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                                                 ABSTRACT 

A person interacts with many different machines throughout their lifetime. 

Emotions also play a crucial and inevitable role in everyone's life, as they can 

trigger various thoughts, feelings, and behavioural responses. The 

Electroencephalogram (EEG) signal, which measures brain activity in the scalp 

region, is the most effective tool for tracing response changes. Emotion 

classification utilizing the physiological signal EEG has been conducted using 

the AMIGOS dataset. Before the emotion classification, the study extracted 

features from the EEG signals using the time domain feature Power Spectral 

Density (PSD) and time and frequency domain feature Wavelet entropy. Data 

cleaning and preprocessing were performed to prevent biased results caused by 

missing values among different users, which involved handling and addressing 

missing values. The study utilized Support Vector Machine, Artificial Neural 

Network (ANN), and Convolutional Neural Network with Overlapping and Non-

Overlapping Sliding Window techniques, all based on machine learning and deep 

learning. Finally, the study classified emotions regarding Arousal, Valence, and 

Dominance.  
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Chapter 1  

 

1.1 Introduction: 

 

Estimating human emotions from electroencephalogram (EEG) signals is 

essential for creating a reliable Brain-Computer Interface (BCI) system. Rather 

than behavioural responses, physiological signals can represent difficult-to-hide 

alterations in the central nervous system strongly linked to people's emotional 

states. Many BCI studies have identified and recognized the user's affective state 

and used the results in various settings. 

 

Brain activity produces different signals, including magnetic and electric ones 

[25]. This brain activity can be detected using various invasive and non-invasive 

methods. While non-invasive techniques do not require surgical intervention, 

invasive approaches involve implanting a specific device in the brain.  

 

EEG is useful for getting brain waves from the scalp surface that correlate to 

various states. EEG is frequently employed in BCI research investigations 

because it is non-invasive to the research subject and poses no risk [25]. Fig. 1 

shows the frequency bands of the EEG signal. 
          

                                     
                                                Fig. 1 Frequency Bands of EEG signal [19] 
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Discrete and Dimensional emotional models are employed to construct the 

emotional space. According to the discrete model, the emotional space consists 

of only a few basic discrete emotions, such as anger, happiness, fear, disgust, 

surprise, and sadness [20].in the dimensional model, emotions are defined as 

points in a dimensional space. The researchers have proposed two-three-

dimensional models: Valence-Arousal and Valence-Arousal-Dominance [21]. 
                                
                                 
 

       
 

                        Fig. 2 Two-dimensional valence-arousal space [21] 

 

 

 

 

The positive degree of emotion is called Valence [22], and the strength of emotion 

is called arousal. Dominance is the degree of perceived control over a person's 

emotional state. 
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1.2 Centralized Machine Learning 

 

Endpoint devices storing data have significantly increased with the Internet of 

Things (IoT) advancement. Significant storage capacity and high-end resources 

are required to store and transfer this data to one location. Combining all the data 

from these devices and performing model training on a central server is called 

centralized machine learning, as shown in Fig. 3. A large volume of data is 

collected in centralized machine learning with powerful computing resources, 

resulting in a highly accurate model. 

 

There is only a limited amount of data available, or poor-quality data exists; data 

is available on different devices across the globe. It would be challenging to break 

the barriers and use the data from all the devices without violating privacy 

concerns. Federated learning is one such method that provides solutions to given 

problems. 
                             

                             
                           

   Fig. 3 Centralised Machine Learning [23] 
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1.3 Federated Learning: 

 

Federated learning is a novel approach to machine learning that differs from 

traditional centralized training methods. Instead of relying on a central server to 

process data, Federated learning enables individual users located in different 

locations to train the model with their local data. This decentralized approach 

ensures that users can train the model without sharing their data with other 

participants, which helps to protect user privacy. 

 

In Federated learning, each user's device acts as a node that processes the local 

data to update the global model. Unlike traditional centralized training methods, 

where the server processes all data, each edge device computes the updates on 

the raw data and shares only the updates with the central server rather than sharing 

the actual raw data. This approach helps to reduce the amount of data that needs 

to be transferred between devices and ensures that users retain control over their 

data. 

 

To initiate the training process, the server shares variables from the global model 

with the local model on the client side. Then, the updated global model is returned 

to each client to enhance the accuracy of the classification model. FedAvg, an 

aggregation technique that employs Stochastic Gradient Descent (SGD) 

optimization, aggregates the updates from multiple clients. This approach ensures 

the resulting model is accurate and reliable while maintaining user privacy. 

Overall, Federated learning is a promising approach to machine learning that has 

the potential to revolutionize the field while also protecting user privacy. 

 
 

 
                           
                                               Fig. 4 Federated Learning [6] 
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1.4 Problem Statement: 

 
 

Emotion is an individual's interpersonal state generated by a person's thoughts. 

Comprehending human emotions is crucial in various fields, including brain-

computer interfaces, affective computing, and healthcare. With the recent 

development in technology, it has become easier to access and monitor the 

physiological signals of a person using wearable devices, smartphones, etc. 

Electroencephalogram (EEG) signals can accurately and inexpensively identify 

emotions due to their non-invasiveness and straightforward installation of the 

device in the brain to record brain activity [25]. Improving Human-Robot 

Interaction (HRI) involves enabling robots to recognize and react to the emotions 

of others, thus allowing them to act socially [26]. 

 

 

1.5 Objectives: 
 

 

● To implement emotion recognition based on EEG signal using 

Overlapping Sliding Window (OSW) and Non-Overlapping Sliding 

Window (NOSW) based techniques. 

 

 

● To implement a Support Vector Machine (SVM), Artificial Neural 

Network (ANN), and Convolutional Neural Network (CNN) on OSW and 

NOSW-based techniques. 

 

 

● Compare the accuracies of both approaches and decide on the better  

          approach for emotion classification on physiological data 
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 Chapter 2: Literature Review 

 

 

2.1 Electroencephalography (EEG): 

 

The human brain is a complex organ that produces various signals, including 

electrical and magnetic signals. To study these signals, researchers employ 

different methods, including invasive and non-invasive approaches. Invasive 

methods require surgical intervention to implant specific devices in the brain, 

while non-invasive methods do not require such procedures. One of the most 

widely used non-invasive methods is Electroencephalography (EEG), which 

records the brain's electrical activity through electrodes placed on the scalp. 

This direct method allows researchers to monitor the current flow of neurons in 

the brain and generate EEG waves, which record voltage fluctuations over time. 

EEG is widely used in clinical and research settings due to its accessibility and 

safety. This method allows researchers to study brain activity in real-time and 

gain valuable insights into neurological disorders and brain function. 

 

2.2 Types of Signals 

 

 

In terms of signal types, EEG measures voltage as a function of time and is 

highly dependent on the degree of activity of the cerebral cortex [33][34]. EEG 

signals are classified based on various factors such as frequency, magnitude, 

and wave morphology. These characteristics can help classify the signals, along 

with their spatial distribution and reactivity. One popular method for 

classification is to group EEG waveforms into different frequency bands[35]. 

This approach can help researchers better understand the patterns and behaviour 

of EEG signals, which can ultimately lead to new insights and discoveries in the 

field. Five different frequency bands associated with a mental state can 

decompose EEG signals. These frequency bands include: 

 

 

   1. Delta (0.5-4Hz): Indicative of deep sleep or unconsciousness 

   2. Theta (4-8Hz): Indicative of drowsiness or meditative state 

   3. Alpha (8-12Hz): Indicative of relaxation or idling 

   4. Beta (12-30Hz): Indicative of alertness or focused concentration 

   5. Gamma (30-100Hz): Indicative of increased cognitive processing or 

heightened perception. 
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1. Delta Waves (0.5-4 Hz): Delta waves, which have a frequency of 0.5-4 

Hz, make us feel rejuvenated after sleep. They are also a source of empathy 

and take away external awareness. Excessive delta waves in the brain can 

result in learning difficulties, brain damage, and cognitive impairment. 

Conversely, insufficient delta waves can indicate a lack of restorative sleep 

and an inability of the body to recharge and revitalize itself. 

 

 
                                              

                                       Fig. 5 Delta Wave [9] 

 

 

 

2. Theta Waves (4-8 Hz): Theta waves, which have a 4-8 Hz frequency, are 

mainly emitted during sleep but are also present during deep meditation. 

Theta activity is often associated with learning, instinct, and memory. 

However, researchers have linked excessive theta activity to impulsivity, 

hyperactivity, depression, or inattentiveness. In contrast, a lack of theta 

waves indicates stress, poor emotional awareness, and anxiety. Theta 

waves are also associated with memory encoding during challenging tasks 

and can be observed in the early stages of sleep when one is feeling drowsy. 

 

 

 
                                          

                                                      Fig. 6 Theta Wave [9] 
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3. Alpha Waves (8-13 Hz): Alpha waves, which have a frequency of 8-13 

Hz, are responsible for mental coordination, learning, body/mind 

integration, and alertness. They can also help calm us down and relax the 

mind. On the other hand, too many alpha waves can lead to daydreaming 

and an inability to focus. Beta waves, which have a frequency of 13-30 Hz, 

are dominant when alert and engaged in cognitive activities. The right 

amount of beta waves can help us focus and efficiently perform tasks. 

However, excessive beta waves may lead to stress, anxiety, and an inability 

to relax or sleep. It is interesting to note that caffeine and other stimulants 

can increase beta activity in the brain. 

 

 

 
                                       

                                   Fig. 7 - Alpha Wave [9] 

 

 

4. Beta Waves (13-30 Hz): Understanding that beta brainwaves are crucial 

to our mental state is essential. When we are involved in cognitive 

activities related to the external world, these emotions dominate our minds. 

Beta waves are present when we are focused, alert, and actively solving 

problems or making decisions. They help us perform tasks with ease and 

concentration. However, too much beta can lead to stress, anxiety, and an 

inability to relax or sleep. Low beta waves are associated with 

daydreaming, depression, and poor cognition. Excessive adrenaline rush 

and arousal are caused by the high amount of beta waves, making it 

challenging to unwind. Consuming energy drinks, coffee, and other 

stimulants can potentially increase beta activity in the brain. 
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                                             Fig. 8 – Beta Wave [9] 

 

 

5. Gamma Waves (30-60 Hz): Gamma brainwaves are the fastest among all 

brainwave frequencies, and they indicate the simultaneous processing of 

information from multiple brain regions. During high-level cognitive 

processing, these waves become dominant and can be observed, such as 

combining different senses like sight and sound. Surprisingly, individuals 

with learning disabilities who have intellectual challenges tend to have 

lower gamma activity than those without such disabilities. 

 

           

 
 

                                           Fig. 9 – Gamma wave [9] 
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2.3 Artifacts: 

 

Artifacts or noise are undesirable signals that contaminate the brain waves 

while measuring the EEG signals [46]. We can broadly categorize such 

artefacts into two categories. 

 

a) Physiological Artifacts:  

 

These various physiological artifacts are generated by the human body during 

different bodily activities such as eye movement and blinking, heart rate, head 

movement, jaw and tongue movement, and respiration. The electrooculogram 

(EOG) is a type of artifact caused by eye movement and blinking and is 

typically present below the frequency range of 4Hz. On the other hand, the 

electrocardiography (ECG) and electromyography (EMG) are generated by 

heart rate and muscle activity, respectively, and are present primarily above 

30Hz. Out of all these physiological artifacts, EMG and EOG artifacts are 

typically regarded as being the most relevant for studies in human-computer 

interaction (HCI)[11][12][13][14]. 

 

b) Non-physiological artefacts:  

 

Such artefacts originate from outside the human body. The primary sources 

of non-physiological artefacts are 50/ 60 Hz power line interference, variation 

in electrode impedance, dirt, and wire quality [45]. 

 

2.4 Features Used: 

 

a) Power Spectral Density: 

 

To accurately determine an EEG signal's Power Spectral Density (PSD), it is 

imperative to first convert the signal from the time domain to the frequency 

domain. Achieving this can be done using the Fast Fourier Transform (FFT) 

algorithm, a mathematical technique that enables the analysis of the signal in 

terms of its frequency content. Once the signal transforms into the frequency 

domain, it becomes possible to analyze its spectral characteristics in greater 

detail. 

 

 

Power Spectral Density (PSD) is a critical measure used in signal processing 

to evaluate the frequency characteristics of a signal. It is a mathematical 

representation that allows for examining power distribution across various 

frequencies within a signal. One typically applies the Fourier Transform to 

the signal to obtain the Power Spectral Density (PSD), converting it from the 
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time domain to the frequency domain and then calculating the squared 

magnitude of the resulting complex values. By squaring the magnitude, PSD 

captures the signal's power or energy content of each frequency component. 

 

 

                     

 

 

    𝑃𝑆𝐷(𝑓) =  |𝑋(𝑓)|2 

 

Where: 

 

● PSD(f) represents the Power Spectral Density at frequency f 

● X(f) denotes the Fourier Transform of the signal at frequency f 

 

 

To calculate the PSD, Welch's method [24] is commonly used. This method 

involves dividing the signal into overlapping segments, computing a 

periodogram estimate for each segment, and then averaging the periodograms 

together to obtain an estimate of the PSD. This technique is beneficial for 

signals with non-stationary characteristics, as it allows for a more accurate and 

reliable estimate of the PSD. 

 

 

PSD analysis provides crucial insights into a signal's frequency composition 

and underlying dynamics. It helps identify the presence and strength of 

different frequency components, such as delta, theta, alpha, beta, and gamma 

waves in EEG signals. PSD analysis can aid in developing effective treatment 

procedures and therapies by providing detailed information about a signal's 

frequency components. It can identify abnormalities in brain activity, 

characterize sleep patterns, investigate stimuli's effects on neural activity, and 

assess different physiological or pathological conditions' impact on signal 

properties. 

 

The PSD signals undergo preprocessing to eliminate unwanted noise or 

components. Windowing functions, such as the Hamming, Hanning, and 

Blackman windows, reduce spectral leakage and distortions in the signal's 

frequency content. The Discrete Fourier Transform (DFT) of the windowed 

signal is then calculated using the Fast Fourier Transform (FFT) algorithm. 

The DFT values' squared magnitude for each frequency bin obtained from the 

FFT is calculated, and the PSD values are normalized by dividing them by 

either the total power of the signal or the total number of samples used in the 
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calculation. The DFT or FFT algorithms are used in practical applications to 

efficiently compute the PSD of discrete-time signals. 

 

It is important to note that PSD is a frequency domain feature, meaning that 

although it can identify every frequency present in the signal, we cannot 

pinpoint their specific locations. This limitation is because the frequency 

domain representation of a signal does not provide any information about the 

temporal characteristics of the signal. Therefore, it is essential to consider 

both time and frequency domain analysis techniques when analyzing EEG 

signals. 

 

 

b) Wavelet Entropy: 

 

 

Wavelet Entropy is a highly technical term commonly used in signal 

processing. This term refers to a feature calculated using the Discrete Wavelet 

Transform (DWT) method in the time-frequency domain. The DWT is a 

widely accepted signal processing technique which isolates distinct signal 

frequencies at various levels. In this study, researchers employed the 

Daubechies4 (db4) wavelet as the mother wavelet for the analysis. 

 

 

 

The wavelet entropy originates from the wavelet transform, which 

decomposes a signal into various frequency components at multiple scales. It 

provides valuable information about the energy distribution or information 

across these scales, which can help analyze and understand signals. 

 

 

 

We typically need to preprocess the signal by removing noise or unwanted 

components to calculate the wavelet entropy. Next, one applies the wavelet 

transform to decompose the signal into different scales or resolutions. 

Typically, researchers perform this using a specific wavelet basis, such as 

Daubechies, Haar, or Symlet. Once we have decomposed the signal, we 

calculate the normalized coefficients at each scale or resolution. 

Normalizing the coefficients ensures that their sum is equal to 1, which 

allows for a consistent entropy calculation across different scales. Finally, 

we calculate the wavelet entropy by taking the squared normalized 

coefficient (Di
^2) at each scale (where Di denotes the normalized coefficient 

at the ith scale or resolution), multiplying it by the logarithm of the squared 
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coefficient, and then summing up these values for all scales. The resulting 

wavelet entropy value measures the signal's complexity or irregularity 

across different scales, with higher entropy values indicating higher 

complexity or irregularity and lower entropy values indicating more regular 

or predictable patterns. 

Overall, wavelet entropy is a powerful tool in signal processing that can 

provide a wealth of information about the underlying structure of complex 

signals. The process involved in calculating wavelet entropy begins with the 

decomposition of the signal into multilevel wavelet coefficients. These 

coefficients are then used to calculate the wavelet energy by dividing the 

mother signal into two parts: cAn and cDn. The approximation coefficient, 

cAn, represents the low frequency at the nth level of the signal. In contrast, 

the coefficient at the nth level of the signal denotes the high frequencies, 

denoted by cDn. Analyzing these coefficients provides valuable insights into 

the signal's properties. 

 

 
Fig.10 - Wavelet decomposition of different bands [31] 
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2.5 List of features used in previous work done on the AMIGOS dataset 

[10] 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: List of abbreviations used [9][37][38][39] 
 
 

 

Researchers have used various features for emotion recognition using EEG 

signals. Table 1 summarises the list of features used in previous work done on 

the AMIGOS dataset [10]. The description of all the features are as follows: 

 

The Fractal Dimension: The fractal dimension measures the complexity or 

irregularity of a signal. In the context of EEG signals, the fractal dimension 

quantifies the self-similarity and intricacy of the recorded brain activity. It 

provides insights into the complexity of neural dynamics and can be used to 

study the organization and structure of the EEG signal. Topic A. et al. [9] have 

used this feature. 

 

Hjorth Activity: Hjorth activity is a feature that characterizes the signal's 

overall amplitude or activity level. It measures the overall power or energy of 

the EEG signal and can provide information about the intensity of neural 

activity. To compute Hjorth Activity, one calculates the variance of the signal. 

Hjorth Activity features have been used by Shukla et al. [39] and Topic A. et al. 

[9] 

 

Hjorth Mobility: Hjorth mobility [39][9] is a feature that describes the signal's 

rate of change or mobility. It quantifies the signal's variability or movement 

over time. In the context of EEG signals, Hjorth mobility can capture changes in 

brain activity dynamics and indicate how the signal transitions between 

different states or frequencies. 

List of abbreviations used  

TFD The Fractal Dimension 

HA Hjorth Activity 

HM Hjorth Mobility 

HC Hjorth Complexity 

RMS Root Mean Square 

PSD Power Spectral Density 

DE Differential Entropy 

IBI Inter beat intervals 

AMP Amplitude 

RT Rise Time 

ST Statistical features (mean, standard deviation) 

DWT Discrete Wavelet Transform 

SWT Stationary Wavelet Transform 

TF Multivariate time-frequency image 
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Hjorth Complexity: Hjorth complexity is a feature that characterizes the 

signal's irregularity or complexity. It combines measures of activity and 

mobility to provide insights into the signal's complexity dynamics. Hjorth 

complexity [39][9] can capture the non-linear and dynamic aspects of the EEG 

signal, reflecting the underlying neural processes. 

 

Root Mean Square (RMS): Root mean square measures a signal's average 

power or amplitude. In the context of EEG signals, RMS calculates the square 

root of the average of the squared amplitudes of the signal. It provides 

information about the overall magnitude or intensity of the EEG signal. Topic 

A. et al. [9] have used this feature. 

 

 

Power Spectral Density (PSD): Power spectral density is a frequency domain 

feature that characterizes power distribution across different frequencies in the 

EEG signal. It provides insights into the relative contribution of different 

frequency bands to the overall signal. PSD analysis helps identify the dominant 

frequency components and their respective power levels, which can be 

associated with different brain activities or states. Miranda-Correa et al. [10], . 

Topic A. et al. [9] and S. Siddharth et al[16 have used this feature  

 

Differential Entropy: Differential entropy measures a signal's uncertainty or 

randomness. In the context of EEG signals, differential entropy quantifies the 

complexity and information content of the signal. It provides insights into the 

diversity and variability of the EEG signal, which can be related to different 

cognitive or emotional states. Topic A. et al. [9] have used this feature. 

 

 

Interbeat Intervals (IBI): Interbeat intervals measure the time intervals 

between consecutive heartbeats. In the context of EEG signals, IBIs can provide 

insights into heart rate variability, which is associated with physiological and 

emotional states. Variations in IBIs can indicate changes in arousal levels or 

emotional responses. Santamaria-Granados et al. [37], L. Santamaria-Granados 

et al.[15] and S. Siddharth et al[16] have used this feature. 

 

Amplitude: Amplitude refers to the magnitude or strength of the EEG signal. It 

measures the voltage or intensity of the electrical activity recorded from the 

brain. Amplitude can reflect the strength of neural activity and indicate the 

intensity or amplitude of underlying brain processes. Santamaria-Granados et al. 

[37], Shukla et al. [39] and L. Santamaria-Granados et al.[15] have used this 

feature. 
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Rise Time: Rise time measures the time it takes for a signal to increase from a 

certain threshold level to its peak value. In EEG signals, rise time can provide 

information about the speed or rate of brain activity change. It can be relevant 

for analyzing transient responses or rapid changes in neural activity associated 

with specific events or stimuli. Shukla et al. [39] and L. Santamaria-Granados et 

al.[15] have used this feature. 

 

 

Statistical Features (Mean, Standard Deviation): Statistical features such as 

mean and standard deviation provide information about the central tendency and 

variability of the EEG signal. Mean represents the average value of the signal, 

while standard deviation quantifies the dispersion or spread of the data points. 

These statistical features can capture the overall level and variability of the EEG 

signal, which can be relevant for differentiating between different physiological 

or emotional states. Shukla et al. [39] have used this feature. 

 

 

 

Discrete Wavelet Transform (DWT): The discrete wavelet transform is a 

mathematical technique that decomposes a signal into different frequency 

components at different scales. In the context of EEG signals, DWT can capture 

both localized and global frequency content. It provides a time-frequency 

representation that reveals how different frequency components contribute to 

the signal at different time points. Shukla et al. [39] have used this feature. 

 

Stationary Wavelet Transform (SWT): The stationary wavelet transform is a 

variation of the wavelet transform that preserves the signal's temporal 

information. It decomposes the signal into different frequency components 

while retaining the original signal length. SWT is useful for analyzing non-

stationary signals like EEG, where the signal properties may change over time. 

Shukla et al. [39] have used this feature. 

 

Multivariate Time-Frequency Image: A multivariate time-frequency image 

represents the time-varying frequency content of multichannel signals such as 

EEG. It combines the time and frequency domains to visually represent how 

different frequency components evolve over time across multiple channels. This 

representation can facilitate the analysis of complex patterns and interactions 

between different brain regions. Padhmashree, V., & Bhattacharyya, A [38] 

have used this feature. 
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Chapter 3 

Related Work 

Researchers have used various approaches to identify emotion through 

physiological signals. Topic A. et al. [9] have proposed using EEG signal 

properties to create holographic and topographic feature maps, which they term 

HOLO-FM and TOPO-FM, respectively. In this study, researchers used CNN and 

Support Vector Machine for classification. Using HOLO-FM, the accuracy for 

Valence was 80.63%, and for arousal, it was 85.75%. Using TOPO-FM, the 

accuracy for Valence was 87.39%, while it was 90.54% for arousal on the 

AMIGOS dataset. 

 

The AMIGOS dataset [10] was analyzed by Santamaria-Granados et al. [37] 

using DCNN, which includes electrocardiogram and galvanic skin response 

physiological signals. They achieved higher accuracy in classifying emotional 

states by utilizing advanced classical machine learning techniques to extract 

signal properties in time, frequency, and nonlinear domains. The potential of this 

study is significant as it can enhance our comprehension of how physiological 

signals offer the potential for identifying and categorizing emotional states. 

 

A varied electrode placement profile for a different region of the brain also aids 

in improving accuracy. Corresponding to different brain areas, Padhmashree, V., 

& Bhattacharyya, A [38] have used four alternative electrode placement 

configurations. This study has utilized SVM, KNN, Naïve Bayes, Ensemble 

Random Forest, Ensemble Boosted Tree, and ResNet-18 techniques. The 

accuracy score is 96.68% for arousal, 96.34% for Valence, and 97.45% for 

Dominance on the AMIGOS dataset [10]. 

 

Shukla et al. [39] have used Electrodermal Activity (EDA) from the AMIGOS 

dataset for Emotion Recognition. The accuracy score for arousal is 85.75, and for 

Valence, 83.9%. Time-frequency and frequency domain features have found 

application in this context. 

 

Menezes et al. [8] used statistical features, power spectral density, and higher 

order crossing (HOC) features with Support Vector Machine (SVM) and Random 

Forest, which gave an accuracy of 74% for Valence and 88% for arousal on the 
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DEAP dataset. Several researchers have utilized CNN to extract features 

automatically. 

 

 

     Table 2: List of features used in previous work done on the AMIGOS dataset [10] 

 

The identification of emotions from unprocessed EEG signals was carried out by 

Alhagry et al. [21] using a deep learning approach. They used a long short-term 

memory (LSTM) approach to extract features from the EEG signals and then 

passed them through a dense layer. The characteristics were subsequently 

classified into Valence, liking and low or high arousal. They tested their method 

on the DEAP dataset and achieved an average accuracy of 85.45%, 85.65%, and 

87.99% for the Valence, Arousal, and liking categories, respectively. 

            

 

 

  

 

 

 

 

Features TFD HA HM HC RMS PSD DE IBI AMP RT ST DWT SWT TF 

Paper Title 

Topic A. et al. 
[9] 

              

Miranda-
Correa et al. 
[10] 

              

Santamaria-
Granados et 
al. [37] 

              

Shukla et al. 
[39] 

              

Padhmashree, 
V., & 
Bhattacharyya
, A [38] 

              

L. Santamaria-
Granados et 
al.[15] 

              

S. Siddharth 
et al[16] 

              
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Reference Classification Method Accuracy(%) Year  

    

Topic A. et a [9]  CNN+SVM Using HOLO-FM: 

Valence: 80.63 

Arousal: 85.75  

 

Using TOPO-FM: 

Valence: 87.39 

Arousal: 90.54 2021 

Miranda-Correa et al. [10] SVM Valence: 56.4 

Arousal: 57.7 2018 

Santamaria-Granados et al. 

[37] 

CNN Arousal: 76 

Valence: 75 2018 

Shukla et al. [39] SVM Classifier + Radial 

Basis Function (RBF) 

Arousal: 85.75 

Valence: 83.9 2019 

Padhmashree, V., & 

Bhattacharyya, A [38] 

SVM, KNN, Naive Bayes  

Ensemble Random Forest 

Ensemble Boosted Tree,  

ResNet-18  

Arousal: 96.68 

Valence: 96.34  

Dominance: 97.45  

2022 

L. Santamaria-Granados et 

al.[15] 

DCNN Valence: 75 

Arousal: 76 2018 

S. Siddharth et al[16] RGB heat-map Arousal: 79.13 

Valence: 83.02 2019 

Garg, Shruti, et al. [31] CNN+SVM Arousal: 96.63 

Valence: 95.87 

Dominance: 96.30 

 2021 

 
       Table 3 Previous models used and accuracies on the AMIGOS dataset [10]   
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In recognizing emotions from physiological signals and facial expressions, 

various researchers have developed several models. The first model listed is 

from Topic A. et al. [9] and utilizes a combination of Convolutional Neural 

Network (CNN) and Support Vector Machine (SVM) algorithms. The model 

achieves an accuracy of 80.63% for Valence and 85.75% for arousal using 

HOLO-FM and 87.39% for Valence and 90.54% for arousal using TOPO-FM. 

Table 3 summarises these models and their respective accuracies on the 

AMIGOS dataset.  

 

Miranda-Correa et al. [10] use an SVM algorithm and achieve an accuracy of 

56.4% for Valence and 57.7% for arousal. The third model, from Santamaria-

Granados et al. [37], utilizes a CNN algorithm and achieves an accuracy of 75% 

for Valence and 76% for arousal. Shukla et al. [39] use an SVM classifier with 

Radial Basis Function (RBF) and achieve an accuracy of 83.9% for Valence and 

85.75% for arousal. 

 

Padhmashree and Bhattacharyya [38] use several algorithms, including SVM, 

K-Nearest Neighbor (KNN), Naive Bayes, Random Forest Ensemble, Boosted 

Tree, and ResNet-18. The model achieves an accuracy of 96.34% for Valence, 

96.68% for arousal, and 97.45% for Dominance. L. Santamaria-Granados et al. 

[15] use a Deep CNN algorithm and achieve an accuracy of 75% for Valence 

and 76% for arousal. S. Siddharth et al. [16] use an RGB heat map and achieve 

an accuracy of 83.02% for Valence and 79.13% for arousal.  

 

The final model, from Garg, Shruti et al. [31], utilizes a combination of CNN 

and SVM algorithms and achieves an accuracy of 95.87% for Valence, 96.63% 

for arousal, and 96.30% for Dominance. It is worth noting that the models range 

from traditional machine learning algorithms to deep learning algorithms, with 

the most accurate model being a combination of several algorithms.  
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Chapter 4: The Emotion Recognition Framework  

 

4.1 An Approach for Recognizing Emotions Based on EEG Signals Using 

the AMIGOS Dataset 

 

Two distinct models of emotions are currently recognized: dimensional and 

discrete. The combination of Valence and arousal characterizes the dimensional 

model to gauge the lasting nature of an emotional state. On the other hand, the 

discrete model classifies emotions into a specific number of distinct emotions, 

which contrasts with the dimensional model since it typically describes the lasting 

nature of an emotional state by combining Valence and arousal.  

Valence quantifies the degree of pleasantness or unpleasantness linked to an 

emotion., and it has a range that spans from unpleasant to pleasant. In contrast, 

arousal reflects the intensity of emotional experience, ranging from inactive, such 

as when one is bored, to active, such as when one is excited, along a continuous 

sequence. These emotion categories, Valence, arousal, and Dominance, are 

defined in more detail in reference [30]. 

Plutchik [9] proposes one of the most influential classifications of emotions, 

suggesting the existence of eight fundamental emotions.: sadness, fear, anger, 

surprise, anticipation, disgust, joy, and acceptance. These basic emotions can 

combine to form all other emotions; for instance, disappointment results from a 

mixture of surprise and sadness.  

Furthermore, one can categorize emotions as positive, negative, or neutral. 

Positive emotions such as care and happiness are crucial for growth, 

development, and survival. In contrast, negative emotions, such as anger, sadness, 

fear, and disgust, typically operate automatically and briefly. The categorization 

of neutral emotions lacks a scientific foundation and is instead a theoretical or 

prescriptive model of negotiation, as per reference [10].  

 

Finally, Figure 1 displays another emotion classification based on Valence, 

ranging from negative to positive, and arousal, ranging from high to low. For 

instance, the emotion of depression belongs to the category of negative Valence 

and low arousal. Understanding the different classifications of emotions can help 

individuals recognize and manage their emotional states, leading to better 

emotional well-being. 
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                    Fig 11 Human emotions based on arousal and valence model [21] 

 

 

 

Recently, researchers have shown keen interest in utilizing the 

electroencephalogram (EEG) as the primary method for recognizing emotions 

from physiological signals. EEG is popular due to its high temporal resolution, 

safety, and ease of use. [43]. However, it is worth noting that EEG has low 

spatial resolution and is susceptible to artefacts that may arise from eye 

blinking, eye movements, muscle movements, heartbeats, and power line 

interference [12]. Despite these limitations, EEG electrodes can capture 

electrical stimulation on the skin surface caused by many active neurons in the 

brain, making it a particularly effective physiological stimulus. In addition to 

the EEG recordings, the dataset includes galvanic skin response (GSR) 

recordings, electromyography (EMG), blood pressure, eye activity, and 

temperature pulse. 
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The circumplex model of emotion, formulated by James Russell and Lisa 

Feldmann Barrett [32], proposes that arousal and Valence can be used as axes to 

represent emotions on a two-dimensional plane. According to this model, the 

vertical axis represents arousal, while the horizontal axis represents Valence. 

The circle's centre depicts a neutral valence and a moderate level of arousal. 

The valence dimension describes the degree of pleasantness or unpleasantness 

of a feeling. A positive valence indicates a happy emotion, whereas a negative 

valence suggests unhappiness. The arousal dimension illustrates how 

stimulating or calming an emotion is. A high-arousal emotion occupies the 

positive end of the vertical axis, while a low-arousal emotion occupies the 

opposing end. 

EEG is a biological signal that measures the brain's electrical activity by placing 

electrodes on the scalp [13]. The popularity of the EEG is growing due to its 

accessibility, portability, affordability, and user-friendliness. The analysis of 

EEG signals is an interdisciplinary area that involves neuroscience, medical 

science, computer science, biomedical engineering, and health [14]. EEG-based 

emotion recognition finds applications in various fields, such as healthcare, e-

learning, and entertainment. EEG has diverse uses, including psychology, 

online gaming, instant messaging, and assisting therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 4.2 Dataset  

 

AMIGOS is the Affect, Personality, and mood research dataset in individual and 

group settings. It contains 14 channels of EEG signal, two channels of ECG 

signal, one channel of galvanic skin response (GSR), and frontal video (RGB) 

from two experiments [10]. This dataset aims to support research in affective 

computing, personality analysis, and mood recognition, specifically in 

understanding the dynamics of emotions and personality in group settings. 

 

The dataset consists of data from 40 participants, including videos, audio, 

physiological signals, and self-reported data. The researchers collected the data 

during individual and group activities, including public speaking, group 

discussions, and socializing. 

 

The authors also describe the annotation process of the dataset, which involved 

the labelling of the emotional states, personality traits, and moods of the 

participants. They explain using established psychological questionnaires and 

self-reported measures to gather this information. Additionally, they provide 

statistical analysis of the dataset, including the distribution of the annotations and 

the inter-annotator agreement. 

 

 

The researchers collected the AMIGOS dataset [10] using a variety of sensors, 

including video cameras, microphones, electrocardiography (ECG) sensors, and 

electrodermal activity (EDA) sensors. The researchers instructed the participants 

to perform public speaking, group discussions, and socializing tasks. The 

researchers designed the tasks to induce different emotional states and capture 

affective behaviour dynamics in group settings. 

 

 

During the annotation process, careful attention was paid to accurately label the 

participants' emotional states, personality traits, and moods. The Geneva Emotion 

Wheel was used to categorize the participants' emotional states into eight primary 

emotions and their corresponding subtypes. Additionally, researchers utilized the 

Big Five Personality Traits to accurately label the participants' personality traits: 

openness, conscientiousness, extraversion, agreeableness, and neuroticism. 

Furthermore, the Positive and Negative Affect Schedule (PANAS) was employed 

to evaluate the participants' moods, measuring their positive and negative 

affective states precisely. These methods obtained a detailed and comprehensive 

understanding of the participants' emotional, personality, and mood states. 
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The authors provide baseline results for three tasks: emotion recognition, 

personality trait prediction, and mood recognition. They compare three 

approaches for emotion recognition: audio-only, video-only, and multimodal. 

They use a support vector machine (SVM) classifier to classify the participants' 

emotional states. The results show that the multimodal approach outperforms the 

other two approaches, indicating that combining different modalities can lead to 

better emotion recognition. The authors note that the audio modality is more 

informative for recognizing negative emotions, while the video modality is more 

informative for recognizing positive emotions. 

 

 

 
 

 

 
Fig. 12 [10] Participants in experiment conditions during the short videos experiment recorded 

in (a) Frontal HD video, (b) full body RGB video via Kinect, (c) full body depth video via 

Kinect, and a group of 4 participants during the long videos experiment recorded in (d) frontal 

HD video, (e) full body RGB video via Kinect and (f) full body depth video via Kinect. 

 

 

 

For personality trait prediction, the authors use machine learning models to 

predict the Big Five Personality Traits of the participants. They compare three 

models: SVM, random forest (RF), and gradient boosting (GB). The results show 

that the RF and GB models outperform the SVM model, suggesting that ensemble 

models may be more suitable for predicting personality traits. The authors note 

that conscientiousness is the easiest to predict, while openness is the most 

challenging. 
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The authors use a deep learning model to classify the participants' positive and 

negative affective states for mood recognition. They use a convolutional neural 

network (CNN) to process the videos and a long short-term memory (LSTM) 

network to process the physiological signals. The results show that the deep 

learning model outperforms a baseline SVM model, indicating that deep 

learning models can be effective for mood recognition. The authors note that the 

physiological signals are more informative for recognizing negative affective 

states, while the videos are more informative for recognizing positive affective 

states.  
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Chapter 5  

 

5.1 Methodology: 

 
The Proposed Workflow is summarised as follows.  

 

 

 

                                              

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

                                               

  

                                              

 

                                             

 

                                             

                                         Fig. 13 Proposed Workflow  
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5.2 Feature Extraction: 

In this study, researchers utilize two distinct features to analyze EEG signals: 

Power Spectral Density (PSD) in the frequency domain and Wavelet Entropy in 

the time-frequency domain. The PSD of all the frequency bands, including 

gamma, beta, alpha, theta, and delta, were extracted during the study. 

 

To ensure the efficient and practical construction of the Deep Learning (DL) 

models, researchers employed an Overlapping Sliding Window (OSW) technique 

to amplify the emotion samples. The EEG signals generated from various 

experiments were partitioned into windows of size 512 with a shift of 32, as 

depicted in Figure 2. Any signals not covered by the 512 windows were either 

trimmed or disregarded for computation purposes. 

 

The methodology adopted for this study facilitated the decomposition of the EEG 

signals into equal-length samples, which were easier to process. By employing 

OSW to partition the signals, extracting features from the decomposed samples 

was made more accessible and facilitated the processing of the signals. The 

careful attention given during the annotation process ensured that the data was 

effectively analyzed and accurate results were obtained. 

 

 
 

                                  Fig. 14 Overlapping window signal decomposition [31] 
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Following the decomposition of signals into equally-sized samples using 

overlapping windows, discrete Fourier transform (DFT) [40] and discrete wavelet 

transform (DWT) [41] were employed to extract NBP and NWE features. 

 

5.3 Data Cleaning and Preprocessing: 
 

This work required adding values for different users from the dataset. 

Mishandling missing values can result in biased model results, further reducing 

accuracy. Since sufficient data points were available, any missing values were 

removed from the dataset before training the model. 

 

5.4 Label Preprocessing: 
 

In the AMIGOS dataset, we have scores for the labels from 1-9[10]. The threshold 

is at 4.5. If the score exceeds 4.5, it has been taken as high 

arousal/valence/dominance and labelled as 1. Similarly, if the score is less than 

or equal to 4.5, it has been labelled as 0. Table 3 shows the Coding of Valence, 

Arousal, and Dominance from 1-9 to 0-1 

 

High 

Valence =1  

Low 

Valence = 0  

High 

Arousal =1  

Low 

Arousal = 0 

High 

Dominance =1 

Low 

Dominance = 

0 

>4.5 ≤4.5 >4.5 ≤4.5 >4.5 ≤4.5 

         
     Table 4 Coding of Valence, Arousal, and Dominance from 1-9 to 0-1 on the AMIGOS dataset [10]  

 

 

 

5.5 Model Building:  
 

The application of the supervised learning algorithm Support Vector Machine 

(SVM) has proven to be effective in both classification and regression problems 

[27]. This approach utilizes the Radial Basis Function (RBF) Kernel function to 

determine the classifier line. A regularisation parameter C regulates the trade-off 

between achieving a low training error and a low testing error. This parameter 

determines the classifier's generalization ability to new data [44]. In this study, 

researchers employed a regularization parameter of 100. The existing training 

data is mapped onto a higher-dimensional space using a nonlinear method. The 

algorithm then searches for an optimal separation hyperplane to differentiate 

between data points within this new dimension. Hyperplanes are used to 

differentiate between different data points. 
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On the other hand, the basic ANN model uses a training batch size of 32 and 

trains for 150 epochs with an initialized learning rate of 0.001. The model 

includes five layers: one input layer, three hidden layers, and one output layer. It 

is a multi-layer, fully connected neural network that utilizes an Exponential 

Linear Unit (ELU) as the activation function for each input and hidden layer. 

Finally, the output layer has one output with the sigmoid activation function.  

 

Moreover, the CNN-based model training utilized a batch size of 32, a learning 

rate 0.001, and the "Adam" optimizer. The loss function used was Binary Cross 

Entropy. The model underwent training to differentiate between data points 

using these parameters accurately. 

 

Description of each layer: 
 

Layer 1: 

 

Type: Input Layer 

Layer Input size: (14,64)  

 

Layer 2: 

 

Type: Hidden Layer 

Layer Input size: (64,128) 

 

Layer 3: 

 

Type: Hidden Layer 

Layer Input size: (128,256) 

 

Layer 4: 

 

Type: Hidden Layer 

Layer Input size: (256,512) 

 

Layer 5: 

 

Type: Output Layer 

Layer Input size: (512,1) 

 

5.6 Division of Dataset into train/test: 
 

The dataset divided into 80% for training and 20% for testing. 
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Chapter 6 – Results  

 

Model  Features  Methodology Accuracy 

SVM  PSD and DWT without feature fusion  Non-Overlapping Sliding Window Arousal - 76.64 

Valence – 67.41 

Dominance- 64.8 

ANN Feature fusion of PSD and DWT  Non-Overlapping Sliding Window Arousal – 83.22 

Valence – 77.61 

Dominance-80.12 

SVM Feature fusion of PSD and DWT  Non-Overlapping Sliding Window Arousal – 80.82 

Valence – 74.33 

Dominance- 79.2 

CNN Feature fusion of PSD and DWT  Non-Overlapping Sliding Window Arousal – 81.34 

Valence – 75.48 

Dominance- 78.67 

ANN Feature fusion of PSD and DWT  Overlapping Sliding Window Arousal – 90.79 

Valence – 91.39 

Dominance- 92.18 

Table 5 Accuracy obtained after applying ML/DL classifiers in this study on the AMIGOS dataset [10] 

 

The evaluation aimed to assess three emotions: arousal, valence, and dominance. 

This assessment used two signal processing techniques, power spectral density 

(PSD) and discrete wavelet transform (DWT), as features. The researchers 

selected these techniques due to their capability to capture different signal 

aspects. PSD provides information about the power distribution across different 

frequencies, while DWT operates in the time-frequency domain, allowing for 

analysis of the signal's frequency and temporal characteristics. Two sliding 

window techniques, non-overlapping and overlapping, were employed to 

evaluate the models. The table illustrates the outcomes of several models tested 

for emotion recognition. 

 

The first model tested was a support vector machine (SVM) that used PSD and 

DWT features without feature fusion. The model utilized the non-overlapping 
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sliding window technique. The accuracy results of the SVM model were 76.64% 

for arousal, 67.41% for valence, and 64.8% for dominance. Feature fusion of PSD 

and DWT was then incorporated into the SVM model using the non-overlapping 

sliding window technique, which significantly improved accuracy. The SVM 

model with feature fusion achieved 80.82% for arousal, 74.33% for valence, and 

79.2% for dominance. 

 

The second model tested was an artificial neural network (ANN) that used PSD 

and DWT features with feature fusion. The model utilized the non-overlapping 

sliding window technique. The ANN model outperformed the SVM model with 

an accuracy of 83.22% for arousal, 77.61% for valence, and 80.12% for 

dominance. The third model tested was a convolutional neural network (CNN) 

that used PSD and DWT features with feature fusion. The model employed the 

non-overlapping sliding window technique. The CNN model achieved an 

accuracy of 81.34% for arousal, 75.48% for valence, and 78.67% for dominance. 

 

Further testing was conducted on the ANN model with feature fusion of PSD and 

DWT using the overlapping sliding window technique. This model achieved the 

highest accuracy for all three emotions. The accuracy results for the overlapping 

sliding window technique were 90.79% for arousal, 91.39% for valence, and 

92.18% for dominance. 

 

In conclusion, the table overviews the models tested for emotion recognition. The 

results indicate that combining signal processing techniques with neural network 

models can potentiate emotion recognition in various applications, such as 

affective computing, human-robot interaction, and healthcare. Using the 

overlapping sliding window technique, the ANN model, with feature fusion of 

PSD and DWT, demonstrated the highest accuracy for all three emotions. These 

findings suggest that this model may benefit applications requiring reliable and 

accurate emotion recognition.  



41 
 

Reference Classification Method Accuracy(%) Year  

    

Topic A. et a [9]  CNN+SVM Using HOLO-FM: 

Valence: 80.63 

Arousal: 85.75  

 

Using TOPO-FM: 

Valence: 87.39 

Arousal: 90.54 2021 

Miranda-Correa et al. [10] SVM Valence: 56.4 

Arousal: 57.7 2018 

Santamaria-Granados et al. 

[37] 

CNN Arousal: 76 

Valence: 75 2018 

Shukla et al. [39] SVM Classifier and Radial Basis 

Function (RBF) 

Arousal: 85.75 

Valence: 83.9 2019 

Padhmashree, V., & 

Bhattacharyya, A [38] 

SVM, KNN, Naive Bayes  

Ensemble Random Forest 

Ensemble Boosted Tree,  

ResNet-18  

Arousal: 96.68 

Valence: 96.34  

Dominance: 97.45  

2022 

L. Santamaria-Granados et 

al.[15] 

DCNN Valence: 75 

Arousal: 76 2018 

S. Siddharth et al[16] RGB heat-map Arousal: 79.13 

Valence: 83.02 2019 

Garg, Shruti, et al. [31] CNN and SVM  used Arousal: 96.63 

Valence: 95.87 

Dominance: 96.30 2021 

This Work SVM, ANN and CNN Arousal: 90.79 

Valence: 91.39 

Dominance: 92.18  

 

Table 5 Comparison table of proposed work with existing work on the AMIGOS dataset [10]   

 

 

The table summarizes the classification accuracy of different methods used in 

affective computing. The studies focus on classifying arousal, Valence, and 

Dominance, three essential dimensions of emotions. 

 

Topic A. et al. [9] used a CNN+SVM method with HOLO-FM and TOPO-FM 

features. The accuracy for arousal was 85.75% using HOLO-FM and 90.54%  
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using TOPO-FM. The accuracy for Valence was 80.63% using HOLO-FM and 

87.39% using TOPO-FM.  

Miranda-Correa et al. [10] used an SVM method for classification. The accuracy 

for arousal was 57.7%, and the accuracy for Valence was 56.4%. Santamaria-

Granados et al. [37] used a CNN method for classification. The accuracy for 

arousal was 76%, and the accuracy for Valence was 75%. Shukla et al. [39] used 

an SVM Classifier with Radial Basis Function (RBF). The accuracy for arousal 

was 85.75%, and the accuracy for Valence was 83.9%. Padhmashree, V., & 

Bhattacharyya, A [38] used different classification methods, including SVM, 

KNN, Naive Bayes, Ensemble Random Forest, Ensemble Boosted Tree, and 

ResNet-18. The accuracy for arousal was 96.68%, the accuracy for Valence was 

96.34%, and the accuracy for Dominance was 97.45%. 

L. Santamaria-Granados et al. [15] used a DCNN method for classification. The 

accuracy for arousal was 76%, and the accuracy for Valence was 75%. S. 

Siddharth et al. [16] used an RGB heat-map method for classification. The 

accuracy for arousal was 79.13%, and the accuracy for Valence was 83.02%. 

Garg, Shruti, et al. [31] used a CNN+SVM method for classification. The 

accuracy for arousal was 96.63%, Valence was 95.87%, and the accuracy for 

Dominance was 96.30%.  

Lastly, the present work employed SVM, ANN, and CNN and obtained accuracy 

rates of 90.79% for arousal, 91.39% for Valence, and 92.18% for Dominance 

with a PSD and DWT feature fusion using the overlapping sliding window 

technique.  

In conclusion, the table shows that the accuracy of the classification methods for 

affective computing varies widely depending on the methodology, classification 

algorithm, and features used. The SVM method used by Miranda-Correa et al. 

[10] had the lowest accuracy for arousal and Valence. In contrast, the 

Padhmashree, V., & Bhattacharyya, A [38] study had the highest accuracy for all 

three dimensions of emotion. More recent studies achieve higher accuracy, likely 

due to advanced deep learning techniques and access to larger datasets. The table 

highlights the importance of choosing an appropriate method and features for 

affective computing to classify emotions accurately.  
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Chapter 7 – Conclusion and Future Work 

 

This work explored the use of EEG signals for emotion recognition. The study 

highlights the potential of EEG signals as a non-invasive and objective 

approach to measuring human emotions. By implementing various signal 

processing techniques and machine learning algorithms, we achieved promising 

results in the classification of emotions such as arousal, Valence, and 

Dominance. One can apply the models trained in this work in various domains, 

including mental health, human-computer interaction, and entertainment. 

However, there are still challenges to overcome, such as handling missing data 

and improving the interpretability of the models. However, there is still room 

for improvement in accuracy and robustness, and future work can further 

enhance the applicability of this technology. Overall, the study represents a step 

towards developing a reliable and practical system for emotion recognition 

using EEG signals. 

The average accuracy for Non-Overlapping Sliding- window-based techniques 

is lesser than the Overlapping Sliding Window based technique. Using the 

CNN-based model with the Overlapping Sliding Window technique can lead to 

further improvements in accuracy. This work incorporates Support Vector 

Machine (SVM), Artificial Neural Network (ANN), Convolutional Neural 

Network (CNN) based Machine, and Deep Learning methods with Overlapping 

and Non-Overlapping Sliding Window techniques. 

Several avenues for future work could build upon the findings of this project. 

The multimodal approach for emotion recognition has the potential to expand 

by incorporating multiple physiological signal modalities. One potential 

application of the models trained in this study is designing automatic video 

recommendation systems to enhance individuals' moods based on the obtained 

results. Investigating the possibility of real-time emotion recognition using EEG 

signals can have practical applications in areas such as mental health monitoring 

and human-computer interaction. 

 

 

Conducting more extensive user studies to collect EEG data from a larger and 

more diverse population can improve the generalizability of the emotion 

recognition model. 
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Although physiological data is inherently anonymous, there may be instances in 

which the signals are combined with additional modalities (such as audio or 

video) to identify the user's emotional state in emotion detection systems. 

Anonymity is more challenging to maintain since a higher level of data privacy 

protection is necessary, which will be challenging using centralized machine 

learning techniques. 

Obtaining data from various sources and training the Machine Learning model 

is challenging due to multiple businesses and nations' strict data privacy 

policies. Traditional Machine Learning model training demands the 

centralization of all data. Federated Learning is a potential machine learning 

model that provides unique answers to various centralized learning difficulties 

because it protects data privacy and allows for data collection from several 

sources. Future work may include using a federated learning model using 

Overlapping and Non-Overlapping Sliding Window based methods. 
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