

“Empirical Validation of Process Metrics to Check the Predictive

Performance of Classification and Ensemble Methods”

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE

REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

DATA SCIENCE

Submitted By

Rohit Ramchandani

(2K21/DSC/09)

Under the supervision of

Prof. Ruchika Malhotra

Head of Department (Software Engineering)
Department of Software Engineering

Delhi Technological University, Delhi

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

June, 2023

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

i

DECLARATION

I, Rohit Ramchandani, 2K21/DSC/09 student of M.Tech (DSC), hereby declare that the

project entitled “Empirical validation of process metrics to check the predictive

performance of classification and ensemble methods” which is submitted by me to

Department of Software Engineering, Delhi Technological University, Shahbad

Daulatpur, Delhi in partial fulfilment of requirement for the award of the degree of Master

of Technology in Data Science, has not been previously formed the basis for any

fulfilment of requirement in any degree or other similar title or recognition.

This report is an authentic record of my work carried out during my degree under the

guidance of Prof. Ruchika Malhotra.

Place: Delhi Rohit Ramchandani

Date: June, 2023 (2K21/DSC/09)

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ii

CERTIFICATE

I hereby certify that the project entitled “Empirical validation of process metrics to check

the predictive performance of classification and ensemble methods” which is submitted

by Rohit Ramchandani (2K21/DSC/09) to Department of Software Engineering, Delhi

Technological University, Shahbad Daulatpur, Delhi in partial fulfilment of requirement

for the award of the degree of Master of Technology in Data Science, is a record of the

project work carried out by the student under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any degree or diploma to

this university or elsewhere.

Place: Delhi Prof. Ruchika Malhotra

Date: SUPERVISOR

 HOD and Professor

 Department of Software Engineering

iii

ACKNOWLEDGEMENT

I am very thankful to Prof. Ruchika Malhotra (Head of Department, Professor, DTU,

Department of Software Engineering) and all the faculty members of the Department of

Computer Science at DTU. They all provided us with immense support and guidance for the

project. I would also like to express my gratitude to the University for providing us with the

laboratories, infrastructure, testing facilities and environment which allowed us to work

without any obstructions. I would also like to appreciate the support provided to us by our

lab assistants, seniors and our peer group who aided us with all the knowledge they had

regarding various topics.

Rohit Ramchandani

 2K21/DSC/09

iv

ABSTRACT

Software defects have always been considered a major problem in the software industry and

for software engineers, early detection improves software performance and reduces faults,

time, and cost. In order to predict defects in software, many researchers have been used

classification and ensemble techniques. Different dataset produces different results. In this

research, we have evaluated the prediction accuracy of classification and ensemble

approaches using 3 distinct models: combined model of static code and process metrics,

model containing process metrics, and model containing static code metrics. In simple terms,

we can say that these 3 models have different independent variables and dependent variables

are the actual values of bugs which is the same. We have used NB, LR, KNN, SVM, DT as

classification approaches and stacking, voting, bagging, and boosting as ensemble approach

for implementation. The dataset was gathered from the publicly available repository. AUC

metric was used to examine the prediction performance of classification and ensemble

techniques. Additionally, the statistical significance of the results obtained from various

models was assessed using the Friedman and Nemenyi post hoc test. The result of this study

demonstrates that the use of process metrics in predicting the defects in software produces

effective outcomes.

v

INDEX

Content Page Number

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Index v

List of Figures vii

List of Tables ix

List of Abbreviations xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Software Defect Prediction 1

1.3 Motivation 2

1.4 Objective 2

1.5 Thesis Structure 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Related Work 4

CHAPTER 3 SYSTEM DESIGN 7

3.1 Proposed Architecture 7

3.2 Dependent and Independent Variable 7

3.2.1 Static code metrics 8

3.2.2 Process metrics 8

3.3 Empirical Data Collection 9

CHAPTER 4 METHODOLOGY 10

4.1 Dataset Preprocessing 10

4.2 Classification Techniques 10

4.2.1 Naïve Bayes 11

vi

4.2.2 Logistic Regression 12

4.2.3 Support Vector Machine 12

4.2.4 K- Nearest Neighbor 13

4.2.5 Decision Tree 13

4.3 Ensemble Techniques 14

4.3.1 Stacking 15

4.3.2 Voting 16

4.3.3 Bagging 18

4.3.4 Boosting 19

4.4 Performance Evaluation Measure 21

4.5 Statistical Test 22

CHAPTER 5 EXPERIMENTAL RESULTS 25

CHAPTER 6 DISCUSSION ON RESULTS 39

CHAPTER 7 CONCLUSION AND FUTURE SCOPE 62

7.1 Conclusion 62

7.2 Future work 62

REFERENCES 63

vii

LIST OF FIGURES

Figure Name Page Number

Fig 3.1 Architecture of Proposed Methodology 7

Fig 4.1 Machine Learning Techniques 11

Fig 4.2 Types of Ensemble Techniques 15

Fig 4.3 Structure of Stacking Technique 16

Fig 4.4 Structure of Hard Voting Technique 17

Fig 4.5 Structure of Soft Voting Technique 18

Fig 4.6 Structure of Bagging Technique 19

Fig 4.7 Structure of Boosting Technique 21

Fig 4.8 Confusion matrix 22

Fig. 6.1 AUC values in combined model 39

Fig 6.2 AUC values in model containing static code metrics 40

Fig 6.3 AUC values in model containing process metrics 41

Fig 6.4 AUC values for NB in combined model of static code and 1 process

metric

42

Fig. 6.5 AUC values for NB in combined model of static code and 2 process

metrics

43

Fig. 6.6 AUC values for NB in combined model of static code and 3 process

metrics

44

Fig 6.7 AUC values for SVM in combined model of static code and 1

process metric

45

Fig 6.8 AUC values for SVM in combined model of static code and 2

process metrics

46

Fig 6.9 AUC values for SVM in combined model of static code and 3

process metrics

47

Fig. 6.10 AUC values for DT in combined model of static code and 1

process metric

47

viii

Fig. 6.11 AUC values for DT in combined model of static code and 2

process metrics

48

Fig 6.12 AUC values for DT in combined model of static code and 3

process metrics

49

Fig 6.13 AUC values for stacking in combined model of static code and 1

process metric

50

Fig 6.14 AUC values for stacking in combined model of static code and 2

process metrics

51

Fig 6.15 AUC values for stacking in combined model of static code and 3

process metrics

52

Fig 6.16 AUC values for voting in combined model of static code and 1

process metric

53

Fig 6.17 AUC values for voting in combined model of static code and 2

process metrics

54

Fig 6.18 AUC values for voting in combined model of static code and 3

process metrics

55

Fig 6.19 AUC values for bagging in combined model of static code and 1

process metric

56

Fig 6.20 AUC values for bagging in combined model of static code and 2

process metrics

57

Fig 6.21 AUC values for bagging in combined model of static code and 3

process metrics

58

Fig 6.22 AUC values for boosting in combined model of static code and 1

process metric

59

Fig 6.23 AUC values for boosting in combined model of static code and 2

process metrics

60

Fig 6.24 AUC values for boosting in combined model of static code and 3

process metrics

61

ix

LIST OF TABLES

Table Name Page Number

Table 3.1 Dataset Used 9

Table 5.1 AUC values in combined model 25

Table 5.2 AUC values in model containing static code metrics 26

Table 5.3 AUC values in model containing process metrics 26

Table 5.4 AUC values for NB in combined model of static code and 1

process metric

27

Table 5.5 AUC values for NB in combined model of static code and 2

process metrics

28

Table 5.6 AUC values for NB in combined model of static code and 3

process metrics

28

Table 5.7 AUC values for SVM in combined model of static code and 1

process metric

29

Table 5.8 AUC values for SVM in combined model of static code and 2

process metrics

29

Table 5.9 AUC values for SVM in combined model of static code and 3

process metrics

30

Table 5.10 AUC values for DT in combined model of static code and 1

process metric

30

Table 5.11 AUC values for DT in combined model of static code and 2

process metrics

31

Table 5.12 AUC values for DT in combined model of static code and 3

process metrics

31

Table 5.13 AUC values for stacking in combined model of static code and

1 process metric

32

Table 5.14 AUC values for stacking in combined model of static code and

2 process metrics

32

x

Table 5.15 AUC values for stacking in combined model of static code and

3 process metrics

33

Table 5.16 AUC values for voting in combined model of static code and 1

process metric

34

Table 5.17 AUC values for voting in combined model of static code and 2

process metrics

34

Table 5.18 AUC values for voting in combined model of static code and 3

process metrics

35

Table 5.19 AUC values for bagging in combined model of static code and

1 process metric

35

Table 5.20 AUC values for bagging in combined model of static code and

2 process metrics

36

Table 5.21 AUC values for bagging in combined model of static code and

3 process metrics

36

Table 5.22 AUC values for boosting in combined model of static code and

1 process metric

37

Table 5.23 AUC values for boosting in combined model of static code and

2 process metrics

37

Table 5.24 AUC values for boosting in combined model of static code and

3 process metrics

38

xi

LIST OF ABBREVIATIONS

Abbreviations Full Form

SFP Software Fault Prediction

AUC Area Under the Curve

ROC Receiver Operating Characteristics

WEKA Waikato Environment for Knowledge Analysis

SC Static Code Metrics

NR Number of Revisions

NDC Number of Distinct Committers

NML Number of Modified Lines

NDPV Number of Defects in Previous Version

NB Naïve Bayes

LR Logistic Regression

SVM Support Vector Machine

KNN K Nearest Neighbor

DT Decision Tree

WMC Weighted Methods per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

xii

RFC Response For a Class

LOC Lines of Code

LCOM Lack of Cohesion in Methods

NPM Number of Public Methods

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Abstraction

IC Inheritance Coupling

CAM Cohesion Among Methods

CBM Coupling Between Methods

AMC Average Method Complexity

Ca Afferent Coupling

Ce Efferent Coupling

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Software development life cycle consist of software testing which is time consuming and

resource consuming. The aim of the testing procedure is to deliver software that is completely

error-free and meets the needs of all stakeholders. Finding software flaws is a necessary but

expensive process. Testing adds to the overall project budget because it is an expensive

process. The effectiveness and quality of the software improve when defects are correctly

predicted at an early stage. Additionally, accurate defect prediction aids in controlling the

project's budget.

1.2 Software Defect Prediction

Defects prediction and proneness in the software are always considered a major problem in

the software industry and for software engineers. In classical methods, previous experience

with the defective or non-defective software is required while detecting the software defect

in a software application. Defects in the software applications have been predicted by using

different classification techniques by different researchers as of now but the results of the

methods changed with the dataset, so they lack the property of robustness for defect

prediction in an un- known software application. However, ensemble techniques for defect

detection in software applications will be very efficient, as there will be an advantage of using

various techniques on a specific dataset to predict software defects with much more accurate

than using a single technique, for the reasons stated above. An ensemble learning software

defect prediction model will allow the software to extensively identify and rectify software

defects using soft voting and hard voting. This ability makes the soft- ware run more

effectively and reduces faults, time, and cost.

2

1.3 Motivation

Different software metrics are used by software defect prediction (SDP) models to make

predictions. Numerous studies have been conducted in the past using static code metrics to

identify different system design elements. Numerous techniques, including LR [6], NB

[10][4], SVM [20], ANN [21], KNN [23], and DT[30] have been suggested in the past to

demonstrate the correlation between static code metrics and defect proneness. Investigating

process metrics is necessary in the area of defect prediction since both the studies Dejaeger

et al. [20] and Okutan and Yildiz [2] highlight the same. The field of software defect

prediction has witnessed a lot of literature reviews published. The majority of them employ

static code metrics, while only a limited number of studies demonstrate the connection

between defect proneness and process metrics. There is no clear-cut conclusion provided by

the authors some claim that process metrics outperform static code metrics, while others

contend that the reverse is true.

1.4 Objective

The main objective of this thesis is to examine the effectiveness of process metrics in

predicting outcomes. To assess and compare different techniques, we will construct a defect

prediction model in this thesis and evaluate their performance based on AUC values, bar

graphs, and statistical test. A heterogeneous ensemble learning model (bagging, stacking,

boosting, and voting) is introduced and the comparison of the ensemble model is made with

all the classifiers i.e., DT, LR, KNN, NB, SVM which have been used to build the model. In

this thesis, AUC has been used so to determine whether the ensemble algorithm is accurate

or not in determining whether the software is defective or not defective. We analyze the

results of each technique using distinct models. Further we will analyze, if we use process

metrics, which techniques gives better results and can we use process metrics to determine

defect proneness. Additionally, we will evaluate the performance of selected process metrics

by considering different combinations of static code and process metrics to determine the

most effective one.

3

1.5 Thesis Structure

The structure of this research is as follows: The related work that has previously been done

in the area of software defect prediction is presented in Section 2. The proposed work is

presented in Section 3, which goes over the dataset used, dependent and independent

variables used, and static code metrics and process metrics used. Research Methodology is

presented in Section 4, which goes over the performance evaluation metric used, the

classification and ensemble strategies employed, the statistical test employed, and how these

strategies will be put into practice. The output of each model using each classification method

and ensemble technique is shown in Section 5. The discussion of the results is presented in

Section 6, which includes bar graphs and statistical tests. Section 7 of this study presents its

conclusion and future work.

4

CHAPTER 2

LITERATURE SURVEY

A lot of research has been conducted to develop software defect prediction models using

different techniques including Machine Learning techniques and ensemble learning

techniques. Numerous studies have been conducted to develop software defect prediction

models using various defect prediction techniques, but the majority of these studies use static

code metrics as independent variables, while only a small number of them use process

metrics.

Related Work:

According to a systematic literature review [7] that included 106 papers published between

1991 and 2011, OOM were used as independent variables in 49% of the research,

conventional source code metrics in 27% of the research, and process metrics in 24% of the

papers. The prediction results of object-oriented metrics and process metrics outperform

those of conventional source code metrics. Delta metrics, code churn metrics, history metrics,

and developer metrics are the process metrics used in this literature review.

According to some studies, process metrics did not perform well when used in the early

phases of software development. The results of the experiments conducted have

demonstrated that process metrics perform better in the post-release stage of software

development.

Two new process metrics were introduced [29]:

a. Life cycle-based management process metric

b. History changes process metric.

On the basis of the traits of the development process, these metrics were created. They discuss

the efficiency of process metrics during the analysis, coding, and design stages of the

5

development life cycle. The findings of this study demonstrate that combining process

metrics and code metrics improves defect prediction and error rates are reduced.

An experiment is performed in which the authors took into account both open-source and

commercial projects. They looked at models that included all SC metrics and one process

metric. This study demonstrates that process metrics, particularly NDC and NML process

metrics, significantly contribute to improving defect prediction [15]. A combined model

comprising of all static code metrics and all process metrics is suggested for better prediction

results [25].

Komalasari and Candra [1] used a combination of product metrics, process metrics and

profile metrics to build classification model. They used NB, LR, and RF techniques to predict

the defects. The result shows that combination of these three metrics gives effective result in

RF model.

Choudhary et al. [8] proposed new change metrics and analyzed the effect of existing and

proposed change metrics in software defect prediction on eclipse dataset. They used decision

tree, KNN and random forest as classification technique and precision, recall and F-measure

as performance evaluation metrics. They analyzed that combined model of change and code

metrics gives better performance as compared to model that have individual set of metrics

on eclipse dataset.

According to Ghotra et al. [5], the choice of classifier can lead to an increase or decrease in

prediction model accuracy of up to 30%. Perreault et al. [16] conducted a study on five

NASA datasets, comparing the effectiveness of Artificial Neural Networks, LR, NB, SVMs,

and KNN. However, the study did not provide a clear explanation of which strategy was the

most effective.

Also, Panichella et al. [3] demonstrate that despite comparable prediction accuracy, the

predictions of different classifiers are highly interconnected. The model can be trained to

6

utilize massive volumes of data either from the project under being observed or from a

comparable project that has not been observed yet (cross-project strategy).

Hussain et al. [22] in their study conducted a comparison of three ensemble techniques

utilizing five base classification techniques (J48, LR, NB, Voted-Perceptron, and SVM) in

the Weka tool for software defect prediction. The results of their study indicate that Stacking

outperforms all the selected ensemble methods.

Rhmann et al. [27] analyzed the performance of hybrid search-based algorithms for software

defect prediction using change metrics. They used android dataset and recall and precision

as performance evaluation measure. The result shows that hybrid search-based algorithms

perform better as compared to machine learning techniques.

7

CHAPTER 3

SYSTEM DESIGN

3.1 Proposed Architecture

Fig 3.1 Architecture of Proposed Methodology

This chapter defines the methodology used for the implementation Figure 3.1 displays the

methodology proposed and along with it independent and dependent metrics or variables i.e

No. of Bugs is a dependent variable or metric and Weighted method per class is the

independent variable or metric which have been taken into account for this project and

dataset’s collection.

3.2 Dependent and Independent Variables

Independent metrics or variables which have been considered in this project are static code

metrics such as WMC, DIT, NOC, CBO etc. and process metrics such as NR, NDC etc. and

8

the dependent metrics or variable is defect count or its likelihood which has been defined as

the inclination of predicting defects in the class i.e. defective and non-defective.

3.2.1 Static Code Metrics

The design complexity and the size of software system are defined by the static code metrics,

they have been widely used in creating a defect detection model. The static code metrics used

in this project are WMC, NOC, LOC, DIT, LCOM, CBO, RFC, NPM, DAM, LCOM3, MFA,

CAM, MOA, CBM, IC, AMC, Ca, Max (CC), Ce, and Avg (CC). The static code metrics'

definition can be found in an independent report provided by Jureczko and Madeyski [17].

This information is openly accessible as open-source data.

3.1.2 Process Metrics

The quality and effectiveness of the system are determined by process metrics. These metrics

provide additional descriptive information about defective modules. They are obtained from

two sources:

a) The developer's experience

b) The software change history

The process metrics utilized in this thesis are as follows:

1. NR

NR is an acronym for "Number of Revisions," which refers to the quantity of modifications

made to a Java class throughout the development stages of the analyzed software release.

This metric provides insight into the frequency of amendments made to the class during its

evolution.

2. NDC

The acronym NDC represents Number of Distinct Committers, which refers to the count of

developers who have contributed changes to a Java class throughout the development of a

specific software release. This metric provides insight into the quantity of individuals

involved in modifying the examined release.

9

3. NML

The acronym NML represents Number of Modified Lines, which calculates the quantity of

source code lines that have been added or removed from a Java class. This metric takes into

account every change submitted throughout the software's evolution in the examined release.

4. NDPV

NDPV represents the acronym for "Number of Defects in Previous Versions," which

quantifies the quantity of issues addressed in a Java class throughout the progression of the

preceding software release.

3.2 Empirical Data Collection

We have collected the data for 4 java-based projects (Ant, jEdit, Xalan, and Xerces). The

dataset is collected from the publicly available repository [9] which consist of both SC and

process metrics. We chose java project datasets since they contain static code metrics such

as WMC, DIT, LOC, LCOM etc. and process metrics such as NR, NDC, NML, and NDPV

[17]. Table 3.1 lists the datasets that were used in this study:

Table 3.1 Dataset Used

Project

Name

Number of

Instances

Defective

Instances

Non-Defective

Instances

Ant 1.6 524 92 432

Ant 1.7 1065 166 899

jEdit 4.0 606 75 531

jEdit 4.1 644 79 565

Xalan 2.6.0 1170 411 759

Xalan 2.7.0 1194 898 296

Xerces 1.3.0 545 69 476

Xerces 1.4.4 671 437 234

10

CHAPTER 4

METHODOLOGY

We have used the following steps:

• Obtain datasets with static code and process metrics from publicly accessible

repositories.

• Perform some preprocessing operations on datasets.

• Choose some classification and ensemble techniques.

• Choose performance evaluation measures to evaluate the prediction performance.

• Analyze the performance based on chosen evaluation measure.

• Validation of results using statistical test.

4.1 Dataset Preprocessing

Datasets obtained from publicly accessible repositories have some missing values, which

impair the performance of the created model, hence preprocessing is done on datasets to

avoid this type of problem, such as eliminating data points with missing values because they

are extremely small in count or replacing missing values with mean value or median value

or with some user constant. Since there are some string data type variables which is an invalid

input to the classifier so we use a filter method to convert the datatype into compatible data

type.

4.2 Classification Techniques

Classification techniques are algorithms in machine learning utilized for predicting the class

or category of a provided input, relying on a set of features or attributes. These techniques

acquire knowledge from labeled training data, discerning patterns, and relationships and

subsequently apply this acquired knowledge to classify new instances that have not been

11

previously encountered into predefined classes. In this, the model is first trained using

training data, and then the data for the invalid dataset is predicted.

In this study, we use NB [4], LR [6], DT [30], SVM [20], and KNN [23] technique for

developing the prediction model. For implementation, Waikaito Environment for Knowledge

Analysis (WEKA) machine learning tool is used. The classification of machine learning

techniques is depicted in Figure 4.1.

Fig 4.1 Machine Learning Techniques

 The five classification techniques selected for implementation are as stated below:

4.2.1 NB

NB is a classification algorithm based on Bayes' theorem and assumes that the features are

conditionally independent of each other given the class. It is a simple yet powerful algorithm

commonly used for text classification and other tasks with high-dimensional feature spaces.

Despite its "naive" assumption of feature independence, NB often performs well in practice

and can be computationally efficient [4][10].

The algorithm is called Naive Bayes because it assumes that the occurrence of a specific

feature in a class is unrelated to the presence or absence of other features. This simplifies the

calculations and allows the algorithm to make predictions efficiently. Some common

variations of NB include:

• Gaussian NB: It assumes that the numerical features follow a Gaussian (normal)

distribution.

12

• Multinomial NB: It is often used for text classification tasks with discrete features,

such as word counts.

• Bernoulli NB: It is similar to Multinomial NB but assumes binary features, often

used for binary text classification tasks.

It performs well in situations where the independence assumption holds reasonably well and

when there is a relatively large number of features compared to the size of the training dataset.

Naive Bayes can handle categorical and numerical features, and it is particularly suitable for

text classification tasks.

4.2.2 LR

LR is a statistical classification algorithm used to predict the probability of categorical

outcomes based on one or more independent variables. Despite its name, it is a classification

algorithm rather than a regression algorithm. It represent the association between the

independent variables and the likelihood of a certain outcome using a logistic function, also

known as the sigmoid function.

It estimates the coefficients or weights for each independent variable in the dataset. The

algorithm applies an optimization algorithm, such as maximum likelihood estimation, to fit

the model to the training data. It uses a logistic or sigmoid function to map the linear

combination of the independent variables and their coefficients to a value between 0 and 1.

Basili et al. [26] and Hosmer and Lemeshow [6] provides an in-depth explanation of LR.

It is a widely used algorithm for binary classification tasks, particularly when interpretability

and probabilistic predictions are desired. It is commonly applied in various domains,

including healthcare, finance, and social sciences.

4.2.3 SVM

SVM is a powerful supervised machine learning algorithm used for classification and

regression purposes. Its objective revolves around discovering an ideal hyperplane that

effectively distinguishes data points belonging to distinct classes or predicts a continuous

target variable based on the maximum margin principle.

The main idea behind SVM is to transform the input data into a higher-dimensional feature

space and identify a hyperplane that optimally maximizes the separation between the classes.

13

The margin represents the space between the hyperplane and the nearest data points of each

class [18]. By maximizing the margin, SVM aims to achieve better generalization and

robustness to new data.

SVM can map the input features into a higher-dimensional space using a technique called the

kernel trick. The kernel function allows SVM to implicitly operate in the higher-dimensional

feature space without explicitly computing the transformations. Commonly used kernel

functions include linear, polynomial, radial basis function (RBF), and sigmoid [28]. We have

used linear kernel function.

SVM is widely used in various domains, such as text categorization, image recognition,

bioinformatics, and finance [20]. It is particularly effective when dealing with complex

datasets with a clear separation between classes or a need for nonlinear decision boundaries.

4.2.4 KNN

KNN is a supervised machine learning algorithm used for both classification and regression

purposes. KNN is also known as lazy learning technique. KNN makes predictions based on

the similarity between the new data point and its neighboring data points in the training

dataset.

The basic idea behind KNN is to classify a new data point or predict its value by examining

the k nearest data points in the feature space. The "nearest" neighbors are determined based

on a distance metric, such as Euclidean distance or Manhattan distance [23].

KNN is commonly used in various applications such as recommender systems, image

recognition, and anomaly detection. It can be particularly useful when dealing with datasets

that have clear patterns and local structures.

4.2.5 DT

A DT is a supervised machine learning algorithm used for both classification and regression

purposes. A tree-like model is generated by analyzing the data's characteristics, depicting

decisions and their potential outcomes. Each internal node in the tree corresponds to a

specific feature or attribute, while each leaf node indicates a class label or a predicted value.

The main idea behind a DT is to recursively partition the data based on the feature values to

create a tree structure that can make predictions or classifications. At each internal node of

14

the tree, a decision is made based on a feature, and the data is split into branches

corresponding to different feature values. This process continues until a predetermined

condition is fulfilled, such as attaining the maximum tree depth or when all instances in a

leaf node are of same class.

In this thesis, we use the REPTree. It is a decision tree algorithm that focuses on reducing

errors through a pruning technique. It is commonly used for classification purpose. REPTree

builds a decision tree in a recursive manner, similar to other decision tree algorithms, such

as C4.5 or ID3 [30]. REPTree is a useful algorithm for classification tasks, particularly when

the goal is to reduce overfitting and improve generalization. It is often applied in various

domains, including healthcare, finance, and social sciences.

4.3 Ensemble Techniques

The objective is to aggregate the prediction results of various learning approaches so that the

overall performance of the decision is enhanced [24]. The ensemble model improves the

performance of the individual model for example it improves the performance of the decision

tree by reducing variance in the model. They are classified as either homogeneous or

heterogeneous ensembles. In a homogeneous ensemble, similar type of learning techniques

like bagging, boosting, and others are employed [13]. Different types of learning techniques

are used in heterogeneous ensembles. We built a defect prediction model using voting,

stacking, bagging, and boosting in this study.

Ensemble techniques are machine learning methods that combine the predictions of multiple

individual models, known as base models or weak learners, to improve the overall predictive

performance [24]. By leveraging the diversity and collective wisdom of multiple models,

ensemble techniques aim to achieve better generalization, reduce overfitting, and enhance

prediction accuracy. The categories of ensemble techniques are depicted in fig 4.2.

Ensemble techniques are widely used in various domains and have achieved success in

competitions and real-world applications. Machine learning tasks, such as classification,

regression, and anomaly detection, can benefit from the application of these techniques

across a broad spectrum. The choice of the ensemble technique depends on the specific

problem, data characteristics, and desired tradeoffs between performance and interpretability.

15

Fig 4.2 Types of Ensemble Techniques

NB, SVM, KNN, LR, and DT (Reduced Error Pruning Tree) are used as base classification

techniques to generated ensemble model. Here are the selected ensemble techniques we have

opted for implementation:

4.3.1 Stacking

Stacking, in the context of machine learning, refers to a technique where multiple models,

known as base models or learners, are aggregated to improve predictive results. It is a form

of ensemble learning, which leverages the strengths of different models to make more

accurate predictions.

In a stacking ensemble, the base models are trained on the same dataset, and their predictions

are then combined using another model called a meta-learner or a stacking model. The meta-

learner takes the predictions of the base models as input and learns how to best combine them

to produce the final prediction. The stacking architecture is depicted in figure 4.3.

16

Fig 4.3 Structure of Stacking Technique

4.3.2 Voting

Voting, in the context of machine learning, refers to a technique where multiple models or

classifiers are used to make predictions, and the final prediction is determined by aggregating

the individual predictions through a voting process. It is another form of ensemble learning,

which aims to improve the overall accuracy and robustness of predictions. Voting is

classified into two types:

1. Hard Voting

Hard voting, also called deterministic voting, considers only the class labels

predicted by each model. The final prediction is determined by selecting the class

label that occurs most frequently among the models. The architecture of hard voting

is depicted in fig 4.4.

17

Fig 4.4 Structure of Hard Voting Technique

2. Soft Voting

Soft voting, also known as probabilistic voting, takes into account the probabilities or

confidence scores assigned by each model for each class label. The final prediction is

determined by averaging the probabilities across all models and selecting the class

label with the highest average probability. Fig 4.5 shows the architecture of soft

voting.

18

Fig 4.5 Structure of Soft Voting Technique

4.3.3 Bagging

Bagging, short for bootstrap aggregating, is a machine learning approach that involves

training multiple models using distinct subsets of the training data and then merging their

predictions to form a final prediction. It is a popular ensemble learning method that aims to

improve the accuracy and stability of predictions. The bagging architecture is depicted in

figure 4.6.

The bagging process typically involves the following steps:

• Bootstrap Sampling: The training dataset is randomly sampled with replacement to

create multiple subsets of data, called bootstrap samples. Each bootstrap sample has

the same size as the original dataset, but some instances may be repeated while others

may be excluded.

• Base Model Training: A base model, such as a decision tree or a neural network, is

trained on each bootstrap sample independently. Each model in the ensemble learns

from a slightly different version of the training data.

19

• Prediction Aggregation: Once the base models are trained, they are used to make

predictions on new, unseen data. For classification tasks, the final prediction is often

determined by majority voting, where the class label that receives the most votes

among the base models is selected. For regression tasks, the predictions from the base

models are typically averaged to obtain the final prediction.

Some popular bagging algorithms include Random Forests, which use decision trees as

base models, and Bagging of Neural Networks, which employ neural networks as base

models.

Fig 4.6 Structure of Bagging Technique

4.3.4 Boosting

Boosting is a machine learning technique that combines multiple weak models, often referred

to as weak learners or base learners, to create a strong predictive model. Unlike bagging,

where base models are trained independently, boosting sequentially trains base models in an

adaptive manner, with each subsequent model focusing on the instances that were

misclassified by the previous models. The overall goal of boosting is to improve the

predictive accuracy by giving more weight to the instances that are difficult to classify

correctly. Commonly used boosting algorithms are Adaboost, XGBoost, Gradient Boosting,

and LightGBM. Here, we use Adaboost algorithms. The boosting architecture is depicted in

Figure 4.7.

The boosting process typically involves the following steps:

20

• Base Model Training: A weak base model, such as a decision tree or a simple linear

model, is trained on the initial dataset. The weak model typically performs slightly

better than random guessing.

• Instance Weighting: Each instance in the training dataset is assigned an initial

weight. Initially, all instances have equal weights, but as the boosting process

progresses, the weights are adjusted based on the performance of the previous models.

• Sequential Model Training: The base model is trained on the weighted training data.

The model focuses on the instances that were misclassified or have higher weights,

aiming to improve the accuracy for those instances.

• Instance Weight Update: After training the base model, the weights of the instances

are updated based on their classification results. Misclassified instances are assigned

higher weights, making them more influential in the subsequent model training.

Correctly classified instances may have their weights reduced.

• Model Combination: The base models are combined by assigning weights to their

predictions. The weights are typically determined based on the performance of each

model during training. The final prediction is made by aggregating the weighted

predictions of all the base models.

• Final Prediction: The boosted model is then used to make predictions on new,

unseen data. The base models generate predictions, and these predictions are

combined using the assigned weights to produce the final prediction.

21

Fig 4.7 Structure of Boosting Technique

4.4 Performance Evaluation Measure

We employ AUC, to evaluate the prediction performance of machine learning techniques and

ensemble techniques. The AUC is a valuable metric for evaluating classification models,

especially in scenarios where class imbalance exists or when the cost of false positives and

false negatives is not equal [12][14]. A higher AUC suggests better discriminative power and

the ability of the model to correctly rank instances from positive and negative classes. The

AUC serves as a summary of the ROC curve, illustrating the relationship between two

parameters, namely TPR and FPR. We can find values of TPR and FPR with the help of a

confusion matrix. A confusion matrix is a table-like presentation that summarizes the results

of a classification model's performance on a specific set of test data. It offers a comprehensive

breakdown of the predicted class labels compared to the actual class labels, allowing for the

evaluation of different aspects of the models performance. Fig 4.8 represents confusion

matrix.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.2)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (4.3)

22

Fig 4.8 Confusion matrix

The AUC represents the area under the ROC curve, which ranges from 0 to 1. A higher AUC

value indicates better performance of the classifier in distinguishing between positive and

negative instances. An AUC of 1 represents a perfect classifier, while an AUC of 0.5

indicates a classifier that performs no better than random guessing. Dejaeger et al [14]

presented a detailed description on how to calculate AUC value.

4.5 Statistical Test

We employ Friedman test with Nemenyi test to check whether the prediction results are

statistically significant or not [11]. Friedman test is a non parametric test which indicates that

the data don’t need to be normal. Ranking system is used in this test. This test assigns ranks

to the chosen techniques. Nemenyi test is a post hoc test which is used if there is a rejection

of null hypothesis. This test is used to identify the pairwise difference between the

techniques.

• Friedman Test

The Null and alternative hypothesis statements for the Friedman test can be restated as

follows:

• Null Hypothesis (H0): There is no significant difference in the performances of the

various techniques.

23

• Alternative Hypothesis (Ha): There is a significant difference in the performances of

the various techniques.

The Friedman test is a non-parametric statistical test used to determine whether there are

significant differences among multiple treatments or conditions [19]. It is typically applied

when the data are measured on an ordinal scale and assumptions for parametric tests, such as

normality or equal variances, are violated. It's important to note that the Friedman test

assesses the overall differences among the treatments but does not provide information about

the direction or nature of the differences.

In this test, we compare the calculated 𝛘2-statistics value with the tabulated 𝛘2 value. We can

calculate the 𝛘2-statistics value using the given formula.

2- statistics=
12

𝑛(𝑛+1)
∑ 𝑅𝑖

2 − 3𝑛(𝑘 + 1)𝑘
𝑖=1 (4.4)

• Nemenyi Test

The Nemenyi test, also known as the Nemenyi-Damico-Wolfe-Dunn test, is a post-hoc test

commonly used in conjunction with the Friedman test or other non-parametric tests for

multiple comparisons. It helps identify specific pairs of treatments or conditions that differ

significantly from each other after finding a significant overall difference among the groups.

The Nemenyi test provides a pairwise comparison of treatments, allowing researchers to

identify specific treatments that differ significantly from each other. It is commonly used

when there are more than two treatments or conditions and the goal is to determine which

treatments are significantly different, rather than just identifying the overall differences. In

this, we calculate CD.

 𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
 (4.5)

• Effect Size

Effect size is a statistical measure that quantifies the magnitude or strength of a relationship

or difference between variables or groups [19]. Effect size is useful because it allows

researchers to move beyond statistical significance and assess the practical or real-world

significance of their findings. While statistical significance indicates whether an observed

effect is likely to have occurred by chance, effect size provides information about the

magnitude or impact of the effect.

24

Commonly used effect size measure are Cohen’s d, Kendall’s W, Pearson’s r, etc. In this

study, Kendall's W coefficient (also known as the Coefficient of Cordonance) is utilized. Its

calculation is as follows:

𝑊 =
2−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

𝑛(𝑘−1)
 (4.6)

Kendall's W coefficient ranges from 0 to 1, with higher values indicating greater agreement

among the techniques. The coefficient measures the extent to which the rankings assigned

by different techniques are consistent or concordant. A coefficient of 1 indicates perfect

agreement, meaning that all techniques have assigned the same rankings. A coefficient of 0

indicates no agreement, meaning that the rankings assigned by the techniques are completely

random.

25

CHAPTER 5

EXPERIMENTAL RESULTS

This section demonstrates the experimental result found after applying classification and

ensemble learning techniques to all the considered datasets. Note that we have used AUC to

evaluate the prediction performance of chosen techniques. We analyze three models to check

the effectiveness of process metrics on prediction performance of classification and ensemble

method:

• Combined model of SC and process metrics

• Model containing SC metrics

• Model containing process metrics

Table 5.1 represents the AUC values for all considered datasets for all classification (NB,

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and

boosting) in combined model. According to table 5.1, ensemble techniques outperform

classification techniques and bagging gives the better prediction results as compared to all

the selected techniques.

Table 5.2 represents the AUC values for all considered datasets for all classification (NB,

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and

boosting) in model containing SC metrics. According to table 5.2, ensemble techniques

26

outperform classification techniques and bagging gives the better prediction results as

compared to all the selected techniques.

Table 5.3 represents the AUC values for all considered datasets for all classification (NB,

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and

boosting) in model containing process metrics. According to table 5.3, ensemble techniques

outperform classification techniques and bagging gives the better prediction results as

compared to all the selected techniques.

According to table 5.1, table 5.2, and table 5.3, we can analyze that all the selected techniques

except logistic regression and KNN performs better in combined model. Therefore, we

proceed to examine three additional models, utilizing only the techniques that demonstrate

superior performance in the combined model.

27

• Combined model of SC and 1 process metric

• Combined model of SC and 2 process metrics

• Combined model of SC and 3 process metrics

By employing these three additional models, we can determine which process metric is more

effective in predicting the defect proneness.

Table 5.4 represents the AUC values for all considered datasets for NB technique in

combined model of static code and 1 process metric. It can be observed that combined model

of SC and NR outperforms other combinations of SC and process metrics as in 87.5% of

cases, combining NR with all SC metrics yields superior AUC values.

Table 5.5 represents the AUC values for all considered datasets for NB technique in

combined model of SC and 2 process metrics. It can be observed that combined mode of

static code, NDC, and NR outperforms other combinations of SC and process metrics as in

87.5% of cases, combining NR and NDC with all SC metrics yields superior AUC values.

28

Table 5.6 represents the AUC values for all considered datasets for NB technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NDC, NR, and NDPV outperforms other combinations of static code and process metrics

as in all the considered datasets, combining NR, NDPV, and NDC metrics with all SC metrics

yields superior AUC values.

Table 5.7 represents the AUC values for all considered datasets for SVM technique in

combined model of SC and 1 process metric. It can be observed that combined model of

29

static code and NR outperforms other combinations of SC and process metrics as in 62.5%

of cases, combining NR metrics with all SC metrics yields superior AUC values.

Table 5.8 represents the AUC values for all considered datasets for SVM technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

static code, NR, and NML outperforms other combinations of SC and process metrics as in

75% of cases, combining NR and NML metrics with all SC metrics yields superior AUC

values.

Table 5.9 represents the AUC values for all considered datasets for SVM technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

30

static code, NR, NML, and NDPV outperforms other combinations of SC and process metrics

as in 75% of cases, combining NR, NML, and NDPV metrics with all SC metrics yields

superior AUC values.

Table 5.10 represents the AUC values for all considered datasets for DT technique in

combined model of SC and 1 process metric. It can be observed that combined model of SC

and NR outperforms other combinations of static code and process metrics as in 50% of

cases, combining NR metrics with all SC metrics yields superior AUC values.

Table 5.11 represents the AUC values for all considered datasets for DT technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

31

SC, NR & NDC and combined model of SC, NDC & NDPV outperforms other combinations

of SC and process metrics as in 37.5% of cases, combining NR and NDC with all SC metrics

yields superior AUC values and also in other 37.5% of cases, combining NDC and NDPV

with all SC metrics yields superior AUC values.

Table 5.12 represents the AUC values for all considered datasets for DT technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NR, NML, and NDPV outperforms other combinations of SC and process metrics as in

62.5% of cases, combining NR, NML and NDPV with all SC metrics yields superior AUC

values.

32

Table 5.13 represents the AUC values for all considered datasets for stacking technique in

combined model of SC and 1 process metric. It can be observed that combined model of SC

and NR outperforms other combinations of SC and process metrics as in 62.5% of cases,

combining NR metrics with all SC metrics yields superior AUC values.

Table 5.14 represents the AUC values for all considered datasets for stacking technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

SC, NDC, and NDPV outperforms other combinations of SC and process metrics as in 50%

of cases, combining NDC and NDPV metrics with all SC metrics yields superior AUC

values.

33

Table 5.15 represents the AUC values for all considered datasets for stacking technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NDC, NR, and NDPV outperforms other combinations of SC and process metrics as in

75% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior

AUC values.

Table 5.16 represents the AUC values for all considered datasets for voting technique in

combined model of SC and 1 process metric. It can be observed that combined model of SC

and NR outperforms other combinations of SC and process metrics as in all of the considered

datasets, combining NR metrics with all SC metrics yields superior AUC values.

34

Table 5.17 represents the AUC values for all considered datasets for voting technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

SC, NR, and NDC outperforms other combinations of SC and process metrics as in 62.5%

of cases, combining NR and NDC metrics with all SC metrics yields superior AUC values.

Table 5.18 represents the AUC values for all considered datasets for voting technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NDC, NR, and NDPV outperforms other combinations of SC and process metrics as in

87.5% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior

AUC values.

35

Table 5.19 represents the AUC values for all considered datasets for bagging technique in

combined model of SC and 1 process metric. It can be observed that combined model of SC

and NR outperforms other combinations of SC and process metrics as in all of the considered

datasets, combining NR metrics with all SC metrics yields superior AUC values.

Table 5.20 represents the AUC values for all considered datasets for bagging technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

SC, NDC, and NR outperforms other combinations of SC and process metrics as in 75% of

cases, combining NR and NDC metrics with all SC metrics yields superior AUC values.

36

Table 5.21 represents the AUC values for all considered datasets for bagging technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NDC, NDPV and NR outperforms other combinations of SC and process metrics as in

62.5% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior

AUC values.

Table 5.22 represents the AUC values for all considered datasets for boosting technique in

combined model of SC and 1 process metric. It can be observed that combined model of SC

and NR outperforms other combinations of SC and process metrics as in 87.5% of cases,

combining NR metrics with all SC metrics yields superior AUC values.

37

Table 5.23 represents the AUC values for all considered datasets for boosting technique in

combined model of SC and 2 process metrics. It can be observed that combined model of

SC, NDPV and NR outperforms other combinations of SC and process metrics as in 50% of

cases, combining NR and NDPV metrics with all SC metrics yields superior AUC values.

Table 5.24 represents the AUC values for all considered datasets for boosting technique in

combined model of SC and 3 process metrics. It can be observed that combined model of

SC, NDC, NDPV, and NR outperforms other combinations of SC and process metrics as in

87.5% of cases, combining NR, NDC, and NDPV metrics with all SC metrics yields superior

AUC values.

38

39

CHAPTER 6

DISCUSSION ON RESULTS

The predictive performance of classification and ensemble methods have been analysed

based on whisker plots, bar charts and statistical tests in this section. AUC values for the

model containing both the SC metric and process metric have been displayed in Fig 6.1. using

the bar charts for all the datasets under consideration. For the classification and ensemble

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all

the datasets the mean AUC values are 0.882, 0.786, 0.86, 0.756, 0.753, 0.891, 0.901, 0.919,

0.904. The results of Table 5.1 have also been analysed using statistical test such as Friedman

test and it can be observed that the performances of the selected methods differ significantly,

so post hoc test has been applied for pairwise comparison and it can be incurred from the

outcomes that the difference between the performances of SVM and bagging and LR and

bagging is significant.

AUC values for the model containing SC metrics have been displayed in Fig 6.2 using the

bar charts for all the datasets under consideration. For the classification and ensemble

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all

the datasets the mean AUC values are 0.831, 0.783, 0.811, 0.649, 0.849, 0.859, 0.867, 0.881,

40

0.874. The results of Table 5.2 have also been analysed using statistical test such as Friedman

test and it can be observed that the performances of the selected methods differ significantly,

so post hoc test has been applied for pairwise comparison and it can be incurred from the

outcomes that the difference between the performances of SVM and bagging and SVM and

boosting is significant.

AUC values for the model containing process metric have been displayed in Fig 6.3 using

the bar charts for all the datasets under consideration. For the classification and ensemble

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all

the datasets the mean AUC values are 0.837, 0.809, 0.810, 0.709, 0.720, 0.857, 0.862, 0.867,

0.847. The results of Table 5.3 have also been analysed using statistical test such as Friedman

test and it can be observed that the performances of the selected methods differ significantly,

so post hoc test has been applied for pairwise comparison and it can be incurred from the

outcomes that the difference between the performances of SVM and bagging and LR and

bagging is significant.

41

We conducted an analysis on various models to assess the impact of process metrics on defect

proneness. Different classifiers and ensemble techniques were employed for this purpose.

Furthermore, we explored additional models within each classifier and ensemble technique

to determine which combination of process metrics yields improved prediction performance.

The experimental results indicate that the combination model produces superior predictions

when utilizing NB, DT, and SVM classifiers. Moreover, the results from all ensemble

techniques demonstrate that the combination model leads to improved prediction outcomes.

Notably, the process metrics NR, NDC, and NDPV consistently display the highest

effectiveness across most analyzed cases. Fig 6.1, fig 6.2, and fig 6.3 indicates that

combination of process and static code metrics outperform the individual model of static code

metrics and process metrics. In this section, we utilize bar charts and statistical tests to

analyze the AUC results, and in cases where the null hypothesis is rejected, we calculate the

effect size. Table 5.4 has been analyzed statistically, the outcome shows that the calculated

p-value is 0.002 and 𝛘2-statistics is 19.108 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected, so with an effect size of 0.455 at least one of the model’s performance

differ considerably thus indicating the difference amongst the models will slightly effect the

42

performance of prediction, further Nemenyi post hoc test is applied to check the pairwise

model’s comparison, as the results differs significantly, and it is determined that model

containing SC+NR metrics and model containing SC+NDPV & also model containing

SC+NML metrics and model containing SC+NDPV will have a significant difference

between them. For table 5.4 the bar chart has been represented by Figure 6.4. It can be

observed that combination of static code and NR outperforms other combinations of static

code and process metrics.

Table 5.5 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0004 and 𝛘2-statistics is 22.37 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which

is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so

with an effect size of 0.319 at least one of the model’s performance differ considerably thus

indicating the difference amongst the models will slightly effect the performance of

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s

comparison, as the results differs significantly, and it is determined that model containing

NR+SC+NDC & model containing NR+SC+NML, model containing NR+SC+NDC &

model containing NDC+SC+NDPV, and also model containing NDPV+SC+NR & model

containing NDC+SC+NDPV will have a significant difference between them. For table 5.5

43

the bar chart has been represented by Figure 6.5. It can be observed that combined model of

static code, NR and NDC outperforms other combinations of static code and process metrics.

Table 5.6 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0004 and 𝛘2-statistics is 17.75 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which

is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so

with an effect size of 0.423 at least one of the model’s performance differ considerably thus

indicating the difference amongst the models will slightly effect the performance of

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s

comparison, as the results differs significantly, and it is determined that model containing

NR+NML+SC+NDC & model containing NR+NDPV+SC+NDC, model containing

NR+NDPV+SC+NDC & model containing NR+NDPV+SC+NML, and also model

containing NR+NDPV+SC+NML & model containing NML+NDPV+SC+NDC will have a

significant difference between them. For table 5.6 the bar chart has been represented by

Figure 6.6. It can be observed that combined model of static code, NR, NDPV, and NDC

outperforms other combinations of static code and process metrics.

44

Table 5.7 has been analyzed statistically, the outcome shows that the calculated p-value is

2.68e-05 and 𝛘2-statistics is 23.84 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected, so with an effect size of 0.567 at least one of the model’s performance

differ considerably thus indicating the difference amongst the models will slightly effect the

performance of prediction, further Nemenyi post hoc test is applied to check the pairwise

model’s comparison, as the results differs significantly, and it is determined that model

containing SC+NR & model containing SC+NDC, model containing SC+NR & model

containing SC+NDPV, and also model containing SC+NML metrics & model containing

SC+NDPV will have a significant difference between them. For table 5.7 the bar chart has

been represented by Figure 6.7. It can be observed that combined model of static code and

NR outperforms other combinations of static code and process metrics.

45

Table 5.8 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0004 and 𝛘2-statistics is 22.40 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which

is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so

with an effect size of 0.32 at least one of the model’s performance differ considerably thus

indicating the difference amongst the models will slightly effect the performance of

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s

comparison, as the results differs significantly, and it is determined that model containing

NR+SC+ NML & model containing NDC+SC+NDPV and model containing

NR+SC+NDPV & model containing NDC+SC+NDPV will have a significant difference

between them. For table 5.8 the bar chart has been represented by Figure 6.8. It can be

observed that combined model of static code, NML, and NR outperforms other combinations

of static code and process metrics.

46

Table 5.9 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0032 and 𝛘2-statistics is 13.736 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 2 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected, so with an effect size of 0.32 at least one of the model’s performance

differ considerably thus indicating the difference amongst the models will slightly effect the

performance of prediction, further Nemenyi post hoc test is applied to check the pairwise

model’s comparison, as the results differs significantly, and it is determined that model

containing SC+NDPV+NR+NML & model containing SC+NML+NDC+NDPV.

For table 5.9 the bar chart has been represented by Figure 6.9. It can be observed that

combined model of static code, NML, NDPV, and NR outperforms other combinations of

static code and process metrics.

47

Table 5.10 has been analyzed statistically, the outcome shows that the calculated p-value is

0.578 and 𝛘2-statistics is 1.971 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which

is 7.815 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted.

For table 5.10 the bar chart has been represented by Figure 6.10. It can be observed that

combined model of static code and NR outperforms other combinations of static code and

process metrics.

48

Table 5.11 has been analyzed statistically, the outcome shows that the calculated p-value is

0.3819 and 𝛘2-statistics is 5.286 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which

is 11.070 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted.

For table 5.11 the bar chart has been represented by Figure 6.11. It can be observed that

combined model of static code, NDC, and NR outperforms other combinations of static code

and process metrics.

Table 5.12 has been analyzed statistically, the outcome shows that the calculated p-value is

0.2009 and 𝛘2-statistics is 4.630 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which

is 7.815 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted.

For table 5.12 the bar chart has been represented by Figure 6.12. It can be observed that

combined model of static code, NML, NDPV, and NR outperforms other combinations of

static code and process metrics.

49

Table 5.13 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0015 and 𝛘2-statistics is 15.345 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.365, at least one of the model’s

performances differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NR & model containing SC+NML and model

containing SC+NDC & model containing SC+NML will have a significant difference

between them. For table 5.13 the bar chart has been represented by Figure 6.13. It can be

observed that combined model of static code and NR outperforms other combinations of

static code and process metrics.

50

Table 5.14 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0006 and 𝛘2-statistics is 21.567 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.308, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing NR+SC+NDPV & model containing NML+SC+NDPV

and model containing NDC+SC+NDPV & model containing NML+SC+NDPV will have a

significant difference between them. For table 5.14 the bar chart has been represented by

Figure 6.14. It can be observed that combined model of static code, NDPV, and NDC

outperforms other combinations of static code and process metrics.

51

Table 5.15 has been analyzed statistically, the outcome shows that the calculated p-value is

9.38e-05 and 𝛘2-statistics is 21.239 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.505, at least one of the model’s

performances differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NDC+NR+NDPV & model containing

SC+NML+NDC+NDPV will have a significant difference between them.

For table 5.15 the bar chart has been represented by Figure 6.15. It can be observed that

combined model of static code, NR, NDPV, and NDC outperforms other combinations of

static code and process metrics.

52

Table 5.16 has been analyzed statistically, the outcome shows that the calculated p-value is

3.99e-06 and 𝛘2-statistics is 27.804 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.662, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NR & model containing SC+NML, model containing

SC+NR & model containing SC+NDPV, model containing SC+NDC & model containing

SC+NDPV, and model containing SC+NDC & model containing SC+NML will have a

significant difference between them. For table 5.16 the bar chart has been represented by

Figure 6.16. It can be observed that combined model of static code and NR outperforms other

combinations of static code and process metrics.

53

Table 5.17 has been analyzed statistically, the outcome shows that the calculated p-value is

3.77e-09 and 𝛘2-statistics is 47.868 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.684, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing NR+SC+NDC & model containing NR+SC+NML, model

containing NR+SC+NDC & model containing NDC+SC+NML, model containing

NR+SC+NDC & model containing NML+SC+NDPV, model containing NR+SC+NML &

model containing SC+NDC+NML, model containing SC+NR+NML and model containing

NML+SC+NDPV, model containing NDC+SC+NML & model containing

NDC+SC+NDPV, and model containing NDC+SC+NDPV & model containing

NML+SC+NDPV will have a significant difference between them. For table 5.17 the bar

chart has been represented by Figure 6.17. It can be observed that combined model of static

code, NDC, and NR outperforms other combinations of static code and process metrics.

54

Table 5.18 has been analyzed statistically, the outcome shows that the calculated p-value is

1.50e-06 and 𝛘2-statistics is 29.826 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.710, at least one of the model’s

performances differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NDC+NR+NML & model containing

SC+NML+NDC+NDPV, model containing SC+NDC+NR+NDPV & model containing

SC+NML+NR+NDPV, and model containing SC+NDC+NR+NDPV & model containing

SC+NML+NDC+NDPV will have a significant difference between them.

For table 5.18 the bar chart has been represented by Figure 6.18. It can be observed that

combined model of static code, NDC, NDPV, and NR outperforms other combinations of

static code and process metrics.

55

Table 5.19 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0001 and 𝛘2-statistics is 20.61 at 0.05 significance taking Friedman test into consideration,

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which

is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected. So,

with an effect size of 0.490, at least one of the model’s performance differ considerably thus

indicating the difference amongst the models will slightly effect the performance of

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s

comparison, as the results differs significantly, and it is determined that model containing

SC+NR & model containing SC+NML, model containing SC+NR & model containing

SC+NDPV, and model containing SC+NDC & model containing SC+NDPV will have a

significant difference between them. For table 5.19 the bar chart has been represented by

Figure 6.19. It can be observed that combined model of static code and NR outperforms other

combinations of static code and process metrics.

56

Table 5.20 has been analyzed statistically, the outcome shows that the calculated p-value is

1.069e-06 and 𝛘2-statistics is 35.74 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.511, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing NR+SC+NDC & model containing NDC+SC+NML,

model containing NR+SC+NDC & model containing NDPV+SC+NML, model containing

NR+SC+NDPV & model containing NML+SC+NDC, and model containing

NR+SC+NDPV & model containing NML+SC+NDPV will have a significant difference

between them. For table 5.20 the bar chart has been represented by Figure 6.20. It can be

observed that combined model of static code, NDC, and NR outperforms other combinations

of static code and process metrics.

57

Table 5.21 has been analyzed statistically, the outcome shows that the calculated p-value is

1.50e-06 and 𝛘2-statistics is 29.826 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.710, at least one of the model’s

performances differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NDC+NR+NML & model containing

SC+NDC+NR+NDPV, model containing SC+NDC+NR+NML & model containing

SC+NML+NDC+NDPV, model containing SC+NDC+NR+NDPV & model containing

SC+NML+NR+NDPV, and model containing SC+NDC+NR+NDPV & model containing

SC+NML+NDC+NDPV will have a significant difference between them. For table 5.21 the

bar chart has been represented by Figure 6.21. It can be observed that combined model of

static code, NDC, NDPV, and NR outperforms other combinations of static code and process

metrics.

58

Table 5.22 has been analyzed statistically, the outcome shows that the calculated p-value is

0.0003 and 𝛘2-statistics is 18.625 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.444, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NR & model containing SC+NML, model containing

SC+NR & model containing SC+NDPV, and model containing SC+NDC & model

containing SC+NML will have a significant difference between them. For table 5.22 the bar

chart has been represented by Figure 6.22. It can be observed that combined model of static

code and NR outperforms other combinations of static code and process metrics.

59

Table 5.23 has been analyzed statistically, the outcome shows that the calculated p-value is

1.423e-08 and 𝛘2-statistics is 45.04 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.643, at least one of the model’s

performance differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing NR+SC+NDC & model containing NR+SC+NML, model

containing NR+SC+NDC & model containing NDC+SC+NML, model containing

NR+SC+NDC & model containing NML+SC+NDPV, model containing NDC+SC+NDPV

& model containing NML+SC+NDPV, model containing NDC+SC+NML & model

containing NDC+SC+NDPV, model containing NR+SC+NDPV & model containing

NML+SC+NDPV, and model containing NR+SC+NML & model containing

NR+SC+NDPV will have a significant difference between them. For table 5.23 the bar chart

has been represented by Figure 6.23. It can be observed that combined model of static code,

NDC, and NR outperforms other combinations of static code and process metrics.

60

Table 5.24 has been analyzed statistically, the outcome shows that the calculated p-value is

1.65e-05 and 𝛘2-statistics is 24.860 at 0.05 significance taking Friedman test into

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null

hypothesis is rejected. So, with an effect size of 0.592, at least one of the model’s

performances differ considerably thus indicating the difference amongst the models will

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to

check the pairwise model’s comparison, as the results differs significantly, and it is

determined that model containing SC+NDC+NR+NML & model containing

SC+NDC+NR+NDPV, model containing SC+NDC+NR+NDPV & model containing

SC+NML+NDC+NDPV, and model containing SC+NDC+NR+NDPV & model containing

SC+NML+NR+NDPV will have a significant difference between them.

For table 5.24 the bar chart has been represented by Figure 6.24. It can be observed that

combined model of static code, NDC, NDPV, and NR outperforms other combinations of

static code and process metrics.

61

62

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

In the area of software defect prediction numerous models have been existing and are

explored. A wide range of those use static code metrics to detect defective software codes or

programs. In this project the efficiency of process metrics or variable have been analyzed

using classification and ensemble methods on the basis of AUC values, bar graphs, and

statistical test.

It can be concluded that bagging outperforms all the selected classification and ensemble

methods. All the selected techniques (NB, SVM, LR, KNN, DT, stacking, bagging, voting,

and boosting) except logistic regression and KNN performs better in combined model. We

can also conclude that ensemble methods produce better results as compared to the classical

classification algorithms.

In case of combined model of SC and 1 process metrics, NR is most effective process metrics.

In case of combined model of SC and 2 process metrics, NR+NDC is most effective. In case

of combined model of SC and 3 process metrics, NR+NDC+NDPV is most effective.

7.2 Future Scope

Other process metrics can also be analyzed using classification and ensemble techniques.

The number of defects can be predicted using regression methods while considering the same

datasets which have been used in this research. Effort or maintainability can also be

considered as dependent variables instead of bugs.

63

REFERENCE

[1] A. Komalasari and M. Z. C. Candra, “Improving Defect Prediction Using

Combination of Software Metrics,” In 2022 International Conference on Data and

Software Engineering (ICoDSE), pp. 89–94, 2022.

[2] A. Okutan and O. T. Yildiz, “Software defect prediction using Bayesian networks,”

Empirical Software Engineering, vol. 19, no. 1, pp:154–181, 2014.

[3] A. Panichella, R. Oliveto, and A. de Lucia, “Cross-project defect prediction models:

L’union fait la force,” In 2014 Software Evolution Week-IEEE Conference on

Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),

pp. 164–173, 2014.

[4] B. Diri, C. Catal, and U. Sevim, “Practical development of an Eclipse-based software

fault prediction tool using Naive Bayes algorithm,” Expert Syst. Appl, vol. 38, no. 3,

pp. 2347-2353, 2011.

[5] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification

techniques on the performance of defect prediction models,” In 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, vol. 1, pp. 789–800, 2015.

[6] D. Hosmer and S. Lemeshow, “Applied Logistic Regression,” John Wiley & Sons,

1989.

[7] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, “Software fault prediction

metrics: A systematic literature review,” Information and Software Technology, vol.

55, no. 8, pp:1397 – 1418, 2013.

[8] G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal, “Empirical analysis

of change metrics for software fault prediction,” Computers & Electrical

Engineering, vol. 67, pp. 15–24, 2018.

[9] https://madeyski.e-informatyka.pl/tools/software-defect-prediction

[10] I. Rish, “An empirical study of the naive bayes classifier,” In IJCAI 2001 workshop

on empirical methods in artificial engineering, vol: 3, pp 41-46, 2001.

https://madeyski.e-informatyka.pl/tools/software-defect-prediction

64

[11] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The

Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[12] J. Hanley and B.J. McNeil, “The meaning and use of the area under a Receiver

Operating Characteristic ROC curve,” Radiology, vol. 143, no. 1, pp. 29-36, 1982.

[13] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. D. Sousa, “Ensemble approaches

for regression: A survey,” ACM Computing Surveys. (CSUR), vol. 45, no. 1, p. 10,

2012.

[14] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible software fault

prediction models using Bayesian network classifiers,” IEEE Transactions on Software

Engineering, vol. 39, no. 2, pp:237–257, 2013.

[15] L. Madeyski and M. Jureczko, “Which process metrics can significantly improve

defect prediction models? An empirical study,” Software Quality Journal, vol. 23, no.

3, pp:393–422, 2015.

[16] L. Perreault, S. Berardinelli, C. Izurieta, and J. Sheppard, “Using Classifiers for

Software Defect Detection,” 26th International Conference on Software Engineering

and Data Engineering, Sydney, pp:2-4, 2017.

[17] M. Jureczko and L. Madeyski, “Software product metrics used to build defect

prediction models,” Report SPR 2/2014, Faculty of Computer Science and

Management, Wroclaw University of Technology, 2011c.

[18] P. Sherrod, “DTreg predictive modeling software,” 2003.

[19] R. Malhotra, “Empirical Research in Software Engineering,” Chapman & Hall,

CRC:978-1-4987-1972-8, 2015.

[20] R. Malhotra and A. Bansal, “Use of Support Vector Machine to Check Whether

Process Metrics are as Good as Static Code Metrics,” In Topical Drifts in Intelligent

Computing: Proceedings of International Conference on Computational Techniques

and Applications (ICCTA 2021), vol. 426, p. 35, 2022.

[21] S. Dreiseitl and L. Ohno-Machado, “Logistic Regression and Artificial Neural

Network Classification models: a methodology review,” J. Biomed. Inform, vol. 35,

pp. 352-359, 2002.

65

[22] S. Hussain, J. Keung, A. Khan, and K. Bennin, “Performance evaluation of ensemble

methods for software fault prediction: An experiment,” Proceedings of the ASWEC

2015 24th Australasian Software Engineering Conference, vol. 2, pp:91-95, 2015.

[23] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions

on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[24] T. G. Dietterich, “Ensemble methods in machine learning,” In multiple classifier

systems, Springer, pp:1-15, 2000a.

[25] T. Hall, S.Beecham, D. Bowes, D.Gray, and S.Counsell, “A systematic literature

review on fault prediction performance in software engineering”, IEEE Transactions

on Software Engineering, vol. 38, no. 6, pp:1276– 1304, 2012.

[26] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented design metrics as

quality indicators,” IEEE Transactions on Software Engineering, vol. 22, no.10,

pp:751–761, 1996.

[27] W. Rhmann, B. Pandey, G.Ansari, and D. K. Pandey, “Software Fault Prediction

Based on Change Metrics Using Hybrid Algorithms: An Empirical Study,” Journal of

King Saud University, vol. 32, no. 4, pp:419–424, 2020.

[28] X. Wang, D. Bi, and S. Wang, S., “Fault recognition with labeled multi-category,”

3rd Conference on Natural Computation, Haikou, China, 2007.

[29] Y. Xia, G. Yan, and H. Zhang, “Analyzing the significance of process metrics for

TT&C software defect prediction,” In Proceedings of the 5th IEEE International

Conference on Software Engineering and Service Science, 2014.

[30] Y. Zhao and Y. Zhang, “Comparison of Decision Tree Methods for Finding Active

Objects,” Advances of Space Research, vol. 41, no. 12, pp:1955, 1959, 2008.

66

LIST OF ACCEPTED PAPERS

[1] Malhotra, R. Ramchandani, R. (2022) A Comparative Study of Homogeneous and

Heterogeneous Ensemble Techniques for Prediction of Software Faults. In: Proceedings of

Communications in Computer and Information Science (CCIS), Springer, MIND 2022.

(Scopus Indexed) (Accepted and Presented).

[2] Malhotra, R. Ramchandani, R. (2023) How Process Metrics Effect the Prediction

Performance of Classification and Ensemble Methods. In: 5th International Conference on

Advances in Computing, Communication Control and Networking- ICAC3N23 (IEEE

Xplore, Scopus Indexed) (Accepted).

