zi for i = 0,N,

−ϵD+D−Zi + aiD−Zi + biZi for 1 ≤ i ≤ N − 1,
(2.4.1)

and the modified central difference operator for problem (2.2.1) reads

L0
NZi =


Zi for i = 0 and i = N,

L2
NZi for 1 ≤ i ≤ N/2,

L1
NZi for N/2 ≤ i ≤ N − 1,

(2.4.2)

where L2
NZi = −ϵD+D−Zi + aiD0Zi + biZi.

The method based on defect correction allows us to combine low-order stabilised

schemes with higher-order, less stable schemes. We can outline the two-stage process as



34 Convection-Diffusion Problems

1. Compute initial approximation U1 by solving L1
NU1 = g using an upwind difference

scheme.

2. Estimate the defect τh by solving τh = g−L0
NU1 using the central difference scheme.

3. Compute the defect-correction δ using L1
Nδ = τh.

4. The final corrected solution reads U = U1 + δ.

The consistency error Ê satisfies

Ê = L1
N(Ru − U)

= L1
N(Ru − U1) + L1

NU1 − L1
NU1 + L0

NU1 − g

= L1
N(Ru − U1) + L0

NU1 − g

= L1
N(Ru − U1) + L0

NU1 + L0
NRu − L0

NRu − RLu

= (L1
N − L0

N)(Ru − U1) + (L0
NR − RL)u, (2.4.3)

where R is the restriction of continuous function over [0, 1] to the defined mesh. The

above representation for the consistency error is advantageous while performing the error

analysis. To estimate relative consistency error |(L1
N−L0

N)(Ru−U1)|, we can apply operator

L1
N to it. Moreover, in the following Lemma, we prove that L1

N and L1
N − L0

N commute.

Lemma 2.4.1. The difference operator L1
N and L1

N − L2
N defined for (2.2.1) satisfies

L1
N(L1

N − L2
N)Zi = (L1

N − L2
N)L1

NZi

iff hi−1 = hi = hi+1, ai−1 = ai = ai+1 and bi−1 = bi = bi+1.

Proof. Let us consider

(L1
N − L2

N)Zi = ai(D− − D0)Zi

= −aihi+1

(
D+Zi − D−Zi

hi+1 + hi

)
= −

aihi+1

2
D+D−Zi. (2.4.4)

Apply L1
N to (2.4.4) and assume that hi+1 = hi = hi−1 also because the coefficients ai and

bi are constants we obtain

L1
N(L1

N − L2
N)Zi = −

ϵ

2
D+D− (aihi+1D+D−Zi) +

ai

2
D− (aihi+1D+D−Zi)

+
bi

2
(aihi+1D+D−Zi)

=
aihi+1

2
[−ϵD+D−(D+D−Zi) + D+D−(aiZi)

+(D+D−(biZi))] . (2.4.5)
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Reverse the order of the operators, and we find

(L1
N − L2

N)L1
NZi =

−aihi+1

2
D+D− [−ϵD+D−Zi + aiD−Zi + biZi]

=
aihi+1

2
[−ϵD+D−(D+D−Zi) + D+D−(aiZi)

+(D+D−(biZi))] . (2.4.6)

Hence, the proof follows. □

The mesh is uniform in the first half and graded in the remaining half of the do-

main. Thus, the above property holds only in the first half of the domain, and the relative

consistency error vanishes in the remaining half due to the assumption that our operator

L0
N vanishes. We require the following result from [186] to obtain a bound for relative

consistency error.

Lemma 2.4.2. Let k ≥ 4 and Z ∈ C(k)[0, 1]. Then

(i) D−(RZ)i − Z′(xi) = −
1
hi

∫ xi

xi−1

Z′′(ξ)(ξ − xi−1)dξ.

(ii) D0(RZ)i − Z′(xi) = (hi+1 − hi)Z′′(xi) +
1

2(hi + hi+1)

(∫ xi+1

xi

Z(3)(ξ)(xi+1 − ξ)2dξ

−

∫ xi

xi−1

Z(3)(ξ)(ξ − xi−1)2dξ
)
.

(iii) D+D−(RZ)i − Z′′(xi) =
1

(hi + hi+1)

( 1
hi+1

[ ∫ xi+1

xi

Z(3)(ξ)(xi+1 − ξ)2dξ
]

−
1
hi

[ ∫ xi

xi−1

Z(3)(ξ)(ξ − xi−1)2dξ
])
.

Proof. For proof, see [186]. □

Moreover, for all grid points xi and smooth function Z, as in Lemma 2.4.2, it is easy

to follow that

L1
N(RZ)i − (RLZ)i =

−ai

hi

∫ xi

xi

Z(2)(ξ)(ξ − xi−1)dξ −
ϵ

(hi + hi+1)

( 1
hi+1

∫ xi+1

xi

Z(3)(ξ)

×(xi+1 − ξ)2dξ −
1
hi

∫ xi

xi−1

Z(3)(ξ)(ξ − xi−1)2dξ
)

(2.4.7)
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and for grid points xi with hi = hi+1

(i) L1
N(RZ)i − (RLZ)i =

ai

hi

∫ xi

xi−1

Z(2)(ξ)(ξ − xi−1)dξ −
ϵ

2h2
i

( ∫ xi+1

xi

Z(3)(ξ)(xi+1 − ξ)2dξ −∫ xi

xi−1

Z(3)(ξ)(ξ − xi−1)2dξ
)

=
ai

hi

∫ xi

xi−1

Z(2)(ξ)(ξ − xi−1)dξ −
ϵ

6hi
2

( ∫ xi+1

xi

Z(4)(ξ)(xi+1 − ξ)3dξ

−

∫ xi

xi−1

Z(4)(ξ)(ξ − xi−1)3dξ
)
, (2.4.8)

(ii) L0
N(RZ)i − (RLZ)i =

ai

4hi

( ∫ xi+1

xi

Z(3)(ξ)(xi+1 − ξ)2dξ −
∫ xi

xi−1

Z(3)(ξ)(ξ − xi−1)2dξ
)

−
ϵ

6h2
i

( ∫ xi+1

xi

Z(4)(ξ)(xi+1 − ξ)3dξ

−

∫ xi

xi−1

Z(4)(ξ)(ξ − xi−1)3
)
. (2.4.9)

The initial approximation U1
i of problem (2.2.1) admits a representation U1

i = V1
i + W1

i

for i = 0, . . .N where V1
i satisfies

L1
NV1

i = gi; V1
0 = υ(0), V1

N = υ(1), (2.4.10)

and W1
i satisfies

L1
NW1

i = 0; W1
0 = ω(0), W1

N = ω(1). (2.4.11)

Similarly, for i = 0, . . .N, the corrected approximation Ui admits a representation that

reads Ui = Vi +Wi where,

L1
NVi = (L1

N − L0
N)V1

i + gi; V0 = V1
0 ,VN = V1

N , (2.4.12)

and

L1
NWi = −L0

NW1
i ; W0 = W1

0 , WN = W1
N . (2.4.13)

Consequently, we obtain

∥Ru − U∥∞,d ≤ ∥Rν − V∥∞,d + ∥Rω −W∥∞,d . (2.4.14)

Later, we will employ this formula to obtain error estimates. Next, we define the mesh

function Qi =

N∏
j=i+1

(
1 +

αh j

ϵ

)−1

for i = 0, . . . ,N with the usual convention [269, 49]. It is

straightforward to obtain that Qi − Qi−1 =
αhi

ϵ
Qi−1.

Lemma 2.4.3. There exist a positive constant C such that

L1
N Qi ≥

C
max (ϵ, hi)

Qi, i = 1, . . . ,N − 1. (2.4.15)
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Proof. For 1 ≤ i ≤ N − 1, it is easy to follow that

D+Qi =
α

2ϵ
Qi, D−Qi =

α

2ϵ + αhi
Qi and − ϵD+D−Qi =

−α2hi

2ℏi(2ϵ + αhi)
Qi.

Consequently, we compute

L1
N Qi = −ϵD+D−Qi + aiD−Qi + biQi

=
−2ϵ

hi + hi+1

(
Qi+1 − Qi

hi+1
−

Qi − Qi−1

hi

)
+ ai

(
Qi − Qi−1

hi

)
+ biQi

=
α

ϵ

(
ai − 2

hi

hi + hi+1
α

)
Qi−1 + biQi

=
α

hiα + ϵ

(
ai − 2

hi

hi + hi+1
α +

bihiα + ϵ

α

)
Qi

≥
C

max (ϵ, hi)
Qi.

□

Lemma 2.4.4. For each i and mesh function Qi

exp
(
−
α(1 − xi)

ϵ

)
≤

N∏
j=i+1

(
1 +

αh j

ϵ

)−1

. (2.4.16)

Furthermore, Qi is monotonically increasing and for polynomial-Shishkin mesh ΓN

QN/2 ≤ CN−ϕ. (2.4.17)

Proof. For each i, note that

exp
(
−
α(1 − xi)

ϵ

)
≤

(
1 +

αhi+1

ϵ

)−1

. . .

(
1 +

αhN

ϵ

)−1

≤

N∏
j=i+1

(
1 +

αh j

ϵ

)−1

.

Moreover, for i = N
2

QN/2 =

N∏
j= N

2 +1

(
1 +

αh j

ϵ

)−1

≤ exp
(
−α(1 − xN/2)

ϵ + αh

)
≤ exp

(
−ϕ log N
1 + 8N−1

)
≤ CN−ϕ.

□

The discrete operator L1
N satisfies the discrete comparison principle, as we next

prove.

Lemma 2.4.5. Let νi and ωi be the grid functions satisfying L1
Nνi ≤ L1

Nωi for i =

1, 2, . . . ,N − 1 and ν0 ≤ ω0, νN ≤ ωN . Then νi ≤ ωi for i = 0, 1, . . . ,N.

Proof. The matrix associated with operator L1
N is an M-matrix, therefore, has a positive

inverse. Hence, the result follows from [225]. □
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Next, we prove that operator L1
N of (2.4.1) is (∥.∥∞,d , ∥.∥1,d)-stable, where ∥.∥∞,d and

∥.∥1,d are the discrete analogues of L∞[0, 1] and L1[0, 1] norms. Discrete Green’s functions

are helpful while establishing the L1-norm stability. Define Green’s function G(xi, ξ j)

associated with the operator L1
N and grid points ξ j = {x0, x1 . . . xN} as

L1
NG(xi, ξ j) = δi, j(xi, ξ j); G(0, ξ j) = G(1, ξ j) = 0, (2.4.18)

where δi, j is the Kronecker delta and i, j = 1, . . .N − 1.

Lemma 2.4.6. There exists a positive constant C independent of ϵ such that

0 ≤ |G(xi, ξ j)| ≤ C, i, j = 1, . . .N − 1.

Proof. Fix k ∈ {0, 1, . . . ,N} and define a mesh function wi as below

wi = C min

 k∏
j=i+1

(
1 +

αh j

ϵ

)−1

, 1

 , i = 0, 1, · · ·N.

It is easy to follow that wi < C for i < k and wi = C for i ≥ k. If 0 < i < k, we compute

(L1
Nw)i =

−2ϵ
hi + hi+1

α

ϵ
(wi − wi−1) + ai

α

ϵ
wi−1 + biwi

=
α

ϵ
wi−1

[
ai −

2αhi

hi + hi+1
+ biwi

]
=

α

αhi + ϵ
wi

[
ai −

αhi

ℏi
+ bi

hiα + ϵ

α

]
≥

C
max(ϵ, hi)

wi > 0,

and if i = k

(L1
Nw)i =

Cα
αhk + ϵ

(
ϵ

ℏk
+ ak

)
=

Cα
ℏk

[
ϵ

αhk + ϵ
+

akℏk

αhk + ϵ

]
=

Cα
ℏk

[(
ϵ + αℏk

αhk + ϵ

)
+

(
(ak − α)ℏk

αhk + ϵ

)]
=

Cα
ℏk

[
1
2

(
αhk + αhk+1 + 2ϵ

αhk + ϵ

)]
+ ℏk

[
ak − α

αhk + ϵ

]
=

C
2
α

ℏk
.

Also, (L1
Nw)i = 0 if k < i < N. Moreover, G(x0, ξ j) = 0 ≤ w0 and G(xN , ξ j) = 0 ≤ wN .

Consequently, the required result follows from Lemma 2.4.5. □

If S denotes the space of grid functions s with s0 = sN = 0. Then, for s ∈ S

si =

N−1∑
j=1

ℏ jGi j[L1
N s] j, i = 0, . . . ,N,

and

∥s∥∞,d = max

∣∣∣∣∣∣∣
N−1∑
j=1

ℏ jGi j[L1
N s] j

∣∣∣∣∣∣∣ ≤ C

∣∣∣∣∣∣∣
N−1∑
j=1

ℏ j[L1
N s] j

∣∣∣∣∣∣∣ ≤ C
∥∥∥L1

N s
∥∥∥

1,d
.
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2.5 Error analysis

In this section, we calculate the consistency error for regular and singular components

separately. Then, we combine both the results and find the error ∥Ru − U∥∞,d. We begin

our analysis with the regular component. To obtain consistency error on regular compo-

nent L1
N(ν − V), we will calculate the consistency error (L1

N − L0
N)(Rν − V1) and relative

consistency error L0
N(Rν) − (RLν). We assume ℏ denotes H for 2 ≤ i ≤ N/2 and hi for

N/2 + 1 ≤ i ≤ N − 1.

Lemma 2.5.1. The regular component ν of the solution u and its initial approximation V1
i

satisfy ∣∣∣(L1
N − L0

N)(Rν − V1)i

∣∣∣ ≤ Cℏ2. (2.5.1)

Proof. For
N
2
+ 1 ≤ i ≤ N − 1, L0

N = L1
N . Thus

(L1
N − L0

N)(Rν − V1)i = 0. (2.5.2)

Now, for 1 ≤ i ≤
N
2

, Lemma 2.4.1 and the fact that hi = hi+1 = ℏ leads to

L1
N(L1

N − L0
N)(Rν − V1)i =

(
L1

N − L0
N

)
L1

N

(
Rν − V1

)
i

= ai

[
D−

(
L1

NRν − L1
NV1

)
− D0

(
L1

NRν − L1
NV1

)]
= ai

[
D−(L1

NRν − Lν(x)) − D0(L1
NRν − Lν(x))

]
= ai

[(
L1

N(Rν)i − L1
N(Rν)i−1

hi

)
−

(
Lν(xi) − Lν(xi−1)

hi

)]
−ai

[(
L1

N(Rν)i+1 − L1
N(Rν)i−1

hi + hi+1

)
+

(
Lν(xi+1) − Lν(xi−1)

hi + hi+1

)]
=

ai

2ℏ

[
2
(
L1

N(Rν)i − L1
N(Rν)i−1

)
− 2 (Lν(xi) − Lν(xi−1))

]
−

ai

2ℏ

[(
L1

N(Rν)i+1 − L1
N(Rν)i−1

)
+ (Lν(xi+1) − Lν(xi−1))

]
=
−α

ℏ

[
(L1

N(Rν)i+1 − Lν(xi+1)) − 2(L1
N(Rν)i − Lν(xi))

+
(
L1

N(Rν)i−1 − Lν(xi−1)
)]
. (2.5.3)

Now, we use (2.4.8) to obtain

|L1
N(L1

N − L0
N)(Rν − V1)i|

=

∣∣∣∣∣−αℏ
[
−ϵ

6ℏ2

[∫ xi+1

xi

(
ν(4)(ξ + ℏ) − 2ν(4)(ξ) + ν(4)(ξ − ℏ)(xi+1 − ξ)3dξ

)
−

∫ xi

xi−1

(
ν(4)(ξ + ℏ) − 2ν(4)(ξ) + ν(4)(ξ − ℏ)(ξ − xi−1)3dξ

)]
+
α

ℏ

∫ xi

xi−1

(
ν(2)(ξ + ℏ) − 2ν(2)(ξ) + ν(2)(ξ − ℏ)(ξ − xi−1)dξ

)]∣∣∣∣∣. (2.5.4)



40 Convection-Diffusion Problems

An application of the fundamental theorem of calculus leads to

|L1
N(L1

N − L0
N)(Rν − V1)i| ≤ Cℏ2

(
ϵ
∥∥∥ν(6)

∥∥∥
∞
+

∥∥∥ν(4)
∥∥∥
∞

)
. (2.5.5)

Now on the coarse part, we apply the discrete maximum principle. Consider the barrier

function w̄i := Cℏ2(1 + xi). Then (2.4.1) leads to

L1
Nw̄i = −ϵD+D−w̄i + aiD−w̄i + biw̄i

=
−2ϵ

hi + hi+1

[
w̄i+1 − w̄i

hi+1
−
w̄i − w̄i−1

hi

]
+ ai

[
w̄i − w̄i−1

hi

]
+ biw̄i

=
−2ϵ

hi + hi+1

[Cℏ2(1 + xi+1) −Cℏ2(1 + xi)
hi+1

−
Cℏ2(1 + xi) −Cℏ2(1 + xi−1)

hi

]
+ai

[Cℏ2(1 + xi) −Cℏ2(1 + xi−1)
hi

]
+ bi(Cℏ2(1 + xi))

=
−2ϵ

hi + hi+1

[Cℏ2(1 + xi+1 − 1 − xi)
hi+1

−
Cℏ2(1 + xi − 1 − xi−1)

hi

]
+ai

[Cℏ2(1 + xi − 1 − xi−1)
hi

]
+ bi(Cℏ2(1 + xi))

≥ Cℏ2.

The required assertion thus follows from (2.5.2), (2.5.5) and Lemma 2.4.5. □

Lemma 2.5.2. The error associated with the regular component ν of the solution u of

(2.2.1) satisfies

∣∣∣Lν(xi) − L0
N(Rν)i

∣∣∣ ≤


CH2
(
ϵ
∥∥∥ν(4)

∥∥∥
∞
+

∥∥∥ν(3)
∥∥∥
∞

)
for 1 ≤ i ≤ N

2 ,

Chi

(
ϵ
∥∥∥ν(3)

∥∥∥
∞
+

∥∥∥ν(2)
∥∥∥
∞

)
for N

2 + 1 ≤ i ≤ N − 1.
(2.5.6)

Proof. For 1 ≤ i ≤
N
2

,

L0
N(Rν)i − (RLν)i =

−ai

4H

(∫ xi+1

xi

ν(3)(ξ)(xi+1 − ξ)2dξ −
∫ xi

xi−1

ν(3)(ξ)(ξ − xi−1)2dξ
)

−
ϵ

6H2

(∫ xi+1

xi

ν(4)(ξ)(xi+1 − ξ)3dξ −
∫ xi

xi−1

ν(4)(ξ)(ξ − xi−1)3dξ
)

=

∣∣∣∣∣∣ ai

4H

[∥∥∥ν(3)
∥∥∥
∞

(xi+1 − xi)3

3
+

∥∥∥ν(3)
∥∥∥
∞

(xi − xi−1)3

3

]
+

ϵ

6H2

[∥∥∥ν(4)
∥∥∥
∞

(xi+1 − xi)4

4
+

∥∥∥ν(4)
∥∥∥
∞

(xi − xi−1)4

4

]∣∣∣∣∣∣
≤ CH2

(
ϵ
∥∥∥ν(4)

∥∥∥
∞
+

∥∥∥ν(3)
∥∥∥
∞

)
,
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and for
N
2
+ 1 ≤ i ≤ N − 1,

∣∣∣Lν(xi) − L0
N(Rν)i

∣∣∣ = ∣∣∣∣∣∣−ai

hi

∫ xi

xi−1

ν(2)(ξ)(ξ − xi−1)dξ −
ϵ

hi + hi+1

[
1

hi+1
×∫ xi+1

xi

ν(3)(ξ)(xi+1 − ξ)2dξ −
1
hi

∫ xi

xi−1

ν(3)(ξ)(ξ − xi+1)2dξ
]∣∣∣∣∣∣

=

∣∣∣∣∣∣−ai

hi

∥∥∥ν(2)
∥∥∥
∞

(xi − xi−1)2

2
−

ϵ

6(hi + hi+1)

(
1

hi+1

∥∥∥ν(3)
∥∥∥
∞

×
(xi+1 − xi)3

3
−

1
hi

∥∥∥ν(3)
∥∥∥
∞

(xi − xi−1)3

3

)∣∣∣∣∣∣
≤ Chi

(
ϵ
∥∥∥ν(3)

∥∥∥
∞
+

∥∥∥ν(2)
∥∥∥
∞

)
.

Thus, we find

∣∣∣Lν(xi) − L0
N(Rν)i

∣∣∣ ≤


CH2
(
ϵ
∥∥∥ν(4)

∥∥∥
∞
+

∥∥∥ν(3)
∥∥∥
∞

)
for 1 ≤ i ≤ N

2 ,

Chi

(
ϵ
∥∥∥ν(3)

∥∥∥
∞
+

∥∥∥ν(2)
∥∥∥
∞

)
for N

2 + 1 ≤ i ≤ N − 1.

□

Lemma 2.5.3. The regular component ν of the solution u and its corrected approximation

V satisfy

∥Rν − V∥∞,d ≤ CN−2.

Proof. Combining inequalities from Lemma 2.5.1 and Lemma 2.5.2 to obtain

L1
N(Rν − V) ≤


CH2 for 1 ≤ i ≤ N

2 ,

Ch2
i for N

2 + 1 ≤ i ≤ N.

Since ∥Rν − V∥∞,d vanishes at boundary, it follows that

∥Rν − V∥∞,d ≤ C
∥∥∥L1

N(ν − V)
∥∥∥

1,d

≤ CH2 +

N
2∑

k=2

CH3 +CH
H + h N

2 +1

2
+

N−1∑
k= N

2 +2

h3
i

≤ C
(
H2 + Hh N

2 +1 + h2
i

)
≤ CN−2.

□

The approach based on barrier functions is unsuitable for estimating the consistency

error in analysing the singular component of the solution u. This term is complex when

analysing the defect correction method, particularly on layer-adapted meshes. Therefore,

we analyse the error estimates for singular components using the mesh function argument

[133, 269].
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Lemma 2.5.4. The singular component ω of the solution u and its corrected approxima-

tion W satisfy

L1
N(ω(xi) −W) ≤


CN−(ϕ−1) for 1 ≤ i < N

2 ,

CN−(ϕ−2) for i = N
2 ,

Cϵ−1N−1 for N
2 + 1 ≤ i ≤ N − 1.

(2.5.7)

Proof. For 1 ≤ i ≤
N
2

, we can write∣∣∣L1
N(Rω −W)i

∣∣∣ = ∣∣∣L1
N(Rω −W1)i

∣∣∣ + ∣∣∣L1
N(W1 −W)i

∣∣∣ ,
and consider both addends separately. From (2.4.11) and Lemma 2.4.4∣∣∣L1

N(Rω −W1)i

∣∣∣ = ∣∣∣L1
N(Rω)i

∣∣∣ ≤ Qi+1

∣∣∣∣∣ 4ϵ
H2 +

4α
H
+ bi

∣∣∣∣∣
≤ CNQi+1

≤ CN−(ϕ−1). (2.5.8)

For i =
N
2

, we compute

∣∣∣∣L1
N(Rω −W1) N

2

∣∣∣∣ ≤ Q N
2 +1

∣∣∣∣∣ 2ϵ
hi(H + hi)

+
2ϵ

H(H + hi)
+

4α
H
+ bi

∣∣∣∣∣
≤ Q N

2 +1

∣∣∣∣∣ 4ϵ
Hhi
+

4α
H
+ bi

∣∣∣∣∣
≤ CN−ϕN2

≤ CN−(ϕ−2). (2.5.9)

Proceeding in a similar manner, we obtain∣∣∣L1
N(W1 −W)i

∣∣∣ = ∣∣∣L0
NW1

∣∣∣ ≤ Qi+1

∣∣∣∣∣ 4ϵ
H2 +

2α
H
+ bi

∣∣∣∣∣ ≤ CN−(ϕ−1). (2.5.10)

Thus, we find that

∣∣∣L1
N(ω(xi) −W)

∣∣∣ ≤


CN−(ϕ−1) for 1 ≤ i < N
2 ,

CN−(ϕ−2) for i = N
2 .

(2.5.11)

Again, for
N
2
+ 1 ≤ i ≤ N − 1,∣∣∣L1

N(Rω −W)
∣∣∣ = ∣∣∣(L1

N − L0
N)(Rω −W1)

∣∣∣ + ∣∣∣(L0
NR − RL)ω

∣∣∣ .
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Then, the definition of L0
N leads to

∣∣∣L1
N(Rω −W)

∣∣∣ = ∣∣∣∣∣∣ai

hi

∫ xi

xi−1

ω(2)(ξ)(ξ − xi−1)dξ −
ϵ

hi + hi+1

[
1

hi+1

∫ xi+1

xi

ω(3)(ξ)

×(xi+1 − ξ)2dξ −
1
hi

∫ xi

xi−1

ω(3)(ξ)(ξ − xi−1)2dξ
]∣∣∣∣∣∣

≤

∣∣∣∣∣∣Cϵ−2
∫ xi

xi−1

e−
α(1−ξ)

2ϵ dξ +
ϵ

hi + hi+1

[
hi+1ϵ

−3
∫ xi+1

xi

e−
α(1−ξ)

2ϵ dξ

−hi

∫ xi

xi−1

e−
α(1−ξ)

2ϵ dξ
]∣∣∣∣∣∣

≤

∣∣∣∣∣∣Cϵ−2
[
e−α(1−ξ)/2ϵ

−α/2ϵ

]xi

xi−1

+
ϵ

hi + hi+1

hi+1ϵ
−3

[
e−α(1−ξ)/2ϵ

−α/2ϵ

]xi+1

xi

−hiϵ
−3

[
e−α(1−ξ)/2ϵ

−α/2ϵ

]xi

xi−1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣−Cϵ−1

α
e
−α
2ϵ

(
e
−αxi

2ϵ − e
−αxi−1

2ϵ
)
+
ϵ−1

2hi

(
−hie

−α
2ϵ

(
e
−αxi+1

2ϵ − e
−αxi

2ϵ
))

−
(
−hie

−α
2ϵ

(
e
−αxi

2ϵ − e
−αxi−1

2ϵ
))∣∣∣∣

≤

∣∣∣∣∣∣−Cϵ−1

α
e
−α
2ϵ e

αxi
2ϵ e

−αhi
4ϵ sinh

(
hiα

4ϵ

)
−Cϵ−1e

−α
2ϵ e

αxi
2ϵ

(
e
αhi+1

2ϵ − e
αhi
2ϵ

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣−Cϵ−1

α
e
(
−α
2ϵ

(
1−

(
xi+

hi
4

)))
sinh

(
hiα

4ϵ

)
−
ϵ−1

2
e( α

2ϵ (1+xi))sinh
(
hiα

2ϵ

)∣∣∣∣∣∣
≤ Cϵ−1N−1. (2.5.12)

Combining (2.5.8), (2.5.9), (2.5.10), (2.5.11) and (2.5.12) to obtain

L1
N(ω(xi) −W) ≤


CN−(ϕ−1) for 1 ≤ i <

N
2
,

CN−(ϕ−2) for i =
N
2
,

Cϵ−1N−1 for
N
2
+ 1 ≤ i ≤ N − 1.

□

Lemma 2.5.5. The singular component ω of the solution u and its corrected approxima-

tion W on ΓN satisfy

∥Rω −W∥∞,d ≤ CN−2.

Proof. Proceeding in the similar manner as in Lemma 2.4.11, we can obtain

∥Rω −W∥∞,d ≤ C
∥∥∥L1

N(Rω −W)
∥∥∥

1,d

≤ C

N
2 −1∑
k=1

HN−(ϕ−1) +

(H + h N
2

2

)
N−(ϕ−2) +

N−1∑
k= N

2 +1

Chi

(
ϵ−1N−1

)
≤ CN−2.
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□

We can now state the main result of this section, the principle convergence theorem.

The proof follows immediately from Lemma 2.5.3 and Lemma 2.5.5.

Theorem 2.5.6. The approximate solution U on ΓN and the continuous solution u of

(2.2.1) satisfies

∥Ru − U∥∞,d ≤ CN−2.

2.6 Numerical results

In this section, we consider two test examples from [99, 123] and put to test the effec-

tiveness of the proposed method. Test problems are solved using the higher-order defect

correction method suggested over an adaptive mesh. We compare the results over some

adaptive meshes available in literature like Shishkin mesh [244], Vulanovic-Improved

Shishkin mesh [160], Bakhvalov-Shishkin mesh [158] and polynomial-Shishkin mesh

[166]. Moreover, we compare the results of the proposed method with the B-spline collo-

cation method [123].

For a given value of N, the maximum absolute error (EN) and numerical rate of

convergence (PN) is calculated using the formula given below

EN = max
ϵ
∥u − U∥ΓN

and PN = log2

(
EN

E2N

)
.

Example 2.6.1. Consider the following convection-diffusion problem [99]

−ϵu′′(x) + u′(x) = g(x), u(0) = u(1) = 0.

Here g(x) is chosen so that the exact solution of the problem reads

u(x) =
1

1 + ϵ

(
−e−x +

(e−1 − 1)e−(1−x)/ϵ + 1 − e−1−1/ϵ

1 − e−1/ϵ

)
.

Example 2.6.2. Consider the following convection-diffusion problem [123]

−ϵu′′(x) + u′(x) + u(x) = g(x), u(0) = u(1) = 0.

Here g(x) is chosen so that the exact solution of the problem reads

u(x) = a cos πx + b sin πx + Aeλ1 x + Be−λ2(1−x),

where a =
ϵπ2 + 1

π2 + (ϵπ2 + 1)2 , b =
π

π2 + (ϵπ2 + 1)2 , A =
−a(1 + e−λ2)

1 − eλ1−λ2
, B =

a(1 + eλ1)
1 − eλ1−λ2

,

λ1(x) < 0 and λ2(x) > 0 are the solutions of −ϵλ′′(x) + λ′(x) + 1 = 0.
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Table 2.2: Maximum absolute error (EN) and order of convergence (PN) for Example

2.6.1 for m = 2.

ϵ = 2 × 10−5 ϵ = 2 × 10−6 ϵ = 2 × 10−7

N EN PN EN PN EN PN

16 0.02926078 2.22 0.02926309 2.22 0.02926332 2.22

32 0.00627276 2.44 0.00627324 2.44 0.00627329 2.44

64 0.00114921 2.58 0.00114931 2.57 0.00114933 2.58

128 1.913998e-04 2.67 1.914124e-04 2.67 1.914179e-04 2.67

256 3.004118e-05 2.72 3.004308e-05 2.72 3.004433e-05 2.72

512 4.536608e-06 2.76 4.537018e-06 2.76 4.537061e-06 2.76

Table 2.3: Maximum absolute error (EN) and order of convergence (PN) for Example

2.6.1 for m = 3.

ϵ = 2 × 10−5 ϵ = 2 × 10−6 ϵ = 2 × 10−7

N EN PN EN PN EN PN

16 0.004112682 3.34 0.004113024 3.34 0.004113058 3.34

32 4.041751e-04 3.51 4.042070e-04 3.51 4.042102e-04 3.51

64 3.524795e-05 3.63 3.525091e-05 3.63 3.525117e-05 3.63

128 2.840703e-06 3.70 2.840961e-06 3.70 2.841127e-06 3.70

256 2.174327e-07 3.75 2.174606e-07 3.75 2.174776e-07 3.76

512 1.608364e-08 3.79 1.608370e-08 3.79 1.608425e-08 3.83

Test problems are solved using the proposed defect correction method over the

polynomial-Shishkin mesh. For Example 2.6.1, the maximum absolute error and order of

convergence are obtained numerically and tabulated in Table 2.2 and Table 2.3 for m = 2

and 3, respectively. Besides, Table 2.4 presents a comparative analysis of maximum ab-

solute error for Example 2.6.1 when m = 2 over a variety of adaptive meshes available

in literature. For Example 2.6.2, the maximum absolute error and order of convergence

are obtained numerically and tabulated in Table 2.4 when m = 2. Moreover, Table 2.6

compares the result obtained using the proposed defect correction method for different

values of perturbation parameters over a polynomial-Shishkin mesh with the B-spline

collocation method [123]. Figures 2.3 and 2.4 show the mesh density in the layer regions

for Example 2.6.1 for different values of N. Figures 2.1 and 2.2 illustrate a comparison

of maximum absolute error obtained using the proposed defect correction method over a

polynomial-Shishkin mesh with the upwind scheme over a Bakhvalov-Shiskin mesh and
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Table 2.4: Comparison of maximum absolute error (EN), for Example 2.6.1, using the

proposed defect correction method on various layer adapted meshes when ϵ = 2 × 10−07.

Shishkin Vulanovic-Improved Bakhvalov-Shishkin polynomial-Shishkin

mesh [244] Shishkin mesh [160] mesh [158] mesh [166]

0.01638513 0.02609376 0.0061189 3.525117e-05

6.365040e-03 9.863050e-03 1.746604e-03 2.841127e-06

2.259211e-03 3.290856e-03 4.944540e-04 2.841127e-06

7.504937e-04 1.009660e-03 1.453690e-04 2.174776e-07

2.378557e-04 2.934636e-04 4.626797e-05 1.608425e-08

Table 2.5: Maximum absolute error (EN) and order of convergence (PN), for Example

2.6.2, for m = 2.

ϵ = 2 × 10−3 ϵ = 2 × 10−5 ϵ = 2 × 10−7

N EN PN EN PN EN PN

32 2.903882e-04 3.42 3.176081e-04 3.26 3.178090e-04 3.26

64 2.697840e-05 3.17 3.297016e-05 3.41 3.301339e-05 3.26

128 2.986647e-06 3.23 3.013666e-06 3.14 3.112148e-06 3.14

256 3.164733e-07 2.14 3.402792e-07 2.53 3.529333e-7 2.52

512 5.951543e-08 2.60 5.981563e-08 2.61 6.034316e-08 2.60

the results obtained using other meshes available in the literature, respectively. Further-

more, Figures 2.5 and 2.6 show the solution plot for different values of ϵ for Example

2.6.1 and 2.6.2, respectively.

2.7 Conclusion

A higher-order accurate adaptive finite difference method based on a defect correction

method is presented over a non-uniform polynomial-Shishkin mesh to solve singularly

perturbed convection-diffusion problems. The underlying technique combines an inex-

pensive, lower-order stable, upwind difference scheme and a higher-order, less stable

central difference scheme. The procedure starts with a stable, low-order, computationally

inexpensive upwind method. Then, the defect correction proceeds by computing a se-

quence of approximations to the solution using a higher-order central difference method.

Each successive approximation is of higher accuracy than the previous one. The ap-

proximations are sought on the same mesh to increase a numerical solution’s accuracy
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Table 2.6: Comparison of maximum absolute error (EN), for Example 2.6.2, using the

proposed defect correction method on a polynomial-Shishkin mesh with m = 3 and B-

spline collocation method [123].

B-spline collocation method [123] Proposed method

N ϵ = 10−2 ϵ = 10−4 ϵ = 10−2 ϵ = 10−4

32 1.6438e-02 2.4642e-02 1.2374e-05 1.9838e-05

64 6.6001e-03 1.2649e-02 1.7802e-06 2.2779e-06

128 2.4825e-03 6.5826e-03 1.7109e-07 3.8653e-07

256 6.4332e-04 3.3112e-03 1.3427e-08 2.4679e-08

512 1.613e-04 1.6136e-03 9.0647e-10 9.3278e-10

without applying any grid refinement. The method yields highly accurate results for sin-

gular perturbation problems avoiding prevalent numerical oscillation in the numerical ap-

proximation. The method is unconditionally stable and free from directional bias. The

convergence obtained is optimal because it is free from the logarithmic term. Numeri-

cal results and illustrations support the theoretical estimates. The results obtained using

the proposed method over the polynomial-Shishkin mesh are superior to other adaptive

meshes in the literature and spline collocation methods. The method presented is easy to

implement and, with a bit of modification, can easily be extended to even more general

situations like problems in higher dimensions and nonlinear evolution equations.
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Figure 2.1: Comparison of maximum absolute error (EN), for Example 2.6.1, with an

upwind scheme defined over a Bakhvalov-Shishkin mesh.
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Figure 2.2: Comparison of maximum absolute error (EN), for Example 2.6.1, using pro-

posed method over various layer adapted meshes.
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Figure 2.3: The mesh density towards the boundary layer x = 1 when ϵ = 10−05 and

N = 32.
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Figure 2.4: The mesh density towards the boundary layer x = 1 when ϵ = 10−05 and

N = 64.
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Figure 2.5: Numerical solution for Example 2.6.1 for different values of ϵ when N = 64.
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Figure 2.6: Numerical solution for Example 2.6.2 for different values of ϵ and N = 64.



Chapter 3

Convection-Diffusion Problems with
Discontinuous Coefficient and Point
Source

3.1 Introduction

In Chapter 2, we proposed a defect correction scheme for a class of singularly perturbed

convection-diffusion problems. This chapter extends our study to singularly perturbed

convection-diffusion problems with discontinuous coefficients and a point source.

Singularly perturbed convection-diffusion problems with discontinuous coefficients

and point sources constitute a challenging class of mathematical models that arise in var-

ious fields, including physics, engineering and biology. These problems are stiff as they

have a small parameter multiplying the highest-order differential coefficient and exhibit

sensitivity to small perturbations in the system parameter. The presence of discontinuous

coefficients and point sources adds complexity to the problem.

Discontinuous coefficients introduce abrupt changes or jumps in the system’s ma-

terial properties or physical characteristics. Moreover, the problem being singularly per-

turbed, the solution of these equations exhibits a multiscale character since the corre-

sponding degenerate system fails to satisfy the given boundary data. There are narrow

regions across which the solution changes rapidly and displays layer behaviour. Standard

numerical methods on uniform meshes fail to consistently approximate solutions in these

layer regions. Consequently, traditional solution techniques may not be directly applica-

ble, requiring specialised methods to handle the discontinuities appropriately.

Many researchers have worked to provide estimation strategies for the discretization

errors in numerical solutions of singular perturbation problems. Essentially, there are two
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52 Convection-Diffusion Problems with Discontinuous Coefficient and Point Source

distinct categories of error estimation strategies. Instead of estimating the errors for a

particular mesh, a priori error estimators provide information about the asymptotic be-

haviour of discretization errors. In contrast, posteriori error estimators directly determine

actual solution error estimates from the numerical solution. The authors attempted to pro-

vide posteriori error estimates for different singular perturbation problems. Considerable

attempts are seen in literature providing posteriori error estimates for different singular

perturbation problems. In [167], authors solved a two-point boundary-value problem for

a singularly perturbed convection-diffusion problem using a defect correction method.

They obtained a robust posteriori error estimate of second-order in maximum norm.

In [172], authors considered a two-parameter singularly perturbed two-point

boundary-value problem of reaction-convection-diffusion type. The problem was solved

using a streamline-diffusion finite element method, and the author obtained a posteriori

error estimate in the maximum norm. In [118], authors examined a two-parameter singu-

lar perturbation problem using the defect correction method over a Bakhvalov-Shishkin

mesh. A posteriori error estimate they obtained is of second-order in maximum norm.

In [112], a parameterised singular perturbation problem was solved using a hybrid differ-

ence method on an arbitrary mesh. A second-order accurate solution-adaptive algorithm

based on the a posteriori error estimation was designed by equidistributing a monitor

function. In [142], a singularly perturbed quasi-linear two-point boundary value problem

with an exponential boundary layer was discretised on arbitrary non-uniform meshes us-

ing finite difference schemes. The authors gave first and second-order maximum norm a

posteriori error estimates based on different derivatives of the numerical solution. Later,

in [289], authors generalised and improved these results using the upwind finite differ-

ence discretization. In [238], authors considered two types of singularly perturbed, linear

partial differential equations, namely time-dependent convection-diffusion problems and

a two-dimensional elliptic equation having a first-order unperturbed operator and con-

structed finite element approximations via modifications of classical methods of lines and

established a-posteriori estimates for the error between the solutions of the finite element

methods and the boundary value problems arising from the line methods. In [237], au-

thors proposed the Crank-Nicolson-Galerkin method of solving a singularly perturbed

parabolic initial value problem. They derived posteriori error estimates for the finite el-

ement solution of the given parabolic problem on every discrete time level, providing a

basis for adaptive mesh refinement. In [292], the author presents a posteriori error estima-

tor for approximating the solution to an advection-diffusion equation with a non-constant,

vector-valued diffusion coefficient in a conforming finite element space. Based on the

complementary variational principle, they show that the error of an approximate solution
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in an associated energy norm is bounded by the sum of the weighted L2-norms of solu-

tions to a set of independent complementary variational problems, each defined on only

one element of the partition. The error bound guarantees the overestimation of the ac-

tual error and does not depend unfavourably on ϵ. Although the original equation is a

non-self-adjoint problem, the strong form of each local variational problem is always a

Poisson equation with Neumann boundary conditions. In [297], authors derived poste-

riori error estimates for the nonconforming finite element approximations on anisotropic

meshes for a singularly perturbed reaction-diffusion problem.

The analysis of posteriori error estimates has yet to see much development in the

literature. This chapter presents a defect correction method to solve a singularly perturbed

convection-diffusion problem with a discontinuous coefficient and a point source over a

Bakhvalov Shishkin mesh. We establish a posteriori error estimate of second-order in the

maximum norm. Moreover, the chapter illustrates numerical results to support theoretical

estimates.

3.2 Problem Description

Let Ω = (0, 1), Ω− = (0, c) and Ω+ = (c, 1). Consider the non-homogeneous boundary

value problem

Lu(x) = −ϵu′′(x) − (a(x)u(x))′ + b(x)u(x) = g(x) + γδc, x ∈ (0, 1),

u(0) = u(1) = 0,

 (3.2.1)

where 0 < ϵ ≪ 1 is the small perturbation parameter, δc(x) = δ(x − c) with c ∈ Ω is the

Dirac-delta function, a(x) ≥ α1 > 0 for x ∈ (0, c) and a(x) ≥ α2 > 0 for x ∈ (c, 1). Let

α = min{α1, α2}, a(x) and b(x) are sufficiently smooth functions such that

b(x) ≥ 0 and b(x) − (a(x))′ ≥ 0, x ∈ [0, 1]. (3.2.2)

Thus, we may write

Lu =


−ϵu′′(x) − (a(x)u(x))′ + b(x)u(x) = g(x), x ∈ (0, c) ∪ (c, 1),

−ϵ[u′](c) − [a](c)u(c) = γ,
(3.2.3)

where [η](c) = η(c + 0) − η(c − 0) denotes the jump.

The operator L satisfies the maximum principle [225], and the problem (3.2.1) has a

unique solution, u ∈ C[0, 1] ∩C2((0, c) ∪ (c, 1)) [166]. Moreover, from [169], we have

||u||∞ ≤
2
α

sup
x∈(0,1)

∣∣∣∣∣∣
∫ 1

x
(g + γδc)(s)ds

∣∣∣∣∣∣ ≤ 2
α

(
||g||L1(0,1) + |γ|

)
. (3.2.4)
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For x ∈ (0, c), the solution of (3.2.1) satisfies

Lu = g, x ∈ (0, c), u(0) = 0, u(c) = ρ.

From (3.2.4), note that |ρ| ≤ C. Therefore, it follows from [133] that

|u(k)(x)| ≤ C
{
1 + ϵ−k exp

(
−
α1x
ϵ

)}
, x ∈ (0, c), k = 0, 1, · · · q, (3.2.5)

where q depends on the smoothness of a, b and g on (0, c). For x ∈ (c, 1), the solution of

(3.2.1) satisfies

Lu = g, x ∈ (c, 1), u(c) = ρ, u(1) = 0,

and

|u(k)(x)| ≤ C
{

1 + ϵ−k exp
(
−
α2(x − c)

ϵ

)}
, x ∈ (c, 1), k = 0, 1, · · · q. (3.2.6)

Combining (3.2.5) and (3.2.6) to find

|u(k)(x)| ≤ C
{

1 + ϵ−k

{
exp

(
−
α1x
ϵ

)
+ Hc(x) exp

(
−
α2(x − c)

ϵ

)}}
, (3.2.7)

where Hc(x) =


0, x < c

1, x > c
is the Heaviside step function.

3.3 Mesh Description

The solution to the problem (3.2.1) exhibits an interior layer at x = c and a boundary layer

at x = 0. Thus, we construct a non-uniform mesh that condenses points around x = 0 and

x = c. For that, we use Bakhvalov-Shishkin mesh. Let N ≥ 8 and τ1, τ2 be the mesh

transition parameters such that

τ1 = min
{c

2
, τ0ϵ log N

}
, τ2 = min

{
1 − c

2
, τ0ϵ log N

}
, τ0 ≥ 1.

Let τ1 = τ2 = τ0ϵ log N. Otherwise, N−1 is exponentially small compared to ϵ. We

construct a mesh ΓN such that

ΓN = [0, c − τ1] ∪ [c − τ1, c] ∪ [c, 1 − τ2] ∪ [1 − τ2, 1]. (3.3.1)

The subintervals (0, c − τ1) and (c, 1 − τ2) contain N/4 mesh points, and subintervals

(c − τ1, c) and (1 − τ2, 1) contain the same number of mesh points placed uniformly such

that x0 = 0, xN/4 = c − τ1, x3N/4 = 1 − τ2 and xN = 1. The mesh is generated using a

continuous, monotonically increasing, piecewise differentiable mesh-generating function

Φ(t) =


Φ1(t) = − log(1 − 4(1 − N−1)t), t ∈

[
0,

1
4

]
,

Φ2(t) = − log(1 − 2(1 − N−1)(2t − 1)), t ∈
[
1
2
,

3
4

]
.
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The resulting mesh reads

xi =



ϵτ0Φ1(ti), i = 0, · · · ,N/4,

τ1 + 4
(
i −

N
4

) (1 − τ1

N

)
, i = N/4 + 1, · · · ,N/2,

c + ϵτ0Φ2(ti), i = N/2 + 1, · · · , 3N/4,

(c + τ2) + 4
(
i −

3N
4

) (
1 − c − τ2

N

)
, i = 3N/4 + 1, · · · ,N,

(3.3.2)

where ti =
i
N

. As in Lemma 2.3.1, the step size satisfies hi ≤ CN−1 for all i = 0, . . . ,N.

3.4 The Difference Scheme

For i ≥ 1, a function ωi and step size hi, the forward, backward and central difference

approximation to first-order derivatives are defined as

ωx,i =
ωi+1 − ωi

hi+1
, ωx̄,i = ωx,i−1 =

ωi − ωi−1

hi
, ωẋ,i =

ωi+1 − ωi−1

2ℏi
, and ωx̂,i =

ωi+1 − ωi

ℏi
,

with the weighted mesh increment ℏ defined by

ℏi =


h1
2 , i = 0,
hi+1+hi

2 , i = 1, · · · ,N − 1,
hN
2 , i = N.

The upwind operator L1
N for problem (3.2.1) takes the form

L1
Nωi = −ϵωx̄x,i − (a−ω)x,i + (bω)i = gi + ∆c,i, (3.4.1)

and the central difference operator L2
N results in

L2
Nωi = −ϵωx̄x̂,i − (a−ω)ẋ,i + (bω)i = gi + ∆c,i, (3.4.2)

where ∆c,i =


h−1

i+1, c ∈ [xi, xi+1),

0, otherwise.
The defect correction method takes the form

1. Compute initial approximation ÛN using an upwind difference scheme

[L1
NÛN]i = gi + ∆c,i, i = 1, 2, · · ·N − 1. (3.4.3)

2. Estimate the defect σ using the central difference scheme

σi = [L2
NÛN]i − (gi + ∆c,i), i = 1, 2, · · ·N − 1. (3.4.4)
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3. Compute the defect-correction ∇ by solving

[L1
N∇]i = κiσi, κi =

ℏi

hi+1
, i = 1, 2, · · · ,N − 1. (3.4.5)

4. The final corrected solution is given by

UN
i = ÛN

i − ∇i, i = 1, 2, · · · ,N. (3.4.6)

Next, let us define continuous and discrete operators to help us find the posteriori error

bounds. Following [166], we define

(Aω)(x) = ϵω′(x) + (a−ω)(x) +
∫ 1

x
(bω)(s)ds,

F (x) =
∫ 1

x
g(s)ds +


γ, x ≤ c,

0, otherwise,
(3.4.7)

[Auω]i = ϵωx̄,i + (a−ω)i +

N−1∑
k=i

hk+1(bω)k, Fu
i =

N−1∑
k=i

hk+1gk +


γ, xi ≤ c,

0, otherwise,
(3.4.8)

and

[Acω]i = ϵωx̄,i +

(
(aω) + (aω)−1

2

)
i
+

N∑
k=i

ℏk(bω)k, Fc
i =

N∑
k=i

ℏkgk +


γ, xi ≤ c,

0, otherwise,
(3.4.9)

where (bω)−1 = (bω)i−1 and ℏ =
hN

2
. Note that Lω = −(Aω)′ and g = −(F )′ on (0, 1). It

follows from (3.2.1) that (Aω − F )′(x) = 0. Consequently, integration yields

(Aω − F )(x) = ϑ, x ∈ (0, 1), (3.4.10)

where ϑ is some constant. From (3.4.3) and (3.4.8)

[L1
Nω] = −(Auω)x and g = −Fu

x .

Thus, we get

(Au − F )(x) = c for x ∈ (0, 1). (3.4.11)

From (3.4.3), (3.4.4), (3.4.5) and (3.4.6), we obtain

[AcU − (Au − Ac)∆ − Fc]i = ĉ for i = 1, 2, · · · ,N. (3.4.12)
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3.5 Error Analysis

In this section, we perform an error analysis. The analysis we perform employs the sta-

bility properties of the differential operator [7, 170]. Given an arbitrary function ω with

ω(0) = ω(1) = 0, we have

ω(x) =
∫ 1

0
G(x, ξ)(Lω)(ξ)dξ for x ∈ [0, 1],

where G is the Green’s function associated with L and Dirichlet boundary conditions,

solves for fixed ξ ∈ [0, 1]

(LG(·, ξ))(x) = δ(x − ξ) for x ∈ (0, 1),

G(0, ξ) = G(1, ξ) = 0,

 (3.5.1)

where δ is the Dirac-delta function. Moreover, G can also be defined using the adjoint

operator L∗ω = −ϵω′′ + aω′ + bω for fixed ξ as

(L∗G(x, ·))(ξ) = δ(ξ − x) for ξ ∈ (0, 1),

G(x, 0) = G(x, 1) = 0.

 (3.5.2)

Next, we define

∥ω∥∞ = sup
x∈[0,1]

|ω(x)|, ∥ω∥1 =
∫ 1

0
|ω(x)|dx

and the W−1,∞ norm as

∥ω∥−1,∞ := sup
u∈W1,1

0 :|u|1,1=1

⟨u, ω⟩ = min
V:V′=ω

∥V∥∞ = min
C∈R

∥∥∥∥∥∥
∫ 1

0
ω(s)ds +C

∥∥∥∥∥∥
∞

.

For an arbitrary x ∈ (0, 1) the reader is referred to [166, 165] to see the bounds on various

norms of G(x, ·).

Lemma 3.5.1. The Greeen’s function G associated with the discrete operator L satisfies

∥G(x, ·)∥1 ≤ ∥G(x, ·)∥∞ ≤ α
−1,

∥∥∥Gξ(x, ·)
∥∥∥

1
≤ 2α−1,

∥∥∥Gxξ(x, ·)
∥∥∥

1
≤ 2ϵ−1.

Moreover, for all ω ∈ W1,∞
0 (0, 1), the operator L satisfies

∥ω∥ϵ,∞ = max
{
α

2
∥ω∥∞ ,

ϵ

2
∥ω∥∞

}
≤ ∥Lω∥−1,∞ .

Proof. For proof, see [166]. □

Theorem 3.5.2. Let u be the solution of the boundary value problem

Lu = −F ′ on (0, 1); u(0) = u(1) = 0,
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where

F = Ai−1/2(x − xi−1/2) for x ∈ (xi−1, xi).

Then,

∥u∥∞ ≤ max
i=1,··· ,N

{
|A|i−1/2 min

[
hi

2
,

h2
i

8ϵ

]} (
2 + 2 ∥a∥∞ + ∥b∥∞ + α

α

)
. (3.5.3)

Proof. Let x ∈ (0, 1) be arbitrary but fixed. The Green’s function representation yields

u(x) =
∫ 1

0
G(x, ξ)Lu(ξ)dξ

= −

∫ 1

0
G(x, ξ)F ′(ξ)dξ

=

∫ 1

0
Gξ(x, ξ)F (ξ)dξ + G(x, 0)F (0) − G(x, 1)F (1)

=

N∑
i=1

∫ xi

xi−1

Gξ(x, ξ)F (ξ)dξ

=

N∑
i=1

∫ xi

xi−1

Gξ(x, ξ)Ai−1/2
(
ξ − xi−1/2

)
dξ

=

N∑
i=1

Ai−1/2

∫ xi

xi−1

Gξ(x, ξ)(ξ − xi−1/2)dξ

=

N∑
i=1

Ai−1/2Ii,

where

Ii =

∫ xi

xi−1

Gξ(x, ξ)(ξ − xi−1/2)dξ

=
h2

i

8

∫ xi

xi−1

Gξξ(x, ξ)dξ −
∫ xi

xi−1

Gξξ(x, ξ)
(ξ − xi−1/2)2

2
dξ

=

∫ xi

xi−1

Gξξ(x, ξ)dξ
[
h2

i

8
−

(ξ − xi−1/2)2

2

]
dξ. (3.5.4)

Thus, we have

|Ii| ≤
hi

2

∫ xi

xi−1

|Gξ(x, ξ)|dξ and |Ii| ≤
h2

i

8

∫ xi

xi−1

|Gξξ(x, ξ)|dξ.

Hence

|Ii| ≤ min
{

hi

2
,

h2
i

8ϵ

}∫ xi

xi−1

(
ϵ
∣∣∣Gξξ(x, ξ)

∣∣∣ + ∣∣∣Gξ(x, ξ)
∣∣∣) dξ.

Therefore, it follows that

|u(x)| ≤
N∑

i=1

∣∣∣Ai−1/2Ii

∣∣∣ ≤ max
i=1,··· ,N

(∣∣∣Ai−1/2

∣∣∣ min
{

hi

2
,

h2
i

8ϵ

})
×

(∫ xi

xi−1

ϵ |Gξξ(x, ξ)|dξ +
∫ xi

xi−1

|Gξ(x, ξ)|dξ
)
. (3.5.5)
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From (3.5.2), we get∫ xi

xi−1

ϵGξξ(x, ξ) = −
∫ xi

xi−1

δ(ξ − x) + ∥a∥∞

∫ xi

xi−1

|Gξ(x, ξ)|dξ + ∥b∥∞

∫ xi

xi−1

|G(x, ξ)|dξ. (3.5.6)

Thus, from (3.5.5) and (3.5.6), we obtain

|u(x)| ≤ max
i=1,··· ,N

{
|Ai−1/2|min

(
hi

2
,

h2
i

8ϵ

)}
×

(
−

∫ xi

xi−1

δ(ξ − x) + ∥a∥∞

×

∫ xi

xi−1

|Gξ(x, ξ)|dξ + ∥b∥∞

∫ xi

xi−1

|G(x, ξ)|dξ +
∫ xi

xi−1

|Gξ(x, ξ)|dξ
)

≤ max
i=1,··· ,N

{
|Ai−1/2|min

(
hi

2
,

h2
i

8ϵ

)} (
2 + 2 ∥a∥∞ + ∥b∥∞ + α

α

)
.

□

With these stability results, we now derive posteriori error estimates which is the

main result of this paper. Let (3.2.2) holds true and x ∈ (xi−1, xi). From (3.4.11) and

(3.4.12), we obtain

A(u − U)(x) = F (x) + ĉ − (AU)(x)

= F (x) + ĉ − (AU)(x) + [AcU − (Au − Ac)∆ − Fc] − c

= (F (x) − Fc
i ) + ([AcU]i − (AU)(x)) − [(Au − Ac)∆]i + c − ĉ

=

∫ 1

x
(g − bU) (s)ds −

N∑
k=i

ℏk(gk − (bU)k) +
[
ϵ[U x̄,i − (U)′(x)]

]
+

[
(aU) + (aU)−1

2
− (a−U)(x)

]
−

[
−

(a∆) + (a∆)−1

2
+ (a−∆)(x)

]
i

−

N−1∑
k=i

hk+1(b∆)k +

N∑
k=i

ℏk(b∆)k + c − ĉ

 . (3.5.7)

Put Υ = g − bU in (3.5.7) to obtain

A(u − U)(x) =

∫ 1

x
Υ(s)ds −

N∑
k=i

ℏk(Υk)

 + ϵ [U x̄,i − (U)′(x)
]

+

[
(aU) + (aU)−1

2
− (a−U)(x)

]
−

hi

2
(a∆)x̄,i

−

N−1∑
k=i

hk+1 − hk

2
(c∆)k +

hN(c∆)N

2
+ c − ĉ. (3.5.8)
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Let ΥI be the piecewise linear interpolant of Υ, then by using the definition of nodal linear

interpolant, we get∫ 1

x
Υ(s)ds −

N∑
k=i

ℏk(υk) =
∫ 1

x
(Υ − ΥI)(s)ds +

∫ 1

x
ΥI(s)ds −

N∑
k=i

ℏk(υk)

=

∫ 1

x
(Υ − ΥI)(s)ds +

∫ xi

x
ΥI(s)ds +

∫ 1

xi

ΥI(s)ds −
N∑

k=i

ℏk(Υk)

=

∫ 1

x
(Υ − ΥI)(s)ds +

∫ xi

x
ΥI(s)ds +

N−1∑
k=1

∫ xk+1

xk

ΥI(s)ds −
N∑

k=i

ℏk(Υk)

=

∫ 1

x
(Υ − ΥI)(s)ds + (xi−1/2 − x)Υi−1/2 + Ψ̂(x), (3.5.9)

where
∥∥∥Ψ̂∥∥∥

∞,[xi−1,xi]
≤ Ch2

i ∥Υ
′∥∞,[xi−1,xi ]

.

Following [171] and the Taylor expansion to write

U x̄,i − (U)′(x) =
Ui − Ui−1

hi
− (U)′(xi + x − xi)

= (xi−1/2 − x)(Ui)′′ + Ψ̄i(x), (3.5.10)

where
∥∥∥Ψ̄∥∥∥

∞
≤ Ch2

i

∥∥∥(U)(3)
∥∥∥
∞

. Similarly, we can write

(aU)i − (aU)i−1

2
− (aU)(x) = (xi−1/2 − x)(aU)x̄,i + Ψ̃i(x), (3.5.11)

where
∥∥∥Ψ̃∥∥∥

∞,[xi−1,xi ]
≤ Ch2

i ∥(aU)′′∥∞,[xi−1,xi] . Hence, (3.5.8) becomes

A(u − U)(x) =
∫ 1

x
(Υ − ΥI)(s)ds + (xi−1/2 − x)Υi−1/2 + Ψ̂i(x) + ϵ

[
(xi−1/2 − x)(uN

i )′′

+Ψ̄i(x)
]
+ (xi−1/2 − x)(aU)x̄,i + Ψ̃i(x) −

hi

2
(b∆)x̄,i

−

N−1∑
k=i

hk+1 − hk

2
(b∆)k +

hN(c∆)N

2
+ c − ĉ. (3.5.12)

Also, from [119] ∣∣∣∣∣∣
∫ 1

x
(Υ − ΥI)(s)ds

∣∣∣∣∣∣ ≤ 1
12

N∑
i=1

h3
i ∥Υ

′′∥∞,Ii
. (3.5.13)

Theorem 3.5.3. The solution u of (3.2.1) and the solution U of (3.4.6) satisfies

∥u − U∥∞ ≤ θ := θ1 + θ2 + θ3 + θ4 + θ5, (3.5.14)
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where

θ1 = max
i=1,··· ,N

{∣∣∣Υi−1/2 + (aU)x̄,i + ϵ(Ui)′′
∣∣∣ min

{
hi

2
,

h2
i

8ϵ

} (
2 + 2 ∥a∥∞ + ∥b∥∞

α
+ 1

)}
,

θ2 =
1
α

max
i=1,··· ,N

hi

∣∣∣(a∆)x̄,i

∣∣∣ ,
θ3 =

2
α

max
i=1,··· ,N

∣∣∣∣∣∣∣
N−1∑
k=i

hk+1 − hk

2
(b∆)k −

(b∆)NhN

2

∣∣∣∣∣∣∣ ,
θ4 =

1
6α

N∑
i=1

h3
i ∥Υ

′′∥∞,Ii
,

θ5 =
2
α

max
i=1,··· ,N

h2
i

{
∥υ′∥∞,Ii

+ ∥(aU)′∥∞,Ii
+ ϵ ∥U∥(3)

∞,Ii

}
,

and Ii = [xi−1, xi].

Proof. Using the fact that Lω = −(Aω)′ and the Green’s function repersentation of the

solution, we calculate

(u − U)(x) =
∫ 1

0
G(x, ξ)L(u − U)(ξ)dξ

= −

∫ 1

0
G(x, ξ)(A(u − U))′(ξ)dξ

=

∫ 1

0
Gξ(x, ξ)(A(u − U))′(ξ)dξ + G(x, 0)A(0) − G(x, 1)A(1).

From (3.5.12) it follows that

(u − U)(x) =
∫ 1

0
Gξ(x, ξ)

[
Υi−1/2 + ϵ(uN

i )′′ + (aU)x̄,i + Ψ̂i(x) + Ψ̄i(x) + Ψ̃i(x)

+(c − ĉ)] dξ +
N∑

i=1

∫ xi

xi−1

Gξ(x, ξ)

−hi

2
(a∆)x̄,i −

N−1∑
k=i

hk+1 + hk

2
(b∆)k

+
(b∆)NhN

2

)
dξ +

N∑
i=1

∫ xi

xi−1

Gξ(x, ξ)
(∫ 1

0
(Υ − ΥI)(s)ds

)
dξ. (3.5.15)

Therefore, from Lemma3.5.1 and Theorem3.5.2, (3.5.15) becomes

∥u − U∥∞ ≤ max
i=1,··· ,N

{∣∣∣Υi−1/2 + (aU)x̄,i + ϵ(Ui)′′
∣∣∣ min

{
hi

2
,

h2
i

8ϵ

}}
×

(
2 + 2 ∥a∥∞ + ∥b∥∞ + α

α

)
+ (θ2 + θ3 + θ4 + θ5)

∫ 1

0

∣∣∣Gξ(x, ξ)
∣∣∣ dξ.

Hence

∥u − U∥∞ ≤ θ := θ1 + θ2 + θ3 + θ4 + θ5,
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where

θ1 = max
i=1,··· ,N

{∣∣∣Υi−1/2 + (aU)x̄,i + ϵ(Ui)′′
∣∣∣ min

{
hi

2
,

h2
i

8ϵ

} (
2 + 2 ∥a∥∞ + ∥b∥∞

α
+ 1

)}
,

θ2 =
1
α

max
i=1,··· ,N

hi

∣∣∣(a∆)x̄,i

∣∣∣ ,
θ3 =

2
α

max
i=1,··· ,N

∣∣∣∣∣∣∣
N−1∑
k=i

hk+1 − hk

2
(b∆)k −

(b∆)NhN

2

∣∣∣∣∣∣∣ ,
θ4 =

1
6α

N∑
i=1

h3
i ∥Υ

′′∥∞,Ii
,

θ5 =
2
α

max
i=1,··· ,N

h2
i

{
∥υ′∥∞,Ii

+ ∥(aU)′∥∞,Ii
+ ϵ ∥U∥(3)

∞,Ii

}
.

□

3.6 Numerical Results

In this section, we examine the performance of the proposed method and numerically

verify the theoretical estimates. We consider a test problem for numerical computations.

Example 3.6.1. Consider the following convection-diffusion problem [245]

−ϵu′′(x) − u′(x) = x + δ1/2, u(0) = u(1) = 0.

Table 3.1: Maximum absolute error (ÊN) and order of convergence (P̂N) for example

3.6.1.

ϵ = 10−3 ϵ = 10−7

N EN P̂N EN P̂N

32 2.73914e-03 1.963 2.74024e-03 1.964

64 7.02162e-04 1.985 7.02190e-04 1.985

128 1.77261e-04 1.962 1.77285e-04 1.962

256 4.54710e-05 1.942 4.54789e-05 1.938

512 1.18318e-05 1.970 1.18620e-05 1.973

1024 3.01941e-06 1.982 3.02003e-06 1.980

Test problem is solved using proposed defect correction method over Bakhvalov-

Shishkin mesh. The maximum absolute error and numerical rate of convergence is calcu-

lated and tabulated in tables. Table 3.1 presents maximum absolute error and numerical

rate of convergence for Example 3.6.1 using proposed method over Bakhvalov-shishkin



3.7 Conclusion 63

Table 3.2: Comparison of maximum absolute error (ÊN) and order of convergence (P̂N),

for example 3.6.1, using the proposed defect correction method on layer adapted meshes

when ϵ = 10−05.

Shishkin Mesh Bakhvalov-Shishkin mesh

N ÊN P̂N ÊN P̂N

32 4.78532e-02 1.584 2.74021e-03 1.964

64 1.59538e-02 1.570 7.02189e-04 1.985

128 5.37041e-03 1.590 1.77282e-04 1.962

256 1.783104e-03 1.580 4.54787e-05 1.938

512 5.962051e-04 1.594 1.18619e-05 1.973

1024 1.974065e-04 1.589 3.02003e-06 1.979

mesh. Besides, Table 3.2 presents the comparision of the maximum absolute error and

numerical rate of convergence of proposed method over two layer adapted meshes and

results over Bakhvalov shishkin mesh are better than Shishkin mesh. Log-log plot for dif-

ferent values of ϵ is shown in Figure 3.1. Figure 3.2 shows the comparision of maximum

absolute error over Shishkin mesh and Bakhvalov-Shishkin mesh. Moreover, 3.3 presents

the numerical solution for Example 3.6.1 for different values of ϵ.

3.7 Conclusion

A class of singularly perturbed convection-diffusion problem with discontinuous coef-

ficient and point source is solved numerically. The presence of discontinuous data and

point source makes the problem stiff. In the limiting case, the solution to the problem

exhibits a multiscale character. There are narrow regions where solution derivatives are

exponential and exhibit turning point behaviour across discontinuities besides a strong

boundary layer. A higher-order defect correction method over Bakhvalov Shishkin mesh

is proposed to solve the problem. The mesh has been designed so that most of the mesh

points remain in the region with layers. The method is investigated for consistency, sta-

bility and convergence. A posteriori error estimates in L∞ are presented. It provides

computable and guaranteed upper bounds for the discretization error. The error estimates

of the proposed numerical method satisfy parameter uniform second-order convergence.

Numerical experiments corroborate the theoretical findings.
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Figure 3.1: Comparison of maximum absolute error (ÊN), for Example 3.6.1, using pro-

posed method over layer adapted meshes.
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Figure 3.2: Error plot for Example 3.6.1 for different values of ϵ.
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Figure 3.3: Numerical solution to Example 3.6.1 for different values of ϵ.





Chapter 4

Parabolic Convection-Diffusion
Problems with a Large Shift

4.1 Introduction

In the previous chapters, we proposed defect correction schemes for different classes of

singularly perturbed convection-diffusion problems. This chapter extends our study to a

class of singularly perturbed parabolic PDEs.

Singularly perturbed parabolic PDEs with large shift are mathematical problems that

arise in various applications, including fluid dynamics, heat transfer, and chemical engi-

neering. These problems are characterised by the presence of a small parameter in the

highest-order derivative term, leading to multiple timescales within the system. The in-

terplay between fast and slow dynamics and non-local effects induced by large shifts give

rise to complex phenomena such as boundary and interior layers. These layers are regions

of rapid variation in the solution, and they can pose significant challenges for numerical

solutions. The incorporation of shifts in these equations captures the influence of neigh-

bouring states or events on the current evolution of the system. Shifts add memory-like

behaviour to the PDEs, making their analysis and numerical solution more intricate. Stan-

dard numerical methods on uniform meshes fail to consistently approximate solutions in

these layer regions.

Many researchers have tried to provide consistent numerical approximations to sin-

gularly perturbed differential equations with a large shift. In [67], a singularly perturbed

differential equation with a large negative shift is solved using an exponentially fitted

numerical scheme. The authors divided the original domain into six subdomains: two

boundary layer regions, two interior layer regions, and two regular regions. The authors

constructed an exponentially fitted numerical scheme on each boundary and interior layer

67
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subdomain and combined it with the solutions on the regular subdomains. The proposed

scheme is second-order ϵ-uniform. In [68], a parameter-uniform numerical scheme was

presented to solve singularly perturbed parabolic differential equations involving large

spatial delay. The numerical scheme combines the weighted average (θ-method) differ-

ence approximation on a uniform mesh in time variable and the central difference method

on a piecewise uniform spatial mesh. The method is second-order convergent in the tem-

poral direction and almost second-order in the spatial direction. In [276], singularly per-

turbed reaction-diffusion problems with large spatial delay are solved numerically using

the Crank-Nicolson method for the time derivative and a non-standard finite difference

method for spatial derivative. The Richardson extrapolation technique is applied to im-

prove convergence order and achieve fourth-order convergence in time and space. In [90],

authors solved a class of singularly perturbed parabolic reaction-diffusion problems with a

large negative shift and integral boundary condition. Splines are used on a Shishkin mesh

to discretize the spatial derivative, and the Crank–Nicolson method resolves the temporal

derivative. The method is uniformly convergent to almost second-order in space and time.

In [57], a class of second-order singularly perturbed parabolic differential equations

with discontinuous coefficients involving large shifts was dealt with using the implicit

Euler and the cubic spline in compression methods for time and spatial dimensions, re-

spectively. The proposed method is second-order accurate in space and first-order accu-

rate in time. In [145], a stabilised central difference method is used to solve singularly

perturbed boundary value problems with a large negative shift. The central difference

approximations for the derivatives were modified by re-approximating the error terms,

leading to a stabilizing effect. In [223], authors presented a computational method for

solving a class of differential equations with a negative shift in the differentiated term.

The author constructs an exponential spline finite difference scheme using the continu-

ity of its first-order derivative condition at the joint nodes. In [144], authors solved a

class of parabolic singularly perturbed initial-boundary value problems with a large shift

in the spatial direction. They used a crank-Nicolson scheme on a uniform mesh in time

and a standard finite difference scheme on a piecewise uniform mesh for the system of

ordinary differential equations obtained in the semi-discretization process. The method

is second-order convergent in the temporal direction and almost first-order in the spatial

direction. In [183], singularly perturbed differential-difference equations involving small

shifts in the reaction terms are solved numerically. Taylor’s series approximation approx-

imates the reaction terms. The resulting singularly perturbed boundary value problem

was solved using the exponentially fitted operator finite difference method. The author
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proves the formulated scheme converges uniformly with linear order before Richardson

extrapolation and quadratic order after Richardson extrapolation.

In [199], authors presented exponentially fitted finite difference methods for solv-

ing time-dependent singularly perturbed one-dimensional convection-diffusion problems

with small shifts. In case shifts are of the order of perturbation parameter, the author

expands the terms involving shifts using the Taylor series and devises an exponentially

fitted tridiagonal finite difference scheme first-order convergent in time and second-order

convergent in space. When the shift parameters are larger than the perturbation parameter,

an exponentially fitted scheme is proposed on a special mesh so that the shifts always lie

on the nodal points.

In [69], authors constructed a uniformly convergent numerical scheme using the im-

plicit Euler method in the temporal direction and a fitted tension spline method in the

spatial direction with uniform meshes to solve a singularly perturbed reaction-diffusion

problem with a negative shift. In [56], authors solved singularly perturbed time-dependent

differential-difference equations with small shifts. Taylor’s series expansion is used to ap-

proximate the terms containing shifts. The resulting singularly perturbed parabolic partial

differential equation was solved using an implicit Euler method in temporal direction and

cubic B-spline collocation method for the resulting system of ordinary differential equa-

tions in spatial direction, and an artificial viscosity was introduced in the scheme using the

theory of singular perturbations. In [229], a fitted non-polynomial spline approach was

applied to solve singularly perturbed problems with negative and positive shifts. In [236],

singularly perturbed differential equations with delay and shift were solved numerically

using an efficient Haar wavelet collocation method. The authors applied the Taylor series

to convert the problem with delay and shift into a new problem without delay and shift

and solved the resulting problem using the Haar wavelet collocation method.

Nevertheless, none of the available methods seems appropriate if we scrutinise for

a dependable and direction-independent discretization. A fundamental challenge in the

numerical solution of the singular perturbation problem is the distinct approximations

needed in the slow and fast motion phases.

The analysis of the special methods for singularly perturbed parabolic partial func-

tional differential equations has yet to see much development in the literature. This chap-

ter presents a numerical method to solve singularly perturbed parabolic partial differential

equations with a large shift. Besides, the chapter presents rigorous consistency, stability

and convergence analysis of the proposed scheme and illustrates numerical results.
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4.2 Problem Description

Let S = D− ∪ D+ := (0, 1) × (0,T ] ∪ (1, 2) × (0,T ], 𭟋 := S̄ /S and for (x, t) ∈ S consider

the nonhomogeneous initial-boundary-value problem

ut(x, t) − ϵuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t) + c(x)u(x − 1, t) = g(x, t),

u(x, t) = r0(x), (x, t) ∈ [0, 2] × {t = 0},

u(x, t) = r1(x, t), (x, t) ∈ [−1, 0] × [0,T ],

u(x, t) = r2(t), (x, t) ∈ {x = 2} × [0,T ],


(4.2.1)

where 0 < ϵ ≪ 1, a, b, c and g are sufficiently smooth functions such that a(x) > α > 0,

c(x) > 0, b(x) ≥ 0. The functions r0(x), r1(x, t), and r2(t) are Hölder continous and satify

the following compatibility conditions

r0(0) = r1(0, 0), r0(2) = r2(0),

∂r1(0, 0)
∂t

− ϵ
∂2r0(0)
∂x2 + a(0)

∂r0(0)
∂x

+ b(0)r0(0) + c(0)r1(−1, 0) = g(0, 0),

∂r2(0)
∂t
− ϵ

∂2r0(2)
∂x2 + a(2)

∂r0(2)
∂x

+ b(2)r0(2) + c(2)r0(1) = g(2, 0).


Under the assumptions above, the solution of (4.2.1) exists and is unique [8, 129]. The

simultaneous presence of a small parameter and shift makes the problem stiff. The corre-

sponding degenerate equation obtained by setting ϵ = 0 in (4.2.1) is given by

ut(x, t) + a(x)ux(x, t) + b(x)u(x, t) + c(x)u(x − 1, t) = g(x, t) (4.2.2)

which is a hyperbolic partial differential equation. A key difference between (4.2.1) and

(4.2.2) is that the former has a second-order derivative. In contrast, the latter contains first-

order derivatives and can not satisfy the given initial or boundary data. Consequently, as

ϵ → 0, the solution of the problem exhibits multiscale character and leads to a weak

interior layer and a strong boundary layer [166].

Let us rewrite (4.2.1) as

Lu(x, t) = G(x, t), (4.2.3a)

where

Lu =


ut(x, t) − ϵuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t), (x, t) ∈ D−,

ut(x, t) − ϵuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t) + c(x)u(x − 1, t), (x, t) ∈ D+,

and

G(x, t) =


g(x, t) − c(x)r1(x − 1, t), (x, t) ∈ D−,

g(x, t), (x, t) ∈ D+
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with
u(x, t) = r0(x), (x, t) ∈ [0, 2] × {t = 0},

u(x, t) = r1(x, t), (x, t) ∈ [−1, 0] × [0,T ],

u(x, t) = r2(t), (x, t) ∈ {x = 2} × [0,T ],

u(1−, t) = u(1+, t), u′(1−, t) = u′(1+, t).


(4.2.3b)

Following [166, 99], we now establish that the differential operator in (4.2.3) satisfies the

following maximum principle.

Lemma 4.2.1. Let ψ ∈ C0(S̄ ) ∩ C2(D− ∪ D+) satisfies ψ(x, t) ≥ 0, (x, t) ∈ 𭟋, Lψ(x, t) ≥ 0

for all (x, t) ∈ D+ ∪ D− and ψx(1+, t) − ψx(1−, t) ≤ 0. Then ψ(x, t) ≥ 0 for all (x, t) ∈ S̄ .

Proof. Let (xi, ti) ∈ S such that ψ(xi, ti) = min
(x,t)∈S̄

ψ(x, t) and assume that ψ(xi, ti) < 0. Then

(xi, ti) < 𭟋 and ψx(xi, ti) = 0, ψt(xi, ti) = 0 and ψxx(xi, ti) > 0.

Case I: If (xi, ti) ∈ D−,

Lψ(xi, ti) = ψt(xi, ti) − ϵψxx(xi, ti) + a(xi)ψx(xi, ti) + b(xi)ψ(xi, ti) < 0.

Case II: If (xi, ti) ∈ D+,

Lψ(xi, ti) = ψt(xi, ti) − ϵψxx(xi, ti) + a(xi)ψx(xi, ti) + b(xi)ψ(xi, ti)

+c(xi)ψ(xi − 1, ti)

= ψt(xi, ti) − ϵψxx(xi, ti) + a(xi)ψx(xi, ti) + b(xi)ψ(xi, ti)

+c(xi)(ψ(xi − 1, ti) − ψ(xi, ti)) + c(xi)ψ(xi, ti)

= ψt(xi, ti) − ϵψxx(xi, ti) + a(xi)ψx(xi, ti) + (b(xi) + c(xi))ψ(xi, ti)

+c(xi)(ψ(xi − 1, ti) − ψ(xi, ti)) < 0.

Case III: If (xi, ti) = (1, ti),

ψx(xi+, ti) − ψx(xi−, ti) > 0.

A contradiction to our assumption. Consequently, the required result follows from a con-

tradiction. □

An important application of the maximum principle is establishing the bounded-

ness of the solution. As an immediate consequence, we establish the following uniform

stability result.

Lemma 4.2.2. Let u be the solution of (4.2.3). Then

∥u∥∞,S̄ ≤ ∥u∥∞,𭟋 +
1
α
∥G∥∞,S̄ . (4.2.4)
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Proof. Define Y± := ∥u∥∞,𭟋 +
x ∥G∥∞,S̄

α
± u, x ∈ [0, 2].

Case I: If (x, t) ∈ D−,

LY±(x, t) = ±ut − ϵY±xx + a(x)
(
∥G∥∞,S̄
α
± ux

)
+ b(x)

(
∥u∥∞,𭟋 +

x ∥G∥∞,S̄
α

± u
)

= ±Lu + a(x)
∥G∥∞,S̄
α
+ b(x)

(
∥u∥∞,𭟋 +

x ∥G∥∞,𭟋
α

)
> 0.

Case II: If (x, t) ∈ D+,

LY±(x, t) = ±ut − ϵY±xx + a(x)
(
∥G∥∞,S̄
α
± ux

)
+ b(x)

(
∥u∥∞,𭟋 +

x ∥G∥∞,S̄
α

± u
)

+c(x)
(
∥u(x − 1, t)∥∞,𭟋 +

(x − 1) ∥G∥∞,S̄
α

± u(x − 1, t)
)

= ±Lu + a(x)
∥G∥∞,S̄
α
+ b(x)

(
∥u∥∞,𭟋 +

x ∥G∥∞,S̄
α

)
+c(x)

(
∥u(x − 1, t)∥∞,𭟋 +

(x − 1) ∥G∥∞,S̄
α

)
> 0.

Case III: If (x, t) = (1, t),

[Y±x (1, t)] = ±[ux](1, t) = 0.

The required result (4.2.4) now follows from Lemma 4.2.1. □

Lemma 4.2.3. Let u be the solution of (4.2.3). Then∣∣∣∣∣∣∂iu
∂ti

∣∣∣∣∣∣ ≤ C, (x, t) ∈ S̄ and i = 0, 1, 2.

Proof. For proof, see [133]. □

4.3 Time Semidiscretization

Let us partition the given time interval [0,T ] into K subintervals of uniform mesh width

∆t = T/K, K > 0. The mesh in the time direction reads

ΓK
t = {tl = lT/K, 0 ≤ l ≤ K}.

Applying the implicit Euler method in the time variable, the resulting semidiscretized

problem reads

LϵKU(x, tl+1) = G(x, tl+1); 0 ≤ x ≤ 2, 0 ≤ l ≤ K − 1 (4.3.1a)
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subject to the following initial and boundary conditions

U(x, 0) = r0(x), 0 ≤ x ≤ 2,

U(x, tl+1) = r1(x, tl+1), −1 ≤ x ≤ 0, 0 ≤ l ≤ K − 1,

U(2, tl+1) = r2(tl+1), 0 ≤ l ≤ K − 1,

U(1−, tl+1) = U(1+, tl+1), Ux(1−, tl+1) = Ux(1+, tl+1),


(4.3.1b)

where

LϵKU(x, tl+1) =


−ϵ∆tUxx(x, tl+1) + a(x)∆tUx(x, tl+1) + b̂(x)U(x, tl+1), 0 < x ≤ 1,

−ϵ∆tUxx(x, tl+1) + a(x)∆tUx(x, tl+1) + b̂(x)U(x, tl+1)

+c(x)∆tU(x − 1, tl+1), 1 < x ≤ 2,

and

G(x, tl+1) =


∆tg(x, tl+1) − ∆tc(x)r1(x − 1, tl+1) + U(x, tl), 0 < x ≤ 1,

∆tg(x, tl+1) + U(x, tl), 1 < x ≤ 2.

Here, b̂(x) := ∆tb(x)+ 1. Next, we establish the following semidiscrete maximum princi-

ple to ensure the stability of the method (4.3.1).

Lemma 4.3.1. Let P(x, tl+1) be a sufficiently smooth function such that P(x, tl+1) ≥ 0 for

x = {0, 2}, LϵKP(x, tl+1) ≥ 0, x ∈ (0, 2) and Px(1+, tl+1)−Px(1−, tl+1) ≤ 0. Then P(x, tl+1) ≥ 0

for all x ∈ [0, 2].

Proof. Let (xp, tl+1) ∈ {(x, tl+1) : x ∈ [0, 2]} and P(xp, tl+1) = min
x∈[0,2]

P(x, tl+1) < 0. Clearly,

(xp, tl+1) < 𭟋, Px(xp, tl+1) = 0 and Pxx(xp, tl+1) > 0. Moreover,

Case I: If xp ∈ (0, 1)

LϵKP(xp, tl+1) = −ϵ∆tPxx(xp, tl+1) + a(xp)∆tPx(xp, tl+1)

+b̂(xp)P(xp, tl+1) < 0.

Case II: If xp ∈ (1, 2)

LϵKP(xp, tl+1) = −ϵ∆tPxx(xp, tl+1) + a(xp)∆tPx(xp, tl+1) + c(xp)∆tP(xp − 1, tl+1)

+b̂(xp)P(xp, tl+1)

= −ϵ∆tPxx(xp, tl+1) + a(xp)∆tPx(xp, tl+1) + ∆t(c(xp) + b(xp))P(xp, tl+1)

+c(xp)∆t(P(xp − 1, tl+1) − P(xp, tl+1)) + P(xp, tl+1) < 0.

Case III: If xp = 1

Px(1+, tl+1) − Px(1−, tl+1) > 0.
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A contradiction to our assumption. Consequently, the required result follows from a con-

tradiction. □

The operator LϵK satisfies the semidiscrete maximum principle. Consequently, from

[166], it follows that
∥∥∥LϵK

∥∥∥
∞
≤ C and stability of the method follows. Moreover, the local

truncation error at (l + 1)th time step satisfies ∥el+1∥∞ ≤ C(∆t)2. We combine the local

error estimates to obtain the following uniform convergence result.

Lemma 4.3.2. The global discretization error (El) at the lth time step satisfies

∥El∥∞ ≤ C∆t

where the constant C > 0 is independent of ϵ and ∆t.

Proof. The local truncation error at each time step contributes to the estimate for global

error. Consequently,

∥El+1∥∞ =

∥∥∥∥∥∥∥
l∑

j=1

e j

∥∥∥∥∥∥∥
∞

≤ ∥e1∥∞ + ∥e2∥∞ + · · · + ∥el∥∞ ≤ C∆t.

□

This in turn ensures the uniform convergence of the time semidiscretization process.

Next, we obtain a priori estimate on the solution of the semidiscretized problem (4.3.1).

Lemma 4.3.3. Let U(x, tl+1) be the solution of (4.3.1). Then

|U(x, tl+1)| ≤ max
{
|U(0, tl+1)|,

∥G∥
α
, |U(2, tl+1)|

}
, x ∈ [0, 2].

Proof. Define P±(x, tl+1) := max
{
|U(0, tl+1)|,

∥G∥
α
, |U(2, tl+1)|

}
± U(x, tl+1). Note that

P±(x, tl+1) ≥ 0 for x ∈ {0, 2}. Moreover,

Case I: If x ∈ (0, 1),

LϵKP±(x, tl+1) = b̂(x) max
{
|U(0, tl+1)|,

∥G∥
α
, |U(2, tl+1)|

}
± LϵKU(x, tl+1) ≥ 0.

Case II: If x = 1,

[P±x ](1, tl+1) = ±[Ux](1, tl+1) = 0.

Case III: If x ∈ (1, 2),

LϵKP±(x, tl+1) = (c(x) + b̂(x)) max
{
|U(0, tl+1)|,

∥G∥
α
, |U(2, tl+1)|

}
±LϵKU(x, tl+1) ≥ 0.
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An application of Lemma 4.3.1 leads us to the required result. □

To obtain sharp bounds on the solution of semidiscretized problem (4.3.1) and its

derivatives, we write U(x, tl+1) as a sum of regular component V(x, tl+1) and singular

component W(x, tl+1), U(x, tl+1) := V(x, tl+1) + W(x, tl+1) [186]. The regular component

V(x, tl+1) takes the form

V(x, tl+1) =
2∑

j=0

ϵ jV j(x, tl+1), x ∈ (0, 1) ∪ (1, 2).

For x ∈ (0, 2], solution of the reduced problem V0(x, tl+1) satisfies

a(x)∆t(V0)x(x, tl+1) + b̂(x)V0(x, tl+1) + c(x)∆tV0(x − 1, tl+1) = g(x, tl+1),

V0(x, tl+1) = r1(x, tl+1), x ∈ [−1, 0],

 (4.3.2)

and for x ∈ (0, 1) ∪ (1, 2], V1(x, tl+1) satisfies

a(x)∆t(V1)x(x, tl+1) + b̂(x)V1(x, tl+1) + c(x)∆tV1(x − 1, tl+1) = (V0)xx(x, tl+1),

V1(x, tl+1) = 0, x ∈ [−1, 0],

 (4.3.3)

whereas for x ∈ (0, 1) ∪ (1, 2), V2(x, tl+1) satisfies

LϵKV2(x, tl+1) = (V1)xx(x, tl+1),

V2(x, tl+1) = 0, x ∈ [−1, 0], V2(2, tl+1) = 0.

 (4.3.4)

Taking into account (4.3.2), (4.3.3) and (4.3.4), the regular component V(x, tl+1) of

U(x, tl+1) satisfies

LϵKV(x, tl+1) = G(x, tl+1), x ∈ (0, 1) ∪ (1, 2), 0 ≤ l ≤ K − 1,

V(x, tl+1) = V0(x, tl+1), x ∈ [−1, 0],

V(1, tl+1) = V0(1, tl+1) + ϵV1(1, tl+1) + ϵ2V2(1, tl+1),

V(2, tl+1) = V0(2, tl+1) + ϵV1(2, tl+1).


(4.3.5)

On the other hand, the singular component W(x, tl+1) of U(x, tl+1) satisfies

LϵKW(x, tl+1) = 0, x ∈ (0, 1) ∪ (1, 2), 0 ≤ l ≤ K − 1,

W(x, tl+1) = 0, x ∈ [−1, 0],

W(2, tl+1) = r2(2, tl+1) − V(2, tl+1),

Wx(1+, tl+1) −Wx(1−, tl+1) = Vx(1−, tl+1) − Vx(1+, tl+1).


(4.3.6)

Let us further write the singular component W(x, tl+1) of U(x, tl+1) as W(x, tl+1) :=

W1(x, tl+1) +W2(x, tl+1) where W1(x, tl+1) and W2(x, tl+1) satisfies

LϵKW1(x, tl+1) = 0, x ∈ (0, 2), 0 ≤ l ≤ K − 1,

W1(0, tl+1) = 0, x ∈ [−1, 0],

W1(2, tl+1) = r2(2, tl+1) − V(2, tl+1),

 (4.3.7)
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and
LϵKW2(x, tl+1) = 0, x ∈ (0, 1) ∪ (1, 2), 0 ≤ l ≤ K − 1

W2(x, tl+1) = 0, x ∈ [−1, 0],

W2(2, tl+1) = 0,

(W2)x(1+, tl+1) − (W2)x(1−, tl+1) = Vx(1−, tl+1) − Vx(1+, tl+1),


(4.3.8)

respectively.

Lemma 4.3.4. For j = 0, 1, 2, 3, the regular component Vl+1 and singular component

Wl+1 of Ul+1 satisfies∣∣∣V j(x, tl+1)
∣∣∣ ≤ Cϵ2− j, x ∈ (0, 1) ∪ (1, 2),∣∣∣W j

1(x, tl+1)
∣∣∣ ≤ Cϵ− j exp

(
−α(2 − x)

ϵ

)
, x ∈ (0, 1) ∪ (1, 2),

∣∣∣W j
2(x, tl+1)

∣∣∣ ≤

ϵ− j+1 exp

(
−α(1 − x)

ϵ

)
, x ∈ (0, 1),

ϵ− j+1, x ∈ (1, 2).

Proof. For proof, see [271]. □

4.4 The Space Discretization

4.4.1 Mesh Description

The problem (4.2.3) is known to have a primary discontinuity at x = 1 [29]. More-

over, the problem’s solution exhibits a strong boundary layer at x = 2 and a weak interior

layer at x = 1. For a positive integer N ≥ 8, we define the mesh ΓN so that the mesh

points are condensing in the boundary and interior layers region. Let us partition the

domain [0, 2] as

ΓN = [0, 1 − τ] ∪ [1 − τ, 1] ∪ [1, 1 + τ] ∪ [1 + τ, 2 − τ] ∪ [2 − τ, 2],

where τ =
2ϵϕ ln N

α
≤

1
2

is the mesh transition parameter and ϕ ≥ 3. Consequently, the

non-uniform mesh ΓN reads



4.4 The Space Discretization 77

x0 = 0,

xi = x0 + iH1, 1 ≤ i ≤
N
4
,

xi+N/4 = xN/4 + ih1, 1 ≤ i ≤
N
4
,

xi+N/2 = xN/2 + ih2, 1 ≤ i ≤
N
8
,

xi+5N/8 = x5N/8 + iH2 1 ≤ i ≤
N
4
,

xi+7N/8 = x7N/8 + ih2, 1 ≤ i ≤
N
8
,



(4.4.1)

where H1 =
4(1 − τ)

N
, H2 =

4(1 − 2τ)
N

, h1 =
4τ
N

and h2 =
8τ
N

. Furthermore, we use the

notation hi to denote the step size in different intervals and write

hi =



H1, 1 ≤ i ≤ N
4 ,

h1,
N
4 + 1 ≤ i ≤ N

2 ,

h2,
N
2 + 1 ≤ i ≤ 5N

8 ,
7N
8 + 1 ≤ i ≤ N,

H2,
5N
8 + 1 ≤ i ≤ 7N

8 .

(4.4.2)

4.4.2 The Difference Scheme

For i ≥ 1, a function Zi,l+1 and step size hi, the forward, backward and central differ-

ence approximation to first-order derivatives are defined as

D+Zi,l+1 :=
Zi+1,l+1 − Zi,l+1

hi+1
, D−Zi,l+1 :=

Zi,l+1 − Zi−1,l+1

hi
and D0Zi :=

Zi+1,l+1 − Zi−1,l+1

hi+1 + hi
.

On the other hand, the second derivative approximation reads

D+D−Zi,l+1 :=
2

hi+1 + hi

(
Zi+1,l+1 − Zi,l+1

hi+1
−

Zi,l+1 − Zi−1,l+1

hi

)
.

The upwind operator L1
N,K for probelm (4.3.1) reads

L1
N,KZi,l+1 =


Zi,l+1, i = 0,N,

−ϵ∆tD+D−Zi,l+1 + ai∆tD−Zi,l+1 + b̂iZi,l+1, 1 ≤ i ≤ N
2 − 1,

−ϵ∆tD+D−Zi,l+1 + ai∆tD−Zi,l+1 + b̂iZi,l+1 + ci∆tZi− N
2 ,l+1,

N
2 + 1 ≤ i ≤ N − 1,

and the modified central difference operator L0
N,K reads

L0
N,KZi,l+1 =


Zi,l+1, i = 0,N,

L2
N,KZi,l+1, 1 ≤ i ≤ N

2 − 1,

L1
N,KZi,l+1,

N
2 + 1 ≤ i ≤ N − 1,
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where L2
N,KZi,l+1 = −ϵ∆tD+D−Zi,l+1 + ai∆tD0Zi,l+1 + b̂iZi,l+1 and

G∗i,l+1 =


∆tgi,l+1 − ∆tcir1(i − N

2 , l + 1) + Ui,l, 1 ≤ i ≤ N
2 − 1,

∆tgi,l+1 + Ui,l,
N
2 + 1 ≤ i ≤ N − 1.

The two-step defect correction method takes the form given below.

First Step: L1
N,KU1

i,l+1 = G∗i,l+1, i ∈ {1, · · · ,N − 1}\{N/2}

Second Step: L1
N,KUi,l+1 = (L1

N,K − L0
N,K)U1

i,l+1 + G∗i,l+1, i ∈ {1, · · · ,N − 1}\{N/2}

with
D+UN/2,l+1 = D−UN/2,l+1,

Ui,0 = (r0)i, i ∈ {1, · · · ,N},

Ui,l+1 = (r1)i,l+1, i ∈ {−N/2, · · · , 0},

UN,l+1 = (r2)N,l+1.


(4.4.3)

Here, U1 and U denotes the initial and the corrected approximation, respectively.

Lemma 4.4.1. Let Yi,l+1 be a mesh function such that Y0,l+1 ≥ 0, YN,l+1 ≥ 0, L1
N,KYi,l+1 ≥ 0,

i ∈ {1, · · · ,N − 1}\{N/2} and D+YN/2,l+1 − D−YN/2,l+1 ≤ 0. Then Yi,l+1 ≥ 0, i ∈ {0, · · · ,N}.

Proof. Let Zi,l+1 ≥ 0 for i ∈ {0, · · · ,N}, L1
N,KZi,l+1 > 0 for i ∈ {0, · · · ,N}\{N/2} and

[D]ZN/2,l+1 < 0. Define

ψ := max
{
−Yi,l+1

Zi,l+1
, i ∈ {0, · · · ,N}

}
.

Then there is an i∗ ∈ {0, · · · ,N} such that Yi∗,l+1 + ψZi∗,l+1 = 0 and Yi,l+1 + ψZi,l+1 ≥ 0 for

i ∈ {0, · · · ,N}\i∗. Thus the function Yi,l+1 + ψZi,l+1 attains its minimum at xi∗ .

Suppose that Lemma 4.4.1 is false. Then, for i∗ ∈
{
1, · · · , N

2 − 1
}

L1
N,K(Yi∗,l+1 + ψZi∗,l+1) = −ϵ∆tD+D−(Yi∗,l+1 + ψZi∗,l+1) + ai∗∆tD−(Yi∗,l+1 + ψZi∗,l+1)

+b̂i∗(Yi∗,l+1 + ψZi∗,l+1) ≤ 0,

and at i∗ = N
2

[D](Yi∗,l+1 + ψZi∗,l+1) = [D]Yi∗,l+1 + ψ[D]Zi∗,l+1 > 0.

A contradiction and the required result follows. In the case i∗ ∈
{

N
2 + 1, · · · ,N

}
, a similar

arguments leads to the desired result. □

Following (2.4.3), we can write the consistency error Ê of the defect correction

scheme as

Ê = (L1
N,K − L0

N,K)(Ul+1 − U1
i,l+1) + (L0

N,K − LϵK)Ul+1 (4.4.4)

where Ul+1 is the solution of (4.3.1) and Ui,l+1 is the corrected approximation of (4.4.3).
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Lemma 4.4.2. The difference operator L1
N,K and L2

N,K defined for (4.3.1) satisfies

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 = (L1

N,K − L2
N,K)L1

N,KYi,l+1

iff ai−1 = ai = ai+1, bi−1 = bi = bi+1 and hi+1 = hi = hi−1.

Proof. Let ai be a constant. For i ∈
{
0, 1, · · · , N

4

}
and an arbitrary mesh

(L1
N,K − L2

N,K)Yi,l+1 = ai∆t(D− − D0)Yi,l+1 =
−aihi+1∆t

2
D+D−Yi,l+1.

Applying L1
N,K to obtain

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 =

−ϵ∆t
2(hi + hi+1)

[
−∆t

(
ai+1hi+2D+D−Yi+1,l+1 − aihi+1D+D−Yi,l+1

)
hi+1

−
−∆t

(
aihi+1D+D−Yi,l+1 − ai−1hiD+D−Yi−1,l+1

)
hi

]
+

ai∆t
2

[
−∆t

(
aihi+1D+D−Yi,l+1 − ai−1hiD+D−Yi−1,l+1

)
hi

]
+b̂i
−aihi+1∆t

2
D+D−Yi,l+1. (4.4.5)

For a constant ai, bi and the Shishkin mesh, ai−1 = ai = ai+1, bi−1 = bi = bi+1 and

hi+1 = hi = hi−1. It follows that

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 =

−aihi+1∆t
2

[
−ϵ∆tD+D−(D+D−Yi,l+1) + ∆tD+D−(aiD−Yi,l+1)

+b̂iD+D−Yi,l+1

]
. (4.4.6)

If we reverse the order of the operator

(L1
N,K − L2

N,K)L1
N,KYi,l+1 =

(
−ϵ∆tD+D−

(
−aihi+1∆t

2

)
+ ai∆tD−

(
−aihi+1∆t

2

)
+b̂i

(
−aihi+1∆t

2

))
=
−aihi+1∆t

2
[
−ϵ∆tD+D−(D+D−Yi,l+1) + ∆tD+D−(aiD−Yi,l+1)

+b̂iD+D−Yi,l+1

]
. (4.4.7)

From (4.4.6) and (4.4.7) the required result follows. Similarly, we can obtain the result

for i ∈
{

N
4 + 1, · · · N

2

}
. □

Analogous to the solution of semidiscretized problem Ul+1, the initial approximation

U1
i,l+1 admits a representation U1

i,l+1 = V1
i,l+1 +W1

i,l+1 where

L1
N,KV1

i,l+1 = G∗i,l+1, i ∈ {1, 2, · · ·N − 1}\{N/2},

V1
0,l+1 = Vl+1(0), [D]V1

l+1(xN/2) = [V ′l+1](xN/2), V1
N,l+1 = Vl+1(2),



80 Parabolic Convection-Diffusion Problems with a Large Shift

and
L1

N,KW1
i,l+1 = 0, i ∈ {1, 2, · · ·N − 1}\{N/2},

W1
0,l+1 = Wl+1(0), [D]W1

l+1(xN/2) = −[D]V1
l+1(xN/2), W1

N,l+1 = Wl+1(2).

Moreover, the resulting corrected approximation reads L1
N,KVi,l+1 = (L1

N,K − L0
N,K)V1

i,l+1 +G∗i,l+1, i ∈ {1, 2, · · ·N − 1}\{N/2},

V0,l+1 = V1
0,l+1, [D]Vl+1(xN/2) = [D]V1

l+1(xN/2), VN,l+1 = V1
N,l+1,

and  L1
N,KWi,l+1 = −L0

N,KW1
i,l+1, i ∈ {1, 2, · · ·N − 1}\{N/2},

W0,l+1 = W1
0,l+1, [D]Wl+1(xN/2) = −[D]Vl+1(xN/2), WN,l+1 = W1

N,l+1.

4.5 Error Analysis

To analyse the truncation error associated with the numerical approximation, we decom-

pose the discrete approximate solution as Ui,l+1 = Vi,l+1 + Wi,l+1 and calculate the error

separately. Then, we combine both results and find the error
∥∥∥Ul+1 − Ui,l+1

∥∥∥
∞,d

. We begin

our analysis with the regular component. To obtain consistency error on regular compo-

nent L1
N,K(Vl+1 −Vi,l+1), we will calculate the consistency error (L1

N,K − L0
N,K)(Vl+1 −V1

i,l+1),

and relative consistency error (L0
N,K − LϵK)Vl+1, separately. Let us define

Qi,l+1 :=



i∏
j=1

(
1 + α

ϵ
h j

)
N/2∏
j=1

(
1 + α

ϵ
h j

) , 0 ≤ i ≤ N
2

N−1∏
j=i

(
1 + α

ϵ
h j+1

)
N−1∏

j=N/2

(
1 + α

ϵ
h j+1

) , N
2 ≤ i ≤ N.

Lemma 4.5.1. For the mesh function Qi,l+1, we have

L1
N,KQi,l+1 ≥

C
max(ϵ, hi)

Qi,l+1, i = {1, 2, · · · ,N − 1}\{N/2},

and (D+ − D−)Q N
2 ,l+1 ≤ −Cϵ−1.
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Proof. Note that 0 ≤ Qi,l+1 ≤ 1. Moreover, for 1 ≤ i ≤
N
2
− 1

L1
N,KQi,l+1 = −ϵ∆tD+D−Qi,l+1 + ai∆tD−Qi,l+1 + b̂iQi,l+1

= −ϵ∆t
(
α

ϵ

)2 2hi

hi + hi+1

1(
1 + α

ϵ
hi

)Qi,l+1

+ai∆t
(
α

ϵ

) 1(
1 + α

ϵ
hi

)Qi,l+1 + b̂iQi,l+1

=

−2∆t
(
α2

ϵ

)
+ ai∆t

(
α

ϵ

) 1(
1 + α

ϵ
hi

) + b̂i

 Qi,l+1

=
α∆t

αhi + ϵ

(
ai −

2α
ϵ

(αhi + ϵ) + b̂i
ϵ + hiα

α∆t

)
Qi,l+1

≥
C

max(ϵ, hi)
Qi,l+1 > 0.

At i = N/2, h+N/2 = ℏ = h−N/2 and in that case

(D+ − D−)Q N
2 ,l+1 =

(
−α

ϵ

(
1

1 + α
ϵ
ℏ

)
−
α

ϵ

(
1

1 + α
ϵ
ℏ

))
Q N

2 ,l+1

≤
−α

ϵ

(
2

1 + α
ϵ
ℏ

)
≤
−C
ϵ

< 0.

Similarly, for
N
2
+ 1 ≤ i ≤ N − 1

L1
N,KQi,l+1 = −ϵ∆tD+D−Qi,l+1 + ai∆tD−Qi,l+1 + b̂iQi,l+1 + ci∆tQi− N

2 ,l+1

= −ϵ∆t
(
α

ϵ

)2 2hi

hi + hi+1

1(
1 + α

ϵ
hi

)Qi,l+1 + ai∆t
(
α

ϵ

) 1(
1 + α

ϵ
hi

)Qi,l+1

+b̂iQi,l+1 + ci∆tQi− N
2 ,l+1

=

−2∆t
(
α2

ϵ

)
+ ai∆t

(
α

ϵ

) 1(
1 + α

ϵ
hi

) + b̂i

 Qi,l+1 + ci∆tQi− N
2 ,l+1

=
α∆t

αhi + ϵ

(
ai −

2α
ϵ

(αhi + ϵ) + b̂i
ϵ + hiα

α∆t

)
Qi,l+1 + ci∆tQi− N

2 ,l+1

≥
C

max(ϵ, hi)
Qi,l+1 > 0. (4.5.1)

□

Next, we use Lemma 4.4.1, 4.4.2 and 4.5.1 and the argument following Chapter 2 to

obtain the error bounds on the regular and singular components.
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Lemma 4.5.2. The regular component Vl+1 of the solution Ul+1 and its corrected approx-

imation Vi,l+1 satisfies

|L1
N,K(Vl+1 − Vi,l+1)| ≤


Ch2

i for 1 ≤ i ≤ N
2 − 1,

Chi for N
2 + 1 ≤ i ≤ N − 1.

Proof. Referring to representation (4.4.4), we can write

|L1
N,K(Vl+1 − Vi,l+1)| = |(L1

N,K − L0
N,K)(Vl+1 − V1

i,l+1)| + |(L0
N,K − LϵK)Vl+1|.

Following Lemma 2.5.1 and Lemma 2.5.2 it follows that

|(L1
N,K − L0

N,K)(Vl+1 − V1
i,l+1)| ≤ Ch2

i , i ∈ {1, · · ·N − 1}\{N/2}

and

|(Lϵk − L0
N,K)Vl+1| ≤


Ch2

i

(
ϵ
∥∥∥V (4)

l+1

∥∥∥
∞
+

∥∥∥V (3)
l+1

∥∥∥
∞

)
for 1 ≤ i ≤ N

2 − 1,

Chi

(
ϵ
∥∥∥V (3)

l+1

∥∥∥
∞
+

∥∥∥V (2)
l+1

∥∥∥
∞

)
for N

2 + 1 ≤ i ≤ N − 1.

□

Next we estimate the error in the singular component of the solution.

Lemma 4.5.3. The singular component Wl+1 of the solution Ul+1 and its corrected ap-

proximation Wi,l+1 satisfies

|L1
N,K(Wl+1 −Wi,l+1)| ≤


CN−2 for 1 ≤ i ≤ N

2 − 1,

Chiϵ
−1 for N

2 + 1 ≤ i ≤ N − 1.

Proof. For i ∈
{
1, · · · , N

2 − 1
}
, we can write

|L1
N,K |(Wl+1 −Wi,l+1)| = |L1

N,K(Wl+1 −W1
i,l+1)| + |L1

N,K(W1
i,l+1 −Wi,l+1)|.

Proceeding in a similar manner as in Lemma 2.5.4, it follows that

|L1
N,K(Wl+1 −W1

i,l+1)| = |L1
N,KWl+1| ≤ CN−(ϕ−1),

and

|L1
N,K(W1

i,l+1 −Wi,l+1)| = |L0
N,KW1

i,l+1| ≤ CN−(ϕ−1).

Moreover, for i ∈
{

N
2 + 1, · · · ,N − 1

}
, Lemma 4.3.4 and Lemma 2.5.4 leads to

|L1
N,K(Wl+1 −Wi,l+1)| ≤ Cϵ−1hi.

□
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Lemma 4.5.4. Let U(x, tl+1) be the solution of (4.3.1) and Ui,l+1 be its approximation.

Then, for i = N/2 ∣∣∣(D+ − D−)(Ui,l+1 − U(x, tl+1))
∣∣∣ ≤ Chi

ϵ2 .

Proof. The proof is straightforward if we consider∣∣∣(D+ − D−)(Ui,l+1 − U(x, tl+1))
∣∣∣ = |(D+ − D−)(U(x, tl+1))|

≤

∣∣∣∣∣∣
(
D+ −

d
dx

)
U(x, tl+1)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
(
D− −

d
dx

)
U(x, tl+1)

∣∣∣∣∣∣
≤

1
2

h−N/2 max
x∈(0,1)

∣∣∣∣∣∣d2U(x, tl+1)
dx2

∣∣∣∣∣∣ + 1
2

h+N/2 max
x∈(1,2)

∣∣∣∣∣∣d2U(x, tl+1)
dx2

∣∣∣∣∣∣
≤ Cℏ max

x∈(0,1)∪(1,2)

∣∣∣∣∣∣d2U(x, tl+1)
dx2

∣∣∣∣∣∣
≤

Cℏ
ϵ2 .

□

Lemma 4.5.5. The solution Ul+1 of the problem (4.3.1) and its corrected approximation

Ui,l+1 satisfies

|Ul+1 − Ui,l+1| ≤ CN−2(log N)3 for i ∈ {0, 1, · · · ,N}.

Proof. Collecting results from Lemma 4.5.2, Lemma 4.5.3 and Lemma 4.5.4 to write

|L1
N,K(Ul+1 − Ui,l+1)| ≤


Ch2

i for 1 ≤ i ≤ N
2 − 1,

Cℏ
ϵ2 for i = N

2 ,

Chi

ϵ
for N

2 + 1 ≤ i ≤ N − 1.

Moreover, L1-norm stability argument for operator L1
N,K yields

∥∥∥Ul+1 − Ui,l+1

∥∥∥
∞
≤

N−1∑
j=1

C
hi + hi+1

2
|L1

N,K(Ul+1 − Ui,l+1)|

≤

N
2 −1∑
j=1

Ch3
i +Cℏ

h N
2
+ h N

2 +1

2
+

N−1∑
j= N

2 +1

Ch2
i ϵ
−1

≤ CN−2(log N)3.

□

We are now able to state the main result of this chapter, the principle convergence

theorem.
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Theorem 4.5.6. Let u be the solution of (4.2.3) and Ui,l+1 be its corrected approximation

on ΓN × Γ
t
K . Then ∣∣∣u(xi, tl+1) − Ui,l+1

∣∣∣ ≤ C(∆t + N−2(log N)3).

Proof. The proof follows from Lemma 4.3.2, Lemma 4.5.5 and the triangle inequality.

□

4.6 Numerical Results

This section presents numerical results for two test examples. The exact solution of the

problem is not available for comparison. Therefore, we estimate the error using the double

mesh principle[166]. For given values of N and K, the maximum absolute error ÊN,K is

given by

ÊN,K = max
(xi,tl)∈ΓN×Γ

t
K

|UN,K(xi, tl+1) − U2N,2K(xi, tl+1)|,

where UN,K(xi, tl+1) and U2N,2K(xi, tl+1) are the computed numerical solutions on ΓN × Γ
t
K

and Γ2N×Γ
t
2K , respectively. Whereas the numerical order of convergence P̂N,K is calculated

using

P̂N,K = log2

(
ÊN,K

Ê2N,2K

)
.

Example 4.6.1. Consider the following parabolic convection-diffusion problem with

large shift

ut(x, t) − ϵuxx(x, t) + ux(x, t) + exp xu(x, t) + xu(x − 1, t) = 10x(1 − x)3, (x, t) ∈ (0, 2) × (0, 2]

u(x, 0) = 0, x ∈ [0, 2]

u(x, t) = x, (x, t) ∈ [−1, 0] × [0, 2]

u(2, t) = 0, t ∈ [0, 2].

Example 4.6.2. Consider the following parabolic convection-diffusion problem with

large shift

ut(x, t) − ϵuxx(x, t) + ux(x, t) + 5u(x, t) + u(x − 1, t) = t3x(2 − x), (x, t) ∈ (0, 2) × (0, 2]

u(x, 0) = 0, x ∈ [0, 2]

u(x, t) = 5
4 t2x, (x, t) ∈ [−1, 0] × [0, 2]

u(2, t) = 0, t ∈ [0, 2].

Test examples are solved numerically using the proposed defect correction method

over a non-uniform mesh. The maximum absolute error and order of convergence are ob-

tained numerically for K = N and tabulated in the form of Tables 4.1 and 4.3 for Example

4.6.1 and Example 4.6.2, respectively. Moreover, Table 4.2 and Table 4.4 presents the
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Table 4.1: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

4.6.1 when K = N.

ϵ N= 32 64 128 256 512

10−2 1.4203e-03 5.2890e-04 1.9967e-04 8.0218e-05 3.1218e-05

1.42 1.40 1.31 1.36 1.37

10−4 1.4212e-03 5.3819e-04 2.0985e-04 8.0893e-05 3.2781e-05

1.40 1.35 1.37 1.30 1.34

10−6 1.6015e-03 6.2932e-04 2.3989e-04 8.8801e-05 3.3093e-05

1.34 1.39 1.44 1.41 1.39

10−8 2.7203e-03 9.8332e-04 3.8124e-04 1.3006e-04 4.7056e-05

1.46 1.36 1.56 1.46 1.41

10−10 2.7206e-03 9.8351e-04 3.8264e-04 1.4019e-04 4.9610e-05

1.46 1.36 1.46 1.49 1.42

Table 4.2: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

4.6.1 when K = N2.

ϵ = 2 × 10−3 ϵ = 2 × 10−5

N EN,K PN,K EN,K PN,K

32 3.0834e-04 1.84 3.0839e-04 1.81

64 8.6081e-05 1.90 8.7498e-05 1.92

128 2.2952e-05 1.87 2.2996e-05 1.86

256 6.2671e-06 1.83 6.2931e-06 1.73

512 1.8913e-06 1.89 1.8901e-06 1.80

maximum absolute error and corresponding order of convergence when K = N2 to justify

the spatial order of convergence for Example 4.6.1 and Example 4.6.2, respectively. The

surface plot of solution for Examples 4.6.1 and 4.6.2 are displayed in Figures 4.1 and 4.3,

respectively. Moreover, Figures 4.2 and 4.4 present the solution for different time t. In

addition the log-log plots of errors are given in Figures 4.5 and 4.6 for Examples 4.6.1

and 4.6.2, respectively.

4.7 Conclusion

The chapter presents a defect correction method based on finite difference discretizations

over a non-uniform mesh for parabolic partial differential equations with a large shift.
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Table 4.3: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

4.6.2 when K = N.

ϵ N= 32 64 128 256 512

10−2 2.4246e-02 7.8278e-03 2.5659e-03 8.2137e-04 2.7808e-04

1.63 1.60 1.64 1.56 1.59

10−4 2.5267e-02 8.266e-03 2.6382e-03 8.3496e-04 2.8916e-04

1.61 1.64 1.65 1.52 1.58

10−6 2.5445e-02 8.3159e-03 2.6842e-03 8.4029e-04 2.9411e-04

1.61 1.63 1.67 1.51 1.60

10−8 2.5488e-02 8.3169e-03 2.6905e-03 8.4109e-03 2.9486e-04

1.61 1.62 1.67 1.51 1.59

10−10 2.5493e-02 8.3176e-03 2.6937e-03 8.4147e-03 2.9491e-04

1.61 1.62 1.67 1.51 1.59

Table 4.4: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

4.6.2 when K = N2.

ϵ = 2 × 10−3 ϵ = 2 × 10−5

N EN,K PN,K EN,K PN,K

32 4.3467e-03 1.88 4.5138e-03 1.86

64 1.1784e-03 1.93 1.2350e-03 1.92

128 3.0846e-04 1.87 3.2453e-04 1.94

256 8.3853e-04 1.85 8.4073e-04 1.84

512 2.3191e-05 1.82 2.3372e-05 1.82

The proposed defect correction method improves the efficiency of a numerical solution

through iterative improvement and generates a stable second-order method in space over

a non-uniform mesh. The mesh has been chosen so that most of the mesh points re-

main in the regions with rapid transitions. Whereas an implicit finite difference scheme is

used to discretize the time variable. The proposed numerical method has been analysed

for consistency, stability and convergence. Theoretical analysis is performed to obtain

consistency and error estimates. The method is uniformly convergent and second-order

accurate in space and first-order in time. We do not use asymptotic expansions of dis-

cretization errors in our analysis. Numerical results agree with the theoretical estimates

and indicate that the defect correction technique can improve accuracy for singular per-

turbation problems.
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Figure 4.1: Numerical solution to Example 4.6.1 when K = N = 64 and ϵ = 2 × 10−08.
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Figure 4.2: Numerical solution to Example 4.6.1 for different t when ϵ = 2 × 10−08.
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Figure 4.3: Numerical solution to Example 4.6.2 when K = N = 64 and ϵ = 2 × 10−10.
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Figure 4.4: Numerical solution to Example 4.6.2 for different t when ϵ = 2 × 10−10.
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Figure 4.5: Error plot for Example 4.6.1 for different values of ϵ.
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Figure 4.6: Error plot for Example 4.6.2 for different values of ϵ.





Chapter 5

Parabolic Convection-Diffusion
Problems with Discontinuous
Coefficients and Source

5.1 Introduction

In Chapter 4, we proposed a defect correction scheme for solving singularly perturbed

parabolic PDEs with delay. In this chapter, we extend the scope of our work to solve sin-

gularly perturbed parabolic PDEs with discontinuous convection coefficients and sources.

Singularly perturbed parabolic PDEs with discontinuous coefficients and sources

constitute a challenging class of mathematical models that arise in various fields, includ-

ing physics, engineering and biology. These equations include time-dependent variables

and exhibit sensitivity to small perturbations in the system parameters. The parabolic

nature of these PDEs indicates their ability to describe dynamic processes with diffusion-

like behaviour, where quantities such as temperature, concentration, or population density

evolve over time and space. However, what sets them apart is the presence of discontinu-

ous coefficients and source terms, which introduce additional complexity to the problem.

These problems involve an arbitrary small parameter that multiplies the highest-

order derivative in the equation, leading to stiffness in the mathematical model. The solu-

tion to such problems exhibits strong interior layers across the discontinuity and demon-

strates turning point behaviour [209, 19]. The solution varies exponentially in relatively

small spatial regions and short time intervals called layer regions and slowly elsewhere.

This multiscale behavior makes it challenging to accurately compute it with traditional

numerical methods [166, 253]. Numerical discretization of singularly perturbed differ-

ential equations is burdened with difficulties. For example, the finite difference method

91
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[97, 96] and the finite element method [277, 278, 279, 127, 128] require a mesh to ap-

proximate solutions. In fact, the discrete solutions obtained using standard Galerkin or

centered finite difference methods exhibit oscillatory behavior for small discretization pa-

rameters [99]. However, layer-adapted meshes seem promising in the discretization of

such equations, leading to growing interest in their generation [209].

Many researchers have studied parabolic singular perturbation problems with dis-

continuous coefficients and sources and proposed various numerical methods for their

solution. For example, in [133], the author proposed two upwind difference schemes on

non-uniform meshes to solve a convection-diffusion problem with a concentrated source

and discontinuous convection coefficient. In [74], the author examined a convection-

diffusion problem with a discontinuous convection coefficient using an upwind scheme

over a piecewise uniform mesh. In [213], researchers constructed a numerical method

based on piecewise uniform meshes for parabolic differential equations with discontin-

uous data. They presented a hybrid difference scheme to solve a convection-diffusion

problem with a discontinuous convection coefficient and established almost second-order

convergence. In [191], the authors propose another hybrid method for solving a parabolic

convection-diffusion problem with a discontinuous convection coefficient.

In contrast, the author in [221] presents a hybrid difference scheme over Shishkin

mesh for a class of reaction-convection-diffusion problems with a discontinuous source.

In [41], the author used a hybrid difference scheme to solve parabolic convection-diffusion

problems with a discontinuous convection coefficient and obtained almost second-order

convergence. The authors in [169] constructed an implicit upwind finite difference

scheme on Shishkin-type meshes to solve parabolic convection-diffusion problems with

a discontinuous convection coefficient. In [36], the authors presented a uniformly con-

vergent method to solve a two-point boundary value problem with discontinuous data.

In [224], researchers used a hybrid difference scheme to analyse a second-order ordi-

nary differential equation with a discontinuous convection coefficient subject to mixed-

type boundary conditions. In [50], researchers analysed a parabolic convection-diffusion

problem with a degenerating convective term and a discontinuous source. They consid-

ered a second-order convection-diffusion Robin-type problem with a discontinuous source

term in [171]. In [42], the author studied a two-parameter singularly perturbed parabolic

convection-diffusion problem with non-smooth data. In [57], the author uses the com-

putational method for a class of second-order singularly perturbed parabolic differential

equations with discontinuous coefficients involving large negative shifts. The formulated

method comprises the implicit Euler and the cubic spline in compression methods for

time and spatial dimensions, respectively. Furthermore, [131, 130] solved parabolic delay
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differential equations with discontinuous convection coefficients using finite difference

discretization over Shishkin mesh.

In [295], authors proposed a nonsymmetric interior penalty Galerkin (NIPG) finite

element method to solve convection-dominated-diffusion problems with discontinuous

coefficients. In [232], authors proposed a nonsymmetric discontinuous Galerkin finite

element technique with interior penalties (NIPG) to solve singularly perturbed convec-

tion–diffusion problem with a discontinuous source term. In [16], authors examined a

weakly coupled system of two reaction-diffusion equations with discontinuous source

terms. They used a numerical method based on finite elements over the Shishkin and

Bakhvalov-Shishkin mesh to derive an error estimate in the energy norm. In [270], the

author used a standard numerical method with piecewise linear interpolation on Shishkin

mesh to solve a weakly coupled system of a singularly perturbed problem for second-order

ordinary differential-difference equations with discontinuous convection coefficients and

source terms. In [43], authors solved a coupled system of second-order singularly per-

turbed differential equations of reaction–diffusion type with discontinuous source term

subject to Dirichlet boundary conditions using a classical finite difference scheme in con-

junction with Shishkin mesh and Bakhvalov mesh. Despite significant progress in this

area, the solution of parabolic singular perturbation problems with discontinuous coeffi-

cients and sources remains a challenging problem. Thus, developing efficient and accurate

methods for solving such problems is important and continues to attract attention from the

scientific community.

The theory and the area of numerical approximation for time-dependent singular per-

turbation problems with discontinuous coefficient terms still need to be developed. This

chapter presents a parameter uniform numerical method to solve such a class of singularly

perturbed parabolic partial differential equations. Moreover, the chapter presents rigorous

consistency, stability and convergence analysis of the proposed method and illustrates

numerical results to support theoretical estimates.

5.2 Problem Description

Let Ω = (0, 1) = Ω− ∪ Ω+, Ω− = (0, c), Ω+ = (c, 1), D = D− ∪ D+ = Ω × (0,T ] and

𭟋̂ := D̄/D. Consider the parabolic problem

Lu(x, t) = ϵuxx(x, t) + a(x)ux(x, t) − b(x)u(x, t) − ut(x, t) = g(x, t),

u(x, 0) = r0(x), (x, t) ∈ D̄,

u(0, t) = r1(t), t ∈ (0,T ],

u(1, t) = r2(t), t ∈ (0,T ],


(5.2.1)
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where 0 < ϵ ≪ 1 is the perturbation parameter, b(x) is a sufficiently smooth function

such that b(x) ≥ β ≥ 0 on D̄, the convection coefficient a(x) and the source term g(x) are

sufficiently smooth functions on Ω− ∪Ω+ satisfying

|[a](c)| ≤ C, |[g](c)| ≤ C. (5.2.2)

Moreover, the solution u(x, t) to the problem (5.2.1) satisfies the interface conditions

[u](c) = 0,
[
∂u
∂x

]
(c) = 0. (5.2.3)

Here [u] denotes the jump of u at the point of discontinuity, written as

[u](c, t) = u(c+, t) − u(c−, t).

Due to a discontinuity in the convection coefficient at x = c, the solution to the prob-

lem (5.2.1) has an interior layer of width O(ϵ) in the neighbourhood of x = c [77]. To

accentuate the occurrence of the strong interior layer, we consider the case

−a∗1 < a(x) < −a1 < 0, x < c,

a∗2 > a(x) > a2 > 0, x > c,

 (5.2.4)

and write α = min{a1, a2}. Furthermore, the functions r0(x), r1(t) and r2(t) are Hölder

continuous and satisfy the compatibility conditions

r0(0) = r1(0), r0(1) = r2(0),

ϵ
∂2r0(0)
∂x2 + a(0)

∂r0(0)
∂x

− b(0)r0(0) −
∂r1(0)
∂t

= g(0, 0),

ϵ
∂2r0(1)
∂x2 + a(1)

∂r0(1)
∂x

− b(1)r0(1) −
∂r2(0)
∂t

= g(1, 0).


The operator L in (5.2.1) satisfies the following continuous minimum principle.

Lemma 5.2.1. Let ψ ∈ C0(D̄)∩C2(D−∪D+) satisfies ψ(x, t) ≤ 0, (x, t) ∈ 𭟋̂, [ψx](c, t) ≥ 0,

t > 0 and Lψ(x, t) ≥ 0 for all (x, t) ∈ D− ∪D+. Then ψ(x, t) ≤ 0, (x, t) ∈ D̄.

Proof. Let ψ(x, t) > 0 for (x, t) ∈ D̄, q(x, t) be a function such that

ψ(x, t) = e−(α(x)|x−c|)/2ϵq(x, t), and α(x) =


a1(x), x < c,

a2(x), x > c.

Let (xs, ts) ∈ D̄ and q(xs, ts) = max
(x,t)∈D̄

q(x, t) hence qx(xs, ts) = 0, qt(xs, ts) = 0 and

qxx(xs, ts) < 0. Moreover, if
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Case I: If s ∈ D− ∪D+

Lψ(xs, ts) =


ϵψxx(xs, ts) + a1(xs)ψx(xs, ts) − b(xs)ψ(xs, ts) − ψt(xs, ts) < 0, (xs, ts) ∈ D−,

ϵψxx(xs, ts) + a2(xs)ψx(xs, ts) − b(xs)ψ(xs, ts) − ψt(xs, ts) < 0, (xs, ts) ∈ D+.

Case II: If s = (c, t∗)

[ψx](c, t∗) = [qx](c, t∗) −
[
(a1 + a2)

2ϵ

]
q(c, t∗) < 0.

A contradiction to the assumption and the required result follows from a contradiction.

□

A direct application of the minimum principle guides us to the following stability

estimate.

Lemma 5.2.2. Let u be the solution of (5.2.1). Then

∥u∥D̄ ≤ ∥u∥∞,𭟋̂ +
1
β
∥g∥∞,S̄ , where β = min

{a1

c
,

a2

1 − c

}
.

Proof. Define barrier functions Y± as

Y± =


− ∥u∥∞,𭟋̂ −

x ∥g∥
βc
± u(x, t), x ≤ c,

− ∥u∥∞,𭟋̂ −
(1 − x) ∥g∥
β(1 − c)

± u(x, t), x > c.

Case I: If (x, t) ∈ D−

LY±(x, t) = ϵY±xx(x, t) + a1(x)Y±x (x, t) − b(x)Y±(x, t) − Y±t (x, t)

= ±ϵuxx(x, t) + a1(x)
(
−
∥g∥

βc
± ux(x, t)

)
− b(x, t)

(
− ∥u∥∞,𭟋̂ −

x ∥g∥
βc
± u(x, t)

)
∓ut(x, t)

= a1(x)
(
−
∥g∥

βc

)
− b(x, t)

(
− ∥u∥∞,𭟋̂ −

x ∥g∥
βc

)
± Lu(x, t) ≥ 0.

Case II: If (x, t) ∈ D+

LY±(x, t) = ϵY±xx(x, t) + a2(x)Y±x (x, t) − b(x)Y±(x, t) − Y±t (x, t)

= ±ϵuxx(x, t) + a2(x)
(
∥g∥

β(1 − c)
± ux(x, t)

)
− b(x, t)

(
− ∥u∥∞,𭟋̂

−
(1 − x) ∥g∥
β(1 − c)

± u(x, t)
)
∓ ut(x, t)

= a2(x)
(
∥g∥

β(1 − c)

)
− b(x, t)

(
− ∥u∥∞,𭟋̂ −

(1 − x) ∥g∥
β(1 − c)

)
± Lu(x, t) ≥ 0.

Case III: If x = c

[Y±x ](c, t) = [ux](c, t) = 0.

The required result now follows from Lemma 5.2.1. □
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5.3 Time Semidiscretization

Let us split the given interval [0,T ] into K subintervals of length ∆t = T/K, K ∈ Z+. The

resulting mesh becomes

ΓK
t = {tl = l∆t, l = 0, 1, 2, · · ·K}.

An application of the implicit Euler scheme leads to the semidiscrete problem

LϵKU(x, tl+1) = G(x, tl+1); 0 ≤ x ≤ 1, 0 ≤ l ≤ K − 1 (5.3.1a)

such that
U(x, 0) = r0(x), 0 ≤ x ≤ 1,

U(0, tl+1) = r1(tl+1), 0 ≤ l ≤ K − 1,

U(1, tl+1) = r2(tl+1), 0 ≤ l ≤ K − 1,

U(c−, tl+1) = U(c+, tl+1), Ux(c−, tl+1) = Ux(c+, tl+1),


(5.3.1b)

where

LϵKU(x, tl+1) = ϵ∆tUxx(x, tl+1) + a(x)∆tUx(x, tl+1) − b̂(x)U(x, tl+1), x ∈ D− ∪ D+,

and

G(x, tl+1) = ∆tg(x, tl+1) − U(x, tl), x ∈ D− ∪ D+.

Here, b̂(x) := 1 + b(x)∆t. Next, we set up the semidiscrete minimum principle. The

operator LϵK satisfies the semidiscrete minimum principle ensuring that the method (5.3.1)

is stable.

Lemma 5.3.1. Let R(x, tl+1) be a sufficiently smooth function for x ∈ [0, 1]. If R(x, tl+1) ≤

0, x = {0, 1}, LϵKR(x, tl+1) ≥ 0, x ∈ Ω− ∪ Ω+ and [R(c, tl+1)] ≥ 0. Then R(x, tl+1) ≤ 0,

∀x ∈ Ω.

Proof. Let (s, tl+1) ∈ {(x, tl+1) : x ∈ [0, 1]} and R(s, tl+1) = max
x∈[0,1]

R(x, tl+1) > 0. Conse-

quently, Rx(s, tl+1) = 0, Rt(s, tl+1) = 0, Rxx(s, tl+1) < 0 and (s, tl+1) < 𭟋̂.

Case I: If s ∈ Ω− ∪Ω+

LϵKR(s, tl+1) = ϵ∆tRxx(s, tl+1) + a(s)∆tRx(s, tl+1) − b̂(s)R(s, tl+1) < 0.

Case II: If s = c

Rx(s+, tl+1) − Rx(s−, tl+1) < 0.

A contradiction to the assumption and the result follows. □
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Lemma 5.3.2. The solution U(x, tl+1) of semidiscretized problem (5.3.1) satisfies

|U(x, tl+1)| ≤ max
{
|U(0, tl+1)|,

∥G∥
α
, |U(1, tl+1)|

}
, x ∈ [0, 1].

Proof. Let Y±(x, tl+1) := −max
{
|U(0, tl+1)|,

∥G∥
α
, |U(1, tl+1)|

}
± U(x, tl+1). Note that

Y±(x, tl+1) ≤ 0 for x ∈ {0, 1}. Moreover,

Case I: If x ∈ Ω− ∪Ω+

LϵKY±(x, tl+1) = ϵY±xx(x, tl+1) + a(x)Y±x (x, tl+1) − ˆb(x)Y±(x, tl+1) − Y±t (x, tl+1)

= b̂(x) max
{
|U(0, tl+1)|,

∥G∥
α
, |U(1, tl+1)|

}
± LϵKU(x, tl+1) ≥ 0.

Case II: If x = c

[Y±x ](c, tl+1) = ±[Ux](c, tl+1) ≥ 0.

The required result follows from Lemma 5.3.1. □

From [166], it follows that
∥∥∥LϵK

∥∥∥
∞
≤ C and the stability of the method is immediate.

Moreover, it is easy to follow that the local truncation error satisfies ∥el+1∥∞ ≤ C(∆t)2.

Combine local error estimates to obtain the following estimate for the global discretization

error (Êl).

Lemma 5.3.3. The global discretization error Êl at the lth time step satisfies∥∥∥Êl

∥∥∥
∞
≤ C∆t

where the constant C > 0 is independent of ϵ and ∆t.

As a result, uniform convergence is achieved using the temporal semidiscretization

process. To get sharp bounds on the solution of the semidiscretized problem (5.3.1), we

express Ul+1 as a sum of smooth component Vl+1 and singular component Wl+1, writing

Ul+1 := Vl+1 +Wl+1. Furthermore, the smooth component Vl+1 takes the form

V(x, tl+1) = V0(x, tl+1) + ϵV1(x, tl+1) + ϵ2V2(x, tl+1),

where V0(x, tl+1) is the solution of the reduced problem

a(x)∆t(V0)x(x, tl+1) − b̂(x)V0(x, tl+1) = G(x, tl+1), x ∈ Ω− ∪Ω+,

V0(0, tl+1) = r1(tl+1),

 (5.3.2)

V1(x, tl+1) satisfies

a(x)∆t(V1)x(x, tl+1) − b̂(x)V1(x, tl+1) = −(V0)xx(x, tl+1), x ∈ Ω− ∪Ω+,

V1(0, tl+1) = 0,

 (5.3.3)
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and V2(x, tl+1) satisfies

LϵKV2(x, tl+1) = −(V1)xx(x, tl+1), x ∈ Ω− ∪Ω+,

V2(0, tl+1) = 0, V2(1, tl+1) = 0.

 (5.3.4)

Thus, the smooth component Vl+1 of Ul+1 satisfies

LϵKV(x, tl+1) = G(x, tl+1), x ∈ Ω− ∪Ω+, 0 ≤ l ≤ K − 1,

V(0, tl+1) = r1(tl+1),

V(c−, tl+1) = V0(c−, tl+1) + ϵV1(c−, tl+1) + ϵ2V2(c−, tl+1),

V(c+, tl+1) = V0(c+, tl+1) + ϵV1(c+, tl+1) + ϵ2V2(c+, tl+1),

V(1, tl+1) = r2(tl+1).


(5.3.5)

The singular component Wl+1 of Ul+1, on the other hand, satisfies

LϵKW(x, tl+1) = 0, x ∈ Ω− ∪Ω+, 0 ≤ l ≤ K − 1,

W(0, tl+1) = 0, W(1, tl+1) = 0,

[W(c, tl+1)] = −[V(c, tl+1)], [Wx(c, tl+1)] = −[Vx(c, tl+1)].

 (5.3.6)

Lemma 5.3.4. Let V(x, tl+1) be the solution of (5.3.2)-(5.3.5) and W(x, tl+1) be the solution

of (5.3.6). Then, for each integer 0 ≤ q ≤ 3 and x ∈ (0, 1)

∥V(x, tl+1)∥ ≤ C, ∥Vq(x, tl+1)∥D̄\{c} ≤ Cϵ2−q,

|[V(c, tl+1)]| , |[Vx(c, tl+1)]| , |[Vxx(c, tl+1)]| ≤ C,

|Wq(x, tl+1)| ≤


ϵ−q exp

(
−α(c − x)

ϵ

)
, x ∈ {0} ∪Ω−,

ϵ−q exp
(
−α(x − c)

ϵ

)
, x ∈ Ω+ ∪ {1}.

Proof. Apply the arguments given in [77] to each of the subinterval Ω− ∪ Ω+ separately,

and the proof follows. □

5.4 The Space Discretization

5.4.1 Mesh Description

The solution to the problem (5.2.1) exhibits a strong interior layer in the neighbour-

hood of x = c [77]. Thus, we construct a mesh ΓN that condenses the points around

x = c. For that, we use the Bakhvalov-Shishkin mesh to discretize the domain in the

spatial direction. Let τ1 and τ2 be the mesh transition parameters defined as

τ1 = min
{c

2
, τ0ϵ log N

}
, τ2 = min

{
1 − c

2
, τ0ϵ log N

}
,
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where τ0 =
ϕ

ϵ
and ϕ ≥ 3. Note that if τ1 =

c
2

and τ2 =
1 − c

2
, the mesh is uniform. Divide

the spatial domain ΓN into four subintervals as

ΓN = [0, c − τ1] ∪ [c − τ1, c] ∪ [c, c + τ2] ∪ [c + τ2, 1]. (5.4.1)

The subintervals [0, c−τ1] and [c+τ2, 1] contain N/4 mesh points, each placed uniformly

such that x0 = 0, xN/4 = c−τ1, x3N/4 = c+τ2, and xN = 1. However, the other two intervals,

[c − τ1, c] and [c, c + τ2], have the same number of mesh points. The mesh is generated

nonuniformly by a continuous, monotonically increasing, piecewise differentiable mesh-

generating function Φ(t) =


ΦL(t), t ∈ [ 1

4 ,
1
2 ],

ΦR(t), t ∈ [1
2 ,

3
4 ]

such that

ΦL

(
1
4

)
= − log N, ΦR

(
3
4

)
= log N, ΦL

(
1
2

)
= 0, and ΦR

(
1
2

)
= 0.

The resulting mesh reads

xi =



4(c − τ1)ti, i = 0, · · · ,N/4,

c + ϵτ0ΦL(ti), i = N/4 + 1, · · · ,N/2,

c + ϵτ0ΦR(ti), i = N/2 + 1, · · · , 3N/4,

(c + τ2) + 4
(
i −

3N
4

) (
1 − c − τ2

N

)
, i = 3N/4 + 1, · · · ,N,

(5.4.2)

where ti =
i
N . Let hi := xi − xi−1, i = 1, · · ·N denotes the mesh width. Then in the smooth

region, the width of coarse uniform mesh is

hi =


HL =

4(c − τ1)
N

, i = 1, · · ·N/4,

HR =
4(1 − c − τ2)

N
, i = 3N/4, · · ·N,

(5.4.3)

and in the layer region, mesh width satisfies

hi =


hi ≥ hi+1, i = N/4 + 1, · · · ,N/2 − 1,

hi ≤ hi+1, i = N/2 + 1, · · · , 3N/4 − 1.
(5.4.4)

In the layer region, consider the mesh-characterising functions

ψL(t) = 1 − 4
(
1 − N−1

) (1
2
− t

)
, and, ψR(t) = 1 − 4

(
1 − N−1

) (
t −

1
2

)
, (5.4.5)

related to ΦL and ΦR by relation ΦL = logψL and ΦR = − logψR, respectively. Moreover,

the mesh-characterising functions satisfies ψL

(
1
4

)
= N−1, ψL

(
1
2

)
= 1, ψR

(
1
2

)
= 1, and

ψR

(
3
4

)
= N−1. For uniform mesh hi = hi+1 := ℏ.
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Lemma 5.4.1. The step size hi of ΓN satisfies hi ≤ CN−1 for i ∈ {1, · · ·N}.

Proof. If 1 ≤ i ≤
N
4

and
3N
4
≤ i ≤ N, the proof is evident. For i ∈

{
N
4
+ 1, · · · ,

3N
4

}
, it

follows from 2.3.1 that hi ≤
4ϵ
α

and the result follows. □

5.4.2 The Difference Scheme

For i ≥ 0, a function Yi,l+1 and mesh width hi the forward, backward and central

difference approximation to first-order derivatives are defined as

D+Yi,l+1 :=
Yi+1,l+1 − Yi,l+1

hi+1
, D−Yi,l+1 :=

Yi,l+1 − Yi−1,l+1

hi

and D0Yi :=
Yi+1,l+1 − Yi−1,l+1

hi+1 + hi
.


At the same time, a difference approximation for a second-order derivative reads

D+D−Yi,l+1 :=
2

hi+1 + hi

(
Yi+1,l+1 − Yi,l+1

hi+1
−

Yi,l+1 − Yi−1,l+1

hi

)
.

The upwind operator for problem (5.3.1) takes the form

L1
N,KYi,l+1 =


Yi,l+1, i = 0,N,

ϵ∆tD+D−Yi,l+1 + ai∆tD−Yi,l+1 − b̂iYi,l+1, 1 ≤ i ≤ N
2 − 1,

ϵ∆tD+D−Yi,l+1 + ai∆tD+Yi,l+1 − b̂iYi,l+1,
N
2 + 1 ≤ i ≤ N − 1.

(5.4.6)

Moreover, the modified central difference operator L0
N,K reads

L0
N,KYi,l+1 =


Yi,l+1, i = 0,N,

L2
N,KYi,l+1, 1 ≤ i ≤ N

4 ,
3N
4 + 1 ≤ i ≤ N − 1,

L1
N,KYi,l+1,

N
4 + 1 ≤ i ≤ N

2 − 1, N
2 + 1 ≤ i ≤ 3N

4 ,

(5.4.7)

where L2
N,KYi,l+1 = ϵ∆tD+D−Yi,l+1 + ai∆tD0Yi,l+1 − b̂iYi,l+1 and Gi,l+1 = g(xi, tl+1) − Yi,l,

i ∈ {1, · · · ,N − 1}\{N/2}. The two step defect correction scheme takes the form

First Step: L1
N,KU1

i,l+1 = Gi,l+1, i ∈ {1, · · · ,N − 1}\{N/2}.

Second Step: L1
N,KUi,l+1 = (L1

N,K − L0
N,K)U1

i,l+1 + Gi,l+1, i ∈ {1, · · · ,N − 1}\{N/2},

such that
D+UN/2,l+1 = D−UN/2,l+1, l ∈ {1, · · · ,K − 1},

Ui,0 = (r0)i, i ∈ {1, · · · ,N},

U1,l+1 = (r1)l+1, l ∈ {1, · · · ,K − 1},

UN,l+1 = (r2)N,l+1, l ∈ {1, · · · ,K − 1}.


(5.4.8)
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Here, U1 and U represent the initial and the corrected approximation of (5.3.1), respec-

tively. Following (2.4.3), the consistency error Ê of the defect correction scheme reads

Ê =
(
L1

N,K − L0
N,K

) (
Ul+1 − U1

i,l+1

)
+

(
L0

N,K − LϵK
)

Ul+1, (5.4.9)

where Ul+1 is a solution to (5.3.1) and U1
i,l+1 denotes initial approximation to (5.4.8).

Lemma 5.4.2. Let Pi,l+1 be a mesh function. If P0,l+1 ≤ 0, PN,l+1 ≤ 0, L1
N,KPi,l+1 ≥ 0,

i ∈ {1, · · · ,N − 1}\{N/2} and D+PN/2,l+1 − D−PN/2,l+1 ≥ 0. Then Pi,l+1 ≥ 0, i ∈ {1, · · · ,N}.

Proof. Let Pi,l+1 = max
xi∈ΓN ,tl+1∈Γ

K
t

Pi,l+1 > 0. Then

D−Pi,l+1 = 0, D+Pi,l+1 = 0, and D−D+Pi,l+1 < 0.

Case I: If 1 ≤ i ≤
N
2
− 1

L1
N,KPi,l+1 = ϵ∆tD+D−Pi,l+1 + ai∆tD−Pi,l+1 − b̂iPi,l+1 < 0.

Case II: If i =
N
2

[D](Pi,l+1) < 0, since Pi,l+1 > 0.

Case III: If
N
2
+ 1 ≤ i ≤ N − 1

L1
N,KPi,l+1 = ϵ∆tD+D−Pi,l+1 + ai∆tD+Pi,l+1 − b̂iPi,l+1 < 0.

Consequently, the result follows from a contradiction. □

Next, we establish that operators L1
N,K and L1

N,K − L2
N,K commute.

Lemma 5.4.3. The difference operators L1
N,K and L1

N,K − L2
N,K , defined by (5.4.6) and

(5.4.7), satisfies

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 = (L1

N,K − L2
N,K)L1

N,KYi,l+1

iff ai−1 = ai = ai+1, bi−1 = bi = bi+1 and hi+2 = hi+1 = hi = hi−1.

Proof. For 1 ≤ i ≤
N
4

, observe that

(L1
N,K − L2

N,K)Yi,l+1 = −ai∆t(D− − D0)Yi,l+1

=
−ai

2
∆thi+1D+D−Yi,l+1. (5.4.10)
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Apply L1
N,K to (5.4.10), and if hi−1 = hi = hi+1 = hi+2, bi−1 = bi = bi+1 and ai−1 = ai = ai+1,

then

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 = ϵ∆tD+D−

(
−ai

2
∆thi+1D+D−Yi,l+1

)
+ ai∆tD−

(
−ai

2
∆thi+1D+D−Yi,l+1

)
−b̂i

(
−ai

2
∆thi+1D+D−Yi,l+1

)
=
−ai

2
∆thi+1

(
ϵ∆tD+D−(D+D−Yi,l+1) + ai∆tD−(D+D−Yi,l+1)

−b̂i(D+D−Yi,l+1)
)
.

If we reverse the order of the operator

(L1
N,K − L2

N,K)L1
N,KYi,l+1 =

−ai

2
∆thi+1D+D−

(
ϵ∆tD+D−Yi,l+1 + ai∆tD−Yi,l+1 − b̂iYi,l+1

)
=
−ai

2
∆thi+1

(
ϵ∆tD+D−(D+D−Yi,l+1) + ai∆tD−(D+D−Yi,l+1)

−b̂i(D+D−Yi,l+1)
)
.

Similarly, if
3N
4
+ 1 ≤ i ≤ N − 1

(L1
N,K − L2

N,K)Yi,l+1 = ai∆t(D+ − D0)Yi,l+1 =
ai

2
∆thiD+D−Yi,l+1. (5.4.11)

Apply L1
N,K to (5.4.11), and if hi−1 = hi = hi+1 = hi+2, bi−1 = bi = bi+1, then

L1
N,K(L1

N,K − L2
N,K)Yi,l+1 = ϵ∆tD+D−

(ai

2
∆thi+1D+D−Yi,l+1

)
+ ai∆tD+

(ai

2
∆thi+1D+D−Yi,l+1

)
−b̂i

(ai

2
∆thi+1D+D−Yi,l+1

)
=

ai

2
∆thi(ϵ∆tD+D−(D+D−Yi,l+1) + ai∆tD+(D+D−Yi,l+1)

−b̂i(D+D−Yi,l+1)).

If we reverse the order of the operator

(L1
N,K − L2

N,K)L1
N,KYi,l+1 =

ai

2
∆thi+1D+D−

(
ϵ∆tD+D−Yi,l+1 + ai∆tD+Yi,l+1 − b̂iYi,l+1

)
=

ai

2
∆thi+1

(
ϵ∆tD+D−(D+D−Yi,l+1) + ai∆tD+(D+D−Yi,l+1)

−b̂i(D+D−Yi,l+1)
)
.

Hence, the required result follows. □

Let us decompose solution Ui,l+1 into regular and singular components to bound the

consistency error as

U1
i,l+1 = V1

i,l+1 +W1
i,l+1, i = 0, 1, . . . ,N. (5.4.12)
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The regular component V1
i,l+1 is defined as

V1(xi, tl+1) =


V1

L(xi, tl+1), 0 ≤ i ≤
N
2
− 1,

V1
R(xi, tl+1),

N
2
+ 1 ≤ i ≤ N,

(5.4.13)

which is the first approximation to the left and right of the point of discontinuity x = c of

the regular component Vl+1 of the semidiscretized solution Ul+1 to (5.3.1). Similarly, for

singular component, we write

W1(xi, tl+1) =


W1

L(xi, tl+1), 0 ≤ i ≤
N
2
− 1,

W1
R(xi, tl+1),

N
2
+ 1 ≤ i ≤ N,

(5.4.14)

such that the size of the jump |[V1(c, tl+1)]| determines the amplitude of the jump

W1
R(xi, tl+1) − W1

L(xi, tl+1). Using the regular and singular components, we can bound the

consistency error within and outside the layer region. Here, V1
L(xi, tl+1) and VR(xi, tl+1)

satisfies
L1

N,KV1
L(xi, tl+1) = G(xi, tl+1), i = 1, . . . , N

2 − 1,

V1
L(0, tl+1) = Vl+1(0), V1

L(xN/2, tl+1) = Vl+1(c−),

 (5.4.15)

and
L1

N,KV1
R(xi, tl+1) = G(xi, tl+1), i = N

2 + 1, . . . ,N − 1,

V1
R(xN/2, tl+1) = Vl+1(c+), V1

R(xN , tl+1) = Vl+1(1).

 (5.4.16)

Similarly, W1
L and W1

R satisfies

L1
N,KW1

L(xi, tl+1) = 0, i = 1, · · · , N
2 − 1,

L1
N,KW1

R(xi, tl+1) = 0, i = N
2 + 1, · · · ,N − 1,

W1
L(0, tl+1) = Wl+1(0), W1

R(N, tl+1) = Wl+1(1),

W1
R(xN/2, tl+1) + V1

R(xN/2, tl+1) = W1
L(xN/2, tl+1) + V1

L(xN/2, tl+1),

D−W1
R(xN/2, tl+1) + D−V1

R(xN/2, tl+1) = D+W1
L(xN/2, tl+1) + D+V1

L(xN/2, tl+1).


(5.4.17)

Moreover, the corrected approximation VL(xi, tl+1), VR(xi, tl+1), WL(xi, tl+1) and WR(xi, tl+1)

satisfies

L1
N,KVL(xi, tl+1) = (L1

N,K − L0
N,K)V1

L(xi, tl+1) +G(xi, tl+1), i = 1, · · · , N
2 − 1,

VL(0, tl+1) = V1
L(0, tl+1), VL(xN/2, tl+1) = V1

L(xN/2, tl+1),

 (5.4.18)

LN,KVR(xi, tl+1) = (L1
N,K − L0

N,K)V1
R(xi, tl+1) +G(xi, tl+1), i = N

2 + 1, · · · ,N − 1,

VR(xN/2, tl+1) = V1
R(xN/2, tl+1), VR(xN , tl+1) = V1

R(xN , tl+1),

 (5.4.19)
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and

L1
N,KWL(xi, tl+1) = −L0

N,KW1
L(xi, tl+1), i = 1, · · · , N

2 − 1,

L1
N,KWR(xi, tl+1) = −L0

N,KW1
R(xi, tl+1), i = N

2 + 1, · · · ,N − 1,

WL(1, tl+1) = W1
L(1, tl+1), WR(N, tl+1) = W1

R(N, tl+1),

WR(xN/2, tl+1) + VR(xN/2, tl+1) = WL(xN/2, tl+1) + VL(xN/2, tl+1),

D−WR(xN/2, tl+1) + D−VR(xN/2, tl+1) = D+WL(xN/2, tl+1) + D+VL(xN/2, tl+1).


(5.4.20)

Following [191], define mesh functions on ΓN = {xi}
N
0 as

Ri,l+1 =

i∏
k=1

(
1 +

αhk

ϵ

)
, 1 ≤ i ≤

N
2
, (5.4.21)

and

Qi,l+1 =

N−i∏
k=1

(
1 +

αhk

ϵ

)
,

N
2
≤ i ≤ N − 1 (5.4.22)

with the usual convention R0 = 1 and QN = 1. It is easy to follow that

R N
4 ,l+1 = Q 3N

4 ,l+1 ≤ CN−ϕ. (5.4.23)

Lemma 5.4.4. For some constant C,

−L1
N,KRi,l+1 ≥

C
ϵ + αhi

Ri,l+1, 1 ≤ i ≤
N
2
− 1, and

−L1
N,KQi,l+1 ≥

C
ϵ + αhi+1

Qi,l+1,
N
2
+ 1 ≤ i ≤ N − 1.

Moreover, for i = N
2 (

D+Q N
2 ,l+1 − D−R N

2 ,l+1

)
≤
−C
α
.

Proof. Since Ri,l+1 − Ri−1,l+1 =
αhi

ϵ
Ri,l+1 and ai < −a1 ≤ −α,

−L1
N,KRi,l+1 = −

(
ϵ∆tD+D−Ri,l+1 + ai∆tD−Ri,l+1 − b̂iRi,l+1

)
= −

(
ϵ∆t

(
2

hi+1 + hi

(
α

ϵ
Ri+1,l+1 −

α

ϵ
Ri,l+1

)
+ ai∆t

(
α

ϵ
Ri,l+1

)
− b̂iRi,l+1

))
=
−2α∆t

hi + hi+1

(
Ri+1,l+1 − Ri,l+1

)
− ai

α∆t
ϵ

Ri−1,l+1 + b̂iRi,l+1

≥
−α∆t
ϵ

Ri−1,l+1

[
αhi

hi + hi+1
+ ai

]
≥

C
ϵ + αhi

Ri,l+1.

For i > N
2 , it follows that

(Qi+1,l+1 − Qi,l+1) =
−αhN−i

ϵ
Qi+1,l+1 and ai > α2 ≥ α.
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Hence

−L1
N,KQi,l+1 = −

(
ϵ∆tD+D−Qi,l+1 + ai∆tD+Qi,l+1 − b̂iQi,l+1

)
= −

(
ϵ∆t

(
2

hi+1 + hi

(
α

ϵ
Qi+1,l+1 −

α

ϵ
Qi,l+1

)
+ ai∆t

(
α

ϵ
Qi+1,l+1

)
− b̂iQi,l+1

))
=
−2α∆t

hi + hi+1

(
Qi+1,l+1 − Qi,l+1

)
− ai

α∆t
ϵ

Qi+1,l+1 + b̂iQi,l+1

≥
α∆t
ϵ

Qi+1,l+1

[
ai −

αhi

hi + hi+1

]
≥

C
ϵ + αhN−i

Qi,l+1.

Moreover, if i = N
2

(
D+Q N

2 ,l+1 − D−R N
2 ,l+1

)
=

 −αh N
2

ϵ + αh N
2

−
αh N

2

ϵ + αh N
2


N
2∏

k=1

(
1 +

αhk

ϵ

)

=

 −2αh N
2

ϵ + αh N
2


N
2∏

k=1

(
1 +

αhk

ϵ

)
≤
−C
α

< 0.

□

If S denotes the space of grid functions sk, it follows from [74, 77] that

∥sk∥∞ ≤ C
∥∥∥L1

N,K sk

∥∥∥
1,d
. (5.4.24)

5.5 Error Analysis

Let us next calculate the consistency error for regular and singular components sep-

arately. Then, we combine both results and find the error
∥∥∥Ul+1 − Ui,l+1

∥∥∥
∞

. We be-

gin our analysis with the regular component. To obtain consistency error on regu-

lar component L1
N,K(V(x, tl+1) − V(xi, tl+1)), we calculate the consistency error corre-

sponding to the upwind difference scheme consisting of modified central difference

consistency error (L1
N,K − L0

N,K)(V(x, tl+1) − V1(xi, tl+1)) and relative consistency error

LK
ϵ V(x, tl+1) − L0

N,KV(xi, tl+1) separately.

Lemma 5.5.1. Let V(x, tl+1) and V1(xi, tl+1) be the regular components of the semidis-

cretized solution U(x, tl+1) and initial solution U1(xi, tl+1), respectively. Then for each

xi ∈ ΓN\{N/2},

(L1
N,K − L0

N,K)(V(x, tl+1) − V1(xi, tl+1)) ≤ Ch2
i , i ∈ {1, · · · ,N}\{N/2}. (5.5.1)

Proof. Note that for
N
4
+ 1 ≤ i ≤

N
2
− 1 and

N
2
+ 1 ≤ i ≤

3N
4

, L1
N,K = L0

N,K . Hence

(L1
N,K − L0

N,K)(V(x, tl+1) − V1
L(xi, tl+1)) = 0,

N
4
+ 1 ≤ i ≤

N
2
− 1,

(L1
N,K − L0

N,K)(V(x, tl+1) − V1
R(xi, tl+1)) = 0,

N
2
+ 1 ≤ i ≤

3N
4
.

 (5.5.2)
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Now, for 1 ≤ i ≤
N
4

, assumption of Lemma 5.4.3 holds true. Consequently,

L1
N,K(L1

N,K − L0
N,K)(Vl+1 − V1

L(xi, tl+1)) = (L1
N,K − L0

N,K)L1
N,K(Vl+1 − V1

L(xi, tl+1))

= ai

[
D−

(
L1

N,KVl+1 − L1
N,KVL(xi, tl+1)

)
−D0

(
L1

N,KVl+1 − L1
N,KVL(xi, tl+1)

)]
=
−ai

2hi

[(
(L1

N,KVl+1)i+1 − 2(L1
N,KVl)i

+(L1
N,KVl+1)i−1

)
−

(
(LK

ϵ Vl+1)i+1

−2(LK
ϵ Vl+1)i + (LK

ϵ Vl+1)i−1

)]
=
−α

2HL

[(
L1

N,KVl+1 − LK
ϵ Vl+1

)
i+1
− 2

(
L1

N,KVl+1

−LK
ϵ Vl+1

)
i
+

(
L1

N,KVl+1 − LK
ϵ Vl+1

)
i−1

]
.

Following Lemma 2.5.1, we obtain

|L1
N,K(L1

N,K − L0
N,K)(Vl+1 − V1

L(xi, tl+1))| =

∣∣∣∣∣∣ α

2HL

(
−ϵ

6H2
L

[∫ xi+1

xi

(
V (4)

l+1(ξ + h) − 2V (4)
l+1(ξ)

+V (4)
l+1(ξ − h)

)
(xi+1 − ξ)3dξ −

∫ xi

xi−1

(
V (4)

l+1(ξ + h)

−2V (4)
l+1(ξ) + V (4)

l+1(ξ − h)
)

(ξ − xi−1)3dξ
)]

+

∫ xi

xi−1

(
V (2)

l+1(ξ + h) − 2V (2)
l+1(ξ) + V (2)

l+1(ξ − h)
)

×(ξ − xi−1)
)∣∣∣∣∣.

An application of the fundamental theorem of calculus yields∣∣∣∣L1
N,K

(
L1

N,K − L0
N,K

) (
V(x, tl+1) − V1

L(xi, tl+1)
)∣∣∣∣ ≤ CH2

L

(
ϵ
∥∥∥V (6)

l+1

∥∥∥
∞
+

∥∥∥V (4)
l+1

∥∥∥
∞

)
. (5.5.3)

Similarly, for
N
2
+ 1 ≤ i ≤ N − 1, it follows that∣∣∣∣L1

N,K

(
L1

N,K − L0
N,K

) (
V(x, tl+1) − V1

R(xi, tl+1)
)∣∣∣∣ ≤ CH2

R

(
ϵ
∥∥∥V (6)

l+1

∥∥∥
∞
+

∥∥∥V (4)
l+1

∥∥∥
∞

)
. (5.5.4)

Define barrier function Yi,l+1 := Chi
2(xi − 3). Next, we apply Lemma 5.4.2 with boundary

points x1, x N
4
, x 3N

4 +1, and xN+1.

Case I: For 1 ≤ i ≤
N
4

L1
N,KYi,l+1 = ϵD+D−Yi,l+1 + aiD−Yi,l+1 − b̂iYi,l+1

=
2ϵ

hi + hi+1

[
Ch2

i (xi+1 − xi)
hi+1

−
Ch2

i (xi − xi−1)
hi

]
+ ai [Chi(xi − xi−1)]

−b̂i

[
Ch2

i (xi − 3)
]

=
ϵ

HL

[
CH2

L(xi+1 − xi)
HL

−
CH2

L(xi − xi−1)
HL

]
+ ai (CHL (xi − xi−1))

−b̂i(CH2
L(xi − 3)) ≥ CH2

L. (5.5.5)
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Case II: For
3N
4
≤ i ≤ N − 1

L1
N,KYi,l+1 = ϵD+D−Yi,l+1 + aiD+Yi,l+1 − b̂iYi,l+1

=
2ϵ

hi + hi+1

[
Ch2

i (xi+1 − xi)
hi+1

−
Ch2

i (xi − xi−1)
hi

]
+ ai [Chi(xi+1 − xi)]

−b̂i

[
Ch2

i (xi − 3)
]

=
ϵ

HR

[
CH2

R(xi+1 − xi)
HR

−
CH2

R(xi − xi−1)
HR

]
+ ai (CHR (xi+1 − xi))

−b̂i(CH2
R(xi − 3)) ≥ CH2

R. (5.5.6)

Therefore, for a suitable choice of constant C, from (5.5.3), (5.5.4), (5.5.5) and (5.5.6), it

follows that

(L1
N,K − L0

N,K)(V(x, tl+1) − V1(xi, tl+1)) ≤ Ch2
i , i ∈ {1, · · · ,N}\{N/2}.

□

Lemma 5.5.2. The error due to the regular component V(x, tl+1) of the solution U(x, tl+1)

to the semidiscretized problem (5.3.1) satisfies

∣∣∣LK
ϵ V(x, tl+1)i − L0

N,KV(xi, tl+1)
∣∣∣ ≤



Cℏ2
(
ϵ
∥∥∥V (4)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

)
,

1 ≤ i ≤
N
4
,

3N
4
+ 1 ≤ i ≤ N − 1,

Chi

(
ϵ
∥∥∥V (3)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

)
,

N
4
+ 1 ≤ i ≤

N
2
− 1,

Chi+1

(
ϵ
∥∥∥V (3)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

)
,

N
2
+ 1 ≤ i ≤

3N
4
.

(5.5.7)

Proof. For 1 ≤ i ≤
N
4

and
3N
4
+ 1 ≤ i ≤ N − 1, it follows that

∣∣∣L0
N,K(V(xi, tl+1)) − LK

ϵ V(x, tl+1))i

∣∣∣ = ∣∣∣∣∣∣ai∆t
4ℏ

[∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

(xi+1 − xi)3

3
+

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

×
(xi − xi−1)3

3

]
+
ϵ∆t
6ℏ2

[∥∥∥V (4)(xi, tl+1)
∥∥∥
∞

(xi+1 − xi)4

3

+
∥∥∥V (4)(xi, tl+1)

∥∥∥
∞

(xi − xi−1)4

3

]∣∣∣∣∣∣
≤ Cℏ2

(
ϵ
∥∥∥V (4)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

)
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and for
N
4
+ 1 ≤ i ≤

N
2
− 1

∣∣∣L0
N,K(V(xi, tl+1)) − LK

ϵ V(xi, tl+1))i

∣∣∣ = ∣∣∣∣∣∣ai∆t
hi

∫ xi

xi−1

V (2)(ξ, tl+1)(ξ − xi−1)dξ −
ϵ∆t

hi + hi+1

×

[
1

hi+1

∫ xi+1

xi

V (3)(ξ, tl+1)(xi+1 − ξ)2dξ

−
1
hi

∫ xi

xi−1

V (3)(ξ, tl+1)(ξ − xi−1)2dξ
]∣∣∣∣∣∣

=

∣∣∣∣∣ai∆t
hi

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

(xi − xi−1)2 −
ϵ∆t

6(hi + hi+1)

×

[
1

hi+1

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

(xi+1 − xi)3

3

−
1
hi

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

(xi − xi−1)3

3

]∣∣∣∣∣∣
≤ Chi

(
ϵ
∥∥∥V (3)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

)
.

Moreover, if
N
2
+ 1 ≤ i ≤

3N
4∣∣∣L0

N,K(V(xi, tl+1)) − LK
ϵ V(x, tl+1))i

∣∣∣ = ∣∣∣∣∣∣ai∆t
hi+1

∫ xi+1

xi

V (2)(ξ, tl+1)(ξ − xi)dξ −
ϵ∆t

hi + hi+1

×

[
1

hi+1

∫ xi+1

xi

V (3)(ξ, tl+1)(xi+1 − ξ)2dξ

−
1
hi

∫ xi

xi−1

V (3)(ξ, tl+1)(ξ − xi−1)2dξ
]∣∣∣∣∣∣

=

∣∣∣∣∣ai∆t
hi+1

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

(xi − xi−1)2dξ −
ϵ∆t

6(hi + hi+1)

×

[
1

hi+1

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

(xi+1 − xi)3

3

−
1
hi

∥∥∥V (3)(xi, tl+1)
∥∥∥
∞

(xi − xi−1)3

3

]∣∣∣∣∣∣ .
Consequently, we have∣∣∣L0

N,K(V(xi, tl+1)) − LK
ϵ V(x, tl+1))i

∣∣∣ ≤ Chi+1

(
ϵ
∥∥∥V (3)(xi, tl+1)

∥∥∥
∞
+

∥∥∥V (2)(xi, tl+1)
∥∥∥
∞

)
and the required result follows. □

Lemma 5.5.3. The error due to the singular component W(x, tl+1) of the solution U(x, tl+1)

and its corrected approximation W(xi, tl+1) satisfies

∣∣∣L1
N,K(W(x, tl+1)i −W(xi, tl+1))

∣∣∣ ≤


CN−(ϕ−1), 1 ≤ i ≤ N
4 − 1, N

2 + 1 ≤ i ≤ 3N
4 − 1,

CN−(ϕ−2), i = N
4 ,

3N
4 ,

CN−1ϵ−1, N
4 + 1 ≤ i ≤ N

2 − 1, 3N
4 + 1 ≤ i ≤ N − 1.

(5.5.8)
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Proof. For 1 ≤ i ≤
N
4

, we may write∣∣∣L1
N,K(W(x, tl+1) −WL(xi, tl+1))

∣∣∣ = ∣∣∣L1
N,K(W(x, tl+1) −W1

L(xi, tl+1))
∣∣∣ + ∣∣∣L1

N,K(W1
L(xi, tl+1)

−WL(xi, tl+1))| .

Consider the first addend and the result for the second addend will follow analogously.

For 1 ≤ i <
N
4 ∣∣∣L1

N,K(W(x, tl+1) −W1
L(xi, tl+1))

∣∣∣ = ∣∣∣L1
N,K(W(x, tl+1))

∣∣∣
≤ Ri+1,l+1

∣∣∣∣∣∣4ϵ∆t
h2

i

−
4α∆t

hi

∣∣∣∣∣∣
≤ CNRi+1,l+1

≤ CN−(ϕ−1). (5.5.9)

For i =
N
4 ∣∣∣L1

N,K(W(x, tl+1) −W1
L(xi, tl+1))

∣∣∣ ≤ R N
4 +1

∣∣∣∣∣∣4ϵ∆t
h2

i

−
4α∆t

h2
i

∣∣∣∣∣∣
≤ CN−(ϕ−2). (5.5.10)

Similarly, for 1 ≤ i <
N
4∣∣∣L1

N,K(W1
L(xi, tl+1) −WL(xi, tl+1))

∣∣∣ = ∣∣∣L1
N,KWL(xi, tl+1)

∣∣∣ = ∣∣∣L0
N,KWL(xi, tl+1)

∣∣∣
≤ Ri+1,l+1

∣∣∣∣∣∣4ϵ∆t
h2

i

−
2α∆t

hi

∣∣∣∣∣∣
≤ CN−(ϕ−1). (5.5.11)

For i =
N
4 ∣∣∣L1

N,K(W1
L(xi, tl+1) −WL(xi, tl+1))

∣∣∣ = ∣∣∣L0
N,KWL(xi, tl+1)

∣∣∣ = 0. (5.5.12)

Hence

∣∣∣L1
N,K(W(x, tl+1) −WL(xi, tl+1))

∣∣∣ ≤


CN−(ϕ−1), 1 ≤ i ≤
N
4
,

CN−(ϕ−2), i =
N
4
.

(5.5.13)
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Also, for
N
4
+ 1 ≤ i <

N
2∣∣∣L1

N,K(W(x, tl+1) −WL(xi, tl+1))
∣∣∣ = ϵ∆t

[
1

hi + hi+1

(
1

hi+1

∫ xi+1

xi

W (3)(ξ)(xi+1 − ξ)2dξ

−
1
hi

∫ xi

xi−1

W (3)(ξ)(ξ − xi−1)dξ
)]
+ ai∆t

[
−1
hi

×

∫ xi

xi−1

W (2)(ξ)(ξ − xi−1)dξ
]

≤
Cϵ−1

2α
exp

(
−αc
ϵ

)
exp

(
αxi

ϵ

) (
exp

(
αhi+1

2ϵ

)
sinh

(
αhi+1

2ϵ

)
+ exp

(
αhi

2ϵ

)
sinh

(
αhi

2ϵ

))
≤ Cϵ−1N−1. (5.5.14)

Moreover, for
N
2
+ 1 ≤ i ≤

3N
4

, we obtain

∣∣∣L1
N,K(W(x, tl+1) −WR(xi, tl+1))

∣∣∣ ≤


CN−(ϕ−1),
N
2
+ 1 ≤ i ≤

3N
4
− 1,

CN−(ϕ−2), i =
3N
4
,

(5.5.15)

and for
3N
4
+ 1 ≤ i ≤ N − 1

∣∣∣L1
N,K(W(x, tl+1) −WL(xi, tl+1))

∣∣∣ = ϵ∆t
[

1
hi + hi+1

(
1

hi+1

∫ xi+1

xi

W (3)(ξ)(xi+1 − ξ)2dξ

−
1
hi

∫ xi

xi−1

W (3)(ξ)(ξ − xi−1)dξ
)]
+ ai∆t

[
−1
hi+1

×

∫ xi+1

xi

W (2)(ξ)(ξ − xi)dξ
]
≤ Cϵ−1N−1. (5.5.16)

The required result now follows from (5.4.14). □

Lemma 5.5.4. For i =
N
2

, the solution U(x, tl+1) to (5.3.1) and its approximation

U(xi, tl+1) satisfies

|(D+ − D−)(U(xi, tl+1) − U(x, tl+1))| ≤
Chi

ϵ2 .

Proof. Consider

|(D+ − D−)(U(xi, tl+1) − U(x, tl+1))| = |(D+ − D−)(U(x, tl+1))|

≤ Cℏ max
x∈(0,1)∪(1,2)

∣∣∣∣∣∣d2U(x, tl+1)
dx2

∣∣∣∣∣∣
≤

Cℏ
ϵ2 .

□



5.6 Numerical Results 111

Lemma 5.5.5. The solution U(x, tl+1) and its corrected approximation U(xi, tl+1) over ΓN

satisfies

∥U(x, tl+1) − U(xi, tl+1)∥∞ ≤ CN−2, i ∈ {0, 1, · · · ,N}\ {N/2} . (5.5.17)

Proof. The result follows from Lemma 5.5.1, Lemma 5.5.2, Lemma 5.5.3, and (5.4.24).

□

We are now able to state the main result of this section, the principle convergence

theorem. The proof of which follows immediately from Lemma 5.4.1, Lemma 5.5.4, and

Lemma 5.5.6.

Lemma 5.5.6. Let u be the solution of (5.2.1) and U(xi, tl+1) be its corrected approxima-

tion on ΓK
t × ΓN . Then

|u(xi, tl+1) − U(xi, tl+1)| ≤ C
(
∆t + N−2

)
. (5.5.18)

5.6 Numerical Results

In this section, we examine the performance of the proposed method and numerically ver-

ify the theoretical estimates. We consider three test problems for numerical computations.

Example 5.6.1. Consider the following singularly perturbed parabolic problem

ϵuxx + a(x)ux − u − ut = g(x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

where

a(x) =


−1, 0 ≤ x ≤ 0.5,

1, 0.5 < x ≤ 1,
and g(x, t) =


2(1 + x2)t2, 0 ≤ x ≤ 0.5,

3(1 + x2)t2, 0.5 < x ≤ 1.

Example 5.6.2. Consider the following singularly perturbed parabolic problem

ϵuxx + a(x)ux − 5ut = g(x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

where

a(x) =


−2, 0 ≤ x ≤ 0.5,

3, 0.5 < x ≤ 1,
and g(x, t) =


2x exp(−t)t2 0 ≤ x ≤ 0.5,

2(1 − x) exp(−t)t2, 0.5 < x ≤ 1.
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Example 5.6.3. Consider the following singularly perturbed parabolic problem [192]

ϵuxx + a(x)ux − ut = g(x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = t2, u(1, t) = 0, t ∈ [0, 1],

where

a(x) =


−1, 0 ≤ x ≤ 0.5,

1, 0.5 < x ≤ 1,
and g(x, t) =


2xt 0 ≤ x ≤ 0.5,

2(1 − x)t, 0.5 < x ≤ 1.

Table 5.1: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

5.6.1 when K = N.

ϵ N= 32 64 128 256 512

10−2 1.20142e-02 3.70899e-03 1.14397e-03 3.53190e-04 1.10280e-04

1.695 1.696 1.695 1.679 1.682

10−4 1.55921e-02 4.80274e-03 1.50387e-03 4.72108e-04 1.46902e-04

1.698 1.675 1.671 1.684 1.671

10−6 1.561105e-02 4.81489e-03 1.50662e-03 4.75420e-04 1.47612e-04

1.697 1.676 1.664 1.684 1.672

10−8 1.56231e-02 4.81501e-03 1.50679e-03 4.78193e-04 1.47822e-04

1.698 1.675 1.655 1.693 1.671

10−10 1.56240e-02 4.81502e-03 1.50680e-03 4.79220e-04 1.48155e-04

1.698 1.676 1.652 1.693 1.673

Table 5.2: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

5.6.1 when K = N2.

ϵ = 2 × 10−2 ϵ = 2 × 10−5

N EN,K PN,K EN,K PN,K

32 1.37311e-02 1.871 1.69840e-02 1.878

64 3.75390e-03 1.913 4.61863e-03 1.912

128 9.96179e-04 1.884 1.22692e-03 1.895

256 2.69749e-04 1.903 3.29738e-04 1.904

512 7.21204e-05 1.896 8.81049e-05 1.889
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Table 5.3: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

5.6.2 when K = N.

ϵ N= 32 64 128 256 512

10−2 1.01220e-04 2.88103e-05 8.51976e-06 2.52150e-06 7.62419e-07

1.812 1.757 1.756 1.725 1.745

10−4 1.21177e-04 3.57103e-05 1.10398e-05 3.22857e-06 9.72216e-07

1.762 1.693 1.773 1.731 1.710

10−6 1.21388e-04 3.57840e-05 1.11228e-05 3.31829e-06 9.72831e-07

1.762 1.685 1.745 1.770 1.725

10−8 1.21390e-04 3.57847e-05 1.11235e-05 3.37215e-06 9.731693e-07

1.762 1.685 1.721 1.792 1.724

10−10 1.21390e-04 3.57847e-05 1.11236e-05 3.37216e-06 9.73351e-07

1.762 1.685 1.721 1.792 1.724

Table 5.4: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

5.6.2 when K = N2.

ϵ = 2 × 10−3 ϵ = 2 × 10−5

N EN,K PN,K EN,K PN,K

32 1.78479e-04 1.945 1.81191e-04 1.938

64 4.63295e-05 2.025 4.72589e-05 1.997

128 1.13821e-05 1.974 1.18351e-05 1.991

256 2.89721e-06 2.086 2.97721e-06 2.090

512 6.82193e-07 2.010 6.99263e-07 1.998

Test examples are solved using an implicit Euler scheme over a uniform mesh in

time and a defect correction scheme over a Bakhvalov Shishkin mesh in space. The max-

imum absolute error and order of convergence are calculated and tabulated in tables. For

Examples 5.6.1, 5.6.2 and 5.6.3 the maximum absolute error and order of convergence are

tabulated in Tables 5.1, 5.3 and 5.6 for N = K. Tables 5.2 and 5.4 present the maximum

absolute error and order of convergence for N = K2 and justify the spatial order of con-

vergence. Table 5.7 compares the results obtained using the proposed defect correction

method over Bakhvalov-Shishkin mesh in space and an implicit Euler method in time

with the hybrid method over shishkin mesh in space and backward euler scheme in time

[192]. Besides, Table 5.5 presents a comparison of maximum absolute error obtained

using the defect correction scheme over a variety of adaptive meshes developed in the
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Table 5.5: Comparison of maximum absolute error (ÊN,K) and order of convergence (P̂N,K)

for Example 5.6.2 when K = N using proposed method on various layer adapted meshes.

ϵ N= 32 64 128 256

Vulanovic-Improved 10−2 6.35976e-03 2.55314e-03 1.14821e-03 4.93341e-04

Shishkin mesh [166] 1.316 1.152 1.218 1.231

10−6 6.37231e-03 2.58429e-03 1.15724e-03 4.96327e-04

1.302 1.159 1.221 1.229

Shishkin 10−2 1.24896e-04 4.96582e-05 2.14383e-05 9.13216e-06

mesh [158] 1.330 1.211 1.231 1.250

10−6 1.30943e-04 4.99312e-05 2.16539e-05 9.13583e-06

1.390 1.205 1.246 1.256

Bakhvalov-Shishkin 10−2 1.01220e-04 2.88103e-05 8.51976e-06 2.52150e-06

mesh 1.812 1.757 1.756 1.725

10−6 1.21388e-04 3.57840e-05 1.11228e-05 3.31829e-06

1.762 1.685 1.745 1.770

literature. Numerical solutions are plotted in Figures 5.1 and 5.3 for Examples 5.6.1 and

5.6.2, respectively. Numerical solutions at fixed time levels are plotted in Figures 5.2 and

5.4. Aditionally, log-log plots for errors are shown in Figures 5.5 and 5.6 for Examples

5.6.1 and 5.6.2, respectively.

5.7 Conclusion

A higher-order defect correction method was proposed to solve singularly perturbed

parabolic differential equations with discontinuous coefficients over a Bakhvalov Shishkin

mesh. The method combines the stability of the lower-order scheme with the convergence

of the higher-order less stable scheme and results in a higher-order stable scheme. The

method yields highly accurate results for singular perturbation problems avoiding preva-

lent numerical oscillation in the numerical approximation and is independent of pertur-

bation parameters. We have shown theoretically that the proposed method is first-order

convergent in time and second-order convergent in space. Moreover, numerical illustra-

tions are presented for two test examples that demonstrate the efficiency of the scheme.

Convergence obtained numerically agrees with theoretical predictions.
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Table 5.6: Maximum absolute error (ÊN,K) and order of convergence (P̂N,K) for Example

5.6.3 when K = N.

ϵ N= 32 64 128 256

10−2 3.06504e-03 1.02247e-03 3.36363e-04 1.10253e-04

1.583 1.603 1.609 1.673

10−4 3.59544e-03 1.16685e-03 3.70748e-04 1.18631e-04

1.623 1.654 1.643 1.652

10−6 3.60099e-03 1.19035e-03 3.81538e-04 1.20173e-04

1.597 1.641 1.666 1.631

10−8 3.60104e-03 1.19083e-03 3.83561e-04 1.20825e-04

1.596 1.634 1.666 1.658

10−10 3.60105e-03 1.19102e-03 3.84925e-04 1.21152e-04

1.596 1.629 1.667 1.642

Table 5.7: Comparison of maximum absolute error (ÊN,K) and order of convergence

(P̂N,K), for example 5.6.3, using the proposed method and results in [192].

Results in [192] Proposed method

N ϵ = 10−5 ϵ = 10−10 ϵ = 10−5 ϵ = 10−10

32 9.9736e-03 9.9737e-03 3.6004e-03 3.6010e-03

1.279 1.279 1.605 1.596

64 4.1094e-03 4.1095e-03 1.1832e-03 1.1910e-03

1.220 1.220 1.664 1.629

128 1.7641e-03 1.7641e-03 3.7836e-04 3.8492e-04

1.094 1.095 1.659 1.667

256 8.2587e-04 8.2580e-04 1.1973e-04 1.20176e-04

1.057 1.057 1.642 1.641
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Figure 5.1: Numerical solution to Example 5.6.1 with K = N = 64 and ϵ = 2 × 10−10.
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Figure 5.2: Numerical solution to Example 5.6.1 for different t when K = N = 64 and

ϵ = 2 × 10−10.
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Figure 5.3: Numerical solution to Example 5.6.2 with K = N = 64 and ϵ = 2 × 10−7.
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Figure 5.4: Numerical solution to Example 5.6.2 for different t when K = N = 64 and

ϵ = 2 × 10−7.
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Figure 5.5: Error plot for Example 5.6.1 for different values of ϵ.
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Figure 5.6: Error plot for Example 5.6.2 for different values of ϵ.



Chapter 6

Conclusions and Future Scope

6.1 Summary

This chapter summarises the thesis’s primary accomplishments and outlines potential fu-

ture research directions with possible extensions of the current work. As simple upwind-

ing yields only low accuracy, it is natural to look for higher-order alternatives. This thesis

contributes to developing higher-order numerical methods for analysing singularly per-

turbed convection-diffusion boundary value problems. The numerical method combines

a high-order defect correction method based on finite difference approximations with the

adaptive mesh refinement strategy to capture the layer behaviour of the solution. The

following are some of the thesis’s major contributions and important results.

Chapter 2 presents and analyses a higher-order defect correction method to solve

a class of singularly perturbed convection-diffusion boundary value problems. The nu-

merical method involves the combination of a first-order upwind difference scheme with

the classical central difference method over a non-uniform polynomial Shishkin mesh.

The mesh is generated using a mesh-generating function in the layer part and divided

uniformly elsewhere. The theoretical and numerical analysis for the proposed method

confirms the parameter uniform convergence of order two. The results obtained using

the proposed method over the polynomial-Shishkin mesh are superior to other adaptive

meshes in the literature and spline collocation methods. Thus, the numerical experience

with standard finite difference methods on layer-adapted meshes reveals that the proposed

method yields uniformly stable, inverse monotone and highly convergent approximations.

Chapter 3 solves a class of singularly perturbed convection–diffusion problems with

discontinuous coefficient and point source. A defect correction scheme consisting of an

upwind difference scheme and central difference scheme at all mesh points is proposed to

solve the problem. A non-uniform Bakhvalov-Shishkin mesh is considered to discretize
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the domain. A robust a posteriori error estimate in the maximum norm is derived. It

provides computable and guaranteed upper bounds for the discretisation error. The er-

ror estimates of the proposed numerical method satisfy parameter uniform second-order

convergence. Numerical experiments complement our theoretical results.

Chapter 4 presents a higher-order numerical method to solve a class of singularly

perturbed parabolic convection-diffusion problems with a large shift. The numerical

method involves a defect correction scheme on a layer-adapted Shishkin mesh in space

and a backward Euler method in time on a uniform mesh. The proposed numerical method

is analysed for consistency, stability and convergence. Extensive theoretical analysis is

performed to obtain consistency and error estimates. The error estimates of the proposed

numerical method satisfy parameter uniform second-order convergence in space and first-

order convergence in time. The rigorous numerical analysis of the proposed method on a

Shishkin class mesh establishes the supremacy of the proposed scheme.

Chapter 5 proposes a higher-order numerical scheme to solve a class of singularly

perturbed parabolic convection-diffusion problems with discontinuous convection coeffi-

cient and source. A defect correction scheme is used on a Bakhvalov-Shishkin mesh in

space, while a backwards-Euler scheme is used on a uniform mesh in the time variable.

The proposed method is unconditionally stable and converges uniformly, independent

of the perturbation parameter. The error analysis indicates that the numerical solution

is parameter-uniform second-order convergence in space and first-order convergence in

time. The comparison of the results of the proposed method on a priori chosen Shishkin

mesh, Vulanovic-Improved Shishkin mesh, and the Bakhvalov-Shishkin mesh corrobo-

rates the optimal accuracy of the proposed scheme.

6.2 Future Scope

The thesis is primarily concerned with the development and use of extremely accurate

adaptive numerical methods for a wide range of singularly perturbed convection-diffusion

problems. The use of the defect correction schemes to layer-adapted meshes results in

higher-order convergence. In this section, we describe some of the interesting problems

to which the thesis’s approach/idea can be extended. It might be interesting to think about

the following problems for future work.

• Using the defect correction scheme, we can possibly extend the analysis to find

the solution of the following coupled system of singularly perturbed parabolic
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convection-diffusion problems

L−→u (x, t) = −E
∂2−→u
∂x2 +A(x, t)

∂−→u
∂x
+
∂−→u
∂t
+ B(x, t) = −→g (x, t), (x, t) ∈ S = (0, 1) × (0,T ),

−→u (x, 0) = −→u 0(x), x ∈ [0, 1],
−→u (0, t) = 0, t ∈ [0,T ],
−→u (1, t) = 0, t ∈ [0,T ].


Here T > 0, E = diag(ϵ1, ϵ2) is a diagonal matrix with small perturbation param-

eters 0 < ϵ1, ϵ2 << 1, A = diag(a1(x), a2(x)), B =

b11 b12

b21 b22

, −→u = (u1, u2)T and

−→g = (g1, g2)T . These types of problems can be traced in modelling various phys-

ical phenomenon, particularly in the field of electro analytical chemistry, predator

prey population dynamics, modeling of optimal control situations and resistance-

capacitor electrical circuits.

• It will be interesting to extend the analysis of the defect-correction method for 2D

problems. Consider the following class of 2D time dependent singularly perturbed

convection-diffusion problems with turning points

Lu = ∂u
∂t + (L1(t) + L2(t))u = g, (x, z, t) ∈ D × (0,T ],

u(x, z, 0) = f (x, z), (x, z) ∈ D,

u(x, z, t) = 0, (x, z, t) ∈ ∂D × [0,T ],


where D = (0, 1)2 and the operators Li, i = 1, 2 and defined by

L1(t) = −ϵ ∂2

∂x2 + â1(x, z, t) ∂
∂x + k1(x, z, t),

L2(t) = −ϵ ∂2

∂x2 + â2(x, z, t) ∂
∂x + k2(x, z, t).

Here 0 < ϵ << 1 is perturbation parameter, reaction term ki(x, z, t) ≥ 0 for i = 1, 2

convection coefficients and given by

â1(x, z, t) = −(x − 1
2 )a1(x, z, t),

â2(x, z, t) = −(z − 1
2 )a2(x, z, t),

with a1 and a2 such that a1(x, z, t) ≥ αi > 0 for i = 1, 2 both components of the

convective terms has a simple turning point which is located at x = 1
2 for the first

component and at z = 1
2 for the second one. Such type of problems appears in

many fields of applied mathematics and enginnering including hydrodynamic dis-

persion process, pollution control, soil physics, bio-physics, petroleum engineering

and chemical engineering.
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• The proposed method can be extended to solve the time-dependent singularly per-

turbed problem involving a fractional-time derivative with initial–boundary condi-

tions on a rectangular domain S = (0, 1) × (0,T ]

Lu = Dα
t + Lxu = g(x, t), (x, t) ∈ S ,

u(x, t) = Kb, (x, t) ∈ Γb = [0, 1] × {0},

u(x, t) = Kl(t), (x, t) ∈ Γl = {(x, t) : x = 0, 0 ≤ t ≤ T },

u(x, t) = Kr(t), (x, t) ∈ Γr = {(x, t) : x = 1, 0 ≤ t ≤ T }.


Here Lxu = −ϵuxx + a(x, t)ux + b(x, t)u(x, t), 0 < ϵ << 1 is small perturbation pa-

rameter and S̄ = S ∪Γ. The operatorDα
t is the Caputo fractional derivative of order

α ∈ (0, 1). The coefficients a(x, t) and b(x, t) are assumed to sufficiently smooth.

These type of problems model various physical phenomena such as complex sys-

tems, including electric conductance of biological systems, glassy and disordered

media, anomalous diffusion transport, signal processing, fluid flow in porous mate-

rials, acoustic wave propagation in viscoelastic materials, and signal processing.
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