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ABSTRACT 

 

 

 

Software defects have always been considered a major problem in the software industry and 

for software engineers, early detection improves software performance and reduces faults, 

time, and cost. In order to predict defects in software, many researchers have been used 

classification and ensemble techniques. Different dataset produces different results. In this 

research, we have evaluated the prediction accuracy of classification and ensemble 

approaches using 3 distinct models: combined model of static code and process metrics, 

model containing process metrics, and model containing static code metrics. In simple terms, 

we can say that these 3 models have different independent variables and dependent variables 

are the actual values of bugs which is the same. We have used NB, LR, KNN, SVM, DT as 

classification approaches and stacking, voting, bagging, and boosting as ensemble approach 

for implementation. The dataset was gathered from the publicly available repository. AUC 

metric was used to examine the prediction performance of classification and ensemble 

techniques. Additionally, the statistical significance of the results obtained from various 

models was assessed using the Friedman and Nemenyi post hoc test. The result of this study 

demonstrates that the use of process metrics in predicting the defects in software produces 

effective outcomes. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Software development life cycle consist of software testing which is time consuming and 

resource consuming. The aim of the testing procedure is to deliver software that is completely 

error-free and meets the needs of all stakeholders. Finding software flaws is a necessary but 

expensive process. Testing adds to the overall project budget because it is an expensive 

process. The effectiveness and quality of the software improve when defects are correctly 

predicted at an early stage. Additionally, accurate defect prediction aids in controlling the 

project's budget. 

 

1.2 Software Defect Prediction 

Defects prediction and proneness in the software are always considered a major problem in 

the software industry and for software engineers. In classical methods, previous experience 

with the defective or non-defective software is required while detecting the software defect 

in a software application. Defects in the software applications have been predicted by using 

different classification techniques by different researchers as of now but the results of the 

methods changed with the dataset, so they lack the property of robustness for defect 

prediction in an un- known software application. However, ensemble techniques for defect 

detection in software applications will be very efficient, as there will be an advantage of using 

various techniques on a specific dataset to predict software defects with much more accurate 

than using a single technique, for the reasons stated above. An ensemble learning software 

defect prediction model will allow the software to extensively identify and rectify software 

defects using soft voting and hard voting. This ability makes the soft- ware run more 

effectively and reduces faults, time, and cost.  
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1.3 Motivation 

Different software metrics are used by software defect prediction (SDP) models to make 

predictions. Numerous studies have been conducted in the past using static code metrics to 

identify different system design elements. Numerous techniques, including LR [6], NB 

[10][4], SVM [20], ANN [21], KNN [23], and DT[30] have been suggested in the past to 

demonstrate the correlation between static code metrics and defect proneness. Investigating 

process metrics is necessary in the area of defect prediction since both the studies Dejaeger 

et al. [20] and Okutan and Yildiz [2] highlight the same. The field of software defect 

prediction has witnessed a lot of literature reviews published. The majority of them employ 

static code metrics, while only a limited number of studies demonstrate the connection 

between defect proneness and process metrics. There is no clear-cut conclusion provided by 

the authors some claim that process metrics outperform static code metrics, while others 

contend that the reverse is true.  

 

1.4 Objective 

The main objective of this thesis is to examine the effectiveness of process metrics in 

predicting outcomes. To assess and compare different techniques, we will construct a defect 

prediction model in this thesis and evaluate their performance based on AUC values, bar 

graphs, and statistical test. A heterogeneous ensemble learning model (bagging, stacking, 

boosting, and voting) is introduced and the comparison of the ensemble model is made with 

all the classifiers i.e., DT, LR, KNN, NB, SVM which have been used to build the model. In 

this thesis, AUC has been used so to determine whether the ensemble algorithm is accurate 

or not in determining whether the software is defective or not defective. We analyze the 

results of each technique using distinct models. Further we will analyze, if we use process 

metrics, which techniques gives better results and can we use process metrics to determine 

defect proneness. Additionally, we will evaluate the performance of selected process metrics 

by considering different combinations of static code and process metrics to determine the 

most effective one. 
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1.5 Thesis Structure 

The structure of this research is as follows: The related work that has previously been done 

in the area of software defect prediction is presented in Section 2. The proposed work is 

presented in Section 3, which goes over the dataset used, dependent and independent 

variables used, and static code metrics and process metrics used. Research Methodology is 

presented in Section 4, which goes over the performance evaluation metric used, the 

classification and ensemble strategies employed, the statistical test employed, and how these 

strategies will be put into practice. The output of each model using each classification method 

and ensemble technique is shown in Section 5. The discussion of the results is presented in 

Section 6, which includes bar graphs and statistical tests. Section 7 of this study presents its 

conclusion and future work. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

A lot of research has been conducted to develop software defect prediction models using 

different techniques including Machine Learning techniques and ensemble learning 

techniques. Numerous studies have been conducted to develop software defect prediction 

models using various defect prediction techniques, but the majority of these studies use static 

code metrics as independent variables, while only a small number of them use process 

metrics.  

 

Related Work: 

According to a systematic literature review [7] that included 106 papers published between 

1991 and 2011, OOM were used as independent variables in 49% of the research, 

conventional source code metrics in 27% of the research, and process metrics in 24% of the 

papers. The prediction results of object-oriented metrics and process metrics outperform 

those of conventional source code metrics. Delta metrics, code churn metrics, history metrics, 

and developer metrics are the process metrics used in this literature review. 

According to some studies, process metrics did not perform well when used in the early 

phases of software development. The results of the experiments conducted have 

demonstrated that process metrics perform better in the post-release stage of software 

development. 

 

Two new process metrics were introduced [29]:  

a. Life cycle-based management process metric  

b. History changes process metric.  

On the basis of the traits of the development process, these metrics were created. They discuss 

the efficiency of process metrics during the analysis, coding, and design stages of the 
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development life cycle. The findings of this study demonstrate that combining process 

metrics and code metrics improves defect prediction and error rates are reduced.  

 

An experiment is performed in which the authors took into account both open-source and 

commercial projects. They looked at models that included all SC metrics and one process 

metric. This study demonstrates that process metrics, particularly NDC and NML process 

metrics, significantly contribute to improving defect prediction [15]. A combined model 

comprising of all static code metrics and all process metrics is suggested for better prediction 

results [25].  

 

Komalasari and Candra [1] used a combination of product metrics, process metrics and 

profile metrics to build classification model. They used NB, LR, and RF techniques to predict 

the defects. The result shows that combination of these three metrics gives effective result in 

RF model.  

 

Choudhary et al. [8] proposed new change metrics and analyzed the effect of existing and 

proposed change metrics in software defect prediction on eclipse dataset. They used decision 

tree, KNN and random forest as classification technique and precision, recall and F-measure 

as performance evaluation metrics. They analyzed that combined model of change and code 

metrics gives better performance as compared to model that have individual set of metrics 

on eclipse dataset. 

 

According to Ghotra et al. [5], the choice of classifier can lead to an increase or decrease in 

prediction model accuracy of up to 30%. Perreault et al. [16] conducted a study on five 

NASA datasets, comparing the effectiveness of Artificial Neural Networks, LR, NB, SVMs, 

and KNN. However, the study did not provide a clear explanation of which strategy was the 

most effective.  

 

Also, Panichella et al. [3] demonstrate that despite comparable prediction accuracy, the 

predictions of different classifiers are highly interconnected. The model can be trained to 
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utilize massive volumes of data either from the project under being observed or from a 

comparable project that has not been observed yet (cross-project strategy). 

 

Hussain et al. [22] in their study conducted a comparison of three ensemble techniques 

utilizing five base classification techniques (J48, LR, NB, Voted-Perceptron, and SVM) in 

the Weka tool for software defect prediction. The results of their study indicate that Stacking 

outperforms all the selected ensemble methods.  

 

Rhmann et al. [27] analyzed the performance of hybrid search-based algorithms for software 

defect prediction using change metrics. They used android dataset and recall and precision 

as performance evaluation measure. The result shows that hybrid search-based algorithms 

perform better as compared to machine learning techniques. 
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CHAPTER 3 

 

SYSTEM DESIGN 

 

 

3.1 Proposed Architecture 

 

Fig 3.1 Architecture of Proposed Methodology 

 

This chapter defines the methodology used for the implementation Figure 3.1 displays the 

methodology proposed and along with it independent and dependent metrics or variables i.e 

No. of Bugs is a dependent variable or metric and Weighted method per class is the 

independent variable or metric which have been taken into account for this project and 

dataset’s collection.  

 

3.2 Dependent and Independent Variables 

Independent metrics or variables which have been considered in this project are static code 

metrics such as WMC, DIT, NOC, CBO etc. and process metrics such as NR, NDC etc. and 
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the dependent metrics or variable is defect count or its likelihood which has been defined as 

the inclination of predicting defects in the class i.e. defective and non-defective.  

 

3.2.1 Static Code Metrics 

The design complexity and the size of software system are defined by the static code metrics, 

they have been widely used in creating a defect detection model. The static code metrics used 

in this project are WMC, NOC, LOC, DIT, LCOM, CBO, RFC, NPM, DAM, LCOM3, MFA, 

CAM, MOA, CBM, IC, AMC, Ca, Max (CC), Ce, and Avg (CC). The static code metrics' 

definition can be found in an independent report provided by Jureczko and Madeyski [17]. 

This information is openly accessible as open-source data. 

 

3.1.2 Process Metrics 

The quality and effectiveness of the system are determined by process metrics. These metrics 

provide additional descriptive information about defective modules. They are obtained from 

two sources: 

a) The developer's experience  

b) The software change history  

The process metrics utilized in this thesis are as follows: 

1. NR 

NR is an acronym for "Number of Revisions," which refers to the quantity of modifications 

made to a Java class throughout the development stages of the analyzed software release. 

This metric provides insight into the frequency of amendments made to the class during its 

evolution. 

2. NDC  

The acronym NDC represents Number of Distinct Committers, which refers to the count of 

developers who have contributed changes to a Java class throughout the development of a 

specific software release. This metric provides insight into the quantity of individuals 

involved in modifying the examined release. 
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3. NML 

The acronym NML represents Number of Modified Lines, which calculates the quantity of 

source code lines that have been added or removed from a Java class. This metric takes into 

account every change submitted throughout the software's evolution in the examined release. 

4. NDPV 

NDPV represents the acronym for "Number of Defects in Previous Versions," which 

quantifies the quantity of issues addressed in a Java class throughout the progression of the 

preceding software release. 

 

3.2 Empirical Data Collection 

We have collected the data for 4 java-based projects (Ant, jEdit, Xalan, and Xerces). The 

dataset is collected from the publicly available repository [9] which consist of both SC and 

process metrics. We chose java project datasets since they contain static code metrics such 

as WMC, DIT, LOC, LCOM etc. and process metrics such as NR, NDC, NML, and NDPV 

[17]. Table 3.1 lists the datasets that were used in this study:  

Table 3.1 Dataset Used 

Project 

Name 

Number of 

Instances 

Defective 

Instances 

Non-Defective 

Instances 

Ant 1.6 524 92 432 

Ant 1.7 1065 166 899 

jEdit 4.0 606 75 531 

jEdit 4.1 644 79 565 

Xalan 2.6.0 1170 411 759 

Xalan 2.7.0 1194 898 296 

Xerces 1.3.0 545 69 476 

Xerces 1.4.4 671 437 234 
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CHAPTER 4 

 

METHODOLOGY 

 

 

We have used the following steps:  

• Obtain datasets with static code and process metrics from publicly accessible 

repositories.  

• Perform some preprocessing operations on datasets.  

• Choose some classification and ensemble techniques.  

• Choose performance evaluation measures to evaluate the prediction performance.  

• Analyze the performance based on chosen evaluation measure.  

• Validation of results using statistical test. 

 

4.1 Dataset Preprocessing 

Datasets obtained from publicly accessible repositories have some missing values, which 

impair the performance of the created model, hence preprocessing is done on datasets to 

avoid this type of problem, such as eliminating data points with missing values because they 

are extremely small in count or replacing missing values with mean value or median value 

or with some user constant. Since there are some string data type variables which is an invalid 

input to the classifier so we use a filter method to convert the datatype into compatible data 

type.  

 

4.2 Classification Techniques 

Classification techniques are algorithms in machine learning utilized for predicting the class 

or category of a provided input, relying on a set of features or attributes. These techniques 

acquire knowledge from labeled training data, discerning patterns, and relationships and 

subsequently apply this acquired knowledge to classify new instances that have not been 
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previously encountered into predefined classes. In this, the model is first trained using 

training data, and then the data for the invalid dataset is predicted.  

In this study, we use NB [4], LR [6], DT [30], SVM [20], and KNN [23] technique for 

developing the prediction model. For implementation, Waikaito Environment for Knowledge 

Analysis (WEKA) machine learning tool is used. The classification of machine learning 

techniques is depicted in Figure 4.1.  

 

Fig 4.1 Machine Learning Techniques 

 The five classification techniques selected for implementation are as stated below: 

 

4.2.1 NB 

NB is a classification algorithm based on Bayes' theorem and assumes that the features are 

conditionally independent of each other given the class. It is a simple yet powerful algorithm 

commonly used for text classification and other tasks with high-dimensional feature spaces. 

Despite its "naive" assumption of feature independence, NB often performs well in practice 

and can be computationally efficient [4][10]. 

The algorithm is called Naive Bayes because it assumes that the occurrence of a specific 

feature in a class is unrelated to the presence or absence of other features. This simplifies the 

calculations and allows the algorithm to make predictions efficiently. Some common 

variations of NB include: 

• Gaussian NB: It assumes that the numerical features follow a Gaussian (normal) 

distribution. 
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• Multinomial NB: It is often used for text classification tasks with discrete features, 

such as word counts. 

• Bernoulli NB: It is similar to Multinomial NB but assumes binary features, often 

used for binary text classification tasks. 

It performs well in situations where the independence assumption holds reasonably well and 

when there is a relatively large number of features compared to the size of the training dataset. 

Naive Bayes can handle categorical and numerical features, and it is particularly suitable for 

text classification tasks. 

 

4.2.2 LR 

LR is a statistical classification algorithm used to predict the probability of categorical 

outcomes based on one or more independent variables. Despite its name, it is a classification 

algorithm rather than a regression algorithm. It represent the association between the 

independent variables and the likelihood of a certain outcome using a logistic function, also 

known as the sigmoid function.  

It estimates the coefficients or weights for each independent variable in the dataset. The 

algorithm applies an optimization algorithm, such as maximum likelihood estimation, to fit 

the model to the training data. It uses a logistic or sigmoid function to map the linear 

combination of the independent variables and their coefficients to a value between 0 and 1. 

Basili et al. [26] and Hosmer and Lemeshow [6] provides an in-depth explanation of LR. 

It is a widely used algorithm for binary classification tasks, particularly when interpretability 

and probabilistic predictions are desired. It is commonly applied in various domains, 

including healthcare, finance, and social sciences. 

 

4.2.3 SVM 

SVM is a powerful supervised machine learning algorithm used for classification and 

regression purposes. Its objective revolves around discovering an ideal hyperplane that 

effectively distinguishes data points belonging to distinct classes or predicts a continuous 

target variable based on the maximum margin principle. 

The main idea behind SVM is to transform the input data into a higher-dimensional feature 

space and identify a hyperplane that optimally maximizes the separation between the classes. 
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The margin represents the space between the hyperplane and the nearest data points of each 

class [18]. By maximizing the margin, SVM aims to achieve better generalization and 

robustness to new data.  

SVM can map the input features into a higher-dimensional space using a technique called the 

kernel trick. The kernel function allows SVM to implicitly operate in the higher-dimensional 

feature space without explicitly computing the transformations. Commonly used kernel 

functions include linear, polynomial, radial basis function (RBF), and sigmoid [28]. We have 

used linear kernel function. 

SVM is widely used in various domains, such as text categorization, image recognition, 

bioinformatics, and finance [20]. It is particularly effective when dealing with complex 

datasets with a clear separation between classes or a need for nonlinear decision boundaries. 

 

4.2.4 KNN 

KNN is a supervised machine learning algorithm used for both classification and regression 

purposes. KNN is also known as lazy learning technique. KNN makes predictions based on 

the similarity between the new data point and its neighboring data points in the training 

dataset. 

The basic idea behind KNN is to classify a new data point or predict its value by examining 

the k nearest data points in the feature space. The "nearest" neighbors are determined based 

on a distance metric, such as Euclidean distance or Manhattan distance [23]. 

KNN is commonly used in various applications such as recommender systems, image 

recognition, and anomaly detection. It can be particularly useful when dealing with datasets 

that have clear patterns and local structures. 

 

4.2.5 DT  

A DT is a supervised machine learning algorithm used for both classification and regression 

purposes. A tree-like model is generated by analyzing the data's characteristics, depicting 

decisions and their potential outcomes. Each internal node in the tree corresponds to a 

specific feature or attribute, while each leaf node indicates a class label or a predicted value. 

The main idea behind a DT is to recursively partition the data based on the feature values to 

create a tree structure that can make predictions or classifications. At each internal node of 
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the tree, a decision is made based on a feature, and the data is split into branches 

corresponding to different feature values. This process continues until a predetermined 

condition is fulfilled, such as attaining the maximum tree depth or when all instances in a 

leaf node are of same class. 

In this thesis, we use the REPTree. It is a decision tree algorithm that focuses on reducing 

errors through a pruning technique. It is commonly used for classification purpose. REPTree 

builds a decision tree in a recursive manner, similar to other decision tree algorithms, such 

as C4.5 or ID3 [30]. REPTree is a useful algorithm for classification tasks, particularly when 

the goal is to reduce overfitting and improve generalization. It is often applied in various 

domains, including healthcare, finance, and social sciences. 

 

4.3 Ensemble Techniques 

The objective is to aggregate the prediction results of various learning approaches so that the 

overall performance of the decision is enhanced [24]. The ensemble model improves the 

performance of the individual model for example it improves the performance of the decision 

tree by reducing variance in the model. They are classified as either homogeneous or 

heterogeneous ensembles. In a homogeneous ensemble, similar type of learning techniques 

like bagging, boosting, and others are employed [13]. Different types of learning techniques 

are used in heterogeneous ensembles. We built a defect prediction model using voting, 

stacking, bagging, and boosting in this study. 

Ensemble techniques are machine learning methods that combine the predictions of multiple 

individual models, known as base models or weak learners, to improve the overall predictive 

performance [24]. By leveraging the diversity and collective wisdom of multiple models, 

ensemble techniques aim to achieve better generalization, reduce overfitting, and enhance 

prediction accuracy. The categories of ensemble techniques are depicted in fig 4.2.  

Ensemble techniques are widely used in various domains and have achieved success in 

competitions and real-world applications. Machine learning tasks, such as classification, 

regression, and anomaly detection, can benefit from the application of these techniques 

across a broad spectrum. The choice of the ensemble technique depends on the specific 

problem, data characteristics, and desired tradeoffs between performance and interpretability.  
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Fig 4.2 Types of Ensemble Techniques 

NB, SVM, KNN, LR, and DT (Reduced Error Pruning Tree) are used as base classification 

techniques to generated ensemble model. Here are the selected ensemble techniques we have 

opted for implementation:  

 

4.3.1 Stacking 

Stacking, in the context of machine learning, refers to a technique where multiple models, 

known as base models or learners, are aggregated to improve predictive results. It is a form 

of ensemble learning, which leverages the strengths of different models to make more 

accurate predictions. 

In a stacking ensemble, the base models are trained on the same dataset, and their predictions 

are then combined using another model called a meta-learner or a stacking model. The meta-

learner takes the predictions of the base models as input and learns how to best combine them 

to produce the final prediction. The stacking architecture is depicted in figure 4.3. 
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Fig 4.3 Structure of Stacking Technique  

 

4.3.2 Voting 

Voting, in the context of machine learning, refers to a technique where multiple models or 

classifiers are used to make predictions, and the final prediction is determined by aggregating 

the individual predictions through a voting process. It is another form of ensemble learning, 

which aims to improve the overall accuracy and robustness of predictions. Voting is 

classified into two types:  

1. Hard Voting  

Hard voting, also called deterministic voting, considers only the class labels 

predicted by each model. The final prediction is determined by selecting the class 

label that occurs most frequently among the models. The architecture of hard voting 

is depicted in fig 4.4.  



 

17 
 

 

Fig 4.4 Structure of Hard Voting Technique 

 

2. Soft Voting  

Soft voting, also known as probabilistic voting, takes into account the probabilities or 

confidence scores assigned by each model for each class label. The final prediction is 

determined by averaging the probabilities across all models and selecting the class 

label with the highest average probability. Fig 4.5 shows the architecture of soft 

voting.  
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Fig 4.5 Structure of Soft Voting Technique  

 

4.3.3 Bagging  

Bagging, short for bootstrap aggregating, is a machine learning approach that involves 

training multiple models using distinct subsets of the training data and then merging their 

predictions to form a final prediction. It is a popular ensemble learning method that aims to 

improve the accuracy and stability of predictions. The bagging architecture is depicted in 

figure 4.6. 

The bagging process typically involves the following steps: 

• Bootstrap Sampling: The training dataset is randomly sampled with replacement to 

create multiple subsets of data, called bootstrap samples. Each bootstrap sample has 

the same size as the original dataset, but some instances may be repeated while others 

may be excluded. 

• Base Model Training: A base model, such as a decision tree or a neural network, is 

trained on each bootstrap sample independently. Each model in the ensemble learns 

from a slightly different version of the training data. 
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• Prediction Aggregation: Once the base models are trained, they are used to make 

predictions on new, unseen data. For classification tasks, the final prediction is often 

determined by majority voting, where the class label that receives the most votes 

among the base models is selected. For regression tasks, the predictions from the base 

models are typically averaged to obtain the final prediction.  

Some popular bagging algorithms include Random Forests, which use decision trees as 

base models, and Bagging of Neural Networks, which employ neural networks as base 

models.  

 

Fig 4.6 Structure of Bagging Technique 

 

4.3.4 Boosting  

Boosting is a machine learning technique that combines multiple weak models, often referred 

to as weak learners or base learners, to create a strong predictive model. Unlike bagging, 

where base models are trained independently, boosting sequentially trains base models in an 

adaptive manner, with each subsequent model focusing on the instances that were 

misclassified by the previous models. The overall goal of boosting is to improve the 

predictive accuracy by giving more weight to the instances that are difficult to classify 

correctly. Commonly used boosting algorithms are Adaboost, XGBoost, Gradient Boosting, 

and LightGBM. Here, we use Adaboost algorithms. The boosting architecture is depicted in 

Figure 4.7. 

The boosting process typically involves the following steps: 
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• Base Model Training: A weak base model, such as a decision tree or a simple linear 

model, is trained on the initial dataset. The weak model typically performs slightly 

better than random guessing. 

• Instance Weighting: Each instance in the training dataset is assigned an initial 

weight. Initially, all instances have equal weights, but as the boosting process 

progresses, the weights are adjusted based on the performance of the previous models. 

• Sequential Model Training: The base model is trained on the weighted training data. 

The model focuses on the instances that were misclassified or have higher weights, 

aiming to improve the accuracy for those instances. 

• Instance Weight Update: After training the base model, the weights of the instances 

are updated based on their classification results. Misclassified instances are assigned 

higher weights, making them more influential in the subsequent model training. 

Correctly classified instances may have their weights reduced. 

• Model Combination: The base models are combined by assigning weights to their 

predictions. The weights are typically determined based on the performance of each 

model during training. The final prediction is made by aggregating the weighted 

predictions of all the base models. 

• Final Prediction: The boosted model is then used to make predictions on new, 

unseen data. The base models generate predictions, and these predictions are 

combined using the assigned weights to produce the final prediction. 



 

21 
 

 

Fig 4.7 Structure of Boosting Technique 

 

4.4 Performance Evaluation Measure 

We employ AUC, to evaluate the prediction performance of machine learning techniques and 

ensemble techniques. The AUC is a valuable metric for evaluating classification models, 

especially in scenarios where class imbalance exists or when the cost of false positives and 

false negatives is not equal [12][14]. A higher AUC suggests better discriminative power and 

the ability of the model to correctly rank instances from positive and negative classes. The 

AUC serves as a summary of the ROC curve, illustrating the relationship between two 

parameters, namely TPR and FPR. We can find values of TPR and FPR with the help of a 

confusion matrix. A confusion matrix is a table-like presentation that summarizes the results 

of a classification model's performance on a specific set of test data. It offers a comprehensive 

breakdown of the predicted class labels compared to the actual class labels, allowing for the 

evaluation of different aspects of the models performance. Fig 4.8 represents confusion 

matrix.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (4.2) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                     (4.3) 
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Fig 4.8 Confusion matrix 

The AUC represents the area under the ROC curve, which ranges from 0 to 1. A higher AUC 

value indicates better performance of the classifier in distinguishing between positive and 

negative instances. An AUC of 1 represents a perfect classifier, while an AUC of 0.5 

indicates a classifier that performs no better than random guessing. Dejaeger et al [14] 

presented a detailed description on how to calculate AUC value. 

 

4.5 Statistical Test 

We employ Friedman test with Nemenyi test to check whether the prediction results are 

statistically significant or not [11]. Friedman test is a non parametric test which indicates that 

the data don’t need to be normal. Ranking system is used in this test. This test assigns ranks 

to the chosen techniques. Nemenyi test is a post hoc test which is used if there is a rejection 

of null hypothesis. This test is used to identify the pairwise difference between the 

techniques. 

• Friedman Test 

The Null and alternative hypothesis statements for the Friedman test can be restated as 

follows:  

• Null Hypothesis (H0): There is no significant difference in the performances of the 

various techniques. 
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• Alternative Hypothesis (Ha): There is a significant difference in the performances of 

the various techniques. 

The Friedman test is a non-parametric statistical test used to determine whether there are 

significant differences among multiple treatments or conditions [19]. It is typically applied 

when the data are measured on an ordinal scale and assumptions for parametric tests, such as 

normality or equal variances, are violated. It's important to note that the Friedman test 

assesses the overall differences among the treatments but does not provide information about 

the direction or nature of the differences. 

In this test, we compare the calculated 𝛘2-statistics value with the tabulated 𝛘2 value. We can 

calculate the 𝛘2-statistics value using the given formula. 

2- statistics= 
12

𝑛(𝑛+1)
∑ 𝑅𝑖

2 − 3𝑛(𝑘 + 1)𝑘
𝑖=1                               (4.4) 

• Nemenyi Test 

The Nemenyi test, also known as the Nemenyi-Damico-Wolfe-Dunn test, is a post-hoc test 

commonly used in conjunction with the Friedman test or other non-parametric tests for 

multiple comparisons. It helps identify specific pairs of treatments or conditions that differ 

significantly from each other after finding a significant overall difference among the groups. 

The Nemenyi test provides a pairwise comparison of treatments, allowing researchers to 

identify specific treatments that differ significantly from each other. It is commonly used 

when there are more than two treatments or conditions and the goal is to determine which 

treatments are significantly different, rather than just identifying the overall differences. In 

this, we calculate CD. 

   𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
                                                                         (4.5) 

• Effect Size  

Effect size is a statistical measure that quantifies the magnitude or strength of a relationship 

or difference between variables or groups [19]. Effect size is useful because it allows 

researchers to move beyond statistical significance and assess the practical or real-world 

significance of their findings. While statistical significance indicates whether an observed 

effect is likely to have occurred by chance, effect size provides information about the 

magnitude or impact of the effect. 
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Commonly used effect size measure are Cohen’s d, Kendall’s W, Pearson’s r, etc. In this 

study, Kendall's W coefficient (also known as the Coefficient of Cordonance) is utilized. Its 

calculation is as follows: 

𝑊 =
2−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

𝑛(𝑘−1)
                                                                              (4.6) 

Kendall's W coefficient ranges from 0 to 1, with higher values indicating greater agreement 

among the techniques. The coefficient measures the extent to which the rankings assigned 

by different techniques are consistent or concordant. A coefficient of 1 indicates perfect 

agreement, meaning that all techniques have assigned the same rankings. A coefficient of 0 

indicates no agreement, meaning that the rankings assigned by the techniques are completely 

random. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 

This section demonstrates the experimental result found after applying classification and 

ensemble learning techniques to all the considered datasets. Note that we have used AUC to 

evaluate the prediction performance of chosen techniques. We analyze three models to check 

the effectiveness of process metrics on prediction performance of classification and ensemble 

method: 

• Combined model of SC and process metrics 

• Model containing SC metrics  

• Model containing process metrics 

Table 5.1 represents the AUC values for all considered datasets for all classification (NB, 

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and 

boosting) in combined model. According to table 5.1, ensemble techniques outperform 

classification techniques and bagging gives the better prediction results as compared to all 

the selected techniques. 

 

Table 5.2 represents the AUC values for all considered datasets for all classification (NB, 

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and 

boosting) in model containing SC metrics. According to table 5.2, ensemble techniques 
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outperform classification techniques and bagging gives the better prediction results as 

compared to all the selected techniques. 

 

Table 5.3 represents the AUC values for all considered datasets for all classification (NB, 

KNN, DT, SVM, LR) and ensemble learning techniques (stacking, voting, bagging, and 

boosting) in model containing process metrics. According to table 5.3, ensemble techniques 

outperform classification techniques and bagging gives the better prediction results as 

compared to all the selected techniques. 

 

According to table 5.1, table 5.2, and table 5.3, we can analyze that all the selected techniques 

except logistic regression and KNN performs better in combined model. Therefore, we 

proceed to examine three additional models, utilizing only the techniques that demonstrate 

superior performance in the combined model.  
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• Combined model of SC and 1 process metric 

• Combined model of SC and 2 process metrics 

• Combined model of SC and 3 process metrics 

By employing these three additional models, we can determine which process metric is more 

effective in predicting the defect proneness.  

Table 5.4 represents the AUC values for all considered datasets for NB technique in 

combined model of static code and 1 process metric. It can be observed that combined model 

of SC and NR outperforms other combinations of SC and process metrics as in 87.5% of 

cases, combining NR with all SC metrics yields superior AUC values. 

 

Table 5.5 represents the AUC values for all considered datasets for NB technique in 

combined model of SC and 2 process metrics. It can be observed that combined mode of 

static code, NDC, and NR outperforms other combinations of SC and process metrics as in 

87.5% of cases, combining NR and NDC with all SC metrics yields superior AUC values. 
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Table 5.6 represents the AUC values for all considered datasets for NB technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NDC, NR, and NDPV outperforms other combinations of static code and process metrics 

as in all the considered datasets, combining NR, NDPV, and NDC metrics with all SC metrics 

yields superior AUC values. 

 

Table 5.7 represents the AUC values for all considered datasets for SVM technique in 

combined model of SC and 1 process metric. It can be observed that combined model of 
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static code and NR outperforms other combinations of SC and process metrics as in 62.5% 

of cases, combining NR metrics with all SC metrics yields superior AUC values. 

 

Table 5.8 represents the AUC values for all considered datasets for SVM technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 

static code, NR, and NML outperforms other combinations of SC and process metrics as in 

75% of cases, combining NR and NML metrics with all SC metrics yields superior AUC 

values. 

 

Table 5.9 represents the AUC values for all considered datasets for SVM technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 
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static code, NR, NML, and NDPV outperforms other combinations of SC and process metrics 

as in 75% of cases, combining NR, NML, and NDPV metrics with all SC metrics yields 

superior AUC values. 

 

Table 5.10 represents the AUC values for all considered datasets for DT technique in 

combined model of SC and 1 process metric. It can be observed that combined model of SC 

and NR outperforms other combinations of static code and process metrics as in 50% of 

cases, combining NR metrics with all SC metrics yields superior AUC values.

Table 5.11 represents the AUC values for all considered datasets for DT technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 
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SC, NR & NDC and combined model of SC, NDC & NDPV outperforms other combinations 

of SC and process metrics as in 37.5% of cases, combining NR and NDC with all SC metrics 

yields superior AUC values and also in other 37.5% of cases, combining NDC and NDPV 

with all SC metrics yields superior AUC values. 

 

Table 5.12 represents the AUC values for all considered datasets for DT technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NR, NML, and NDPV outperforms other combinations of SC and process metrics as in 

62.5% of cases, combining NR, NML and NDPV with all SC metrics yields superior AUC 

values. 
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Table 5.13 represents the AUC values for all considered datasets for stacking technique in 

combined model of SC and 1 process metric. It can be observed that combined model of SC 

and NR outperforms other combinations of SC and process metrics as in 62.5% of cases, 

combining NR metrics with all SC metrics yields superior AUC values. 

 

Table 5.14 represents the AUC values for all considered datasets for stacking technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 

SC, NDC, and NDPV outperforms other combinations of SC and process metrics as in 50% 

of cases, combining NDC and NDPV metrics with all SC metrics yields superior AUC 

values. 
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Table 5.15 represents the AUC values for all considered datasets for stacking technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NDC, NR, and NDPV outperforms other combinations of SC and process metrics as in 

75% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior 

AUC values. 

 

Table 5.16 represents the AUC values for all considered datasets for voting technique in 

combined model of SC and 1 process metric. It can be observed that combined model of SC 

and NR outperforms other combinations of SC and process metrics as in all of the considered 

datasets, combining NR metrics with all SC metrics yields superior AUC values. 
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Table 5.17 represents the AUC values for all considered datasets for voting technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 

SC, NR, and NDC outperforms other combinations of SC and process metrics as in 62.5% 

of cases, combining NR and NDC metrics with all SC metrics yields superior AUC values. 

 

Table 5.18 represents the AUC values for all considered datasets for voting technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NDC, NR, and NDPV outperforms other combinations of SC and process metrics as in 

87.5% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior 

AUC values. 
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Table 5.19 represents the AUC values for all considered datasets for bagging technique in 

combined model of SC and 1 process metric. It can be observed that combined model of SC 

and NR outperforms other combinations of SC and process metrics as in all of the considered 

datasets, combining NR metrics with all SC metrics yields superior AUC values. 

 

Table 5.20 represents the AUC values for all considered datasets for bagging technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 

SC, NDC, and NR outperforms other combinations of SC and process metrics as in 75% of 

cases, combining NR and NDC metrics with all SC metrics yields superior AUC values. 
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Table 5.21 represents the AUC values for all considered datasets for bagging technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NDC, NDPV and NR outperforms other combinations of SC and process metrics as in 

62.5% of cases, combining NR, NDC and NDPV metrics with all SC metrics yields superior 

AUC values. 

 

Table 5.22 represents the AUC values for all considered datasets for boosting technique in 

combined model of SC and 1 process metric. It can be observed that combined model of SC 

and NR outperforms other combinations of SC and process metrics as in 87.5% of cases, 

combining NR metrics with all SC metrics yields superior AUC values. 
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Table 5.23 represents the AUC values for all considered datasets for boosting technique in 

combined model of SC and 2 process metrics. It can be observed that combined model of 

SC, NDPV and NR outperforms other combinations of SC and process metrics as in 50% of 

cases, combining NR and NDPV metrics with all SC metrics yields superior AUC values. 

 

Table 5.24 represents the AUC values for all considered datasets for boosting technique in 

combined model of SC and 3 process metrics. It can be observed that combined model of 

SC, NDC, NDPV, and NR outperforms other combinations of SC and process metrics as in 

87.5% of cases, combining NR, NDC, and NDPV metrics with all SC metrics yields superior 

AUC values. 
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CHAPTER 6 

 

DISCUSSION ON RESULTS 

The predictive performance of classification and ensemble methods have been analysed 

based on whisker plots, bar charts and statistical tests in this section. AUC values for the 

model containing both the SC metric and process metric have been displayed in Fig 6.1. using 

the bar charts for all the datasets under consideration. For the classification and ensemble 

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all 

the datasets the mean AUC values are 0.882, 0.786, 0.86, 0.756, 0.753, 0.891, 0.901, 0.919, 

0.904. The results of Table 5.1 have also been analysed using statistical test such as Friedman 

test and it can be observed that the performances of the selected methods differ significantly, 

so post hoc test has been applied for pairwise comparison and it can be incurred from the 

outcomes that the difference between the performances of SVM and bagging and LR and 

bagging is significant. 

 

AUC values for the model containing SC metrics have been displayed in Fig 6.2 using the 

bar charts for all the datasets under consideration. For the classification and ensemble 

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all 

the datasets the mean AUC values are 0.831, 0.783, 0.811, 0.649, 0.849, 0.859, 0.867, 0.881, 
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0.874. The results of Table 5.2 have also been analysed using statistical test such as Friedman 

test and it can be observed that the performances of the selected methods differ significantly, 

so post hoc test has been applied for pairwise comparison and it can be incurred from the 

outcomes that the difference between the performances of SVM and bagging and SVM and 

boosting is significant. 

 

AUC values for the model containing process metric have been displayed in Fig 6.3 using 

the bar charts for all the datasets under consideration. For the classification and ensemble 

methods NB, KNN, DT, SVM, LR, Stacking, Voting, Bagging, and Boosting considering all 

the datasets the mean AUC values are 0.837, 0.809, 0.810, 0.709, 0.720, 0.857, 0.862, 0.867, 

0.847. The results of Table 5.3 have also been analysed using statistical test such as Friedman 

test and it can be observed that the performances of the selected methods differ significantly, 

so post hoc test has been applied for pairwise comparison and it can be incurred from the 

outcomes that the difference between the performances of SVM and bagging and LR and 

bagging is significant. 
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We conducted an analysis on various models to assess the impact of process metrics on defect 

proneness. Different classifiers and ensemble techniques were employed for this purpose. 

Furthermore, we explored additional models within each classifier and ensemble technique 

to determine which combination of process metrics yields improved prediction performance. 

The experimental results indicate that the combination model produces superior predictions 

when utilizing NB, DT, and SVM classifiers. Moreover, the results from all ensemble 

techniques demonstrate that the combination model leads to improved prediction outcomes. 

Notably, the process metrics NR, NDC, and NDPV consistently display the highest 

effectiveness across most analyzed cases. Fig 6.1, fig 6.2, and fig 6.3 indicates that 

combination of process and static code metrics outperform the individual model of static code 

metrics and process metrics. In this section, we utilize bar charts and statistical tests to 

analyze the AUC results, and in cases where the null hypothesis is rejected, we calculate the 

effect size. Table 5.4 has been analyzed statistically, the outcome shows that the calculated 

p-value is 0.002 and 𝛘2-statistics is 19.108 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected, so with an effect size of 0.455 at least one of the model’s performance 

differ considerably thus indicating the difference amongst the models will slightly effect the 
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performance of prediction, further Nemenyi post hoc test is applied to check the pairwise 

model’s comparison, as the results differs significantly, and it is determined that model 

containing SC+NR metrics and model containing SC+NDPV & also model containing 

SC+NML metrics and model containing SC+NDPV will have a significant difference 

between them. For table 5.4 the bar chart has been represented by Figure 6.4. It can be 

observed that combination of static code and NR outperforms other combinations of static 

code and process metrics. 

 

Table 5.5 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0004 and 𝛘2-statistics is 22.37 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which 

is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so 

with an effect size of 0.319 at least one of the model’s performance differ considerably thus 

indicating the difference amongst the models will slightly effect the performance of 

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s 

comparison, as the results differs significantly, and it is determined that model containing 

NR+SC+NDC & model containing NR+SC+NML, model containing NR+SC+NDC & 

model containing NDC+SC+NDPV, and also model containing NDPV+SC+NR & model 

containing NDC+SC+NDPV will have a significant difference between them. For table 5.5 
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the bar chart has been represented by Figure 6.5. It can be observed that combined model of 

static code, NR and NDC outperforms other combinations of static code and process metrics. 

 

Table 5.6 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0004 and 𝛘2-statistics is 17.75 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which 

is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so 

with an effect size of 0.423 at least one of the model’s performance differ considerably thus 

indicating the difference amongst the models will slightly effect the performance of 

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s 

comparison, as the results differs significantly, and it is determined that model containing 

NR+NML+SC+NDC & model containing NR+NDPV+SC+NDC, model containing 

NR+NDPV+SC+NDC & model containing NR+NDPV+SC+NML, and also model 

containing NR+NDPV+SC+NML & model containing NML+NDPV+SC+NDC will have a 

significant difference between them. For table 5.6 the bar chart has been represented by 

Figure 6.6. It can be observed that combined model of static code, NR, NDPV, and NDC 

outperforms other combinations of static code and process metrics. 
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Table 5.7 has been analyzed statistically, the outcome shows that the calculated p-value is 

2.68e-05 and 𝛘2-statistics is 23.84 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected, so with an effect size of 0.567 at least one of the model’s performance 

differ considerably thus indicating the difference amongst the models will slightly effect the 

performance of prediction, further Nemenyi post hoc test is applied to check the pairwise 

model’s comparison, as the results differs significantly, and it is determined that model 

containing SC+NR & model containing SC+NDC, model containing SC+NR & model 

containing SC+NDPV, and also model containing SC+NML metrics & model containing 

SC+NDPV will have a significant difference between them. For table 5.7 the bar chart has 

been represented by Figure 6.7. It can be observed that combined model of static code and 

NR outperforms other combinations of static code and process metrics. 
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Table 5.8 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0004 and 𝛘2-statistics is 22.40 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which 

is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected, so 

with an effect size of 0.32 at least one of the model’s performance differ considerably thus 

indicating the difference amongst the models will slightly effect the performance of 

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s 

comparison, as the results differs significantly, and it is determined that model containing 

NR+SC+ NML & model containing NDC+SC+NDPV and model containing 

NR+SC+NDPV & model containing NDC+SC+NDPV will have a significant difference 

between them. For table 5.8 the bar chart has been represented by Figure 6.8. It can be 

observed that combined model of static code, NML, and NR outperforms other combinations 

of static code and process metrics. 
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Table 5.9 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0032 and 𝛘2-statistics is 13.736 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 2 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected, so with an effect size of 0.32 at least one of the model’s performance 

differ considerably thus indicating the difference amongst the models will slightly effect the 

performance of prediction, further Nemenyi post hoc test is applied to check the pairwise 

model’s comparison, as the results differs significantly, and it is determined that model 

containing SC+NDPV+NR+NML & model containing SC+NML+NDC+NDPV.  

For table 5.9 the bar chart has been represented by Figure 6.9. It can be observed that 

combined model of static code, NML, NDPV, and NR outperforms other combinations of 

static code and process metrics. 
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Table 5.10 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.578 and 𝛘2-statistics is 1.971 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which 

is 7.815 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted. 

For table 5.10 the bar chart has been represented by Figure 6.10. It can be observed that 

combined model of static code and NR outperforms other combinations of static code and 

process metrics. 
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Table 5.11 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.3819 and 𝛘2-statistics is 5.286 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 significance level which 

is 11.070 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted. 

For table 5.11 the bar chart has been represented by Figure 6.11. It can be observed that 

combined model of static code, NDC, and NR outperforms other combinations of static code 

and process metrics. 

 

 

Table 5.12 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.2009 and 𝛘2-statistics is 4.630 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which 

is 7.815 i.e., greater than the 𝛘2-statistics calculated, hence the null hypothesis is accepted. 

For table 5.12 the bar chart has been represented by Figure 6.12. It can be observed that 

combined model of static code, NML, NDPV, and NR outperforms other combinations of 

static code and process metrics. 
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Table 5.13 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0015 and 𝛘2-statistics is 15.345 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.365, at least one of the model’s 

performances differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NR & model containing SC+NML and model 

containing SC+NDC & model containing SC+NML will have a significant difference 

between them. For table 5.13 the bar chart has been represented by Figure 6.13. It can be 

observed that combined model of static code and NR outperforms other combinations of 

static code and process metrics. 
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Table 5.14 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0006 and 𝛘2-statistics is 21.567 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.308, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing NR+SC+NDPV & model containing NML+SC+NDPV 

and model containing NDC+SC+NDPV & model containing NML+SC+NDPV will have a 

significant difference between them. For table 5.14 the bar chart has been represented by 

Figure 6.14. It can be observed that combined model of static code, NDPV, and NDC 

outperforms other combinations of static code and process metrics. 
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Table 5.15 has been analyzed statistically, the outcome shows that the calculated p-value is 

9.38e-05 and 𝛘2-statistics is 21.239 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.505, at least one of the model’s 

performances differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NDC+NDPV will have a significant difference between them.  

For table 5.15 the bar chart has been represented by Figure 6.15. It can be observed that 

combined model of static code, NR, NDPV, and NDC outperforms other combinations of 

static code and process metrics. 
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Table 5.16 has been analyzed statistically, the outcome shows that the calculated p-value is 

3.99e-06 and 𝛘2-statistics is 27.804 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.662, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NR & model containing SC+NML, model containing 

SC+NR & model containing SC+NDPV, model containing SC+NDC & model containing 

SC+NDPV, and model containing SC+NDC & model containing SC+NML will have a 

significant difference between them. For table 5.16 the bar chart has been represented by 

Figure 6.16. It can be observed that combined model of static code and NR outperforms other 

combinations of static code and process metrics. 
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Table 5.17 has been analyzed statistically, the outcome shows that the calculated p-value is 

3.77e-09 and 𝛘2-statistics is 47.868 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.684, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing NR+SC+NDC & model containing NR+SC+NML, model 

containing NR+SC+NDC & model containing NDC+SC+NML, model containing 

NR+SC+NDC & model containing NML+SC+NDPV, model containing NR+SC+NML & 

model containing SC+NDC+NML, model containing SC+NR+NML and model containing 

NML+SC+NDPV, model containing NDC+SC+NML & model containing 

NDC+SC+NDPV, and model containing NDC+SC+NDPV & model containing 

NML+SC+NDPV will have a significant difference between them. For table 5.17 the bar 

chart has been represented by Figure 6.17. It can be observed that combined model of static 

code, NDC, and NR outperforms other combinations of static code and process metrics. 
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Table 5.18 has been analyzed statistically, the outcome shows that the calculated p-value is 

1.50e-06 and 𝛘2-statistics is 29.826 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.710, at least one of the model’s 

performances differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NDC+NR+NML & model containing 

SC+NML+NDC+NDPV, model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NR+NDPV, and  model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NDC+NDPV will have a significant difference between them.  

For table 5.18 the bar chart has been represented by Figure 6.18. It can be observed that 

combined model of static code, NDC, NDPV, and NR outperforms other combinations of 

static code and process metrics. 
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Table 5.19 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0001 and 𝛘2-statistics is 20.61 at 0.05 significance taking Friedman test into consideration, 

and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 significance level which 

is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null hypothesis is rejected. So, 

with an effect size of 0.490, at least one of the model’s performance differ considerably thus 

indicating the difference amongst the models will slightly effect the performance of 

prediction, further Nemenyi post hoc test is applied to check the pairwise model’s 

comparison, as the results differs significantly, and it is determined that model containing 

SC+NR & model containing SC+NML, model containing SC+NR & model containing 

SC+NDPV, and model containing SC+NDC & model containing SC+NDPV will have a 

significant difference between them. For table 5.19 the bar chart has been represented by 

Figure 6.19. It can be observed that combined model of static code and NR outperforms other 

combinations of static code and process metrics. 

 



 

56 
 

 

Table 5.20 has been analyzed statistically, the outcome shows that the calculated p-value is 

1.069e-06 and 𝛘2-statistics is 35.74 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.511, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing NR+SC+NDC & model containing NDC+SC+NML, 

model containing NR+SC+NDC & model containing NDPV+SC+NML, model containing 

NR+SC+NDPV & model containing NML+SC+NDC, and model containing 

NR+SC+NDPV & model containing NML+SC+NDPV will have a significant difference 

between them. For table 5.20 the bar chart has been represented by Figure 6.20. It can be 

observed that combined model of static code, NDC, and NR outperforms other combinations 

of static code and process metrics. 
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Table 5.21 has been analyzed statistically, the outcome shows that the calculated p-value is 

1.50e-06 and 𝛘2-statistics is 29.826 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.710, at least one of the model’s 

performances differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NDC+NR+NML & model containing 

SC+NDC+NR+NDPV, model containing SC+NDC+NR+NML & model containing 

SC+NML+NDC+NDPV, model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NR+NDPV, and  model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NDC+NDPV will have a significant difference between them. For table 5.21 the 

bar chart has been represented by Figure 6.21. It can be observed that combined model of 

static code, NDC, NDPV, and NR outperforms other combinations of static code and process 

metrics. 
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Table 5.22 has been analyzed statistically, the outcome shows that the calculated p-value is 

0.0003 and 𝛘2-statistics is 18.625 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.444, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NR & model containing SC+NML, model containing 

SC+NR & model containing SC+NDPV, and model containing SC+NDC & model 

containing SC+NML will have a significant difference between them. For table 5.22 the bar 

chart has been represented by Figure 6.22. It can be observed that combined model of static 

code and NR outperforms other combinations of static code and process metrics. 
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Table 5.23 has been analyzed statistically, the outcome shows that the calculated p-value is 

1.423e-08 and 𝛘2-statistics is 45.04 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 5 at 0.05 

significance level which is 11.070 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.643, at least one of the model’s 

performance differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing NR+SC+NDC & model containing NR+SC+NML, model 

containing NR+SC+NDC & model containing NDC+SC+NML, model containing 

NR+SC+NDC & model containing NML+SC+NDPV, model containing NDC+SC+NDPV 

& model containing NML+SC+NDPV, model containing NDC+SC+NML & model 

containing NDC+SC+NDPV, model containing NR+SC+NDPV & model containing 

NML+SC+NDPV, and model containing NR+SC+NML & model containing 

NR+SC+NDPV will have a significant difference between them. For table 5.23 the bar chart 

has been represented by Figure 6.23. It can be observed that combined model of static code, 

NDC, and NR outperforms other combinations of static code and process metrics. 
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Table 5.24 has been analyzed statistically, the outcome shows that the calculated p-value is 

1.65e-05 and 𝛘2-statistics is 24.860 at 0.05 significance taking Friedman test into 

consideration, and when compared to 𝛘2 value with degree of freedom as 3 at 0.05 

significance level which is 7.815 i.e., lower than the 𝛘2-statistics calculated, hence the null 

hypothesis is rejected. So, with an effect size of 0.592, at least one of the model’s 

performances differ considerably thus indicating the difference amongst the models will 

slightly effect the performance of prediction, further Nemenyi post hoc test is applied to 

check the pairwise model’s comparison, as the results differs significantly, and it is 

determined that model containing SC+NDC+NR+NML & model containing 

SC+NDC+NR+NDPV, model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NDC+NDPV, and  model containing SC+NDC+NR+NDPV & model containing 

SC+NML+NR+NDPV will have a significant difference between them.  

For table 5.24 the bar chart has been represented by Figure 6.24. It can be observed that 

combined model of static code, NDC, NDPV, and NR outperforms other combinations of 

static code and process metrics. 
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CHAPTER 7 

 

CONCLUSION AND FUTURE SCOPE 

 

 

7.1 Conclusion 

In the area of software defect prediction numerous models have been existing and are 

explored. A wide range of those use static code metrics to detect defective software codes or 

programs. In this project the efficiency of process metrics or variable have been analyzed 

using classification and ensemble methods on the basis of AUC values, bar graphs, and 

statistical test.  

 

It can be concluded that bagging outperforms all the selected classification and ensemble 

methods. All the selected techniques (NB, SVM, LR, KNN, DT, stacking, bagging, voting, 

and boosting) except logistic regression and KNN performs better in combined model. We 

can also conclude that ensemble methods produce better results as compared to the classical 

classification algorithms.  

 

In case of combined model of SC and 1 process metrics, NR is most effective process metrics. 

In case of combined model of SC and 2 process metrics, NR+NDC is most effective. In case 

of combined model of SC and 3 process metrics, NR+NDC+NDPV is most effective.  

 

7.2 Future Scope 

Other process metrics can also be analyzed using classification and ensemble techniques. 

The number of defects can be predicted using regression methods while considering the same 

datasets which have been used in this research. Effort or maintainability can also be 

considered as dependent variables instead of bugs. 
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