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ABSTRACT

In functional analysis, a great deal of time is spent with normed linear space, banach

space, inner product space, many other spaces like Hilbert space, Lp-space etc.Lp-space

is a great field in functional analysis. Lp-space play a central role in many questions in

analysis.

Here, we’ll focus on the fundamental structural information about the Lp-space.

This more abstract viewpoint also has the unanticipated benefit of guiding us to the

unexpected finding of a finitely additive measure on all subsets that is consistent with

Lebesgue measure.

Here we will be familiar with measurability,measure space, measurable functions

and Borel set etc. Lebesgue integral, integration of complex numbers, Lebesgue domi-

nated convergence theorem, dual of Lp-space, two norm convergence in Lp-space etc.

also define here.
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1
Introduction

The Lp-spaces are function spaces that are defined by naturally extending the p-norm to

vector spaces of finite dimensions. In honour of Henri Lebesgue, they are sometimes

referred to as Lebesgue spaces.

Lp-spaces a crucial class of banach spaces in topological vector spaces and functional

analysis. because of their crucial function in the analysis of measure and probability

spaces via mathematics. Theoretical discussions of issues in physics, statistics, eco-

nomics, finance, engineering, and other fields also use Lebesgue spaces.

p-norm in finite dimension is when, p ≥ 1 for real numbers, the p-norm or Lp-norm

of X is defined by,

||x||p = (|x1|p + |x2|p + ........+ |xn|P )
1
p

The norm that corresponds to the rectilinear distance is the 1-norm, while the euclidean

norm from above belongs to this class and is the 2-norm.

The maximum norm or l∞-norm or uniform norm is the limit of Lp-norms for p → ∞.

||x||∞ = max{|x1|, |x2|, ......|xn|}
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.

If the p-norm can be extended to vectors with infinitely many components, the resulting

space is called lp in infinite dimensions is known as the p-norm.

These serve as unique cases:-

a) The group of series with absolute convergence is called l1.

b) The area of summable square sequences, which are a type of Hilbert space, is l2.

c) The space of bounded sequences is called l∞.

General lp-space is define as the space lp(I) over a general index set I and 1 ≤ p < ∞

as

lp(I) = {(xi)i∈I ∈ K
′
: Σi∈I |xi|p < +∞}

with the custom(norm),

||x||p = (Σi∈I |xi|p)
1

p

The region lp(I) turns into a banach space. This construction results in Rn with the

previously mentioned p-norm in the case where I is finite with n elements.

This is the same sequence space lp described above if I is countably infinite. This

non-separable Banach space for uncountable sets I can be thought of as the locally

convex direct limit of the lp-sequence space. Giving the discrete σ-algebra and counting

measure to the index set I transforms it into a measure space. Therefore, the space lp(I)

is just a particular instance of the more general Lp-space.
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1.1 A normed linear space

A mapping is a norm on a vector space ||.|| : V → R satisfying the following property

• ||x|| ≥ 0

• ||x|| = 0, if and only if x = 0

• ||x+ y|| ≤ ||x||+ ||y||

• ||αx|| = |α|.||x||

1.2 Banach Space

The term "Banach Space" refers to a normed linear space that is complete as a metric

space.

1.3 Inner Product Space

Let X be a field of complex numbers in a linear space. If for every pair (x, y) ∈ X × Y

there corresponds a scalar denoted by < x, y > called inner product of x and y of X

such that the following properties hold:-

(IP.1) < x, y >= < y, x > where (x, y) ∈ X ×X and < y, x > denotes the conjugate

of the complex numbers.

(IP.2) < αx, y >= α < x, y > , ∀ α ∈ C and (x, y) ∈ X ×X .

(IP.3) < x+ y, z >=< x, z > + < y, z > , for all x, y, z ∈ X .

(IP.4) < x, x > ≥ 0 and < x, x > = 0 iff x = θ.

Then (X,< . >) is referred to as a pre Hilbert space or an inner product space
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1.4 The Hilbert Space

A Hilbert space is a complete inner product space X with respect to a metric d : X×X →

R the inner product-induced <,> on X × X , i.e. d(x, y) =< x − y, x − y >1/2 for all

x, y ∈ X .

1.5 Concept of Measurability

The class of measurable functions is too useful in integration theory. Ut follows some

basic definitions which has some basic properties that is defined as below:-

1.5.1 Topology, Topological Space and Open set

If a collection S, which is a subset of X , possesses the following three characteristics,

then S is said to be a topology in X :-

a) ϕ ∈ S and X ∈ S

b) If Si ∈ S for i = 1,2,3,.....,n then S1 ∩ S2 ∩ ..... ∩ Sn ∈ S

c) If Sα is a random grouping of elements from S(finite, countable, or uncountable),

then ∪αSα ∈ S

Here,

S = topology in X

X = topological space and written as (X,S)

Si (that is member of S) = open set in X
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CONTINUOUS FUNCTION:-

If a mapping is defined as f : X → Y and X and Y are two topological spaces, then

f is said to be a continuous function if f−1(S) is an open set in X for all open sets S ∈ Y .

1.5.2 σ-Algebra, Measurable Space and Measurable set

If a collection r of a set X possesses the qualities listed below, it is said to be a σ-algebra

in X .:-

a) X ∈ r

b) If A ∈ r then Ac ∈ r where Ac is the complement of A

c) If A = ∪∞
n=1An and if An ∈ r ∀ n = 1,2,3,....., then A ∈ r

Where,

r = σ-algebra in X

X = measurable space and written as (X, r)

An (member of r) = measurable set in X

MEASURABLE FUNCTION:-

If a mapping is defined as f : X → Y and X is a measurable space, then f is said to

be a measurable function if f−1(A) is a measurable set in X for all A in Y.

1.6 Continuity at a point

If every neighbourhood V of a mapping f : X → Y corresponds to a neighbourhood w

of a mapping f(x0) such that f(w) ∈ V , then the mapping is said to be continuous at

x0 ∈ X .
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1.6.1 PROPOSITION:-

Assume that X and Y are topological spaces. A mapping is continuous iff it has the

form f : X → Y . Every point along X has a continuous f .

1.6.2 PROPOSITION:-

Assume that Y and Z are topological spaces. A continuous mapping is g : Y → Z:-

a) If the topological space X . If both f : X → Y and h = gof are continuous, then

h : X → Z is also continuous.

b) if the space X is measurable. Additionally, if h = gof and f : X → Y are both

measurable, then h : X → Z is also measurable.

1.7 Proposition:-

Let X be a measurable space. Then:-

a) Suppose that f is a complex measurable function on X and that f = u+ iv, where

u and v are real measurable functions on X .

b) Real measurable functions on X are u, v, and |f |, if f = u + iv is a complex

measurable function on X .

c) f and g must be complex measurable functions on X in order for f + g and fg to

be complex measurable functions.

d) In the event that E is a measurable set on X and χE(x) = 1 (if xis ∈ E) or 0 (if

xisnot ∈ E), then χE is a measurable function.

e) If f is a measurable function on X , then f = α|f | exists and there exists a complex

measurable function α on X such that |α| = 1 .
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1.8 Lebesgue Integral

Definition:- Let s is a measurable simple function on X as

s = Σn
i=1αiχAi

.................(1)

where s has different values for α1, α2,..., αn. And let’s clarify,

∫
E

sdµ = Σn
i−1αiµ(Ai ∩ E)................(2)

If g : X → [0,∞] is a measurable function and E ∈ r then we define

∫
E

gdµ = Sup

∫
E

sdµ.........................(3)

The lebesgue integral of g over E, with respect to µ, is denoted by (3) above.

1.9 Integration of Complex Numbers:-

Letting all complex measurable functions g on X in L1(µ) be the collection

∫
X

|g|dµ < ∞

Then, members of L1(µ) are referred to be Lebesgue integrals.

Definition:-

In the event that g = u+ iv, where u and v are real measurable functions on X , and

g ∈ L1(µ), we define -

∫
E

gdµ =

∫
E

u+dµ−
∫
E

u−dµ+ i

∫
E

v+dµ− i

∫
E

v−dµ

Here

u+ and u− = are positive and negative parts of u

v+ and v− = positive and negative parts of v

These four functions are measurable.
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1.10 Some Basic Results

Result 1.10.1

Let g and h ∈ L1(µ) and u and v are complex numbers. Then ug + vh ∈ L1(µ) and

∫
X

(ug + vh)dµ = u

∫
X

gdµ+ v

∫
X

hdµ

Result 1.10.2

If g ∈ L1(µ) then,

|
∫
x

gdµ| ≤
∫
X

|g|dµ

Result 1.10.3

Lebesgue Dominated convergent Theorem:-

Let {gn} is define as a sequence of complex measurable functions on X such that

g(x) = limn→∞gn(x)

for all x ∈ X . If there exist a function h ∈ L1(µ) such that

|gn(x)| ≤ h(x) where n= 1,2,3,....., and x ∈ X then g ∈ L1(µ)

such that

limn→∞

∫
X

|gn − g|dµ = 0

So,

limn→∞

∫
X

gndµ =

∫
X

gdµ
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2
Inequalities and Results

2.1 Holder’s and Minkowski’s Inequality

2.1.1 Minkowski’s Inequality

If x, y be two elements fo lnp space , i.e., x = (x1, x2, .......xn), y = (y1, y2, ......yn) and the

norm of x is defined as

||x||p = [Σi = 1n|xi|p]1/p

then Minkowski’s inequality states that

||x+ y||p ≤ ||x||p + ||y||p

.

Proof:-

If p = 1, then ||x||p = ||x||1 = Σi = 1n|xi|

Therefore ||x+ y||1 = Σi = 1n|xi + yi| ≤ Σn
i=1|xi|+ Σn

i=1|yi| = ||x||1 + ||y||1

Thus the above inequality holds good for p = 1.
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Let p ̸= 1 then

(||x+ y||p)p = Σi = 1n|xi + yi|p by definition of norm

=Σn
i=1|xi + yi||xi + yi|p−1 ≤ Σi=1n(|xi|) + (|y1|)|xi + yi|p−1

=Σ|xi|(|xi + yi|p−1) + Σ|yi|(|xi + yi|p−1)

Now by Holder’s Inequality

Σ|xiyi| ≤ (Σ|xi|p)1/p + (Σ|yi|q)1/q where 1
p
+ 1

q
= 1.

or 1
q
= 1− 1

p
= p−1

p

(p− 1)q = p

Applying the above inequality on R.H.S of (1) we get

(||x+ y|p)p ≤ (Σ|xi|p)1/p(Σ|xi + yi|(p−1/p) + (Σ|yi|p)1/p(Σ|xi + yi|(p−1)q)1/q

Put (p− 1)q = p and 1
q
= p−1

q
in R.H.S we get

=(Σ|xi|p)1/p(Σ|xi + yi|p)p−1/p + (Σ|yi|p)1/p(Σ|xi + yi|p)p−1/p

=||x||p(||x+ y||p)p−1 + ||y||p(||x+ y||p)p−1

=(||x||p + ||y||p)(||x+ y||p)p−1

Therefore [||x+ y||p]p ≤ (||x||p + ||y||p)(||x+ y||p)p−1

If ||x+y||p = 0, both sides vanish, proving that the statement above is true. However,

if both sides are divisible by ||x+ y||pp− 1 and ||x+ y||p ̸= 0, we obtain

||x+ y||p ≤ ||x||p + ||y||p.

Hence Proved
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2.1.2 Holder’s Inequality

If x, y be two elements fo lnp space , i.e., x = (x1, x2, .......xn), y = (y1, y2, ......yn) and the

norm of x is defined as

||x||p = [Σi = 1n|xi|p]1/p

then Holder’s inequality states that

Σn
i=1|xiyi| ≤ (Σn

i=1|xi|p)1/p(Σn
i=1|xi|q)1/q

Σn
i=1|xiyi| ≤ ||x||p||y||q , where 1

p
+ 1

q
= 1, 1 < p < ∞, 1 < q < ∞.

Proof:-

If x = 0 and y = 0 then above inequality is obviously true.Thus we suppose that

both x and y are not zero.

We know from Lemma proved above that

a1/pb1/q ≤ a

p
+

b

q
where,

1

p
+

1

q
= 1

Let

ai = [
|xi|
||x||p

]p, bi = [
|yi|
||y||q

]q

Using the result (1),for ai and bi we have

|xi|
||xp||

.
|yi|
||y||q

≤ 1

p
.
|xi|p

[||x||p]p
+

1

q
.

|yi|
q[||y||q]q
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Above result is true for each i and hence summing w.r.t i, we get

∑
|xi||yi|

||x||p||y||q
≤ 1

p
.

∑
|xi|p

[||x||p]p
+

1

q
.

∑
|yi|q

[||y||q]q
=

1

p
.
[||x||p]p

[||x||p]p
+

1

q
.
[||y||q]q

[||x||q]q

=
1

p
.1 +

1

q
.1 = 1

Therefore Σn
i=1|xiyi| ≤ ||x||p||y||q

or Σn
i=1|xiyi| ≤ (

∑
|xi|p)(1/p)(

∑
|yi|q)1/q where 1

p
+ 1

q
= 1.

2.2 Holder’s and Minkowski’s inequalities for Sequences

Let x =< xn >, y =< yn > be the sequence of scalars , such that

Σ∞
n=1|xn|p < ∞ and Σ∞

n=1|yn|p < ∞p ≥ 1.

Define ||x||p = (Σi = 1∞|xn|p)1/p then

1. Σ∞
n=1|xnyn| ≤ (Σ∞

n=1|xn|p)1/p(Σ∞
n=1|yn|q)1/q = ||x||p||y||q where 1

p
+ 1

q
= 1

2. ||x+ y||p = ||x||p + ||y||q

For any positive integer m we have from Holder’s inequality proved before

Σm
n=1|xnyn| ≤ (Σm

n=1|xn|p)1/p(Σm
n=1|yn|q)1/q ≤ (Σ∞

n=1|xn|p)1/p(Σ∞
n=1|yn|q)1/q ≤ ∞ by

given definition

Above shows that partial sum gΣm
n=1|xnyn| of Σn=1∞|xnyn are bounded and hence

we conclude that Σ|xnyn| < ∞
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Now we know that if xn < yn therefore, limn→∞xn ≤ limn→∞yn , i.e., x0 ≤ y0.

Hence, if in the result (1) we make m → ∞ then by the above result we obtain

Σ∞
n=1|xnyn| ≤ (Σ∞

n=1|xn|p)1/p(Σ∞
n=1|yn|q)1/q = ||x||p||y||q

Proof of Minkowski inequality

In the proof of Minkowski inequality, we had shown that

Σi = 1n|xi+yi|p ≤ (Σn
i=1|xi|p)1/p(Σi=1n|xi+yi|p)p−1/p(Σi = 1n|yi|p)1/p(Σn

i=1|xi+yi|p)(p−

1/p)

≤ (Σn
i=1|xi|p)1/p(Σi=1n|xi + yi|p)p−1/p(Σi = 1n|yi|p)1/p(Σn

i=1|xi + yi|p)(p− 1/p)

= ||x||p||x+ y||pp−1 + ||y||p||x+ y||pp−1

Now if we allow n to tend to infinity then

L.H.S Σn
i=1|xi + yi|p becomes Σn

i=1|xi + yi|p = ||x+ y||pp

Hence from above we get

= ||x+ y||pp ≤ [||x||p||y||p][||x+ y||p]p−1

In case ||x+ y||p = 0 then both sides vanish and if ||x+ y|| ≠ 0 then we can divide

, both sides by ||x+ y||pp−1 and we obtain

||x+ y||p ≤ ||x||p + ||y||p.
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2.3 Conjugate Exponents

If the real values a and b are positive, such that a+ b = ab or equivalently,

1/a+ 1/b = 1

where a and b ∈ [1,∞) then a and b are called conjugate exponents.

2.4 Inequalities in the form of measurable functions

a and b should be conjugate exponents. Suppose that S is a measure space with the

dimension µ, with a range of [0,∞]. Let g and h be measurable functions on S , then-

Holder’s Inequality:-

∫
S

ghdµ ≤ {
∫
S

gadµ}1/a{
∫
S

hbdµ}1/b

Minkowski’s Inequality:-

{
∫
S

(g + h)adµ}1/a ≤ {
∫
S

gadµ}1/a + {
∫
S

hadµ}1/a

Schwart’z Inequality:-

∫
S

ghdµ ≤ {
∫
S

g2dµ}1/a{
∫
S

h2dµ}1/2
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2.5 Show that Under the norm, the Lp(R) space is a Banach

space.

||s||p = [Σ∞
n=1|sn|p]1/p, ∀ s =< sn >∈ Lp(R)

Proof:

First we will show that this space(Lp(R)) is a normed linear space

• ||s||p = [Σn = 1∞|sn|p]1/p ≥ 0

||s||p = [Σn = 1∞|sn|p]1/p = 0

⇒ Σ∞
n=1|sn|p = 0

⇒ |sn|p = 0

⇒ sn = 0

⇒ s = 0∀n

• ||λs|| = [Σ∞
n=1|λsn|p]1/p

||λs|| = |λ|[Σ∞
n=1|sn|p]1/p

||λs|| = |λ|||s||

• ||s+ t|| = [Σ∞
n=1|sn + tn|p]1/p
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||s+ t|| ≤ [Σ∞
n=1|sn|p]1/p+[Σ∞

n=1|tn|p]1/p = ||s||+ ||t||

||s+ t|| ≤ ||s||+ ||t||

It is therefore a normed linear space.

Next, we’ll demonstrate that it is a banach space: -

Let < sn > is a cauchy sequence in Lp(R) such that:-

s(1) =< s
(1)
k >, s(2) =< s

(2)
k ....., s(n) =< s

(n)
k >.

Therefore for all ϵ > 0 a positive number n0 exists that is suitable for all m,n ≥ n0

||sm − sn|| < ϵ

⇒ (Σ∞
k=1|smk − snk |p)1/p < ϵ

⇒ |sm1 − sn1 | < ϵ, |sm2 − sn2 | < ϵ......

So, we can say that sequence < sni > for all i is a cauchy sequence on the real line

each of which will converge to some real numbers as the real line is complete.

Thus,

sn1 → x1, s
n
2 → x2, .... So, we get a sequence x =< xn >.

we wnat to show that < sn > converges to x.
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For a fixed integer i, we know that -

[Σ∞
k=1|smk − snk |p)1/p < ϵ for all m,n ≥ n0

keeping n fixed and let m → ∞, we have,

[Σ∞
k=1|xk − snk |p)1/p < ϵ, n ≥ n0

for i →, we get,

[Σ∞
k=1|xk − s

n/p
k |p)1/p < ϵ, n ≥ n0

⇒ ||x− s(n)||p < ϵ for n ≥ n0 ⇒ s(n) → x

It remains to prove that x ∈ Lp(R)

|xk|p = |xk − sn0
k + sn0

k |p ≤ 2p[|xk − Sn0
k |p + |sn0

k |P ]

So, Σ∞
k=1|xk|p ≤ 2p(Σ∞

k=1|xk − sn0
k |P + Σ∞

k=1|s
n0
k |P )

Σ∞
k=1|xk|p < 2p.ϵp + 2pΣ∞

k=1|s
n0
k |P )

Also,

sn0 =< sn0
k >∈ Lp(R)

⇒ Σ∞
k=1|S

N0
k |p < ∞

Hence we can say that Lp(R) is a Banach Space.
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2.6 Show that Under the following norm L∞(R) is a

Banach Space

||x|| = Sup|xn|

Proof:- :-

In the beginning, we shall show that L∞(R) is a normed linear space -

• ||x|| ≥ 0

Sup|xn| ≥ 0

|xn| = 0 iff xn = 0

So, ||x|| ≥ 0

• ||αx|| = Sup|αxn|

||αx|| = |α|Sup|xn|

||αx|| = |α|||x||

• ||x+ y|| = Sup|xn + yn|

||x+ y|| ≤ Sup|xn|+ Sup|yn| = ||x||+ ||y||

⇒ ||x+ y|| ≤ ||x||+ ||y||
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Becausse all three properties of normed linear space are satisfied. So, We can say

that L∞(R) is a normed linear space.

We shall now demonstrate that it is a complete space :-

A cauchy sequence in L∞(R), let < xm > be. And assuming that ϵ > 0, there exists

an integer N that is positive and

||xm − xn|| < ϵ ∀ n,m ≥ N

⇒ |xmk
− xnk

| ≤ ϵ ∀ n,m ≥ N and ∀k ....(1)

So, ∀ k the seq < xnk
> is a cauchy sequence in L∞(R). Hence there is a sequence

x =< xk > such that xnk
→ xk ∀ k as n → ∞

Now we have to show that :-

x ∈ L∞(R) [ As every cauchy sequence is bounded So, ther exist k > 0 such that

||xn|| < k ∀ k]

Now,

||xnk
|| ≤ k ∀ n

⇒ limn→∞ |xnk
| = |xk| ≤ k ∀ n

⇒ x ∈ L∞(R)

Now let m → ∞ in (1), we get,
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|xk − xnk
| ≤ ϵ ∀ n ≥ N and ∀ k

So,

||xn − x|| = Sup|xk − xmk
| ≤ ϵ ∀ n ≥ N

So, the arbitrary cauchy sequence < xn >∈ L∞(R) convergent to an elemrnt

x ∈ L∞(R) .

⇒ L∞(R) is a whole(complete) space that is a banach space.

Hence Proved.

2.7 Show that L2(R) is a Banach Space under the norm

||s||2 = [Σ∞
k=1s

2
k]

1/2 ∀ s ∈ L2(R)

Proof :-

The given set is closed for addition and saclar multiplication and is a linear space.

So, Now we show that it is a normed linear space -

• ||s|| = [Σ∞
k=1s

2
k]

1/2 ≥ 0

||s|| = 0 iff [Σ∞
k=1s

2
k]

1/2 = 0

⇒ Σ∞
k=1s

2
k = 0 ⇒ sk = 0 ∀ k

So, ||s|| ≥ 0



28 Inequalities and Results

• ||αs|| = [Σ∞
k=1αs

2
k]

1/2

||αs|| = |α|[Σ∞
k=1s

2
k]

1/2

||αs|| = |α|||s||

• ||s+ t|| = [Σ∞
k=1(sk + tk)

2]1/2

||s+ t|| ≤ [Σ∞
k=1s

2
k]

1/2 + [Σ∞
k=1t

2
k]

1/2 = ||s||+ ||t||

||s+ t|| ≤ ||s||+ ||t||

Becausse all three properties of normed linear space are satisfied. So, We can say

that L2(R) is a normed linear space.

Now, We will show that it is a complete space :-

Let < sn > be a cauchy sequence in L2(R). And let ϵ > 0 there exist a positive

integer such that ||sm − sn|| < ϵ ∀m,n ≥ n0

⇒ [Σ∞
k=1(s

m
k − tnk)

2]1/2 ≤ ϵ

⇒ Each of the following is less than ϵ that is,

|sm1 − sn1 | ≤ ϵ , |sm2 − sn2 | ≤ ϵ , .......

⇒ Each real number in the sequence < sni > ∀ i will eventually converge to the

same real number.
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limn→∞ sn1 = x1 , limn→∞ sn2 = x2, ....... ,limn→∞ snk = xk ......(1)

So, we get a sequence x =< xn >

Now, to show that < sn > converges to x =< xn > for a fixed integer p, we have :-

[Σp
k=1(s

m
k − snk)

2]1/2 < ϵ ∀m,n > n0

kepping n fixed and let m → ∞ , we have -

Σp
k=1(xk − snk)

2 < ϵ ∀ n > n0

The Relation holds for each p thus making p → ∞ , we get:-

[Σ∞
k=1(xk − snk)

2]1/2 < ϵ ∀ n ≥ n0

⇒ d(x, sn) ≤ ϵ ∀ n ≥ n0

||x− sn|| ≤ ϵ

sn → x

Now we show that x ∈ L2(R)

x2
k = [xk − sn0

k + sn0
k ]2 = (xk − sn0

k )2 + (sn0
k )2 + 2(xk − sn0

k )(sn0
k )

x2
k ≤ 2(xk − sn0

k ) + 2(sn0
k )2

So,
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Σ∞
k=1x

2
k ≤ 2Σ∞

k=1(xk − sn0
k )2 + 2Σ∞

k=1(s
n0
k )2 < 2ϵ2 + 2Σ∞

k=1(s
n0
k )2

⇒ sn0
k = (sn0

k ) ∈ L2(R)

⇒ Σ∞
k=1(s

n0
k )2 < ∞

⇒ x ∈ L2(R)

Hence every cauchy sequence in L2(R) convergent to a point in L2(R).

⇒ L2(R) is a complete space.

⇒ L2(R) will be a Banach Space.

Hence Proved.

2.8 Show that space l2 is a Hilbert Space.

Proof:-

Let a = xi and b = yi be elements of l2.

By, we specify what the inner product of a and b is,

(a, b) = Σ∞
i=1xiȳi

The right-hand series’ convergence results from the fact that ,

x ∈ l2 and |yīi| ≤ |yi|2
2

+ |xi|2
2

.
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Then

||a|| =
√
(a, a) = (Σ∞

i=1yi)

It is simple to demonstrate that l2 satisfies all of the inner product axioms.As stated

by, the measure d of l2 is

d(a, b) = ||a− b|| = (a− b, a− b)1/2 = (Σn
i=1|yi − xi|2)1/2

We can immediately observe that l2 is complete with regard to this metric, making

l2 a Hilbert space.

Hence Proved.

2.9 Show that Lp(R) is not a Hilbert space for p ̸= 2.

Proof:-

Let a = (1, 1, 0, 0, ....) ∈lp

and b = (1,−1, 0, 0, .....) ∈lp.

Then

||a|| = ||b|| = 21/p
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and

||a+ b|| = ||a− b|| = 2

Now we see that if p ̸= 2,the parallelogram law does not hold.

Hence 1 ≤ p < ∞lp(p ̸= 2) is not a Hilbert space because it is not an inner product

space.

2.10 Show that L2[p, q], is a Hilbert Space.

Proof:-

Define the inner product on L2[p, q] by

< a, b >=

∫
pq|a(t) ¯b(t)|dt,∀a, b ∈ L2[p, q]

and the norm on L2[p, q] is given by

||a|| =

√∫ q

p

|a(t)|2dt

Additionally, it can be demonstrated that L2[p, q] is complete with regard to this

norm and a metric defined by

d(a, b) = [

∫ q

p

|a(t)− b(t)|2dt]1/2.

So L2[p, q] is a Hilbert Space.
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3
Lp-Space and Dual of Lp-Space

3.1 Lp-Space

Definition:- Let p ∈ (0,∞) and g is a complex measurable function on the variable

X . Define-

||g||p = {
∫
X

|g|pdµ}1/p.............(1)

Additionally, let g consist of all Lp(µ) for which ||g||p ≤ ∞ where ||g||p = Lp norm

of g

OR

The set of sequence s =< sn > such that Σ∞
n=1|sn|

p < ∞ is called lp space.

NOTE:-

1) If µ is the Lebesgue measure on Rk, then Lp(rk) is used in place of Lp(µ).

2) When a measure is countable on a set X(countable), it is written as lp(X) or lp

rather than Lp(X).

3) A component of lp could be thought of as a complex sequence X = {xn} and

||X|| = {Σ∞
n=1|xn|p}1/p
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3.2 COMPLETE LP -SPACE

If every cauchy sequence in the norm ||.||Lp is convergent. Then the every elements

where the sequence converges exists in the norm ||.||Lp then we say that Lp space

is complete Lp-Space.

Most of the spaces are complete spaces but some spaces may exist that is not

complete that is very little useful.

L1, L2 and Lp spaces are complete spaces.

3.3 Theorem

Show that Under the norm ||.||Lp , the space Lp(X, τ, µ) is complete.

Proof:-

Suppose that {an}∞k=1 is a cauchy sequence in Lp and let k ≥ 1 there exist a subseq

{ank
}∞k=1 of {an} then

||ank+1
− ank

|| ≤ 2−k

Now assume the series whose convergence is given as below:-

a(x) = an1(x) + Σ∞
k=1(ank+1

(x)− ank
(x))

and

b(x) = |an1(x)|+ Σ∞
k=1|(ank+1

(x)− ank
(x))|

the corresponding partial sum is,

Sma(x) = an1(x) + Σ∞
k=1(ank+1

(x)− ank
(x))

and

Smb(x) = |an1(x)|+ Σ∞
k=1|(ank+1

(x)− ank
(x))|

The triangle inequality for Lp is,

||Sm(b)||Lp ≤ ||an1||Lp + Σm
k=1||ank+1

− ank
||Lp
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So,

||Sm(b)||Lp ≤ ||an1||Lp + Σm
k=12

−k

Now, with k → ∞, prove using the monotonic convergent theorem that p < ∞

and the series defining b converge everywhere, and a ∈ Lp.

Now we show that {an} converges to a. So a is limit of {an}.

Because of the telescopic series, the series’ (m − 1)th sum is accurate anm , So

anm → a(x).

Now show that anm → a in Lp. Let,

|a(x)− Sma(x)|p ≤ [2max(|a(x)|, |Sma(x)|)]p

|a(x)− Sma(x)|p ≤ 2p|a(x)|p + 2p|Sma(x)|p

So,

|a(x)− Sma(x)|p ≤ 2p+1|b(x)|p

The dominated convergence theorem will now be used to obtain ||anm − a||Lp → 0

as m → ∞. Now because {an} is cauchy. Let ϵ > 0 and for all n,m ≥ N there exist

N such that

||an − am||Lp < ϵ/2

Now let choose nm > N and ||anm − a||Lp < ϵ/2 then by the triangle equality,

||an − a||Lp ≤ ||an − ank
||Lp + ||ank

− a||Lp < ϵ

So, the Lp space is complete.

Hence Proved.
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3.4 DUAL OF LP SPACE

Assume that 1/p + 1/q = 1 and that q is the conjugate exponent of p. Every

function h ∈ Lq provides a bounded linear functional on Lp according to the

Holder’s inequality. Suppose that,

l(g) =

∫
X

g(x)h(x)dµ(x)..............(1)

And let,

||l|| ≤ ||h||Lq

So if h associates to l then Lq ⊂ (Lp)∗ for 1 ≤ p ≤ ∞

Therefore, for some h ∈ Lq, every linear functional on Lp has the form (1).

So, (Lp)∗ = Lq for 1 ≤ p ≤ ∞, where (Lp)∗ is dual of Lp.

Note:-

When p = ∞, the dual of L∞ contains L1 but it is larger, so the following result is

generally false.

3.5 The Riesz Representation Theorem(For the dual

of Lp space)

A measurable set S shall be used such that 1 ≤< ∞ and q be the conjugate of p.

Let B define the bounded linear functional on Lp(S) for all h ∈ Lq(S).

B(g) =

∫
S

h.g∀h ∈ Lp(S)

Then there exists a single function h ∈Lq(S) for which B = F and ||F || = ||h||q for

all bounded linear functions F on Lp(S) .
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Proof:-

Because for all h ∈ Lq(E) , On Lp(E), B is a bounded linear functional such that

||B||∗ = ||h||q. So by linearity of integration for all h1, h2 ∈ Lq(S) ⇒ Bh1 − Bh2 =

Bh1−h2 so, if Bh1 = Bh2 then Bh1−h2 = 0 ⇒ ||h1 − h2|| = 0.

h1 = h2

There is only one function h ∈ Lq(S) for which B = F for any F on Lp(S).

Therefore, we must demonstrate that there is a function h ∈ Lq(E) for which

F = B for all bounded linear functionals F on Lp(S) .

Then, for general measurable sets, we confirm this

In the case of any natural number n ∈ N , let F be a bounded linear functional on

Lp(R). Explain linear functions

Fn on Lp[−n, n] by ,

Fn(f) = F (g) for all g ∈ Lp[−n, n]

where g′ = extension of f∀R

Since ||g||p = ||g′||p

⇒|Fn(g)| ≤ ||F ||∗||g||p for all g ∈ Lp[−n, n]

⇒ Thus,||Fn||∗ ≤ ||F ||∗

Now let hn ∈ Lq[−n, n] for which, Fn(g) =
∫ n

−n
hn.g for all g ∈ Lp[−n, n] and ||hn||q =

||Fn||∗ ≤ ||F ||

............A

As a result, for every g ∈ Lp(R) that vanish outside a bounded set, we conclude from

the definitions of Fn and hn coupled with the left hand equally in A.
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F (g) =

∫
R

h.g

Now by Right hand equality in A
∫ n

−n
|h|q ≤ (||F∗||)q for all n

Since Bounded linear functional B and F agree on dense subspace of Lp(R) so by fatous

Lemma h ∈ Lq(R).

Now let S and F be the general measurable sets.Define the linear functional F̂ on Lp(R)

by f̂(g) = F (g|s).Then F is bounded linear functional on Lp(R).

Thus we have just shown that there is a function f̂ ∈ Lq(R) for which f̂ is represented

by integration over R against f̂

Hence Proved.

3.6 Theorem

Let Lp[0, 1] is the set of all measurable functions g : [0, 1] → R and let dual of Lp[0, 1] is

Lp[0, 1]∗ = {0} for 0 < p < 1. Such that the only continuous linear map Lp[0, 1] → R is

zero.

Proof:-

Let a ∈ Lp[0, 1]∗ with a ̸= 0. Then a has image in R. As we know that a non zero linear

map to a one dimensional space is onto. So, there is some g ∈ Lp[0, 1] such that,

|a(g)| ≥ 1

using let g map [0, 1] to R So,
∫ s

0
|g(x)|pdx is continuous. There exist some s ∈ [0, 1] such

that ∫ s

0

|g(x)|pdx = 1/2

∫ 1

0

|g(x)|p > 0

Let h1 = gχ[0,s] and h2 = gχ(s,1] So, g = h1 + h2 and |g|p = |h1|p + |h2|p

∫ 1

0

|h1(x)|pdx =

∫ s

0

|g(x)|pdx = 1/2

∫ 1

0

|g(x)|pdx
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Hence, ∫ 1

0

|h2(x)|pdx = 1/2

∫ 1

0

|g(x)|pdx

Because, |a(g)| ≥ 1 and |a(hi)| ≥ 1/2 for some i.

Let g1 = 2hi, So |a(g1)| ≥ 1

And,

∫ 1

0

|g1(x)|pdx = 2p
∫ 1

0

|hi(x)|pdx = 2p−1

∫ 1

0

|g(x)|pdx

Now we get a sequence {gn} in Lp[0, 1] such that |a(gn)| ≥ 1

And,

d(gn, 0) =

∫ 1

0

|gn(x)|pdx = (2p−1)n
∫ 1

0

|g(x)|pdx → 0

Which contradicts the continuity of a.

Hence Proved.

* TWO NORM CONVERGENCE IN Lp-SPACES

For 1 ≤ p ≤ ∞, Lp[0, 1] is called a space of all measurable functions g such that∫ 1

0
|g(c)|pdx < ∞ and L∞[0, 1] is called a space of all functions g such that essential

Sup|g| < ∞ where,

essential Sup = inf{N : |g(x)| ≤ N∀[0, 1]}

If there are two real numbers, p and q, then

1

p
+

1

q
= 1

the Lp[0, 1] is Banach dual of Lq[0, 1] and Banach dual of L1[0, 1] is L∞[0, 1] but Banach

dual of L∞[0, 1] is not L1[0, 1].
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3.7 TWO NORM CONVERGENCE IN l∞

Let [0, 1] be the set of all necessary bounded functions in the space L∞. If a function g is

bounded almost everywhere then g is called essential bounded functions.

Let {gn} be the sequence of functions is said to be two norm convergence in L∞, if there

exist N > 0 such that ||gn|| < N for all n and

limn→∞

∫ 1

0

gn(x)h(x)dx

exists for all absolutely or Lebesgue integrable function h on [0, 1].

3.8 SOME IMPORTANT RESULTS

Result:- 3.8.1

Let {gn} is two norm convergence in L∞, then there exist a function g ∈ L∞ such that∫ 1

0

gnh →
∫ 1

0

gh

as n → ∞ for all Lebesgue integrable function h in [0, 1].

Result:- 3.8.2

If h is absolute integrable on [0, 1] and

M(f) =

∫ 1

0

g(x)h(x)dx

for all g ∈ L∞ then M defines a two norm continuous linear function on L∞.

Result:- 3.8.3

There is an absolute integrable function h such that

M(f) =

∫ 1

0

g(x)h(x)dx
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for every g ∈ L∞ if M is a two norm continuous linear functional on L∞.

NOTE:-

Norm Convergence in Lp-Space

A seq {gn} of functions in Lp for all 1 ≤ p ≤ ∞ is said to be norm convergence to g ∈ Lp

if ||fn − f ||p → 0(convergent to zero), as n → ∞.

3.9 TWO NORM CONVERGENCE IN LP -SPACE

A seq {gn} of functions in Lp for all 1 ≤ p ≤ ∞ is said to be two norm convergence to

g ∈ Lp if there exist N > 0 such that,

||gn||p ≤ N

for all n and

limn→∞

∫ 1

0

gn(x)h(x)dx

exists for all h ∈ Lq.

LEMMA:-

A function g in Lp for all 1 ≤ g < ∞ if and only if

Sup(D)(Σ
|M(d)−M(c)|p

|d− c|p − 1
) < ∞

where Sup is taken over all of divisions D = {[c, d]} of [0, 1] in [c, d] stands for a typical

interval in the division.
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3.10 SOME IMPORTANT RESULTS

Result:- 3.10.1

If {gn} is two norm convergent in Lp for all 1 ≤ p ≤ ∞ then there exist a function g ∈ Lp

such that ∫ 1

0

gnh →
∫ 1

0

gh

as n → ∞.

Result:- 3.10.2

Let 1 ≤ p ≤ ∞ if {gn} is norm convergence for all g ∈ Lp then {gn} is two norm conver-

gence to g in Lp.

Result:- 3.10.3

If h ∈ Lq for all 1 ≤ q ≤ ∞ and

F (g) =

∫ 1

0

g(x)h(x)

for all g ∈ Lp then F defines a two norm continuous linear functional on Lp.

Result:- 3.10.4

If F is two norm continuous functional on Lp, then F is norm continuous functional on

Lp for 1 ≤ p ≤ ∞

Result:- 3.10.5

There exists a function h ∈ Lq such that

F (g) =

∫ 1

0

gh
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for every g ∈ Lp if 1 ≤ p ≤ ∞ and F are two norm continuous linear functional on Lp.

Corollary:-

A linear functional on Lp is two norm continuous if and only if it is norm continuous.

Let 1 ≤ p ≤ ∞. For p = ∞, this corollary does not apply.
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4
Characterisation of Lp-Space

4.1 In Lp Space, Weak Sequential Convergence

Definition:-: If x is a normed linear space, then,Weakly convergent to g ∈x is defined as

a sequence gn ∈x,

lim
n→∞

F (gn) = F (g)∀F ∈ X∗

and written as gn → g in X .

Thus, g and gn are members of x, and gn weakly converges to g.

We continue to write gn → g in x to signify that limn→∞||gn → g|| = 0 and we frequently

refer to this style of convergence as strong convergence in x in order to differentiate it

from weak convergence. Since

|F (gn)− F (g)| = |F (gn − g)| ≤ ||F ||∗||gn − g||∀F ∈ X∗

A sequence converges weakly if it converges strongly, but the opposite is not true.
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4.2 Theorem

Let S be a measurable set and 1 ≤ p < ∞.Let gn → g in Lp(S).Then gn is bounded in

Lp(S) and ||f ||p ≤ lim inf ||gn||p.

Proof:-

Assume that the conjugate function of g and the conjugate spaces p and q.Ascertaining

the right hand inequality first

By Holder’s inequality,

∫
s

g′.gn ≤ ||g′||q.||gn||p = ||gn||p∀n

Since gn converges weakly for all g and g′ in Lq(S)

||g||p =
∫
s

g′.g = lim
n→∞

∫
s

g′.gn ≤ lim inf ||gn||p

Now, we use contradiction to demonstrate that gn is constrained in Lp(S).Let ||fn|| =

n.3n∀n and ||gn||p be unbounded.

We choose a set of real numbers ai inductively such that ai = ±1
3

i for all k.

⇒a1 =
1
3
. if i is natural no for which a1, a2, ........an be defined

an+1 =
1

3n+1
if

∫
S

[
n∑

i=1

ai(gn)].gn+1 ≥ 0

and an+1 = − 1
3n+1 [for negative].Therefore by A and the definition of conjugate function

|
∫
s

[
n∑

i=1

ai(gi)
′].gn| ≥

1

3i
||gn||p = n

and ||an.g(n)′||q = 1
3n
∀n.

Since ||ai(gi)′||q = 1
3i
∀i

A cauchy sequence in Lq (S) is the partial sum of series sequence
∑∞

i=1 ai(gi)
∗. According

to the Riesz-Lischer theorem, Lq (E) is complete.
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For every n we deduce from the triangle inequality and Holder’s inequality, define the

function h ∈ Lq(E) by h =
∑∞

i=1 ai(gi)
′ .

|
∫
s

h.gn| = |
∫
s

[
∞∑
i=1

ai(gi)
′].gn|

≥ |
∫
s

[
n∑

i=1

ai(gi)
′].gn| − |

∫
s

[
∞∑
i=1

ai(gi)
′].gn|

≥ n− |
∫
E

[
∞∑

i=n+1

ai(gi)
∗].gn|

≥ n− [
∞∑

i=n+1

1

3i
].||gn||p

= n− 1

3

i

.
1

2
.||gn||p

=
n

2

That is a contradiction since h belongs to Lq(E) and gn converges weakly in Lp(S).Real

number sequence [
∫
s
h.gn] converges and is limited as a result.Thus, fn is constrained

by Lp(S).

Corollary:-

Let q be the conjugate of p and S be a measurable set for 1 ≤ p∞.Let’s say that in Lp(S),

qn converges weakly to g while in Lq(S), hn converges strongly to h.Then

lim
n→∞

∫
s

hn.gn =

∫
s

h.g

Proof:-

For all n,

∫
s

hn.gn −
∫
s

h.g =

∫
s

[hn − h].gn +

∫
s

h.gn −
∫
s

h.g

Let K ≥ 0 any constant such that ||gn||p ≥ k for all n.
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By Holder’s inequality

|
∫
s

hn.gn −
∫
s

h.g| ≤ K.||hn − h||q + |
∫
s

h.gn −
∫
s

h.g|

Due to these disparities and the reality that both

lim
n→∞

||hn − h||q = 0 lim
n→∞

∫
S

h.gn =

∫
s

h.g

So.

lim
n→∞

∫
s

hn.gn =

∫
s

h.g

. Hence Proved.

4.3 Weak Sequential compactness in Lp space

Definition:-If every sequence gn in a subset A has a subsequence that weakly converges

to g ∈ A, then the subset A is said to be weakly sequentially compact in the normed

linear space X .

Theorem:-

Assume that S is a quantifiable set on 1 ≤ p < ∞.Then g ∈ Lp(S) for all ||g||p ≤ 1 is

weakly sequentially compact in Lp(S).

4.4 Riesz weak compactness theorem

Let 1 < p < ∞ and S be measurable sets.If gn is a bounded sequence in Lp(S), then there

is a subsequence gnk of gn and a function g in Lp(S) for which g is a weakly convergent

subsequence for every bounded sequence in Lp(S).

lim
k→∞

∫
s

gnkh.du =

∫
s

g.hdu∀h ∈ Lq(S)

where 1
p
+ 1

q
= 1
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4.5 Approximation in Lp-Space

Here, the approximation of Lp spaces with respect to the Lp(S) norm is taken into

account. In essence, approximation is derived from the notion of Lp space’s density.

Definition:-

A normed linear space with the norm ||.|| is what we’ll call X . Two subsets of X, A and

B, with A ⊆ B, are given. If there is a function g in A such that ||g − h|| < ϵ exists for

each function h in B, then A is said to be dense in B.

It is not difficult to show that the set A is dense in B iff there is a sequence < gn > such

that limn→∞gn = h∀h ∈ X

morever it is also useful to observe that for A ⊆ B ⊆ C ⊆ X . Given that B is dense in C

and A is dense in B, A must also be dense in C.

4.6 Propositions

4.6.1 Proposition:-

Let S be a measurable set, then the subspace of simple functions in Lp(S) is 1 ≤ p < ∞.

Proof:-

Let h ∈ Lp(S) and p = ∞ and S0 ⊆ S with measure zero for which h is bounded on S.

By lemma There is a set of basic functions on S that converge uniformly on S to h and

with respect to the L∞(S) norm.

So, Simple function dense in L∞(S)

Now let 1 ≤ p < ∞ and let h is measurable.

⇒ By simple approximation theorem there exist a sequence < an > of simple functions

on E such that < an >→ h pointwise on S and |an| ≤ |h| on S for all n.

By integral comparison test an ∈ Lp(S) we claim that < an >→ h ∈ Lp(E). Indeed for
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all n ,

|an − h|p ≤ 2p{|an|p + |h|p} ≤ 2p+1|h|p

We conclude from the Lebesgue dominated convergence theorem that < an >→ h in

Lp(S) since |h|p is integrable over S.

4.6.2 Proposition:-

Let 1 ≤ p < ∞ and [m,n] be closed bounded intervals. Therefore, the step function

subspace on [m,n] is dense in Lp[m,n].

4.7 Separability in Lp - Space

Definition:-

If a countable subset is dense in a normed linear space X , then X is said to be separable.

Since the rational numbers are a countable dense subset of the real numbers, they can

be separated. Because the polynomial with rational coefficents is a countable set that is

dense in C[u, v], we may conclude from the Weierstrass approximation theorem that

it is separable for [u, v] and closed bounded interval C[u, v] normed by the maximum

norm.

4.8 Theorem

Let 1 ≤ p < ∞ and S be a set of measurable elements. When this happens, the normed

linear space Lp(S) is separable.

Proof:-

Let [u, v] be a closed and bounded interval and the collection of all step functions on

[u, v] is T [u, v].

Let T ′
[u, v] be the subcollection of t[u, v]. comprising step function ϕ on [u, v] that take

rational values and for which thre is a partition P = {a0, a1, .....an} on [u, v] with ϕ
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constant on (ak−1, ak) for 1 ≤ k ≤ n and xk rational for 1 ≤ k ≤ n− 1.

Now, we can conclude that T ′[u, v] is dense in T [u, v] with regard to the Lp(S) norm. This

is based on the density of rational numbers in the real numbers. These two inclusions,

each of which is dense in relation to the Lp[u, v] norm, are thus present,

t′[m,n] ⊆ T [m,n] ⊆ L6p[u, v]

So, ⇒ T ′[m,n] is dense in Lp[u, v] for all n define A − n to be the function on R that

vanish outside [−n, n] and those restrictions to [−n.n] belongs to T
′
[−n, n].

Define A = ∪n∈NAn. Then A is countable collection of functions in Lp(R). By monotonic

convergent theorem,

limn→∞

∫
[−n,n]

|g|p =
∫
R

|g|p

for all g ∈ Lp(R)

⇒ Therefore, A is countable called of functions that are dense in Lp(R) by the selection

of each An. Let S be a universal measurable set to finish. then the group of limitations

on the function’s S. Because A is a countably dense subset of Lp(S). Lp(S) is separable.

Hence Proved.

4.9 Characteristic properties of Lp Space

The fundamental component of the theory at Lp spaces, where p > 1 is Holder’s in-

equality

∫ 1

0

g(t).h(t).dt ≤ (

∫ 1

0

|g(t)|pdt)1/p(
∫ 1

0

|h(t)|qdt)1/q..............(A)

where , g(t) ∈ Lp, h(t) ∈ Lq and q = p
p−1
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The following particular young’s inequality is typically used to demonstrate this in-

equality

∫ 1

0

g(t).h(t).dt ≤ 1

p

∫ 1

0

|g(t)|pdt+ 1

q

∫ 1

0

|h(t)|qdt............(B)

For the function , It is well known that ,

h(t) = |g(t)|p−1sgng(t) = T.g(t).............(C)

If the equality for the pairs of functions holds in B then the equality for that same pair

also hold in A this property is characteristic for Lp spaces (p > 1).

Conjugate Similar:-:

The term conjugate similar refers to a transformation T from a universal continuous

semi ordered linear space R into its conjugate space R2 with the following conditions:

a) a ≥ b ≥ 0 ⇒ Ta ≥ Tb ≥ 0

b) (Ta)(b) = T (b)(a) for any b

c) T (−a) = −Ta

4.10 Theorem

Let R be a strictly convex normed universal continuous semi-ordered linear space with

at least two linear independent elements.If the following condition is met by a one to

one conjugately similar correspondence T ,

(Ta, a) = ||Ta||.||a||(0 ≤ a ∈ R)...............(1)

then we can find a number p > 1 such that

Tλa = λp−1Ta

for any λ > 0a ∈ R.
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Proof:-

We take advantage of the fact that there is a such T to define on R a modular m(a) that

needs the following requirements:

– 0 < m(a) < +∞ for all 0 ̸= x ∈ R

– m(λa) is a convex function of λ > 0

– m(a+ b) = m(a) +m(b) if ab are naturally orthogonal.

– a ≥ b ≥ 0 ⇒ m(a) ≥ m(b)0 ≤ ai ⇒ m(a) = Supmi∈A(ai)

The modular is defined by m(a) =
∫ 1

0
(Tλa, a)dλ when a is non-negative and m(a) =

m(a+)−m(a−) for any a ∈ R.Conversely , If m is once defined,T is characterized by the

following equation

(Ta, a) = m(a) +m−(ā)

which is generalization of (C).This is the justification for our claim that our theorem

characterizes Lp relating young’s and Holders inequality-

Now by (D) (Tλa, a) = ||Tλa||.||a|| for any λ > 0.Therefore existence of such function

fa(λ) is implied by strict convexity of the conjugate norm

Tλa = fa(λ)Ta...........(E)

for all λ > 0 and a ∈ R put

m(a) =

∫ 1

0

(Tλa, a)dλ

we get

m(λ[p]a) =

∫ λ

0

(Tn[p]a, a)dn

=

∫ 1

0

(Tnx, [p]a)dn
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∫ λ

0

fa(n)dn.(T [p]x, x)

Hence it follows that -

m(λ[p]a)

m([p]a)
=

∫ ϵ

0
fa(n)dn∫ 1

0
fa(n)dn

=
m(λx)

m(x)
..............(F )

for any λ > 0[p] with [p]x ̸= 0

Now we will prove that if (F) holds for any element a,we can find a no p > 1 such that

m(λa) = λpm(a). To show this , we take a positive element a.Since R is at least two

dimensional there exists y > 0 such that x ∼ y = 0.Then, putting Cλ = λa+ b by (F),

m(nCλ)

m(Zλ)
=

m(n[a]Zλ)

m([a]Zλ)
=

m(λna)

m(λa)
∀(λ, n > 0)

and

m(nCλ)

m(Zλ)
=

m(n[b]Zλ)

m([b]Cλ)
=

m(np)

m(p)

m(λna)

m(a)
=

m(na)

m(a)
.
m(λa)

m(a)

Since m(λa) is continuous with respect to λ > 0, we can find p ≥ 1 such that,m(λa) =

λpm(a)

Here p must be strictly greater then one,because T is one to one .From the definition of

m it follows that (Tλa, a) = λp−1(Ta, a)

⇒ Tλa = λp−1Ta
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