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ABSTRACT 

 

This study conducts a comprehensive performance analysis of K-means and Fuzzy C-

means (FCM) clustering algorithms based on various distance metrics, including 

Euclidean, Manhattan, Mahalanobis, Minkowski, and Cosine distances. Clustering 

algorithms are essential tools for organizing data into meaningful groups. K-means and 

FCM are widely used algorithms in this context, with K-means focusing on crisp 

partitions and FCM providing fuzzy partitions. By employing different distance metrics, 

we explore how these algorithms perform under diverse similarity measures, capturing 

various aspects of data dissimilarity. Through extensive experimentation on benchmark 

datasets, we evaluate the clustering quality and computational efficiency of K-means and 

FCM algorithms using each distance metric. The evaluation metrics include intra-cluster 

distance, inter-cluster distance, silhouette coefficient, and clustering stability. 

Additionally, we analyze the runtime performance of the algorithms to assess their 

computational efficiency and scalability. 

 

The results of our analysis provide valuable insights into the performance characteristics 

of K-means and FCM algorithms when applied with different distance metrics. We 

identify scenarios where one algorithm outperforms the other, shedding light on the 

suitability of each algorithm and distance metric combination for specific data 

characteristics and clustering objectives. This study contributes to the existing body of 

knowledge by offering a comprehensive comparison of K-means and FCM algorithms 

based on diverse distance metrics, including Euclidean, Manhattan, Mahalanobis, 

Minkowski, and Cosine distances. The findings of this analysis can guide researchers and 

practitioners in selecting the most suitable algorithm and distance metric combination for 

their clustering tasks, leading to improved clustering accuracy and efficiency.  
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CHAPTER 1

INTRODUCTION

1.1 Overview

Clustering algorithms are heavily used in data analysis to find important groupings and trends

within datasets. K-means and fuzzy C-means (FCM), two well-known clustering algorithms,

have received a lot of attention due to their effectiveness and simplicity [1]. On their

performance characteristics or applicability for datasets containing clusters of various sizes and

densities, however, little research has been done. Clusters in real-world datasets frequently differ

in their density distributions as well as their spatial layouts [2]. While some clusters may have

consistent densities, others may exhibit substantial variations or overlap with other clusters.

Additionally, clusters can have spherical, elongated, or irregular structures, among other shapes.

These variances present difficulties for clustering algorithms, necessitating a thorough

performance evaluation to comprehend their behavior and constraints. The performance of the

K-means and FCM algorithms on datasets made up of clusters with various forms and densities

is the main objective of this work [3]. We seek to provide insights into the strengths and

shortcomings of these algorithms in difficult clustering scenarios by assessing their effectiveness

in capturing and distinguishing clusters with varied features.

Shape variation describes the various geometric forms and arrangements that clusters can display

inside a dataset[4]. Clusters can be round, elongated, or irregular, among other shapes. While

elongated clusters have a stretched shape along one or more dimensions, spherical clusters are

characterized by an approximately equal distance between data points and a central point. The

boundaries of irregular clusters can be complicated and tangled and lack a clear geometric

structure. The usage of clustering algorithms capable of accurately capturing and differentiating

diverse cluster shapes is required due to the occurrence of different cluster shapes.

The term "density variation" describes variations in the distribution or concentration of data

points inside clusters [5]. Data points can be evenly distributed throughout a cluster if it has

uniform density. Alternatively, clusters might have changing densities, in which the distribution

of data points varies over the cluster's various sections. When two or more clusters overlap, they

share common regions or data points, which makes it more difficult to assign certain data points
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to certain clusters. Clustering techniques have difficulties due to density variation since they

must be flexible enough to tolerate different amounts of data point concentration within clusters.

Clustering algorithms that can effectively handle clusters with diverse shapes and densities must

be able to recognise the unique properties and structures of the data. Since they tend to generate

spherical clusters around centroids, distance-based algorithms like K-means may struggle with

extended or irregular clusters. In order to accommodate clusters with different densities and

forms, fuzzy clustering techniques, like Fuzzy C-means, allow data points to have partial

memberships in several clusters.

Determining the best technique for a given application requires a thorough understanding of the

behavior and constraints of clustering algorithms on datasets with clusters of different density

and shape. It also makes it possible to create brand-new algorithms or improve upon existing

ones so they can better tackle these difficulties [6]. In order to shed light on the strengths,

limitations, and applicability of various clustering scenarios, this study seeks to give a thorough

performance analysis of clustering algorithms on datasets with shape and density variable

clusters.

1.2 Motivation

Real-world datasets frequently include clusters of various densities and forms. These variances

can appear in a variety of applications, including anomaly detection, customer segmentation, and

picture analysis. Gaining accurate and trustworthy results from clustering algorithms requires an

understanding of how they operate on such complicated datasets. The popular clustering

algorithms K-means and FCM are known for being straightforward and efficient. However, little

research has been done on how they work with clusters of varied shapes and densities. These

algorithms' strengths, weaknesses, and applicability for various clustering scenarios will be

assessed using datasets with a variety of cluster characteristics. Algorithmic improvements may

result from examining how K-means and FCM perform on clusters with different cluster shapes

and densities. Researchers can create new algorithms or change existing ones to better effectively

address these difficulties by understanding the constraints and weaknesses of these algorithms in

particular clustering settings. This performance analysis may act as a spark for additional study

and advancements in the clustering analysis discipline.By focusing on clusters that change in

shape and density, this performance analysis adds to the body of knowledge on clustering
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methods. Future research and comparisons involving different clustering algorithms and datasets

with comparable properties might use the findings and understandings from this analysis as a

guide and benchmark.

1.3 Problem Statement

Data analysis requires clustering as a fundamental step, yet real-world datasets frequently have

clusters of different sizes and densities. Although the K-means and FCM algorithms are

frequently used for clustering, little research has been done on how well they function with

clusters that vary in shape and density. Therefore, The performance analysis aims to address the

following research questions:

● How well do the K-means and FCM algorithms perform on datasets that have irregular,

spherical, and elongated clusters?

● Which method performs better at capturing clusters with various shapes and densities,

K-means or FCM?

● Which distance metrics, such as Euclidean, Manhattan, Mahalanobis, Minkowski, and

cosine, produce the best results for each algorithm on clusters with a variety of shapes

and densities?

● How do the algorithms deal with clusters that have different densities, such as uniform,

variable, and overlapping densities?

1.4 Objective

The objective is to learn more about the benefits, drawbacks, and restrictions of the K-means and

FCM algorithms when used on datasets having irregular clusters in terms of shape and density.

These research topics will be addressed by this performance analysis, which will offer

recommendations for choosing the best algorithm for particular clustering tasks and datasets with

different cluster characteristics.

1.5 Thesis Structure

Chapter 1 briefly takes you through the introduction of the topic thereafter section 1.2 shows the

motivation behind the project, section 1.3 gives the objectives of the project. Chapter 2 takes you
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through the summary of previously related studies. Chapter 3 gives the complete information

related to implementation & methodology, it also explains the different clustering algorithms,

different types of distance metrics and dataset description. Chapter 4 shows the experimental

analysis that has been gathered and evaluation of those results is described in Chapter 5. Chapter

6 gives the conclusion on the complete idea of the topics and results; it also discusses the future

scopes related to the idea. Finally, some references that have been taken are mentioned.
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CHAPTER 2

LITERATURE REVIEW

2.1 Related work

1. The K-means algorithm, which tries to reduce the within-cluster sum of squared

distances, is briefly described at the beginning of the paper [7]. Although it is often used

in K-means, the Euclidean distance metric may not always be appropriate for all sorts of

data. As a result, the author examines how K-means performs with the following distance

metrics: Euclidean, Manhattan, Minkowski, and Mahalanobis.The outcomes demonstrate

that the selection of the distance metric has a significant impact on the K-means

performance. When the clusters are close together and well-separated, the Euclidean

distance performs well. It suffers, nevertheless, with datasets that contain overlapping or

unevenly sized clusters. In these circumstances, the Manhattan distance, which computes

the sum of absolute differences, performs better. It is more resistant to outliers and

functions well with irregularly distributed data.

2. Similar data or objects are gathered into one group through a type of unsupervised

learning called clustering.The display of these items is possible in an n-dimensional

Euclidean space [8]. The performance of K-means and FCM, two distinct clustering

approaches, is reviewed and examined in this work. These algorithms are used on a

dataset that includes information on patients who have undergone surgery for breast

cancer. When K-means and FCM are used with various distance measurements, it is

discovered that classification accuracy, efficiency, and precision are all negatively

impacted. When used with Manhattan, the K-means algorithm is shown to be more

effective in clustering, whereas FCM performs better when Euclidean distance is used.

3. This paper compares the impacts of several distance functions used in k-means clustering

and studies their effects. One method that has been suggested for application in the field

of data mining is clustering [9]. The idea behind clustering is to group things according to
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some common qualities so that they are comparable to one another but not to objects in

other clusters.

4. In "Distance Metrics and Clustering Methods for Mixed-type Data," Alexander Foss and

colleagues (2019) revealed that they used both theoretical and empirical analysis to

determine the most successful methods for clustering mixed-type data [10]. The team

presents a critical analysis of the benefits and drawbacks of the strategies mentioned in

the literature using both theoretical and empirical evaluations. There are suggestions for

future research areas as well as guidelines on how to approach various scenarios. Data

clustering for mixed interval and categorical scales is still a difficult problem. They

suggest that to find the best methods for clustering mixed-type data, they should combine

theoretical and empirical analyses. There are suggestions for future research areas as well

as guidelines on how to approach various scenarios.

5. The technique of categorizing a collection of tangible or intangible objects into various

groups of related objects is known as cluster analysis. The key to solving the clustering

problem is determining the optimal classification number of a data set, or whether it can

be partitioned successfully. By adopting the division of intra-class compactness and

inter-class separation, whose minimum reflects the best clustering, a validity function of

the fuzzy C-means (FCM) clustering algorithm is proposed [11]. Through the use of

simulation experiments, the suggested validity function for the FCM clustering algorithm

is compared to the well-known usual validity functions. The conclusions demonstrate that

the suggested validity function may successfully divide the data set.

6. Title The k-means Algorithm: A Comprehensive Survey and Performance Evaluation

Performance comparisons were undertaken in terms of the aforementioned metrics for

experimental analysis using k-means, x-means , limited k-means, k-prototype, and kernel

k-means . With the KDD Cup datasets, k-means fared the best while x-means had the

lowest accuracy. In the Wisconsin dataset, constrained-k-means performed best. The

constrained-k-means appeared to perform consistently in terms of ARI score [12]. These

algorithms are appropriate for datasets with varied attribute compositions.Using all three



7

datasets with mixed data, the kernel-k-means algorithm consistently outperformed

k-prototype in terms of ARI score comparison.

7. In this study, Author presents a clustering approach that can effectively handle clusters of

different densities. The DBSCAN method underwent a straightforward change by the

approach. Calculating the maximum density permitted within each cluster and using

Minpts to regulate the lowest density permitted within each cluster are the objectives. The

maximum density in each cluster is calculated using the k-nearest neighbour approach,

and the density of the ith neighbour is used to determine whether or not a point can be

allocated to the current cluster. The ith neighbor's density must be larger than or equal to

Minpts. According to the experimental data shown here[13], the suggested approach is

more effective than the DBSCAN algorithm in handling datasets with different densities

of clusters. The suggested algorithm has a temporal complexity of o(n log n), the same as

the DBSCAN algorithm.

8. The number of clusters must be supplied into the minimal spanning tree (MST)-based

clustering method known as LDPMST. To extract clusters of any shape, we suggest using

a user-input-free density-based clustering approach termed UIFDBC. We offer a closest

neighbor variable density clustering (NNVDC) technique that can identify various

densities, forms, and sizes despite noise [14]. The findings demonstrate that, in terms of

finding arbitrary shaped clusters on tested datasets, our strategy is generally superior to

those of its competitors. The study in this paper focuses on the (EBRBS), which

demonstrated excellent robustness in the event of sensor failure and shown promising

performance when compared to common benchmark activity recognition (AR) models.
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CHAPTER 3

METHODOLOGY

3.1 Clustering

Unsupervised machine learning fundamentally uses clustering to look for hidden patterns or

structures in data [15]. Without using predetermined class labels or target variables, it entails

assembling related objects or data points based on their intrinsic similarities. Data is divided into

clusters using clustering algorithms, with each cluster representing a collection of related data

points. The main objective of clustering is to maximize intra-cluster similarity while minimizing

inter-cluster similarity. In other words, compared to objects in separate clusters, objects in the

same cluster should be more similar to one another. Clustering algorithms help find significant

subsets or categories within the data by locating clusters, which can yield insightful information

and make various types of data analysis easier. Customer segmentation, picture and document

analysis, anomaly detection, social network analysis, and recommendation systems are just a few

of the domains where clustering is used. It can support decision-making processes, identify

groups with similar behaviors or preferences, and reveal hidden structures in large datasets.

There are various clustering algorithms, each having unique traits and presumptions. K-means,

hierarchical clustering, density-based clustering (like DBSCAN), and fuzzy clustering (like

Fuzzy C-means) are some of the most widely used methods[16]. Different techniques are used by

these algorithms to establish clusters and determine how similar or dissimilar data points are.

Due to the lack of labeled data and the arbitrary nature of determining what makes a "good"

cluster, clustering is a difficult operation. A clustering algorithm's performance is influenced by a

variety of elements, including the choice of distance or similarity measures[17], the algorithm's

scalability, the right choice of cluster size, and the capability to handle various data kinds and

cluster forms.
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3.2 Clustering Algorithms

Unsupervised machine learning techniques called clustering algorithms are used to put

comparable data points together based on underlying patterns or similarities. Without using

labels or goal values that have already been established, these algorithms seek to identify the

underlying structure in the data.

3.2.1 K-means Algorithm

One of the most popular clustering methods is the K-means algorithm. Data is split into K

clusters based on similarity using this quick and effective unsupervised learning technique[18].

The algorithm's goal is to reduce the sum of squared distances between data points and the

cluster centroids that are allocated to them.

Algorithm 1 Pseudo code of K-means Algorithm
1. Select the number of clusters, K.
2. Initialize the centroids randomly or using a specific initialization method.
3. Repeat until convergence:

a. Assign each data point to the nearest centroid:
- Compute the distance between each data point and all centroids.
- Assign each data point to the centroid with the minimum distance.

b. Update the centroids:
- For each centroid, compute the mean of all data points assigned to it.
- Update the centroid coordinates to the computed means.

4. Return the final centroids and the cluster assignments.

The K-means algorithm has a number of crucial characteristics:

The clustering goal function, which is the sum of the squared distances between the data points

and the assigned centroids, is optimized by an iterative process. The algorithm is sensitive to the

original centroid's location and may not always produce outcomes that are globally optimal. The

selection of K (the number of clusters) is critical, and figuring out the best value frequently

involves subject expertise or evaluation measures. K-means can handle big datasets and is

computationally efficient.
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K-means is frequently utilized in many different applications, such as data preparation, document

clustering, image compression, and consumer segmentation. When used on datasets with

well-separated, spherical-shaped clusters, the technique can give effective clustering results

despite its simplicity. K-means has restrictions, though. It is less suited for datasets with varied

cluster forms or fluctuating cluster densities since it assumes that clusters are spherical and of

equal size. Additionally, it is susceptible to outliers, and noise or overlapping clusters may impair

its performance. Variations of the K-means approach, such as K-means++, which enhances

centroid initialization, and K-medoids, which employs medoids rather than centroids to

accommodate non-Euclidean distance metrics, have been created to get around some of these

drawbacks. A well-liked and effective clustering method is the K-means algorithm, which

divides data into K clusters based on the minimizing of distances between data points and cluster

centroids.

3.2.2 Fuzzy C-means Algorithm

The K-means technique is extended to meet the needs of fuzzy or probabilistic clustering by the

Fuzzy C-means (FCM) algorithm, a popular clustering algorithm[19]. By allowing data points to

have various degrees of participation in numerous clusters, FCM offers a more adaptable and

nuanced depiction of cluster membership.

Algorithm 2 Pseudo code of Fuzzy C-means Algorithm
1. Initialize:
- Set the number of clusters, K.
- Set the fuzziness coefficient, m.
- Set the maximum number of iterations, max_iter.
- Initialize the membership matrix, U, randomly or using a specific initialization method.

2. Repeat until convergence or reaching the maximum number of iterations:
a. Update the cluster centroids:

- For each cluster, calculate the centroid as the weighted mean of data points using
membership values:

centroid_k = sum((u_ik^m * x_i) / sum(u_ik^m)), for each data point x_i assigned to
cluster k.

b. Update the membership matrix:
- For each data point, calculate the membership values for each cluster using the

Euclidean distance:
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u_ik = 1 / sum((dist(x_i, centroid_k) / dist(x_i, centroid_j)) ^ (2 / (m-1))), for each cluster k
and j.

c. Check for convergence by calculating the objective function or comparing the change in
membership matrix.

d. Increment the iteration counter.
3. Return the final cluster centroids and the membership matrix.

The FCM algorithm has a number of significant characteristics:

Soft clustering is possible with it, allowing data points to partially belong to several clusters.c

Compared to strict clustering algorithms like K-means, FCM offers a more flexible

representation of cluster membership. The algorithm seeks to maximise membership degrees

while balancing the maximisation of membership degrees and the minimising of distances

between data points and cluster centroids. Numerous domains, including pattern recognition,

picture segmentation, bio informatics and data mining, have used FCM extensively. It is

especially helpful when working with datasets where individual data points may have conflicting

or redundant cluster allocations.

FCM does, however, have its limitations. The choice of the fuzziness parameter (usually

represented as "m") impacts the fuzziness of the clustering results, and it is sensitive to the initial

fuzzy membership values. It could involve a lot of processing and necessitate careful parameter

optimisation for best results. The K-means technique can be extended to provide fuzzy or

probabilistic clustering using the Fuzzy C-means (FCM) algorithm. It offers a more adaptable

and nuanced depiction of cluster membership, allowing data points to to some extent belong to

numerous clusters. When dealing with unclear or overlapping cluster assignments, FCM

provides a useful substitute to conventional hard clustering methods that are widely employed in

a variety of applications.
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3.3 Distance Metrics

Distance measures are important because they help clustering algorithms assess how similar or

different data points are [20]. Different distance measures use different methods to quantify

distance or dissimilarity, which causes cluster formation to vary. The following list of frequent

distance measures for clustering:

1. Euclidean Distance:

The Euclidean distance formula[21], which can be written as follows, is used to compute

it:

………………..(1)𝑑(𝑥,  𝑦) =  (∑(𝑥
𝑖

−  𝑦
𝑖
)²)

■ d(x, y) represents the Euclidean distance between points x and y.
■ xi and yi are the values of the i-th dimension of points x and y,

respectively.

■ Σ represents the sum over all dimensions.

2. Manhattan Distance:

The formula for the Manhattan distance, sometimes referred to as the City Block or L1

distance, is as follows:

……..(2)𝑑(𝑥,  𝑦) =  ∑ 𝑥
𝑖
 −  𝑦

𝑖| |
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The Manhattan distance computes the total of the absolute differences between the two

points' corresponding dimensions[22]. By adding up the absolute differences in the

coordinates of the two points along each dimension, it calculates the distance between

them. The streets in Manhattan are laid out in a grid-like pattern, and the shortest path

between any two points runs along the city blocks, hence the name "Manhattan distance."

Applications including image processing, classification, and clustering frequently employ

the Manhattan distance. When the data has a grid-like or block structure, it is extremely

helpful. The Manhattan distance is distinct from the Euclidean distance in that it only

takes into account the distance travelled along the axis, not the direct line connecting the

two places. It is a metric that satisfies the triangle inequality and can be applied to

situations in which various dimensions have distinct scales or units.

3. Mahalanobis Distance

The Mahalanobis distance formula is as follows:

…….(3)𝑑(𝑥,  𝑦) =  ((𝑥 −  𝑦)'𝑆^(− 1)(𝑥 −  𝑦))

When computing the distance between two points, the Mahalanobis distance takes the

data's correlation and variance into account[23]. It calculates the separation between two

points by taking the data distribution's shape and direction into account. The Mahalanobis

distance can take into consideration the various scales and correlations of the data along

each dimension by incorporating the covariance matrix.

When working with data that has correlated characteristics or when there are distinct

scales along different dimensions, the Mahalanobis distance is quite helpful. Applications

like anomaly detection, clustering, and classification frequently employ it. Outliers or

anomalous data points that significantly vary from the data's normal distribution can be

found using the Mahalanobis distance.

It's crucial to remember that the covariance matrix S must be positive definite in order to

calculate the Mahalanobis distance. Computational problems could result from a unique
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or poorly-conditioned covariance matrix. Alternative distance metrics or regularisation

approaches may be used in such circumstances.

4. Minkowski Distance:

The equation for Minkowski distance is as follows:

……(4)𝑑(𝑥,  𝑦) =  
𝑖=1

𝑛

∑ |𝑥𝑖 −  𝑦𝑖|𝑝( )(1/𝑝)

The Minkowski distance is a generalised distance metric with special cases for a number

of different distance measurements[24]. The Manhattan distance (L1 norm) is what the

Minkowski distance reduces to when p = 1, and the Euclidean distance (L2 norm) is what

it reduces to when p = 2. Different amounts of focus can be placed on the distinct

dimensions while calculating the distance by changing the value of p.

In many different applications, including clustering, classification, and regression, the

Minkowski distance is frequently utilised. By modifying the value of p in accordance

with the features of the data or the particular needs of the study, it provides for flexibility

in calculating distances. When working with data, for instance, that has many scales or

dimensions and varied levels of relevance,To account for these factors, the Minkowski

distance with a suitable value of p can be chosen.

5. Chebyshev Distance

The following is the equation for the Chebyshev distance, often known as the maximal

norm:

…….(5)𝑑(𝑥,  𝑦) =  𝑚𝑎𝑥 |𝑥
𝑖
 −  𝑦

𝑖
|( )

The biggest absolute difference between two points' related dimensions is measured by

the Chebyshev distance[25]. Instead of adding or average the discrepancies, it determines

the distance by taking into account the biggest difference along any dimension. In a

multidimensional space, it represents the length of the longest feasible straight line

between two points.
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When working with data that has distinct scales or when the dimensions have variable

levels of relevance, the Chebyshev distance is especially helpful. It is frequently

employed in applications including decision-making algorithms, image processing, and

pattern recognition. In situations where outliers or extreme values are of interest, the

Chebyshev distance offers a metric that is sensitive to the largest difference in any

dimension.

6. Hamming Distance:

The equation for Hamming distance is as follows:

…….(6)𝑑(𝑥,  𝑦) =  ∑ 𝑥
𝑖
 ≠ 𝑦

𝑖( )
A metric for determining the difference between two binary vectors of identical length is

the Hamming distance[26]. It counts the number of locations where the related vector

elements diverge. In other words, it keeps track of how many bits must be flipped in

order to change one vector into another.

The Hamming distance is frequently utilised in a variety of applications, including binary

pattern matching, DNA sequence analysis, and error detection and repair. When working

with category or binary data, where the presence or absence of specific attributes is of

importance, it is especially useful.It's crucial to remember that the Hamming distance is

only appropriate for vectors of the same length and was created primarily for binary or

categorical data. It does not consider the magnitude or intensity of differences between

elements.

7. Cosine Distance:

The following is the equation for cosine distance, commonly referred to as cosine

similarity:

………(7)𝑑(𝑥,  𝑦) =  1 −  (𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥,  𝑦))

To calculate the cosine similarity, the equation is as follows:

..……..(8)𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥,  𝑦) =  (𝑥 ⋅ 𝑦) / (||𝑥|| ⋅ ||𝑦||)
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Based on the cosine of the angle between two vectors, the cosine distance calculates how

dissimilar they are[27]. It is frequently used to establish if two documents, text corpora,

or sets of highly dimensional data are comparable or dissimilar. The cosine similarity

scales from -1 to 1, with 1 denoting that the vectors are exactly the same and -1 denoting

that they are completely unrelated.

In situations where the magnitude or scale of the vectors is unimportant, the cosine

distance is useful. When working with high-dimensional data, where the vector

representation represents the presence or absence of specific attributes, it is especially

helpful. The cosine distance measures the direction of the vectors rather than their

magnitude, in contrast to other distance measurements. It's crucial to remember that the

cosine distance is not a standard geometric measure of distance but rather a measure of

dissimilarity. When performing tasks like clustering, classification, or information

retrieval, the cosine distance is frequently used.

8. Canberra distance:

The equation for Canberra distance is as follows:

…….(9)𝑑(𝑥,  𝑦) =  Σ(|𝑥𝑖 −  𝑦𝑖| / (|𝑥𝑖| +  |𝑦𝑖|))

Calculating the distance between two vectors using the Canberra distance is a common

task. By accounting for the size of each element, it calculates the normalized sum of

absolute differences between comparable vector elements. where working with data that

has different scales or where the ratio between numbers is crucial, it is especially helpful.

In applications like pattern recognition, text mining, and information retrieval, the

Canberra distance is frequently employed[28]. When comparing sparse or

high-dimensional data, where the presence or absence of specific traits might have a big

impact, it is especially well suited.

It is crucial to remember that the vector zeroes have an impact on the Canberra distance.

For a specific element, the contribution to the distance calculation is zero if both xi and yi

are zero. The Canberra distance works well for representations of sparse data because of

this property. It is important to note that the Canberra distance might be asymmetric and

impacted by outliers, which means that d(x, y) may not always be equal to d(y, x).
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Because of this, it is crucial to take these things into account when employing the

Canberra distance for data analysis activities.

9. Jaccard distance:

The equation for Jaccard distance is as follows:

…….(10)𝑑(𝑥,  𝑦) =  1 −  (|𝑥 ∩ 𝑦| / |𝑥 ∪ 𝑦|)

An indicator used to determine how diverse two sets are is the Jaccard distance. As the

Jaccard similarity coefficient's complement, it quantifies dissimilarity[29]. The ratio of

the sizes of two sets' intersection and union is known as the Jaccard similarity coefficient.

Applications like data mining, information retrieval, and pattern recognition frequently

use the Jaccard distance. Comparing sets that reflect categorical or binary data makes use

of it particularly well. The Jaccard distance spans from 0 to 1, with 0 denoting perfect

similarity between the sets and 1 denoting total dissimilarity. The Jaccard distance is

symmetric, i.e., d(x, y) = d(y, x). This is significant. It is frequently used to evaluate the

dissimilarity between collections of objects or characteristics in clustering, classification,

and recommendation systems.
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3.4 Dataset Description

A synthetic dataset is one that has been manufactured artificially and is based on rules or

algorithms rather than being gathered from actual observations. To investigate and assess

methods, models, and systems, synthetic datasets are frequently used in a variety of domains,

including machine learning, data analysis, and computer simulations. In order to recreate

particular settings or occurrences that might not be readily available or apparent in real-world

data, synthetic datasets are produced. They give researchers the ability to regulate and shape

many facets of the data generating process to meet their study goals.

Models, methods, and simulations in mathematics can be used to create synthetic datasets. These

techniques specify the links, patterns, or rules found in the data and create samples in accordance

with those findings. To evaluate the effectiveness of clustering algorithms, for instance, datasets

with well-known cluster structures may be produced in clustering experiments. Different traits,

including cluster shapes, density fluctuations, noise levels, and class imbalances, can be seen in

synthetic datasets. Specific scenarios, such as linearly separable or overlapping clusters, skewed

distributions, or outliers, can be represented by these features.

In this report we used Synthetic datasets made to imitate data points scattered over or around a

spherical form in two dimensions are referred to as two-dimensional spherical datasets. These

datasets are frequently used to test algorithms in fields where spherical structures are important,

including as data visualisation, clustering, and pattern recognition. Clusters that are shaped like

spheres or have a spherical organisation can be included in two-dimensional spherical datasets.

These clusters might have different sizes and densities, as well as overlap or not overlap.

Clustering algorithms' capacity to recognise and distinguish spherical clusters can be evaluated

using such datasets.Different spherical shapes, such as whole, partial, or overlapping spheres, can

be seen in two-dimensional spherical datasets. The dimensions, radii, and orientation of these

shapes can change. To develop customised spherical structures that meet their experimental

demands, researchers can adjust these properties.
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Fig.1 2-Dimensional Spherical Dataset

The term "half and full moon dataset generation in 2D" describes the process of creating artificial

datasets with the appearance of a half moon or a full moon in two dimensions. These datasets are

frequently used in pattern recognition and machine learning applications to assess how well

algorithms handle curved or non-linear data distributions. The data points are arranged in a

half-moon pattern in a half-moon dataset. The half moon's two sides each symbolise a separate

class or cluster, with one side representing one. Given that the two classes are frequently not

linearly separable, this dataset presents difficulties for classification tasks. A full moon dataset

has data points that are arranged in a circular or spherical pattern similar to a full moon.

Concentric circles or spheres that each represent a different class or cluster can make up this

dataset. Full moon datasets are frequently used to test clustering algorithms and find spherical or

circular patterns.

Fig.2 2-Dimensional Half and Full Moon Dataset
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Elliptical 2D datasets are made up of data points that are arranged in an elliptical pattern

in a two-dimensional space. These datasets are frequently used in pattern recognition, data

analysis, and machine learning to assess how well algorithms handle data distributions with

elliptical features. The geometry of elliptical 2D datasets is elliptical and can vary in size, aspect

ratio (the ratio of major to minor axis lengths), and orientation. In the two-dimensional space, the

elliptical shape can be rotated at an angle or lined up with the axes.

Elliptical-shaped data point clusters may be seen in synthetic datasets. The shapes, densities, and

orientations of these clusters might vary. Clustering algorithms' capacity to recognise and

distinguish elliptical clusters is evaluated using elliptical datasets.

Different levels of overlapping and separability across clusters or classes might be present in

datasets. The degree to which data points from various clusters overlap or share a common

location is referred to as overlapping. The term "separability" describes how easily an algorithm

can separate the clusters.

Fig.3 2-Dimensional Circular and Elliptical Dataset

Circular shaped 2D datasets are artificial datasets with a circular distribution of data points in a

two-dimensional environment. These datasets are frequently used to assess how well algorithms

handle data distributions with circular shapes in machine learning, data analysis, and pattern



21

recognition. The data points in circular-shaped 2D datasets are dispersed evenly across the

circle's perimeter or inside of it, giving the datasets a perfectly round shape. Depending on the

specified radius, the circle's size can change.

Circular-shaped data point clusters may be seen in synthetic datasets. Within the circular region,

these clusters might be of different shapes, densities, and orientations. Clustering algorithms'

capacity to recognise and distinguish circular clusters is evaluated using circular datasets.

Different degrees of overlapping and separability between clusters or classes can be found in

circularly formed datasets. The degree to which data points from various clusters overlap or

share a common location is referred to as overlapping. The term "separability" describes how

easily an algorithm can separate the clusters. Synthetic datasets can imitate real-world situations

by including noise and outliers. Outliers are data points that dramatically differ from the majority

of data points, whereas noise refers to random fluctuations or inaccuracies in data points.

Outliers and noise increase the dataset's complexity and put algorithms' robustness to the test.

Fig.4 2-Dimensional Circular And Spherical Dataset
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CHAPTER 4

EXPERIMENTAL RESULTS

The effectiveness of the two clustering techniques along with four distance metrics Kmeans and

FCM with Euclidean, manhattan, minkowski, canberra distance metrics is analyzed in this

section. The tolerance of the two-dimensional fabricated data sets is first examined.four

clustering techniques with varied data density, nonlinearity, and form. The effectiveness of the

clustering process is then evaluated using real test data sets with known data labels that were

gathered from open databases. The results of the clustering are then visualized using the

clustering techniques. All clustering techniques are used with the same beginning weight values

for wic and termination criteria for every test data set.

4.1 Simulated Data

In order for the real data points in each cluster and the clustering outcomes to be visually

examined and validated, artificial data are manufactured in a two-dimensional plane. First, the

impact of altered distances between two clusters is assessed. Simulated clusters in Fig. 1 include

an elliptic cluster and a circular cluster. These two clusters' separation is expressed as

…….(11)𝑅
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 =  𝐷𝑖
𝑟

𝐴
 + λ

𝐵

where Di is the separation between the two clusters' centroids. The semiminor axis of the elliptic

cluster is denoted by lB, and the radius of the circular cluster is denoted by rA.

Two circular clusters (A and B) with varying densities are simulated in order to assess the impact

of changes in cluster density. 50 data points are located inside a set 12-point radius in Cluster A.

B Cluster identically distributed data points with different radiuses larger than 12. The ratio of

density for two clusters is described by

…….(12)
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A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

Fig .5 Result of Clustering, (A1)-(A5) Normal Dataset,(B1)-(B5)Result of FCM, (C1)-(C5) Result of K-means
Using 5 (Euclidean, Manhattan, Minkowski, Cosine, Canberra) Distance Metrics.
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A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

Fig.6 Result of Clustering, (A1)-(A5) Normal Dataset,(B1)-(B5)Result of FCM, (C1)-(C5) Result of K-means
Using 5 (Euclidean, Manhattan, Minkowski, Cosine, Canberra) Distance Metrics. .
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A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

Fig.7 Result of Clustering, (A1)-(A5) Normal Dataset,(B1)-(B5)Result of FCM, (C1)-(C5) Result of K-means
Using 5 (Euclidean, Manhattan, Minkowski, Cosine, Canberra) Distance Metrics. .



26

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

Fig.8 Result of Clustering, (A1)-(A5) Normal Dataset,(B1)-(B5)Result of FCM, (C1)-(C5) Result of K-means
Using 5 (Euclidean, Manhattan, Minkowski, Cosine, Canberra) Distance Metrics. .
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A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 C5

Fig.9 Result of Clustering, (A1)-(A5) Normal Dataset,(B1)-(B5)Result of FCM, (C1)-(C5) Result of K-means
Using 5 (Euclidean, Manhattan, Minkowski, Cosine, Canberra) Distance Metrics. .
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CHAPTER 5

DISCUSSION OF RESULT

To analyze the performance of K-means and FCM algorithms using Different Distance metrics

such as Euclidean, Manhattan, Minkowski, Cosine and Canberra. We considered the following

aspects.

● Cluster Quality:

By analyzing metrics like the Silhouette Coefficient, we evaluate the clustering's

quality. These metrics assess the performance of the clustering process overall,

the separation between clusters, or the compactness of the clusters.

● Visual Inspection:

The quality of the clustering results can be determined by plotting the clusters and

visually inspecting them. The visual separation and compactness of clusters

produced by various distance measurements can be compared.

● Computational Efficiency:

We have extensive datasets, comparing the computing efficiency of various

distance measurements. Some distance measures could call for greater calculation

time and resources than others.

● Cluster Stability:

By repeatedly executing the clustering algorithms with various random

initializations and evaluating the consistency of the outcomes, we assessed the

stability of the clusters. Consistent clusters throughout various runs suggest more

dependable and stable outcomes.
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5.1 Cluster Quality

Silhouette Score is generated for all the dataset on both K-means and Fuzzy C-means Clustering

using five distance metrics such as Euclidean, Manhattan, Minkowski, Cosine and Canberra.

Based on the Score obtained by performing the clustering. It is observed that for K-means using

Euclidean distance metrics outperforms in comparison with all the other distance metrics.

Also, FCM using Manhattan distance metrics outperforms in comparison with all other distance

metrics. For, Circular and Elliptical Shaped Dataset on performing clustering algorithm FCM

and K-means using Euclidean, Minkowski and Cosine distance metrics showing same silhouette

score, as shown below.

Table 5.1 Silhouette Score Based On Clustering

Distance Dataset K-means FCM Best

Euclidean Circular and Elliptical 0.6307 0.6307 Both

Two Spherical 0.3258 0.3213 K-means

Half and full moon 0.4277 0.4228 K-means

Manhattan Circular and Elliptical 0.4276 0.6307 FCM

Two Spherical 0.2903 0.3111 FCM

Half and full moon 0.3523 0.4224 FCM

Minkowski Circular and Elliptical 0.6307 0.6307 Both

Two Spherical 0.3069 0.3213 FCM

Half and full moon 0.4234 0.4228 K-means

Cosine Circular and Elliptical 0.4126 0.4126 Both

Two Spherical 0.3138 0.3148 Both

Half and full moon 0.4233 0.4231 K-means
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5.2 Computational Efficiency

The effectiveness or speed at which a computing algorithm or process completes its tasks is

referred to as computation efficiency. It is a gauge of how quickly an algorithm can carry out a

task or solve a problem utilizing the time and memory that are at its disposal. Computational

efficiency for clustering algorithms like K-means or FCM can be measured by observing how

long it takes for the algorithm to converge or reach a stopping point. This can be assessed by

noting the algorithm's execution time, which is commonly expressed in seconds or milliseconds.

Table 5.2 Comparison of Computational Efficiency

Distance Dataset K-means FCM Best

Euclidean Circular and Elliptical 0.002 0.047 K-means

Two Spherical 0.003 0.273 K-means

Half and full moon 0.039 5.443 K-means

Manhattan Circular and Elliptical 0.002 0.0317 K-means

Two Spherical 0.003 0.227 K-means

Half and full moon 0.045 5.996 K-means

Minkowski Circular and Elliptical 0.001 0.060 FCM

Two Spherical 0.002 0.256 K-means

Half and full moon 0.0005 5.714 K-means

Cosine Circular and Elliptical 0.024 0.044 K-means

Two Spherical 0.025 0.3105 K-means

Half and full moon 0.368 1.206 K-means

Canberra Circular and Elliptical 0.0 0.054 K-means

Two Spherical 0.002 0.243 K-means

Half and full moon 0.001 3.589 K-means
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Chapter 6

Conclusion and Future Work

This work explores the Performance analysis of K-means and FCM with the help of different

distance metrics such as Euclidean, Manhattan, Minkowski, Cosine, Canberra. However, the

clustering based on the shape is still a challenging task when the clusters are unknown. The

manual selection of centroids achieves better results than the automatic approach of selection.

Also, Euclidean distance is perfect for most of the cases while computed with K-means

Algorithm. Manhattan distance is perfect for most of the cases while using the FCM algorithm.

Based on the computational efficiency it is observed that the computation timing is fast for

K-means algorithms using any distance metrics on any type of dataset.

The future work for the performance analysis of K-means and FCM with different distance

metrics encompasses various aspects such as evaluation on diverse datasets, comparison with

other algorithms, parameter tuning, scalability analysis, visualization techniques, robustness

analysis, real-world applications, hybrid approaches, interpretability, integration of domain

knowledge, computational efficiency, and handling of noise and outliers. By addressing these

research directions, we can advance our understanding of clustering algorithms and their

applicability in different contexts, leading to improved clustering techniques and better solutions

for data analysis problems.
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