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Abstract 

 
      Diabetes Mellitus is a persistent global health concern, impacting millions 

of individuals and standing as a prominent driver of illness and death due to 

its associated complications. Despite extensive research efforts spanning 

many years, the elusive quest for a definitive cure for diabetes persists. 

Management of the condition primarily revolves around the intricate task of 

blood sugar level control, achieved through a combination of dietary choices, 

physical activity, and pharmaceutical interventions. The field of mathematical 

modeling has surfaced as a promising avenue in this pursuit, but the accuracy 

of these models is closely linked to the effectiveness of the utilized machine 

learning techniques.  

   In the current thesis, mathematical models have been used to explain many 

elements of glucose-insulin dynamics, their effects, and the maintenance of 

glucose levels and around the physiological range in diabetics. We have 

examined various mathematical models that satisfy the physiology underlying 

the mechanism involved in the dynamics of glucose and insulin in both type-1 

and type-2 diabetics. We have looked at the details and causes of the 

persistently elevated glucose concentration levels in diabetics. Following the 

investigation of different systems, the outcomes of the dynamical analysis of 

the issues are explored. Every mathematical model has undergone a stability, 

positivity, and boundedness analysis. The primary tools used for analysis and 

simulation of mathematical models include local linearization, Routh-Hurwitz 

stability criterion, Lyapunov function, MATLAB 2012b (ode45, dde45) and 

Python 3.7.   

Two different types of mathematical models have been examined by us: the 

delay differential equations (DDE) model and the artificial intelligence (AI) 

model. The severity of the disease and, consequently, its treatment, are 

caused by delays in the dynamics of many occurrences. DDE model's 

significance in the advancement of an artificial pancreas cannot thus be 

understated.  
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Due to the robust data analysis capabilities of machine learning (ML), AI 

models based on supervised machine learning serve as highly effective tools 

for accurately predicting glucose levels in artificial pancreas systems. To 

enhance the efficiency of artificial pancreas functionality, models combining 

Delayed Differential Equations (DDE) and AI have been developed.  

 

Keywords: Glucose, Insulin, Artificial pancreas, Free Fatty Acids, Obesity, 

Liver, Kidney, Polycystic Ovarian Disease (PCOD), Delays, Intravenous glucose 

tolerance tests, Insulin analogues, Aspart, Lispro, Ordinary differential 

equations (ODE), Delay differential equations (DDE), and Artificial intelligence 

(AI) model. 
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Chapter 1 

Introduction 

 
 
 

Through the application of complex mathematical formulations, this opening 

chapter provides a condensed overview of the current research on the physiology of 

diabetes. It encapsulates an extensive literature review that spans the multifaceted 

landscape of diabetes, encompassing its diverse types, diagnostic techniques, risk 

factors, symptoms, and medical treatments. Additionally, this chapter deeply 

explores the fundamental mathematical model, intricately illustrating the interplay 

between glucose and insulin dynamics. Its primary aim is to clarify the rationale 

behind adopting this specific approach in the execution of the research outlined in 

this thesis. 
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1.1 Diabetes Mellitus 

     Diabetes mellitus, commonly referred to as diabetes, is a metabolic disorder 

characterized by chronically elevated blood sugar levels. Several factors 

contribute to the growing prevalence of diabetes, including population growth, 

aging, urbanization, increasing rates of obesity, and sedentary lifestyles. In 2015, 

an estimated 41.5 million adults worldwide had diabetes [1], with the Western 

Pacific (153.2 million), Europe (59.8 million), North America and the Caribbean 

(44.3 million), the Middle East/North Africa (35.3 million), and Sub-Saharan Africa 

(14.2 million) accounting for the highest numbers. The top ten countries with the  

diabetics were China (109.6 million), India (99.2 million), the United States (29.3 

million), Brazil (14.3 million), Russia (12.1 million), Mexico (11.5 million), 

Indonesia (10 million), Egypt (7.8 million), Japan (7.2 million), and Bangladesh 

(7.1 million). Notably, Sub-Saharan Africa is projected to experience a substantial 

240% increase in diabetes cases despite having the lowest estimated prevalence 

[1]. According to the 2020 National Diabetes Report, 34.2 million Americans were 

diagnosed with diabetes, with an additional 7.3 million undiagnosed cases [2]. In 

2019, it was estimated that 463 million individuals, comprising 9.3% of the global 

population, had diabetes. Projections indicate that by 2030 and 2045, this figure 

will rise to 10.2% (578 million) and 10.9% (700 million), respectively. Research 

suggests that diabetes is more prevalent in urban areas (10.8%) compared to 

rural regions (7.2%) [3]. Impaired glucose tolerance is also on the rise, with an 

estimated 8.0% (454 million) of the population affected by 2030 and 8.6% (548 

million) by 2045 [4]. In 2019, approximately 7.5% (374 million) of the global 

population was affected by diabetes. Notably, the age group between 45 and 64, 

the most productive years for many individuals, will experience the most 

significant growth in diabetes cases. As a consequence, diabetes imposes a 

significant financial burden, accounting for 5% to 25% of the average income of 

disadvantaged families, both in developed and developing countries. Various 

World Bank studies have explored the prevalence of diabetes across income 

groups, revealing that high-income nations have a higher prevalence rate 

(10.4%) than middle-income (9.5%) and low-income nations (4.0%) [5]. 

Projections indicate that by 2045, the prevalence of diabetes is expected to 

increase to 11.9% in high-income countries, 11.8% in middle-income countries, 
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and 4.7% in low-income countries [6]. The financial burden of diabetes is 

substantial, consuming a significant portion of the budget for low-income 

families, ranging from 5% to 25%. According to recent data from the American 

Diabetes Association (ADA) released on March 2022 [6], the cost of diagnosed 

diabetes escalated by 26% over a five-year span, resulting in surging of 

economical burden from $245 billion in 2012 to $327 billion in 2017 [7]. Hospital 

inpatient treatment accounts for 30% of these costs, while expenses for 

prescriptions related to diabetes complications, supplies, anti-diabetic drugs, and 

doctor visits contribute 15% and 20%, respectively. Diabetes patients spend an 

annual average of $16,752 on medical costs, with $9,601 directly attributed to 

the condition [8]. This is typically 2.3 times higher than what individuals without 

diabetes incur. This estimate underscores the significant socioeconomic impact of 

diabetes, although it does not encompass intangible factors such as pain and 

suffering, the support provided by unpaid caregivers, or the cost associated with 

undiagnosed diabetes. 

  Given that diabetes is a global health concern affecting millions worldwide, 

research into the origins and management of the condition is of paramount 

importance. By investigating the biological, environmental, and social factors 

influencing diabetes, researchers can develop improved treatments and 

preventive measures. Additionally, through the identification of new risk factors 

and the creation of innovative therapies, diabetes research has the potential to 

reduce the prevalence of the disease in society. Consequently, diabetes research 

stands as a critical component of our public health initiatives, with the goal of 

enhancing the quality of life for those affected by this condition [9]. 

 
       1.1.1 Diabetes is ubiquitous 

 

  In the last thirty years, diabetes has witnessed a significant surge in its 

prevalence, marking its status as a pervasive health concern. Terming it an 

"epidemic" emphasizes the urgent requirement for comprehensive public health 

measures. Presently, the management of diabetes involves a range of 

strategies, including monitoring, risk assessment, implementing risk reduction 

therapies, patient identification, and tracking outcomes. These approaches 
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mirror successful methodologies employed in combating infectious diseases. 

However, managing diabetes differs from addressing typical communicable 

diseases as it necessitates a proactive 'find and treat' approach for patients. 

Failing to implement preventive and therapeutic measures could lead to a rapid 

exacerbation of the diabetes epidemic [10]. 

 

    1.1.2 Memoir of diabetes 
 

  Throughout history, diverse ancient civilizations such as the Arabs, Chinese, 

Indians, and Egyptians made substantial efforts to understand the symptoms 

and signs of diabetes mellitus. The evolution of diabetology as a medical sub-

specialty, including its diagnosis and treatment, owes much to a handful of 

influential individuals. 

Paul Ghaliongui, an Egyptian endocrinologist and medical historian, offered 

critical insights on the description of diabetes found in the 1500 BC Ebers 

Papyrus [11].  

Indian surgeon Sushruta, known for his work in the Samhita, referred to 

diabetes as "Madhumeha," noting the sweet taste and sticky texture of urine, 

which attracted ants. He astutely connected diabetes with the opulent dietary 

habits of the affluent classes, characterized by their preference for rice, cereals, 

and sweet snacks. 

The distinguished Chinese physician Chang Chung-Ching, often referred to as 

the "Chinese Hippocrates," accurately identified the triad of polyuria, polydipsia, 

and weight loss as distinctive symptoms of a specific ailment. Chen Chuan, a 

7th-century AD scholar, demonstrated remarkable diagnostic acumen by 

accurately defining diabetes' typical symptoms and even coined the term 'Hsiao 

Kho ping' for diabetes while acknowledging the presence of sugary urine. 

Since the 18th century, medical professionals have associated diabetes with 

various complications, including eye issues and skin conditions like furuncles 

and ulcerations. In the 11th century, the celebrated Arab physician Avicenna, 

renowned for his work 'The Canon of Medicine,' provided a comprehensive 

description of diabetes and its associated complications, which encompassed 

gangrene and sexual dysfunction [12]. Following in Avicenna's footsteps, the 

medieval scholar Moises Maimonides provided a detailed account of diabetes, 
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including its symptoms of acidosis. 

 
       1.1.3 Definition of Diabetes  
 

  The term 'diabetes,' or 'diabetes mellitus,' originates from the observation of 

sweet-tasting urine, a characteristic symptom of this condition. It emerges when 

our blood sugar levels consistently remain elevated, leading to the development 

of diabetes. The condition's hallmark, hyperglycemia, occurs due to insufficient 

or ineffective insulin production in the liver. At its core, the diabetic syndrome 

primarily involves persistently high blood sugar levels, attributed to inadequate 

insulin synthesis and/or its inefficient functioning. It can also be defined as a 

disorder influenced by how our bodies process digested food for energy and 

regulate the metabolism of carbohydrates, proteins, and lipids [9].  

 
1.2 Glucose-Insulin Hormone-Regulated Metabolic System 

 

  An individual experiences hyperglycemia when their blood glucose level 

exceeds the typical physiological range, usually considered to be within 70 to 

110 mg/dL. The balance in the glucose-insulin metabolic pathway is primarily 

reliant on the interplay of the pancreatic endocrine hormones insulin and 

glucagon [13]. 

When plasma glucose levels rise: 

• The pancreas releases insulin from β-cells. 

• Insulin interacts with insulin receptors on cells. 

• Glucose transporters (GLUT4) aid in moving plasma glucose into cells, 

primarily in muscle and adipose cells. 

• Cells utilize the glucose for energy when required. 

In instances of low plasma glucose levels: 

• α-cells in the pancreas release glucagon in response to low glucose 

levels. 

• The liver receives the secreted glucagon. 

• The liver converts glucagon into glucose. 

This process elevates the plasma glucose concentration. Any excess glucose is 

stored in the liver, available to be reconverted into glucose if plasma glucose 
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levels drop. Factors that raise glucose levels include meals, oral glucose intake, 

and sustained nourishment. The pancreas and liver play crucial role in 

maintaining blood glucose levels within the typical physiological range. 

 
     1.3 Disorder Pathogenesis 

 

  Diabetes Mellitus represents a metabolic disorder characterized by the body's 

compromised ability to either produce or effectively utilize insulin, resulting in 

an imbalance in glucose levels typically ranging from 3.9 to 6.9 mmol/L. In the 

course of carbohydrate metabolism, complex carbohydrates break down into 

soluble sugars that are absorbed into the bloodstream through the intestinal 

wall. 

This process leads to an increase in blood sugar levels, triggering the release of 

insulin and glucagon hormones from the pancreas to maintain a stable level. 

Insulin, generated by β-cells, assists in reducing blood sugar levels by enabling 

the absorption of glucose into cells. Prolonged elevation of blood glucose levels 

leads to a condition known as hyperglycemia (>6.9 mmol/L) due to 

irregularities in either insulin secretion or action. 

Glucagon, a peptide hormone produced by α-cells, contributes to raising blood 

glucose levels by stimulating the liver to convert stored glycogen into glucose, 

subsequently releasing it into the bloodstream. Consistently low blood glucose 

levels are defined as hypoglycemia (<3.9 mmol/L) [13]. 

 
1.3 Numerous Foundational Terminology and  

Explanations  
 

  In the context of diabetes, there are numerous fundamental terms and 

definitions to be aware of: 

• Glucose: The primary source of energy for the body, this common 

aldohexose is stored as starch or glycogen in both plants and animals. 

• Glycogen: A complex, branched glucose polymer serving as an energy 

source, stored in the liver and muscle cells. 

• Endocrine System: Comprising glands that produce hormones released 

into the bloodstream or nearby tissues, including the pituitary gland, 

thyroid, pancreas, and others. 
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• Liver: An essential and complex organ responsible for metabolic 

regulation, bile production, and detoxification. 

• Pancreas: An endocrine gland releasing hormones like insulin, glucagon, 

and somatostatin into the bloodstream, and producing pancreatic juices 

rich in digestive enzymes for nutrient absorption. 

• Peptide Hormones: Substances released by cells into circulation or 

surrounding tissues, consisting of shorter amino acid chains compared to 

protein hormones. 

• α-Cell: Endocrine cells in the pancreas that release the peptide hormone 

glucagon. 

• Glucagon: A peptide hormone produced by pancreatic α-cells, 

responsible for raising blood glucose levels and opposing the actions of 

insulin. 

• β-Cell: Cells in the pancreatic islets primarily responsible for storing and 

releasing insulin. 

• Insulin: A peptide hormone produced by pancreatic β-cells that regulates 

carbohydrate and lipid metabolism by promoting glucose absorption in 

cells while inhibiting the liver's glucose production. 

• Insulin Sensitivity (SI): A measure of how effectively body cells respond 

to insulin's signal to uptake glucose. 

• Insulin Resistance: A condition in which body cells do not respond 

normally to insulin, leading to elevated insulin levels and an increased 

risk of type 2 diabetes. 

• Disposition Index (DI): A measure of insulin secretion and sensitivity 

predicting the risk of type 2 diabetes and assessing beta cell health. 

• Hyperglycemia: A condition characterized by elevated blood glucose 

levels due to inadequate insulin secretion or cell resistance to glucose 

uptake. 

• Hypoglycemia: A state where the pancreas secretes more insulin than 

necessary, causing glucose levels to drop below the normal range. 

• Glucose Transporter Type 4 (GLUT4): A protein responsible for 

transporting glucose in response to insulin signaling, primarily found in 

adipose tissues and muscles. 

• Effectiveness of Glucose: The ability of glucose to reduce its own 
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concentration without the assistance of insulin. 

• Acute Insulin Response (AIR) Glucose: A rapid increase in insulin 

secretion in response to rising blood glucose levels, crucial for regulating 

glucose homeostasis. 

• Ultradian Oscillations: Periodic cycles occurring continuously within a 24-

hour day. 

• Gluconeogenesis: A metabolic process that produces glucose from non-

carbohydrate sources like amino acids and fatty acids.  

• Continuous Glucose Monitoring (CGM): A system that continuously tracks 

blood sugar levels, offering real-time data for diabetes management. 

• Continuous Subcutaneous Insulin Infusion (CSII): Also known as insulin 

pump, it involves using an insulin pump to deliver continuous, small 

doses of insulin to mimic natural insulin secretion. 

• Insulin Pump: A portable device that continuously infuses subcutaneous 

insulin based on individual requirements. 

• Basal Rate: The continuous supply of insulin to maintain normal bodily 

function. 

• Bolus Dose: Additional insulin given to stabilize glucose levels. 

• Artificial Pancreas: A technology designed to mimic the function of a 

healthy pancreas for individuals having severe diabetic conditions.  

• Time Delays: Delays within the glucose-insulin regulation mechanism, 

including insulin release, hepatic glucose synthesis suppression, and the 

time it takes for insulin to lower blood glucose levels. 

 

1.5 Type of Diabetes 
 

  Diabetes can be divided into three categories: Type 1 diabetes, Type 2 

diabetes and Gestational diabetes. 

 
1.5.1 Type 1 diabetes mellitus (T1DM) 

 

  Type-1 diabetes, previously known as insulin-dependent diabetes mellitus 

(IDDM) or juvenile-onset diabetes, is an autoimmune disorder where the 

immune system targets and destroys the pancreatic β-cells, responsible for 

producing insulin. This leads to a total deficiency of insulin and the presence of 
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anti-insulin or anti-islet cell antibodies in the bloodstream. While the onset of 

the condition can be rapid, occurring over days to weeks, the destruction of 

pancreatic islets and lymphocyte infiltration may take longer. Individuals with 

type-1 diabetes generally require insulin therapy, as oral insulin-stimulating 

medications are often ineffective. This type of diabetes constitutes 5 to 10 

percent of all diagnosed cases of diabetes. 

 

Symptoms of Diabetes 

 Extreme Hunger 

 Frequent urination 

 Bed-wetting in youngsters 

 Weight Loss 

 Irritability 

 Exhaustion and weakness 

 Blurred Vision 

 Vaginal yeast infection in females 

These symptoms are often indicative of the body's inability to regulate blood 

sugar due to a lack of insulin, leading to elevated glucose levels.  

Risk factors of Type 1 Diabetes 

 Family history of diabetes 

 Inadequate exercise or physical inactivity 

 Poor nutrition 

 Overeating 

 Pancreatic illnesses 

 1.5.2 Type 2 diabetes mellitus (T2DM) 
 

  Type-2 diabetes is characterized by the body's reduced sensitivity to insulin, 

leading to not sufficient insulin production, insulin resistance, and the gradual 

deterioration of pancreatic β-cell function. This reduced sensitivity results in 

decreased glucose uptake by the liver, muscle, and fat cells. Peripheral insulin 

resistance, often accompanied by β-cell depletion, disrupts the maintenance of 

low blood sugar levels, even when blood insulin levels are high, due to 
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alterations in insulin receptors affecting insulin's effectiveness. Obesity plays a 

significant role in the development of insulin resistance, with genetics and 

lifestyle factors such as insufficient physical activity, smoking, excessive alcohol 

consumption, and sedentary habits also contributing to this resistance. Around 

55% of type-2 diabetes cases are associated with obesity. The increase in 

childhood obesity in recent years has contributed to the growing prevalence of 

type-2 diabetes in children and adolescents. Environmental toxins are also 

considered a potential factor in the recent increase in type-2 diabetes rates. 

 
       Symptoms of type 2 diabetes mellitus 

• Increased urination rate and push 

• Increased appetite 

• Loss of weight 

• Fatigue 

• Distorted vision 

• Repeated infections 

• Darkened skin spots 

 

Risk factors of type 2 diabetes mellitus 

• Family history of diabetes 

• Overeating 

• Unhealthy diet 

• Physical inactivity 

• Increasing age 

• Elevated blood pressure 

• Gestational diabetes in the past 

• Inadequate diet during pregnancy 

• Insulin sensitivity 

• Low levels of High-Density Lipoprotein (HDL) cholesterol in a very 

dense form and high triglyceride levels (TG) 

• Sedentary lifestyle 
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• Polycystic ovary syndrome (PCOS) 

1.5.2 Gestational Diabetes Mellitus 
  

  Gestational diabetes mellitus (GDM) is defined as "carbohydrate intolerance 

resulting in varying degrees of hyperglycemia, first recognized or occurring 

during pregnancy." This condition involves challenges in controlling blood sugar 

levels and commonly manifests during pregnancy.  

Symptoms of gestational diabetes mellitus 

Typically, gestational diabetes doesn't manifest noticeable symptoms, and its 

diagnosis often relies on routine pregnancy screening, but some are given 

below: 

• Increased thirst 

• Fatigue 

• Frequent urination 

• Blurred vision 

•  Nausea & vomiting 

        Risk factor of gestational diabetes mellitus 

• Family history 

• Age 

• Obesity 

• Polycystic ovary syndrome (PCOS) 

• Excessive weight gain during pregnancy 

• Sedentary lifestyle  

• Hypertension 

Controlling the level of glucose in the bloodstream in shown in Fig. 1.1  

1.6 Diabetes Management: Assessing Diagnosis and  

 Testing Methods 
 

  Though diabetes is a prevalent condition, it's vital to acknowledge the 

significance of personalized care and customized treatments for each person. 
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Providing access to a variety of medical treatments and management 

approaches for individuals with diabetes and their families is of utmost 

importance.   

 

1.6.1 Utilizing Glucose Tolerance Tests for Disease Diagnosis 
 

Over time, various glucose tolerance tests have been formulated and utilized in 

clinical research. These tests play a critical role in assessing an individual's 

diabetic condition, aiding in determining the presence or absence of diabetes. 

   

HbA1c 
 
The A1C test, also known as the hemoglobin A1c, HbA1c, or glycohemoglobin 

test, is a blood analysis that offers information about an individual's average 

blood glucose, commonly referred to as blood sugar, levels over the past three 

months.  

 

 

Figure 1.1: Controlling the level of glucose in the bloodstream 

  

Fasting Sampled Intravenous Glucose Tolerance Test (FSIGTT) 
 
The Fasting Blood Sugar Test is a diagnostic evaluation that requires an 8 to 

12-hour fasting period, refraining from consuming both food and drink before 
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the test. Elevated glucose levels surpassing 126 mg/dL over an extended 

period indicate a higher risk of developing diabetes.  

 

Oral Glucose Tolerance Test (OGTT) 
 
In this test, blood samples are taken at intervals spanning 2 hours subsequent 

to the ingestion of a 75 mg glucose solution. If the blood glucose level exceeds 

200 mg/dL, it is categorized as hyperglycemia. Prolonged hyperglycemia over 

an extended period could potentially lead to the onset of diabetes.  

 
Intravenous Glucose Tolerance Test (IVGTT) 
 
These examinations, known as the Intravenous Glucose Tolerance Test (IVGTT) 

and Fasting Sampled Intravenous Glucose Tolerance Test (FSIGTT), involve the 

direct injection of glucose into the bloodstream, followed by the collection of 

multiple blood samples. IVGTT and FSIGTT are designed to evaluate the 

sensitivity and responsiveness of insulin to increased plasma glucose levels. 

Participants are required to fast for 8 to 10 hours before the test. During the 

procedure, a bolus of 0.33 g/kg body weight glucose solution is injected into an 

antecubital vein, taking around 2.5 minutes to administer.  

 
1.6.2  Approaches to Managing Diabetes 

 
Diabetes, as a chronic condition, can be effectively managed through various 

means, including insulin therapy, embracing a physically active lifestyle, or a 

combination of both approaches. 

 
Managing diabetes with diet & lifestyle  

• Maintain a balanced diet 

• Engage in regular physical activity 

• Schedule regular health checkups 

• Effectively manage stress 

• Quit smoking 

• Insulin therapy 
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Oral medication 
 

Oral Medications in Diabetes Management refer to drugs taken orally to 

regulate blood glucose levels in individuals with type 2 diabetes. These 

medications operate by improving insulin sensitivity, decreasing glucose 

production, or promoting insulin release, among other mechanisms. Examples 

of oral diabetes medications include alpha-glucosidase inhibitors, biguanides, 

DPP-4 inhibitors, meglitinides, and other classes. The selection of the 

medication type and dosage is based on the individual's unique medical history 

and current health condition. 

 

Insulin therapy 
 
Insulin therapy, involves the administration of insulin through oral medication, 

injections or insulin pumps. The primary goal of insulin therapy is to maintain 

blood glucose levels within a specific target range and reduce the risk of long-

term complications. This therapy can be personalized to meet an individual's 

specific needs and adjusted based on factors such as dietary intake, physical 

activity, and blood glucose levels. Different types of insulin are accessible, 

including rapid-acting, short-acting, intermediate-acting, and long-acting 

variants.  

• Short-acting: Includes regular insulin brands like Humulin, Novolin, 

and others. 

• Rapid-acting: Comprises insulin aspart (NovoLog, FlexPen), insulin 

glulisine (Apidra), and insulin lispro (Humalog). 

• Intermediate-acting: Involves insulin isophane (Humulin, Novolin, 

Iletin). 

• Long-acting: Encompasses insulin detemir (Levemir) and insulin 

glargine (Lantus). 

Each type of insulin has a distinct onset and duration of action, providing 

diverse methods to achieve optimal blood glucose control. Although primarily 

recommended for individuals with type-1 diabetes, some individuals with type-2 

diabetes requiring intensive insulin therapy may also find it advantageous. 
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Methods of Insulin Administration 
 
Conventional methods for managing blood glucose levels in both Type-1 and 

Type-2 diabetes often involve the administration of multiple daily insulin doses 

or continuous subcutaneous insulin infusion, sometimes combined with a 

continuous glucose monitor. Despite their widespread use, these methods 

might not always effectively maintain glucose balance, as patients need to 

manually calculate their insulin doses based on blood glucose test strip 

measurements throughout the day. This manual process can be challenging, 

requiring consideration of past and current glucose values to determine 

appropriate insulin levels. 

Insulin delivery methods are broadly categorized into open-loop and closed-loop 

strategies: 

Open-loop strategy: Subcutaneous insulin injections represent a typical 

open-loop control approach. Patients generally inject insulin before meals to 

meet their basal insulin requirements. Insulin pumps, developed in the 1970s, 

follow this strategy. They allow patients to program insulin doses, providing 

closer monitoring of blood sugar levels. Insulin pumps, while reducing the 

burden of self-managing insulin doses and eliminating the need for multiple 

injections, come with drawbacks, one of the major risk is hypoglycemia due to 

excessive insulin infusion, susceptibility to diabetic ketoacidosis, and higher 

costs compared to syringes. 

Closed-loop strategy: An effective alternative to traditional insulin delivery 

methods involves the closed-loop strategy, which eases the burden on patients 

by determining real-time insulin requirements. An example of this strategy is 

the artificial pancreas. 

Advancements in diabetes technology, beginning with capillary blood glucose 

meters in the 1950s and insulin pump therapy in the 1970s, laid the 

groundwork for the artificial pancreas. This system is designed to accurately 

maintain blood glucose levels within the physiological range. It consists of a 

continuous glucose monitor for real-time measurements and an insulin pump 

for required insulin delivery.  

The artificial pancreas automatically adjusts insulin delivery, reducing the risk of 

high or low blood sugar, aiming to improve glycemic control and enhance the 

quality of life for individuals with diabetes. 
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Functionality of the artificial pancreas 

 
The artificial pancreas functions through four essential components: 

• Continuous Blood Glucose Monitoring: This component utilizes a 

glucose sensor and transmitter to continuously monitor blood glucose 

levels, typically checking them every few minutes. 

• Algorithm-Based Insulin Delivery: The system employs a specialized 

algorithm that processes real-time blood glucose data and other 

factors to calculate the appropriate insulin dose required by the user. 

• Insulin Pump Delivery: Once the required insulin dose is calculated, it 

is delivered into the body through an insulin pump. The insulin pump is 

a device worn on the body that administers insulin as directed by the 

algorithm. 

• Integrated Functionality: The glucose sensor, insulin pump, and 

algorithm work in unison to maintain blood glucose levels within a 

normal range. By doing so, the system aims to minimize the risk of 

both hyperglycemia (high blood sugar) and hypoglycemia (low blood 

sugar) episodes, providing more stable and consistent blood glucose 

levels for the individual. 

Complexities in artificial pancreas design 
 
Developing an artificial pancreas is a highly intricate task due to the complex 

and dynamic nature of the human body. Creating a control strategy that 

effectively manages blood glucose levels via a closed-loop system requires a 

responsive and adaptable algorithm. This algorithm must be flexible enough to 

account for shifts in a patient's physiological state, including changes in insulin 

sensitivity due to factors like physical activity, stress, or illness, as well as 

individual characteristics like age, weight, and medication use. Additionally, 

predicting glucose levels accurately while considering meal intake, insulin 

absorption rates, and glucose clearance rates, all while addressing individual 

variability, presents further challenges. There are several obstacles involved in 

designing an artificial pancreas: 

Accuracy and Reliability: The system must consistently and precisely 

monitor blood glucose levels and deliver the correct amount of insulin to 
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maintain blood glucose within a defined range. Any errors or malfunctions can 

lead to potentially hazardous fluctuations in blood glucose levels. 

 

Response Time: The system should respond rapidly to fluctuations in blood 

glucose levels to prevent hyperglycemia or hypoglycemia. This requires real-

time glucose monitoring and swift insulin delivery adjustments. 

 

Integration with the Human Body: The artificial pancreas must be 

designed to work seamlessly with the human body, ensuring biocompatibility, 

minimal invasiveness, and freedom from adverse reactions. 

 

Power Source: A reliable and long-lasting power source is crucial. Battery life 

is particularly important for wearable artificial pancreas systems that need to be 

worn continuously. 

 

Regulatory Approval: Before clinical use, the artificial pancreas system must 

meet strict regulatory standards for safety and effectiveness. 

 

Designing an artificial pancreas requires addressing these multifaceted 

challenges to create a system that can significantly enhance the quality of life 

for individuals with diabetes. 

       
1.7 Mathematical Description of Insulin-Glucose  

Dynamics 
  

  Mathematical models that simulate the glucose-insulin system are crucial in 

managing diabetes. They act as invaluable tools, helping us understand the 

complex interplay between glucose metabolism and insulin function. By using 

these models, we gain deep insights into how the body reacts to changes in 

diet, lifestyle, and physical activity. This understanding allows for the creation 

of more effective diabetes treatments that can be tailored to each individual's 

unique needs. The central components of the human glucose-insulin regulatory 

system, namely blood glucose levels 𝐺(𝑡) and blood insulin levels 𝐼(𝑡) at 𝑡 ≥  0, 

represent the core variables that can be both measured and influenced during 
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therapeutic interventions. The model includes the following elements:  

 

𝑑𝐺(𝑡)

𝑑𝑡
= glucose production − glucose utilization,  

𝑑𝐼(𝑡)

𝑑𝑡
= insulin production − insulin utilization  

Glucose Production: Glucose is obtained from our diet, mainly through 

starch or sucrose. When blood glucose levels dip below the baseline level Gb, 

the liver releases glucose or it can be orally administered. It is ingested through 

meals and via glucose infusion,   

𝑑𝐺(𝑡)

𝑑𝑡
∝ 𝐺 − 𝐺(𝑡)  

                                                                                                                            (1.7.1)    

levels. Higher levels of insulin or blood sugar result in faster glucose utilization. 

Therefore, the product of these two levels is a dependable marker of glucose 

utilization.  

𝑑𝐺(𝑡)

𝑑𝑡
∝ (−𝐺(𝑡)𝐼(𝑡)) 

                               (1.7.2) 
      

Therefore, the alteration in glucose concentration can be explained as: 
 

𝑑𝐺(𝑡)

𝑑𝑡
∝ 𝑎 𝐺 − 𝐺(𝑡) − 𝑏𝐺(𝑡)𝐼(𝑡)  

        (1.7.3) 
 

The letters 'a' and 'b' represent the sensitivity of the glucose gradient to low 

blood sugar levels and the presence of insulin, respectively.  

Insulin production: Pancreatic β-cells secrete insulin when blood sugar levels 

rise beyond the fasting baseline. In the case of individuals with diabetes, insulin 

is externally administered using methods like insulin pumps or artificial 

pancreas systems. Consequently, 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝑐(𝐺(𝑡) − 𝐺 ), 𝑖𝑓 𝐺(𝑡) ≥ 𝐺
0                  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                                                                        (1.7.4) 

Utilization of insulin: Insulin is subject to degradation through a unique 
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biochemical process that can be mathematically defined as follows:  

𝑑𝐼(𝑡)

𝑑𝑡
∝ −𝑒𝐼(𝑡), 𝐼(𝑡) ≥ 0 

        (1.7.5) 
Hence, the rate of change in insulin concentration can be described as, 

      
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑐(𝐺(𝑡) − 𝐺 ) − 𝑒𝐼(𝑡) 

                                                                                                                                            (1.7.6) 
where 𝑐 and 𝑒 denote the sensitivity of the insulin gradient to high glucose and 

insulin levels, respectively. The fundamental mathematical model for glucose-

insulin dynamics can be represented as follows:  

 

𝑑𝐺(𝑡)

𝑑𝑡
= 𝑎 𝐺(𝑡) − 𝐺𝑏 − 𝑏𝐺(𝑡)𝐼(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑐(𝐺(𝑡) − 𝐺𝑏)

+
− 𝑒𝐼(𝑡)        

 

                      (1.7.7) 

The upcoming two sections will provide detail of previous research focused on 

developing various mathematical models for glucose homeostasis. These 

models utilize ordinary differential equations (ODEs) and delay differential 

equations (DDEs). Their primary goals involve realistically representing long-

term physiological behaviors, predicting diabetes and its prevention, and 

evaluating the effectiveness of therapies to manage the condition.   

 

   1.7.1 Ordinary differential equation mathematical models 
 

A basic model, as outlined by Bolie [14], was constructed to assess the 

parameters associated with the healthy regulation of blood glucose. The system 

governing insulin-glucose regulation is articulated by a set of compartmental 

differential equations, illustrated as follows; 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑝 − 𝛼𝑥 + 𝛽𝑦

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑞 − 𝛾𝑥 − 𝛿𝑦

 

        (1.7.8) 
 

Here, ′𝑝′ represents the rate of insulin injection divided by the extracellular 

compartment value, and ′𝑞′ signifies the rate of change in glucose level divided 

by the extracellular compartment value. The deviation of insulin concentration 
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from its mean physiological value is denoted as ′𝑥 , while the deviation of 

glucose concentration from its mean physiological value is expressed as ′𝑦 . The 

collective response of liver glycogen storage and tissue glucose utilization to an 

increase in insulin concentration is symbolized as ′𝛾 , and ′𝛿  denotes the 

combined response of liver glycogen storage and tissue glucose utilization to an 

increase in glucose concentration. Furthermore, ′𝛼′ signifies the sensitivity of 

insulinase activity to elevated insulin concentration, and ′𝛽′ signifies the 

sensitivity of pancreatic insulin to elevated glucose concentration.  

Ackerman et al. [15] formulated a model in 1965 to replicate the human 

regulatory system's behavior, aiming to predict blood glucose levels. They 

employed this model to appraise the control of blood glucose and insulin 

concentration by making comparisons during the Oral Glucose Tolerance Test 

(OGTT). In a similar vein, Segre et al. [16] explored a two-compartment model 

in 1973 to investigate the mechanisms governing glucose and insulin control in 

26 healthy, 16 diabetic, and 8 obese individuals. Their method involved the 

injection of glucose (at a rate of 0.5 gm/min for around 300 minutes) and the 

measurement of blood glucose levels across the three groups. 

In 1978, Ruby et al. [17] presented a model showcasing the regulatory roles of 

both glucagon and insulin in blood glucose control. Their simulations 

highlighted that insulin primarily regulates hyperglycemia, whereas glucagon 

plays a critical role when blood sugar levels decrease below 50 mg/dl. Moving 

into the early 1980s, Bergman et al. [18] introduced the minimal model of 

glucose-insulin dynamics to elucidate glucose and insulin levels. The 

mathematical representation of the three-compartment minimal model is as 

follows: 

𝑑𝐺(𝑡)

𝑑𝑡
= −{𝑝 + 𝑋(𝑡)}𝐺(𝑡) + 𝑝 𝐺

𝑑𝑋(𝑡)

𝑑𝑡
= −𝑝 𝑋(𝑡) + 𝑝 {𝐼(𝑡) − 𝐼 }

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑝 {𝐺(𝑡) − 𝑝 } − 𝑝 ⎭

⎪
⎬

⎪
⎫

 

        (1.7.9)  
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The initial conditions for the system are set as, 𝐺(0) = 𝑝 , 𝑋(0) = 0, and 

𝐼(0) = 𝑏 +  𝐼 . In this context, the variables in the equations are defined as 

follows: 𝐺(𝑡) and 𝐼(𝑡) represent the concentrations of glucose and insulin at 

time 𝑡 in minutes, respectively; 𝑋(𝑡) represents an auxiliary variable that is 

proportional to insulin concentration in minutes-1; 𝐺  is the baseline value of 

glycemia in mg/dl; 𝐼  (𝜇𝑈/𝑚𝑙) represents the baseline value of insulinemia; 𝑝  

is the initial glycemia concentration after a glucose bolus intake in mg/dl; 𝑝  is 

the constant rate of glucose uptake by insulin-independent tissue in minutes-1; 

𝑝  represents the rate at which tissue glucose uptake ability decreases in 

minutes-1; 𝑝  represents the rate at which insulin-dependent tissue glucose 

uptake ability increases in min-2(𝜇𝑈/𝑚𝑙) ; 𝑝  represents the pancreatic insulin 

rate after a glucose bolus intake per unit of glucose concentration above the 

target glycemia in(𝜇𝑈/𝑚𝑙)(mg/dl)-1(min)-1; 𝑝  is the pancreatic target glycemia 

in mg/dl; 𝑝  represents the decay rate of plasma insulin in 𝜇𝑈/𝑚𝑙; 𝑝  is the 

initial plasma insulin concentration above the basal insulinemia in 𝜇𝑈/𝑚𝑙.  

In 1980, Toffolo et al. [19] introduced a straightforward model for insulin 

kinetics that encompassed six mathematical models to explore insulin dynamics. 

Among these models, one particularly effective model was applied in studies 

involving Intravenous Glucose Tolerance Tests (IVGTT) to investigate the 

function of the canine insulin secretor. Four years later, in 1984, Defronzo et al.  

[20] used the insulin clamp technique to evaluate tissue sensitivity to insulin in 

both control patients and individuals with insulin-dependent diabetes. This 

study indicated that peripheral tissues significantly influenced the observed 

decrease in insulin-mediated glucose uptake following hyperinsulinemia. 

Bergman et al. introduced methods for determining insulin sensitivity and 

explored the relationship between insulin action and insulin secretion through 

various tests in 1985, including the pancreatic suppression test, glucose clamp, 

and the minimum model approach. A software-based "MINMOD" (Minimal 

Modeling Approach) was presented by Bergman to determine model parameters 

SG and SI. 

In 1990, Welch et al. [21] incorporated exogenous insulin infusion into the 

minimum model to analyze the dynamics of glucose-insulin, offering insights 

into insulin sensitivity, insulin secretion, and both insulin-mediated and non-

insulin-mediated glucose absorption. 
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Sturis et al. [22] established a six-dimensional ODE model in 1991, later 

reduced by Tolic et al. in 2000 [23], forming the basis for other Delay 

Differential Equation (DDE) models. Fisher presented a mathematical model in 

1991 describing the interaction between glucose and insulin in the circulatory 

system, introducing innovative methods for calculating insulin sensitivity from 

an Oral Glucose Tolerance Test (OGTT). 

Coates et al. conducted a study using the frequently sampled intravenous 

glucose tolerance test (FSIGT) in 1995 to assess insulin response to a glucose 

load, specifically focusing on individuals with Type-2 Diabetes. 

In 1997, Vicini et al. [24] showed that the two-compartment minimal model 

provides indices of insulin sensitivity, plasma clearance rate, and glucose 

effectiveness, addressing limitations of the one-compartment minimal model. 

Gaetano and Arino presented the "dynamical model" in 2000 [25] to overcome 

the limits of the linked minimum model, which were later found to produce 

unstable positive equilibria, leading to periodic solutions. Li and Kuang [26] 

conducted further research in response. 

In 2002, Cobelli et al. [27] introduced an innovative method for calculating 

insulin sensitivity from an OGTT using an "integral equation" and proposed 

three distinct models for calculating the rate of oral glucose appearance in 

plasma. In 2006, Boutayeb et al. [28] developed a model predicting the 

prevalence of diabetes mellitus, examining the nonlinear situation and 

population critical values for stability. Nittala et al. [29] analyzed MINMOD to 

specify pathological characteristics of Diabetes Insipidus (DI) and found a new 

technique providing strongly correlated parameter estimates. 

These studies and models have contributed to an enhanced understanding of 

glucose-insulin dynamics, insulin sensitivity, and diabetes. However, there 

remains a gap between experimental knowledge and its mathematical 

representation. 

Diabetes has seen a global increase in reported cases over recent decades. In 

2002, Boutayeb [30] introduced a population dynamic model for diabetes. This 

model serves the purpose of monitoring the growing number of individuals with 

diabetes and exploring the transition from diabetes without complications to 

diabetes with complications. The mathematical representation of this model is 

as follows:  
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𝑑𝐷(𝑡)

𝑑𝑡
= 𝐼 − (𝜆 + 𝜇)𝐷(𝑡) + 𝛾𝐶(𝑡)

𝑑𝐶(𝑡)

𝑑𝑡
= 𝜆𝐷(𝑡) − (𝛾 + 𝜐 + 𝛿 + 𝜇)𝐶(𝑡)

 

                                                                                                      (1.7.10) 

The total number of individuals with diabetes is represented as 𝐷(𝑡) for those 

with complications and 𝐶(𝑡) for those without complications at time 𝑡. Various 

rates and factors play a role in this dynamic population model: 𝐼 represents the 

incidence rate of diabetes without complications, 𝜇 signifies the mortality rate 

from causes other than diabetes, 𝜐 𝑟epresents the mortality rate from 

complications related to diabetes, 𝛿 reflects the development of complications in 

individuals with diabetes, and 𝛾 represents the recovery from complications in 

diabetes. 

These various mathematical models and population dynamics studies are 

pivotal in advancing our understanding of diabetes in populations. They address 

the nonlinear nature of disease transmission and consider factors like pre-

diabetes, control parameters, and comprehensive population dynamics, 

providing valuable insights into the complex dynamics of diabetes. Boutayeb 

and Abdelaziz's alternative population model and Boutayeb and Chetouani's 

inclusion of a pre-diabetes stage offer fresh perspectives on diabetes mellitus 

[31] . Admu et al. [32] three-compartment mathematical model with a control 

parameter facilitates investigations into diabetes control strategies within 

populations.  

The comprehensive mechanistic model of Appuhamy et al. [33], considering 

various demographic factors and diabetes incidence, helps assess the impact of 

these dynamics on diabetes prevalence and mortality rates. 

Moreover, Mahikul et al. [34] model, accounting for demographic shifts and 

screening program effectiveness, aids in estimating and predicting the burden 

of diabetes and associated deaths in specific regions like Thailand. These 

models collectively contribute to addressing the challenges posed by diabetes, a 

pressing global health issue, and guide public health strategies and 

interventions. 
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   1.7.2  Delay differential equation mathematical models 
  

The intricate dynamics of biological systems often surpass what ordinary 

differential equation (ODE)-based mathematical models can fully encapsulate. 

Within the context of the physiological glucose-insulin metabolic system, several 

time delays are regularly observed, including delays in insulin secretion 

triggered by elevated glucose levels in pancreatic β-cells, inhibiting hepatic 

glucose production, insulin absorption, and insulin action. To address these 

complexities, incorporating time delay factors into mathematical models has 

proven to be an effective approach.  

Studies by Sturis et al. [22] revealed ultradian oscillations in insulin and 

glucose, a phenomenon attributed to the inclusion of delay terms in their 

model. These oscillations can render the system unstable. Drozdov et al. [35] 

proposed a model to clarify the mechanisms behind ultradian oscillations of 

insulin and glucose, indicating that these oscillations occur when the rate of 

glucose delivery changes, leading to instability. Notably, the model 

demonstrated that if the change in the rate of glucose delivery is very small, 

the system stabilizes. 

Sturis et al. [22], in their six-dimensional ODE mathematical model, 

incorporated delay terms and found that the occurrence of oscillations hinges 

on whether an increase in insulin concentration has enough time to influence 

glucose synthesis. When the delay term was removed, the model's solutions 

ceased to oscillate. Oscillations were observed to either dampen or persist 

based on the duration of the delay terms, with intervals between 25 and 50 

minutes resulting in oscillations and periods ranging from 95 to 140 minutes. 

Mathematical formulations describing the glucose-insulin regulatory system 

entail equations that account for the dynamic interplay between glucose, 

insulin, and the impact of time delays within the system. 

𝑑𝐺(𝑡)

𝑑𝑡
= 𝐺 − 𝑓 𝐺(𝑡) − 𝑓 𝐺(𝑡) 𝑓 𝐼(𝑡) + 𝑓 𝐼(𝑡 − 𝜏 )

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑓 𝐺(𝑡 − 𝜏 ) − 𝑑 𝐼(𝑡)

 

                                                                                                   (1.7.11) 

with the initial conditions 𝐼(0) = 𝐼 > 0, 𝐺(0) = 𝐺 > 0 and 𝐺(𝑡) = 𝐺 , for 
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𝑡 ∈ [−𝜏 , 0] and 𝐼(𝑡) = 𝐼 , for 𝑡 ∈ [−𝜏 , 0]; 𝜏  and 𝜏  are positive time lags; 𝑑  is the 

insulin degradation rate: function's biological significance of 𝑓 , 𝑖 = 1,2,3,4,5 and 

its mathematical formulation are explained, below.   

The function (𝑓 ) that regulates pancreatic insulin production in response to 

glucose concentration is represented as: 

𝑓 (𝐺) =
𝑅

1 + exp 
𝐶 −

𝐺
𝑣

𝑎

 

                      (1.7.12) 

Hence, 𝜏  in model (1.7.11) represents the time delay in insulin secretion. The 

utilization of insulin-independent glucose is determined by the function 𝑓 : 

                   

𝑓 (𝐺) = 𝑈 1 − exp
−G

𝐶 𝑣
 

                                                                                                       (1.7.13)  

The term dependent on glucose is responsible for describing glucose utilization 

within function 𝑓 : 

𝑓 (𝐺) =
𝐺

𝐶 𝑣
 

                                                                                                                             (1.7.14) 

The term dependent on insulin for glucose regulation is expressed as:  

𝑓 (𝐼 ) = 𝑈 +
(𝑈 − 𝑈 )

1 +  exp −𝛽𝑙𝑜𝑔
𝐼

𝐶
1
𝑣

+
1

𝐸𝑡

 

                                                                                                                                     (1.7.15)      

The impact of insulin on hepatic glucose production is effectively explained by 

the function:  

𝑓 (𝑥 ) =
𝑅

1 + 𝑒𝑥𝑝 𝛼
𝑥

𝑉 − 𝐶

 

                                                                                                                           (1.7.16) 

Hence, 𝜏  in model (1.7.11) represents the time delay in insulin action or 

absorption. In the research conducted by Bennet et al. [36], they introduced a 

time delay into the negative feedback loop model by splitting explicit insulin into 
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two compartments to simulate the delayed insulin-dependent glucose uptake. 

This delay, which typically takes 5-15 minutes to manifest due to the intricate 

biochemical processes in the pancreatic 𝛽-cells, cannot be overlooked. Various 

studies have delved into the presence and underlying causes of oscillations in 

blood glucose concentration within the glucose-insulin regulatory system. 

Summarizing these studies : Engleborghs et al. [37] constructed a new model, 

based on an existing one, to illustrate the presence of oscillations in blood 

glucose concentration. This model pointed to the feedback loop between insulin 

and glucose as a factor inducing ultradian oscillations. Athena  discovered that 

oscillations were linked to a time [38] delay (𝜏 ) in the model, confirmed via 

bifurcation analysis. 

Li et al. [39], in 2006, introduced a model incorporating two explicit time 

delays, indicating that one cause of ultradian insulin secretion oscillations might 

be the time delay in insulin secretion response to elevated glucose levels. They 

suggested that delays exceeding 400 minutes result in persistent oscillations, 

beyond the normal physiological range. In 2007, Panunzi et al. [40] introduced 

a discrete single delay model for the glucose-insulin regulation system. 

Similarly, Wang et al. [26] utilized a delay differential equation model to explore 

insulin treatments. Li and Kuang [41] presented computational results and 

summarized theoretical findings for delay mathematical models associated with 

ultradian oscillations of insulin and diagnostic tests in 2009. 

 

Huang et al. [42] proposed two mathematical models in 2012, one involving 

impulsive insulin injections or analogs. S. Rathee et al. [43] introduced a delay 

factor for the transformation of hexameric to dimeric forms, without 

determining the specific range of the delay term. Palumbo et al. [44] employed 

a time-delay model to represent the glucose-insulin regulation system, 

particularly focusing on describing endogenous pancreatic insulin release crucial 

in treating Type 2 diabetes patients. Vosoughi et al. [45] utilized an ordinary 

differential equation model incorporating two time delays to manage variations 

in blood glucose levels based on an individual's daily food intake. 

Collectively, these studies have enriched our understanding of time delays in 

glucose-insulin dynamics and their role in the emergence of oscillations in blood 

glucose concentration. 
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1.8 Artificial Intelligence and Machine Learning Approach for 

Diabetes Management  

Certainly, the realm of machine learning (ML) has significantly impacted 

diabetes-related predictions and characterizations, leading to various 

advancements:  

Advanced Diabetes Forecasting: Sophisticated deep learning algorithms, like 

long short-term memory-based recurrent neural networks, are applied for 

accurate type 2 diabetes forecasting [46]. 

Hypoglycemia Prediction: The Random Forest (RF) algorithm is utilized for 

precise postprandial hypoglycemia prediction. 

Support Vector Machines (SVM): SVMs with linear functions are used for diverse 

applications in the diabetes domain. 

K-Nearest Neighbor (KNN): KNN is employed to make predictions based on data 

point similarities. 

Logistic Regression (LR): LR is effectively used, particularly with small datasets, 

for predictive modeling [47]. 

Dimensionality Reduction for Diabetes Prognosis: The Random Forest 

technique, combined with Principal Component Analysis (PCA), is utilized for 

dimensionality reduction, enhancing accuracy in diabetes prognosis [48]. 

Innovative Rat Screening: Innovative screening procedures for rats afflicted 

with diabetes involve employing sample entropy of 2-dimensional (SampEn2D) 

image processing techniques [49]. 

These techniques underscore the vast potential of machine learning in diabetes-

related predictions, disease characterization, and screening methods, offering a 

more comprehensive and efficient approach to managing diabetes. 

 

1.8.1 Historical Background 

Certainly, the field of artificial intelligence (AI) has experienced significant 

growth in its application to healthcare, specifically in the context of digital 

health, with a focus on intelligent management and forecasting. Initially 

centered around internet-based applications and medical content, digital health, 

as introduced by Ioannis K. in 2017 [7], now encompasses a much broader 

array of scientific principles and technologies. This expansion includes various 
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areas such as genomics, AI, analytics, wearable devices, mobile applications, 

and telemedicine. AI is a diverse field within computer science that aims to 

develop theories, methods, technologies, and applications to enable machines 

to simulate, extend, and augment human intelligence [50].  

Machine learning, a subset of AI, uses statistical techniques to build intelligent 

systems capable of learning and improving their performance without explicit 

programming, whether through supervised or unsupervised approaches. Clinical 

decision-support systems based on AI have been in development since the mid-

20th century. In the 1970s, rule-based methods were initially employed for 

diagnosing diabetes, making treatment recommendations, and offering clinical 

reasoning interpretations [47]. However, these rule-based systems had 

limitations, including high development costs, fragility, and difficulty in encoding 

complex interactions between various pieces of knowledge. Additionally, their 

effectiveness was confined by the extent of existing medical knowledge [51]. 

Recent AI research has turned toward machine learning techniques capable of 

recognizing patterns within data, considering complex interactions. This 

transition has the potential to enhance the capabilities of AI systems in 

healthcare. 

 

1.8.2 Different types of machine learning techniques 

 

Absolutely, Machine learning algorithms are often categorized into two primary 

groups based on the nature of the tasks they perform: supervised and 

unsupervised learning [52].  

• Supervised machine learning: These algorithms utilize a set of 'training' 

cases that contain input data, such as fundus photographs, along with 

associated desired output labels (e.g., indicating the presence or absence of 

diabetic retinopathy). By examining patterns in these labeled input-output 

pairs, the algorithm learns to generate accurate outputs for new inputs in 

similar cases [53]. 

• Unsupervised machine learning: These algorithms uncover inherent 

patterns within unlabelled data. Their applications include identifying sub-

clusters within original data, detecting outliers, producing lower-dimensional 

data representations, and processing image and video data. In addition to 
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supervised and unsupervised learning, other paradigms such as semi-

supervised learning and reinforcement learning exist [54][55]. 

• Semi-supervised learning: This subfield of machine learning utilizes both 

labelled and unlabelled data for learning tasks. It benefits from the vast 

amounts of available unlabelled data, often in conjunction with smaller sets of 

labelled data. In healthcare and diabetes management, where obtaining 

supervised information can be labor-intensive, semi-supervised learning can 

use unlabelled or annotated data alongside a limited amount of labelled data 

to enhance AI model performance [56][57]. 

• Reinforcement learning: This process involves learning optimal actions 

based on data to determine the best strategy for maximizing overall rewards. 

In the context of diabetes management, reinforcement learning has been 

used to develop dynamic treatment plans and offer precise insulin dosages in 

response to immediate patient needs [58]. 

1.8.3 Artificial Intelligence (AI) based models and classification 

in  diabetes management  

Z. Guan et al. [57] conducted a comprehensive literature review on AI-based 

techniques for diabetes management, revealing a schematic illustration of 

various machine learning techniques used in diabetes management in Fig. 1.2. 

AI-based approaches play a pivotal role in the management of diabetes and are 

applied in multifaceted ways. One significant aspect is predicting the onset of 

diabetes, which is crucial in preemptive medicine. Identifying individuals highly 

likely to develop diabetes in the pre-illness stage has the potential to decrease 

diabetes incidence by enabling early interventions for at-risk individuals. 

Traditionally, the prediction of diabetes onset was carried out using statistical 

models such as logistic regression, Cox proportional hazard models, and Weibull 

distribution analysis, demonstrating reasonably high concordance indices (C 

index) ranging from 0.74 to 0.94 [59]. 

Recent studies have shown the potential of machine learning (ML) to enhance 

predictive performance compared to traditional statistical models. For instance, 

ML-based logistic regression achieved an area under the curve (AUC) of 0.78 

when predicting the onset of new diabetes within a 5-year timeframe for 

hospitalized patients [59]. Similarly, an ML model using administrative health 
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data predicted diabetes onset within 5 years with an AUC of 0.80. Nomura et al. 

developed an ML-based prediction model using the gradient-boosting decision 

tree method, showing an AUC of 0.71 and an overall accuracy of 94.9%. These 

findings emphasize the potential of ML to improve the accuracy of diabetes 

prediction [60]. 

AI contributes significantly to understanding the risk factors associated with 

diabetes onset, overcoming human limitations and biases when dealing with 

extensive risk factor datasets. By identifying discernible and modifiable risk 

factors, tailored interventions for diabetes prevention can be customized for 

different individuals. Various categories of risk factors, such as genetic, clinical, 

anthropometric, demographic, and behavioral factors, have been identified in 

the contexts of normal glucose hemostasis (NGH), type-1 diabetes (T1D), type-

2 diabetes (T2D), gestational diabetes (GD), and the progression from GD to 

T2D. These insights provide a more comprehensive understanding of diabetes 

risk, enabling the development of more targeted and effective preventive 

strategies [61][62]. 

 

 
Figure 1.2: utilizations of machine learning techniques for diabetes care & research 
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Another crucial application of AI techniques is in diabetes screening. Current 

diagnostic protocols for diabetes largely depend on invasive measurements 

conducted in clinical settings. Moreover, these guidelines may be influenced by 

factors related to an individual's behaviour and ethnic background. It's 

important to recognize that the early stages of type 2 diabetes (T2D) frequently 

lack noticeable symptoms, allowing individuals to remain undiagnosed for an 

extended period. AI can play a pivotal role in addressing this issue by providing 

more efficient and non-invasive methods for diabetes screening, potentially 

enabling earlier diagnosis and intervention [63]. 

 

1.9 Thesis Objective 
 

  Since diabetes is a condition of raised glucose level for a prolonged time 

period, therefore the present thesis is devoted to the study the glucose – insulin 

dynamics for deeper insight for the management of glucose levels in 

physiological range. AI techniques have been exercised to provide significant 

input in advancement of artificial pancreas which will provide more flexibility to 

individuals in dietary choice, physical activity & insulin infusion based on their 

specific needs.    

This aim has been delineated into two principal components. The first part 

focuses on comprehending the effects of delays in glucose-insulin dynamics 

using a delay differential equation (DDE) model. The second part is dedicated 

to exploring the application of artificial intelligence techniques (AIT) in 

managing type-1, type-2, and gestational diabetes mellitus. Furthermore, this 

segment aims to identify and analyses various factors that contribute to the 

effective management of diabetes. 

 

1.9 Contributions 
 

  The thesis aims to tackle the myriad challenges associated with diabetes 

management and endeavors to provide practical solutions that can significantly 

improve the well-being of individuals living with diabetes. Central to this effort 

is the development of a comprehensive mathematical model that captures the 

intricate dynamics between blood glucose and insulin. This model will serve as 

the foundational framework for an autonomous insulin administration system 
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capable of dynamically adapting to diverse scenarios, effectively managing both 

hyperglycemia and hypoglycemia. Recognizing the distinctive needs of 

individuals with type 2 diabetes, the mathematical model will be fine-tuned to 

consider the critical factors influencing insulin resistance and sensitivity. This 

tailored approach will encompass various elements such as physical activity, 

dietary choices, yoga, and lifestyle components that impact blood glucose levels 

and insulin sensitivity. 

The proposed model, combining delay differential equations (DDE) and artificial 

intelligence, is designed to facilitate the development of an artificial pancreas 

for the precise and personalized management of individuals with type-2 

diabetes and gestational diabetes. The overarching goal of this thesis is 

significantly enhance the quality of life for diabetes patients by providing them 

with a more effective and efficient method of managing their condition. 

 

1.11 The Organization of Thesis 

The thesis is composed of seven chapters, and a concise overview of each is 

presented as follows: 

Chapter 1: The primary focus of this chapter is to provide an overview of 

the physiology of diabetes, incorporating significant models. It covers an in-

depth study of various diabetes types, diagnostic methodologies, risk 

determinants, symptoms, and treatment approaches based on both delay 

differential equation (DDE) models and machine learning (ML). The chapter 

delves into the critical mathematical model as well as machine learning models, 

offering clear and concise explanations of glucose and insulin dynamics. Its aim 

is to establish the fundamental basis for the research conducted within this 

thesis.  

 

Chapter 2: This work comprises a quantitative exploration of the dynamic 

glucose-insulin system, incorporating discrete time delays for insulin 

production, hepatic glucose production, and the impact of insulin-degrading 

enzyme (IDE). This chapter extensively details the outcomes of the model, 

providing an understanding of the asymptotic stability of equilibrium solutions. 
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It deeply investigates time delays both numerically and analytically, especially 

when the model exhibits an interior equilibrium. Furthermore, through 

numerical simulations that replicate the model's dynamics, it showcases the 

presence of oscillatory regulation and insulin secretion. These simulations are 

congruent with physiological observations and offer insights by allowing 

variations in the model's parameter values.  

The content covered in this chapter is communicated for publication. 

Chapter 3: This chapter focuses on comprehending the dynamics of glucose 

and insulin levels influenced by exercise and yoga. A delay differential model 

has been developed to explore the impacts of exercise and yoga, crucial 

elements in managing both types of diabetes. Mathematical modeling and 

simulations have integrated parameters associated with physical activity and 

yoga into Bergman's three-compartment minimal model. Glucose and insulin 

levels have been compared across individuals without diabetes, those with type-

2 diabetes, and with type-1 diabetes, considering the absence of exercise and 

varying degrees of physical activity. Sensitivity analysis has been utilized to 

explore the effects of different parameters, and numerical simulations have 

been conducted to assess the influence of various levels of physical exercise 

and yoga in maintaining optimal glucose levels in the population. 

The content covered in this chapter is communicated for publication. 

Chapter 4: This chapter aims to develop compartmental mathematical 

modeling in understanding the dynamics of diabetes within populations. The 

study focuses on a model representing the diabetic population, specifically 

addressing the progressive nature of diabetes through a comprehensive 

treatment function. The treatment function is closely tied to individuals with 

diabetes experiencing complications, emphasizing a saturating recovery rate. 

The study establishes the existence of a unique positive equilibrium point, 

demonstrating asymptotic stability in the absence of time delays. However, the 

introduction of time delays leads to the derivation of threshold values, 

indicating the potential occurrence of Hopf bifurcation. Utilizing time delay as 

the bifurcation parameter, an algorithm is developed to analyse the 

characteristics of this bifurcation. Through numerical simulations and data 
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analysis, the research validates the credibility of the mathematical model, 

underscoring the significance of diabetes education, lifestyle modifications, and 

strict adherence to diabetes management in reducing the incidence of diabetes 

complications.  

The work presented in this chapter has been communicated for publication. 

Chapter 5: The objective of this chapter is to explore the severity of diabetes 

during pregnancy, focusing on gestational diabetes (GD), and the occurrence of 

post-pregnancy type-2 diabetes mellitus (DMT-2) possibly influenced by pre-

existing polycystic ovarian disease (PCOD). The timely identification of PCOD 

could potentially assist in managing diabetes during pregnancy and the 

postnatal period. This investigation aims to uncover insights into the prevalence 

of PCOD and its connection with diabetes mellitus and body mass index (BMI). 

The study encompasses a comprehensive analysis of data gathered from 541 

patients in southern India, comprising 180 individuals diagnosed with PCOD and 

361 without PCOD. To examine the relationships between various parameters, 

the study utilizes the random forest (RF) technique, a subset of Artificial 

Intelligence (AI). 

 

The content featured in this chapter has been published under the title, “Risk 

estimation of gestational diabetes and diabetes mellitus of type -2 

because of PCOD through Mathematical and Artificial Intelligence 

models”, Journal of Engg. Research (SCIE, Index) ICCEMME Issue, Impact 

Factor-1.325 (2021).  

 

Chapter 6: This chapter explores the utilization of Artificial Intelligence (AI) 

techniques to enhance the precision of glucose level predictions in artificial 

pancreas systems. It involves an extensive comparison of various Machine 

Learning (ML) techniques employed to measure glucose levels within an 

artificial pancreas. In this chapter, four models—Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)—

are explored, all of which are based on supervised learning. These models are 

implemented using a dataset from the Pima Indian population to predict and 

classify cases of diabetes mellitus. 
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The objective is to achieve precise predictions, particularly in identifying type-2 

diabetes (DMT2). The chapter meticulously compares the performance of all 

four models. Ultimately, the aim of these machine learning models is to stratify 

and predict whether an individual is diabetic or not based on the available 

features in the dataset. 

 

The content discussed in this chapter has been published under the title, 

“Comparison of Machine Learning Techniques for Precision in 

measurement of glucose level in Artificial Pancreas”, Journal of 

Mathematical Methods in the Applied Sciences (SCIE), Impact Factor-3.007, 

Wiley (2023).  

Chapter 7: The seventh chapter is dedicated to presenting the conclusions and 

outlining potential future research directions.   

     Software Used 
 
We are grateful for the opportunity to utilize the exceptional MATLAB software, 

version 2012b provided by Department of Applied Mathematics, Delhi 

Technological University. We extend our sincere appreciation to the developers 

of these powerful software tools, as they played a pivotal role in helping us 

attain our research objectives.  
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Chapter 2 
 
Delayed Mathematical Model & 

Simulation for Glucose – Insulin 

Dynamical System with Insulin 

Degrading Enzyme 
 
 

This study offers a quantitative analysis of a dynamic glucose-insulin system 

that incorporates discrete time delays in insulin production, hepatic glucose 

production, and the insulin-degrading enzyme, with a particular focus on the 

insulin-degrading enzyme's role in the insulin equation. The work provides a 

comprehensive presentation of our model, including insights into the asymptotic 

stability of equilibrium solutions. Time delays are examined both numerically 

and analytically, particularly in the context of an interior equilibrium within the 

model. Moreover, through numerical simulations that capture the model's 

dynamics, we explore the oscillatory regulation and insulin secretion, which 

align with physiological observations and offer valuable insights by varying 

model parameter values. The outcomes of this research hold promise for 

enhancing our understanding of the biological facets of dynamic glucose-insulin 

models in the context of diabetes prevention. 
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2.1 Introduction 
 

Diabetes mellitus is an incurable condition caused by disturbance of glucose-

insulin dynamical system of the human body, identified by the hyperglycaemia 

resulted from no or very less insulin release for diabetes mellitus of type 1 

(DMT1), or for diabetes mellitus of type 2 (DMT2) due to insulin resistance, a 

condition that the cells (e.g. muscle cells and adipose cells) are enable to utilize 

enough insulin [16]. The various health complications such as; heart disease, 

kidney failure, blindness and nerves damages etc., can be caused by diabetes 

mellitus. The global diabetic population is rising daily. It is very complicated to 

prevent the onset of diabetes from identifying the complexity through effective 

and efficient interventions. Describing physiological systems computationally 

through mathematical models can be challenging due to the intricacies involved 

in the multifaceted interactions at various levels [64]. These complexities often 

require continuous model refinements, necessitating a deep understanding and 

ongoing discoveries in the interconnected areas over time. As new insights 

emerge and a better understanding of these systems evolves, it becomes 

essential to continuously adapt and improve the models to accurately represent 

the physiological intricacies.   

In 1961, Bolie has proposed a mathematical model to understand the 

complexity of diabetes through a point of view of mathematics which was a 

footprint in the field of mathematical modelling of diabetes [14]. Gradually 

plenty of mathematical models were proposed being more accurate, clinically 

feasible and valuable resource for clinical research and related applications such 

as; Bergman et al. proposed Minimal Model for the intravenous glucose 

tolerance test (IVGTT) used to assess the insulin sensitivity and effectiveness of 

glucose [65]. Other mathematical models related to the glucose-insulin 

regulatory system were also presented to understand the system's mechanism, 

including the sustained ultradian oscillations of insulin secretion [66] [23] [37] 

[39] [67]. Batzel et al. [68] presented a delay differential model and extended 

to the development of the control algorithms for exogenous insulin injections of 

devices of the artificial pancreas [68] [69] [70] [71] [72] [73], applied in the 

experiments for subcutaneous injections of insulin and theoretical analyses [74] 
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[75] [76].  

In human being, insulin is one of the most critical hormones for energy 

metabolism. The most critical enzyme which is responsible for degrading and 

inactiveness of insulin is Insulin- Degrading Enzyme (IDE), may cause the 

termination of the insulin response. In humans, these activities have biological 

importance due to the short life of crucial hormones .The IDE activity computes 

the rate of insulin degradation at the cell level, so it is necessary to understand 

the relationship between insulin resistance development and IDE activity 

improvements; for the inhibitor of DMT2 therapy, the IDE is used [77] [78]. 

Many researchers have identified that IDE plays an essential role in insulin 

degradation and clearance in cells, encourages recycling of insulin receptors, 

secretion of new insulin, and maintains acceptable insulin levels in the human 

body [79] [80] [81]. In rabbits, the insulin action may be improved by 

inhibitors; IDE in mice have high insulin levels and show the reduced glucose 

tolerance, which may reflect atoning deficiency signalling of insulin [82] [83] 

[84]. Insulin is a physical requirement IDE substance; abnormal and insufficient 

insulin levels and responses of other hormones that control the glucose level 

are the key causes of DMT2. As per available literature, the IDE is disease 

susceptible gene in DMT2 [83] [85] [86]. Gonzales-Casimiro et al. [87] consider 

the recent information related to IDE functioning as a knob of insulin secretion 

and hepatic insulin sensitivity and represents that IDE has supplementary roles 

in governing hepatics insulin action and sensitivity through research on rats 

with tissue-specific genes deletion of IDE in 𝛽 −cells of pancreas and liver. 

Therefore it is valuable to look into the impact of IDE in the glucose-insulin 

regulatory system. 

In the present study, we extend the model Rathi et al. [88], by incorporating 

the precise method related to IDE and observe the insulin-degrading enzyme's 

inhibitory behaviour. In insulin degradation and glucagon in the human body, 

the target is to illustrate certain immanent factors for IDE recital a fragile role in 

the metabolic system.  

This work is organized into the following sections: in section 1; the introduction 

includes literature related to the present work. In section 2, work related to 

mathematical modeling based on delays differential equation including two-time 

delays is discussed. In section 3, firstly, we show that the presented model is 
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well-posed and then study the biological behaviour of dynamics of the model. 

In section 4, numerical analysis of the model under the physical aspect and 

scopes has been discussed. The result, discussion, and conclusion have been 

presented in section 5. 

 

2.2 Modeling for the Glucose –Insulin regulatory system 

𝐺(𝑡) and 𝐼(𝑡) are the glucose and insulin concentration at 𝑡 ≥ 0, in the glucose-

insulin regulatory system, respectively. Through the meal, oral glucose intake 

and constant glucose infusion are the source of glucose production and are 

denoted as 𝐺 .Two types of glucose utilization insulin-independent and insulin-

dependent are used. The 𝑓 (𝐺(𝑡)) is insulin-independent glucose utilization 

function, the insulin-dependent utilization function is 𝑓 (𝐺(𝑡)), and the total 

glucose utilization is represented with𝑓 (𝐺(𝑡))𝑓 (𝐼(𝑡)). 

The function 𝑓 (𝐺(𝑡)) is insulin production stimulated by glucose 

concentration. The amount of insulin is utilized by various organs of the human 

body, such as the liver, kidneys, muscles, adipose cells, and used to maintain 

the glucose level in blood.  As per [89], the insulin degradation rate is 

proportional to the insulin concentration, denoted by 𝑑 > 0, and is a positive 

constant. The impact of hepatic glucose production is taken as constant 𝑐. 

The mathematical model of glucose – insulin regulatory system with two time 

delay 𝜏  and 𝜏  [43] includes glucose concentration 𝐺(𝑡), and insulin 

concentration 𝐼(𝑡)is given as:  

𝑑𝐺

𝑑𝑡
= 𝐺 − 𝑓 (𝐺(𝑡)) − 𝑓 (𝐺(𝑡))𝑓 (𝐼(𝑡 − 𝜏 )) + 𝑐 

                                (2.2.1) 
𝑑𝐼

𝑑𝑡
= 𝑓 (𝐺(𝑡 − 𝜏 )) − 𝑑 𝐼(𝑡) 

                                                        (2.2.2) 
  

with initial conditions 𝐼(0) = 𝐼 ≥ 0, 𝐺(0) = 𝐺 , 𝐺(𝑡) ≡ 𝐺  for 𝑡 ∈ [−𝜏 , 0] and 

𝐼(𝑡) ≡ 𝐼  for 𝑡 ∈ [−𝜏 , 0], 𝜏 , 𝜏 ≥ 0.The functions 𝑓 ,𝑓 , 𝑓  & 𝑓  are non-linear 

and the values of these functions  are taken from [66] and their shapes are in 

the form of [39]. The term 𝑑 (𝑡) is insulin degradation with constant rate of 

degradation 𝑑 > 0.  

According to Gonzalez-Casimiro et al. [36], the metabolism of hepatic IDE up-
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regulation will not change the insulin clearance, showing that the pancreas 

decreases the production of insulin & its secretion as the result of increased 

insulin sensitivity. Many research articles reveal that the preclinical model of 

rats related to obesity and diabetes strengthen hepatic IDE functioning in the 

liver can regulate the resistance of insulin and glucose intolerance 

comparatively. The highest drosophila IDE occurs in the fat body as per 

Galagovsky et al. [90], it was found that drosophila IDE is a singling modulator 

for insulin and promoted insulin resistivity, which is a cause of DMT2; also the 

drosophila IDE is responsible for phenotypes causing insulin deficiency [91]. In 

the present work, we include the functioning of IDE on the regulation of insulin 

level in the model Eq (2.1-2.2) using a function 𝑎(𝑡) to express the process and 

dynamics of IDE. Due to lack of study related to delay of IDE, we try to 

incorporate time delay 𝜏  in IDE, time delay in insulin secretion that would be 

responsible for the change in IDE. 

In Eq (2.1-2.2) of our present model (2.1-2.2), we considered the glucose 

concentration 𝐺(𝑡) to compute the concentration of 𝐼(𝑡) with 𝑓 (𝐺(𝑡 − 𝜏 )), 

where 𝜏 > 0 is a time delay in response of insulin to glucose stimulation and 

time needed to secrete insulin to convert it into remote insulin. To express the 

capability of endogenous secretion of insulin, we use a multiplier 𝛼 𝐼(𝑡 − 𝜏 ) =

( )
( )  before insulin release function from pancreas 𝑓 (𝐺(𝑡 − 𝜏 )) for 

computational analysis purpose. To understand the impact of IDE on insulin 

secretion, the rate of insulin release is 𝑖 , the effect of insulin degradation under 

the action of IDE before time delay 𝜏  is 𝑖 𝐼(𝑡 − 𝜏 ). The probability of affecting 

the insulin secretion during 𝜏  with constant 𝛼 is ( )  associated with the 

volume of biomass consumed by the insulin. The assumptions satisfied by the 

function 𝑎 𝐼(𝑡) =
( )

( )  are:  

(P1): 𝑎(0) = ; the maximal secretion rate of insulin is ; 

(P2): 
( )

< 0, 𝑎(𝐼) ≥ 0 𝑓𝑜𝑟 𝐼 > 0, and lim → 𝑎(𝐼) = 0.  

From P2, the secretion rate of insulin 𝑎(𝐼) decreases due to the negative 

feedback mechanism.  
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Figure 2.1: Structure of glucose-insulin regulatory system; 𝑓  is the effect of glucose on 

insulin secretion, 𝑓  is the glucose utilization independent of insulin, and 𝑓 𝑓  shows 

insulin-dependent glucose utilization. 

 

On the basis of above physiological assumptions, we extend our model Eq (2.1-

2.2) as following with the target to explore the defects in IDE with DMT2 in 

human body. After the inclusions of above assumptions the proposed model is 

given as follows:    

𝑑𝐺

𝑑𝑡
= 𝐺 − 𝑓 (𝐺(𝑡)) − 𝑓 (𝐺(𝑡))𝑓 (𝐼(𝑡 − 𝜏 )) 

                                                                                                                                            (2.2.3) 
 

𝑑𝐼

𝑑𝑡
= 𝑓 (𝐺(𝑡 − 𝜏 ))

𝑖 𝐼(𝑡 − 𝜏 )

𝑒 ( ) − 1
− 𝑑 𝐼(𝑡) 

                                                                                                                      
           
                                                                                                                                   (2.2.4) 

 
𝐺(0) = 𝐺 , where 𝐺  represents the constant glucose infusion obtained from 

continuous intestinal glucose absorption after oral glucose or meal and the 

glucose-insulin model shown in figure 2.1. The effect of hepatic glucose 

production is taken as constant 𝑐, with the conditions 𝑓 (0) > 0, 𝑓 (𝑥) >

0, 𝑎𝑛𝑑 
( )

> 0 for 𝑥 > 0, the function 𝑓 (𝐺(𝑡)) is bounded and of sigmoidal 

shape. The functions 𝑓 (𝐺(𝑡)) and 𝑓 (𝐺(𝑡))𝑓 (𝐼(𝑡 − 𝜏 )) denotes the insulin 

independent and insulin dependent glucose utilization respectively [91], where 
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𝑓 (𝐺(𝑡)) with 𝑓 (𝑥) > 0, 𝑓 (0) = 0, 𝑎𝑛𝑑 
( )

> 0 for 𝑥 > 0 is bounded & of 

sigmoidal shape; 𝑓 (0) = 0, 𝑓 (𝑥) > 0 𝑎𝑛𝑑 
( )

> 0 for 𝑥 > 0 & 𝑓 (0) >

0, 𝑓 (𝑥) > 0, 𝑎𝑛𝑑 
( )

> 0 for 𝑥 > 0 are bounded above; 𝑓 (𝑥) is also in 

sigmoidal shape.   

 

About the functions: 𝑓 , 𝑓𝑜𝑟 𝑖 = 1,2,3,4 
 
In this paper, the expressions of functions 𝑓 , 𝑓  & 𝑓 , and 𝑓  are taken from 

[67]. The expressions of 𝑓 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4 are following:  

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑓 =

𝐴

1 + exp ( 𝐶 −
𝐺
𝑣

/𝜆 )
,

𝑓 = 𝐴 1 − exp (− 𝐺/(𝐶 𝑣 )) ,

𝑓 =
𝐺

𝐶 𝑣
,

𝑓 = 𝐴 +
(𝑈 − 𝐴 )

1 +  exp (−𝛽𝑙𝑜𝑔 𝐼/(𝐶 (1/𝑣  + 1/𝐸𝑡 ) ))
.

 

                        (2.2.5) 
 

The values of parameters are given in table 1, and in figure 2, the shapes of 

functions are represented. Also, the value of IDE is calculated by the following 

function for our model (2.2.3-2.2.4). 

                         𝐼𝐷𝐸 =                  (2.2.6) 

 
 

2.3. Stability Analysis of the Model 

The existence of positive steady-state solution and local stability analysis of time 

delayed model Eq (2.2.3-2.2.4) are presented in this portion. For the present 

work, we assume that 𝑓 (𝑖 = 1,2,3,4) satisfies the conditions as follows: 

(S1): lim → 𝑓 (𝑥) = 𝑁 , 𝑓 (0) =  𝑛 > 0,
( ) is bounded for 𝑥 > 0, with 

constant 𝑁 > 0; 
 
(S2): lim → 𝑓 (𝑥) = 𝑁  with a constant 𝑁  as ( )

< 𝑁  for 𝑥 > 0; 

 
(S3): 𝑓 (0) = 𝑛 > 0, and there exist constants 𝑁 > 0, 𝑁 > 0 , and 𝑁 > 0; 
 
such that 0 < 𝑓 (𝑥) ≤ 𝑁 , lim → 𝑓 (𝑥) = 𝑁  and ( )

< 𝑁  for 𝑥 > 0.  
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Following is the proposition related to the boundedness of the solutions of our  

present model (2.2.3-2.2.4). 

  
Proposition 2.3.1. The model (2.2.3-2.2.4) holds the following conditions: 

(i) If lim → 𝑓 (𝑥) >
( ( ))

, then model has unique positive 

steady state (𝐺∗, 𝐼∗), where 𝐼∗ = ln(𝑖 𝑓 (𝐺∗) + 𝑑 ). All solutions are 

positive & bounded.  

(ii) If lim → 𝑓 (𝑥) <
( )

, then limsup → 𝐺(𝑡) = ∞ 

Proof of Proposition 2.3.1 

For the positive steady state solution of model (2.2.3-2.2.4), suppose that  

 𝐹(𝑥) = 𝐺 − 𝑓 (𝑥) − 𝑓 (𝑥)𝑓
 ( ( ) )

+ 𝑐
 ( ( ) )

= 0, 𝑥 ≥ 0,                                                          

                                                                                                                                      (2.3.1)  

From (2.3.1), we derive that 

𝑑𝐹(𝑥)

𝑑𝑥
= −

𝑑𝑓 (𝑥)

𝑑𝑥
−

𝑑𝑓 (𝑥)

𝑑𝑥
𝑓

ln(𝑖 𝑓 (𝑥) + 𝑑 )

𝛼
− 𝑓 𝑓

ln(𝑖 𝑓 (𝑥) + 𝑑 )

𝛼
 

∗
𝑑𝑓 (𝑥)

𝑑𝑥

𝑘

𝛼(𝑖 𝑓 (𝑥) + 𝑑 )
+ 𝑐

ln (𝑖 𝑓 (𝑥) + 𝑑 )

𝛼

𝑑𝑓 (𝑥)

𝑑𝑥

𝑘

𝛼(𝑖 𝑓 (𝑥) + 𝑑 )
 

                                (2.3.2)                                      

                                  

Noting that  
( )

> 0, (𝑖 = 1,2,3,4) and for constant 𝑐 we find that 
( )

< 0. 

Behold that: 

 𝐹(0) = 𝐺 − 𝑓 (0) − 𝑓 (0)𝑓
( ( ) )

+ 𝑐
( ( ) )

=

𝐺 + 𝑐
( ( ) )

, 𝑥 > 0, and based on the conditions (S1- S3):    

lim
→

𝐹(𝑥) = 𝐺 − lim
→

𝑓 (𝑥) − lim
→

𝑓 (𝑥) 𝑓
ln 𝑖 lim

→
𝑓 (𝑥) + 𝑑

𝛼
 

+𝑐
ln 𝑖 lim

→
𝑓 (𝑥) + 𝑑

𝛼
 

                                     = 𝐺 − 𝑁  − lim → 𝑓 (𝑥) 𝑓
( )

+ 𝑐
( )

 

< 𝐺 − 𝑁  − lim → 𝑓 (𝑥) 𝑛 + 𝑐
( )

< 0 

                                                                            (2.3.3) 
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Since 𝑓 (𝑥) is strictly monotonically increasing, hence proof is completed.  

It is observed that 𝐺∗is root of equation (2.2.3) and 𝐼∗ =
 ( ( ) ).  

For the second part (ii), it is clear that 

(p) ( )
, 𝑖 = 1, 2, 3, 4 are bounded; 

(q) 𝑓 (𝑥), 𝑖 = 2,3,4 and 𝑓 (𝑥 ) are respectively Lipschitzian and completely 

continuous in 𝑥 ≥ 0 and 𝑥 ∈ ℂ([− max{𝜏 , 𝜏 } , 0]); 

(r) > 0, =
( )

( )
< 0 and =

( ( ) )

( )
>

0 𝑓𝑜𝑟 𝑥 > 0, lim →  = > 0 then  is bounded and monotonically 

decreasing for 𝑥 > 0; 

(s) Suppose = , then  and  are Lipschitzian and continuous in 

𝑥 ≥ 0 and 𝑥 ∈ ℂ([−𝜏 , 0]) respectively. 

From Theorems 2.3.1, 2.3.2 and 2.4 [92], the solution of the model (2.2.3 – 

2.2.4) exist and unique for all 𝑡 ≥ 0 with given initial conditions. If there exist 

𝑡 > 0 such that 𝐺(𝑡 ) = 0 and 𝐺(𝑡) > 0 for 0 < 𝑡 < 𝑡 , 
( )

≤ 0. But  

𝑑𝐺(𝑡 )

𝑑𝑡
= 𝐺 − 𝑓 𝐺(𝑡 ) − 𝑓 (𝐺(𝑡 ))𝑓 (𝐼(𝑡 − 𝜏 )) + 𝑐 

         = 𝐺 + 𝑐 > 0,                            (2.3.4) 

 

This contradiction gives that for 𝑡 > 0, 𝐺(𝑡) > 0. If there exists 𝑡 > 0, such that 

𝐼(𝑡 ) = 0 and 𝐼(𝑡) > 0 for all 0 < 𝑡 < 𝑡 , then 𝐼(𝑡 ) < 0. Noting that  

𝑑𝐼(𝑡 )

𝑑𝑡
= 𝑓 (𝐺(𝑡 − 𝜏 ))

𝑖 𝐼(𝑡 − 𝜏 )

𝑒 − 1
− 𝑖 𝑑 (𝑡 ) 

              =  𝑓 (𝐺(𝑡 − 𝜏 ))
( )

> 0,                          (2.3.5) 

This implies that 𝐼(𝑡) > 0 for every 𝑡 > 0.  

Now, we prove that for any given solution (𝐺(𝑡), 𝐼(𝑡)) for 𝑡 > 0, if 

lim sup → 𝐺(𝑡) = ∞, there exist a sequence {𝑡 } =↑ ∞ such that 

lim → 𝐺(𝑡 ) = ∞ and 
( )

.  

Therefore, 

 0 <
( )

= 𝐺 − 𝑓 𝐺(𝑡 ) − 𝑓 𝐺(𝑡 ) 𝑓 𝐼(𝑡 ) + 𝑓 𝐼(𝑡 − 𝜏 ) ≤ 𝐺 −

𝑓 𝐺(𝑡 ) − 𝑓 𝐺(𝑡 ) 𝑛 − 𝑁 , and thus lim
→

( )
= 𝐺 − lim

→
𝑓 𝐺(𝑡 ) −
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lim
→

𝑓 𝐺(𝑡 ) 𝑓 𝐼(𝑡 ) + lim
→

𝑓 𝐼(𝑡 − 𝜏 )  

       ≤ 𝐺 − 𝑁 − lim
→

𝑓 𝐺(𝑡 ) 𝑁 + 𝑁 < 0.     

                 (2.3.6) 

 

This is the contradiction and gives that there is 𝑁 > 0 such that 𝐺(𝑡) < 𝑁  for 

every 𝑡 > 0. For the second equation of model (2.2.3-2.2.4),|𝑓 (𝑥)| ≤

𝑁 , 𝑓𝑜𝑟 𝜀 > 0, ( )
≤ 𝑓 (𝑁 + 𝜀 )

( )
( ) − 𝑖 𝐼(𝑡) for sufficiently large 𝑡 > 0. 

If lim sup → 𝐼(𝑡) = ∞, there exists a sequence {𝑡 } =↑ ∞ such that 

lim → 𝐼(𝑡 ) = ∞ and 
( )

≥ 0, therefore 0 < ≤ 𝑓 (𝑁 + 𝜀 ) −

𝑑 𝐼(𝑡 ), and lim
→

≤ 𝑓 (𝑁 + 𝜀 ) lim
→

− lim
→

𝑑 𝐼(𝑡 ) 

                                                 = 0 − lim
→

𝑑 𝐼(𝑡 ) < 0, this indicates that there 

exists 𝑁 > 0 such that 𝐼(𝑡) < 𝑁  for every 𝑡 > 0. If (ii) not true, 

consider  lim sup → 𝐺(𝑡) = 𝑁 < ∞, there exist {𝑡 } =↑ ∞ such that 
( )

= 0, 𝑛 = 1, 2, 3, … …, and lim → 𝐺(𝑡 ) = 𝑁  according to fluctuation Lemma 

2.3.1 in [9].  

 

Then 
( )

= 𝐺 − 𝑓 𝐺(𝑡 ) − 𝑓 𝐺(𝑡 ) 𝑓 𝐼(𝑡 ) + 𝑓 𝐼(𝑡 − 𝜏 ) ≥ 𝐺 −

𝑓 𝐺(𝑡 ) − 𝑓 𝐺(𝑡 ) 𝑛                      (2.3.7) 

Let 𝑛 → ∞, therefore 0 ≥ 𝐺 − 𝑓 (𝑁 ) − 𝑓 (𝑁 )𝑛  implies that 𝑓 (𝑁 ) ≥

( ).   

       In this context 𝑓 (𝑁 ) ≤ lim → 𝑓 (𝑥) < ≤
( )

. 

 

2.3.1 Local Stability Analysis: If 𝝉𝟏𝝉𝟐 = 𝟎 

Though an explicit expression cannot be obtained, the model (2.2.3-2.2.4) 

exhibits a unique steady state (𝐺∗, 𝐼∗), defined by the equations  ( )
=

( )
=

0. We analyze the local stability of model (3-4) at (𝐺∗, 𝐼∗) for the case 𝜏 𝜏 = 0 

in this section.  

Considering 𝐺(𝑡) = 𝐺(𝑡) − 𝐺∗ and 𝐼(𝑡) = 𝐼(𝑡) − 𝐼∗, the symbol hat will not be 

used in rest of the portion for the sake of simplycity, then the model (2.2.3-
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2.2.4) is linear about (𝐺∗, 𝐼∗) as: 

  

𝑑𝐺(𝑡)

𝑑𝑡
= 𝑤 𝐺(𝑡) − 𝑤 𝐼(𝑡) − 𝑤 𝐼(𝑡 − 𝜏 ) 

                                                                                                        (2.3.8)                                                                                           

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑤 𝐺(𝑡 − 𝜏 ) − 𝑤 𝐼(𝑡 − 𝜏 ) − 𝑑 𝐼(𝑡) 

                       (2.3.9)  

                                                                                            

Since 𝑓 , (𝑖 = 1, 2, 3, 4) are monotonically increasing function and it is simple to 

check that all the parameters 𝑤 , (𝑖 = 1, 2, 3, 4, 5) are positive as given below,  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑤 =

𝑑

𝑑𝐺
𝑓 (𝐺∗) +

𝑑

𝑑𝐺
𝑓 (𝐺∗)𝑓 (𝐼∗) > 0,

𝑤 = 𝑓 (𝐺∗)
𝑑

𝑑𝐼
𝑓 (𝐼∗) > 0,                         

𝑤 = 𝑐
𝑑

𝑑𝐼
(𝐼∗) > 0,                                       

𝑤 =
𝑑

𝑑𝐺
𝑓 (𝐺∗)

𝑖 𝐼∗

𝑒
∗ > 0,                        

𝑤 =
𝑓 (𝐺∗)𝑖 (1 − 𝛼𝐼∗)𝑒

∗

(𝑒
∗

)
> 0.                  

 

                             (2.3.10)                                                                                  

The characteristics Eq. (2.3.1) is  

 𝐹(𝛿) = 𝛿 + 𝑤 + 𝑤 𝑒 + 𝑑 𝛿 + 𝑤 𝑑 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 +

 𝑤 𝑤 𝑒 ( ) = 0                                                                (2.3.11)  

   

For model (2.2.3-2.2.4), if all the characteristics Eq. (2.3.11) roots have 

negative real parts, then equilibrium point (𝐺∗, 𝐼∗) will be asymptotically stable. 

If model is non- delayed, then we will assume that the equilibrium point (𝐺∗, 𝐼∗) 

is asymptotically stable. We will try to find the conditions for which (𝐺∗, 𝐼∗) is 

still asymptotically stable in a delayed state. 

It is observed that 𝑓(0) = 𝑤 + (𝑑 + 𝑤 ) +  (𝑑 + 𝑤 )𝑤 > 0, 𝛿 = 0 is not a root 

of Eq. (2.3.8).  Therefore, if stability change of the trivial solution for the linear 

model (2.3.1), then there will be a pair of pure conjugate imaginary roots of Eq. 

(2.3.11) with 𝜏 = 𝜏 = 0 is equivalent to 𝛿 + (𝑤 + 𝑤 + 𝑑 )𝛿 + 𝑤 (𝑑 + 𝑤 ) +

𝑤 (𝑤 + 𝑤 ) = 0, and then we have the Proposition 2.3.3. 
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Proposition 2.3.2. Under the conditions (𝑤 + 𝑤 + 𝑑 ) > 0 and 𝑤 (𝑑 + 𝑤 ) +

𝑤 (𝑤 + 𝑤 ) > 0, the steady state solution (𝐺∗, 𝐼∗) of model (2.2.3 – 2.2.4) with 

𝜏 = 𝜏 = 0 is asymptotically stable.  

When 𝜏 > 0 𝑎𝑛𝑑 𝜏 = 0, then equation (2.3.11) is equivalent to  

         𝐹(𝛿) = 𝛿 + (𝑤 + 𝑤 + 𝑑 )𝛿 + 𝑤 (𝑑 + 𝑤 ) + (𝑤 + 𝑤 )𝑤 𝑒 =

0                                                                    

                    (2.3.12) 

As per Lemma 4.1 of [2.3.11], we get 2𝑤 (𝑑 + 𝑤 ) − (𝑤 + 𝑤 + 𝑑 ) =

−(𝑤 + (𝑑 + 𝑤 ) ) < 0 and state the following results. 

 

Proposition 3.3.3. For our proposed model (2.2.3-2.2.4) considering 𝜏 >

0 𝑎𝑛𝑑 𝜏 = 0,  

(i) If 𝑤 (𝑑 + 𝑤 ) > (𝑤 + 𝑤 )𝑤 , then positive stationary solution (𝐺∗, 𝐼∗)of 

model (2.2.3-2.2.4) is always stable for 𝜏 > 0; 

(ii) If 𝑤 (𝑑 + 𝑤 ) < (𝑤 + 𝑤 )𝑤 , then there exist a constant 𝜏 > 0 and 

(𝐺∗, 𝐼∗) of model (2.2.3-2.2.4) is stable for 𝜏 ∈ (0, 𝜏 ) and unstable for 

𝜏 > 𝜏 .  

  When 𝜏 = 0 𝑎𝑛𝑑 𝜏 > 0, then Eq. (2.3.11) converted to  

       𝐹(𝛿) = 𝛿 + 𝑤 + 𝑤 𝑒 + 𝑑 𝛿 + 𝑤 𝑑 + 𝑤 𝑤 + (𝑤 𝑤 + 𝑤 𝑤 )𝑒 =

0                                                                                                   (2.3.13) 

Suppose,

𝑃 = 𝑤 + 𝑑 > 0,                  
𝑄 = 𝑤 > 0,                             
𝑅 = 𝑤 𝑤 + 𝑤 𝑤 > 0,        
𝑆 = 𝑤 𝑑 + 𝑤 𝑤 > 0.         

    

  and 𝛿 = 𝑖𝜔(𝜔 > 0) be a root of equation (2.3.12); 𝜔 satisfies the following 

equation: 

−𝜔 + 𝑃 + 𝑄𝑒 𝑖𝜔 + 𝑅𝑒 + 𝑆 = 0  (2.3.15)                                                                                           

Separating the real and imaginary parts then equation (2.3.15) becomes 

          
−𝜔 + 𝑄𝜔𝑠𝑖𝑛𝜔𝜏 + 𝑅𝑐𝑜𝑠𝜔𝜏 + 𝑆 = 0

𝜔(𝑃 + 𝑄𝑐𝑜𝑠𝜔𝜏 ) = 𝑅𝑠𝑖𝑛𝜔𝜏 ,
                        (2.3.16)                                                                                 

  which gives,  

   𝑠𝑖𝑛𝜔𝜏 =
( ), 𝑐𝑜𝑠𝜔𝜏 =

( )                      (2.3.17)                                                               

and  𝜔 + (𝑃 − 𝑄 − 2𝑆)𝜔 + (𝑆 + 𝑅)(𝑆 − 𝑅)                                       (2.3.18) 
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Since equation (2.3.18) is a quadratic equation in 𝜔  then  

       𝜔± =
( )± ( ) ( )( )                             (2.3.19)       

                                                                                           

It is clear that 𝑆 > 𝑅 and(𝑃 − 𝑄 − 2𝑆) > 0, there are no 𝜔 such that equation 

(2.3.13) has purely imaginary roots ±𝑖𝜔. If 𝑆 < 𝑅, the number of pairs of purely 

imaginary roots of equation (2.3.13) is one. If (𝑃 − 𝑄 − 2𝑆) < 0 and (𝑃 −

𝑄 − 2𝑆) > (𝑆 + 𝑅)(𝑆 − 𝑅) > 0, the number of pairs of purely imaginary roots 

of equation (2.3.13) is two. From equation (2.3.16), we get the following two 

sets of values of 𝜏  for which there are imaginary roots: 

                  𝜏 , =                                 (2.3.20)                                                                                                      

where 0 ≤ 𝜃 < 2𝜋 and 𝑠𝑖𝑛𝜃 =
( ), 𝑐𝑜𝑠𝜃 =  ,  

and 𝜏 , =                                                         (2.3.21) 

where 0 ≤ 𝜃 < 2𝜋 and 𝑠𝑖𝑛𝜃 =
( ),   𝑐𝑜𝑠𝜃 =  , 

𝑛 = 1,2,3, …. .  

Then we obtained the following results on the stability of the steady-state 

solution (𝐺∗, 𝐼∗)  of model (2.3.3-2.3.4). 

 

Theorem 3.1. For model (2.2.3-2.2.4), the number of distinct imaginary roots 

with positive (negative) imaginary parts of equation (2.3.13) can be zero, one, 

or two only. 

(a)  If 𝑆 > 𝑅 and (𝑃 − 𝑄 − 2𝑆) > 0, then the stability of steady-state 

solution (𝐺∗, 𝐼∗) do not change for all 𝜏 > 0. 

(b)  If 𝑆 < 𝑅, there is one imaginary root with a positive imaginary part, an 

unstable steady-state solution (𝐺∗, 𝐼∗) never becomes stable for any 

𝜏 > 0. If the steady-state solution (𝐺∗, 𝐼∗) is asymptotically stable for 

𝜏 = 0, then it is uniformly stable for𝜏 < 𝜏 , , and becomes unstable for 

𝜏 > 𝜏 , . A Hopf bifurcation exists as 𝜏  passes through the critical value 

𝜏 , , where 𝜏 ,  is in Eq (2.3.21). 

(c)  (𝑃 − 𝑄 − 2𝑆) < 0 and (𝑃 − 𝑄 − 2𝑆) > 4(𝑆 + 𝑅)(𝑆 − 𝑅) > 0, there 

are two imaginary roots with the positive imaginary term, 𝑖𝜔  and 𝑖𝜔 , 

such that 𝜔 > 𝜔 > 0, then the stability of the steady-state solution 
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(𝐺∗, 𝐼∗) can change a finite number of times at most as 𝜏  is increased; 

eventually it becomes unstable. 

 

Proof of Theorem 3.1 

Suppose that 𝛿 = 𝑖𝜔(𝜔 > 0) be the root of Eq. (2.3.13), 𝜔 satisfies the 

following equation   

𝜔 − (𝑃 − 𝑄 − 2𝑆)𝜔 + (𝑆 + 𝑅)(𝐷 − 𝑅) = 0, so we have 

𝜔± =
( )± ( ) ( )( ). Clearly,  

(i) 𝑆 > 𝑅, and (𝑃 − 𝑄 − 2𝑆) > 0, there no 𝜔, hence equation (2.3.13) has 

purely imaginary roots ±𝑖𝜔; 

(ii) 𝑆 < 𝑅, the number of pairs of pure imaginary roots of equation (2.3.12) 

is one; 

(iii) (𝑃 − 𝑄 − 2𝑆) < 0 and (𝑃 − 𝑄 − 2𝑆) > 4(𝑆 + 𝑅)(𝑆 − 𝑅) > 0, the 

number of pairs of pure imaginary roots of equation (2.3.12) is two.  

Now, we have to calculate the sign of derivatives 𝑅𝑒 𝛿(𝜏 ) at the point where 

𝛿(𝜏 ) is purely imaginary. From equation (2.3.13), we have  

    (2𝛿 + 𝑃 + (𝑄 − 𝑄𝛿𝜏 − 𝑅𝜏 )𝑒 ) = (𝑄𝛿 + 𝑅)𝛿𝑒                      (2.3.22)                                                                       

For the simple understanding, using 𝛿(𝜏 ) = 𝑖𝜔, now we derive  

             

𝑑𝛿

𝑑𝜏
=

(2𝛿 + 𝑃)𝑒 + 𝑄

(𝑄𝛿 + 𝑅)𝛿
−

𝜏

𝛿
 

                                                                                                    (2.3.23)  

and       𝑒 = −
( )                                                                     (2.3.24) 

                                                                                                                            

Thus, 

 𝑠𝑖𝑔𝑛 𝑅𝑒 = 𝑠𝑖𝑔𝑛 𝑅𝑒 −
( )

( )
+ 𝑅𝑒 −

( )
 

                                              = s𝑖𝑔𝑛
( )

( )
−   

     = s𝑖𝑔𝑛{𝑃 − 𝑄 − 2𝑆 + 2𝜔 }   

                                                              (2.3.25) 

By using the expression for 𝜔±, it is observed that the sign of (𝑃 − 𝑄 − 2𝑆 +

2𝜔 ) > 0. If 𝜔  and s𝑖𝑔𝑛{𝑃 − 𝑄 − 2𝑆 + 2𝜔 } < 0 for 𝜔  . 
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If 𝑆 < 𝑅, only one imaginary root exists 𝛿 = 𝑖𝜔 , then only one crossing of the 

imaginary axis is from left to right as 𝜏  increases, and stability of steady-state 

solution can be lost and not recovered.   

If(𝑃 − 𝑄 − 2𝑆) < 0, and (𝑃 − 𝑄 − 2𝑆) > 4(𝑆 + 𝑅)(𝑆 − 𝑅) > 0, crossing 

from left to right as 𝜏  increases when 𝜏  has the value corresponding to 𝜔 , 

crossing from right to left when value as 𝜏  exist as the corresponding values to 

𝜔 . From the Eq. (2.3.16), we get the following two sets of values for 𝜏  for 

which they are imaginary roots:  

                     𝜏 , =                    (2.3.26)                                                                                                                             

where 0 ≤ 𝜃 < 2𝜋 and  

                   
𝑠𝑖𝑛𝜃 =

( )
,     

𝑐𝑜𝑠𝜃 = ,          
                       

                 (2.3.27)                                                                                                      

and               𝜏 , =                         

                                                                                                      (2.3.28)                                                                                        

where 0 ≤ 𝜃 < 2𝜋 and 

 

        
𝑠𝑖𝑛𝜃 =

( )
,     

𝑐𝑜𝑠𝜃 = ,          
                                                      (2.3.29)                                                                                                                 

where 𝑛 = 0,1,2 … …. 

  In the case of 𝑆 < 𝑅, only 𝜏 ,  need to be considered, since the model (2.2.3-

2.2.4) is asymptotically stable at 𝜏 = 0, it remains asymptotically stable until 

𝜏 , , and it is unstable after that. For the value of 𝜏 = 𝜏 ,  Eq. (2.3.13) have 

purely imaginary roots ±𝑖𝜔 . 

  In case of (𝑃 − 𝑄 − 2𝑆) < 0, and(𝑃 − 𝑄 − 2𝑆) > 4(𝑆 + 𝑅)(𝑆 − 𝑅) > 0, If 

the model (2.2.3-2.2.4) is stable for 𝜏 = 0 then it must follow the 𝜏 , < 𝜏 , , 

and the diversity of roots with positive real part cannot become negative. Now 

we observe that  

𝜏 , − 𝜏 , = < = 𝜏 , − 𝜏 , ,              (2.3.30)                                                                                            

with 𝜔 > 𝜔 > 0. Therefore, there can be only a finite number of changes 
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between stability and instability. Besides, that there exist values of parameters 

that perceive any number of similar stability switches. Although, there exist a 𝜏  

as 𝜏 = 𝜏   transformation exists from stability to unstable, and for 𝜏 > 𝜏  then 

the solution becomes unstable. If the model (2.2.3-2.2.4) is unstable for 𝜏 = 0, 

then the argument is similar to earlier made. For 𝜏 > 0, our model (2.2.3-

2.2.4) can be either unstable or exists any number of stability switches as in the 

previous case. 

On increasing the values of 𝜏   multiplicity of roots for which 𝑅𝑒 𝛿 > 0 is an 

increase by two whenever 𝜏  passes through a value of 𝜏 ,  and decreased by 

two whenever 𝜏  passes through a value of 𝜏 , .  

If the steady-state solution is stable for 𝜏 = 0, 𝑗 switches from stability to 

instability to stability occurs when the parameters are as 

𝜏 , < 𝜏 , , < 𝜏 , < ⋯ … … < 𝜏
,

< 𝜏
,

< 𝜏
,

< 𝜏
, <𝜏

,
… … … … ., 

or 𝑗 switches from instability to stability to instability may exists when    

𝜏 , < 𝜏 , , < 𝜏 , < ⋯ … … < 𝜏
,

< 𝜏
,

< 𝜏
, <𝜏

,
… … … … … … … . . ., 

when the steady-state solution is stable for 𝜏 = 0. The conditions for the 

preceding ordering parameters can be valid and may formulate directly from Eq 

(25-28). From the above analysis, we obtained the results of the theorem.  

 

Local Stability Analysis: If  𝝉𝟏𝝉𝟐 ≠ 𝟎 

 

Now, in this part, we suppose that 𝜏 > 0 𝑎𝑛𝑑 𝜏 > 0. First, we consider 

𝜏 = 𝜏 = 𝜏, equation (2.3.11) becomes,  

  𝛿 + (𝑤 + 𝑑 )𝛿 + 𝑤 𝑑 + (𝑤 𝛿 + 𝑤 𝑤 + 𝑤 𝑤 + 𝑤 𝑤 𝑒 )𝑒 = 0     (2.3.31)                                           

and 𝛿 = 0 is not a characteristics root of equation (2.3.31).  

Let 

     ∅(𝛿, 𝜏) = 𝛿 + (𝑤 + 𝑑 )𝛿 + 𝑤 𝑑 , 𝜑(𝛿, 𝜏) = 𝑤 𝛿 + 𝑤 𝑤 + 𝑤 𝑤 +

𝑤 𝑤 𝑒                                       

                                                                 (2.3.32) 

 Suppose that 𝛿 = 𝑖𝜔 is a root of characteristics Eq. (2.3.31) for 𝜔 strictly 

greater than zero.  From Eq (2.3.32), let us consider that ∅ , 𝜑  are the real 

parts, and ∅ ,  𝜑  are the imaginary part of ∅, 𝜑 respectively. Therefore  

∅ (𝑖𝜔, 𝜏) = (𝑤 𝑑 − 𝜔 ), ∅ (𝑖𝜔, 𝜏) = (𝑤 + 𝑑 )𝜔, 𝜑 (𝑖𝜔, 𝜏) = (𝑤 𝑤 + 𝑤 𝑤 +
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𝑤 𝑤 𝑐𝑜𝑠𝜔𝜏), 𝜑 (𝑖𝜔, 𝜏) = (w ω −  𝑤 𝑤 𝑠𝑖𝑛𝜔𝜏).  

Thus, ω satisfies the following equations,  

             
𝜑 (𝑖𝜔, 𝜏)𝑠𝑖𝑛𝜔𝜏 + 𝜑 (𝑖𝜔, 𝜏)𝑐𝑜𝑠𝜔𝜏 = −∅ (𝑖𝜔, 𝜏),

𝜑 (𝑖𝜔, 𝜏)𝑐𝑜𝑠𝜔𝜏 − 𝜑 (𝑖𝜔, 𝜏)𝑠𝑖𝑛𝜔𝜏 = −∅ (𝑖𝜔, 𝜏)
                                

                                                                                             (2.3.33)                                                                                    

this implies that 

  𝑠𝑖𝑛𝜔𝜏 =
∅ ( , ) ( , ) ∅ ( , ) ( , )

( , ) ( , )
= 𝐼𝑚

∅( , )

( , )
, 

 𝑐𝑜𝑠𝜔𝜏 = −
∅ ( , ) ( , ) ∅ ( , ) ( , )

( , ) ( , )
= −𝑅𝑒

∅( , )

( , )
       

      (2.3.34)                                                                                  

Then, we derive 𝜉(𝜔, 𝜏) = |𝜙(𝑖𝜔, 𝜏)| − |𝜑(𝑖𝜔, 𝜏)|  

             = 𝜔 + (𝑤 + 𝑑 − 𝑤 )𝜔 + 2𝜔𝑤 𝑤 𝑤 𝑠𝑖𝑛𝜔𝜏 + 𝑤 𝑑 − 𝑤 𝑤 −                  

                (𝑤 𝑤 +  𝑤 𝑤 ) − 2(𝑤 𝑤 + 𝑤 𝑤 )𝑤 𝑤 𝑐𝑜𝑠𝜔𝜏                                                                                  

      (2.3.35) 

and 𝜔 satisfies the transcendental equation 𝜉(𝜔, 𝜏) = 0, which implies  

𝜔 + (𝑤 + 𝑑 − 𝑤 )𝜔 + 𝑤 𝑑 − 𝑤 𝑤 − (𝑤 𝑤 +  𝑤 𝑤 )  

= 2(𝑤 𝑤 + 𝑤 𝑤 )𝑤 𝑤 𝑐𝑜𝑠𝜔𝜏 − 2𝜔𝑤 𝑤 𝑤 𝑠𝑖𝑛𝜔𝜏                                                                                              

      (2.3.36) 

If 𝜔 = 0, we check that  

  𝜉(0) = 𝑤 𝑑 − 𝑤 𝑤 − (𝑤 𝑤 + 𝑤 𝑤 ) − 2(𝑤 𝑤 + 𝑤 𝑤 )𝑤 𝑤 ,        

      (2.3.37)                                                            

when 𝑤 𝑑 < 𝑤 𝑤 + (𝑤 𝑤 + 𝑤 𝑤 )(𝑤 𝑤 + 𝑤 𝑤 + 2𝑤 𝑤 ), then 𝜉(0) < 0.  

Also, it is effortless to check that Eq. (2.3.35) has finite positive roots.  

Let us define ∅(𝜏) ∈ [0,2𝜋], such that 

  𝑠𝑖𝑛∅(𝜏) =
( ) ( )( )

( ) ( )
, 

𝑐𝑜𝑠∅(𝜏) =

−
( ) ( )( )

( ) ( )
,                       

                                                                                           (2.3.38) 

where ∅(𝜏) = 𝜔𝜏 − 2𝑛𝜋, 𝑛 ∈ ℕ , define the mapping 𝜏  is given below 

   𝜏 (𝜏) =
∅( )

, 𝑛 ∈ ℕ                  (2.3.39) 

                                                                                                                                    

𝜔 is positive root of equation (2.3.35), then Eq. (2.3.37) combined with “Eq 

(2.3.35)” defines the functions:  
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   𝛾 (𝜏) = 𝜏 − 𝜏 (𝜏), 𝑛 ∈ ℕ ,                (2.3.40)                                                                                                                             

which are continuous and differentiable. From (2.3.36) we have 

 
( , )

= 4𝜔 + 2(𝑤 + 𝑑 − 𝑤 )𝜔 + 2𝑤 𝑤 𝑤 𝑠𝑖𝑛𝜔𝜏 + 2𝜏𝑤 𝑤 (𝜔𝑤 𝑐𝑜𝑠𝜔𝜏 +

 (𝑤 𝑤 + 𝑤 𝑤 )𝑠𝑖𝑛𝜔𝜏)                 

                                                                                                      (2.3.41) 

with the help of [41] and [42], we have to find the following results.  

 

Theorem 3.2. Assuming that 𝜔 is a positive real root of equation (2.3.35) and 

there exist some positive constants 𝜏∗ such that 𝛾 (𝜏∗) = 0 for some 𝑛 ∈ ℕ .  

Then a pair of simple conjugate pure imaginary roots 𝛿±(𝜏∗) = ±𝑖𝜔(𝜏∗) of 

equation (2.3.35) exists at 𝜏 = 𝜏∗ which crosses the imaginary axis from left to 

right if Θ(𝜏∗) > 0 and crosses the imaginary axis from right to left if Θ(𝜏∗) < 0, 

where 

        Θ(𝜏∗) = 𝑠𝑖𝑔𝑛 𝑅𝑒
( ∗)

 = 𝑠𝑖𝑔𝑛
( ( ∗), ∗)

𝑠𝑖𝑔𝑛
( )

 𝑎𝑡 𝜏 = 𝜏∗  

                                                                                                       (2.3.42) 

                                                       

Now we consider the case of time delays 𝜏 > 0, 𝜏 > 0, and 𝜏 ≠ 𝜏 . Set that 

     𝑓(𝛿) = 𝛿 + (𝑤 + 𝑑 )𝛿 + 𝑤 𝑘 , 𝑔(𝛿) = 𝑤 𝑒 𝛿 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 +

                      𝑤 𝑤 𝑒 ( )                                                                   (2.3.43) 

 

Eq (2.3.10) is equal to the 𝐹(𝛿) = 𝑓(𝛿) + 𝑔(𝛿) = 0, then following the steady-

state by (𝐺∗, 𝐼∗)  of model (2.3.3-2.2.4) will be obtained using Rouche’s 

theorem.  

Theorem 3.3. For the model (2.3.3-2.2.4) the characteristics equation as 

follows: 

 

   𝛿 + 𝑤 + 𝑑 + 𝑤 𝑒 𝛿 + 𝑤 𝑑 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 +

                                   𝑤 𝑤 𝑒 ( ) = 0, 𝜏 , 𝜏 > 0, 𝛿 ∈ ℂ,      

                                                                       (2.3.43) 

with 𝑤 > 0(𝑖 = 1,2,3,4,5) assume that, 

(i) (𝜏 − 𝜏 ) ≤ 𝑙𝑛 ; 

(ii) 𝑤 𝑤 + 𝑤 𝑤 > 𝑤 𝑤 .  
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There exists a constant 𝛽 > 0 such that 

 𝛽 + (𝑤 + 𝑑 )𝛽 + 𝑤 𝑑 < 𝑚𝑖𝑛 , 𝑤 𝑤 + 𝑤 𝑤 − 𝑤 𝑤 , for all 

0 < 𝛽 < 𝛽  Eq (2.3.33) has at least one root with a negative fundamental part.  

 

Note 2. In case, 𝜏 𝜏 > 0,it can be obtained that for any given 𝜏 > 0, there 

exists 𝜏 (𝜏 ) > 0 such that a Hopf bifurcation exists at (𝜏 , 𝜏 ).  The model 

(2.2.3-2.2.4) shows the interaction of unstable models mathematically, but this 

tends to the occurrence of only delays values.  

 

Proof of Theorem 3.3 

Suppose that 𝛿 = 𝜌 + 𝑖𝜔  ( 𝜌 ∈ ℝ, 𝜔 = 2𝑞𝜋 > 0) be the root of equation 

(2.3.10), then for 

𝑔(𝛿) = 𝑤 𝑒 𝛿 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ) = 0, we have 

⎩
⎪
⎨

⎪
⎧

𝑅𝑒 𝑔(𝛿) = 𝑤 𝑒 (𝜌𝑐𝑜𝑠𝜔 𝜏 + 𝜔 𝑠𝑖𝑛𝜔 𝜏 ) + 𝑤 𝑤 𝑒 𝑐𝑜𝑠𝜔 𝜏 + 𝑤 𝑤 𝑒 𝑐𝑜𝑠𝜔 𝜏 +

𝑤 𝑤 𝑒 ( )𝑐𝑜𝑠𝜔 (𝜏 + 𝜏 ) = 0,

𝐼𝑚 𝑔(𝛿) =  𝑤 𝑒 (𝜌𝑐𝑜𝑠𝜔 𝜏 − 𝜔 𝑠𝑖𝑛𝜔 𝜏 ) − 𝑤 𝑤 𝑒 𝑠𝑖𝑛𝜔 𝜏 − 𝑤 𝑤 𝑒 𝑠𝑖𝑛𝜔 𝜏 −

𝑤 𝑤 𝑒 ( )𝑠𝑖𝑛𝜔 (𝜏 + 𝜏 ) = 0

                  

                                                                                                                                 (2.3.44) 

For simplification, let 𝑞𝜏 ∈ ℤ , Eq (2.3.34) will be in the form of  

𝑅𝑒 𝑔(𝛿) = (𝜌𝑤 + 𝑤 𝑤 )𝑒 + (𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ))𝑐𝑜𝑠𝜔 𝜏 = 0,

𝐼𝑚 𝑔(𝛿) = 𝜔 𝑤 𝑒 − 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ) 𝑠𝑖𝑛𝜔 𝜏 = 0,              
                                            

                                                                                                                                (2.3.45) 

We can obtain                      

 
𝑡𝑎𝑛(𝜔 𝜏 ) = − ,                                                                                             

𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ) = (𝜔 + (𝜌 + 𝑤 ) )𝑤 𝑒 ,              
              

                                                                                                       (2.3.46) 

If there exist 𝜌 < 0, satisfies Eq. (45), then 𝑔(𝛿) has at least one zero 

𝛿 = 𝜌 + 𝑖𝜔  with 𝜌 < 0. 

Let, 𝑋(𝜌) = 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ) − (𝜔 + (𝜌 +

𝑤 ) )𝑤 𝑒                                                                                             

                                                                                                (2.3.47)                                      

Note that,𝑋(0) = (𝑤 𝑤 + 𝑤 𝑤 ) − (𝜔 + 𝑤 )𝑤 < 0, if 𝑤 𝑤 + 𝑤 𝑤 ≤ 𝑤 𝑤   

and lim → 𝑋(𝜌) = +∞. Moreover, taking 𝜌 = −𝑤 , then 
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𝑋(−𝑤 ) = 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( ) − 𝜔 𝑤 𝑒 < 0 

                      >(𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ) −

𝜔 𝑤 𝑒                                                                                                

                                                                                                      (2.3.48) 

If (𝜏 − 𝜏 ) ≤ 𝑇 = 𝑙𝑛  such that 𝑋(−𝑤 ) ≥ 0, then there is constant 

𝜌 ∈ (−𝑤 , 0) satisfies 𝑋(𝜌 ) = 0. Then, 𝛿 = 𝜌 + 𝑖𝜔  is zero of 𝑔(𝛿).  

Now, we prepare a simple loop ℒ homotopic to a point then show that 

 |𝑔(𝛿)| > |𝑓(𝛿)| on ℒ. The loop ℒ divide into two parts: one is defined by 

(−𝑤 , 0) centre and 𝑤 + 𝜔   as radius respectively; the other one is 𝛿 = 𝑖𝜔,

𝜔 ∈ [−𝜔 , 𝜔 ].  

Let 𝛿 = 𝑥 + 𝑖𝜔 with 𝑥 ∈ [−𝑤 − 𝑤 + 𝜔 , 0] and𝜔 ∈ [−𝜔 , 𝜔 ], then we set the 

𝑥 = 𝑏𝜌  (𝑏 > 0) and then deduce 

|𝑔(𝛿)| =
𝑥𝑤 𝑒 𝑒 + 𝑖𝜔𝑤 𝑒 𝑒 + 𝑤 𝑤 𝑒 𝑒

+𝑤 𝑤 𝑒 𝑒 + 𝑤 𝑤 𝑒 ( )𝑒 ( )  

                  

                 =

𝑥𝑤 𝑒 𝑐𝑜𝑠𝜔𝜏 + 𝜔𝑤 𝑒 𝑠𝑖𝑛𝜔𝜏 + 𝑤 𝑤 𝑒 𝑐𝑜𝑠𝜔𝜏

+𝑤 𝑤 𝑒 𝑐𝑜𝑠𝜔𝜏 + 𝑤 𝑤 𝑒 ( )𝑐𝑜𝑠𝜔(𝜏 + 𝜏 ) +

𝑖(𝜔𝑤 𝑒 𝑐𝑜𝑠𝜔𝜏 − 𝑥𝑤 𝑒 𝑠𝑖𝑛𝜔𝜏 − 𝑤 𝑤 𝑒 𝑠𝑖𝑛𝜔𝜏 −

𝑤 𝑤 𝑒 𝑐𝑜𝑠𝜔𝜏 − 𝑤 𝑤 𝑒 ( )𝑠𝑖𝑛(𝜏 + 𝜏 ))

                

                                                                                           (2.3.49) 

>𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 − 𝑤 𝑤 𝑒 ( ) >
( )

. 

Again, 𝛿 = 𝑖𝜔, 𝜔 ∈ [−𝜔 , 𝜔 ], then 

|𝑔(𝛿)| = 𝑤 𝑒 𝑖𝜔 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 + 𝑤 𝑤 𝑒 ( )  

                  ≥ 𝑤 𝑤 + 𝑤 𝑤 − 𝑤 𝑤 =𝜇 > 0. 

                                                                                                       (2.3.50) 

Suppose 𝜇 = 𝑚𝑖𝑛 , 𝜇 . Denote 

ℒ = {𝛿 = 𝑥 + 𝑖𝜔 ∈ ℂ: (𝑥 + 𝑤 ) + 𝜔 = (𝜔 + 𝑤 ), 𝑥 ∈

−𝑤 − (𝜔 + 𝑤 ), 0 , 𝑜𝑟 𝛿 = 𝑖𝜔, 𝜔 ∈ [−𝜔 , 𝜔 ]}. 

ℒ is simple loop homotopic to initial, 𝛿 = 𝜌 + 𝑖𝜔 ∈ ℒ and |𝑔(𝛿)| > 𝜇 𝑜𝑛 ℒ. 

Considering 𝜗 > 0 such that ℒ ⊂ ℵ = {𝛿 ∈ ℂ: |𝛿|} < 𝜗 , 𝜕ℵ = {𝛿 ∈ ℂ: |𝛿| =

𝜗 }, then for every 𝛿 ∈  𝜕ℵ, 𝛿 = 𝜗 𝑒 , 𝜆 ∈ , , and ℂ is connected. Now we 
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obtain |𝑔(𝛿)| = |𝛿 + (𝑤 + 𝑑 )𝛿 + 𝑤 𝑑 | ≤ 𝜗 + (𝑤 + 𝑑 )𝜗 + 𝑤 𝑑  

                                                                                                       (2.3.51) 

 

If 𝜗 + (𝑤 + 𝑑 )𝜗 + 𝑤 𝑑 < 𝜇, then for all 𝛿 ∈ ℵ, 𝛿 = 𝜗 𝑒  𝑎𝑛𝑑 𝜗 < 𝜗 , we have 

|𝑔(𝛿)| < 𝜗 + (𝑤 + 𝑑 )𝜗 + 𝑤 𝑑 < 𝜇 for 𝛿 ∈ ℒ. Therefore |𝑔(𝛿)| > |𝑓(𝛿)| on ℒ. 

As per the Rouche’s theorem 𝑔(𝛿) and 𝑔(𝛿) + 𝑓(𝛿) have the same number of 

zero ℒ. Therefore 𝑔(𝛿) + 𝑓(𝛿)= 0 has at least one root in 𝛿∗ ∈ ℒ.  

 

        2. 4.  Numerical Simulation 

  The estimated values of parameters that are incorporated in this study are 

given in the table 1. In this section presents the numerical analysis to analyse 

the model (2.2.3 – 2.2.4).  

The simulation work has been performed with dde23 in MATLAB 2012b to 

simulate the model consisting IDE and two time delays. In the glucose – insulin 

dynamics the insulin secretion occurs in the oscillatory manner over the range 

of (50 – 150) min for the non-diabetic people.  The impacts of two time delays 

𝜏 & 𝜏  on the glucose – insulin regulation system and the suitable range of two 

delays for which sustained and ultradian oscillation occurred in diabetics are 

explained in this study. The relationship between Insulin and Insulin degrading 

enzyme (IDE) is also described below. The parameter values used in the 

current work were approximated experimentally and taken from [43]. They are 

shown in table 1. Hepatic glucose production (HGP) value is fixed (c =150) 

throughout the simulation because it has little effect. The rate of glucose 

infusion (𝐺 = 1.083 𝑚𝑔𝑑𝑙 𝑚𝑖𝑛 ), rate of insulin degradation (𝑖 =

0.1𝑚𝑖𝑛 ), and the value of 𝑑 = 0.6𝑚𝑖𝑛  were used as constants in this study. 

The next section discusses the effects of time delays for various ranges on 

glucose and insulin levels.  

 

4.1 Effects of time delays 𝜏  and 𝜏  

Case 4.1.1: At 𝑉 = 5 (𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐); delay in insulin secretion i.e. 

𝜏 ≥ 0,  and no delay in insulin absorption and action i.e. 𝜏 = 0.The 

concentration of glucose starts at 130 mg/dl and ranges between (85-110) 

mg/dl for non-diabetics at the fixed value of 𝜏 = 0 and 𝜏 ∈ (5, 30) min. The 
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system achieves sustained oscillation starting at 40 minutes, 50 minutes, and 

140 minutes at 𝜏 = 10, 20 & 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 respectively (Fig 2.3). 

 

Table 2.1. The variables and their values that are used in this study.  

Parameters / Units Values are taken 

from 

𝐴 = 209 𝑚𝑈/𝑚𝑖𝑛  

 

 

Estimated 

𝐶 = 2000 𝑚𝑔/𝑙 

𝜆 = 300 𝑚𝑔/𝑙 

𝐴 = 72 𝑚𝑔/𝑚𝑖𝑛 

𝐶 = 144 𝑚𝑔/𝑙 

𝐶 = 100 𝑚𝑔/𝑙 

𝐴 = 40 𝑚𝑔/𝑚𝑖𝑛 

𝑈 = 940 𝑚𝑔/𝑚𝑖𝑛  

 

 

[43] 

𝐶 = 80 𝑚𝑈/𝑙 

𝑉 = 11 

𝛽 = 1.772 

𝐸 = 0.2 𝑙/𝑚𝑖𝑛 

𝑡 = 100 𝑚𝑖𝑛 

𝑉 = 5  

(𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) & 10 (𝑓𝑜𝑟 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) 

𝛼 = 0.01 Estimated 

 

Case 4.1.2: For 𝑉 = 10 (𝑓𝑜𝑟 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐); delay in insulin secretion i.e. 𝜏 ≥ 0, 

and no delay in insulin absorption and action i.e. 𝜏 = 0.  

For the diabetic person, at 𝜏 = 0 and 𝜏 ∈ (0, 15) 𝑚𝑖𝑛. the glucose 

concentration is not under the reasonable range [66], so to get the suitable 

range of glucose concentration for the diabetic people we have to increase the 

time delay. Since total time in insulin secretion and insulin action are considered 

as first time delay 𝜏  and insulin does not start working instantly, then we 

increased the values of  𝜏  . When the system reached sustained oscillation, 

glucose levels varied between (95 − 185) mg/dl for 𝜏 ≥ 36 𝑚𝑖𝑛. and  𝜏 ≤ 47 

min (Fig. 2.4). 
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Case 4.1.3: 𝑉 = 5 (𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐); delay in both insulin secretion and 

insulin absorption and action i.e. 𝜏 ≥ 0, 𝜏 ≥ 0. 

Throughout the simulation, we used a variety of values 𝜏  and 𝜏  and we 

observed that for both insulin and glucose concentration, ultradian oscillations 

are shown with periods of 80 minutes each, at the smallest values of initial time 

delay (i.e. 𝜏 = 5 𝑚𝑖𝑛.) and 𝜏 ∈ (30, 39) 𝑚𝑖𝑛.  

Ultradian oscillations are seen for 𝜏 = 10 min and 𝜏 ∈ (36, 40) with periods of 

80 min each. The ultradian oscillations for 𝜏 ∈ (41, 44) at 𝜏 = 10 𝑚𝑖𝑛 are 

displayed with period 100 min. The ultradian oscillation with period 120 has 

been recorded for 𝜏 ∈ (45, 59). 

At 𝜏 = 15 𝑚𝑖𝑛 and for 𝜏 ∈ (30, 36) 𝑚𝑖𝑛, 𝜏 ∈ (37, 46) 𝑚𝑖𝑛 & 𝜏 ∈

(47, 56) 𝑚𝑖𝑛  the ultradian oscillations are shown with periods of 80 min, 100 

min & 120 min respectively (Fig. 2.5). 

Case 4.1.4: For 𝑉 = 10 (𝑓𝑜𝑟 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐); delay in both insulin secretion and 

insulin absorption and action i.e. 𝜏 ≥ 0, 𝜏 ≥ 0. 

The simulations are run for a range of 𝜏  and 𝜏  values and the findings are as 

follows. The ultradian oscillations with durations of 80 and 100 minutes are 

seen for 𝜏 ∈ (31, 39) 𝑚𝑖𝑛, and 𝜏 ∈ (40, 46) 𝑚𝑖𝑛 respectively at 𝜏 = 5 𝑚𝑖𝑛. The 

glucose level fluctuates between (62-185) mg/dl between 𝜏 = 5 𝑚𝑖𝑛 and 𝜏 = 

49 min; this is considered to be within a diabetic's normal range.  

According to figure 6, the ultradian oscillation occurs at 𝜏 = 10 𝑚𝑖𝑛, 𝜏 ∈

(31, 36) 𝑚𝑖𝑛 with a period of 80 min, and the oscillation's period has been 

observed to reach 100 min for𝜏 ∈ (38, 43).The level of glucose varied between 

(62-185) mg/dl for 𝜏 = 10 𝑚𝑖𝑛and 𝜏 = 45 𝑚𝑖𝑛.For normal individuals, the 

range of glucose concentration levels as ultradian oscillation is (50 - 150) min 

[43], while for diabetic individuals, the highest value in the range of ultradian 

oscillation rises. 

 

One of the key findings of the current study is that insulin action delay of more 

than 49 minutes at 𝜏 = 5 minutes and more than 45 minutes at 𝜏 = 10 

minutes are outside of the normal range and may result in diabetic coma (Fig. 

2.6), due to the fact that glucose cannot be turned into glycogen without 
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insulin. From the simulation, it can be shown that oscillations' amplitudes grow 

as glucose infusion rates increase while maintaining a constant frequency, 

which is also supported by [66]. Our simulation suggests that 𝜏  can be a 

reason for such sort of oscillation in delay of HGP, contrary to some published 

publications [66] that stated delay due to hepatic glucose synthesis was the 

cause of oscillation in insulin secretion. 

 

                       

                                                                𝑓  

                       

                                                         𝑓  
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                                                             𝑓  

                         

                                                              𝑓  

                                 

                                                                IDE 

Figure: 2.2. The shapes of functions 𝑓 , 𝑓 , 𝑓 , 𝑓 , and IDE 
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During the simulation work we have witnessed that, for different values of time 

delays 𝜏  & 𝜏  model has shown stable behaviour and for 𝜏 = 5 𝑚𝑖𝑛 & 𝜏 ∈

(31, 49) 𝑚𝑖𝑛 and for 𝜏 = 10 𝑚𝑖𝑛 & 𝜏 ∈ (31, 45) 𝑚𝑖𝑛 the model possess the 

stable equilibrium. The phase portrait for the glucose and insulin concentration 

are shown in the figure 2.7 for the values of 𝜏 = 20 𝑚𝑖𝑛 & 𝜏 = 45 𝑚𝑖𝑛. 

 

                     

Figure: 2.3(a). Model-produced sustained oscillation with 𝜏 = 0 and 𝜏 = 20  

displays glucose concentration at 𝑉 = 5 (for non-diabetic). 

 

                   

Figure: 2.3(b). Model-produced sustained oscillation with 𝜏 = 0 and 𝜏 = 30 𝑚𝑖𝑛.  

displays glucose concentration at 𝑉 = 5 (for non-diabetic). 
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    Figure 2.4 (a). Curve for the glucose concentration obtained from the model and for 

𝜏 = 0 system sustained the oscillation at 𝜏 ≥ 36 𝑚𝑖𝑛. 

 

                 
Fig. 2.4 (b). Curve for the glucose concentration obtained from the model and for 

𝜏 = 0 system sustained the oscillation at 𝜏 ≤ 48 𝑚𝑖𝑛.  
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 Figure 2.5 (a). Glucose concentration curve obtained from the model shows the 
sustained oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 =

30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.  

                                

 Figure 2.5 (b). Insulin concentration curve obtained from the model shows the sustained 
  oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 = 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.           

                            
Figure 2.5 (c). Glucose concentration curve obtained from the model shows the 
sustained oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 =

39 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.  
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 Figure 2.5 (d). Insulin concentration curve obtained from the model shows the sustained 
oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 = 39 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 

 

                         

Figure 2.5 (e). Glucose concentration curve obtained from the model shows the 
sustained oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 =

45 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.  

                          

Figure 2.5 (f). Insulin concentration curve obtained from the model shows the sustained 
oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 = 45 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 
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Figure 2.5 (g). Glucose concentration curve obtained from the model shows the 

sustained oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 =

59 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.  

 

 

                             
 Figure 2.5 (h). Insulin concentration curve obtained from the model shows the sustained 

oscillations at 𝑉 = 5 (𝑛𝑜𝑛 − 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐) for 𝜏 = 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝜏 = 59 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.   

 

 

 

 

  
 



66 
 

                    

Figure 2.6 (a). For diabetic people (𝑉 = 10) , glucose concentration at 𝜏 =

5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 𝜏 = 49 𝑚𝑖𝑛𝑢𝑡𝑒. 

 

                    

Figure 2.6 (b). For diabetic people (𝑉 = 10) , insulin concentration at 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 

𝜏 = 49 𝑚𝑖𝑛𝑢𝑡𝑒.  
 

                    

Figure 2.6 (c). For diabetic people (𝑉 = 10) , glucose concentration at 𝜏 =

5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 𝜏 = 45 𝑚𝑖𝑛𝑢𝑡𝑒.  
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Figure 2.6 (d). For diabetic people (𝑉 = 10) , insulin concentration at 𝜏 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 

𝜏 = 45 𝑚𝑖𝑛𝑢𝑡𝑒. 

 

       

 

   Figure 2.7. Phase portrait for the concentration of glucose and insulin at 𝜏 =

20 𝑚𝑖𝑛 & 𝜏 = 45 𝑚𝑖𝑛. 

 

2.5 Conclusion  

 

  In our current work, an attempt has been made to make the model more 

accurate and biologically plausible with the incorporations of delays and an 

enzyme that breaks down insulin. Our understanding of the oscillation in 

glucose and insulin concentration has also been aided by the dynamics of 

glucose and insulin. We conducted both analytic and numerical analyses of our 

model. According to the results of our models, the inclusion of the second delay 
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(𝜏 ) in the current model may be the cause of the ultradian oscillation of insulin 

secretion that is induced by the high level of glucose concentration. Numerical 

simulation of the model provides the feasible range of both the delays for the 

attainment of ultradian and sustained oscillations. The range of both the delays 

can be helpful in designing of artificial pancreas to avoid situations like 

hypoglycaemia and diabetic coma. 
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Chapter 3 

 

Delayed Mathematical model and 

simulation of the impact of Physical 

Workouts & Yoga on glucose – insulin 

dynamics in Diabetics 

 
A growing epidemic of diabetes poses a threat to the world's medical systems, 

the survival of some indigenous populations, and the global economy, 

particularly in emerging countries. All types of diabetes are primarily caused by 

an abnormal secretion or function of insulin. Exercise, a healthy diet, and 

lifestyle changes can assist to control type-2 diabetes. Proper Physical workouts 

can be proved instrumental in maintaining ype-1 diabetes up to some extents. 

A delay differential model has been developed to explore the changes in 

glucose and insulin level brought on by workout because exercise and yoga are 

significant in both forms of diabetes. Through simulation of the mathematical 

model, the parameters for physical workouts and yoga have been incorporated 

into the Bergman's three compartment minimal model, and comparisons have 

been made between the levels of glucose and insulin in normal, type-2 and 

type-1 diabetes mellitus without workout and with various amounts of exercise. 

Sensitivity analysis has been carried out to explore effects of various 

parameters. We have suggested a flexible combination of Yoga asana to 

observe their impact as mild, moderate, and strong exercise. Also the numerical 

simulation has been performed to study the effects of the different levels of 

physical exercises and yoga in keeping the glucose level in tight control in 

normal population and helpful in bringing glucose level within the suitable 

range.  
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   3.1 Introduction 

  Exercise, especially yoga, plays a vital role in managing diabetes by regulating 

glucose levels and increasing insulin sensitivity, thereby preventing heart 

problems, a common diabetic complication. Physical activity, including yoga, is 

a fundamental cornerstone in diabetes management. The American Diabetes 

Association recommends at least 150 minutes per week of moderate-intensity 

physical activity for better management [93] [94] [95]. Yoga may increase 

insulin sensitivity. Studies have developed mathematical models showing how 

regular physical activity, including yoga, can prevent or delay the onset of 

diabetes by increasing insulin sensitivity [96] [97]. It is very difficult to suggest 

the same type of workout to all diabetics because there will be many variation 

in their life style, eating habits and working schedule [98]. Therefore there is 

lack of studies on the effects of different levels of the exercise on the 

population with varying level of severity of diabetes. Hence, the present study's 

goal is to investigate the impacts of physical activity with varying level, 

specifically yoga, on diabetes management. It incorporates exercise 

characteristics into the Bergman 3-compartment model [99] and examines how 

physical workouts and yoga affect insulin production from the pancreas through 

a three-compartment model.  

 

3.2   Materials and Methods  

3. 2.1   Description of the basic model 

 

      Bolie, 1961 [14] has presented the values of coefficients of normal blood 

glucose regulation through minimal model. Since after then, minimal model has 

been used widely to study the various aspects of glucose – insulin dynamics. 

 Bergman et. al., 1981 [99] has presented a three compartment model, which is 

modified as given below after the induction of parameters of physical activities 

through yoga. 

𝑑𝐺(𝑡)

𝑑𝑡
= −(1 + 𝛼 )𝑅 (𝑡)𝐺(𝑡 − 𝜏 ) + (𝑔 + 𝛼 )(𝐺 − 𝐺(𝑡)) 

                                                                                                                             (3.2.1)                                   

𝑑𝑅 (𝑡)

𝑑𝑡
= (𝑔 + 𝛼 )(𝐼(𝑡) − 𝐼 ) − 𝑔 𝑅 (𝑡) 



71 
 

                                                                                                                             (3.2.2)    

𝑑𝐼(𝑡)

𝑑𝑡
= (𝑛 + 𝛾)(𝐺(𝑡) − 𝐺 ) − (𝑚 + 𝛿)(𝐼(𝑡) − 𝐼 ) 

                                                                                                                             (3.2.3) 

Where; 

𝐺 : basal glucose concentration, 

𝐺 : glucose concentration due to food consumption, 

𝐺(𝑡): plasma glucose concentration, 

𝐼(𝑡): insulin concentration,    

𝑅 : remote insulin, 

𝜏 : delay in response of insulin to glucose stimulation and time needed to 

secrete insulin to convert it into remote insulin,   

𝛼 : effect of physical workouts in stimulation of glucose utilization by muscles 

& liver, 

𝛼 : effect of physical workouts in raising the muscular & liver sensibility to 

action of insulin, 

𝛼 :  impact of physical workouts in uplifting the utilization of insulin, 

𝛿:    fractional insulin clearance, 

𝑔 : glucose effectiveness at basal insulin (𝐼 ), 

𝐼 = −   is known as insulin sensitivity , and the parameters 𝑔 , 𝑔  and 

𝑔  are taken from Pacini et al., 1986 [100].   

 When blood glucose levels raise quickly then biphasic pancreatic responsivity 

are responsible for glucose sensitivity. Glucose sensitivity related to first and 

second phase pancreatic responsivity is 𝜑  & 𝜑  respectively and defined below.  

 

𝜑 =
𝐼 − 𝐼

−(𝑛 + 𝛾)(𝐺(𝑡) − 𝐺 )
 

                                                                                                                                   (3.2.4)  

𝜑 = 𝛾 × 10  

                                                                                                                                   (3.2.5)  

𝐼 : maximum value of insulin released. 

Table 3.1 lists the various yoga treatments for diabetes mellitus [101], whereas 

Table 2 lists the values of the parameters used in this study. Since Table 3.2's 

model parameters are all positive, there is an area (℧)where: 
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℧ =

G(t)
R (t)
I(t)

ϵR

G(t) ≥ 0
R (t) ≥ 0
I(t) ≥ 0

 

                                                          (3.2.6) 

                         

         Anywhere the model is mathematically and physiologically meaningful, all 

solutions of the equations (3.2.1) through (3.2.3) with non-negative initial 

values will remain non-negative in the region ℧ for all time 𝑡 ≥ 0.   

Theorem 3.2.1 If the initial condition of the model (3.2.1–3.2.3) lie is region 

℧, then there exist a unique solution for (3.2.1–3.2.3). G(t), R (t) and I(t) that 

remains is ℧ for all time 𝑡 ≥ 0.  

           Proof: The right hand side of the model equations (3.2.1–3.2.3) is 

continuous with continuous derivative in ℧, therefore the model has unique 

solution for every 𝑡 ≥ 0 .  

 

3. 2.2. Analysis of the proposed model  

 

3. 2.2.1 Existence of equilibrium points 

 

          Results of the steady state model's stability and existence will be reported in 

this section. The system of equations’ equilibrium point is the steady state 

solution to the equations. The perturbed equations of the model (3.2.1–3.2.3) 

are given as follows: 

 

   −(1 + 𝛼 )𝑅 (𝑡)(𝐺(𝑡) − 𝜏 ) + 𝑎 𝐺 − 𝐺(𝑡) + 𝑔∗ = 0 

                                                                                                                             (3.2.7) 

              

−𝑔 𝑅 (𝑡) + 𝑐(𝐼(𝑡) − 𝐼 ) = 0 

                                                                                                                             (3.2.8)  

          

𝑑(𝐺(𝑡) − 𝐺 ) − 𝑒(𝐼(𝑡) − 𝐼 ) = 0 

                                                                                                                             (3.2.9) 
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where,    

𝑎 = (𝑔 + 𝛼 )

𝑐 = (𝑔 + 𝛼 )

𝑑 = (𝑛 + 𝛾)

𝑒 = (𝑚 + 𝛿) ⎭
⎬

⎫
 

                                                                                                                           (3.2.10) 

 

      Table 3. 1: Yoga therapies for helping the diabetes mellitus [101] 
 

Yoga Time span Benefits 

Jathis 
(warm-up) 

5 min Helpful in reducing the 
stiffness. 
 

Navasana 20 sec / 
5 sets 

Useful in disorders of the 
intestines, pancreas, liver, 
and gall bladder 
and effective for diabetes 
patients. 
 

Viparitakarani 
(Mudras) 

30 sec / 30sec 
relaxation 

Encourage the healthy 
metabolic functioning 
by the insulin sensitivity 
(recommended for diabetic 
patients). 
 

Pranayama 20 min/ 
3-9 rounds 

Promotes the 
enhancement of insulin 
sensitivity. 

  

    

          Using the equations (3.2.8) and (3.2.10), we get  

         

𝑔∗ =
𝑎𝑒 𝐺 − 𝐺(𝑡) 𝑔 + 𝑐𝑑𝐺(𝑡)(𝐺(𝑡) − 𝐺 )(1 + 𝛼 )

𝑒𝑔
 

                                                                                                                           (3.2.11)                                                                          

          

𝑅 (𝑡) = −
−𝑐𝑑(𝐺(𝑡) − 𝐺 )

𝑒𝑔
 

                                                                                                                           (3.2.12)            
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 𝐼(𝑡) = 𝐼 +
𝑑(𝐺(𝑡) − 𝐺 )

𝑒
 

                                                                                                                           (3.2.13) 

          Now, differentiating (3.2.11) w. r. t. 𝐺(𝑡), we get 

             

𝜕𝑔∗

𝜕𝐺(𝑡)
= 𝑎 +

𝑐𝑑(1 + 𝛼 )(2𝐺(𝑡) − 𝐺 )

𝑒𝑔
 

                                                                                                                       (3.2.14) 

         Differentiating equation (3.2.14) again w. r. t. 𝐼(𝑡) we get,   

           

𝜕 𝑔∗

𝜕𝐼(𝑡)𝜕𝐺(𝑡)
=

2𝑐𝑑(1 + 𝛼 )

𝑒𝑔

𝜕𝐺(𝑡)

𝜕𝐼(𝑡)
 

                                                                                                                           (3.2.15) 

         Using equation (3.2.13) in equation (3.2.15), 

         

   
𝜕 𝑔∗

𝜕𝐼(𝑡)𝜕𝐺(𝑡)
=

2(𝑔 + 𝛼 )(1 + 𝛼 )

𝑔
 

                                                                                                                           (3.2.16) 

         In absence of any physical workouts i.e. the values of parameters 𝛼 , 𝛼 , 𝛼 , 

𝛾, and 𝛿 will be zero, hence insulin sensitivity  
∗

( ) ( )
(= 𝐼 ) = , and since 

<
( )( )

 as the parameters 𝛼 , 𝛼 , 𝛼 , 𝛾, and 𝛿 all are ≥ 0. 

Therefore, it can be said that engaging in physical activity improves insulin 

sensitivity, which therefore aids in keeping blood glucose levels within a 

reasonable range.  

         The values of the parameters that quantify the amount of physical activity 

determine the quantity. The amount of insulin sensitivity is twice of the value 

which is calculated by [18].  

    

3.2.3 Type 1 Diabetes Mellitus  

        

   In this form of diabetes, the pancreas is subjected to an autoimmune attack 

by the body, rendering it incapable of producing insulin.  

It is an autoimmune illness in which the body's own immune system attacks 

𝛽 − cells, either killing them or seriously injuring them such that less insulin is 
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produced. Consequently, the pancreas generates little or no insulin. Hence, 

Insulin has been thought to take essentially no value while in balance. Insulin 

injections of insulin pumps are used to treat TIDM patients and provide insulin 

to the body i.e. 𝐼 = 0. After the model's simulation, different figures that 

compare the behaviour of glucose, insulin, and interstitial insulin with and 

without the three different levels of exercise are displayed.   

 

3.2.4 Type 2 Diabetes Mellitus 

      Insulin resistance is the diagnosis for T2DM, a condition in which the 

pancreas produces enough amounts of insulin but the body is unable to 

efficiently use it. 

Table 3.2: Description and values of parameters of the model [18] 

 
Parameter 

 
Value 

 
Unit 

 
Parameter 

 
Unit 

Value in 

Mild  
workouts 

Moderate 
workouts 

Strong 
workouts 

𝑔  0.035 1/min 𝛼  1/min 0.1612 0.1428 0.1176 
𝑔  0.05 1/min 𝛼  1/min 0.025 0.040 0.0055 
𝑔  0.000028 ml/µU.min2 

𝛼  ml/µU.min2 0.01 0.0041 0.0005 
𝑛 0.98 1/min 𝛾 1/min 0.00002 0.0005 0.00010 
𝑚 0.142 1/min 𝛿  1/min 0.01 0.005 0.0010 
𝐺  118-120 mg/dl      
𝐺  90-110 mg/dl      
𝐼  7 μU/ml 

 
     

 

Therefore, Nilam et al., 2007 [102] making changes to one's food, lifestyle, and 

kind of exercise can delay the start of T2DM. As a result, the equilibrium insulin 

concentration (before insulin injection) can be assumed to be zero. With various 

physical workouts through yoga, changes in glucose, insulin, and interstitial 

insulin have been simulated and shown in figures (3.1-3.3). 

 

Theorem 3.2.2. The system (3.2.1-3.2.3) has a positive equilibrium solution 

𝑠 = (𝐺∗, 𝑅 ∗, 𝐼∗) with its components given by 

                 

𝐺∗ =  
−𝑎𝑒𝑔 + 𝑐𝑑𝐺 (1 + 𝛼 ) + 𝑆

2𝑐𝑑(1 + 𝛼 )
 

𝑅∗ =  
−𝑎𝑒𝑔 − 𝑐𝑑𝐺 (1 + 𝛼 ) + 𝑆

2𝑒𝑔 (1 + 𝛼 )
 

𝐼∗ =
−𝑎𝑒𝑔 − (𝑑𝐺 − 2𝑒𝐼 )(1 + 𝛼 ) + 𝑆

2𝑐𝑒 (1 + 𝛼 )
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Where, 𝑆 = 4𝑎𝑐𝑑𝑒𝐺 𝑔 (1 + 𝛼 ) + {𝑎𝑒𝑔 − 𝑐𝑑𝐺 𝐼 (1 + 𝛼 )}  

 

3.2.5  Stability of the equilibrium points 

  

Theorem 3.2.3. The model equation (3.2.1-3.3.3) is stable at equilibrium 

points.   

Proof. The Jacobian of the model equation (3.2.1-3.3.3) calculated at these 

points is 

𝐽∗ =  
−(1 + 𝛼 )𝑅∗ − 𝑎     − (1 + 𝛼 )𝐺∗   0
   0                                    − 𝑔                     𝑐 
 𝑑                                          0                 − 𝑒

 

If the eigen values of J∗ are supplied as the root of the characteristic equation, 

the equilibrium is stable: 𝜆 + 𝑃𝜆 + 𝑄 𝜆 + 𝑅 = 0, all have negative parts, where  

                                         𝑃 = 𝑎 + 𝑒 + 𝑔 + 𝑒𝑔 𝑅∗(1 + 𝛼 ),  

                                        𝑄 = 𝑎𝑒 + 𝑔 (𝑎 + 𝑒) + 𝑅∗(𝑒 + 𝑔 + 𝑒𝛼 + 𝑔 𝛼 ), 

      𝑅 = 𝑐𝑑𝐺∗(1 + 𝛼 ) + 𝑒𝑔 𝑅∗(1 + 𝛼 ) + 𝑎𝑒𝑔  

Applying the Routh-Hurwitz criterion 

𝑇 = 1 > 0, 

𝑇 = 𝑃 > 0, 

𝑇 =
𝑃 1
𝑅 𝑄

> 0 𝑓𝑜𝑟 𝛼 ≤ 5𝑒 , 𝛾 ≤ 𝑒   

The system model (3.2.1-3.3.3) is stable at equilibrium by the Routh-Hurwitz 

criterion.   

 

3.3 Results and Discussions 

3.3.1   Numerical Simulation 

 

      It is very impossible to determine the exact amount of workouts that each 

person needs because everyone's food and lifestyle patterns are unique. Each 

person must choose the proper level of physical activity and yoga (Table 3.1) to 

prevent hypoglycemia. But the quantity and duration, two essential elements of 

exercise, might vary depending on the person.  

Therefore, in present study, we have divided workouts into 3 types: mild, 

moderate and strong. With the help of three different types of workouts, the 

simulation of models (3.2.1) through (3.2.3) has been done in Matlab (R2012a) 
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to explain the variations in insulin and glucose levels in patients with normal, 

T1DM, and T2DM. Fig. 3.1 depicts the blood glucose level in a typical situation 

with various types of exercise because it has been claimed that yoga and 

physical activity help to keep blood sugar levels tightly under control. Fig. (3.1 -

3.2), shows the oscillations are ultradian and the concentration of glucose and 

insulin at the delay of 𝜏 ∈ (18, 23) 𝑚𝑖𝑛 will be observed at their feasible range. 

       In comparison to no, mild, and moderate exercise, strong exercise has 

demonstrated a rapid drop in blood glucose levels in a shorter amount of time. 

As time passes, the level of glucose rises to its basal level. With increased 

workout intensity, insulin level also exhibits a comparatively greater peak level 

rise in Fig. 3.2. Blood glucose levels in T2DM can be controlled by combining 

physical workout, yoga practices, food, and medication. 

 

      The figures (3.1-3.2) shows that yoga and more strenuous exercise help people 

with T2DM maintain their blood glucose levels more quickly than neither 

exercise nor light to moderate exercise does. Fig. 3.3 shows the temporal 

variations in remote insulin (𝑅 (𝑡)) with the typical case peak falling within 

Bergman's specified range [99].  

 

As per present study, workouts and practices of yoga can improve insulin 

sensitivity (𝐼 ) =  and efficiency, two key elements in the development of 

T1DM, with positive impact on blood sugar levels. The simulation demonstrates 

that T1DM patients with strong exercise may maintain their blood glucose level 

in the vicinity of the normoglycemic range in a shorter amount of time.  



78 
 

 

Figure 3.1 (a): Glucose concentration (𝐺(𝑡)) at the time delay 𝜏 = 18 𝑚𝑖𝑛. 

 

 

 

Figure 3.1(b): Glucose concentration (𝐺(𝑡)) at the time delay  𝜏 = 21 𝑚𝑖𝑛. 
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Figure 3.1 (c): Glucose concentration (𝐺(𝑡)) at the time delay (c) 𝜏 = 23 𝑚𝑖𝑛.  
 

 

  

Figure 3.2 (a): Insulin concentration (𝐼(𝑡)) at the time delay 𝜏 = 18 𝑚𝑖𝑛.  
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Figure 3.2 (b): Insulin concentration (𝐼(𝑡)) at the time delay 𝜏 = 21 𝑚𝑖𝑛.  

 

 

 

Figure 3.2 (c): Insulin concentration (𝐼(𝑡)) at the time delay (c) 𝜏 = 23 𝑚𝑖𝑛.  
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Figure 3.3 (a): Remote Insulin concentration (𝑅 (𝑡)) at the time delay 𝜏 = 18 𝑚𝑖𝑛.  
 
 
 
 
 

 

 
Figure 3.3 (b): Remote Insulin concentration (𝑅 (𝑡)) at the time delay 𝜏 = 21 𝑚𝑖𝑛. 
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Figure 3.3 (c): Remote Insulin concentration (𝑅 (𝑡)) at the time delay (c) 𝜏 =

23 𝑚𝑖𝑛.  

 

        T1DM patients only reached basal glucose levels with vigorous activity at 

the same levels of 𝐼 = 50 𝑚𝑈/𝑑𝑙 and 𝐺 = 80 𝑚𝑔/𝑑𝑙, however glucose levels 

were detected creeping up to greater levels than basal levels when fewer 

physical activities were conducted. Remote Insulin concentration (𝑅 (𝑡)) also 

shows significant rise in its level in T1DM patients in case of strong exercise 

than without exercise, which will be helpful in bringing down the glucose level 

to near normal level. Stability analysis has been carried out and our proposed 

mathematical models (3.2.1-3.2.3) with one delay are stable. The phase 

portrait for glucose and insulin concentration is shown through Fig. 3.5. 

  

Based on the graphs obtained by simulation of the model, we can proposed a 

possible combination of yoga by taking the values of 𝛼 , 𝛼  and 𝛼  according 

to the time span taken each type of yoga asana. The moderate level of 

exercises used in mathematical modeling for simulation.  

The parameter 𝛼  is taken as the combination of Viparitakarani (10 sets for 5 

minutes of each set) & Pranayama (9 rounds for 20 minutes of each round), 𝛼  

is taken as the combination of Navasana (5 sets for 15-20 seconds of each set) 
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of & Viparitakarani (15 minutes) and 𝛼  is the combination of Jathis (5 

minutes) & Navasana (5 sets for 15-20 seconds of each set).    

  

3.4.   Sensitivity Analysis 

 

        Sensitivity analysis has also been done among the parameters to identify 

their impacts. If a parameter is positively or negatively associated, its impact on 

other parameters is revealed in the sensitivity analysis. If a parameter is 

positively correlated, then it has an impact on other parameters. Fig. 3.4 (a), 

shows that positive correlation of effect of physical workouts in raising the 

muscular & liver sensibility to action of insulin 𝛼  and 𝑔  with insulin sensitivity 

(𝐼 ). The value of correlation coefficient is positive, hence action of insulin 

𝛼 ∈ (0.05, 0.20) and 𝑔 ∈ (0.025, 0.115) have high impact on insulin sensitivity 

(𝐼 ). Fig. 3.4 (b) depict that that insulin sensitivity (𝐼 ) is positively correlated 

with impact of physical workouts in uplifting the utilization of insulin 𝛼  ∈

(0.05, 0.10) and 𝑔 ∈ (0.01, 0.05), hence insulin sensitivity has been affected by 

utilization of insulin through physical workouts and yoga. 

  The fractional insulin clearance (𝛿), and 𝛾 have positively correlated with first 

phase pancreatic responsivity (𝜑 ), and have very little influence as shown in 

Fig 3.4(c). The second phase pancreatic responsivity (𝜑 ) has also influenced 

by fractional insulin clearance (𝛿), and 𝛾 with small amount of fraction and are 

in positive correlation (Fig. 3.4(d)). 

  The epidemic of diabetes that is sweeping the globe is being attributed to a 

decline in physical fitness, which also contributes to obesity, another significant 

component in the diabetic population. Diabetes is more likely to affect the 

obese than the lean. Aerobic exercise has been shown to reduce oxidative 

stress and enhance blood sugar management in people with diabetes mellitus. 

   In the present work our proposed model (3.2.1-3.2.3) focusing on the impact 

of physical workouts and yoga on controlling glucose concentration within the 

suitable range. As shown in figures 3.1-3.3, for the time delay of 𝜏 ∈

(18, 23) 𝑚𝑖𝑛, concentration of glucose, insulin and remote insulin are in their 

feasible range. As per the simulation results of models (3.2.1-3.2.3), one of the 

important finding is that for any positive value of 𝛼  at high value of time delay 
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𝜏 = 23𝑚𝑖𝑛, the concentration of glucose  should be greater than concentration 

of basal glucose i.e. (𝐺(𝑡) > 𝐺 ) always otherwise situation of hyperglycemia 

will be created.     

   

                        

 Figure 3.4 (a): Sensitivity analysis of insulin sensitivity (𝐼 ) with 𝛼  and 𝑔 . 

 

                 

Figure 3.4 (b): Sensitivity analysis of insulin sensitivity (𝐼 ) with 𝛼  and 𝑔 .     
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Figure 3.4 (c): Sensitivity analysis of first phase pancreatic responsivity (𝜑 ) with fractional 

insulin clearance(𝛿) and 𝛾.  

 

 

     

Figure 3.4 (d): Sensitivity analysis of second phase pancreatic responsivity (𝜑 ) 

with fractional insulin clearance(𝛿) and 𝛾.   
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 Figure 3.5: The Phase portrait of model for the concentration of glucose and insulin. 

  

       3.4   Conclusion 

 

       In current work we have developed a mathematical model (3.2.1-3.2.3) 

incorporating the various parameters related to physical workouts and yoga to 

control the glucose concentration. We have studied the oscillations of the 

glucose –insulin dynamics with one time delay in both numerically as well as 

analytically. As per findings of developed model (3.2.1-3.2.3), with 

incorporation of time delay 𝜏  the ultradian oscillations caused in response of 

insulin to glucose stimulation and time needed to secrete insulin to convert it 

into remote insulin. Insulin sensitivity has been influenced by the physical 

workouts parameters 𝛼 , 𝛼 , 𝑔  and 𝑔 , and result shows that to avoid the 

situation of hyperglycemia the concentration of glucose  should be greater than 

the concentration of basal glucose i.e. (𝐺(𝑡) > 𝐺 ).  

 Our study suggests that various yoga asanas should be practiced under expert 

supervision for effective diabetes management. Additionally, to address diabetic 

complications and prevent issues such as diabetic coma, incorporating physical 

exercise and yoga therapies is highly advantageous. Furthermore, the 

introduction of time delays proves beneficial in the advancement of artificial 

pancreas technology.   
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Chapter 4 

 

Exploring the dynamics of Diabetes: A 

delayed nonlinear population model 

for assessment of Diabetes 

Management and Outcomes 
 

 The prevalence of diabetes, once confined mainly to older adults, has now 

extended to younger age groups, primarily linked to factors such as being 

overweight or obese, engaging in unhealthy diets, and having low levels of 

physical activity. This research delves into a model that represents the diabetic 

population, focusing on a general treatment function that considers the gradual 

advancement of diabetes. The treatment function is intricately connected to 

individuals with diabetes facing complications, with a specific emphasis on a 

saturating recovery rate. The study establishes the existence of a singular 

positive equilibrium point, demonstrating both local and global asymptotic 

stability when time delays are absent. However, the introduction of time delays 

leads to the derivation of threshold values, determining the potential occurrence 

of Hopf bifurcation. By utilizing time delay as the bifurcation parameter, an 

algorithm is developed to ascertain the characteristics of this bifurcation. 

Through numerical simulations and data analysis, the mathematical model's 

credibility is substantiated, highlighting the importance of diabetes education, 

lifestyle modifications, and strict adherence to diabetes management in 

reducing the incidence of diabetes complications. 
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4.1 Introduction 

Managing diabetes involves close monitoring of blood sugar levels and 

collaborating with healthcare professionals to adjust medications as necessary. 

Keeping abreast of the latest advancements in diabetes research and treatment 

options is also crucial. With the right resources, knowledge, and attentive care, 

individuals can take control of their health and lead fulfilling, healthy lives [103] 

[104]. Type-2 diabetes is the most prevalent, accounting for up to 90% of 

cases, with many individuals unaware of their condition due to a lack of 

symptoms [105] [106]. It's essential to recognize the risk factors and symptoms 

of diabetes and work closely with healthcare professionals for effective 

management and prevention. 

Data from the Malaysian Institute for Public Health reveals that approximately 

3,891,965 people live with diabetes in Malaysia, equating to 1 in 5 Malaysian 

adults [103]. Among them, nearly half are undiagnosed, having passed through 

the pre-diabetes phase without complications. However, unchecked pre-

diabetes can lead to type 2 diabetes and severe complications like retinopathy, 

nephropathy, diabetic foot ulcers, and amputations. The 2019 Malaysian 

National Diabetes Registry report indicated that 99.3% of diabetics in Malaysia 

have type-2 diabetes, with an average age of 53 at diagnosis. This highlights 

the importance of understanding risk factors and symptoms and collaborating 

with healthcare professionals for management and prevention [103]. 

The prevalence of end-stage kidney disease, a common diabetes complication, 

is expected to rise globally. In Malaysia, the number of patients is projected to 

reach 106,249 by 2040, mostly treated with dialysis due to limited kidney 

transplants [107]. Therefore, investigating the dynamics of type-2 diabetes and 

the impact of limited medical resources remains crucial for addressing the 

diabetes epidemic in Malaysia. With the right resources, knowledge, and 

support, individuals can take control of their health and lead fulfilling lives 

[108]. 

Understanding the nature of diabetes is crucial in employing mathematical 

modeling to study its population dynamics. A non-communicable disease 

developing gradually over time, diabetes can result in severe complications if 

unmanaged. Mathematical models can simulate and predict the impact of 
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interventions on the diabetic population, aiding in identifying effective strategies 

for management and treatment. However, incomplete understanding of 

diabetes can lead to inaccurate models [109]. Hence, utilizing ordinary 

differential equations (ODEs) can offer a more accurate representation, 

capturing the disease's mechanisms and providing a realistic portrayal of its 

dynamics within the population [110] [111]. Effective modeling of the diabetic 

population requires a comprehensive understanding of the nature of diabetes. 

Without such understanding, mathematical equations may be inaccurately 

formulated, involving products and fractions that deviate from the known 

reality. One simplistic interpretation to avoid is the consideration of diabetes 

and its complications as infectious, wherein mathematical terms resemble those 

used in infectious disease models [112]. This scenario is illogical given that 

diabetes is a disease classified within a broad category of non-communicable 

(non-infectious) diseases. Therefore, we employed delay differential equations 

to depict the dynamics of diabetes, aiming for improved alignment with real-

world conditions [110].  

In the current study, we have introduced the four compartment model as a tool 

to assess the efficacy of treatment therapies while considering time delays. The 

model comprises four distinct compartments, representing various population 

segments: the susceptible population (𝑋(𝑡)), the diabetes-aware population 

(𝑌(𝑡)), the diabetes-unaware population (𝑍(𝑡)), and the population facing 

complications due to diabetes (𝑊(𝑡)). Our research centers on exploring the 

impact of treatment therapies, specifically emphasizing the rate of awareness 

(𝛿) and the rate of transition (𝛼) from the susceptible class (𝑋(𝑡)) to the 

unaware class (𝑍(𝑡)).    

       

 

4.2 Mathematical model and its basic properties 

  The proposed model with the incorporation of various parameters is presented 

in this section. The transition diagram of population dynamics is shown in the 

Fig. 4.1. 
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4.Figur 4.1: Transition diagram of population. 

The dynamics of diabetes progression among different subpopulations are 

elegantly captured by the system of delay differential equations presented 

below: 

𝑑𝑋

𝑑𝑡
= 𝑘 −

𝛿 𝑋(𝑡 − 𝜏)

1 + 𝜃 𝑋(𝑡 − 𝜏)
− (𝜇 + 𝛼)𝑋, 

𝑑𝑌

𝑑𝑡
=

𝛿 𝑋(𝑡 − 𝜏)

1 + 𝜃 𝑋(𝑡 − 𝜏)
− (𝜇 + 𝜇 + 𝛾)𝑌, 

𝑑𝑍

𝑑𝑡
= 𝛼𝑋 − (𝜇 + 𝜇 + 𝜙)𝑍, 

      

𝑑𝑊

𝑑𝑡
= 𝛾𝑌 + 𝜙𝑍 − (𝜇 + 𝜇 )𝑊 

        (4.2.1) 

For biological reasons the initial conditions are non – negative continuous 

functions 

𝑋(𝜌) = 𝑥(𝜌);   𝑌(𝜌) = 𝑦(𝜌);    𝑍(𝜌) = 𝑧(𝜌), 𝑊(𝜌) = 𝑤(𝜌)              (4.2.2) 

 

where 𝐻(𝜌) = (𝑥, 𝑦, 𝑧, 𝑤)  ∈ 𝐶, are functions such that 𝑥, 𝑦, 𝑧, 𝑤 ≥ 0, (−𝜏 ≤ 𝜌 ≤

0). 𝐶 denotes the Banach space 𝐶([−𝜏, 0], ℝ ) of continuous functions mapping 

the interval [−𝜏, 0] into ℝ  with the supremum norm: ‖𝐻‖ =

sup ∈[ , ]|𝐻(𝜌)|,where | . | is any norm in ℝ . 

The Table 4.1 below provides a comprehensive list of all variables and 

parameters used in the model, along with their descriptions. 
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Table 4.1: Descriptions of parameters incorporated in models 

                Symbol Description 

𝑋    Susceptible population 

𝑌    Aware population having 

diabetes 

𝑍    Unaware population about 

having diabetes 

𝑊    Population with complications 

due to diabetes 

𝑘    Constant recruitment rate 

𝛿    Rate of awareness 

𝜃    Limitation rate in awareness 

𝜇    Natural death rate 

𝛼    The rate of transition from 

class𝑋 to class 𝑍 

𝜇     Disease induced death rate in 

𝑌 

𝜇     Disease induced death rate in 

𝑍 

𝜇     Disease induced death rate in 

𝑊 

𝛾    The rate of transition from 

class 𝑌 to class 𝑊 

𝜙    The rate of transition from 

class𝑍 to class 𝑊 

 

The fundamental theory of functional differential equations [113] implies for 

any initial conditions (4.2.2) of the model (4.2.1) has a unique 

solution (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑊(𝑡)). 

For biological reasons, it's assumed that all variables and parameters in the 

model are positive. A region of attraction has been discovered for the model 

(4.2.1), as stated in Lemma 1 below: 

Lemma 1: The set R = (𝑋, 𝑌, 𝑍, 𝑊) ∈ ℝ : 0 < 𝑋 + 𝑌 + 𝑍 + 𝑊 ≤  is a positive 

invariant set of the model (4.2.1) with prescribed conditions (4.2.2). 
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Proof: By combining all equations of model (4.2.1), we get: 

𝑑

𝑑𝑡
[𝑋 + 𝑌 + 𝑍 + 𝑊] = 𝑘 − 𝜇(𝑋 + 𝑌 + 𝑍 + 𝑊) − 𝜇 𝑌 − 𝜇 𝑍 − 𝜇 𝑊 

⟹
𝑑𝑃

𝑑𝑡
≤ 𝑘 − 𝜇𝑃 

 (Since 𝑃 = 𝑋 + 𝑌 + 𝑍 + 𝑊), 

  On integrating, we get 

𝑃 ≤ 𝑃(0)𝑒 +
𝑘

𝜇
(1 − 𝑒 ) 

 

Therefore, the limit as 𝑡 approaches infinity of the supremum of 𝑃 is less than 

or equal to  Additionally, the derivative of 𝑃 with respect to 𝑡 is negative if 𝑃 is 

greater than . This indicates that the solutions of the model (4.2.1) approach a 

positively invariant set 𝑅 and remain bounded, provided that 𝑃 is greater than 

. 

Note that within the region 𝑅, the elementary results - such as local existence, 

uniqueness, and continuity of solutions - hold true for the model (4.2.1). 

Therefore, a unique solution (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑊(𝑡)) of the model (1) exists on a 

maximal interval [0, ∞) if the solutions remain bounded [114], starting from 

within the interior of 𝑅.  

 

4.3 Qualitative analysis of the model 

4.3.1 Equilibrium point  

In this subsection, we analyze the equilibrium point of the model (4.2.1). It is 

worth noting that the equilibrium solution of a time-delayed system is 

equivalent to the corresponding system with zero delay [1]. For the model 

(4.2.1), we get following positive equilibrium point 𝐸∗: 

𝐸∗(𝑋∗, 𝑌∗, 𝑍∗, 𝑊∗)

= 𝑋∗,
𝑋∗𝛿

(1 + 𝑋∗𝜃)(𝛾 + 𝜇 + 𝜇 )
,

𝑋∗𝛼

𝜇 + 𝜙 + 𝜇
,

𝑋∗𝛾𝛿

(1 + 𝑋∗𝜃)(𝛾 + 𝜇 + 𝜇 )(𝜇 + 𝜇 )

+
𝑋∗𝛼𝜙

(𝜇 + 𝜙 + 𝜇 )(𝜇 + 𝜇 )
 

Where, 𝑋∗ is the positive solution of the following equation: 

𝐶 𝑋∗ + 𝐶 𝑋∗ + 𝐶 = 0 
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                                (4.2.3) 

Here, 𝐶 = (𝛼 + 𝜇)𝜃, 𝐶 = (𝛼 + 𝛿 − 𝑘𝜃 + 𝜇), and 𝐶 = −𝑘. 

 

By applying Descartes' rule of signs, it becomes clear that Eq. (4.2.3) has a 

positive root.  

Therefore, we can conclude that there exists a unique positive equilibrium point 

of the model (4.2.1) of the form 𝐸∗ (𝑋∗, 𝑌∗, 𝑍∗, 𝑊∗). 

 

4.3.2 Local stability analysis 

To investigate the local stability of the model (4.2.1) at the equilibrium point 

(𝐸∗), we first linearize the model (4.2.1) using Jacobian, and obtain the 

following Jacobian matrix at 𝐸∗:  

𝐽∗ =

⎝

⎜
⎜
⎜
⎛

−𝛼 −
𝑒 𝛿

(1 + 𝑋∗𝜃)
− 𝜇 0 0 0

𝑒 𝛿

(1 + 𝑋∗𝜃)
−𝛾 − 𝜇 − 𝜇 0 0

𝛼 0 −𝜇 − 𝜙 − 𝜇 0
0 𝛾 𝜙 −𝜇 − 𝜇 ⎠

⎟
⎟
⎟
⎞

 

The characteristic equation in 𝜆 of above matrix 𝐽∗ is: 

𝐾 𝜆 + 𝐾 𝜆 + 𝐾 + (𝐾 𝜆 + 𝐾 )𝑒  (𝜇 + 𝜆 + 𝜙 + 𝜇 )(𝜇 + 𝜆 + 𝜇 ) = 0 

                 (4.2.4) 

where, 

                       𝐾 ≔ (1 + 2𝑋∗𝜃 + 𝑋∗ 𝜃 ), 

                  𝐾 ≔ (𝛼 + 𝛾 + 2𝑋∗𝛼𝜃 + 2𝑋∗𝛾𝜃 + 𝑋∗ 𝛼𝜃 + 𝑋∗ 𝛾𝜃 + 2𝜇 + 4𝑋∗𝜃𝜇 +

2𝑋∗ 𝜃 𝜇 + 𝜇 + 2𝑋∗𝜃𝜇 + 𝑋∗ 𝜃 𝜇 ) 

𝐾 ≔ (𝛼𝛾 + 2𝑋∗𝛼𝛾𝜃 + 𝑋∗ 𝛼𝛾𝜃 + 𝛼𝜇 + 𝛾𝜇 + 2𝑋∗𝛼𝜃𝜇 + 2𝑋∗𝛾𝜃𝜇 + 𝑋∗ 𝛼𝜃 𝜇 +

𝑋∗ 𝛾𝜃 𝜇 + 𝜇 + 2𝑋∗𝜃𝜇 + 𝑋∗ 𝜃 𝜇 + 𝛼𝜇 + 2𝑋∗𝛼𝜃𝜇 + 𝑋∗ 𝛼𝜃 𝜇 + 𝜇𝜇 +

2𝑋∗𝜃𝜇𝜇 + 𝑋∗ 𝜃 𝜇𝜇 ), 

𝐾 ≔ 𝛿,  𝐾 ≔ (𝛾𝛿 + 𝛿𝜇 + 𝛿𝜇 ) 

From Eq. (4.2.4). It is clear that equation has two negative roots of the form 

𝜆 = (𝜇 + 𝜙 + 𝜇 ), 𝜆 = (𝜇 + 𝜇 ) and rest can be obtained by the solution of the 

following transcendental equation: 

𝑃(𝜆) ≔ 𝐾 𝜆 + 𝐾 𝜆 + 𝐾 + (𝐾 𝜆 + 𝐾 )𝑒  = 0                            (4.2.5) 

Now, let: 𝑀 ≔ , 𝑁 ≔ , 𝑀 ≔ , 𝑁 ≔ , which gives: 
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𝑃(𝜆) ≔ 𝜆 + 𝑀 𝜆 + 𝑁 + (𝑀 𝜆 + 𝑁 )𝑒  = 0                   (4.2.6) 

Now, we state and proof the following two theorems for stability results of 𝐸∗: 

Theorem 1: At τ = 0, the equilibrium point 𝐸∗ is locally asymptotically stable. 

Proof: The Eq. (6) at 𝜏 = 0 is given as: 

𝜆 + 𝑀 𝜆 + 𝑁 + (𝑀 𝜆 + 𝑁 ) = 0               

                                                         (4.2.7) 

It is easy to show that: 

𝑀 + 𝑀

=
𝛿

1 + 2𝑋∗𝜃 + 𝑋∗ 𝜃

+

𝛼 + 𝛾 + 2𝑋∗𝛼𝜃 + 2𝑋∗𝛾𝜃 + 𝑋∗ 𝛼𝜃 + 𝑋∗ 𝛾𝜃

+2𝜇 + 4𝑋∗𝜃𝜇 + 2𝑋∗ 𝜃 𝜇 + 𝜇 + 2𝑋∗𝜃𝜇 + 𝑋∗ 𝜃 𝜇

1 + 2𝑋∗𝜃 + 𝑋∗ 𝜃
 

=
𝛾 + 𝛿 + 2𝑋∗𝛾𝜃 + 𝑋∗ 𝛾𝜃 + 𝛼(1 + 𝑋∗𝜃) + 2𝜇 + 4𝑋∗𝜃𝜇 + 2𝑋∗ 𝜃 𝜇 + (1 + 𝑋∗𝜃) 𝜇

(1 + 𝑋∗𝜃)
 

> 0. 

𝑁 + 𝑁

=
𝛾𝛿 + 𝛿𝜇 + 𝛿𝜇

1 + 2𝑋∗𝜃 + 𝑋∗ 𝜃

+

𝛼𝛾 + 2𝑋∗𝛼𝛾𝜃 + 𝑋∗ 𝛼𝛾𝜃 + 𝛼𝜇 + 𝛾𝜇 + 2𝑋∗𝛼𝜃𝜇 + 2𝑋∗𝛾𝜃𝜇 + 𝑋∗ 𝛼𝜃 𝜇 + 𝑋∗ 𝛾𝜃 𝜇 + 𝜇 + 2𝑋∗𝜃𝜇

+𝑋∗ 𝜃 𝜇 + 𝛼𝜇 + 2𝑋∗𝛼𝜃𝜇 + 𝑋∗ 𝛼𝜃 𝜇 + 𝜇𝜇 + 2𝑋∗𝜃𝜇𝜇 + 𝑋∗ 𝜃 𝜇𝜇

1 + 2𝑋∗𝜃 + 𝑋∗ 𝜃
 

=
(𝛿 + 𝛼(1 + 𝑋∗𝜃) + (1 + 𝑋∗𝜃) 𝜇)(𝛾 + 𝜇 + 𝜇 )

(1 + 𝑋∗𝜃)
> 0 

 

Hence, using the definitions of Descartes' Rule of Signs and the Routh-Hurwitz 

Criterion, we can conclude that the endemic equilibrium 𝐸∗ is locally 

asymptotically stable when 𝜏 =  0. 

 

Theorem 2:  For τ > 0, the equilibrium point 𝐸∗is locally asymptotically stable 

if (1 + 𝑋𝜃) >  holds true. 

Proof: Let for 𝜏 > 0, 𝜆 = 𝑖𝜔, 𝜔 > 0 is the roots of Eq. (4.2.6). 

We substitute  𝜆 = 𝑖𝜔 in Eq. (4.2.6).  

−𝜔 + 𝑁 + 𝑀 𝜔 𝑆𝑖𝑛 𝜔𝜏 + 𝑁  𝐶𝑜𝑠 𝜔𝜏 + 𝑖 (𝑀 𝜔 𝐶𝑜𝑠 𝜔𝜏 − 𝑁  𝑆𝑖𝑛 𝜔𝜏 + 𝑀 𝜔) =

0                                                                                                       

on separating real and imaginary part of Eq. (4.2.8), we get 
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𝑀 𝜔 𝑆𝑖𝑛 𝜔𝜏 + 𝑁  𝐶𝑜𝑠 𝜔𝜏 = 𝜔 − 𝑁  

                     (4.2.9) 

 

𝑀 𝜔 𝐶𝑜𝑠 𝜔𝜏 − 𝑁  𝑆𝑖𝑛 𝜔𝜏 = −𝑀 𝜔 

                          (4.2.10) 

on squaring and adding the both sides of Eqs. (4.2.9) and (4.2.10) yield 

𝜔 + (𝑀 − 2𝑁 − 𝑀 )𝜔 + (𝑁1
2

− 𝑁2
2) 

                            (4.2.11)

 Letting  𝜔 = 𝑧 , Eq. (4.2.12) becomes 

𝑧 + 𝑈𝑧 + 𝑇 = 0 

                (4.2.12) 

 where, 𝑈 = (𝑀 − 2𝑁 − 𝑀 )and 𝑉 = (𝑁1

2
− 𝑁2

2). 

It is easy to show that if  (1 + 𝑋𝜃) >  is satisfied then 

𝑈

= −
𝛿

(1 + 2𝑋𝜃 + 𝑋 𝜃 )
+

(𝛼 + 𝛾 + 2𝑋𝛼𝜃 + 2𝑋𝛾𝜃 + 𝑋 𝛼𝜃 + 𝑋 𝛾𝜃 + 2𝜇

+4𝑋𝜃𝜇 + 2𝑋 𝜃 𝜇 + 𝜇 + 2𝑋𝜃𝜇 + 𝑋 𝜃 𝜇 )

(1 + 2𝑋𝜃 + 𝑋 𝜃 )

−

2(𝛼𝛾 + 2𝑋𝛼𝛾𝜃 + 𝑋 𝛼𝛾𝜃 + 𝛼𝜇 + 𝛾𝜇 + 2𝑋𝛼𝜃𝜇 + 2𝑋𝛾𝜃𝜇 + 𝑋 𝛼𝜃 𝜇

+𝑋 𝛾𝜃 𝜇 + 𝜇 + 2𝑋𝜃𝜇 + 𝑋 𝜃 𝜇 + 𝛼𝜇 + 2𝑋𝛼𝜃𝜇

+𝑋 𝛼𝜃 𝜇 + 𝜇𝜇 + 2𝑋𝜃𝜇𝜇 + 𝑋 𝜃 𝜇𝜇 )

1 + 2𝑋𝜃 + 𝑋 𝜃
 

=
−𝛿 + 𝛼 (1 + 𝑋𝜃) + 2𝛼(1 + 𝑋𝜃) 𝜇 + (1 + 𝑋𝜃) (𝛾 + 2𝛾𝜇 + 2𝜇 ) + (1 + 𝑋𝜃) 𝜇 (2(𝛾 + 𝜇) + 𝜇 )

(1 + 𝑋𝜃)

 

𝑉

= −
(𝛾𝛿 + 𝛿𝜇 + 𝛿𝜇 )

(1 + 2𝑋𝜃 + 𝑋 𝜃 )

+

(𝛼𝛾 + 2𝑋𝛼𝛾𝜃 + 𝑋 𝛼𝛾𝜃 + 𝛼𝜇 + 𝛾𝜇 + 2𝑋𝛼𝜃𝜇 + 2𝑋𝛾𝜃𝜇 + 𝑋 𝛼𝜃 𝜇 + 𝑋 𝛾𝜃 𝜇 + 𝜇

+2𝑋𝜃𝜇 + 𝑋 𝜃 𝜇 + 𝛼𝜇 + 2𝑋𝛼𝜃𝜇 + 𝑋 𝛼𝜃 𝜇 + 𝜇𝜇 + 2𝑋𝜃𝜇𝜇 + 𝑋 𝜃 𝜇𝜇 )

(1 + 2𝑋𝜃 + 𝑋 𝜃 )
 

=
(−𝛿 + (1 + 𝑋𝜃) (𝛼 + 𝜇) )(𝛾 + 𝜇 + 𝜇 )

(1 + 𝑋𝜃)
> 0. 

Hence, using the definitions of Descartes' Rule of Signs and the Routh-Hurwitz 

Criterion, we can conclude that the endemic equilibrium 𝐸∗ is locally 

asymptotically stable when 𝜏 >  0. 

 

4.3.3 Hopf Bifurcation Analysis  
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In this subsection, we discuss the Hopf bifurcation analysis of the model 

(4.2.1). 

If 𝑉 =  (𝑁₁² −  𝑁₂²) in Eq. (4.2.12) is negative, then there exists a unique 

positive value of 𝜔  that satisfies Eq. (4.2.12).  

 

Specifically, there is a single pair of purely imaginary roots, ±𝑖𝜔₀, to Eq. 

(4.2.12). 

From Eqs. (4.2.9) and (4.2.10) 𝜏  corresponding to 𝜔  can be obtained as: 

𝜏 =
1

𝜔
arccos

(𝑁 − 𝑀 𝑀 )𝜔 − 𝑁 𝑁

𝑀 𝜔 + 𝑁
+

2𝑛𝜋

𝜔
, 𝑛 = 0, 1, 2, … . 

                                                                                                      (4.2.13)                                                                                          

Positive equilibrium 𝐸∗ is stable for 𝜏 < 𝜏  if transversality condition holds true 

i.e., if  
(𝑅𝑒(𝜆)) > 0. 

Differentiating Eq. (4.2.6) with respect to 𝜏, we get: 

2𝜆 + 𝑀 + 𝑀 𝑒 − (𝑀 𝜆 + 𝑁 )𝜏𝑒 = 𝜆(𝑀 𝜆 + 𝑁 )𝑒    

                (4.2.14) 

𝑑𝜆

𝑑𝜏
=

2𝜆 + 𝑀 + 𝑀 𝑒 − (𝑀 𝜆 + 𝑁 )𝜏𝑒

𝜆(𝑀 𝜆 + 𝑁 )𝑒

=
(2𝜆 + 𝑀 )

𝜆(𝑀 𝜆 + 𝑁 )𝑒
+

𝑀

𝜆(𝑀 𝜆 + 𝑁 )
−

𝜏

𝜆
 

𝑑𝜆

𝑑𝜏
=

(2𝜆 + 𝑀 )

−𝜆(𝜆 + 𝑀 𝜆 + 𝑁 )
+

𝑀

𝜆(𝑀 𝜆 + 𝑁 )
−

𝜏

𝜆
 

 
𝑅𝑒 (𝜆) = 𝑅𝑒   

= 𝑅𝑒
(2𝑖𝜔 + 𝑀 )

−𝑖𝜔 (−𝜔 + 𝑖𝑀 𝜔 + 𝑁 )
+

𝑀

𝑖𝜔 (𝑖𝑀 𝜔 + 𝑁 )
−

𝜏

𝑖𝜔
 

= 𝑅𝑒
1

𝜔

(2𝑖𝜔 + 𝑀 )

(𝜔 − 𝑁 )𝑖 + 𝑀 𝜔 )
+

𝑀

(−𝑀 𝜔 + 𝑖𝑁 )
+ 𝑖𝜏  

=
1

𝜔

2𝜔 (𝜔 − 𝑁 ) + 𝑀 𝜔

(𝜔 − 𝑁 ) + (𝑀 𝜔 )
−

𝑀 𝜔

(𝑀 𝜔 ) + 𝑁
 

=
( )

( )
 (∵ (𝜔 − 𝑁 ) + (𝑀 𝜔 ) = (𝑀 𝜔 ) + 𝑁  ). 

Under the condition 𝑀 − 2𝑁 − 𝑀 > 0, we have  
(𝑅𝑒 (𝜆)) > 0. 

Therefore, the transversality condition is satisfied, and a Hopf bifurcation occurs 
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at 𝜔 =  𝜔 , and 𝜏 =  𝜏 . 

  Based on the analysis presented above, we can summarize our findings in the 

following theorem:  

Theorem 6: The positive equilibrium 𝐸∗ is locally asymptotically stable for 

𝜏 ∈  [0, 𝜏 ), and it undergoes a Hopf bifurcation at 𝜏 =  𝜏 .   

 

4.4 Numerical simulations 
 

Table 4.2: Values of Parameters Used in Simulation 

Parameters Value Source 
𝑘 10 person 

(day)-1 
Estimated 

𝛿 0.03, 0.05 
& 0.07 
(day)-1 

Estimated 

𝜃 0.002 
(person)-1 
(day)-1  
(person)-1 
(day)-1 

Estimated 

𝜇 0.02 
(day)-1 

Estimated 

𝛼 0.05, 0.07 
& 0.09 
(person)-1 
(day)-1 

Estimated 

𝜇  0.00002 
(day)-1 

Estimated 

𝜇  0.00001 
(day)-1 

Estimated 

𝜇  0.0005 
(day)-1 

Estimated 

𝛾 0.002 
(person)-1 
(day)-1 

Estimated 

𝜙 0.005 
(person)-1 
(day)-1 

Estimated 

 
 

The model incorporates a time delay (𝜏) parameter, with values of 0, 2, and 4 

days are shown in Fig. 4.2 (a), Fig. 4.2 (b) and Fig. 4.2 (c) respectively. When 

the time lag increases, there is a clear trend of decreasing susceptibility in the 

population, accompanied by a notable increase in the population of individuals 



98 
 

with diabetes who are initially unaware of their disease. Thus, an extended 

delay is associated with a higher prevalence of individuals with diabetes within 

the community, in accordance with biological principles.  

The depiction of the impact of the awareness rate (𝛿) on the susceptible 

population (𝑋(𝑡)) and the population aware of diabetes (𝑌(𝑡)) is presented in 

Fig. 4.3 (a) and Fig. 4.3 (b), respectively. In Fig. 4.3 (a), it is evident that 

higher values of 𝛿 lead to a reduction in the susceptible population 𝑋(𝑡). From 

these observations, it can be inferred that increased awareness is associated 

with a decrease in the diabetic population. Additionally, both Fig. 4.3 (a) and 

Fig. 4.3 (b) serve as mathematical validations of the model.  

 

The impact of the transition rate (𝛼) from the susceptible population (𝑋(𝑡)) to 

the population unaware of diabetes (𝑍(𝑡)) is illustrated in Fig. 4.4 (a) and Fig. 

4.4 (b).  

 

 

 

       Figure 4.2 (a): Variation of populations with time lag 𝜏 = 0 
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 Figure 4.2 (b): Variation of populations with time lag 𝜏 = 2 

 

 

 
 

Figure 4.2 (c): Variation of populations with time lag 𝜏 = 4.  
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 Figure 4.3 (a) Variation of Susceptible population with different values of rate of 

awareness (𝛿) at time lag (𝜏) = 2.  

 

 

 

        Figure 4.3 (b): Variation of Aware population having diabetes with different values of   

        rate of awareness (𝛿) at time lag (𝜏) = 2.  
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Figure 4.4 (a): The variation of susceptible population (𝑋(𝑡)) with different values of 

rate of transition(𝛼). 

 

 

Figure 4.4 (b): The variation of unaware population having diabetes (𝑍(𝑡)) with different    

values of rate of transition (𝛼) from 𝑋(𝑡) to 𝑍(𝑡).  
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Figures 4.4 (a) and 4.4 (b) reveal a distinct pattern: the population unaware of 

having diabetes increases with higher values of the transition rate (α), while the 

susceptible population decreases as the transition rate (α) increases. These 

observations provide clear validation for the model. Based on the figures 

presented (4.2 – 4.4), a noticeable trend emerges: integrating awareness about 

diabetes into our daily lives is associated with a lower likelihood of developing 

diabetes. Specifically, for the chosen values of the awareness rate (𝛿) at a time 

lag (𝜏) of 2 days (0.03, 0.05, and 0.07), the susceptible populations exhibit a 

gradual decrease.   

 

Oscillatory behaviour is evident in the susceptible population for varying time 

lag values (𝜏) of 60 days, 90 days, and 180 days. The oscillation at 𝜏 = 180 

days is specifically illustrated in Fig. 4.5.  Damped oscillation is observed in both 

the susceptible population and the population aware of diabetes for a time lag 

(𝜏) of 180 days and a rate of awareness (𝛿) set at 0.05. This pattern indicates 

the system's stability towards equilibrium.   

 

 
Figure 4.5: Oscillatory behavior of model for susceptible population & aware 

population having diabetes.  
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4.5 Discussion and conclusions 

 In this work, we explored a delayed model to depict the diabetic population, 

incorporating a versatile function to describe both the rate of awareness and 

the transition of diabetes complications. The model incorporates a time delay in 

two compartments: the susceptible population (𝑋(𝑡)) and the aware population 

with diabetes (𝑌(𝑡)), each influenced by treatment rates, specifically 𝛿 and 𝛼. 

To analyze the dynamic behavior of the model, we introduced Lemma 4.2.1, 

accompanied by the initial condition (4.2.2). Lemma 4.2.1 asserts that the 

model's variables {(𝑋(𝑡)), (𝑌(𝑡)), (𝑍(𝑡)), (𝑊(𝑡))} remain non-negative under the 

specified condition (4.2.2).  

 A key finding of this study is the confirmation that the model (4.2.1) exhibits a 

unique positive equilibrium, denoted as 𝐸∗, and demonstrates local asymptotic 

stability of 𝐸∗ in the absence of delay (i.e., 𝜏 = 0). We conducted an analytical 

exploration of local stability and the potential for Hopf bifurcation in the 

presence of time delays. Our results indicate that when time delays surpass 

their critical thresholds, they have the capacity to influence the local stability of 

the equilibrium point 𝐸∗. These theoretical findings are well-founded and 

suggest various forms of recovery rates, offering insight into their dynamics as 

specific scenarios within the broader context.  Additionally, to validate our 

acquired results, we incorporated treatment rates, namely the rate of 

awareness (𝛿) and the transition rate (𝛼), representing the movement from the 

susceptible class to the class of individuals unaware of their diabetes.  

 Our findings highlight that the stability of the model is influenced by the time 

delay associated with the susceptible class (𝑋(𝑡)) and the class of aware 

individuals with diabetes (𝑌(𝑡)), particularly in the progression leading to the 

development of the initial complication following the onset of diabetes. 

Numerical simulations have demonstrated that under these conditions, the 

model experiences a loss of stability, giving rise to a limit cycle that bifurcates 

from the diabetic equilibrium 𝐸∗. As a consequence, we propose an approach 

that involves raising awareness regarding the severity of diabetes, advocating 

lifestyle modifications, encouraging early detection, and enhancing the overall 

management of diabetes among affected individuals.  
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Chapter 5 

 

 Risk estimation of gestational diabetes 

and diabetes mellitus of type -2  

because of PCOD through  

Mathematical and Artificial  

Intelligence models 
 

Pre-existence of PCOD (polycystic ovarian disease) cause the severity of 

diabetes during pregnancy as gestational diabetes (GD) and post-pregnancy 

diabetes mellitus of type -2 (DMT-2). Early detection of PCOD may help manage 

the severity of diabetes mellitus in pregnancy and postnatal. This analysis 

conveyed to understand the pervasiveness of PCOD and its complication with 

diabetes mellitus and body mass index (BMI). A contextual and statistical study 

of the data extracted from kaggle.com in 541 patients (180 with PCOD and 361 

without PCOD) of southern India has been done. The random forest (RF) 

technique of Artificial Intelligence (AI) model has been used to analyze the 

correlations among parameters. In the body mass index, 42% of 180 PCOD 

patients have ≥ 27 kg/m2 body mass, as waist-hip ratios are in the range of 

0.80 – 1.00. With pre-existence PCOD, 35% of women are pregnant. It has 

observed that 84% pregnant women have the risk of developing gestational 

diabetes, and few women have the chance to develop diabetes mellitus of type-

2. The results were analyzed by RF technique of AI through Karl Pearson’s 

coefficient of correlation. The patients struggling with PCOD, facing high BMI 

and high waist-hip ratio (0.80 – 1.00) risk of gestational diabetes, thereof early 

detection and diagnosis of PCOD will reduce the risk of development of GD and 

DMT-2.   
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5.1. Introduction  

One out of 5 Indian women (20%) is suffering from PCOD and is a very high 

risk to develop the complication of diabetes mellitus [115]. There are many 

other worse effects of PCOD such as unwanted hair growth, skin darkness and 

unbalanced BMI etc. If the body mass index raises ≥ 27 kg/m2, it is alarming 

and needs to balance the lifestyle through a balanced diet plan and physical 

exercises. Women with PCOD are always having a higher risk of becoming 

insulin resistance and give rise to DMT-2 [116] [117] [118]. It has been 

observed the GD is associated with the adverse effects during and postnatal 

situation and leads to the hyperglycemic problem and gravid undergoes various 

metabolic changes [119] [120]. Because of type-2 diabetes mellitus the 

complication and risk factors of PCOD, GD and macrosomia have discussed for 

the Lebanon women. For the Netherlands severity of PCOD and their adverse 

effects of metabolic disorders were explained [121].  

  We go through the various research articles similar to the present work. It 

was observed that no such types of studies are available for PCOD patients of 

the Indian subcontinent, only few analysis are available, but they are based 

upon the clinical research data such as G. Shivaprakash et al., 2013 [122], have 

discussed the association of polycystic ovarian syndrome with acanthosis 

nigricansis as a marker of risk of type-2 diabetes mellitus. As per our 

cognizance neither any mathematical analysis nor artificial intelligence models 

of machine learning for parametric correlations are available for the Indian 

PCOD patients. 

As per existing research, we have noticed that the risk factor of gestational diabetes 

(GD) and diabetes mellitus of the type-2 (DMT-2) are high in preexisting PCOD 
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patients. The present study is to develop an artificial intelligence technology through 

machine learning approach by random forest (RF) classifier, and analyze the impact & 

complications in the Indian women because of PCOD.  

 

        5.2 Materials and Methods 

      5.2.1 Materials   

Our study is incorporated of 541 patients out of which 180 patients having PCOD 

problem and 361 are without PCOD (Figure 1). The data is from the Kerala state of 

southern India extracted from www.kaggle.com. 

 

 

     Figure 5.1. Patient with and without PCOD; (‘0’- without PCOD, and ‘1’- with PCOD) 

 

This dataset of PCOD contains 45 parameters such as BMI (kg/m2), beta-hcg 

(miU/mL), age, weight, height, FSH (mIU/mL), pregnant(Y/N), waist to hip ratio, and 

FSH/LH etc.  
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First five values of incorporated parameters which have a significant impact to 

imbalance the metabolic situation and leads to GD and DMT-2 are presented in Table 

5.1. 

Table 5.1. Incorporated parameters of PCOD for the present study   

PCOD 
(Y/N) 

BMI 
(kg/m2) 

Age 
(year) 

Pregnant 
(Y/N) 

I-beta HCG 
(mIU/mL) 

Waist/hip 
(ratio) 

Hb 
(g/dl) 

Follicle 
No. 

FSH/LH 

0 19.30 28 0 1.99 0.83 10.48 3 2.16 

0 24.92 36 1 60.80 0.84 11.70 5 6.17 

1 25.27 33 1 494.08 0.90 11.80 15 6.29 

0 29.67 37 0 1.99 0.85 12.00 2 3.41 

0 20.06 25 1 801.45 0.81 10.00 4 4.42 

 

5.2.2. Methods 

 To mark a significant classification among the parameters, the random forest 

(RF) algorithms of AI are used. RF algorithms are also known as congregation 

of decision tree (DT) algorithms, it generates the clouds of various DT, and for 

every parameter, it starts from top nodes of the DTs and splits the dataset into 

their possible importance values [123] [124]. Now the RF technique used the 

futuristic target related with the futures of the dataset of PCOD then each DTs 

gives his classification output. At the end RF algorithms, all the classification 

combines. It provides the final correlation among the parameters' feature, and 

the average of the regressions of the TDs considered ultimate output. The RF 

classifier used in Python 3 through jupyter notebook 6.0.3 of Anaconda which is 

open platform for the data related programming.  

The Pearson product-moment correlation coefficient has been used for 

establishing the correlation among the parameters as described below [125]. 

This is very strong tool to correlate the parameters, as they are strongly 

correlated, weakly correlated, and or no correlation for the values of 𝑟 ∈

(0,1], 𝑟 ∈ (0, −1], 𝑎𝑛𝑑 𝑟 = 0 respectivly.  
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𝑟 =
∑(𝑥 − �̅�)(𝑦 − 𝑦)

𝑛𝜎 𝜎
 

                                                                                                        (5.2.1) 

   Where; 𝑟 = Pearson’s correlation coefficient,  

    �̅� = the mean of the dataset x, 

            𝑦 = the mean of the dataset y, 

            n = number of values of parameter available in the dataset, 

            𝜎 =
∑( ̅)

( )
  is known as the standard deviation (S.D.) of x, and 

            𝜎 =
∑( )

( )
 is known as the standard deviation (S.D.) of y.  

The correlations between each parameter within and with other parameters 

have delineated using a graphical representation of different colour code known 

as a heat map (Fig. 5.2). The heat map helps to visualizing the association of 

parameters within and with other parameters. The values of correlation 

coefficients are presenting in Table 5.3.  

 

5.3 Result and Discussion  

A total of 180 patients with PCOD (out of 541) have considered for the study, in 

which 63 out of 180 women are pregnant. The following table shows the ranges 

of the parameter which have incorporated in the study. There were no 

remarkable differences in the age, BMI, and waist-hip ratios of patients 

with/without PCOD. The ranges of incorporated parameters in study are shown 

in the Table 5.2.    

A significant difference was seen in pregnant women with preexisting PCOD in 

the form of gestational diabetes (77%, 53 out of 63) in comparison with those 

who have not diagnosed with PCOD.  

The coefficient of correlation among the parameters is lies in the range 

−1 ≤  𝑟 ≤  1, if values of the coefficient are lies −1 ≤  𝑟 <  0, then the 

parameters are conversely associated, 𝑟 =  0 means that no correlation shows 

in parameters and for 0 <  𝑟 ≤  1 showing strong correlations [126]. From 
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Table 5.3, it is clearly visible that PCOD has a positive association with every 

parameter except FSH/LH, so in PCOD patient metabolic disorders have been 

noticed surly. As metabolic disorders caused the complication during pregnancy 

and it is also lead to the postnatal ferocity of diabetes mellitus type-2.   

 

 

Figure 5.2. Heat map of dataset visualizing the correlation among the parameters 

The box plots are the scenic view of the distribution of the data for various parameters 

[127]. The box plots are indicating that how the data of parameters have been 

distributed alongside various statistical parameters such as mean, median, and 

quartiles (Figure 5.3). The central line of box plot indicating the median of the 

parameter own and if the cable is in middle of the box, then numerous amounts of 

data are distributing symmetrically about mean & median as endpoints are the quartile 
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values. It was observed in the present work that 75% among the PCOD patients 

had BMI of greater than 26.40 (kg/m2). The greater BMI were more susceptible 

to develop the gestational and diabetes mellitus of type-2 (WHO Expert 

Consultation, 2004). From the analysis of the data through RF algorithm among 

the PCOD victims it has been identified that in 50% patients the FSH/LH values 

are at 2.30, and 75% have waist-hip ratio equal to 0.93 which are at the higher 

side of the obesity. 

 

Table 5.2. The range of the parameters 

 With PCOD  Without PCOD 

Age (years) 35 ± 12 35 ± 10 
BMI (kg/m2) 30 ± 8 30 ± 7 
Waist / hip (ratio) 0.8 ± 0.2 0.7 ± 0.2 
GD (%) 84 11 

 

Table 5.3. Values of Pearson correlation coefficient within and with parameters 
 

 PCOD 
(Y/N) 

BMI 
(kg/2) 

Age (year) I-beta 
HCG 

(mIU/m) 

Hb 
(g/dl) 

Follicle 
No. 

FSH/LH 

PCOD(Y/N) 1.00 0.135 0.128 0.017 0.068 0.592 - 0.024 
BMI(kg/m2) 0.135 1.00 0.027 - 0.001 - 0.09 0.113 - 0.037 
Age (year) - 0.17 0.027 1.00 0.013 - 0.02 - 0.129 - 0.010 
I-beta HCG 
(mIU/mL) 

0.017 - 0.001 0.013 1.00 0.013 0.062 0.002 

Hb (g/dl) 0.068 - 0.092 - 0.019 0.013 1.00 - 0.013 - 0.047 
Follicle No. 0.592 0.113 -0.129 0.062 - 0.013 1.00 0.133 
FSH/LH - 0.024 - 0.037 - 0.010 0.002 - 0.047 0.133 1.00 

 

The values of follicle no. in the left (L) and right (R) ovaries were in the range 

of 5.4 ± 3.2 and 5.9 ± 4.0, respectively. According to a study has done in the 

Brazil, states that the obese person has greater chance to develop the 

metabolic disorder which leads to complications of GD and DMT-2 [128]. 

Therefore these types of similar studies further validate that the patient 

suffering from PCOD with higher BMI and obesity are at higher risk of GD and 

DMT-2.   
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Figure 5.3 (a): Box plot of the BMI 

 

 

 

Figure 5.3 (b): Box plot of Follicle No. (L) 
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 Figure 5.3 (c): Box plot of the parameters: Follicle No. (L) Vs Follicle No. (R) 
 

  

  

Figure 5.3 (d): Box plot of the BMI Vs Blood Pressure (mmHg). 



113 
 

5.4 Conclusion 

PCOD propose a fascinating perspective for changing the way of living life. Among the   

PCOD patients who have obesity with BMI greater than 27 kg/m2, and with the ratio of 

waist-hip between 0.8 ± 1.0 are at higher risk of diabetes mellitus of type -2. Those 

PCOD patients who are pregnant and at the higher side of the obesity (ratio of waist to 

hip is equal or more than to 0.8) are also in the risk zone of developing gestational 

diabetes. Hence perceptible symptom inspection marker such as PCOD can recognize 

the patients with a higher risk of DMT-2 and GD. This study would help energize the 

discussions about changes in the daily lifestyle with some modification at the primary 

care and diagnosis.  
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Chapter 6 

 

Comparison of Machine Learning 

Techniques for Precision in 

measurement of glucose level in 

Artificial Pancreas 
 

 

 The accurate measurement of glucose levels is critical for the effective 

functioning of an artificial pancreas in diabetes management. In this study, 

various machine learning (ML) techniques—decision tree (DT), random forest 

(RF), support vector machine (SVM), and K-nearest neighbors (KNN)—are 

compared for predicting and classifying diabetes mellitus in the Pima Indian 

dataset. These supervised learning models assess features to predict whether 

an individual is diabetic. After pre-processing, the models are trained and 

tested. The error matrix is used to determine model accuracy. The prediction 

and classification accuracies for diabetes (DMT2) are 71% for DT, 77% for 

SVM, 78% for RF, and 80% for KNN. KNN demonstrates the highest accuracy 

among the models. This study's ML models exhibit promising accuracy in 

predicting diabetes compared to previous methods, with KNN performing 

particularly well. 
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6.1 Introduction 

 Diabetes mellitus affects a significant portion of the global population, leading 

to approximately 422 million cases worldwide and causing an estimated 1.6 

million deaths annually, as reported by the World Health Organization [129]. 

This condition disrupts the glucose-insulin balance, impacting the body's organs 

within the lymphatic system [130] [131] [132]. The two main types of diabetes, 

type-1 and type-2, pose different challenges type-1 involves insufficient insulin 

release due to an autoimmune disorder, while type-2 relates to the body's 

development of insulin resistance [133]. Managing blood sugar levels is crucial 

for both types to avoid complications from hypo- and hyperglycemia [134]. 

Self-management is key for maintaining balanced glucose levels in type-2 

diabetes. Patients are required to focus on dietary control, physical activity, 

medication adherence, and regular medical visits to mitigate issues associated 

with type 2 diabetes (DMT2) [135] [136]. However, the complex nature of 

blood glucose dynamics complicates this self-regulation [135] [137]. Severe 

cases of type-1 and type-2 diabetes necessitate external insulin for glucose 

control, underscoring the need for an artificial pancreas due to limitations in 

current insulin delivery methods [138]. 

 

 To ensure precise glucose level measurements, the development of an artificial 

pancreas becomes essential. Machine learning (ML) techniques offer an avenue 

for enhanced diabetes prediction and characterization. Various ML methods, 

such as deep learning algorithms, random forest, support vector machine, K-

nearest neighbor, logistic regression, and principal component analysis, have 

emerged to predict and manage diabetes with varying success [139] [140]. 

 

 In this context, the present study focuses on four supervised machine learning 

models—decision trees, random forests, support vector machines, and K-

nearest neighbors—utilizing a dataset from 768 women aged 21 years or older 

from the Pima Indian community. These models assess available dataset 

features to compare algorithms and predict glucose levels for artificial pancreas 

applications with exceptional precision. 
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6.2 Material and Methodology 

6.2.1   Data 

  The dataset used in this analysis, known as the Pima Indians diabetes dataset, 

was sourced from kaggle.com [141], originating from the "National Institute of 

Diabetes and Digestive and Kidney Diseases." It encompasses eight distinct 

variables, including the number of pregnancies, glucose levels post a 2-hour 

oral glucose tolerance test, blood pressure (measured in millimeters of 

mercury), skin thickness (measured in millimeters), 2-hour serum insulin 

(measured in microliters), body mass index (measured in kilograms per square 

meter), diabetes pedigree function (assessing the likelihood of diabetes based 

on family history), and age, all gathered from 768 Pima Indian women. 

The targeted variable hinges on the outcomes of these independent variables, 

serving as predictors (dependent variable). Within the dataset's output column, 

"0" signifies non-diabetic individuals, while "1" indicates those diagnosed with 

diabetes. The dataset contains a total of 500 non-diabetic patients and 268 

diabetic patients. Their specifics are shown in Table 6.1 and represented in 

Figure 6.1 respectively. 

 

Table 6.1: Features with the first five values of Pima Indian Dataset 
  

Pregnancies Glucose Blood 
Pressure 

Skin 
Thickness 

Insulin BMI Diabetes 
Pedigree 
Function 

Age Outcome 

6 148 72 35 0 33.6 0.627 50 1 
1 85 66 29 0 26.6 0.351 31 0 
8 183 64 0 0 23.3 0.672 32 1 
1 89 66 23 94 28.1 0.167 21 0 
0 137 40 35 168 43.1 2.288 33 1 

         
 
 

6.2.2 Data exploration  
  

The histogram in Figure 6.2 illustrates the distribution of all independent 

variables within the dataset, highlighting that most features lack normalization. 

The pair plots in Figure 6.3 are employed to visualize relationships among 

individual characteristics as well as their correlations with other elements. 

Observing these plots, it's apparent that there isn't a distinct separation among 

the data points, suggesting that predicting diabetes from this dataset is notably 
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challenging. 

Correlations between each feature within and with other variables are 

manifested by a heat map, which is a graphical representation for visualizing 

the data with different colour codes (Figure 6.4). The values of correlations 

among features have shown in Table 6.2. 

 

 

 

 Figure 6.1: Diabetic and non-diabetic patients (‘0’ for non-diabetic, ‘1’for diabetic). 
 

 
 

 

Figure 6. 2: Independent variables (features) used as predictors of the dataset 
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Table 6.2: Correlations among the features of the dataset 
 

 

Pregnancies 
Glucos

e 

Blood 
pressur

e 

Skin 
thicknes

s 
Insulin BMI 

Diabetes 
pedigree 
function 

Age 
Outcom

e 

Pregnancie
s 

1.000000 
0.1294

59 
0.1412

82 

-
0.08167

2 

-
0.0735

35 

0.0176
83 

-
0.033523 

0.5443
41 

0.221898 

Glucose 0.129459 
1.0000

00 
0.1525

90 
0.05732

8 
0.3313

57 
0.2210

71 
0.137337 

0.2635
14 

0.466581 

Blood 
Pressure 

0.141282 
0.1525

90 
1.0000

00 
0.20737

1 
0.0889

33 
0.2818

05 
0.041265 

0.2395
28 

0.065068 

Skin 
Thickness 

-0.081672 
0.0573

28 
0.2073

71 
1.00000

0 
0.4367

83 
0.3925

73 
0.183928 

-
0.1139

70 
0.074752 

Insulin -0.073535 
0.3313

57 
0.0889

33 
0.43678

3 
1.0000

00 
0.1978

59 
0.185071 

-
0.0421

63 
0.130548 

BMI 0.017683 
0.2210

71 
0.2818

05 
0.39257

3 
0.1978

59 
1.0000

00 
0.140647 

0.0362
42 

0.292695 

Diabetes 
Pedigree 
Function 

-0.033523 
0.1373

37 
0.0412

65 
0.18392

8 
0.1850

71 
0.1406

47 
1.000000 

0.0335
61 

0.173844 

Age 0.544341 
0.2635

14 
0.2395

28 

-
0.11397

0 

-
0.0421

63 

0.0362
42 

0.033561 
1.0000

00 
0.238356 

Outcome 0.221898 
0.4665

81 
0.0650

68 
0.07475

2 
0.1305

48 
0.2926

95 
0.173844 

0.2383
56 

1.000000 

 
 

In the heat map depicted in Figure 6.4, each feature displays a robust 

correlation with itself. For instance, there's a noticeable association between 

pregnancies and age, as well as between glucose and diabetes, insulin and skin 

thickness, and BMI. It's evident that a mature adult woman has a higher 

likelihood of conceiving a pregnancy, and individuals with diabetes tend to 

exhibit elevated plasma glucose levels in their blood. The heat map provides a 

visual representation of the correlations among these various features.   

 

6.2.3 Diabetes Pedigree Function 
 

The Diabetes Pedigree Function (DPF) is utilized to collect information 

pertaining to the history of diabetes within a patient's family, especially those 

with genetic connections to the individual. This function gathers data from 

various family members—parents, grandparents, siblings, aunts, uncles, and 
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cousins—to assess the likelihood of these relatives developing diabetes. The 

DPF uses Equation 1 to compute the expected genetic impact of both affected 

and unaffected family members based on the information available at the time 

of assessment [142].  

 

Diabetes Pedigree Function (DPF) = 
∑ ( )

∑
        

                                                          (6.2.1) 
Where;  

• 𝑃  is the percentage of genes shared by the ith relative that have 

developed diabetes on the date of the subject's inspection.  

• P  is the percentage of genes shared by the jth relative that haven’t 

developed diabetes on the date of the subject's inspection. 

        The value of 𝑃  and 𝑃 are considered as: 

• equal to 0.500 when a relative ( ith or jth)  is parent, 

• equal to 0.250 when a relative ( ith or jth) is grandparent, aunt, or  uncle, 

and equal to 0.125 when a relative ( ith or jth) is a cousin. 

• 𝐴𝑅𝐷  is the age (in the year) of a relative when diabetes has diagnosed. 

𝐴𝑅𝐿  is the age (in the year) of jth relative at the last non-diabetic 

inspection (before the subject's inspection date).   

• The value of constant 𝛼 is the maximum age and 𝛽 is the minimum age 

of relatives who have diabetes mellitus. The costs of 𝛾 and 𝛿are 

estimated based on the following conditions: 

• A person who has no relative would have the value of DPF slightly less 

than the average cost. 

• When slowly as young relatives free from diabetes mellitus, the value of 

DPF decreases. 

• When the relatives has detected with diabetes, the value of DPF rises 

sharply.  
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Figure 6.3: Pair plots showing Pima Indian dataset features. 
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Figure 6.4: Heat map of dataset showing the correlation among the features 

 

 
6.2.4 Data Normalization  

 
It's crucial to normalize the data for effective training and testing of the 

dataset. The independent variables (features) in the dataset exhibit diverse 

ranges, and some variables contain missing values or null (i.e., 0) values. 

Therefore, normalization is essential to represent each value of the numeric 

columns on a standardized scale without distorting the range of their values. In 

this process, missing or null values within the dataset have been replaced with 

the mean values of the identified factors. Standardization of the data has been 

performed using the min-max normalization method described in Equation 6.2.2 

[143].      
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 Normalized value of  𝒙𝒊𝒋 =
𝒙𝒊𝒋 𝒙𝒎𝒊𝒏,𝒋

𝒙𝒎𝒂𝒙,𝒋 𝒙𝒎𝒊𝒏,𝒋
   

                                                                                                                                  (6.2.2) 

Where; 𝑥 ,  and 𝑥 ,  are minimum and maximum values of jth column 

respectively.  

Different statistical measures such as mean value, standard deviation (S.D.), 

minimum value, and maximum value of dataset have presented in Table 6.3. 

The variance in the features is high, so for better prediction through ML 

algorithms, data have been normalized further for training and testing of the 

models.  

 

6.2.5 Classification 
 

In this study, machine learning techniques applied are founded on supervised 

learning and employ linear regression for dataset classification. The analysis 

utilizes DT, SVM, RF, and KNN algorithms. These methods are implemented in 

Python 3 via Anaconda's Jupyter Notebook 6.0.3, an open-source distribution 

platform for Python and various data science-related programming tools. 

Python offers an exceptionally interactive environment conducive to algorithm 

performance, visual analytics, computational efficiency, and data processing.  

 

Table 6.3: Statistical measures of the features of the dataset  
 

 
Pregna-
ncies 

Glucose 
Blood 

Pressure 
Skin 

Thickness 
Insulin BMI 

Diabetes 
Pedigree 

Function Age Outcome 

Count 
768.0000

00 
768.000

000 
768.000

000 
768.00000

0 
768.000

000 
768.000

000 
768.000

000 
768.000

000 
768.000

000 

mean 3.845052 
120.894

531 
69.1054

69 
20.536458 

79.7994
79 

31.9925
78 

0.47187
6 

33.2408
85 

0.34895
8 

std 3.369578 
31.9726

18 
19.3558

07 
15.952218 

115.244
002 

7.88416
0 

0.33132
9 

11.7602
32 

0.47695
1 

min 0.000000 
0.00000

0 
0.00000

0 
0.000000 

0.00000
0 

0.00000
0 

0.07800
0 

21.0000
00 

0.00000
0 

max 
17.00000

0 
199.000

000 
122.000

000 
99.000000 

846.000
000 

67.1000
00 

2.42000
0 

81.0000
00 

1.00000
0 

 
 

6.2.6  Decision Tree  
 

The decision tree (DT) algorithm functions as the foundation for both 

regression and binary classification, expressing the classification process based 
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on predictive variables [143]. Its structure is akin to a tree, comprising decision 

nodes and leaf nodes. The root node, resembling the topmost decision node, 

leads to further nodes representing decisions or categories. These nodes guide 

the algorithm through the training set until it reaches the terminal node, which 

signifies the end of a decision path. 

Starting from the root node and iterating through the sub-datasets in the 

training dataset, the DT algorithm forms numerous branches, creating separate 

decision trees for each partitioned dataset [144]. Information gain, calculated 

using the ID3 (Iterative Dichotomiser) decision tree strategy, measures the 

discrepancy between the entropy (the randomness of the data) before and 

after dataset splitting as detailed in Equations 6.2.3-6.2.5 [145].  

 

𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑝 𝑙𝑜𝑔 𝑝                               
                           (6.2.3) 

                                   𝐼𝑛𝑓𝑜 (𝐷) = ∑
| |

𝐼𝑛𝑓𝑜(𝐷 )                

       
                                                                                                                                 (6.2.4) 

                          𝐺𝑎𝑖𝑛 (𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜 (𝐷)         
                   
                                                                                                                                 (6.2.5) 

 
Where, 𝑝  probability of an arbitrary tuple D, 𝐼𝑛𝑓𝑜(𝐷) is the average amount of 

information required to notify the class label of a tuple in D, 
| |

 weight of the jth 

partition, 𝐼𝑛𝑓𝑜 (𝐷)is the expected instructions required to classify a tuple from 

D based on the partitions by A, and A is the attribute with highest information 

gain i.e. 𝐺𝑎𝑖𝑛 (𝐴). 

  

6. 2.7 Support Vector Machine (SVM) 
 
This supervised machine learning algorithm performs both regression and 

classification tasks, with SVM being among the most utilized due to its 

noteworthy accuracy and efficient computational requirements. SVM functions 

by establishing an optimal hyperplane within the data, essential for segregating 

the dataset into two distinct categories, such as diabetes and non-diabetes. 

Data points are represented as vectors, and the support vectors are those 

closest to the hyperplane. Notably, SVM is effective in handling higher-

dimensional data [146]. 
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In SVM classification, the data points are segregated into two groups using a 

hyperplane, typically a linear SVM employing a straight line. For non-linear SVM 

classification, a non-linear hyperplane categorizes the data into distinct groups. 

In this study, non-linear SVM classification is executed by utilizing the radial 

basis function kernel to extract meaningful insights from the training dataset. 

The application of the Radial Basis Function (RBF) kernel is detailed through a 

specific equation, capturing its functional assumptions and mathematical 

representation in this context.        

𝐾 𝑥 , 𝑥 = ∅ 𝑥 ∅ 𝑥 = 𝑒𝑥𝑝 −𝛾 𝑥 − 𝑥 , 𝛾 > 0 

                                                                                                                                    (6.2.6) 
 

Figures 6.5 and 6.6 represents the linear and non-liner support vector machine 

classification, respectively, for the dataset used in the present work.  

 

6.2.8 Random Forest Classification 
 
Random forest (RF) classification is often described as a collective approach 

that combines multiple decision tree methods to form a forest of trees [123]. In 

the RF algorithm, the training dataset is initially divided into all potential values 

of the dataset's elements. This process starts from the tree's top node and 

involves the selection of features. Each tree within the RF classification delivers 

its own classification outcomes and support when estimating the target linked 

to the dataset's features [145]. Once the RF estimation concludes, the 

algorithm aggregates numerous evaluations, presenting a substantial number of 

ratings. To conduct regression analysis on the dataset, the final output is 

derived by averaging the classification outputs of each decision tree within the 

RF ensemble [124] [147].  

 

6. 2.9 K-Nearest Neighbor (KNN) 
 

The KNN (K-Nearest Neighbors) classifier is a straightforward method that 

classifies instances by evaluating similarity metric and retaining recently 

classified examples [148]. This classification approach involves local 

approximation and remains flexible, as computations differ until the 

classification phase. KNN algorithm outcomes rely on majority opinions from the 

nearest neighbors to determine category values. To measure similarity, a 



125  

distance metric is utilized to gauge the proximity between distinct data points. 

KNN classification is advantageous for large datasets, requiring minimal training 

time. The neighbors selected come from the same dataset to ensure a reliable 

output categorization.    

        

 
  Figure 6.5: Linear SVM classification for the dataset  
 
 

          

Figure 6.6: Non-linear SVM classification for the dataset. 
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 Euclidean distance = ∑ (𝑥 − 𝑦 )                         (6.2.7) 

 Manhattan distance = ∑ |𝑥 − 𝑦 |                      (6.2.8) 

Minkowski distance =  {∑ (|𝑥 − 𝑦 |) }                     (6.2.9)

     

Using the Minkowski distance, the parameter ′𝑝′ assumes values of 1 and 2, 

resulting in the Manhattan distance and Euclidean distance, respectively. In this 

study, a 5-neighbor selection was made using the Minkowski distance at 𝑝 =  2 

for the KNN algorithm. The KNN algorithm was executed as follows: 

• Determining the number ′𝑘′ from the neighbors (as tuning parameters). 

• Computing the metric distance between the test data and all other data 

points. 

• Sorting the labeled data in ascending order based on the distance metric. 

• Selecting the top ′𝑘′ labeled data points and assigning them to their 

respective categories. 

• Assigning the test data to the class category with the majority of the ′𝑘′ 

nearest data points. 

 

6.2.10  Implementation of the Models 
 

The machine learning models introduced in this study have been implemented 

following the procedure outlined below: 

• Pre-processing the data 

• Fitting the proposed algorithms (i.e., DT, SVM, RF, and KNN) to the 

training dataset. 

• Predicting the test results. 

• Evaluating the test accuracy using the error matrix (EM), accuracy score, 

and classification report. 

The dataset was divided into training and test sets for each model, utilizing 

75% of the data (576/768) for training and 25% (192/768) for testing. The 

individual performance of each model is detailed in the preceding section.  
   

6.2.11 Performance Measurement 
 
In statistical classification through supervised machine learning to visualize the 

performance of the algorithms, an error matrix known as confusion matrix is 

required, as shown in Table 6.4. 
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     Table 6.4: Error matrix (EM) 
 

• True Positives (TP): These are instances where the actual class of the 

data point is 1 (True), and the predicted class is also 1 (True). 

• True Negatives (TN): These are cases where the actual class of the 

data point is 0 (False), and the predicted class is also 0 (False). 

• False Positives (FP): These occur when the actual class of the data 

point is 0 (False), but the predicted class is 1 (True). This is termed as 

'False' because the model has misclassified, predicting a positive class 

(1) when it's not. 

• False Negatives (FN): These arise when the actual class of the data 

point is 1 (True), but the predicted class is 0 (False). This is called 'False' 

because of misprediction and 'Negative' because the predicted class was 

negative (0). 
 

                 Precision = 
( )

                  

                     (6.2.10) 

                 Recall = 
( )

         

                                                                                                                                            
                             (6.2.11) 

Accuracy = ( )

( )
                         

                                                                                                                                
                                                                                                        (6.2.12) 

                 F1-Measure = 
× ×

( )
                 

                                                                                                                                (6.213) 
 
Precision represents the accuracy in the identification proportion. Recall 

signifies the portion of actual positives correctly identified, reflecting the 

correction predicted by the proposed models. The accuracy measures the 

fraction of correctly predicted instances. The F1-measure calculates the 

weighted average of precision and recall, offering an assessment of efficiency 

with a higher standard [149]. 

  Actual 

P
re

di
ct

ed
 

 Positive(1) Negative (0) 

 
Positive(1) 

 
TP 

 
FP 

 
Negative (0) 

 
FN 

 
TN 
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6.3 Results and Discussions 

In this section, we engage in a detailed discussion regarding the outcomes and 

accuracy derived from the proposed models. The initial five values of the 

independent variables (features) are employed as predictors, as indicated in 

Table 6.1, using '0' to represent non-diabetic and '1' for diabetic cases. This 

dataset comprises 500 non-diabetic individuals and 268 diabetic patients, as 

illustrated in Figure 6.1. Figure 6.7 illustrates the influence of independent 

variables in relation to the condition of diabetic patients, highlighting their 

respective roles in the onset of diabetes mellitus.  

 

       

Figure 6.7: Features of the diabetes dataset and their importance 
 

The KNN classifier is a straightforward method that classifies training instances 

based on a similarity metric while retaining recently classified examples [148].  

  

This algorithm utilizes a local approximation approach, allowing for varied 

computations until the classification stage [150]. The outcomes of KNN 
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algorithms rely on category values determined by the majority perspectives of 

nearest neighbors. Similarity measures necessitate a distance metric to gauge 

the proximity between two different data points. KNN classification requires 

less training time and is particularly advantageous for large datasets, selecting 

neighbors from the same dataset due to the availability of accurate output 

categorization. 

 

The performance accuracy of the ML algorithms is summarized in Table 6.5, 

encompassing the training and test datasets. Notably, classifiers such as DT 

and SVM achieve optimal accuracy for both training and test datasets at a 

maximum depth of 5 in search algorithms. On the contrary, the RF classifier 

forecasts performance with improved efficiency at a maximum depth of 7. 

Moreover, KNN demonstrates highly commendable accuracy at a maximum 

depth of 5 for both training and test datasets. The maximum depth signifies the 

depth of the tree classifier, reflecting the depth to which the tree searches the 

data to make predictions with exceptional precision. 

 
           Table 6.5: Performance accuracy of the algorithms on training and test dataset 

 
 

Algorithms 
Accuracy  

Max_depth 
Training 

Data 
Test 
Data 

Decision Tree (DT) 0.84 0.78 5 

Support Vector 
Machine (SVM) 

0.78 0.74 5 

Random Forest 
(RF) classifier 

0.93 0.78 7 

K – Nearest 
Neighbor (KNN) 
Classifier 

0.80 0.80 5 

 
 

Table 6.6 and Table 6.7 represent various measures like precision, recall, 

accuracy, and F1-score of the RF classifier and KNN classifier, respectively. 
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Table 6.6: Performance measures of random forest algorithm 
 

 Precision Recall F1- Score Support 

0 0.81 0.89 0.85 130 

1 0.71 0.56 0.63 62 

Accuracy   0.79 192 

Macro 
average 

0.76 0.73 0.74 192 

Weighted 
average 

0.78 0.79 0.78 192 

 
Table 6.7: Performance measures of KNN algorithm 

 
 Precision Recall F1- Score Support 

0 0.84 0.88 0.86 130 

1 0.71 0.65 0.68 62 

Accuracy   0.80 192 

Macro 
average 

0.78 0.76 0.77 192 

Weighted 
average 

0.80 0.80 0.80 192 

 
The observation reveals that KNN algorithms provide more precise predictions 

for performance parameters, including precision, recall, and F1-score compared 

to RF algorithms. A higher F1-score value signifies closer alignment between 

the expected and actual outcomes.  

 

The accuracy measurements of the predictions made by each model using the 

test dataset are illustrated in Figure 6.8. Accuracy in predictions via ML models 

is evaluated using a 10-fold cross-validation method, involving the division of 

the training and test datasets into 10 equal partitions to estimate errors in the 

learning process for each dataset. The performance measures of accuracy for 

each algorithm are presented in Table 6.8. These details reveal that the 

predictions conducted by DT, SVM, RF, and KNN classifiers exhibit efficiencies 

of 71%, 77%, 78%, and 80%, respectively. 
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Figure 6.8: Accuracy of prediction for diabetes mellitus by different algorithms 

 

 

 
Table 6.8: Accuracy performance of algorithms 

 
ML Algorithms Accuracy of prediction (%) 

Decision Tree (DT) 71% 

Support Vector Machine (SVM) 77% 

Random Forest (RF) classifier 78% 

K – Nearest Neighbor (KNN) 
Classifier 

80% 

 
 
 

6.4 Conclusions 

The KNN classifier is a straightforward approach that categorizes training 

instances based on a similarity metric while preserving recently classified 

examples [126]. This method utilizes local approximation and adapts variably 

until the classification stage, where results are based on category values 

determined by the perspectives of majority nearest neighbors. KNN 

classification requires less training time, making it highly advantageous for 

large datasets [151]. The neighboring data points are selected from the same 

dataset, ensuring accurate output categorization. 
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In the analysis involving eight independent variables (features), four ML 

algorithms were evaluated, leading to several key findings in this study: 

• KNN classifier demonstrated superior precision compared to DT, SVM, 

and RF algorithms in predicting diabetes mellitus. 

• The utilization of an extensive dataset with eight independent features 

notably impacted the accuracy of diabetes mellitus prediction in both 

training and testing models. 

• This study uniquely highlights the strengths and weaknesses of 

independent parameters associated with diabetes prediction, a feature 

scarcely addressed in existing literature. The use of heat maps allowed 

visualization of correlations among dataset features, aiding in 

comprehending the distinct functions' involvement in diabetes mellitus. 

• Clear elucidation of parameters involved in calculating DPF for diabetes 

prediction is provided in this work, potentially contributing to the 

development of accurate diabetes prediction models. 

The outcomes presented here hold relevance for diabetes prediction with a 

significant number of features and could significantly contribute to artificial 

pancreas development. Additionally, these results can serve as a foundational 

reference for developing hybrid ML models aimed at improving diabetes 

prediction accuracy. 
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Chapter 7 

Conclusion and Future Scope 

 
      Conclusion 

 
The utilization of artificial intelligence and machine learning in mathematical 

modeling for diabetes management has proven to be an innovative and 

effective approach, especially in glucose predictions and enhancing the 

accuracy of artificial pancreas systems. By integrating continuous glucose 

monitoring (CGM) data with insulin delivery systems, these models can predict 

glucose levels and determine optimal insulin dosing in real-time. This has 

significant potential to enhance glucose control and diminish the risk of 

hypoglycemia and other diabetes-related complications. 

Research indicates that mathematical models incorporating insulin degrading 

enzyme (IDE) show promise in improving insulin sensitivity, resulting in reduced 

average glucose levels, hemoglobin A1c, and occurrences of hypoglycemia. 

Moreover, these models have been observed to contribute to an improved 

quality of life and patient satisfaction with their treatment regimen. 

However, despite the promising outcomes, challenges persist. The accuracy of 

these mathematical models heavily relies on the quality of the CGM data and 

the algorithm's ability to accurately predict glucose levels. Addressing these 

challenges is crucial for further advancements in the field. 
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Future Scope 

By employing Delayed Differential Equations (DDE) in mathematical modeling, 

we've   incorporated diverse parameters associated with physical exercise, 

particularly various yoga asanas. This comprehensive approach proves 

beneficial in diabetes management and holds promising avenues for future 

research. Our focus has centered on evaluating the effects of fundamental yoga 

asanas through mathematical modeling, paving the way for further 

investigations in the future.  

The application of Artificial Intelligence (AI) and Machine Learning (ML) in 

mathematical models for diabetes management holds vast potential for 

transformation. However, there are several critical areas requiring further 

research and development to enhance the performance and broader availability 

of these models for patients. Key areas for advancement include: 

 

• Improved Accuracy: Further research is essential to enhance the 

precision of mathematical models, incorporating new algorithms that 

consider individual patient characteristics and preferences. 

• Integration with Medical Devices: Integrating these models with 

wearable devices like fitness trackers and smart-watches could offer 

additional data to algorithms, refining the accuracy of glucose 

predictions. 

• Personalization: Machine learning techniques can aid in tailoring 

mathematical models to suit each patient's unique requirements, 

resulting in more accurate glucose predictions and improved treatment 

plans. 

• Enhanced Accessibility: Collaborative efforts with healthcare 

providers, government programs, and private insurance companies can 

work towards making artificial pancreas systems more affordable and 

accessible. 

• Real-world Implementation: Large-scale implementation studies are 

crucial to evaluate the real-world effectiveness of AI/ML-based 

mathematical models in enhancing glucose predictions and patient 

outcomes. 
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In conclusion, the application of AI/ML in mathematical modeling for diabetes 

management has the potential to revolutionize how diabetes is approached and 

managed. Continued development of these models and their integration with 

innovative technologies promises a future with improved diabetes management. 

With proper resources and support, the application of AI/ML in mathematical 

modeling for diabetes holds immense promise. 
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