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ABSTRACT 

 

Meeting the increasing global demand for electrical energy necessitates inventive 

approaches that transcend the constraints of conventional centralized power generation methods. 

One such groundbreaking paradigm with transformative potential in power distribution is 

Distributed Generation (DG). This project is dedicated to scrutinizing and enhancing the seamless 

integration of DG into distribution networks, with the ultimate goals of augmenting system 

efficiency, reliability, and sustainability. 

The primary objective of this project is to establish a robust framework for the effective 

planning and implementation of DG. This entails employing a multifaceted approach that 

considers technical, economic, and environmental aspects. The proposed methodology aims to 

identify optimal sites, capacities, and technologies for DG units within the distribution network 

through the application of state-of-the-art optimization algorithms. 

The study commences by providing a comprehensive introduction to the foundational 

aspects of power systems, ensuring readers have a solid grasp of the principles governing 

generation, transmission, and distribution networks. It underscores the evolving role of DG in this 

framework, emphasizing its potential to alleviate the burden on centralized generation facilities 

and enhance local energy resilience. 

Central to DG planning is the judicious selection of technologies and energy sources. This 

research work conducts a comprehensive evaluation of a diverse array of DG technologies, 

including, but not limited to, solar photovoltaics, wind turbines, microturbines, and fuel cells. The 

selection process places significant emphasis on factors such as resource accessibility, 

environmental impact, and economic feasibility. 

An in-depth exploration of the contemporary DG landscape involves a comprehensive 

investigation into the integration of renewable energy sources. Given the intermittent nature of 

renewables, the integration of modern energy storage technologies is imperative to ensure a 

consistent and reliable electricity supply. Integral to this endeavor are Battery Energy Storage 

Systems (BESS), which play a vital role in efficiently storing and deploying surplus energy. 

Additionally, research is underway into demand response strategies, offering dynamic load 

balancing and grid stabilization. 

To facilitate the seamless integration of DG, a meticulous analysis of the existing 

distribution network is undertaken. This encompasses a thorough assessment of power flow 

characteristics, voltage profiles, and load profiles. Employing advanced modeling and simulation 

techniques, the dynamic behavior of the system is accurately captured under a spectrum of 

conditions. 

The multi-objective framework guiding the optimization process encompasses a diverse 

range of performance metrics. These include considerations such as system losses, voltage 

stability, environmental impact, and economic feasibility. The Pareto frontiers generated by the 
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optimization process empower stakeholders to make decisions aligned with their specific 

priorities. 

Through extensive simulations on established reference distribution systems, the proposed 

approach undergoes rigorous validation. The results underscore tangible benefits, including 

enhanced system efficiency, reduced losses, and improved voltage stability resulting from DG 

integration. Furthermore, a comparative analysis with conventional centralized generation vividly 

illustrates the superior performance of the proposed DG-centric approach. 

In a nutshell, this study aims to elevate the domain of distributed generation planning 

within distribution systems. The proposed framework represents a significant stride towards a 

greener and more resilient power distribution paradigm, harnessing state-of-the-art optimization 

techniques, seamlessly integrated renewable energy sources, and comprehensive system analysis. 

The discoveries of this research carry the potential to steer forthcoming progress in this field, 

ultimately culminating in an electrical grid characterized by heightened reliability, efficiency, and 

environmental consciousness.  
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Chapter- I  

Introduction 

 

1.1 Electric Power System  

An electrical power system is an intricate network tasked with generating, transmitting, and 

distributing electric power to diverse end-users, including residential, commercial, institutional, 

and industrial clients. The production aspect of this system consists of three fundamental elements: 

generation, transmission, and distribution [1]. These elements are interconnected through 

transformers, which regulate voltage levels to ensure efficient operation [2]. Let's delve deeper 

into the characteristics of each component: 

1.1.1 Power Generation: 

• The primary objective of the power generation component is to convert energy from both 

renewable and fossil fuel sources into usable electrical power. This process operates 

primarily in two modes: Distributed Generation (DG) and Centralized Generation (CG) 

[3]. 

• In CG, large power plants generate electricity on a massive scale, which is then transmitted 

at high voltages. DG, on the other hand, comprises of smaller generators, frequently under 

the ownership of Independent Power Producers (IPP), producing electricity at low to 

medium voltage levels. This component also encompasses customer-owned on-site 

generation systems like solar panels. 

• It is crucial to emphasize that DG is encompassed within the central power system.  

1.1.2    Power Transmission: 

• The power transmission component comprises a network of transmission and sub-

transmission lines, often configured in a mesh pattern. Transmission switching stations 

serve as interfaces between these lines, regulating voltage levels. 

• In centralized generation, its principal role involves the efficient conveyance of substantial 

volumes of electrical power at elevated voltages across substantial distances, spanning 

from generators to the distribution system [4, 5]. 

• Additionally, it enhances power supply reliability and reduces the likelihood of electrical 

outages by offering alternative transmission routes in case of line failures [6]. 

•  This arrangement allows the transmission operator to efficiently manage the use of 

multiple generators in accordance with their performance and shifts in demand, thereby 

enhancing operational stability [7]. 

1.1.3   Power Distribution: 
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• The distribution system acts as a conduit, transferring electricity from the transmission 

network to end-user facilities. At substations, the transmitted electricity undergoes a 

transformation to attain the standard utility voltage prior to being dispatched [6]. 

• Operating as an intricate web of medium to low voltage lines, it radiates out to end-users, 

a majority of whom are medium and small-scale consumers. 

• Additionally, distributed generation systems with robust backup systems may be integrated 

into this network [7]. 

• Figure 1.1 provides an overview of the overall layout of the electrical power system. 

 

Fig. 1.1: Typical framework of the Electric Power System 
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1.2 Distributed Generation 

Distributed generation (DG) refers to the generation of electricity from multiple small-

scale energy sources that are located near to the point of use. DG stands in stark contrast to 

conventional centralized power plants. It operates on a decentralized model, employing lower-

capacity generators that are directly integrated into or located near points of energy consumption 

within the distribution network [8]. This innovative approach encompasses a diverse range of 

small-scale technologies, capturing energy from diverse sources, encompassing renewables like 

solar, wind, geothermal, biomass, biogas, and hydroelectric power, as well as non-renewable 

resources such as fossil fuels [9]. 

This dynamic strategy encompasses various technologies such as biomass boilers, 

combustion turbines, solar photovoltaic cells, solar thermal systems, fuel cells, micro-turbines, 

internal combustion engines fueled by biogas, geothermal heat pumps, micro-hydro generators, 

diesel engines, reciprocating engines, and small-scale cogeneration plants [10]. 

1.2.1 DG Classification 

There are several categories of distributed generation, each with its own characteristics and 

technologies: 

Renewable Energy Sources: 

• Solar Photovoltaic (PV) Systems: Photovoltaic systems directly transform sunlight into   

electricity through the use of photovoltaic cells. 

• Wind Turbines: Wind turbines produce electrical power through the conversion of wind 

energy into rotational kinetic energy, which subsequently drives a generator to generate 

electricity. 

• Hydroelectric Power: Small-scale hydroelectric generators make use of the kinetic energy 

of flowing water to generate electrical power. 

• Biomass and Biogas Systems: These systems utilize organic matter such as agricultural 

byproducts, timber, or organic refuse to generate electrical power. 

Conventional Fossil Fuel Technologies: 

• Natural Gas Turbines and Engines: Natural gas turbines and engines utilize natural gas as 

the primary fuel for electricity generation. They are commonly employed in combined heat 

and power (CHP) systems. 

• Diesel Generators: Diesel generators operate by utilizing diesel fuel to power an internal 

combustion engine, which in turn drives an alternator to produce electricity. 

Fuel Cells: 

Hydrogen Fuel Cells: These electrochemical systems facilitate the conversion of hydrogen and 

oxygen into electrical energy, producing water as a resultant byproduct. 

Microturbines: 
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Gas Microturbines: Microturbines of this kind function by utilizing a range of fuels, including 

natural gas and biogas, in order to generate electrical power. 

Energy Storage Systems: 

Battery Energy Storage: These systems have the capability to store electrical energy within 

batteries and subsequently discharge it as required. 

Combined Heat and Power (CHP) or Cogeneration: 

CHP systems utilize a single energy source to concurrently produce electricity and capture the 

waste heat generated during electricity generation for practical purposes, thereby enhancing the 

overall energy efficiency of the system. 

Co-generation with Renewable Sources: 

Certain renewable technologies, such as biomass and biogas systems, have the capability to be 

integrated with CHP systems. This integration enables the simultaneous generation of electrical 

power and valuable thermal energy. 

Geothermal Power: 

Geothermal systems utilize the Earth's inherent thermal energy to produce electrical power. 

Waste-to-Energy (WtE): 

These systems utilize diverse processes such as incineration or anaerobic digestion to transform 

waste materials into energy. 

Wave and Tidal Energy: 

These technologies harness the energy from ocean waves and tides to generate electricity. 

Each category of distributed generation has its own set of advantages and considerations, 

including factors like environmental impact, scalability, cost, and geographic suitability. The 

choice of distributed generation technology depends on various factors, including local resources, 

energy needs, and regulatory environment. 

1.2.2 DG Benefits 

The proliferation of DG units in distribution systems (DS) is experiencing rapid growth, 

primarily driven by the escalating global electricity demand. The incorporation of DG within 

modern power systems is pivotal in enabling consumers to meet their energy needs with enhanced 

quality and uninterrupted supply. Consequently, DG technologies have garnered substantial 

recognition for their efficiency and reliability. Below, we delve into the multifaceted technical, 

economic, and environmental advantages associated with DG integration: 

1.2.2.1 Technical Benefits 

The integration of DG brings about the following technical advantages within the power system 

[11-23]: 



5 
 

Reliability Improvement 

Optimal placement of DG units within the DS leads to a remarkable enhancement in power 

system reliability. This outcome is attributed to several factors, including: 

• Improved Power System Reliability: DG units contribute to a more reliable power system, 

reducing the susceptibility to disruptions. 

• Reduced Capacity Release: DG units alleviate the need for excessive capacity release from 

centralized generation sources during peak demand periods. 

• Improved Generation Diversity: The integration of diverse DG sources enriches the 

generation mix, bolstering the overall system's resilience. 

• Peak Power Reduction: DG units are instrumental in curtailing peak power demand, 

mitigating the risk of grid overloads. 

Voltage Profile Improvement 

A paramount concern in radial distribution systems is the suboptimal voltage profile. However, 

strategic placement of DG units brings about substantial improvements in this regard, 

encompassing: 

• Voltage Quality Improvement: DG units enhance voltage quality, reducing voltage 

fluctuations and irregularities. 

• Voltage Profile Improvement: The voltage profile across the distribution network 

experiences a noteworthy uplift, ensuring consistent and stable voltage levels. 

• Reduced Voltage Flicker: The integration of DG units results in reduced voltage flicker, 

which can be detrimental to sensitive electrical equipment. 

• Voltage Support and Better Regulation: DG units provide vital voltage support, 

contributing to more effective voltage regulation within the DS. 

Line Loss/Energy Reduction 

DG deployment also leads to notable reductions in line losses, improving energy efficiency. 

Furthermore, it facilitates better control of reactive power, optimizing the overall power flow 

within the distribution system. 

1.2.2.2 Economical Benefits 

The economic advantages of DG integration are substantial and encompass various facets, 

including [24-33]: 

• Reduced Operational and Maintenance Costs: Optimal utilization of DG units translates 

into lower operational and maintenance expenditures. 

• Deferment of Investment in Infrastructures: DG integration can defer the need for 

substantial investments in additional infrastructure. 



6 
 

• Reduction in Losses Associated Costs: By curbing losses, DG reduces associated costs 

related to energy wastage. 

• No Fuel Cost with Renewable DG: Renewable DG sources, such as solar and wind, 

eliminate fuel costs, as they harness energy freely from nature. 

• Reduction in Right of Way Acquisition Costs: The need for extensive right-of-way 

acquisitions is diminished, resulting in cost savings. 

• Reduction in the Cost of Installation: DG installation costs are often lower compared to 

conventional centralized generation facilities. 

• Maintenance of Constant Running Costs for Longer Time Periods: DG units can maintain 

relatively consistent running costs over extended durations. 

• Reduction in Auxiliaries' Costs: Ancillary costs associated with DG operations are also 

reduced. 

1.2.2.3 Environmental Benefits 

The environmental benefits of DG integration, especially when renewable sources are involved, 

are of paramount significance [34-46]. These advantages encompass: 

• Reduction in Land Use Effects: DG, particularly renewable sources like solar and wind, 

minimizes the environmental impact associated with land use. 

• Reduction in Health Costs with Renewable DG: The use of renewable DG sources 

contributes to improved air quality, thereby reducing health-related costs. 

• Environmentally Friendly with Renewable DG: Renewable DG sources are inherently 

environmentally friendly, producing negligible direct emissions. 

• Reduction of GHG Emission Pollutants with Renewable DG: The integration of renewable 

DG sources significantly reduces greenhouse gas (GHG) emissions, mitigating the adverse 

effects of climate change. 

In conclusion, the integration of DG in distribution systems offers a myriad of technical, economic, 

and environmental benefits. These advantages not only enhance the reliability and efficiency of 

power systems but also contribute to cost savings and a more sustainable, eco-friendly energy 

landscape. 

1.3 Motivation of the work:  

As per the International Energy Agency (IEA), India is projected to experience the most 

significant surge in energy demand globally in this decade due to escalating urbanization and 

industrialization. The demand is expected to increase by 3% annually. Despite endeavors to 

augment the adoption of renewable energy, it is anticipated to meet up to 60% of the supplementary 

power demand. However, coal and oil are still anticipated to contribute approximately a third and 

a quarter of the world's energy, respectively, by the year 2030. 
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The IEA has projected that India will become the world's most populous country by 2025. 

This, combined with the concurrent trends of urbanization and industrialization, forms the 

foundation for a rapid surge in energy demand, with an annual increase of over 3 percent from 

2021 to 2030 according to the Stated Policies Scenario (STEPS). India is anticipated to experience 

the most substantial rise in energy demand compared to any other country. 

Despite India's commendable strides in deploying renewable energy sources and 

implementing efficiency regulations, the sheer scale of its expansion dictates that over the next 

two decades, the cumulative cost of importing fossil fuels will triple. Notably, a significant portion 

of this expenditure will be attributed to oil imports. 

The construction of large-scale central power plants demands substantial financial 

investments and intricate, long-term planning. Environmental concerns surrounding nuclear and 

thermal power plants add another layer of complexity to the situation. Given these challenges, the 

imperative for distributed power sources, including technologies like fuel cells, wind turbines, 

solar arrays, small/micro hydro plants, and gas/diesel generators, becomes evident. In the present 

scenario, adopting a diversified approach is crucial to ensuring the nation's sustained progress. 

1.4 Research Gap 

The research gap in distributed generation planning within distribution systems pertains to 

the inadequacy of comprehensive methodologies and tools that consider multi-objective 

optimization, incorporating various technical, economic, and environmental aspects. Existing 

studies often focus on singular objectives, such as loss reduction or voltage regulation, without 

addressing the complex interplay of multiple parameters. Additionally, there is a limited emphasis 

on the integration of emerging technologies like renewable energy sources, energy storage 

systems, and advanced grid management techniques. 

Moreover, the integration of demand response programs and the incorporation of consumer 

behavior dynamics in DG planning models represent areas where there is limited research. 

Understanding how consumer preferences, load patterns, and response to incentives impact the 

optimal deployment and operation of DG units is crucial for creating more realistic and effective 

planning strategies. 

Additionally, the development of robust decision support tools that can accommodate the 

evolving regulatory landscape and policy frameworks is an underexplored area. Effective DG 

planning must consider not only technical and economic factors but also regulatory constraints, 

grid codes, and market structures. Research in this domain can help bridge the gap between 

theoretical models and practical implementation. 

In summary, the research gap in distributed generation planning in distribution systems 

revolves around the need for holistic, multi-objective optimization frameworks, empirical 

validation, consideration of consumer behavior, adaptation to evolving regulatory environments, 

and the enhancement of system resilience in the context of increasing DG integration. Closing 

these gaps will contribute to the development of more effective, sustainable, and reliable 

distribution networks. 
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1.5 Research Objectives 

The proposed research work shall mainly focus on the following aspects: 

• Optimal Placement of DG Units for Power Quality Enhancement in the Distribution 

System: 

This research objective aims to meticulously investigate and identify the most strategically 

advantageous locations within the distribution system for the integration of DG units. The primary 

focus is on how this integration can be harnessed to elevate the overall power quality parameters. 

This encompasses an in-depth analysis of factors such as voltage regulation, reactive power 

compensation, and harmonics mitigation. 

• Modeling and Optimization of Size and Location of Renewable DG in the Distribution 

System: 

This objective delves into the realm of renewable energy sources within the distribution 

system. It involves developing comprehensive models that encapsulate the dynamics of renewable 

DG sources. Furthermore, this research endeavors to optimize both the size and the placement of 

these renewable DG units to ensure maximum efficacy in terms of energy generation, taking into 

consideration factors like solar radiation patterns, wind speeds, and geographical features. 

• Impact Analysis of Demand Response with the Coordination of DG in the Distribution 

System: 

This research objective embarks on an exploration of the dynamic interaction between demand 

response strategies and the integration of DG units within the distribution system. The focus is on 

discerning how these two vital components can be synchronized to yield synergistic benefits. This 

encompasses an assessment of load shedding, peak shaving, and load shifting strategies in 

conjunction with the operation of DG units. The aim is to ascertain how this coordination can 

bolster the system's resilience, efficiency, and reliability, particularly during periods of high 

demand. 

By meticulously investigating and addressing these research objectives, this study endeavors 

to contribute significant insights and advancements in the field of distributed generation planning 

within distribution systems. Each objective is poised to unlock critical knowledge that not only 

enriches the theoretical understanding of these systems but also offers practical applications and 

solutions for real-world implementation and enhancement of power distribution networks. 

1.6 Organization of Thesis 

Chapter I: Introduction 

The inaugural chapter serves as the gateway to this comprehensive research endeavor. Within, 

the overarching scope of the study is delineated, with particular emphasis on presenting the 

research problem statement. This section also undertakes the crucial task of outlining the objectives 

and delineating the significance of the study. Furthermore, a concise exposition of the chosen 

methodology is also included, providing the reader with a preview of the research approach. 
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Chapter II: Literature Review 

This chapter forms the bedrock of the study, offering an in-depth survey of existing 

scholarship germane to the research topic. This comprehensive review encompasses a critical 

analysis of preceding research works, encapsulating theoretical frameworks, methodologies 

employed, and seminal findings. By contextualizing the current research within this broader 

academic landscape, the literature review furnishes a robust foundation for the ensuing analysis. 

Chapter III: Optimal DG Allocation and Impact of Demand Response 

Within this chapter, the research pivots towards the crux of the investigation. The primary 

focus is the judicious placement and sizing of Distributed Generation (DG) units within the 

distribution network. Additionally, this section is dedicated to probing into the interplay between 

demand response strategies and the efficacy of DG integration. Through a meticulous examination 

of these facets, this chapter advances the understanding of how these critical components synergize 

to fortify the distribution network. 

Chapter IV: Optimal DG Allocation in the Coordination of Demand Response and Battery 

Energy Storage System 

Building upon the foundations laid in Chapter 3, this segment extends the discourse to 

encompass the role of battery energy storage in tandem with DG and demand response. An intricate 

analysis is undertaken to discern how these integrated elements collaborate to augment the 

efficiency and dependability of the distribution network. This chapter is instrumental in unraveling 

the multifaceted dynamics of these components, illuminating their collective impact. 

Chapter V: Investigating the Impact of DG on Distribution System Protection and Voltage 

Regulation 

This chapter embarks on a detailed exploration of how the integration of DG affects the 

protective apparatus and voltage control mechanisms intrinsic to the distribution system. Matters 

of paramount concern, such as fault currents, overvoltage, and protection coordination, are 

subjected to rigorous scrutiny. By delving into these intricacies, this chapter furnishes invaluable 

insights into the intricate interplay between DG integration and the safeguarding of the distribution 

system. 

Chapter VI: Conclusions and Future Scopes 

The concluding chapter culminates the research journey, synthesizing the key findings gleaned 

from the exhaustive investigation. Through a discerning analysis of the results, the chapter draws 

cogent conclusions that encapsulate the essence of the study. Moreover, this section proffers 

recommendations for future research avenues, thereby illuminating potential trajectories for 

further exploration and application of the research findings. This meticulously structured thesis 

unfolds as a cogent narrative, guiding the reader through a comprehensive exploration of the 

chosen research domain. Each chapter converges seamlessly, contributing to an exhaustive body 

of work that advances understanding and offers valuable insights into the dynamic interplay 

between distributed generation, demand response, and the broader distribution network. 
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Chapter- II  

Literature Review 

 

2.1 General Introduction 

In the modern era, distributed generation (DG) has become an integral component of the 

electric power system, playing a pivotal role due to its significant advantages over conventional 

centralized generation (CG). These advantages encompass technological, financial, and 

environmental benefits, as well as enhanced system stability and more efficient resource utilization 

[10]. DG effectively bridges the gap between electric power generation and the ever-increasing 

daily load demands. 

The transition towards a renewable-powered world is evident in the deliberate and widespread 

adoption of Distributed Energy Resources (DERs). This shift has led to a departure from the 

traditional hierarchical structure of CG, marked by a growing emphasis on the utilization and 

integration of Renewable Energy Sources (RES) [47-51]. Furthermore, the integration of DG with 

centralized grid generation necessitates an advanced protection system capable of ensuring secure 

implementation, even in the presence of various power quality constraints [52-54]. 

A comparative analysis between CG and DG can be drawn based on several key factors: 

a) Output Capacity 

• CG exhibits a wide range of generation capacities, spanning from 100 MW to 1000 GW 

[55], whereas DG typically operates within the range of up to 300 MW [56]. 

b) Technology Utilized 

• CG relies on technologies such as hydroelectric, thermoelectric, and nuclear power plants, 

whereas DG makes use of diverse sources like Diesel engines, Gas engines, and RES [57]. 

c) Location 

• CG facilities are typically located at a distance from consumers, often situated in regions 

abundant in either non-renewable or renewable resources [58]. In contrast, DG systems are 

positioned in close proximity to consumer facilities [56]. 

d) Generation to Distribution 

• CG employs step-up transformers for high voltage transmission to substations. From there, 

step-down transformers facilitate distribution to end-users, effectively minimizing line 

power losses [59]. DG, on the other hand, may or may not be connected to the grid, making 

it suitable for low voltage distribution systems [55, 60]. 

2.2 Employed Strategies for DG Planning 
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The optimization of DG allocation and size selection in power system networks has been 

propelled by various factors. These considerations for DG planning encompass technological, 

economic, and environmental perspectives. 

2.2.1 Technological Aspect 

DG offers substantial technical advantages, including enhancements in voltage profile, 

minimization of active and reactive power losses, power factor optimization (PFO), reduction of 

line losses, and maximization of network MVA capacity. The diverse research endeavors focused 

on these technological advantages are summarized below: 

• Voltage Profile Enhancement 

Voltage profile enhancement (VPE) stands as a pivotal parameter for ensuring power quality 

in the distribution system. The penetration level of DG is augmented during optimized allocation 

in the distribution network to elevate the voltage level. With the presence of DG, VPE is selected 

as an objective function, yielding significant results by enabling bidirectional power flow to and 

from the power grid during peak and off-peak load hours [48]. Voltage stability is improved by 

utilizing the incremental voltage (dv/dp) sensitivities method during DG integration [49]. 

Additionally, voltage profile and stability are enhanced through techniques such as positive 

sequence voltage ratio [50], power voltage curve [51], and voltage sensitivity index [52]. The issue 

of voltage sag is mitigated in low voltage distribution networks during various faults [53]. The 

relationship between voltage amplitude and injected power is considered to facilitate both VPE 

and power loss reduction (PLR) [54]. In the Tehran electricity distribution grid [55, 56] and radial 

distribution networks [57], optimization using the max operator has been employed for this 

purpose. Authors have proposed a voltage stability index to elevate the voltage level through DG 

allocation [58]. Incorporating P-V buses [59] and multiple micro turbines [60] has also been shown 

to improve voltage profiles in distribution networks with renewable energy-based optimized DG 

allocations. Voltage rise challenges are addressed through DG integration to meet power demands 

during both time-variant and invariant loads [61]. 

• Minimization of Power Losses 

Integrating and strategically allocating DG within the distribution network offers a means to 

significantly reduce various forms of power losses. This encompasses diminishing network, 

reactive power, and line loading losses through the optimal sizing and placement of DG within a 

meshed network [62], and concentrating on load at specific buses [63]. Active and reactive VA 

injection at selected buses plays a role in reducing total energy losses [52, 53]. In Thailand's voltage 

distribution system, real-time solar radiation and atmospheric temperature considerations are 

factored in to reduce real power losses while adhering to power quality constraints [58]. Utilizing 

a Solar Photovoltaic (SPV) system takes into account voltage limits, effectively reducing power 

losses [64]. For power injection, selecting a DG size ranging from 10-80% of the system load 

demand proves effective in reducing actual power losses [65]. Additionally, integration of multiple 

distributed generation (MDG) systems through continuous and discrete optimization leads to a 

decrease in actual power losses [66]. ECIM, influenced by power quality parameters, aids in 

reducing transmission line losses [67]. Wind power generation contributes to both real power 
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injection and reactive power compensation, thereby further minimizing power losses [49]. The 

computation of approximate losses for each bus, along with compensating the real component of 

branch currents, results in reduced total power losses [68, 69]. A metaheuristic optimization 

approach (MHOA) is employed to achieve the minimization of real power losses [70]. This 

approach also extends to hourly power flow with varying penetration levels in different operational 

modes of wind turbines [71]. Annual energy losses are curtailed through considerations of the load 

curve's time-varying characteristics [72], the stochastic behavior of wind speed [73], and the 

intermittent nature of RES [74], accounting for both avoiding and allowing RPF [75, 76]. 

• Optimization of Power Factor 

Optimizing the power factor is another crucial facet of power quality parameter enhancement 

in the presence of DG. To reduce real power losses, authors undertake the optimization of power 

factor values, taking into account maximum and minimum operating power factor values, while 

accommodating inequality boundary conditions and addressing practical and rounding-off 

concerns [70]. The simultaneous optimization of DG size and power factor is achieved by 

assuming a predetermined constant power factor value across various load levels [72]. Energy 

losses are further minimized by optimizing the power factor in a Battery Energy Storage (BES) 

integrated SPV system across different load levels, with comparisons demonstrated at Unity Power 

Factor (UPF), lagging power factor, and leading power factor conditions [77]. The impact of power 

factor variation is illustrated in terms of its effect on power losses and voltage profile, 

distinguishing between UPF and non-UPF system states [78]. The optimal power factor value is 

identified by exploring all possible power factor values using curve-fitting techniques and exact 

solution methods [65]. Additionally, a comparative analysis is presented in [52], comparing UPF 

with a 0.9 lagging power factor using different DG optimization approaches. 

• Reduction of Total Harmonic Distortion 

Minimizing Total Harmonic Distortion (THD) is a key objective in DG planning. The 

forward/backward sweep approach is utilized to optimize THD in a distributed system, which 

includes a combination of passive elements and a harmonic current generator. Furthermore, a 

harmonic spectrum is developed for a nonlinear (NL) load driven by a deviated frequency driver 

and a convertible speed driver, with branch current as a function of harmonic current [74]. THD 

optimization is also carried out in an SPV-based DG system, accounting for various solar radiation 

levels. THD levels in both voltage and current profiles are measured, considering the background 

harmonics in an 11-kW grid-connected inverter [58]. 

2.2.2 Economic Aspect 

Cost optimization (COP) forms the bedrock for the planning, implementation, and 

maintenance of DG in a distribution system. The total cost, comprising installation, maintenance, 

and sag reduction costs, has been notably reduced through optimal DG allocation, yielding 

significant results [53]. The minimization of costs for distribution companies (DisCos), coupled 

with profit maximization, is demonstrated using BLA for DG planning in reference [79]. Reference 

[80] takes into account the capital cost of DG along with state-dependent costs, while the 

integration of DG in Japan's East Power Station has successfully reduced fuel costs (considering 
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utilization factors) [81]. Reimbursement time and anticipated profit rates are calculated by 

formulating a multi-objective (MO) DG optimization that takes into consideration the benefits of 

both DisCos and owners [82]. 

2.2.3 Environmental Aspect 

Environmental protection stands as a critical facet of human existence on Earth, given the 

extensive use of fossil fuels in traditional power systems to meet peak demand for end-users. DG 

presents itself as a potential solution for incorporating natural energy sources into the power 

system, effectively reducing emissions of greenhouse gases and mitigating climate change [83]. 

DG holds substantial promise for leveraging RES in power generation and has the capacity to 

establish a low-carbon emission grid. The assessment of carbon emissions considers the complete 

life cycle of DG and employs a carbon emission intensity factor. This methodology has resulted in 

a reduction of up to 1.8 million tons of CO2 emissions [84]. 

2.3 Optimization Approaches 

Optimization approaches can be categorized into the following classification; conventional, 

modern mathematical, and hybrid. 

2.3.1 Conventional Approaches 

Conventional optimization approaches encompass traditional, foundational search methods 

for optimizing the DG allocation. Several researchers have implemented proposed techniques 

falling within this category. The classification of conventional algorithms is depicted in Figure 2.1 

Furthermore, a comprehensive review and data-based assessment of such approaches for DG 

optimization are presented in Table 2.1. 

• Analytical Method (AM) 

This section reviews various Analytical Methods (AM) used for optimizing DG allocation 

within a distribution network. One approach involves reducing total power losses through an 

Equivalent Current Injection Method. This method applies the BIBC matrix and BCBV to 

determine the value of the injected current. It has been tested on three distribution systems, without 

considering the admittance matrix and Jacobian matrix [67, 85]. Another technique, the Exact Loss 

Formula (ELF), is employed for DG optimization. This method is independent of DG type and 

capable of generating active power and reactive VA [68]. To minimize energy losses in a three-

phase unbalanced system, a Feasible Optimization Interval (FOI) approach is utilized. This 

approach bridges the gap between feeder demand characteristics and the characteristics of SPV-

based DG [75]. DG optimization is also achieved through the Power Injection Method (PIM) in 

dispatchable or non-dispatchable systems, while considering the time-varying nature of load and 

supply [72]. The FOI technique is further implemented, taking into account RPF and injecting 

power at coupling nodes. This is followed by the calculation of line losses using Carson equations 

[78]. 

The Algebraic Approach (AA) is applied for VPE while in [50], an Iterative Method (IM) is 

employed to improve power quality parameters and line loadability. Additionally, analytical 
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techniques such as the Primal-Dual Interior-Point Algorithm (MPDIPA) [54], AA [86], Multi-

Objective Index (IMO) with Self-Correction Algorithm (SCA) [77], and Heuristic Curve Fitted 

Method (HCFM) [65] are analyzed for DG optimization. The subsequent utilization of an IA aids 

in determining the optimal size and location of DG, enhancing the reliability and voltage profile 

of a distribution network. This approach is evaluated on the IEEE 34 bus system, yielding 

significant results across various indices [87]. 

 

Fig. 2.1: Conventional approaches of DG optimization 

• Exhaustive Search (ES) 

In reference [88], the Brute Force Method (BFM) is employed to integrate the SPV system. 

This is accomplished using MATLAB programming while taking into account daily load and 

supply curves, and adhering to the European standard on power quality (EN 50160 standards). The 

approach employed is similar to the Backward/Forward Sweep Algorithm, which encompasses the 

large R/X ratio of long feeders by assuming the π model of a distributed system. The DG 

optimization is a two-stage technique, contingent on supply and load variations. The first stage 

involves ES, while the second stage utilizes a Clustering Approach (CA) [89]. Power quality 

parameters are enhanced through the utilization of the Probabilistic Approach (PA) [58] and 

Weighted ES [90] for optimal DG allocation. Additionally, Monte Carlo simulation and C language 

are utilized. A Newton-Raphson (N-R) method, in conjunction with IM, is employed for MO 

optimization to improve cost-effective power quality parameters [77]. 

• Linear Programming (LP) 

The utilization of the distribution network undergoes a transformation following the 

integration of DG. The authors present a methodology for optimizing DG allocation to maximize 
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energy harvesting, considering various power quality and financial constraints. Energy harvesting 

depends on factors such as DG size, load level, DG location, incurred losses, and financial 

parameters. Furthermore, limitations arising from financial concerns are addressed by 

implementing an IM for solving the linear optimization problem [91]. This methodology holds 

significance in validating the results obtained from nature-inspired optimization techniques. The 

authors evaluate a genetic algorithm technique for DG allocation in the actual distribution network 

of Egypt, and the outcomes are validated using LP. Moreover, MO optimization is conducted to 

optimize various power quality parameters such as LLR, SRI, VPE, and PFR [92]. 

• Non-Linear Programming (NLP) 

The integration of DG into the distribution network provides an opportunity for adaptive 

reactive power compensation, thereby enhancing power quality. In this regard, the authors have 

introduced an NLP-based DG optimization technique to address the MO function. This technique 

consolidates various objective functions into a single entity, with a primary focus on reducing 

power losses and enhancing voltage regulation. Notably, this optimization technique is versatile 

and can be applied to different types of DGs. It achieves this through the utilization of fuzzification 

techniques and an appropriate weighting scale, which facilitates a unified approach for a variety 

of objective functions. The optimization process is executed with the assistance of Constraint 

Optimization (CONOPT), a component of the General Algebraic Modeling System (GAMS) 

software, which is specifically designed for continuous power flow simulations [93]. 

• Mixed-Integer Linear Programming (MILP) 

In a study by [79], a two-tier approach that encourages collaboration between DisCo and DG 

owners has been implemented. This bi-level MILP approach involves an upper level that addresses 

DG placement and the central point of power injection. The lower level focuses on minimizing 

DisCo payments to the energy market. The decision-making process aims to strike a balance 

between profit maximization for the owner and payment minimization for DisCo. 

• Mixed-Integer Non-Linear Programming (MINLP) 

MINLP optimization techniques have found application in various research endeavors [51, 

94], influencing DisCo investment planning regarding transformer acquisitions and feeder 

upgrades. A pool market model incorporating Lagrangian multipliers (LM) and line loss 

sensitivity, considering both equality and inequality constraints, is optimized using GAMS with a 

Sparse Nonlinear Optimizer solver. This optimization addresses the profit of generation companies 

and DisCo. Beta and Weibull probability distribution functions are employed to evaluate the 

probabilistic characteristics of natural sources for DG optimization [51]. 

• Dynamic Programming (DP) 

The future-oriented integration of renewable energy-based DG in distributed generation 

presents a novel aspect of energy generation. To overcome limitations associated with natural 

sources, a network reconfiguration strategy has been proposed. A Markov decision process is 

adopted to optimize DG operation, enhancing power quality parameters while considering present 

and future costs in each step of the Markov model. Dynamic programming is subsequently 
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employed to optimize the proposed recursive model, with evaluations conducted on IEEE 33 and 

IEEE 123 test systems [95]. 

• Optimal Power Flow (OPF) 

Researchers have explored the utilization of the OPF technique for DG allocation [96-100]. 

The methodology involves employing CONOPT with a generalized gradient method to determine 

network generation capacities. In highly meshed, reliable systems, NL optimization is used to 

maximize generation capacities by identifying multiple local optima. The approach begins with no 

contingencies in the problem formulation, followed by the incorporation of contingencies without 

constraints and the inclusion of the most violated constraints. Additionally, Fault Level Constraint 

Optimal Power Flow (FLCOPF) is considered in [96, 97], addressing the sinks source concept and 

capacity expansion locations (CELs) for profit maximization. Local marginal price, short-run 

marginal price, and Lagrangian multipliers are incorporated for social welfare and profit 

maximization [98]. Further extensions include quadratic curves of benefit, bid, and cost, and the 

consideration of various parties, including DISCOs, sellers, and DG owners, in a two-block (inner 

and outer) approach for profit maximization. OPF techniques have been employed with genetic 

algorithms for variable numbers of DG [99] and as ordinal optimization (OO) for a three-level 

approach [100], where one of all possible solutions outside the search space is within the top α 

percent with a probability level of P. 

• Load Concentration (LC) 

In reference [63], the Kalman filter algorithm is employed for optimizing DG allocation. This 

algorithm offers noise rejection and smoothing properties, aiding in solving linear time-varying 

equations. The process involves initial loss calculation through the N-R method, followed by state 

vector estimation in the measurement update and time update stages, evaluated through root mean 

square error calculations. In [101], the concept of equivalent load is applied, utilizing a two-step 

approach involving Load Centroid (LCn) and Performance Index. The process entails calculating 

the equivalent load and subsequently using PI to assess active power loss and average node voltage 

variation. 

• Continuous Power Flow (CPF) 

Incorporating continuous power flow (CPF) into the system enables the identification of the 

most sensitive buses with respect to continuation parameters and a two-level iterative approach 

(IA). These sensitive buses are crucial for determining the optimal DG placement, particularly as 

the system approaches a bifurcation point from a stable point. A CPF-optimized system can serve 

as a compensator or a significant source for DG units [102]. 

2.3.2 Modern Mathematical Approaches: 

Modern mathematical techniques primarily encompass artificial intelligence methodologies 

that draw inspiration from the behavior observed in society and nature. These approaches can be 

specifically categorized, as illustrated in Figure 2.2. Table 2.2 offers an evaluation of advanced 

mathematical techniques for DG optimization and demonstrates the optimized results (outcomes 

that have been improved through a process of optimal DG allocation). 
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Table 2.1 Data-based assessment of DG optimization by adopted conventional approaches 

Ref. 

Conventional 

optimization 

method 

Test 

systems 
Different cases Optimal DG size 

Optimal DG 

location 

Strengthened 

parameters 

Compared 

approaches 

[48] AA 48 km 

feeder 

Vref = 0.94 (p.u.) 144.7 (kVA) 46.8 km VPE WoDG 

Vref = 0.95 (p.u.) 292.2 (kVA) 44.8 km 

Vref = 0.96 (p.u.) 458.3 (kVA) 42.6 km 

Vref = 0.97 (p.u.) 650 (kVA) 40.1 km 

[50] IA IEEE 34 Itr. -1 600 (kVA) 890 PLR, LLC, 

VPE,  

VSIM 

Itr. -2 600 (kVA) 852 

Itr. -3 1200 (kVA) 814 

[51] MINLP IEEE 41 Dispatchable system (0.95 

LePF) 

4.5 (MVA) 40 VPE WoDG 

WTDG (0.95 LePF, UPF) 8.8, 1.1 (MVA) 19, 40 

SPV (0.95 LePF, UPF) 49.7, 1.06, 2.38 

(MVA) 

19, 28, 40 

[52] MNM IEEE 33 UPF                                   2494.8 (kVA)  6 COP, PLR, 

VPE 

WoDG 

IEEE 69 1832.53 (kVA) 61 

CPLSM IEEE 33 UPF 1800 (kVA) 8 

IEEE 69 1850 (kVA) 61 

IVM IEEE 33 UPF 1550 (kVA) 30 

IEEE 69 1850 (kVA) 61 

VSIM IEEE 33 UPF 1000 (kVA) 16 

IEEE 69 1450 (kVA) 65 

[54] MPDIPA IEEE 

123 

ƩDG =4 65.37,34.75, 12.17, 

31.43 (kW) 

60, 36, 57,42 PLR, VPE WoDG 

[58] PA IEEE 51 SPV ƩDG = 1 0.8 (MW) 38 PLR, VPE, 

THDR 

AM 

SPV ƩDG = 2 0.7, 0.9 (MW) 38,19 

SPV ƩDG = 2 with THD 0.7, 0.5 (MW) 38, 19 

[65] HCFM IEEE 69 UPF 1900 (kVA) 61 PFO, PLR, 

VPE 

AM 

0.85 LaPF 2300 (kVA) 61 

IEEE 32 0.85 LaPF 2000 (kVA) 29 

[67] ECIM IEEE 12 ƩDG=1 0.2272 (MW) 9 PLR Classical 

grid search 

Method IEEE 34 ƩDG=1 2.8848 (MW) 21 

IEEE 69 ƩDG=1 1.8078 (MW) 61 

[68] ELF IEEE 30 ƩDG=1 3.3 (MW) 12 PLR Loss 

sensitivity, 

Repeated 

load flow 

IEEE 33 ƩDG=1 2.49 (MW) 6 

IEEE 69 ƩDG=1 1.81 (MW) 61 

[72] PIM IEEE 69 BƩDG = 2 0.89, 1.05 (MVA) 62,35 ELR, PFO WoDG 

WTƩDG= 2 0.86, 0.99 (MVA) 62,35 

WTBƩDG =4 0.49, 0.56, 0.71, 0.82 

(MVA) 

62, 35, 62, 35 

[75] FOI IEEE 29 SPV ƩDG = 1 0.2905 (MW) 17 PLR, VPE WoDG 

 

 



18 
 

Table 2.1 (continued) 

Ref. 

Conventional 

optimization 

method 

Test 

systems 
Different cases Optimal DG size 

Optimal DG 

location 

Strengthened 

parameters 

Compared 

approaches 

[76] FOI IEEE 29 ƩDG =1 (ALRPF) 340.4 (kW) 26 PLR, VPE AVRPF 

ƩDG=1 (AVRPF) 290.5 (kW) 17 

IEEE 14 ƩDG =1 (ALRPF) 803.1 (kW) 9 

ƩDG=1 (AVRPF) 601.7 (kW) 7 

[77] IMO & SCA IEEE 33 SPV + BES at UPF 4.336 (MW)+ 1.803 

(MW) 

12, 20, 24 PFO, PLR, 

VPE 

Standard 

IEEE 1547 

SPV + BES at LaPF 4.336 (MW)+ 1.804 

(MW) 

12, 20, 24 

[79] BLA IEEE 34 HL 1.5 (MW) 21 COP WoDG 

ML 1.5 (MW) 24 

LL 1.5 (MW) 21 

[85] BIBC, BCBV IEEE 33 Injecting P only 0.981, 0.981, 0.981, 

0.325 (MW) 

12, 30, 24, 5 PFO, PLR, 

VPE 

Repeated 

power flow 

Injecting P & Q 1.16, 1.14, 1.13, 0.29 

(MW) 

30, 11, 24, 31 

IEEE 69 Injecting P only 1.01, 0.797, 0.511, 

0.318 (MW) 

61, 62, 17, 50 

Injecting P & Q 1.23, 0.99, 0.61, 0.88 

(MW) 

61, 62, 17, 15 

[86] AM IEEE 30 ƩDG =1 15 (MW) 5 PLR WoDG 

[87] IA IEEE 33 ƩDG = 2 2.7, 0.39 (MW) 6, 30 VPE, PLR FFM, CS 

[88] BFM IEEE 30 ƩDG =1 1 (MW) 9 PLR Heuristic 

search 

[89] CA & ES 24 Node ƩDG = 5 40, 100, 15, 100, 400 

(kW) 

4, 7, 9, 11, 13 COP, PLR, 

VPE 

GA, MINLP 

[90] ES IEEE 6 ƩDG= 2 3.4, 0.85 (MW) 3, 5 PLR, VPE WoDG 

IEEE 14 ƩDG=2 25.9, 25.9 (MW) 10, 14 

IEEE 30 ƩDG = 7 16.194, 8.097, 10.796, 

8.097, 5.398, 2.699, 

5.398 (MW) 

17, 18, 20, 24, 

26, 27, 30 

[91] LP IEEE 7 BƩDG = 1 8 (MW) 7 COP, PLR, 

VPE 

WoDG 

ƩDG = 1 (LFG) 650 (kW) 3 

HƩDG = 1, 2, 3 2, 1.5, 0.6 (MW) 2, 3, 2 

WTGn = 1, 2, 3 4.5, 8.5, 9.4 (MW) 7, 2, 6 

[96] OPF IEEE 12 FLCOPF (NPr) 1.8, 30.7, 14.3 (MVA) 1, 10, 11 COP, PLR IM 

Direct FLCOPF (NPr) 0, 30.9, 17.6 (MVA) 1, 10, 11 

FLCOPF (CEL-1) 2.6, 30.7, 11.7 (MVA) 1, 10, 11 

Direct FLCOPF (CEL-1) 20.7, 2.3, 17.7 (MVA) 1, 10, 11 

[97] FLCOPF IEEE 12 OPF (NPr) 12.3, 52.3, 38.2 

(MVA) 

1, 10, 11 COP, PLR OPF 

FLCOPF (NPr) 13.6, 49.1, 38.4 

(MVA) 

1, 10, 11 

OPF (@ bus 1) 34.9, 52, 11.6 (MVA) 1, 10, 11 

FLCOPF (@ bus 1) 35.9, 48.8, 12.2 

(MVA) 

1, 10, 11 
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Table 2.1 (continued) 

Ref. 

Conventional 

optimization 

method 

Test 

systems 
Different cases Optimal DG size 

Optimal DG 

location 

Strengthened 

parameters 

Compared 

approaches 

[98] OPF IEEE 14 ƩDG = 1 202.62 (MW) 4 COP, PLR WoDG 

ƩDG = 2 195.05 (MW) 4 

ƩDG = 3 141.28 (MW) 9 

ƩDG = 4 41.94 (MW) 14 

ƩDG = 5 50.38 (MW) 14 

ƩDG = 6 42.84 (MW) 14 

ƩDG = 7 25.33 (MW) 14 

[100] OPF IEEE 69 ƩDG = 3 (P=99%, α=0.1) 2.6614 (MW) 26, 35, 62 COP, PLR WODG 

ƩDG = 5 (P=99%, α=0.1) 3.9761 (MW) 4, 26, 40, 49, 

62 

ƩDG = 7 (P=99%, α=0.1) 5.5305 (MW) 4, 26, 30, 35, 

40, 49, 65 

ƩDG = 9 (P=99%, α=0.1) 6.0027 (MW) 4, 13, 17, 26, 

30, 40, 49, 58, 

52 

ƩDG = 3 (P=99.999 %, 

α=0.01) 

2.6614 (MW) 26, 35, 62 

ƩDG = 5 (P=99.999 %, 

α=0.01) 

4.0069 (MW) 4, 26, 40, 49, 

62 

ƩDG = 7 (P=99.999 %, 

α=0.01) 

5.5305 (MW) 4, 26, 30, 35, 

40, 49, 65 

ƩDG = 9 (P=99.999 %, 

α=0.01) 

6.0027 (MW) 4, 13, 17, 26, 

30, 40, 49, 58, 

52 

[101] LC IEEE 13 LCn @ 5 2, 1 (MW) 5, 11 PLR, VPE Heuristic 

search 
IEEE 25 LCn @ 12 2, 2, 2, 0.5(MW) 12, 15, 14, 7 

LCn @ 17 2, 1.5 (MW) 17, 22 

IEEE 30 LCn @ 2 50, 50, 50, 10(MW) 2, 9, 6, 28, 13 

[102] CPF IEEE 34 ƩDG = 1 25 (MW) and 20 

(MVA)r 

26 PLR, LLC, 

VPE  

WoDG 

ƩDG = 2 25 (MW) and 20 

(MVA)r 

26, 33 

ƩDG = 3 25 (MW) and 20 

(MVA)r 

26, 33, 17 

[133] N-R & IS IEEE 6 ƩDG=1 6 (MW) 3 COP, PLR, 

VPE 

AA 

IEEE 14 ƩDG=1 16 (MW) 8 

IEEE 30 ƩDG=1 35 (MW) 11 

 

 

• Evolutionary Programming (EP) 

Evolutionary Programming (EP) is a well-established artificial intelligence optimization algorithm 

inspired by natural processes involving metamorphosis, competition, and evolution. It stands out 

for its proficiency in handling non-continuous, irregular, and nondistinct optimization problems, 

setting it apart from conventional methods. In a study focused on reactive power planning, EP was 

employed with a probability transition rule [103]. The procedure involved key stages: 

initialization, statistics, mutation, completion, and determination. The authors demonstrated the 
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effectiveness of EP on a 12.66 kV IEEE 69 test system, considering two modes of operation: one 

involving the deactivation of a DG based on a wind turbine (WTDG), and the other entailing 

clipping of the output through an index-based scheme. Sensitivity analysis was conducted while 

maintaining the ratio of dispatched wind energy to load (WPDLR) within specified limits [71]. 

• Genetic Algorithm (GA) 

Genetic Algorithm (GA), a part of the broader EP class, has found extensive application in 

evaluating optimal DG allocations within power systems [104]. It stands out by emulating natural 

selection processes, incorporating steps such as mutation, crossover, and selection to achieve 

superior optimization outcomes. GA has been deployed in various scenarios, such as NL 

optimization within a Tehran regional electricity company, focusing on financial objectives 

including the pricing of power connectors and unprovided energy by the system [57]. Additionally, 

it has been employed in linear problem optimization to enhance power quality parameters in the 

West Delta sub-transmission network [92]. The approach involves minimizing the voltage sag 

effect, calculated using the voltage divider rule, while simultaneously minimizing line losses and 

achieving cost savings, all within the constraints of power flow and voltage levels. Stochastic 

optimization techniques were used to determine the optimal size of DG, with consideration given 

to the point of common coupling during different fault conditions [53]. The study considered 

various load models in the optimization results, accounting for the source as a negative sink and 

incorporating index-based performance evaluation [105]. GA has been integrated with OPF [99] 

and AM [59] for DG optimization. In another study [106], a step-by-step approach was employed 

to optimize the size and location of DG in main and sub-network distribution systems. This was 

done using a single-step restoration strategy, supplied by utility-owned DG, to address power 

outage issues stemming from cold load pick-up conditions. Additionally, a non-dominated sorting 

GA (NSGA) and forward/backward sweep method were applied in [74] to allocate renewable DG 

and non-renewable DG (NRDG) and select their sizes. Zonal division of peak load [107], moment 

method, and central limit theorem [108] were incorporated into DG planning to optimize cost, 

power quality parameters, and reliability. Furthermore, SPV and WTDG were characterized as DG 

sources in a study focused on optimizing Weibull reliability and maintenance costs, ultimately 

minimizing the annual operating cost (AOC). 

• Tabu Search (TS) 

Introduced in 1986, Tabu Search (TS) operates on the principle of prohibiting moves that 

would lead to cycling, resulting in a powerful search method with a memory mechanism. This 

approach involves saving tabu information from bottom to top in a tabu list. In the context of DG 

placement optimization, TS employs three simultaneous algorithms targeting residential, 

commercial, and industrial loads. These algorithms encompass rounding calculations, local 

minimum identification, and optimal installation processes [109]. The TS procedure consists of 

stages such as initialization, finding neighborhood solutions, calculating losses, iterations, and 

updating the current solution until a maximum iteration limit is reached to achieve optimization. 

If a neighborhood solution proves superior to the current set of values, it is adopted, satisfying the 

aspiration outlined in the tabu list. The authors propose a methodology that optimizes both DG 

resources and reactive power resources, involving short-term, intermediate-term (keeping the best 
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solution to date), and long-term memory (considering more than three successive iterations). This 

methodology incorporates controlled output (CO) and Z scenarios [110]. In this work, a forbidden 

move, which entails adding a new move while removing an old one, results in an updated solution 

in the next iteration of the tabu list. The length of the tabu list is directly proportional to the 

improved solution. 

• Harmony Search (HS) 

The Harmony Search (HS) heuristic technique, introduced by Geem et al., draws inspiration 

from the process of musical improvisation to find the optimal condition, akin to a musician's 

artistic judgment. Musicologist Tirro and French composer Jean Philippe Rameau contributed to 

the foundation of this technique, drawing from the classical method of harmony applied to the 

Traveling Salesman Problem (TSP) [111]. An improved multi-objective harmony search (IMOHS) 

is proposed for optimizing DG placement, offering a qualitative comparison with NSGA II. 

IMOHS incorporates a search process using a novel global HS, which incorporates mutation 

probability and excludes the harmony memory considering rate parameters. The technique 

primarily involves two steps: domination rank and crowding distance. When comparing two 

harmonies, if one harmony dominates the other, the non-dominated harmony is stored in the 

harmony memory, while the dominated harmony is not discarded and is given a second chance for 

improvisation [112]. 

• Simulated Annealing (SA) 

In 1983, Kirkpatrick et al. researched the Simulated Annealing (SA) optimization technique, 

which consists of four steps: concise configuration, random selection, determining function, and 

annealing process schedule. The authors demonstrated five DG applications to extract various 

benefits of DG allocation in the distribution network using simulated annealing optimization 

technique. Load flow analysis is employed to calculate voltage drops and power losses using a 

multi-objective function. This technique is evaluated on the IEEE 33 test system, concluding that 

increased penetration of renewable energy is viable in a radial power system. The results showcase 

the optimal size and location of DG considering the number of DG units [113]. 

• Imperialist Competitive Method (ICM) 

In references [114-117], an optimization technique based on the concept of imperialism and 

the competition among empires is implemented. The colonies approach their imperialist, and the 

cost of each empire is calculated to determine the exchange of positions from weaker to stronger 

empires, ultimately resulting in the existence of a single optimized value for DG. Subsequently, 

the profit of distribution network operators is maximized and applied in the UK under Ofgen. This 

includes considerations for power flow constraints, operating limits, voltage profiles, feeder 

capacities, and the number of DG steps, with crossover and mutation probability functions 

programmed in MATLAB [116]. In [117], losses are computed using the load flow technique, 

employing KVL and KCL to measure upstream voltage, resulting in complex power 

measurements. The ICM is then applied for DG optimization in a zonal distribution network using 

islanding operation for sensitive loads. 
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• Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is characterized by several distinct stages, including 

initialization, cost function calculation, constraint assignment, feasible state selection, and 

neighborhood structure. It also possesses properties such as search behavior, memory storage, 

feasible neighborhood definition, termination conditions, probabilistic decision-making, ant 

routing table, and pheromone update. ACO is implemented to restructure the distribution network 

framework with the goal of minimizing power losses. ACO demonstrates the ability to avoid 

premature convergence and being trapped in local optima. The technique is tested and applied to 

the IEEE 33 bus system, yielding significant results in reducing power losses compared to a non-

restructured distribution network. Additionally, the convergence time indicates faster solution 

convergence using this technique. Furthermore, network losses are reduced from 140 kW to 110 

kW by reconfiguring DG in the distribution system [118]. 

 

Fig.2.2: Modern mathematical approaches of DG optimization 

• Artificial Bee Colony (ABC) 

Karboga introduced an optimization technique based on the collective behavior of honey bees, 

consisting of three main components: food source, searchers, and non-searchers. These 

components exhibit self-organizational behavior through alternate feedback, random search, and 

information sharing. A bi-level approach employing the ABC optimization technique is applied to 

the IEEE 33 system for DG allocation. The process involves locating the DG followed by 

optimizing its size in four different cases to obtain possible outcomes with reduced computation 

time [119]. Additionally, indexes are incorporated into the ABC optimization to enhance power 

quality parameters. The authors also address the reformation of industrial and commercial 
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processes by including the distribution loss index in the objective function, considering its high 

prevalence in Iran [120]. 

• Particle Swarm Optimization (PSO) 

In 1995, Kennedy et al. investigated the PSO technique, which is another optimization 

approach inspired by social behavior simulations, connecting artificial life to bird flocking, fish 

schooling, and swarming behavior. PSO utilizes basic mathematical operators with minimal 

memory space and high speed. The technique involves concepts like velocity matching, craziness, 

cornfield vector, auxiliary variable removal, multidimensional search, and distance acceleration, 

resulting in improved versions. PSO is rooted in social concepts and swarm intelligence principles 

such as proximity, quality, diverse response, stability, and adaptability. The authors also delve into 

various modified versions of PSO, including multi-objective PSO (MPSO), constraint handling 

PSO, stretching PSO, cooperative PSO, comprehensive learning PSO, and hybrid PSO. These 

versions, such as Tribal PSO (TPSO) with OO [37], constriction factor PSO [78], and MPSO [82, 

121], are applied to optimize renewable source-based DG. Additionally, MPSO is employed to 

optimize power quality parameters while considering constraints like expected rate of return 

(ERR), yielding results in terms of the total loss power index (TLPI). The optimization process 

involves the use of synchronous compensators, synchronous generators, and synchronous-based 

DG units [122]. Continuous and discrete optimization using the N-R method is integrated for DG 

optimization and penalty factor calculation [66]. 

• Cuckoo Search (CS) 

Researchers Yang et al. proposed an optimization technique based on the communal behavior 

of a cuckoo bird, combined with Levy flight behavior to achieve improved results. CS involves 

three steps: cuckoo breeding behavior, Levy flight, and search. In this process, a cuckoo bird 

randomly searches for a nest, places its egg, and if the host bird deems the egg unfit for the nest, 

it will reject the cuckoo's egg. CS is applied to optimize renewable energy-based DG to attain 

technical, financial, and societal advantages. Tests are conducted on IEEE 22 and IEEE 69 bus 

systems, considering mono, dual, and multi-DG injections. The proposed technology's results are 

effectively compared with the established PSO technique [123]. The authors recommend CS for 

optimizing the objective function, which includes improved voltage profiles and reduced power 

losses with different weightage factors: (WL), (WV1), and (WV2) [124]. Additionally, the 

evaluation of indices based on voltage is emphasized for power quality. The outcomes are 

significant and compared with well-established GA and PSO.  

• Firefly Method (FFM) 

The Firefly Method (FFM) draws inspiration from the illuminating behavior of fireflies, 

operating on three fundamental assumptions: all fireflies are of the same type and emit light signals 

to attract others, the strength of attraction is directly proportional to the brightness of the light, and 

a firefly will move towards a brighter one. In the absence of a brighter light source, a firefly will 

take a random step in the search space. A modified version of FFM is applied to DG allocation for 

both active and reactive power compensation, in conjunction with shunt capacitors. The FFM 

optimization technique addresses four different compensation scenarios in the distribution  
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Table 2.2 Data-based assessment of DG optimization by adopted modern mathematical approaches 

 Ref.  Modern 

mathemat

ical 

optimizati

on method 

Test 

systems 

Different Cases Optimal DG sizes Optimal 

DG 

locations 

Strength

ened 

Paramet

ers 

Optimized 

Results 

Compared 

Approaches 

[49] DE IEEE 6 ƩDG = 2 0.48995, 0.63858 

(p.u.) 

3, 6 PLR, 

VPE 

0.020545 

p.u. 

Base Care 

WoDG, 

BBPSO, 

MMNRES 
IEEE 30 ƩDG = 6 0.16362, 0.11973, 

0.21795, 0.20327, 

0.013192, 0.29578 

(p.u.) 

16, 18, 19, 

23, 25, 27 

0.088605 

p.u. 

[53] GA IEEE 34 ƩDG = 4 500 (kW) each 20, 25, 8, 17 COP, 

PLR, 

VPE  

102.76 

(kW) 

  

IEEE 30 ƩDG = 5 510 (kW) each 18, 11, 25, 

21 

104.6 (kW) 

[55] GA IEEE 13 V % Mean = 

98.823 

3200 (kW) 13 PLR, 

VPE  

100.25 

(kW) 

  

V % Mean = 98.81 1600, 1600 (kW) 13, 9 92.9 (kW) 

[56] GA IEEE 13 V % Mean = 

98.823 

3200 (kW) 13 PLR, 

VPE 

100.25 

(kW) 

  

V % Mean = 98.81 1600, 1600 (kW) 13, 9 92.9 (kW) 

[61] GA IEEE 12 ƩDG = 1 (Tiv) 0.24 (MW) 9 COP, 

PLR, 

VPE 

0.0046 

(MW) 

WoDG 

MDG (Tiv) 0.0755, 0.0484, 

0.0676, 0.0594 

(MW) 

6, 8, 9, 10 

ƩDG = 1 (Tv) 0.13 (MW) 9 0.0035 

(MW) 
MDG (Tv) 0.0401, 0.0601, 

0.0401, 0.0267 

(MW) 

6, 8, 10, 12 

[62] IHRA IEEE 6 ƩDG =4 15 (MW) 2, 3, 4, 6 PLR 0.0498 

(MW) 

GA 

IEEE 14 ƩDG =4 26 (MW) 11.12% 

IEEE 30 ƩDG = 4 28.3 (MW) 9.08% 

[66] PSO IEEE 69 ƩDG = 1 1904.2 (kW) 61 PLR 23.9 (kW) SQP 

ƩDG = 2 1582, 322 (kW) 61, 21 13.6 (kW) 

ƩDG = 3 1278, 301, 324 

(kW) 

61, 64, 21 12.8 (kW) 

[70] ABC IEEE 69 ƩDG=1 , load = 

3802 (kW) + 2694 

(kVA)r 

2200 (kVA) 61 COP, 

PFO, 

PLR 

23.9199 

(kW) 

GA, ELF 

ƩDG=1, load = 150 

% 

3400 (kVA) 61 54.7271 

(kW) 

MDG, load = 3802 

(kW) + 2694 

(kVA)r 

2100, 600 (kVA) 61, 17 7.99901 

(kW) 

MDG, load = 150 

% 

3200, 900 (kVA) 61, 17 17.9966 

(kW) 

ƩDG=1 + capacitor 

(load = 100%) 

2200 (kVA), 300 

(kVA)r 

61, 18 18.5512 

(kW) 

ƩDG=1 + capacitor 

load = 150 %) 

3300 (kVA), 600 

(kVA)r 

61, 16 42.1286 

(kW) 

Active Power DG 

(load = 100 %) 

1800 (kW) + 1350 

(kVA)r 

61 23.282 

(kW) 

Active Power DG 

(load = 150 %) 

2700 (kW) + 1950 

(kVA)r 

61 53.2194 

(kW) 

DG size is fixed 1000 (kVA) 61 80.29 (kW) 
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Table 2.2 (continued) 

Ref.  Modern 

mathematical 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG sizes Optimal DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[71] EP IEEE 69 Wc, WPDLR 

= 0 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53 PLR, VPE 65.69 

(MWh) 

GA, ES 

Wc, WPDLR 

= 0.1 

0.25 (MW) each (1 

SPV, 1 WTDG) 

51, 53 51.16 

(MWh) 

Wc, WPDLR 

= 0.2 

0.25 (MW) each (1 

SPV, 1 WTDG) 

54, 50 44.81 

(MWh) 

Wc, WPDLR 

= 0.3 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53, 50 42.58 

(MWh) 

Wc, WPDLR 

= 0.4 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53, 50 42.17 

(MWh) 

Wt, WPDLR 

= 0 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53 65.69 

(MWh) 

Wt, WPDLR 

= 0.1 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53, 53 61.4 

(MWh) 

Wt, WPDLR 

= 0.2 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53, 53 56.04 

(MWh) 

Wt, WPDLR 

= 0.3 

0.25 (MW) each (1 

SPV, 1 WTDG) 

54, 50 48.17 

(MWh) 

Wt, WPDLR 

= 0.4 

0.25 (MW) each (1 

SPV, 1 WTDG) 

53, 50 43.79 

(MWh) 

Wc, WPDLR 

= 0 

0.125 (MW) each (2 

SPV, 2 WTDG) 

53, 54 65.69 

(MWh) 

Wc, WPDLR 

= 0.1 

0.125 (MW) each (2 

SPV, 2 WTDG) 

53, 54 and 51, 

53 

51.14 

(MWh) 

Wc, WPDLR 

= 0.2 

0.125 (MW) each (2 

SPV, 2 WTDG) 

52, 54 and 50, 

53 

44.7 

(MWh) 

Wc, WPDLR 

= 0.3 

0.125 (MW) each (2 

SPV, 2 WTDG) 

50, 53 and 50, 

53 

42.53 

(MWh) 

Wc, WPDLR 

= 0.4 

0.125 (MW) each (2 

SPV, 2 WTDG) 

53, 54 and 50, 

52 

42.15 

(MWh) 

Wt, WPDLR 

= 0 

0.125 (MW) each (2 

SPV, 2 WTDG) 

53, 54 65.69 

(MWh) 

Wt, WPDLR 

= 0.1 

0.125 (MW) each (2 

SPV, 2 WTDG) 

54, 54 and 53, 

53 

58.43 

(MWh) 

Wt, WPDLR 

= 0.2 

0.125 (MW) each (2 

SPV, 2 WTDG) 

52, 54 and 52, 

53 

48.64 

(MWh) 

Wt, WPDLR 

= 0.3 

0.125 (MW) each (2 

SPV, 2 WTDG) 

53, 53 and 50, 

51 

44.27 

(MWh) 

Wt, WPDLR 

= 0.4 

0.125 (MW) each (2 

SPV, 2 WTDG) 

51, 54 and 50, 

53 

42.59 

(MWh) 

[74] GA IEEE 31 NRDG 1.5, 0.5, 1, 1.5, 1.5 

(MW) 

8,12,13,28,30 PLR, THDR 11960 

(MWh) 

WoDG 

NRDG + 

WTDG 

1.5, 0.7, 1.4, 0.6, 0.6 

(MW) 

8,15,17,20,30 12784 

(MWh) 

NRDG + 

SPV  

1.15, 0.3, 0.4, 0.85, 

0.3 (MW) 

12,13,15,17,31, 15410 

(MWh) 

NRDG + 

WTDG + 

SPV 

0.3, 1.5, 1.4, 0.8, 1.5 

(MW) 

6,12,28,30,31 15121 

(MWh) 
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Table 2.2 (continued) 

Ref.  Modern 

mathematical 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG 

sizes 

Optimal 

DG 

locations 

Strengt

hened 

Parame

ters 

Optimized Results Compared 

Approaches 

[78] PSO IEEE 16 ƩDG = 1 12.97 (MW) 9 COP, 

PFO, 

PLR, 

VPE  

168.1 (kW) IAM 

ƩDG = 2 12.97, 5.86 (MW) 9, 6 111.7 (kW) 

ƩDG = 3 13.1, 5.897, 4.29 

(MW) 

9, 6, 16 76.4 (kW) 

ƩDG = 1 2.591 (MW) 6 111.1 (kW) 

ƩDG = 2 1.002, 1.0195 

(MW) 

12, 30 87.5 (kW) 

ƩDG = 3 0.88, 1.0928, 

1.0098 (MW) 

13, 24, 30 73.2 (kW) 

ƩDG = 1 1.8062 (MW) 61 78.6 (kW) 

ƩDG = 2 1.8062, 0.511 

(MW) 

61, 17 67 (kW) 

ƩDG = 3 1.8062, 0.511, 

0.719 (MW) 

61, 17, 50 65.5 (kW) 

[81] ABC IEEE 30 ƩDG = 1 200 (MW) 17 COP, 

PR 

  Without 

solar 

penetration ƩDG = 2 136, 97 (MW) 5, 23 

ƩDG = 3 198, 127, 176 

(MW) 

14, 22, 23 

ƩDG = 4 68, 109, 1193, 

102 (MW) 

11, 13, 26, 

29 

[82] PSO IEEE 33  ERR = 15 % 1, 1, 0.9 (MW) 7, 33, 15 PLR, 

RI, SI 

VPE  

 TLPI = 0.1642 p.u. WoDG 

ERR = 20 % 0.9, 0.9, 1 (MW) 6, 32, 14 TLPI = 0.1568 p.u. 

ERR = 25 % 0.9, 0.9, 1 (MW) 6, 32, 14 TLPI = 0.1568 p.u. 

ERR = 30 % 0.9, 0.9, 1 (MW) 6, 32, 14 TLPI = 0.1568 p.u. 

ERR = 35 % 1, 1, 0.9 (MW) 6, 32, 13 TLPI = 0.1479 p.u. 

ERR = 40 % 1, 1, 0.9 (MW) 7, 31, 13 TLPI = 0.14665 p.u. 

ERR = 45 % 1, 1, 1 (MW) 6, 29, 12 TLPI = 0.162 p.u. 

ERR = 50 % 1, 1, 1 (MW) 6, 29, 12 TLPI = 0.1635 p.u. 

[92] GA IEEE 52 GA (VPE = 

24.4 %, SRI = 

63.1 %) 

0.3105 p.u. 50 LLR, 

SRI, 

VPE, 

PFR 

PFR = 42.016 % , 

LLR = 81.5 % 

LP 

LP (VPE = 

24.26 %, SRI 

= 63.075 %) 

0.3 p.u. 50 PFR = 42.709 % , 

LLR = 80.7 % 

[105

] 

GA IEEE 13 CL 0.63 p.u. 7 PLR 0.0161 p.u.  WoDG 

IL 0.61 p.u. 8 0.0167 p.u. 

RL 0.59 p.u. 8 0.0167 p.u. 

CML 0.58 p.u. 8 0.0171 p.u. 

MXL 0.62 p.u. 8 0.0168 p.u. 

IEEE 37 CL 0.62 p.u. 14 0.001889 p.u. 

IL 0.63 p.u. 25 0.00166 p.u. 

RL 0.63 p.u. 25 0.001664 p.u. 

CML 0.63 p.u. 25 0.001646 p.u. 

MXL 0.63 p.u. 25 0.001663 p.u. 
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Table 2.2 (continued) 

Ref.  Modern 

mathematical 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG sizes Optimal DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[106] GA IEEE 33 ƩDG =2 700, 500 (kVA) 10, 31 QR, PLR - WoDG 

[107] GA IEEE 39 MGT  500 (kW) 36 COP, RI AOC = 

141920 $ / 

year 

 WoDG 

MGT  1000 (kW) 19 AOC = 

236520 $ / 

year 

[108] GA IEEE 97 WTƩDG-1 1 (MVA) Any bus COP, PR, RI  AOC = 

15000 $ / 

(MVA) 

 WoDG 

WTƩDG-2 1.5 (MVA) Any bus AOC= 

12750 $ / 

(MVA) 

WTƩDG-3 2 (MVA) Any bus AOC= 

10500 $ / 

(MVA) 

SPV ƩDG-1 16 (MVA) Any bus AOC= 

20500 $ / 

(MVA) 

SPV ƩDG-2 18 (MVA) Any bus AOC= 

18750 $ / 

(MVA) 

SPV ƩDG-3 19 (MVA) Any bus AOC= 

19625 $ / 

(MVA) 

[109] TS Model 1 

(1 S/S, 4 

Feeder 

and 28 

Sections) 

AL-1 

(ƩDG=10) 

4000 (kW) 

- 

PLR 1725 (kW) SA 

AL-2 

(ƩDG=10) 

4000 (kW) 1823 (kW) 

AL-3 

(ƩDG=10) 

4000 (kW) 1823 (kW) 

Model 1 

(1 S/S, 4 

Feeder 

and 28 

Sections) 

AL-1 

(ƩDG=20) 

4000 (kW) 1211 (kW) 

AL-2 

(ƩDG=20) 

4000 (kW) 1292 (kW) 

AL-3 

(ƩDG=20) 

4000 (kW) 1299 (kW) 

Model 2 

(4 S/S, 6 

Feeder 

and 78 

Sections)   

AL-2 

(ƩDG=15) 

13.7 (kW) 26554 (kW) 

AL-3 

(ƩDG=15) 

13.7 (kW) 35250 (kW) 

Model 2 

(4 S/S, 6 

Feeder 

and 78 

Sections)  

AL-2 

(ƩDG=35) 

14.9 (kW) 13044 (kW) 

AL-3 

(ƩDG=35) 

14.9 (kW) 18647 (kW) 
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Table 2.2 (continued) 

Ref.  Modern 

mathematical 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG 

sizes 

Optimal DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[110] TS IEEE 33 UCO, SL0 = 

3715 + j 2300 

(kVA) 

275, 325, 150, 

100, 450 (kW) 

8, 16, 24, 27, 32 COP, PLR, 

VPE  

54.43 

(kW) 

  

SL
1 = 0.8 (3715 

+ j 2300) 

(kVA) 

275, 325, 150, 

100, 450 (kW) 

8, 16, 24, 27, 32 22.87 

(kW) 

SL
 2 = 0.6 (3715 

+ j 2300) 

(kVA) 

275, 325, 150, 

100, 450 (kW) 

8, 16, 24, 27, 32 6.93 (kW) 

SL
 3= 0.4 (3715 

+ j 2300) 

(kVA) 

275, 325, 150, 

100, 450 (kW) 

8, 16, 24, 27, 32 5.47 (kW) 

SL
 4 = 0.2 (3715 

+ j 2300) 

(kVA) 

275, 325, 150, 

100, 450 (kW) 

8, 16, 24, 27, 32 17.46 

(kW) 

CO, SL 0 = 

3715 + j 2300 

(kVA) 

275, 400, 75, 50, 

500 (kW) 

8, 16, 24, 27, 32 50.32 

(kW) 

SL
 1 = 0.8 (3715 

+ j 2300) 

(kVA) 

275, 400, 75, 50, 

500 (kW) 

8, 16, 24, 27, 32 21.59 

(kW) 

SL
 2 = 0.6 (3715 

+ j 2300) 

(kVA) 

275, 400, 75, 50, 

500 (kW) 

8, 16, 24, 27, 32 7.88 (kW) 

SL
 3= 0.4 (3715 

+ j 2300) 

(kVA) 

275, 225, 75, 50, 

325 (kW) 

8, 16, 24, 27, 32 3.24 (kW) 

SL
 4 = 0.2 (3715 

+ j 2300) 

(kVA) 

175, 75, 75, 50, 

125 (kW) 

8, 16, 24, 27, 32 0.67 (kW) 

CO with 300 

(kW), 300 

(kVA)r Source, 

SL 0 = 3715 + j 

2300 (kVA) 

300, 300, 125, 

275, 300 (kW) 

8, 16, 24, 27, 32 53.1 (kW) 

SL
 1 = 0.8 (3715 

+ j 2300) 

(kVA) 

300, 300, 125, 

250, 300 (kW) 

8, 16, 24, 27, 32 22.7 (kW) 

SL
 2 = 0.6 (3715 

+ j 2300) 

(kVA) 

300, 300, 125, 

250, 300 (kW) 

8, 16, 24, 27, 32 6.83 (kW) 

SL
 3= 0.4 (3715 

+ j 2300) 

(kVA) 

200, 125, 125, 

215, 75 (kW) 

8, 16, 24, 27, 32 2.68 (kW) 

SL
 4 = 0.2 (3715 

+ j 2300) 

(kVA) 

250, 225, 125, 

250, 225 (kW) 

8, 16, 24, 27, 32 0.8 (kW) 

[112] HS IEEE 33 Load = 3.72 

(MW), 2.3 

(MVA)r 

0.9369, 0.6672, 

1.0117 (MW) 

6, 14, 24, 31 PLR, VPE  0.06783 

p.u. 

GA/ PSO, 

GA, PSO 

IEEE 69 Load = 3.8 

(MW), 2.69 

(MVA)r 

1.4552, 0.4769, 

0.3124 (MW) 

61, 64, 21 0.0105 p.u. 

[115] ICM IEEE 33 ƩDG =1 200 (kW) 

- 

PLR 201.38 

(kW) 

GA 

IEEE 69 ƩDG =1 200 (kW) 211.45 

(kW) 
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Table 2.2 (continued) 

Ref.  Modern 

mathema

tical 

optimizat

ion 

method 

Test 

systems 

Different Cases Optimal DG sizes Optimal DG 

locations 

Stre

ngth

ened 

Para

mete

rs 

Optimized 

Results 

Comp

ared 

Appro

aches 

[116

] 

ICM IEEE 69 ƩDG = 3 0.385, 1.186, 1 (MW) 26, 35, 62 PLR LI = 7.535 GA + 

OPF, 

OO, 

IB, 

PSO, 

GA, 

GAMS

, IGA 

ƩDG = 5 1.059, 0.85, 0.873, 0.717, 

0.9 (MW) 

4, 26, 40, 48, 62 LI = 9.438 

ƩDG = 7 0.998, 0.686, 0.676, 

0.871, 0.719, 0.811, 0.75 

(MW) 

4, 17, 27, 40, 48, 

58, 65 

LI = 9.837 

ƩDG = 9 0.996, 0.752, 0.645, 

1.258, 0.496, 0.498, 

0.406, 0.855, 0.73 (MW) 

4, 17, 27, 30, 35, 

41, 50, 58, 65 

LI = 9.769 

[117

] 

ICM IEEE 33 ZONE-1 941.5 (kW) 30 PLR, 

VPE 

34.52 (kW) WoDG 

ZONE-2 603.091 (kW) 14 4.82 (kW) 

ZONE-3 691.607 (kW) 25 2.41 (kW) 

[119

] 

ABC IEEE 39 ƩDG =1 2.5775 (MW) 6 PLR, 

VPE  

105.02(kW) AM 

ƩDG =2 1.9707, 0.5757 (MW) 6, 15 89.96(kW) 

ƩDG =3 1.7569, 0.5757, 0.7826 

(MW) 

6, 15, 25 79.25(kW)  

ƩDG =4 1.0765, 0.5757, 0.7824, 

0.6538 (MW) 

6, 15, 25, 32 66.58(kW) 

[120

] 

ABC IEEE 33 ƩDG =1 2.3970 p.u. 5 LLC, 

PLR, 

VPE 

0.06 p.u. WoDG 

ƩDG =3 1.0645, 0.7322, 0.9823 

(p.u.) 

29, 13, 23 0.013 p.u. 

ƩDG =5 1.39, 0.66, 0.52, 

0.73,0.74 (p.u.) 

1, 24, 14, 7, 30 0.007 p.u. 

[121

] 

PSO IEEE 12 WTƩDG = 2 336 (kW) 8 PFO, 

PLR, 

VPE 

14.7 (kVA) GA, 

AM, 

PSBIT IEEE 15 WTƩDG = (4 + 3) 1176 (kW) 4, 7 54.8 (kVA) 

IEEE 33 WTƩDG = (5 + 3 + 5 + 5) 2873 (kW) 7, 16, 24, 30 127.1 

(kVA) 

IEEE 69 WTƩDG = (4 + 2 + 6 + 6 + 

4) 

3696 (kW) 7, 9, 48, 62, 64 131.3 

(kVA) 

IEEE 12 SPV = (4 + 3) 370 (kW) 5, 10 12..5 (kVA) 

IEEE 15 SPV = (4 + 4 + 5 + 3 + 4 + 

4) 

1267 (kW) 5, 6, 8, 9, 12, 15 50.9 (kVA) 

IEEE 33 SPV = (6 + 6 + 3 + 6 + 6 + 

6 + 6 + 6 + 6 + 6) 

2693 (kW) 8, 13, 16, 17, 20, 

24, 25, 27, 31, 

33 

127 (kVA) 

IEEE 69 SPV = (3 + 5 + 5 + 6 + 5 + 

6 + 5 + 6 + 6 + 5 + 6) 

3062 (kW) 6, 8, 12, 26, 52, 

53, 59, 61, 62, 

65, 68 

148.6 

(kVA) 

[124

] 

CS IEEE 38 Wv1 = 1 & WL = Wv2 = 0 10, 20, 30, 40 (MW) 18, 8, 27, 36 PLR, 

VPE 

  Binary 

GA, 

continu

ous 

GA, 

PSO, 

WoDG 

WL = 1 & Wv1 = Wv2 = 0 10, 20, 30, 40 (MW) 24, 29, 7, 18 

Wv1 = 1 & WL = Wv1 = 0 10, 20, 30, 40 (MW) 29, 8, 12, 15 

Wv1 = 0.5 & WL = Wv2 = 

0.25 

10, 20, 30, 40 (MW) 34, 30, 16, 9 

IEEE 69 Wv1 = 1 & WL = Wv2 = 0 10, 20, 30, 40 (MW) 30, 44, 59, 29 

WL = 1 & Wv1 = Wv2 = 0 10, 20, 30, 40 (MW) 58, 51, 38, 19 

Wv1 = 1 & WL = Wv1 = 0 10, 20, 30, 40 (MW) 32, 68, 63, 31 

Wv1 = 0.5 & WL = Wv2 = 

0.25 

10, 20, 30, 40 (MW) 9, 67, 55, 40 
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Table 2.2 (continued) 

Ref.  Modern 

mathematical 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG sizes Optimal 

DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[126] FF IEEE 69 ƩDG = 1 1.8753 (MW) 61 PLR, VPE 0.0832 

(MW) 

GA 

ƩDG = 2 1.7496, 0.9269 

(MW) 

61, 67 0.0747 

(MW) 

[134] HA IEEE 9 HL 4, 2, 4, 4 (MVA) 2, 4, 5, 8 COP, PLR  2.42 (MVA) Bilateral 

contract 

scenario ML 2, 4, 4 (MVA) 4, 5, 8 

LL 4, 1, 4, 4 (MVA) 1, 3, 6, 7 

PSF = 0.7 - 

1.66 

4, 4, 4, 3 (MVA) 2, 5, 8, 4 

PSF = 0.7 - 

1.75 

4, 4, 4, 3, 2, 1 

(MVA) 

2, 5, 8, 4, 7, 

1 

[135] GA IEEE 16 HL 0.62 p.u. 7 PLR 5.76 p.u. WoDG 

ML 0.53 p.u 7 2.63 p.u. 

LL 0.4 p.u. 7 1.7 p.u. 

IEEE 37 HL 0.5 p.u. 15 14.12 p.u. 

ML 0.47 p.u. 15 6.2 p.u. 

LL 0.63 p.u. 15 3.45 p.u. 

IEEE 75 HL 0.45 p.u. 32 29.93 p.u. 

ML 0.63 p.u. 30 13.06 p.u. 

LL 0.59 p.u. 30 8.09 p.u. 

[136] MVO IEEE 33 

ƩDG = 1 2500 (kW) 6 

VPE, PLR 

0.941 (p.u.), 

111.01 (kW) 
MFO, PSO, 

HPSO 
ƩDG = 2 

852.06, 1156.95 

(kW) 
13, 30 

0.9684 

(p.u.), 87.16 

(kW) 

[137] MALO IEEE 33 ƩDG = 5 
220, 50, 30, 20, 

1020 (kW) 

5, 9, 12, 23, 

30 
VPE, PLR 

0.083, 74.96 

kW 
WoDG 

[138] PSO IEEE 33 

ƩDG = 5 

(OIW) 
2.8171 (MW) each 

6, 10, 18, 

22, 31 
VPE, PLR 

112.691 

(kW) 

WoDG 

ƩDG = 5 

(RIW) 
2.9109 (MW) each 

112.558 

(kW) 

ƩDG = 5 

(GLBIW) 
2.7947 (MW) each 

112.719 

(kW) 

ƩDG = 5 

(TVIW) 
2.8201 (MW) each 

112.534 

(kW) 

[139] MCPSO 

IEEE 30 ƩDG = 1 46.95 (MW) 23 

VPE, PLR 

12.93 (MW) 

AM, PSO 
IEEE 14 ƩDG = 1 34 (MW) 14 

10.093 

(MW) 

[140] PSO IEEE 34 ƩDG = 1 3 (MW) 8 VPE, PLR 167 (kW) WoDG 

[141] CPSO IEEE 14 ƩDG = 1 33.95 (MW) 6 
VPE, PLR, 

COP 
10.81 (MW) IA, ELF, PSO 

 

network: absence of a compensator, presence of a shunt capacitor, presence of DG, and presence 

of integrated DG and shunt capacitor. This modified approach is evaluated on the IEEE 85 test 

system, yielding significant improvements compared to PSO and MINLP [125]. Furthermore, the 

optimization of DG size and allocation takes into account voltage profile and line losses. This 
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evaluation is conducted on the IEEE 69 radial distribution system and the results demonstrate 

comparable efficacy to Genetic Algorithms (GA) [126]. 

2.3.3 Hybrid Approaches 

In the domain of Optimal planning of DG, researchers have advocated for the application of 

heterogeneous hybrid AI techniques. These approaches are engineered to tackle progressively 

intricate challenges in DG planning. They involve the amalgamation of two optimization methods, 

operating either consecutively or concurrently. Within this hybrid category, GA is coupled with TS 

to create GATS [127]. It is also integrated with PSO to yield GAPSO [128]. Moreover, it is 

combined with OPF to produce GAOPF [129], and harmonized with a fuzzy approach to form FZ 

[130]. Another integrated approach encompasses the evaluation of GA and TS for the optimization 

of the objective function, utilizing GA chromosomes and TS neighbors [127]. 

GAPSO, employing GA for DG allocation and PSO for size optimization with population sizes of 

30 and 20, respectively, is deployed for the optimization of power quality parameters [128]. 

GAOPF leverages GA to ascertain decision variables, after which OPF is executed to ascertain the 

optimal solution. In [131], the Jumping Frog PSO (JFPSO) method is employed to pinpoint 

optimal DG locations through OPF optimization. The PSO process, considering voltage level 

deterioration, is succeeded by a hybrid optimization technique involving Gravitational Search 

Algorithm (GSA) [132]. Moreover, a heightened level of transient stability is achieved through the 

implementation of a cascade process involving PSO and Shuffled Frog Leaping (SFL) with the 

Critical Clearing Time (CCT) index. This is executed using Dlg SILENT software [60]. 

Furthermore, a fusion of Fuzzy Logic (FZ) with TS (FZTS) is applied for MO optimization of the 

fitness function for the integration of DG [69]. For a comprehensive overview of these hybrid 

optimization techniques, please consult Table 2.3, which provides detailed information on the 

techniques adopted, the test systems utilized, optimized results, and comparisons with other 

optimization techniques. 

2.4 Renewable Energy  

Leveraging established renewable energy resources (RER), DG constitutes a pivotal phase in the 

modernization of existing power grids. The heightened attention towards DG in today's energy 

landscape is prompted by the diminishing reservoirs of conventional fossil fuels, escalating 

environmental apprehensions, and soaring fuel expenses. Through the deployment of smaller-scale 

technologies capable of harnessing a diverse range of energy sources including hydro, wind, solar, 

fuel cells, ocean energy, geothermal, biomass, and non-RER options, it signifies a departure from 

the dependency on centralized generation. Traditional fossil fuel-based power generation remains 

the predominant source of global energy supply. However, this comes at the cost of jeopardizing 

ecosystems and public health due to the emission of hazardous pollutants. The persistent reliance 

on non-renewable energy sources has been associated with severe repercussions, encompassing 

climate change, depletion of the ozone layer, heightened vulnerability to natural calamities, 

endangerment of species, public health hazards, air quality degradation, and the emergence of 

novel diseases. DG stands as a potent means to seamlessly integrate renewable energy resources 
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into state-of-the-art power systems, thereby fostering the generation of sustainable, eco-friendly 

energy. 

The intermittent nature of specific resources, notably wind and solar energy, poses a substantial 

challenge in the incorporation of renewable energy sources within DG planning. The availability 

of these sources is contingent upon local environmental and geographical factors. Therefore, to 

ensure the smooth integration of DG and sustainable energy sources, the implementation of 

demand response initiatives and energy storage technologies is imperative. 

Table 2.3 Data-based assessment of DG optimization by hybrid approaches  

Ref. Hybrid 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal DG sizes Optimal 

DG 

locations 

Strengthen

ed 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[14] FZ + AM IEEE 12 - 0.22 (MW) 9 PLR, VPE 0.01077 (MW) WoDG 

IEEE 33 2.59 (MW) 6 0.111 (MW) 

IEEE 69 1.87 (MW) 61 0.0832 (MW) 

[16] GA + AM IEEE 4 Vdm = 

0.007422 p.u. 

4000, 3000 (kW) 3,4 COP, RI, 

VPE  

74.26 (kW) WoDG 

Vdm = 

0.007422 p.u. 

3000, 2000 (kW) 12, 7 129.37 (kW) 

[20] PSO + SFL IEEE 33 CL 312.8, 334.4, 323, 

279, 200 (kW) 

14, 16, 33, 

8, 31 

PLR, VPE, 

TSI  

0.053273 (MW) PSO, SFL 

MXL 275.1, 252.3, 

306.2, 237.6, 290 

(kW) 

33, 12, 14, 

26, 13 

0.055567 (MW) 

[21] FZ + AM IEEE 33 VL > ± 5% 2.4818 (MW) 6 PLR, VPE 110.6318 (kW) WoDG 

VL ± 5% 3.15 (MW) 6 115.2 (kW) 

[26] PSO + FZ IEEE 33 ƩDG = 1 1.2931 (MW) 32 PLR, VPE 127.0919 (kW) PSO 

ƩDG = 2 0.3836, 1.1506 

(MW) 

32, 30 117.3946 (kW) 

ƩDG = 3 0.2701, 1.1138, 

0.1503 (MW) 

32, 30, 31 117.3558 (kW) 

ƩDG = 4 0.2706, 0.8432, 

0.1503, 0.5982 

(MW) 

32, 30, 31, 

18 

90.4794 (kW) 

[30] MINLP + 

OPF 

IEEE 41 PP 4.4, 1.1, 2.2 (MW) 19, 23, 40 PLR, VPE 1079.7 (MW)h WoDG 

TP 6.6, 5.5, 9.9 (MW) 19, 23, 40 1527.2 (MW)h 

[37] TPSO + OO IEEE 86 TRIBE PSO 

(SPV + BDG) 

200, 200 (kVA) 61, 85 COP Total cost = 

9355000 $ 

TRIBE 

PSO, OO 

OO (SPV + 

BDG) 

400, 100 (kVA) 72, 85 9504000 $ 

TRIBE PSO + 

OO (SPV + 

BDG) 

200, 200 (kVA) 61, 82 9355000$ 

[50] NLP + OPF IEEE 34 ƩDG = 2 3112, 6.613 (MW) 17, 18 PLR, VPE 0.279 (MW) WoDG 

[56] GA + OPF IEEE 69 ƩDG = 3 2.661 (MW) 26, 35, 62 COP, PLR TI (£ / h) = 8.72   

ƩDG = 5 4.067 (MW) 4, 26, 35, 

40, 62 

TI (£ / h) = 10.73 

ƩDG = 7 4.566 (MW) 5, 13, 27, 

35, 40, 57, 

65 

TI (£ / h) = 11.27 

ƩDG = 9 4.833 (MW) 4, 6, 13, 

21, 27, 35, 

40, 57, 62 

TI (£ / h) = 11.51 
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Table 2.3 (continued) 

Ref. Hybrid 

optimization 

method 

Test 

systems 

Different Cases Optimal DG 

sizes 

Optimal 

DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[79] PSO + CPF IEEE 33 ƩDG = 1 3.0317 (MW) 12 PLR 70.949 (kW) WoDG 

ƩDG = 2 0.9143, 1.5345 

(MW) 

27, 22 29.82 (kW) 

IEEE 69 ƩDG = 1 2.2215 (MW) 56 23.594 (kW) 

ƩDG = 2 0.6247, 2.1213 

(MW) 

53, 56 7.342 (kW) 

[84] GA + TS IEEE 13 BDG 300 (kW)   PLR 84.6 (kW) GA 

WTDG 200 (kW) 83.5 (kW) 

SPV 80 (kW) 95.2 (kW) 

IEEE 34 BDG 200 (kW) 220.9 (kW) 

WTDG 200 (kW) 195.7 (kW) 

SPV 200 (kW) 141.4 (kW) 

[85] GA + PSO IEEE 33 ƩDG = 4 0.6639, 0.6628, 

1.0232, 0.8671 

(MW) 

32, 14, 24, 

26 

PLR 0.0682 p.u. GA, PSO 

[86] GA + OPF IEEE 9 UFC 2 (4 (MVA) & 1 

(MVA)) 

4, 8 COP, PLR 52.73 GWh MINLP 

LFC 1 (4 & 1), 2 (2 & 

1), 1 (1 & 1) 

(MVA) 

2, 4, 7, 1 45.35 GWh 

CAC 3 (4 & 1), 1 (3 & 

1) (MVA) 

2, 4, 8, 1 31.55 GWh 

[87] GA + FZ IEEE 6 ƩDG = 1 8.5 (MW) 3 COP, PLR 0.112 (MW) WoDG 

IEEE 30 ƩDG = 2 40, 35 (MW) 10, 6 

[88] PSO + OPF IEEE 30 ƩDG = 3 9.75, 9.26, 8.81 

(MW) 

19, 24, 30 COP, PLR 11.05 (MW)   

ƩDG =5 9.95, 7.85, 6.23, 

2.01, 7.75 (MW) 

7, 19, 24, 

26, 30 

10.92 (MW) 

ƩDG= 7 8.78, 7.15, 2, 2, 

4.52, 2.01, 7.73 

(MW) 

7, 19, 21, 

23, 24, 26, 

30 

10.91 (MW) 

ƩDG = 9 7.78, 5.34, 2, 2, 

2, 2, 3.67, 2, 

7.21 (MW) 

7, 18, 19, 

21, 22, 23, 

24, 26, 30 

10.9 (MW) 

[89] PSO + GSA IEEE 69 Test Case 1 (Tiv) 0.2, 1, 1.8 (MW) 21, 49, 61 LLC, PLR, 

PR, VPE 

MPI = 0.5463 PSO, GSA 

Test Case 1 (Tv) 0.9, 0.2, 1.3 

(MW) 

4, 21, 61 MPI = 0.6014 

Test Case 2 (Tiv) 0.3, 1.2, 1.8 

(MW) 

21, 49, 61 MPI = 0.4495 

Test Case 2 (Tv) 1.3, 1.8, 0.2 

(MW) 

21, 49, 61 MPI = 0.4909 

Test Case 3 (Tiv) 1.7, 0.8, 0.8 

(MW) 

3, 60, 61 MPI = 0.6888 

Test Case 3 (Tv) 1.6, 0.8, 0.3 

(MW) 

3, 61, 64 MPI = 0.7131 

Test Case 3 (Tiv) 0.3, 0.2, 1 (MW) 21, 61, 48 MPI = 0.4771 

Test Case 3 (Tv) 0.6, 1.5, 0.6 

(MW) 

50, 61, 47 MPI = 0.5282 
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Table 2.3 (continued) 

Ref. Hybrid 

optimization 

method 

Test 

systems 

Different 

Cases 

Optimal 

DG sizes 

Optimal 

DG 

locations 

Strengthened 

Parameters 

Optimized 

Results 

Compared 

Approaches 

[99] ABC+TLBO IEEE 33 

WTƩDG-1 2558.5 (kW) 6 

VPE, PLR, 

COP,  

67.83 (kW), 

35971$ 

EA, GA, 

PSO 

WTƩDG-2 
858.3, 

1089.1 (kW) 
13, 30 

28.63 (kW), 

15049$ 

WTƩDG-3 

1069.9, 

1029.9, 

793.8 (kW) 

13, 30, 24 
11.74 (kW), 

6171$ 

SPV ƩDG-1 2590.2 (kW) 6 
111.027 (kW), 

58536$ 

SPV ƩDG-2 
851.5, 

1157.6 (kW) 
13, 30 

87.16 (kW), 

45814$ 

SPV ƩDG-3 

801.7, 

1053.6, 

1091.3 (kW) 

13, 30, 24 
72.78 (kW), 

38256$ 

[100] ALO+PSO+FLC IEEE 33 

SPV ƩDG = 2, 

UPF 

385, 2154 

(kW) 
32, 7 

PLR, COP 

90.98 (kW), 

12062 $ 

PSO, 

ALO+PSO 

WT ƩDG = 2, 

UPF 

951, 696 

(kW) 
31, 17 

89.3 (kW), 

8496 $ 

SPV ƩDG = 2, 

LaPF=0.85 

924+j1223, 

665+j710 

(kVA) 

32, 14 
47.6 (kW), 

8037 $ 

WT ƩDG = 2, 

LaPF=0.85 

993+j1667, 

606+j913.5 

(kVA) 

8, 30 
35.5 (kW), 

8038 $ 

SPV ƩDG = 2, 

LePF=0.85 

1669-j413, 

1179-j29 

(kVA) 

7, 30 
116 (kW), 

13710 $ 

WT ƩDG = 2, 

LePF=0.85 

2300+j273, 

934-j38 

(kVA) 

4, 30 
109 (kW), 

15611 $ 

[101] GOA+CS 

IEEE 33 
ƩDG = 1, Half 

load=50% 
1716 (kW) 2 

VPE, PLR, 

COP 

123.62 (kW), 

34.33$ 

GA, PSO, 

GOA, CS 

IEEE 33 
ƩDG = 1, Full 

load 
926.99 (kW) 24 

139.59 (kW), 

18.5$ 

IEEE 33 
ƩDG = 1, 150% 

load 
926.99 (kW) 24 

139.59 (kW), 

18.5$ 

IEEE 69 
ƩDG = 1, Half 

load=50% 
1930.7 (kW) 17 

141.43 (kW), 

38.6 $ 

IEEE 69 
ƩDG = 1, Full 

load 
1990.7 (kW) 6 

147.66 (kW), 

39.8$ 

IEEE 69 
ƩDG = 1, 150% 

load 
1890.6 (kW) 12 

151.66 (kW), 

37.8$ 

 

2.5 Renewable DG planning 

The modern power system architecture, particularly those integrating renewable DG, encompasses 

several distinct phases in its planning and execution. These stages encompass the design of the DG 

system, the assessment of renewable energy resources, load surveys, the formulation of an energy 

storage framework, the utilization of optimization methodologies, and the analysis of the resultant 

optimization outcomes. Figure 2.3 provides a sequential depiction of the crucial elements involved 

in the planning of renewable DG systems. 
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Fig.2.3: Orderly progression of vital components in DG planning framework 

2.5.1 DG System Design  

The designs of DG systems encompass a variety of methodologies concerning energy generation, 

battery storage, and bus scheduling. These systems can employ either renewable or non-renewable 

resources for energy production. Renewable sources encompass technologies like solar 

photovoltaic systems, wind power generation, crop-based generation, biomass generation, and fuel 

cells. On the other hand, fossil fuel-based generation encompasses a spectrum of combustion 

engine designs [145]. 

Despite the intermittent nature of certain renewable sources, there exist several reliable 

configurations for integrating renewable energy generation, consumption, and storage. For 

instance, in a hybrid DG system, energy can also be derived from biomass and biogas, presenting 

an additional viable option. 

The following outlines descriptions and advantages of different bus planning methodologies: 

• DC-bus Architecture: 

• Description: The DC-bus architecture is characterized by its straightforward 

installation process. It involves channeling the generated energy to a DC bus to 

power DC loads. Additionally, inverters can be employed to convert and supply AC 

when needed. 
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• Benefits: This configuration simplifies the installation process, making it a practical 

choice for systems primarily operating with DC loads. It offers efficiency in 

powering DC devices directly. 

Table 2.4 Technologies associated with DG [146] 

Methodologies Explanation 

Dispersed Heat Methodologies 

Solar heating of water Solar thermal collector is used to convert sunlight into boiled water. 

Heat pump 
Water heating by using the temperateness deposited for a thermal 

reservoir. 

Biomass Water and surface heating by burning the biomass ingredients. 

Dispersed Energy Generation Methodologies 

Solar PV array Designed to convert solar heat into electricity. 

Wind mills Designed to transform wind energy into electricity. 

Micro-wind Small-scale windmill up to 100 kW. 

Micro-hydro Designed to convert kinetic energy of water into electricity. 

Biomass 
Designed to extract electricity via landfill gas production and up to 

40 MW. 

Hybrid Heat and Power Methodologies 

Biomass Energy generation from 100 kW biomass to 85 MWth / 20 Mwe. 

Upto 1 MW 
Small-scale energy distribution for residential and commercial 

purpose. 

1 MWe-10 MWe Mid-level energy distribution for community and industry. 

>10 MWe High-level energy distribution for industries. 

 

• AC-bus Architecture: 

• Description: The AC-bus architecture utilizes generated energy to energize an AC 

bus, which subsequently caters to AC demand. Nevertheless, it's worth noting that 

access to the DC supply is still achievable through the use of converter devices. 
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• Benefits: This setup is conducive for systems predominantly utilizing AC loads. It 

allows for efficient utilization of generated AC power while still providing access 

to the underlying DC source. 

• Hybrid AC-DC Bus Architecture: 

• Description: The hybrid AC-DC bus architecture enables the concurrent provision 

of both AC and DC power, resulting in enhanced overall system efficiency. It 

employs both inverters and rectifiers to facilitate the storage and distribution of 

energy in both AC and DC formats. 

• Benefits: This configuration offers versatility by allowing the system to provide 

power in both AC and DC forms. It leverages the strengths of both architectures, 

leading to increased overall efficiency and adaptability to various load types. 

2.5.2 Renewable Energy Resource Assessment 

Establishing a comprehensive framework for the assessment of natural energy resources is crucial 

for the design and deployment of renewable DG systems. While environmentally sustainable, these 

resources exhibit lower reliability compared to conventional fossil fuel-based electricity 

generation. Effectively addressing this intermittent nature is paramount for optimizing the 

utilization of green energy. The availability of these resources is contingent on regional climatic 

conditions, seasonal variations, soil characteristics, geographical dimensions, and forecasted 

weather patterns. Furthermore, the pronounced intermittency observed in solar and wind power 

generation poses challenges in constructing precise assessment models for these forward-looking 

strategies. In contrast, biomass-based energy generation, while influenced by weather conditions, 

offers the advantage of ensuring continuous energy production through proper feedstock storage 

practices. 

In this study, the authors investigated the influence of geographical and ecological elements on the 

utilization of natural resources for distributed energy generation in the Visayas, Philippines. 

Specifically, wind and SPV power generation were analyzed. The assessment of yearly energy 

output considered ecological variables like optimal monthly positioning of PV panels, average 

solar irradiance levels, and mean monthly wind velocities [147]. 

To enhance the reliability assessment of renewable distributed energy sources, a novel indexing 

system was introduced. This system integrates the least path strategy with conventional fault 

consequence assessment techniques. Additionally, the study developed two-state and three-state 

models aimed at enhancing stability, contingent on the seamless integration of the distribution 

network. These outcomes were compared with scenarios lacking DG integration [148]. 

To mitigate the increased intermittency associated with wind and solar power generation, the 

utilization of both experimental atmospheric data and predictive climatological data has been 

proposed [149].  

• Experimental atmospheric data: It can be sourced from various outlets such as on-site 

measurements, previously published studies, experimental atmospheric observatories, privately-
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funded enterprises, as well as government organizations. These sources offer valuable insights into 

the intermittent natural energy source atmospheric conditions. Pertaining to solar energy, this 

encompasses metrics like global solar radiation statistics, power output of solar photovoltaic 

arrays, daily horizontal solar irradiance, solar intensity, hourly solar radiation, and the relative 

frequency of global solar radiation. Wind speed data characterization covers parameters such as 

hourly mean wind speed, monthly average wind speed, daily wind energy, and the relative 

frequency of wind speed.  
• Forecasting Climatological Data: Accurate prediction of climatological data is paramount 

in mitigating challenges associated with renewable energy generation and determining the 

necessary reserve fuel levels. This need arises due to various factors including limited availability 

of meteorological statistical services and expertise in certain regions, financial constraints 

constraining comprehensive climate data gathering, and the lack of a measurement infrastructure 

hindering continuous data acquisition over prolonged durations. 

 

Table 2.5 Cataloguing of RES forecast boundaries with outcomes [150] 

Group Dimension of Forecast 

Boundary 

Outcomes 

Extreme Short 

Period 

Seconds to Hour - Clearance Cost of Energy Production 

- Real-Time Monitoring of Grid Operation 

and Optimization 

Diminutive Period Hour to Hours - Fund Arrangement of Load Scheduling 

- Reliable Load Announcements with 

Justification 

Intermediary 

Period 

Hours to Week - Unit Assurance Conclusions 

- Reserve Precondition Verdicts 

- Generation Dynamic/Inert Mode 

Pronouncements 

Prolonged Period Week to Year and 

Above 

- Operational Budget Optimization 

- Forecasting and Supervision of Processes 

- Prospective Observations on Wind Power 

Projects 

 

2.5.3 Demand Response 

In the context of DG systems, the Demand Response (DR) program plays a pivotal role, enabling 

consumers to adjust their energy consumption patterns, thereby transitioning from periods of high-
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load to low-load demand, consequently leading to cost savings on electricity bills. In many 

contemporary power systems across various countries, there is a predominant reliance on 

decentralized renewable energy sources for small-scale power generation. This reliance on 

intermittent renewable energy sources necessitates the implementation of a demand response 

mechanism as an auxiliary measure to manage and balance energy supply and demand effectively. 

Historically, end-user energy consumption was primarily regulated by utility providers, as there 

was limited information available regarding cost tariffs and incentive structures for demand 

response within traditional power networks. The emergence of prosumers has significantly 

influenced the management and execution of energy distribution, reflecting the evolution of the 

contemporary energy landscape. Moreover, consumers are typically categorized into three main 

groups: industrial, commercial, and residential. These entities now have the flexibility to shift their 

energy consumption from peak demand periods to off-peak times, reduce their load during periods 

of elevated energy prices, or utilize on-site generation to fulfill their energy requirements. 

The benefits of this plan encompass financial gains, risk evaluation, system stability, effective 

commercial deployment, expanded user amenities, reduced expenses, and environmental merits. 

The demand response scheme entails various cost elements including equipment investments, 

response tactics, operational complexities, potential revenue reductions, postponed expenses, 

communication outlays, tariff frameworks, monitoring expenditures, incentive distributions, 

evaluation costs, and customer education [151, 152]. Figure 2.4 delineates the classification of the 

demand response scheme. 

 

Fig. 2.4: Classification of demand response schemes. 

2.5.4 Battery Storage 

Cost Schemes

Traditional Market Dependent Utilization period

Direct dominance Demand auction Cost of critical hours

Obstructable 

scheme

Exigency demand curve Instantaneous cost

Accumulation market Cost of peak hours in 

extreme day

Auxiliary assistance 

market

Cost in extreme day

Demand Response Schemes

Remuneration Schemes



40 
 

Incorporating energy storage is imperative for the optimal integration of renewable DG systems. 

This is crucial in order to enhance the penetration of DG and effectively address the intermittent 

generation patterns observed in solar and wind power systems. Achieving a sustainable and 

environmentally-friendly energy landscape hinges on the efficient storage of electrical energy. 

Energy storage systems encompass various categories including electrical, mechanical, chemical, 

and thermal storage methodologies. Each of these approaches has undergone comprehensive 

evaluations with regard to their respective merits, limitations, and practical applications. 

Additionally, assessments have been conducted on aspects such as technology, charge storage 

density, retrieval efficiency, costs, and other pertinent considerations. The seamless 

implementation of battery storage encounters several obstacles: 

• Adherence to distribution company guidelines and practices, which may not always align 

with the integration of energy storage solutions. 

• The significant capital investment, operational expenses, and maintenance costs associated 

with large-scale energy storage systems. 

• Limited awareness among stakeholders regarding the benefits offered by battery storage 

solutions. 

Furthermore, the regulatory framework for electricity pricing, often set by administrative bodies, 

may not sufficiently incentivize energy conservation through storage. Shareholders may express 

hesitancy due to the higher initial costs linked to storage infrastructure. Additionally, the absence 

of robust incentives for energy conservation practices, coupled with limited availability of 

comprehensive literature, further inhibits the widespread adoption of such systems [153]. Figure 

2.5 provides a categorization of energy storage (ES) systems. 

 

Fig. 2.5: Cataloguing of energy storage system. 

Electrical ES Mechanical ES Thermal ES Chemical ES

Battery ES Compressed 

air ES

Sensible heat 

ES

Fuel Cell

Flow battery 

ES

Fly wheel ES Latent heat ES

Super 
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Pumped hydro 
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 Thermo-
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 Super 
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Energy storage (ES)
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2.5.5 Optimal Allocation of Renewable DG   

 The optimization technique employed in this research paper is the Moth Swarm algorithm, 

utilized to enhance frequency regulation in DG systems. This approach incorporates a combination 

of PI-PD controllers, as well as technologies like energy storage, electric vehicles, and renewable 

sources such as solar and wind power. Within this setup, the PI controller operates in the primary 

stage, while the PD controller takes charge in the secondary stage. When compared to conventional 

PID controllers, known for yielding unstable transient responses, this cascaded control scheme 

effectively reduces the system's steady-state error. MATLAB and SIMULINK were employed to 

implement this strategy, leveraging parameters like gain and time constants specific to various 

components including solar photovoltaic systems, wind turbines, fuel cells, diesel engine 

generators, and electric motors [154]. This enables a refined and optimized frequency regulation 

process in DG systems. To facilitate the seamless integration of distributed SPV systems, a battery 

storage configuration has been proposed. This design aims to mitigate challenges arising from the 

intermittent nature of renewable energy sources, while enhancing grid flexibility even in the event 

of disruptions at various scales, encompassing power plants, substations, and circuits. Various 

battery storage systems have been developed, including in-building distributed storage, 

circuit/distribution storage, substation/microgrid storage, power plant storage, and utility/grid 

storage, each operating on distinct principles. The outcomes of this study entail heightened 

renewable energy penetration coupled with augmented grid resilience achieved through the 

optimal integration of battery storage technologies [155]. 

  The authors have advocated for a mathematical approach to enhance power quality and 

voltage through the incorporation of DG into power distribution. This integration has been realized 

using a versatile multi-level switch. Considerations have been made for the feeder's capability to 

manage power and loading frequency to effectively assimilate DG and maintain feeder 

equilibrium. To address potential limitations of the flexible multi-level switch, a control framework 

has been devised, incorporating a PI controller and a steady-state reverse model [156]. In the 

context of a prospective smart grid, a coordinated scheduling scheme for renewable DG has been 

delineated. This strategy aims to address disruptions stemming from intermittent renewable energy 

sources. Initially, renewable virtual resources are employed to enact procedural steps, with 

subsequent simulations used to refine the strategy's framework. The proposed model demonstrates 

how pumped storage energy can mitigate the erratic nature of renewable energy supply, enabling 

precise forecasting with source shedding for profit maximization [157]. A distinctive filter has 

been developed to forecast distributed solar power generation while accounting for proximity-

induced influences on energy systems. The model also accommodates one-minute resolution 

intermittency caused by cloud formation and propagation. This bi-level methodology incorporates 

the estimation of PV power and lower-frequency measurements of sampled data [158]. The authors 

introduced a novel framework aimed at mitigating distribution energy losses by delivering 

electrical energy at a unity power factor level. Additionally, they implemented a dumping cost 

methodology to evaluate soil contamination. Consequently, the approach has led to a reduction in 

the overall expense of managing power congestion, thereby enhancing the feasibility of 

prospective smart city power initiatives [159]. 
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Solar PV DGs, acting as reactive elements, have shown significant enhancements in voltage 

regulation within distribution systems, all without reliance on feedback assessment or information 

exchange. In this demonstrated approach, the backward/forward sweep algorithm has been 

employed, taking into consideration factors such as solar energy irradiance levels and ambient 

temperature [160]. The research paper proposed an innovative approach to address the high cost 

associated with acquiring infrastructure space. This involves repurposing unused land adjacent to 

motorways, water storage facilities, and railroad tracks, while ensuring fair compensation for 

landowners. Additionally, a geographic information system has been developed to assist in 

identifying suitable land parcels [161]. Recognizing the unpredictability of climatological and 

atmospheric conditions and its impact on renewable DG, the authors introduced an enhanced 

predictive technique. This adaptive subgroup selection method operates in two stages, utilizing a 

binary genetic algorithm for feature selection and a regression-based vector for estimating the 

suitability level of the predictor. Comparative analysis with conventional prediction methods 

demonstrates a substantial 58.4% improvement in accuracy [162]. 

The research paper conducted an assessment of wind power generation as a DG source to cater to 

the energy requirements of rural America. A case study approach is employed, encompassing two 

distinct periods: the pre-wind era (2009-2015) and the post-wind era. The study employs graphical 

representations to illustrate the shifts in consumption patterns among residential, commercial, and 

industrial users over the last five years. Furthermore, the analysis incorporates crucial factors such 

as wind speed, air temperature, and load demand, as referenced in [163]. 

The research paper explored the feasibility of utilizing wind power generation as distributed energy 

sources in the event of atypical power outages through a simulated testing process. This 

investigation was substantiated using a seven-scenario system, encompassing configurations both 

with and without DG, located downstream, midstream, and upstream. Additionally, it encompassed 

four distinct types of wind power generation [164]. 

To capitalize on the potential of renewable energy sources, particularly in light of the proliferation 

of large-scale heat pump projects, numerous countries find it imperative to revamp their 

conventional grid systems. In this regard, a mathematical model has been devised with the dual 

objectives of maximizing profits and minimizing costs. The primary aim of this model is to 

efficaciously integrate heat pumps with wind power generation into the existing distribution 

network [165]. 

In the context of distribution networks, wind power generation has been deployed as a DG resource 

to enhance voltage profiles, reduce losses, and contribute to environmental benefits. An 

optimization strategy rooted in power control curve optimization has been employed to regulate 

windmill rotor speeds, aiming to achieve optimal characteristics related to energy losses and 

voltage quality [166]. 

In the pursuit of optimizing DG size and placement, a multi-objective function has been proposed. 

This function accounts for various factors including operational costs, capital expenses, 

environmental impacts, costs associated with wind and solar power curtailment, as well as 

constraints such as voltage levels, current limits, power flow equations, and DG capacity. Notably, 
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PSO has been successfully applied in optimizing gas-fueled microturbine generators, SPV 

systems, and wind turbines [167]. 

2.6 Conclusion 

 The literature concludes that DG plays a pivotal role in enhancing the characteristics of power 

systems. It encompasses a plethora of optimization techniques deployed in DG allocation to meet 

specific constraints. Furthermore, it serves as a tool to bolster the stability, reliability, and 

consistency of the distribution network. Additionally, it facilitates the analysis of intricacies 

involved in optimizing algorithms.  

This literature provides a comprehensive review of various optimization techniques, offering a 

comparative analysis of conventional, modern mathematical, and hybrid methods employed for 

optimizing significant parameters of DG. These optimizations aim to achieve technological, 

financial, and environmental benefits with optimized result parameters. Conventional approaches, 

while simple, easy to execute, and highly precise, suffer from slow convergence optimization due 

to single-objective focus. On the other hand, modern mathematical approaches excel in solving 

multi-objective complex problems, albeit with challenges such as increased coding complexity, 

diverse settling parameters, and potentially rapid convergence. Hybrid optimization approaches, 

while capable of handling more intricate problems with swifter convergence, may entail greater 

complexity and have a smaller existing body of literature. 

The reviewed studies strongly indicate that integrating renewable energy sources can greatly 

amplify the benefits of DG planning in distribution networks. However, this integration 

underscores the need for a reliable assessment tool for renewable energy. Overcoming the 

intermittent nature of renewable energy sources demands effective energy storage solutions, 

potentially leading to the mitigation of intermittency. 

Furthermore, it is worth noting that demand response has not received significant attention from 

researchers. Given the high costs associated with energy storage systems, demand response 

emerges as a pivotal element in the development of smart distribution systems. There exists a 

promising opportunity to develop a system that encompasses the planning and optimal dispatch of 

renewable DG in tandem with energy storage and demand response mechanisms. 
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Chapter- III  

Optimal DG Allocation and Impact of Demand Response  

 

3.1 Introduction 

 Two essential components of a smart grid system are distributed generation DG and demand 

response (DR). The types of DG may be renewable or nonrenewable energy sources. The optimal 

placement of solar photo voltaic (SPV) in the distribution network (DN) is contingent on a number 

of parameters, including the location of the loads, the available solar resources, and the DN's 

capacity. The investigation of the effect of DR on the optimal location of SPV systems in the DN 

is an important topic that has gained considerable attention in recent years. 

DR refers to the capacity of consumers to modify their electricity use in response to price 

fluctuations or other signals. Integration of DR into the DN can aid in the reduction of peak 

demand, improvement of the grid's dependability, and reduction of the need for expensive 

infrastructure investments [168]. Many methods exist for analyzing the influence of DR on the 

optimal placement of SPV plants in the DN. 

• Capacity planning: DR can help to reduce the peak demand on the DN, which can in turn 

reduce the need for additional generation capacity. This can impact the optimal placement of SPV 

systems in the network, as the capacity requirements may be lower. 

• Load profile: DR can also impact the load profile of the network, which can impact the 

optimal placement of SPV systems. For example, if DR results in a shift in the peak load to a 

different time of day, the optimal placement of SPV systems may be different. 

• Voltage stability: The integration of SPV systems in the DN can impact the voltage stability 

of the network. DR can help to manage voltage fluctuations by adjusting the consumption in 

response to changes in voltage. This can impact the optimal placement of SPV systems, as the 

locations that can provide the most benefit in terms of voltage stability may change [169]. 

• DN configuration: The optimal placement of SPV systems in the DN also depends on the 

network configuration. DR can impact the network configuration by reducing the need for 

additional infrastructure upgrades or by changing the location of the loads. This can impact the 

optimal placement of SPV systems. 

 The relationship between energy generation from an SPV system and other parameters is 

influenced by factors such as solar irradiation, panel efficiency, system orientation, shading, and 

temperature. These parameters also affect power quality [170,171]. 

        In ref. [172], the authors proposed an integrated technique for incorporating renewable 

distributed generation (RDG) and DR into the planning of low-carbon sustainable distribution 

systems. In comparison to standard planning paradigms, the results illustrate the efficacy of the 

suggested methodology in enhancing the efficiency of RDG operations and reducing the CO2 

footprint of DN. The methodology provides a balance between economic and environmental 

benefits, and it has been demonstrated that the integration of RDG and DR choices in distribution 
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system planning is beneficial in reducing carbon emissions and minimizing costs. This study 

utilizes an interior-point-method-embedded discrete genetic algorithm to effectively and 

accurately solve the model. 

 In ref. [173], the authors demonstrated that how temperature-controlled loads (TCL) demand 

flexibility can be used as part of a DR management architecture to improve the reliability and 

affordability of the power system. Using temperature measurements and consumer preferences, 

the study measures how flexible TCL demand is and predicts that solar power generation will make 

DR more reliable. The proposed distributed DR management architecture simplifies optimization 

and enhances optimality, resulting in reduced power consumption during peak reduction and 

emergency DR requests and low variability during capacity firming requests. Different DR 

requests are measured using two indices: DR reliability and consumer comfort. The proposed 

technique is implemented on Energy Plus-Matlab co-simulation. 

 In ref. [174], the authors proposed a structure for a solar photovoltaic-based microgrid (PV-

MG) and looks into how DR affects the problem of optimizing its dispatch. The objective is to 

minimize the total cost of running PV-MG and moving energy around in ESS while taking into 

account different constraints on equality and inequality. The case study shows that the proposed 

optimization model works well to optimize the dispatch of the PV-MG and that the non-dominated 

sorting genetic algorithm-II works well to get Pareto solution sets. At the end of the paper, the 

typical dispatch schemes are looked at to see if the established optimization model is reasonable 

and works. 

 The authors of ref. [175] proposed a two-stage robust microgrid coordination strategy to 

address the difficulties of managing uncertain renewable DG resources and load demands in 

microgrids. Price-based demand response (PBDR) is scheduled daily, and dispatchable DG such 

as microturbines is changed hourly to maintain power balance and obtain economic benefits. 

Coordination of the PBDR and multiple DG units is proposed using a two-stage robust 

optimization model with guaranteed robustness against uncertainty. The simulation results 

demonstrate that the proposed strategy can deal with the unpredictability of renewable energy and 

demand while optimizing microgrids. The optimization is demonstrated with the use of column-

and constraint generation algorithm 

 In ref. [176], the authors proposed and concluded the potential of DR and photo voltaic 

distributed generation (PVDG) can be measured, which helps plan sustainable DN with the help 

of end users. Changes to the rules, like the optional time of use tariff in Brazil, are needed to boost 

both DR and PVDG at the same time. The rational use of electricity, which is based on economic 

efficiency, is the basis of the method. This method gives a complete framework for the benefits 

and challenges of incorporating DR and/or PVDG into planning for power utilities. By doing a 

thorough analysis of the power grid and figuring out how cost-effective DR and/or PVDG are, 

power companies can figure out the best and most cost-effective ways to meet their customers' 

energy needs. The open distribution system simulator is used to conduct the simulations. 

 In ref. [177], the authors presented the method for sizing PV and ESS while taking DR into 

account gives a complete way to optimize the operation of PV and ESS systems while meeting the 
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electricity needs of consumers. By taking into account the cost for PV and ESS systems, variation 

of daily load, and power utilities can make informed decisions about the optimal size of PV and 

ESS systems that will minimize the total cost of the system while meeting consumers' electricity 

needs. The MILP model was implemented in GAMS v.24.1.3 and solved using CPLEX v.12 as the 

solver. 

 In ref. [178], transmission expansion planning (TEP) has traditionally been done based on 

peak demand, but this may not be the best or most efficient way to do it. DR and DG are being 

considered as ways to deal with this. These things can have a big effect on how controllable and 

cost-effective power systems are, both in the short and long term. The proposed framework was 

realized by differential evaluation program. 

 In ref. [179], the authors used a direct approach of load flow to optimize the size and location 

of SPV-based DGs in the primary distribution system. The objectives include reducing power loss, 

improving voltage profile, and gaining economic benefits. DGs are placed at a single location to 

enhance system performance, and the estimated optimal size of a DG becomes a constraint for 

locating the SPV-based DGs. 

 In ref. [180], the authors suggested the optimal operating method for renewable energy-

supported isolated microgrids. It employs carbon capture-based technologies to reduce CO2 

impact and incorporates an emission-averse model. A fee is imposed due to CO2 emissions from 

diesel engines. The study compares a carbon capture unit with a fossil fuel-based unit, considering 

renewable energy penetration and carbon emission factors. Results show the microgrid's highest 

profitability at 40% RE penetration, with increased emission factors negatively affecting 

economics at that level. 

3.2 Formulation of Problem 

In this chapter, the following objectives have been considered for the realization of the proposed 

framework: 

Minimizing power ditribution losses in a distribution network is a crucial aspect of efficient power 

system operation. Power losses occur due to resistance in the wires, which leads to a voltage drop 

and energy loss as electricity is transmitted from the source to the end-users. Hence, minimizing 

power loss is one of the objective functions, defined as follows. [181]: 

                                                            £1 = ∑  24
𝑡=1 𝑃L (t)                                                                             (1) 

                   𝑃L (t) = ∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝛼𝑖𝑗 (t)(𝑃𝑖 (t)𝑃𝐽 (t) + 𝑄𝑖 (t)𝑄𝐽 (t)) + 𝛽𝑖𝑗 (𝑡)(𝑄𝑖 (t)𝑃𝑗 (t) − 𝑃𝑖 (t)𝑄𝑗 (t))∀𝑡   (2)            

where 𝛼𝑖𝑗 (t) = 𝑟𝑖𝑗cos (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝑗 (t) and 𝛽𝑖𝑗 (t) = 𝑟𝑖𝑗sin (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝐽 (t)         

Reverse power flow occurs when DG units generate more power than the local load demands, 

causing excess power to flow back into the grid. This can cause stability and safety issues in the 

DN, as well as increase the risk of voltage fluctuations and equipment damage. Hence, DG 

integration considers reversing power flow. 

                                                  £2 = ∑  24
𝑡=1 𝑃𝑅 (𝑡)                                                                                       (3) 
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                                               𝑃𝑅 (𝑡) = {
0,  if 𝐼G (𝑡) ≥ 𝐼S

Re (𝑉G (𝑡) 𝐼G (𝑡) 
∗ )  if 𝐼G (𝑡) < 𝐼S. .

                                              (4) 

Node voltage deviation refers to the difference between the actual voltage level and the desired or 

nominal voltage level at a particular node in an electrical power system. Voltage deviation can be 

caused by various factors, including load variations, reactive power flow, and voltage drop in the 

transmission and distribution lines. Voltage deviations can cause several issues in the power 

system, including reduced system efficiency, increased losses, and damage to equipment. Large 

voltage deviations can lead to equipment failures, voltage collapse, and blackouts. The objective 

of violation of voltage limits can be stated as follows [182]: 

                                                         £3 = (1 + ∑  24
𝑡=1 𝑉𝐷 (𝑡))                                                                           (5) 

                                                  𝑉𝐷 (𝑡) = {

|𝑉Min − 𝑉𝑖 (𝑡) | if 𝑉𝑖 (𝑡) < 𝑉Min. 

0  if 𝑉Min. ≤ 𝑉𝑖 (𝑡) ≤ 𝑉Max. 

ℓ  if 𝑉𝑖(𝑡) > 𝑉Max. 

                                     (6) 

where ℓ is the large value or unacceptable value. 

3.3 Objective Function 

To achieve the objectives, it is necessary to employ a fitness function that incorporates weighted 

factors for different objective functions. Fitness function (ϒ1) for level 1 optimization: 

                                                        𝑚𝑖𝑛(ϒ1) = φ × 𝑀 × £3                                                                    (7) 

 where 𝑀 = £1 + £2  and φ   is the daily to yearly conversion product.  £1 and £2 are relevant to 

the power and £3 is relevant to voltage.  

The DR planning and scheduling approach of DGs is taken into consideration at level 2 of the 

optimization objectives. The following objective function will be taken into consideration for level 

2 of the optimization problem: 

                                                          𝑚𝑖𝑛(ϒ2) = 𝑀 × £3                                                                           (8) 

In this context, the fitness function for level 2 is denoted by ϒ2. 

It is vital to have a dispatch strategy, which is determined upon by the DR aggregator. In the level 

2 of optimization, the dispatch strategies of SPV and DR are considered. This helps to minimize 

the aforementioned fitness function. 

3.4 Demand Response  

A demand response aggregator (DRA) is a third-party entity that works with energy consumers to 

manage their energy consumption during periods of peak demand. The aggregator coordinates with 

multiple consumers to reduce their electricity consumption during peak demand periods and sells 

the reduced energy consumption back to the grid operator or utilities as a form of DR. The DRA 

acts as an intermediary between the grid operator and the energy consumers. It helps the consumers 
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reduce their energy consumption during peak hours by offering financial incentives, such as 

reduced electricity rates, to those who agree to participate in demand response programs. The 

aggregator then aggregates the reduced energy consumption from multiple consumers and sells it 

back to the grid operator or utilities. The DRA uses various technologies and strategies to manage 

energy consumption, such as automated demand response systems, smart thermostats, and energy 

management systems. These technologies allow the aggregator to remotely control and adjust 

energy consumption in real-time, based on grid conditions and market prices [183]. 

DRAs play a critical role in helping grid operators manage peak demand, reduce energy costs, and 

improve system reliability. By incentivizing energy consumers to reduce their energy consumption 

during peak periods, demand response aggregators help to balance the supply and demand of 

electricity and reduce the need for additional generation capacity. 

The following are some of the DR restrictions that are taken into consideration: 

                                                     𝑃𝑖(𝑡) = (𝑃𝐺𝑖(𝑡) − 𝑃𝐷𝑖(𝑡))∀𝑡, 𝑖                                             (9) 

                                                    𝑄𝑖(𝑡) = (𝑄𝐺𝑖(𝑡) − 𝑄𝐷𝑖(𝑡))∀𝑡, 𝑖                                          (10) 

                                                    𝑃𝐷𝑖(𝑡) = (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡))∀𝑡, 𝑖                                                            (11) 

                                             ∑  𝑁
𝑖=1 ∑  24

𝑡=1 (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡)) × Δ𝑡 = 𝐸𝑖
𝑇𝑜𝑡𝑎𝑙                              (12) 

                                           𝑃𝑒𝑙,𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙,𝑖(𝑡) ≤ 𝑚𝑖𝑛 ((𝐶 − 𝑃𝑖𝑛,𝑖(𝑡)), 𝑃𝑒𝑙,𝑖

𝑚𝑎𝑥) ∀𝑡                              (13) 

                                                     𝑃𝑒𝑙,𝑖
𝑚𝑎𝑥 = µ ∑  24

𝑡=1 𝐿𝑑,𝑖(𝑡)                                                         (14) 

Where 𝐶 and µ is the contract load and DR penetration rate respectively. 

Participants in mandatory DR programs are liable to face financial penalties if they fail to adjust 

their electricity consumption as instructed by the aggregator. The scheduling of demand should 

aim to strike a balance between the total electricity consumption and the available resources 

throughout the day. Rather than simply reducing overall consumption, the objective of DR is to 

reshape the demand profile. The total demand at any given time, denoted as t, is the sum of all 

types of loads, including both receptive and non-receptive loads, as shown in equation 11. The 

receptive load shifts the demand as per the instructions of the DRA.   

Equation 12 illustrates the scheduling constraints that must be followed to meet the responsive 

demand while ensuring it does not significantly impact the overall daily demand. The lower and 

upper limits of the responsive demand are represented by equation 13. 

The peak value of the responsive demand is influenced by the level of DR penetration, and further 

details regarding this relationship can be found in equation 14. 

3.5 Objective Constraints 
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• Constraint for SPV output: The constraint for SPV generation limit is given as: 

                                                       0 ≤ 𝑃DG,𝑖 ≤ 𝑃𝐷𝐺
𝑚𝑎𝑥∀𝑖                                (15) 

• Constraint for feeder: The constraint for the thermal limits is given as: 

                                                        𝐼𝑖𝑗(𝑡) ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 ∀𝑡, 𝑖, 𝑗                                                  (16) 

• Constraints for power balance: The constraints for real power and reactive power are given 

as: 

                                    
𝑃𝑖(𝑡) = 𝑉𝑖(𝑡) ∑  𝑁

𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗 cos(𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡)) ∀𝑡, 𝑖
       (17) 

                                  𝑄𝑖(𝑡) = −𝑉𝑖(𝑡) ∑  𝑁
𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗sin (𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡))∀𝑡, 𝑖                  (18) 

3.6 Modeling of Demand 

The demand modeling of the system is given in the following equations: 

                                                         
𝑃𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑃𝐷,𝑖

0 ∀𝑡, 𝑖
                                          (19) 

                                                        𝑄𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑄𝐷,𝑖
0 ∀𝑡, 𝑖                                (20) 

where 𝛺𝑖(𝑡) is the assigned load factor for the time period t. 

3.7 Modeling of PV Output 

Solar power generation is dependent on several other elements as well. These factors include the 

type of panel and its area, the angle at which the panel is tilted, and the amount of solar radiation 

that is received. To facilitate this analysis, it is assumed that all other factors will remain identical 

during the specified time. The transformation of the current in relation to the rated voltage may be 

found as follows: 

                                                       𝐼𝑠𝑚(𝑡) = {
𝐼𝑠𝑚 if 𝑆𝑟(𝑡) ≥ 𝑆𝑟

𝑟

𝐼𝑠𝑚 × 𝑆𝑟(𝑡)/𝑆𝑟
𝑟 if 𝑆𝑟(𝑡) < 𝑆𝑟

𝑟                              (21)  

3.8 Optimization Technique 

Particle Swarm Optimization (PSO) is a way for computers to find the best answer to a problem 

by imitating the way animals act. Each particle in the swarm is a possible answer to the 

optimization problem, and its position and speed change are based on what it has learned and what 

the whole swarm has learned. The objective function tells the swarm where each particle should 

go. During each iteration, the PSO method uses a particle's current position, its best position from 

before, and the best position found by any other particle in the swarm to change its speed and 

location [184]. This process keeps going until there is a reason to stop. At Level 1, optimal 

decision-making occurs to determine the key planning variables, including the location and size of 

PV systems. Meanwhile, at Level 2, the focus shifts to optimizing the hourly dispatch of DR  
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Fig. 3.1: Framework of proposed bilevel optimization approach. 
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programs. This optimization aims to maximize the operational advantages for the distribution 

system operator (DSO). Any evolutionary method can be used to solve the difficult problem of  

multilevel optimization. Based on a review of the relevant published material, it has been found 

that PSO is the most common way to solve the DG planning optimization problem [185,186]. The 

simulation parameters for the optimization technique are given in the table 3.1. 

Table 3.1. Simulation parameters of proposed bilevel optimization technique. 

Parameters Level-1 Level-2 

Swarm size 20 50 

Inertia weight 1 1 

Inertia Weight Damping Ratio 0.99 0.99 

Personal Learning Coefficient 1.5 1.5 

Global Learning Coefficient 2 2 

Maximum Number of Iteration 50 50 

 

3.9 Results 

On the IEEE 33 bus system, the multilevel optimization method that has been suggested will be 

used [187]. The test system is shown in figure 3.2. In this study, the effects of DR technologies are 

shown and analyzed so that a solution to the problem of finding the optimal way to transmit power 

in different situations and with different constraints can be found. The objective of this research is 

to improve the efficiency of power distribution. Using MATLAB software and a computer with an 

i3 core processor and 12 gigabytes of random-access memory, the optimization objectives are 

resolved with the help of proposed optimization techniques.  

 

 

Fig. 3.2: IEEE 33 bus system 

3.9.1 Base Case 
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This scenario considers the base case to demonstrate effectiveness of a recommended technique 

for incorporating SPV into a 33-bus radial distribution system. The objective functions of the 

research are based on the consumption pattern of a typical day [188], and the annual energy loss 

is calculated using the average daily energy loss. The results show the difference between the 

highest and lowest possible demand, the minimum mean voltage, and the annual energy losses for 

the base scenario. The lowest demand period is around 5:00 a.m., while the highest demand period 

is around 8:00 p.m. According to tables 3.2 and 3.3, the difference between the highest and lowest 

possible demand, the minimum mean voltage, and the annual energy losses for this base scenario 

are respectively 5397.73 kW, 0.978178 p.u., and 1426 MWh. 

3.9.2 DG Integration 

In this case, the authors optimized the placement of DG in a DN using SPV installations. The 

results showed that incorporating DGs into an optimized method improved power quality 

parameters such as annual energy loss and minimum mean voltage. The annual energy loss 

decreased by approximately 21.8%, and the minimum mean voltage increased from 0.978178 to 

0.99634 p.u. The optimal size for SPV installations and their locations are outlined in table 3.3, 

and the effect of DGs on the pattern of demand, voltage, and active power losses were illustrated 

in figures 3.3, 3.4, and 3.5, respectively. 

 

Fig. 3.3: Impact of DGs (PSO optimized) on demand pattern 
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Fig. 3.4: Impact of DGs (PSO optimized) on voltage pattern 

 

Fig. 3.5: Impact of DGs (PSO optimized) on active power losses 

3.9.3 DR Implementation 

This study evaluates the significance of DR approach in the absence of DG coordination. Two 

levels of demand elasticity are assumed and benchmarked. DR rate refers to market demand 

elasticity. In this case, DR rate of 10% and 20% are considered without DG placement. Results 

show that DR reduces peak demand by 14.72% for a 10% DR rate and 18.32% for a 20% DR rate, 

and yearly energy loss by 5.96% to 8.2%. DR also reduces active power losses and increases peak-

to-valley disparity. Even without DG, DR can be effective. Figure 3.6 to figure 3.11 demonstrate 

the effects of 10% and 20% DR rates on demand, voltage, and active power losses. There is 
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negligible impact of DR rate on the voltage profile of the test system as shown in figure 3.7 and 

figure 3.10. 

 

Fig. 3.6: Impact of 10% DR rate on demand pattern 

 

Fig. 3.7: Impact of 10% DR rate on voltage pattern 
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Fig. 3.8: Impact of 10% DR rate on active power losses 

 

Fig. 3.9: Impact of 20% DR rate on demand pattern 
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Fig. 3.10: Impact of 20% DR rate on voltage pattern 

 

Fig. 3.11: Impact of 20% DR rate on active power losses 

3.9.4 DG Integration with DR Coordination 

In this case, after incorporating DGs into DR coordination and planning under system constraints, 

the analysis is done. This scenario integrates DGs with DR scheduling while considering system 

constraints. High DR rates and smaller DGs increase system performance. Annual energy loss has 

decreased significantly. The lowest mean voltage has increased from cases 1 and 2 by 29.03% to 

33.31%, depending on the degree of DR rates. The load profile is flatter because DGs reduce the 

gap from maximum to minimum demand. Figure 12 to figure 14 show that DGs with a 10% DR 
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rate affect demand, voltage, and active power losses. Figure 15 to figure 17 show how DGs with 

a 20% DR rate affect demand, voltage, and active power losses.  

 

Fig. 3.12: Impact of DG and 10% DR rate (PSO optimized) on demand pattern 

 

Fig. 3.13: Impact of DG and 10% DR rate (PSO optimized) on voltage pattern 
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Fig. 3.14: Impact of DG and 10% DR rate (PSO optimized) on active power losses 

 

Fig. 3.15: Impact of DG and 20% DR rate (PSO optimized) on demand pattern 
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Fig. 3.16: Impact of DG and 20% DR rate (PSO optimized) on voltage pattern 

 

Fig. 3.17: Impact of DG and 20% DR rate (PSO optimized) on active power losses 
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Table 3.2 Effect of the coordination of DR with optimally integrated SPV on demand. 

Cas

e 

No.  

Category Maximu

m 

Demand 

(kW) 

Maximum 

Demand 

Mitigation 

% 

Difference between 

Maximum to 

Minimum Demand 

(kW) 

% Of Maximum 

Loss Mitigation 

at 8:00 PM 

1 Base Case 6519 0 5397.73 0 

2 DG 6519 0 6016.39 0 

3 DR@10% 5548 16.1 4166.14 36.09 

 
DR@20% 5321 18.42 3730.6 42.77 

4 DG+DR@10% 5370 17.33 4322.87 33.69 

 
DG+DR@20% 4790 26.78 3540.31 45.69 

 

Table 3.3 Outcomes of the coordination of DR with optimally integrated SPV. 

Cas

e 

No. 

Category Optimal Allocation of DG 

(Bus No., kW) 

Annual 

Losses 

(MWh) 

Reduced 

losses / 

Year (%) 

DG 

Penetrati

on (%) 

1 Base Case  1426   

2 DG 17(1344)-32(1690)-25(1092) 1098 23 68.76 

3 DR@10%  1302 8.69  

 DR@20%  1290 9.53  

4 DG+DR@10% 7(1086)-15(1902)-32(914) 996 30.15 65.03 

 DG+DR@20% 18(408)-29(1816)-11(1602) 934 34.5 63.76 

 

3.10 Conclusion 

 While DGs have proven effective in reducing annual energy losses, it is important to consider 

their potential negative impact on load profile flattening. As the penetration of DGs increases, 

voltage levels can rise, leading to reverse power flow back into the grid. These challenges highlight 

the limitations of high DG penetration within the DN. Incorporating DR helps to balance the load 

profile, minimize the gap between peak and off-peak load demands, and alleviate strain on the 

system. Put simply, a higher DR rate can improve demand normalization efficiency, especially in 

cases where the penetration level of SPV systems is lower. As per the implemented framework, 

the mitigation of maximum demand, reduced energy losses per year, and DG penetration are 

26.78%, 34.5%, and 67.76%, respectively. These are the maximum level achieved from case 1 to 

case-4. 

In conclusion, the impact assessment of DR on the optimal placement of SPV systems in the DN 

has shown significant potential for improving the efficiency and effectiveness of renewable energy 

integration. The use of DR strategies can help reduce peak demand and enhance the flexibility of 

the distribution network, allowing for increased penetration of SPV systems while minimizing grid 

congestion and overloading. 
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Through simulation studies and empirical analyses, it has been demonstrated that the integration 

of demand response mechanisms can lead to enhance the power quality parameters and increased 

penetration level of renewable energy sources. The findings of the impact assessment provide 

useful insights for policymakers, utilities, and other stakeholders involved in the planning and 

management of DN. 

While further research is needed to fully explore the potential of DR on SPV placement, it is clear 

that the incorporation of DR into energy systems planning and design will be an essential 

component of meeting future energy needs sustainably. Ultimately, the impact assessment of DR 

on the optimal placement of SPV systems highlights the importance of adopting a holistic approach 

to energy systems planning that considers the interaction between different components of the 

energy system and the potential for innovative solutions to address complex challenges. 
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Chapter- IV  

Optimal DG Allocation in the Coordination of Demand Response 

and Battery Energy Storage System  

 

4.1 Introduction 

 In the modern era, a smart grid is required to increase the penetration of renewable energy 

resources with the use of real-time information and advanced communication technologies for the 

execution of its objectives. The smart grids allow for communication in both directions between 

the customers and the sources of energy generation [189]. Many studies have been done on the 

responsive load that is based on dynamic pricing, and they have all come to the same conclusion: 

the shifting of load from peak to valley hours of demand in the coordination of renewable energy 

resources gives prosumers the most benefits [183, 190, 191]. The fast developments in technology 

for small-scale generation have pushed distribution system operators (DSOs) to expand the 

percentage of distributed generators (DGs) in distribution networks (DN). The optimal size and 

location of DGs are required to enhance the performance of DN. This is because it has been shown 

that not allocating resources in the optimal way is counterproductive [192-194]. Through the 

optimal incorporation of DGs, a number of goals have been accomplished, including the 

enhancement of power quality, the improvement in voltage profile, the reduction of pollutants in 

the atmosphere, the improvement in system stability and reliability, and many more. But traditional 

distribution systems aren't set up to handle a large number of renewable energy sources because 

these sources can't be controlled, are unpredictable, and change over time [186]. It is advised to 

adopt one of the potential remedies known as battery energy storage systems (BESS) to raise the 

penetration level of power from nondispatchable DGs in DN [195–198]. Numerous studies have 

been conducted for the modelling and optimal energy management of BESS to reinforce the 

penetration level of DGs. It has come to our attention that significant efforts are being put into 

optimizing the capacity of BESS, but the optimal location is not considered in the objective 

function [195, 196]. To optimize the performance of DN, it is strongly suggested to formulate and 

find the optimal solution for the location and size of BESS at the same time. There is a paucity of 

research on simultaneous deployment and sizing of BESS in the existing body of academic 

literature. The advantages of DSO are enhanced by optimally identifying the size and position of 

BESS [197]. The optimization of the size and location of BESS also includes the minimization of 

power losses, the minimization of cost functions, and the maximization of energy arbitrage profits, 

among other accomplishments [198]. The implications of optimized capacity and location of BESS 

are evaluated for wind energy and hydro energy-based hybrid power plants in the coordination of 

BESS [199]. The authors did the research on how the reconfiguration of a network influences the 

size of BESS and where it is located [200]. Despite this, BESS is a costly option for DSO since it 

requires more investment and increases the overall cost of operating the system. The life cycle of 

BESS is dependent on the selection of the depth of discharge (DOD) as well as the charging and 

discharging cycles of the storage system. [201]. According to the research that has been conducted, 

a high penetration of DGs may be supported by a large BESS that is optimally situated. 
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Nevertheless, an increase in the size of the BESS places an additional cost burden on the DSO. 

Because of these problems, researchers are looking into possible other ways to run DR, with the 

goal of taking some of the pressure off of BESS. The DR has done a good job of meeting many of 

the prospective of the smart grid [202-204]. Communication and consumer coordination through 

price-based demand response is one method for reducing the costs associated with energy 

consumption and the reoccurrence of the peak [202]. The utilization of DR has demonstrated 

improved technological advantages for the DN in Finland, including reductions in power losses 

and an improved voltage profile [203]. The authors demonstrated a DR-coordinated approach in 

DG allocation to mitigate the impact of renewable energy sources' intermittent nature [204]. 

 DR is adopted to reduce demand and supply imbalances, as well as to limit the risks posed by 

the constraints imposed on DG owners. In the research carried out by the authors [205], the 

simultaneous deployment of DR and DG loads on the DN was investigated. The authors 

demonstrated a coordinated approach of DGs and DR in order to optimize the advantages for a 

variety of utility stakeholders [206, 207]. Based on the research mentioned above, demand 

response can work well when there are regulated loads, dynamic pricing, and renewable resources. 

After conducting an in-depth analysis of the relevant published research, the authors came to the 

conclusion that incorporating DGs and BESS into distribution networks results in a notable 

increase in the efficiency of those networks. The DR not only enables a high penetration of 

distributed generation but also offers significant benefits to all parties involved in the smart grid, 

including customers, distribution service operators (DSOs), generating firms, and aggregators. It 

is clear from the available research that the optimal allocation of DGs in the coordination of DR 

has been examined. However, the optimized allocation of DGs in the existence of DR has not been 

researched with the incorporation of BESS. As a result, the purpose of this research is to explore 

the function of DR as well as its advantages in order to best integrate DGs and BESS in the DN. 

Because the potency of DR depends upon the level of consumer participation, as a result, research 

is being done to determine how the appropriate size and placement of PV and BESS systems are 

affected by the various DR rates. A multilevel optimization framework is utilized for the objective 

of optimally and concurrently integrating PVs and BESS in the synchronization with DR planning 

in DN. 

This research chapter takes a number of different objectives into consideration, some of which are 

to minimize the amount of energy lost in the feeders and the amount of energy converted in the 

BESS; to minimize the amount of voltage deviation; and to minimize the amount of reverse power 

flow, all while making the most of the BESS and DR in the presence of high PV penetration. To 

demonstrate how effectively DR works, many test scenarios have been investigated, and a 

recommended framework has been applied to a typical 33-bus test data set. This was done in order 

to demonstrate how well DR works. 

4.2 Problem Conceptualization 

In this study, the following objectives have been examined for the optimal allocation of PV and 

BESS in the effective synchronization of DR panning in DN.  

4.2.1 Minimization of Power Losses  
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The amount of power that is lost during delivery is often rather significant in DS. There is 

significant potential for a reduction in power loss to be achieved with the implementation of a 

number of technological advancements, including the integration of DGs, the effective functioning 

of BESS, and the coordination of DR. A significant amount of power loss in any distribution 

system has an immediate and direct impact on the annual income of the utility, which in turn has 

repercussions for all of the stakeholders. Therefore, minimizing power loss is taken into 

consideration as one of the goal functions, which are defined as follows [181]: 

                                                            𝑓1 = ∑  24
𝑇=1 𝑃Loss 

𝑇                                                                 (1) 

                       𝑃Loss 
𝑇 = ∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 𝛼𝑖𝑗

𝑇 (𝑃𝑖
𝑇𝑃𝐽

𝑇 + 𝑄𝑖
𝑇𝑄𝐽

𝑇) + 𝛽𝑖𝑗
𝑇 (𝑄𝑖

𝑇𝑃𝑗
𝑇 − 𝑃𝑖

𝑇𝑄𝑗
𝑇)∀𝑇                      (2) 

                 where 𝛼𝑖𝑗
𝑇 = 𝑟𝑖𝑗cos (𝛿𝑖

𝑇 − 𝛿𝑗
𝑇)/𝑉𝑖

𝑇𝑉𝑗
𝑇 and 𝛽𝑖𝑗

𝑇 = 𝑟𝑖𝑗sin (𝛿𝑖
𝑇 − 𝛿𝑗

𝑇)/𝑉𝑖
𝑇𝑉𝐽

𝑇                     

4.2.2 Minimization of Reverse Power Flow  

It is anticipated that the proportion of renewable sources will rise in the years to come in order to 

achieve the global green energy targets and reduce greenhouse gas emissions. However, the rising 

penetration of renewable energy sources might result in a reverse flow of power during low 

demand hours. This will increase the operational complexity for DSO, and certain protection 

difficulties. As a result, one of the goals of DG integration is to take into consideration the 

possibility of reversing the flow of electricity. The goal of the power flow in the opposite direction 

might be stated as: 

                                                         𝑓2 = ∑  24
𝑇=1 𝑃𝑅

𝑇                                                                         (3) 

                                              𝑃𝑅
𝑇 = {

0,  if 𝐼Grid 
𝑇 ≥ 𝐼Spc

Re (𝑉Grid 
𝑇 𝐼Grid 

𝑇∗
)  if 𝐼Grid 

𝑇 < 𝐼Spc. .
                                              (4) 

4.2.3 Minimization of BESS Conversion Losses 

The development of converters and battery storage systems has been the subject of a large amount 

of study as of late. The minimization of converter losses is required for effective integration of 

BESS. Therefore, taking into consideration the conversion losses of charging-discharging period 

of BESS is also one of the objectives. The formula for BESS loss may be written as: 

                                                              𝑓3 = (∑  24
𝑇=1  𝑃𝑐

𝑇)                                                                 (5) 

                                                        𝑃𝑐
𝑇 = (1 − 𝜂)𝑃

𝐵𝐸𝑆𝑆(
𝐶𝑖
𝐷𝑖

)

𝑇                                                                 (6) 

4.2.4 Node Voltage Deviation 

In order to preserve the reliability of the power supply, it is necessary for the DS to function within 

the parameters of an acceptable voltage range. In most cases, a penalty function is responsible for 

accounting for the exceeding of voltage restrictions. It is possible to count this penalty function as 

one of the objectives as well. 

The purpose of exceeding the voltage limit can be stated as follows [208]: 
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                                                               𝑓4 = (1 + ∑  24
𝑇=1 𝑉𝐷

𝑇)                                                         (7) 

                                                   𝑉𝐷
𝑇 = {

|𝑉Min − 𝑉𝑖
𝑇| if 𝑉𝑖

𝑇 < 𝑉Min. 

0  if 𝑉Min. ≤ 𝑉𝑖
𝑇 ≤ 𝑉Max. 

ℓ  if 𝑉𝑖
𝑇 > 𝑉Max. 

                                          (8) 

l denotes an arbitrarily large positive integer. A big value denotes an undesirable solution. A rise 

in voltage that is beyond the maximum working limit is a major problem, which is an essential 

point to keep in mind [169]. As a result of the low demand case, the rise in voltages may continue 

to worsen, eventually reaching such high levels that it may have an effect on the protection shield 

and insulation collapse may happen in a number of the equipment that are linked. Increased voltage 

is the primary barrier that prevents a deeper penetration of DGs in DN. Because of this, hard 

constraint was employed whenever there was a violation of the higher voltage limit. However, 

compared to the maximum voltage, the minimum voltage has been treated as more of a flexible 

limitation. It means that there can be a small deviation from the minimum voltage as long as there 

is a good penalty factor.  

4.2.5 Fitness Function 

To achieve the required objectives, it is required to make a fitness function having the weightage 

factor of different objective functions. For level 1 of optimization, the fitness function (𝐹ℓ1) is 

given as:  

                                                                   𝑚𝑖𝑛(𝐹ℓ1) = Ψ × 𝐿 × 𝑓4                                                 (9) 

                                                                  where 𝐿 = 𝑓1 + 𝑓2 + 𝑓3                                     

The level 2 of the optimization objectives involves taking into consideration the DR planning and 

scheduling methods of DGs and BESS. In this stage, the BESS conversion losses are irrelevant 

and have no impact. Because of this, the following objective function will be taken into 

consideration for level 2 of the optimization problem: 

                                                          𝑚𝑖𝑛(𝐹ℓ2) = 𝜅 × 𝑓4                                                              (10) 

                                                       where    𝜅 = 𝑓1 + 𝑓2                                                        

In this context, the fitness function for level 2 is denoted by 𝐹ℓ2. 

It is vital to have a dispatch strategy, which is determined upon by the DR aggregator. This helps 

to minimize the aforementioned goal function. 

4.2.6 Demand Response Aggregator 

The DR system that has been developed takes into account the advantages that many stakeholders, 

such as DSOs and consumers, enjoy. The DR aggregator has an impact on how customers schedule 

their demand in accordance with their participation in DR, and this scheduling is also subject to a 

number of different technological restrictions. This study focuses the majority of its attention on 

the technological challenges faced by the DS as a direct result of the widespread use of PVs. In its 

most basic form, DR implementation makes use of the information provided by dynamic tariff 
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and, based on that information, schedules the load in order to achieve the greatest possible 

reduction in set technical targets. The financial objectives are not considered for this study; rather, 

attention is directed toward the technological problems. 

The load is scheduled by DR aggregator after collecting the relevant information of responsive 

and nonresponsive load demand and it is the mandatory part of this program. 

 Participants in obligatory DR programs are subject to financial penalties if they fail to adjust their 

load in accordance with the instructions given by the aggregator. The scheduling of demand should 

strike a balance between total consumption and available resources throughout the day. In place of 

demand reduction or reduction in overall consumption, the objective of DR is to restructure 

demand. The complete demand at any time T is equal to the sum of all types of loads (responsive 

and nonresponsive) and represented in equation 13. 

Equation 14 depicts the scheduling restrictions that must be adhered to in order to meet responsive 

demand without having an impact on the overall demand of an entire day. The lowest and 

maximum values of the responsive demand are both represented by equation 15. 

 The peak value of responsive demand is dependent on the penetration level of DR and such details 

are given in equation 16. The following are some of the DR limitations that are taken into 

consideration [182]: 

                                                          𝑃𝑖
𝑇 = (𝑃𝐺𝑖

𝑇 − 𝑃𝐷𝑖
𝑇 )∀𝑇, 𝑖                                              (11) 

                                                          𝑄𝑖
𝑇 = (𝑄𝐺𝑖

𝑇 − 𝑄𝐷𝑖
𝑇 )∀𝑇, 𝑖                                                      (12) 

                                                        𝑃𝐷𝑖
𝑇 = (𝑃𝑖𝑛,𝑖

𝑇 + 𝑃𝑒𝑙,𝑖
𝑇 )∀𝑇, 𝑖                                         (13) 

                                           ∑  𝑁
𝑖=1 ∑  24

𝑇=1 (𝑃𝑖𝑛,𝑖
𝑇 + 𝑃𝑒𝑙,𝑖

𝑇 ) × Δ𝑡 = 𝐸𝑖
𝑇𝑜𝑡𝑎𝑙                                         (14) 

                                        𝑃𝑒𝑙,𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙,𝑖

𝑇 ≤ 𝑚𝑖𝑛 ((𝐶 − 𝑃𝑖𝑛,𝑖
𝑇 ), 𝑃𝑒𝑙,𝑖

𝑚𝑎𝑥) ∀𝑇                              (15) 

                                                           𝑃𝑒𝑙,𝑖
𝑚𝑎𝑥 = 𝜒 ∑  24

𝑇=1 𝐿𝑑,𝑖  
𝑇                                             (16) 

The optimal solution to the optimization issue is a vector of responsive load schedules with a length 

of T and is represented as: 

𝑃𝑒𝑙 = [𝑃𝑒𝑙
1 , 𝑃𝑒𝑙

2 , 𝑃𝑒𝑙
3 , 𝑃𝑒𝑙

4 … … … … … … … … 𝑃𝑒𝑙
𝑇 ]∀𝑇. 

4.2.7 Objective constraints 

The objective functions are constrained in a variety of ways by both technical and operational 

considerations. These restrictions can be represented numerically as follows: 

• PV generation limit constraint 

The constraint for PV generation limit is given as: 

                                                              0 ≤ 𝑃PV,𝑖 ≤ 𝑃𝑃𝑉
𝑚𝑎𝑥∀𝑖                                           (17) 
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• BESS constraints 

The constraints of BESS are given as: 

                                                          0 ≤ 𝐸𝐵𝐸𝑆𝑆,𝑖 ≤ 𝐸𝐵𝐸𝑆𝑆
Max ∀𝑖                                (18) 

                                                 𝑃𝐵𝐸𝑆𝑆
Min. ≤ 𝑃𝐵𝐸𝑆𝑆(𝐶𝑖/𝐷𝑖)

𝑇 ≤ 𝑃𝐵𝐸𝑆𝑆
Max. ∀𝑇, 𝑖                               (19) 

                                                 𝑆𝑂𝐶Min. ≤ 𝑆𝑂𝐶𝑖
𝑇 ≤ 𝑆𝑂𝐶Max. ∀𝑇, 𝑖                               (20) 

                        𝑆𝑂𝐶𝑖
𝑇 = {

𝑆𝑂𝐶𝑖
𝑇−1 + 𝑃𝐵𝐸𝑆𝑆(C𝑖/D𝑖)

𝑇 𝜂𝑐Δ𝑡/𝐸𝐵𝐸𝑆𝑆
𝑅  if 𝑃𝐵𝐸𝑆𝑆(C𝑖/D𝑖)

𝑇 > 0

𝑆𝑂𝐶𝑖
𝑇−1 + 𝑃𝐵𝐸𝑆𝑆(C𝑖/D𝑖)

𝑇 Δ𝑡/𝜂𝑑𝐸𝐵𝐸𝑆𝑆
𝑅  else 

                  (21) 

                                           ∑  24
𝑇=1 𝜂𝑐𝑃𝐵𝐸𝑆𝑆(𝐶𝑖/𝐷𝑖)

𝑇 + 𝑃𝐵𝐸𝑆𝑆(𝐶𝑖/𝐷𝑖)
𝑇 /𝜂𝑑 = 0        (22) 

Equation 18 represents the limitations of energy while equation 19 represents the limitations of 

power dispatch. The limits of SOC are given in equation 20 and SOC status is presented in equation 

21. SOC balancing constraints are demonstrated in equation 22. All the above equations are at 

specific node and time. 

• Feeder Constraint 

The constraint for the thermal limits is given as: 

                                                                  𝐼𝑖𝑗
𝑇 ≤ 𝐼𝑖𝑗

𝑚𝑎𝑥∀𝑇, 𝑖, 𝑗                                                      (23) 

• Power balance constraints 

                                          
𝑃𝑖

𝑇 = 𝑉𝑖
𝑇 ∑  𝑁

𝑗=1 𝑉𝑗
𝑇𝑌𝑖𝑗cos (𝜃𝑖𝑗 + 𝛿𝑗

𝑇 − 𝛿𝑖
𝑇)∀𝑇, 𝑖

                   (24) 

                                        𝑄𝑖
𝑇 = −𝑉𝑖

𝑇 ∑  𝑁
𝑗=1 𝑉𝑗

𝑇𝑌𝑖𝑗sin (𝜃𝑖𝑗 + 𝛿𝑗
𝑇 − 𝛿𝑖

𝑇)∀𝑇, 𝑖                              (25) 

The actual and reactive power balance restrictions are shown by equations 24 and 25 respectively. 

4.2.8 Demand Modeling 

The demand modeling of the system is given in the following equations: 

                                                         
𝑃𝐷,𝑖

𝑇 = 𝜅𝑖
𝑇𝑃𝐷,𝑖

0 ∀𝑇, 𝑖
                               (26) 

                                                        𝑄𝐷,𝑖
𝑇 = 𝜅𝑖

𝑇𝑄𝐷,𝑖
0 ∀𝑇, 𝑖                              (27) 

4.2.9 PV Generation Modeling 

Solar power generation is dependent on a number of other factors as well, such as the type of panel 

and its area, the angle at which it is tilted, and the amount of solar radiation that is received. For 

the purposes of this study, during a specific period of time, it is assumed that all other parameters 

remain unchanged. The transformation of the current in relation to the rated voltage may be found 

as follows: 
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                                                  𝐼𝑝𝑣
𝑇 = {

𝐼𝑃𝑉 if 𝑅𝑃𝑉
𝑇 ≥ 𝑅𝑃𝑉

𝑟

𝐼𝑃𝑉 × 𝑅𝑃𝑉
𝑇 /𝑅𝑃𝑉

𝑟  if 𝑅𝑃𝑉
𝑇 < 𝑅𝑃𝑉

𝑟                               (28) 

4.3 Optimization Technique 

       As discussed in previous case, the presented optimization objectives required such a 

optimization technique that can solve the complex nonlinear problem. The adoption of a multilevel 

optimization context is required by the presence of BESS since it takes into consideration both the 

limits associated with SOC levels and their accessibility. The optimal allocations of PVs and the 

BESS are determined at the first level of optimization. At the second level of optimization, the 

hourly power scheduling of BESS in the synchronization of DR programs is determined. This is 

done to make sure that the operational gains from DSO are used to their fullest extent.  Any 

evolutionary method can be utilized to address the difficult multilevel optimization issue that has 

to be solved. According to a review of the relevant published material, it has been determined that 

GA is the method that is utilized most frequently for tackling the DG planning optimization 

problem [185]. As a result, the optimization goal presented in this work has been met at both levels 

by using GA.  

 The GA is an optimization approach that has the capability to search for a global or near-

global solution to difficult optimization issues involving power systems, and it is a population-

based meta-heuristic technique. Here are the things that need to be done to improve the multilevel 

optimization that is being thought about: 

I. Set the initial values for the parameters and variables that are used in level 1 optimization. 

It includes locations, sizes of PVs and BESS, maximum generation, crossover, and 

mutation rate of the proposed optimization technique. 

II. Upgrade the sizes and locations of PV that have been determined heuristically. 

III. Apply the calculated load factor  𝜅𝑖
𝑇to the  𝑃𝐷𝑖

𝑇  and  𝑄𝐷𝑖
𝑇  for a period of 24 hours.  

IV. The level 2 gets the most up-to-date location, size of BESS 𝑃𝐺𝑖
𝑇 , 𝑃𝐷𝑖

𝑇 , and 𝑄𝐷𝑖
𝑇  so that BESS 

and DR can be managed as well as possible. 

V. For the level 2, the arrangement of responsive load and BESS power dispatch over a period 

of twenty-four hours are seen as the variables. 

VI. At the level 2, the scheduling of BESS and DR is started subsequently getting the outcomes 

from first level subjected to various constraints of the system.  

VII. Execute the load flow to find out how much power is lost and how much voltage is at each 

node.  

VIII. Perform another round of updates to 𝑃𝐺𝑖
𝑇  (BESS discharging) and 𝑃𝐷𝑖

𝑇  (BESS charging and 

also depends on the planning of responsive loads) in accordance with the BESS and DR 

schedules that were optimized in level 2. 
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IX. The level 1 controller receives upgraded variables like 𝑃𝐺𝑖
𝑇 , 𝑃𝐷𝑖

𝑇 , SOC, and BESS power in 

order to optimize the objective of equation 9. 

 

Fig. 4.1: Flow chart for multilevel optimization approach 
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X. Perform the load flow to find out the energy losses in addition the level of voltages at 

different nodes, it is necessary to evaluate the performance of level-1 optimization function.  

XI. Preserve the level 1 population with the highest fitness and its matching best population. 

The flow chart that is given in Figure 4.1 illustrates both the upper and lower levels' structures in 

great detail. The scheduling of BESS will depend upon the optimized value of dispatch power and 

the present value of SOC. The value of DOD is assumed to be 20% of the peak value of DOD and, 

primarily, the value of SOC is equal to the value of DOD. The optimal power dispatch and SOC 

will determine how the BESS charges and drains. 

4.4 Results and Discussions 

 The proposed multilevel optimization technique is implemented on the IEEE 33 bus system 

[187]. In this research, the effects of DR technologies are shown and analyzed in order to solve the 

optimal power dispatch problem in a number of different scenarios and with a number of different 

constraints. The optimization objectives are solved with the help of proposed optimization 

techniques by using MATLAB software on i3 core processor having 12 GB RAM. PV is 

considered as DG during the optimal planning of power dispatch with the coordination of BESS 

and different DR rates. The details about the simulation settings for the multilevel optimization is 

given in Table 4.1. Additionally, the values of base voltage, nominal active demand, nominal 

reactive demand, power loss, Vmin, Vmax, 𝑃𝐵𝐸𝑆𝑆
Min , 𝑃𝐵𝐸𝑆𝑆

Max , 𝑆𝑂𝐶Min , 𝑆𝑂𝐶Max. , 𝐷𝐺Max.  and 𝐸𝐵𝐸𝑆𝑆
Max  are 

12.66kV, 3715 kW, 2300 kVAr, 202.7 kW, 0.95 pu., 1.05 pu, -1 MW, 1 MW, 0,1, 2 MW and 5MWh 

respectively.  

 Table 4.2 demonstrates how the DR rates impact the overall performance of the DS. The 

participation of different customers in various DR programs is reflected in the various DR rates. 

In this case study, we are assuming that type DR programs are required. Participants in mandated 

DR programs are required to pay the fine / penalty if they did not coordinate their usage in 

accordance with the DR aggregator's instructions. As a result, it is essential for the DR aggregator 

to monitor, control, and advise the consumers on scheduling the demand in accordance with the 

implemented DR rate. The outcomes of the optimal planning of power dispatch in the coordination 

of DG, DR, and BESS are given in table 4.3. Once the recommended technique is put into place, 

significant reductions in yearly energy loss, reverse power flow, and voltage variations are seen. 

As an illustration of the effectiveness of the suggested technique, we present several case studies 

and their respective results. 

Table 4.1: Simulation parameters of multilevel optimization technique. 

Parameters Level-1 Level-2 

Population size 20 50 

Maximum generation 50 150 

Crossover rate 0.9 0.9 
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Mutation rate 0.03 0.03 

 

Table 4.2: Effect of the coordination of DR with optimally integrated renewable DG and BESS on 

demand. 

Case 

No. 

Category Maximum 

Demand (kW) 

Maximum 

Demand 

Mitigation % 

Difference between Maximum 

to Minimum Demand (kW) 

% Of Maximum 

Loss Mitigation at 

20:00 h 

1 Base Case 6519 - 5397.73 - 

2 DG 6519 - 6016.39 - 

3 DR@10% 5559.3 14.7216 4166.14 25.496 
 

DR@20% 5324.7 18.3204 3730.6 30.9725 

4 DG+DR@10% 5375.66 17.5386 4322.87 29.807 
 

DG+DR@20% 4794.57 26.45 3540.31 42.3061 

5 DG+BESS 4357.32 33.1597 4100.89 76.6233 

6 DG+BESS+DR@10% 3811.44 41.5334 3299.7 77.0661 
 

DG+BESS+DR@20% 3291.08 49.5156 2498.53 76.8366 

 

Table 4.3: Outcomes of the coordination of DR with optimally integrated renewable DG and 

BESS. 

Case 

No. 

Category Optimal Allocation 

of DG (Bus No., 

kW) 

Optimal Allocation 

of BESS (Bus No., 

kWh) 

Annual 

Losses 

(MWh) 

Reduced 

losses / Year 

(%) 

DG 

Penetration 

(%) 

Average 

Voltage 

level (p.u.) 

1 Base Case - - 1426 - - 0.978178 

2 DG 14(1343)-30(1706)-

25(1078) 

- 1115 21.809 69.44 0.996344 

3 DR@10% - - 1341 5.96 - 0.978444 
 

DR@20% - - 1309 8.204 - 0.978547 

4 DG+DR@10% 15(1163)-7(1876)-

33(904) 

- 1012 29.03 66.33 0.9964 

 
DG+DR@20% 18(418)-29(1820)-

11(1636) 

- 951 33.31 64.56 0.996575 

5 DG+BESS 16(1903)-32(1653)-

7(1849) 

13(2697)-33(4593)-

16(3773) 

827 42.0056 90.93 1.01249 

6 DG+BESS+DR@10% 16(1528)-32(1729)-

26(1828) 

16(4529)-33(4386)-

18(982) 

789 44.6704 84.75 1.01226 

 
DG+BESS+DR@20% 17(988)-11(2022)-

30(1797) 

16(4591)-33(4388)-

18(985) 

759 46.7742 80.11 1.01263 

 

4.4.1 Case 1: Base Case 

The purpose of include this scenario in the discussion is to provide a foundation for demonstrating 

how successful the suggested approach is. In this analysis, neither PV nor BESS are considered 

for the 33-bus radial DS. In this particular instance, the DSO obtains all of the necessary power 

from the grid. The consumption pattern of an average day was obtained from reference [188], and 

it has been accounted for in each of the proposed objective functions in this chapter. The average 

daily energy loss is used in the calculation of yearly energy loss so that the study may be completed 
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more quickly. According to Tables 4.2 and 4.3, the difference between the maximum and minimum 

demand, the minimum mean voltage, and the yearly energy losses are respectively 5397.73 kW, 

0.978178 p.u., and 1426 MWh for this base scenario. The peak demand occurrence is 20:00 of the 

evening hours around while the valley point is around 5:00 in the morning hours. 

4.4.2 Case 2: DG Allocation 

In this scenario, the penetration level and locations of DGs are calculated at first level of 

optimization. The remaining information remains unaltered. According to Tables 4.2 and 4.3, the 

difference between the maximum and minimum demand, the minimum mean voltage, and the 

yearly energy losses are 6016.39 kW, 0.99634 p.u., and 1115 MWh respectively, for this particular 

instance. The peak demand remains same as shown in figure 4.2. This is due to the fact that the 

availability of solar generation is different from the availability of peak demand. Another valley 

point can be seen between the hours of 10:00 and 15:00, and this one is caused by the high 

penetration of distributed generation (DG), which lowers the demand placed on the grid. It may be 

concluded that the integration of DGs in optimized way enhance the power quality parameters. In 

this particular instance, the yearly energy loss has been shown to have decreased by around 21.8%, 

and the minimum mean voltage has increased from 0.978178 to 0.99634 p.u. Table 4.3 outlines 

the optimal dimensions for PV installations within DS, as well as their placement. The impact of 

DGs on the demand pattern, voltage pattern, and active power losses are demonstrated in figure 

4.2, figure 4.3, and figure 4.4 respectively. 

Fig. 4.2: Impact of DGs (GA optimized) on demand pattern 



73 
 

Fig. 4.3: Impact of DGs (GA optimized) on voltage pattern 

 

Fig. 4.4: Impact of DGs (GA optimized) on active power losses 

4.4.3 Case 3: DR Approach 

In this particular scenario, the significance of the DR approach by itself is evaluated for the base 

case, which does not involve the coordination of DGs or BESS. In this particular scenario, we will 

suppose that there are two distinct steps of demand elasticity namely, 10% and 20%. Such a 

demand elasticity is referred as the DR rate. The DR indicates that there is the load that is elastic 

and may be delivered at any moment that is suitable while taking into consideration the total 

demand and pricing scenario. It is recommended that power be delivered at the time of demand 

regardless of the price because the remaining portion of the load is inelastic. It has been noticed 

that the inclusion of various amounts of elastic load in DR exhibits substantial improvement in 
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comparison to the basic scenario. It is important to keep in mind that the reduction in peak demand 

is 14.72% and 18.32 % for the DR rates of 10% and 20%, respectively, and that the reduction in 

yearly energy loss is found in the range of 5.96 % to 8.2 %. As a result, it is clear that DR allows 

for a reduction in yearly loss as well as an improvement in peak-to-valley difference. This scenario 

demonstrates that DR is successful even when DGs are not taken into consideration. The impact 

of a 10% DR rate on the demand pattern, voltage pattern, and active power losses is demonstrated 

in figure 4.5, figure 4.6, and figure 4.7 respectively. Additionally, the impact of a 20% DR rate on 

the demand pattern, voltage pattern, and active power losses is demonstrated in figure 4.8, figure 

4.9, and figure 4.10 respectively. It can be stated that there is a negligible impact of DR on the 

voltage profile in the absence of DG integration. 

Fig. 4.5: Impact of 10% DR rate on demand pattern 

Fig. 4.6: Impact of 10% DR rate on voltage pattern 
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Fig.4.7: Impact of 10% DR rate on active power losses 

Fig. 4.8: Impact of 20% DR rate on demand pattern 
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Fig. 4.9: Impact of 20% DR rate on voltage pattern 

Fig. 4.10: Impact of 20% DR rate on active power losses 

4.4.4 Case 4: DG and DR 

In this scenario, the analysis is done after the incorporation of DGs in the coordination and 

planning of DR subjected to the various system constraints.  In this scenario, the integration of 

DGs with the scheduling of DR is carried out while taking into account the limitations imposed by 

the systems. It has been noticed that the implementation of DR results in a considerable 

enhancement of the benefits that DGs provide. Moreover, the system performance can be boost 

with the high DR rates while the presence of lower size DGs. The yearly energy loss has seen a 

tremendous improvement in its decrease. It ranges from 29.03% to 33.31% depending on the 

degree of DR rates, and the lowest mean voltage has also seen a significant increase in comparison 
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to cases 1 and 2. When compared to the result produced by employing DGs alone, the difference 

between maximum-to-minimum demand is significantly decreased, which results in a load profile 

that is more level. The impact of a DGs and 10% DR rate on the demand pattern, voltage pattern, 

and active power losses is demonstrated in figure 4.11, figure 4.12, and figure 4.13 respectively. 

Additionally, the impact of a DGs and 20% DR rate on the demand pattern, voltage pattern, and 

active power losses is demonstrated in figure 4.14, figure 4.15, and figure 4.16 respectively. 

Fig. 4.11: Impact of DG and 10% DR rate (GA optimized) on demand pattern 

Fig. 4.12: Impact of DG and 10% DR rate (GA optimized) on voltage pattern 
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Fig. 4.13: Impact of DG and 10% DR rate (GA optimized) on active power losses 

Fig. 4.14: Impact of DG and 20% DR rate (GA optimized) on demand pattern 
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Fig. 4.15: Impact of DG and 20% DR rate (GA optimized) on voltage pattern 

Fig. 4.16: Impact of DG and 20% DR rate (GA optimized) on active power losses 

4.4.5 Case 5: DG and BESS 

An assessment of the influence of BESS alone on optimal DG allocation has been conducted. Table 

4.3 outlines the appropriate placement and dimensions of the BESS that were determined. The 

planning and scheduling of BESS for the charging and discharging are executed in such a pattern 

that can enhance the voltage profile and reduce the energy losses of the network. In this case, the 

ideal BESS is coordinated with DGs in order to reduce the detrimental effects of excessive 

penetration as much as possible. As can be seen in Table 4.2, this technique brings the yearly 

energy loss down to 42% and produces a flatter load curve than case-2, which was previously 

thought to be impossible. The results of the application make it abundantly evident that BESS also 
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contributes to increased optimal penetration of DGs (90.93% as opposed to 69.44%). The impact 

of a DGs and BESS on the demand pattern, voltage pattern, active power losses, and BESS energy 

storage is demonstrated in figure 4.17, figure 4.18, and figure 4.19 respectively. 

Fig. 4.17: Impact of DG and BESS (GA optimized) on demand pattern 

Fig. 4.18: Impact of DG and BESS (GA optimized) on voltage pattern 
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Fig 4.19: Impact of DG and BESS (GA optimized) on active power losses 

Fig 4.20: Impact of DG and BESS (GA optimized) on BESS energy storage  

4.4.6 Case 6: DG, DR and BESS 

In this scenario, the DR aggregator is coordinated with the BESS integrator to ensure the optimal 

allocation of DGs and BESS. It can be notice that size of BESS and DG are dependent on DR rate. 

Additionally, to improve the functionality of the DN, a higher DR rate results in a smaller BESS 

and DG due to the increased efficiency of the system. According to Table 4.3, the most significant 

decrease in yearly energy loss is accomplished by combining DG, BESS, and DR rates of 20%. 

This results in a savings of 46.77%. This study provides conclusive evidence that it is essential to 

incorporate an ideal rate of DR together with DGs and BESS in order to ensure the efficient 

operation of DS. The impact of a different DR rate in the synchronization of optimal DGs and 
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BESS allocation on demand pattern, voltage profile, active power losses, and BESS energy storage 

is shown in figure 4.21 to figure 4.28.   

Fig. 4.21: Impact of DG, BESS and,10% DR rate (GA optimized) on demand pattern 

Fig. 4.22: Impact of DG, BESS and,10% DR rate (GA optimized) on voltage pattern 
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Fig. 4.23: Impact of DG, BESS and,10% DR rate (GA optimized) on active power losses 

Fig. 4.24: Impact of DG, BESS and,10% DR rate (GA optimized) on BESS energy storage  
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Fig 4.25: Impact of DG, BESS, and 20% DR rate (GA optimized) on demand pattern 

Fig 4.26: Impact of DG, BESS, and 20% DR rate (GA optimized) on voltage pattern 
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Fig. 4.27: Impact of DG, BESS and,20% DR rate (GA optimized) on active power losses 

Fig. 4.28: Impact of DG, BESS and,20% DR rate (GA optimized) on BESS energy storage  

4.5 Conclusions 

The significant integral parts of futuristic DN are renewable energy utilization, DR planning, and 

the energy storage system. The optimized planning and coordination of these parameters maximize 

the benefits of DN in terms of its technical, financial, and environmental factors. The present article 

proposes an efficient multilevel optimization methodology for the planning and execution of 

upgraded DN. Such a system exhibited optimized coordination for dispatch of PV penetration, 

scheduling of DR, and BESS allocation. The optimal sizes and locations of DGs and BESS are 

determined at level-1 subjected to various constraints. The DR program is carried out at level 2 

with the coordination of level 1 outcomes and the dispatching of BESS subject to the system's 
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balance of renewable energy generation and load demand. The suggested technique was 

implemented on IEEE 33 test system, and the harmony of DGs, BESS, and DR was explored for 

the purpose of achieving the highest possible level of DN performance. It has been discovered that 

the performance of DN is considerably impacted when different rates of DR are coordinated with 

one another. The most significant takeaways from this research may be summed up as follows: 

i. From a performance standpoint, the DGs are largely successful in reducing yearly energy 

loss. However, the flattening of the load profile is either negatively affected or unaffected 

by the DGs. A greater penetration of DGs may have a negative impact on the DS due to a 

sudden increase in voltage level and may facilitate reverse power flow to the grid system. 

This highlights the limit of DG penetration into the DN. 

ii. In addition to levelling the load profile and enhancing the voltage profile, and minimizing 

the energy losses, the BESS effectively makes it possible for a larger penetration of DG. 

iii. The inclusion of DR is successfully leveling the load profile and reduce the difference 

between maximum and minimum load demand, thus relieving stress on the system and 

providing subsequent advantages, such as a reduction in the need for BESS. When there is 

a smaller deployment of BESS, there is a correspondingly lower penetration of DG. To put 

it another way, if the probable penetration of PV and BESS is lower, then higher DR rate 

offers an efficient way to increase the efficiency of DN. 

iv. It can be concluded that the higher the value of the DR rate in comparison to optimal results, 

the lower the penetration of DGs. The lower power dispatch from DGs facilitates the lower 

minimization of energy losses, and the high value of DR may adversely affect the system. 

Therefore, a coordinated approach is essential among the DGs, BESS, and DR in the DN. 
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Chapter- V  

Investigating the Impact of DG on Distribution System Protection 

and Voltage Regulation 

 

5.1 Introduction 

       The integration of Distributed Generation (DG) stands as a transformative strategy, surpassing 

conventional methods, to revolutionize the conventional power paradigm. DG not only optimizes 

the utilization of renewable energy sources but also exhibits advantages in terms of economic 

viability and enhanced power quality. However, given the intermittent nature of renewable sources, 

the widespread adoption of DG technology introduces a spectrum of challenges including optimal 

allocation, protection mechanisms, and other pertinent issues. In response to these multifaceted 

challenges, this study embarks on a meticulous exploration of the emergent complexities arising 

from the seamless assimilation of DG into centralized electrical grids. By delving into the intricate 

dynamics of this integration, this research aims to unearth valuable insights, identify potential 

hurdles, and propose adaptive strategies to ensure the harmonious coexistence of DG with existing 

grid infrastructure. Key facets of examination encompass the allocation strategies of DG units, 

which necessitate a robust framework capable of adapting to the intermittent availability of 

renewable energy. Additionally, the study scrutinizes the existing protection mechanisms to 

ascertain their efficacy in safeguarding the integrity of the grid amidst dynamic and bidirectional 

power flows introduced by DG sources. Moreover, power quality considerations are investigated 

to ascertain the stability and reliability of the grid under varying DG operational scenarios. This 

chapter endeavors to present a comprehensive overview of the complexities and intricacies 

surrounding DG integration within centralized power systems. By providing a systematic analysis 

of these challenges, we seek to contribute to the body of knowledge surrounding the seamless 

amalgamation of DG technologies in the existing power infrastructure. The findings of this study 

hold the potential to inform and guide future strategies in reshaping the power landscape towards 

a more sustainable and efficient future. 

5.2 Protection System 

The conventional protection system for energy generation is relatively straightforward, utilizing 

re-closers, relays, and fuses. This simplicity arises from the radial configuration of the distribution 

system. However, the integration of DG technology introduces the possibility of delayed 

synchronization in the protection system. In light of this, the authors propose a method to ensure 

the security of the distribution system when DG is present. This method is founded on a zone-wise 

classification of the power network, coupled with a corresponding risk analysis. Moreover, both 

offline and online data are imperative. Once the location of a fault is identified, a restoration signal 

is dispatched to initiate load shedding [209]. The integration of DG into the distribution network 

poses novel challenges to the protection system. Addressing these challenges requires the 

amalgamation of advanced protection technologies with the existing protection infrastructure. To 

enhance over-current protection within the distribution network, the authors suggest a hybrid 
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protection strategy that synergistically combines conventional and modern protection techniques. 

This strategy incorporates limit grading and wavelet energy as key components in processing the 

instantaneous signal. The research results exhibit significant potential for reducing relay operation 

time and preventing hazardous situations [210]. In a distribution system incorporating DG, active 

network management and islanded operation serve as valuable tools for the protection strategy. 

This safety system leads to a reduction in both the magnitude and direction of fault currents. A 

novel overcurrent protection technique is introduced in [211], which automatically triggers all 

circuit breakers in abnormal conditions. A comparison between the traditional and proposed 

methods reveals a decrease in spurious signals and relay operation time. This advancement 

signifies improved efficiency and accuracy in fault detection and isolation. Before incorporating 

DG into the electrical power system, it is imperative to meticulously configure the protection 

system to guarantee seamless coordination. In this context, the authors propose a method for the 

judicious selection of relay protection parameters prior to DG integration. This method leverages 

the simplex method as the cornerstone of its optimization strategy, specifically tailored for 

addressing issues with linear programming formulations. The efficacy of this strategy is evaluated 

on the radial distribution systems of the IEEE 13 and IEEE 14 bus systems, exhibiting markedly 

superior results compared to previous methodologies. To mitigate the impact of DG penetration 

on the protective system, the conclusion underscores the urgency of prompt adjustments in relay 

settings [212]. Within the protection unit, establishing effective communication is imperative for 

mitigating the influence of DG. Furthermore, the implementation of a multi-agent-based 

technology, executed on the Java representative platform, is recommended to ensure the proper 

functioning of the protection unit in the distribution network subsequent to the integration of DG. 

Autonomous decision-making computers continuously engage with physical parameters, 

concurrently establishing a protocol for system modifications. This approach hinges on specific 

methodologies, relay parameters, and operational timelines, contingent on successful coordination 

with each agent and the entire relay family [213]. Following the integration of DG, the authors 

advocate for and model an adaptive fortification-based technique aimed at enhancing the 

performance of overcurrent relays. Initially, the reach of the relay is established, followed by an 

assessment of DG performance during fault conditions. Subsequently, this proposed methodology 

is employed to define the optimal operating state of a centralized power system incorporating DG, 

taking into consideration the fault current magnitude. The obtained results provide assurance that 

the system will operate effectively under these circumstances [214]. After connecting DG to the 

electricity grid, it becomes imperative for the protection system to promptly detect any alterations 

in the system. The authors present a protection module employing Fourier transform-dependent 

fuzzy logic, substantiated by several case studies. This module is thoroughly examined using the 

IEEE 34 bus test system. The proposed approach yields a precise estimation of the fault current, 

subsequently employing fuzzy logic to determine the relay's setup parameters. The technique is 

thoroughly scrutinized under various scenarios, encompassing grid presence, DG power 

augmentation, DG absence, and different levels of power generation during islanding [215]. 

The authors advocate for an adaptive approximation technique for selecting the optimal 

configuration parameters of the protection system. This selection is based on locally available 

pertinent observations. The suggested method entails determining the parameters of Thevenin's 

equivalent circuit. This is essential to ensure a secure and reliable operation, especially with the 
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implementation of a two-layer relay protection system [216]. For mitigating voltage distortion 

arising from upper-level harmonics without necessitating an additional filtration device, the 

authors strongly endorse the utilization of three-phase converters. The outcomes are assessed in 

the context of DG powered by renewable energy sources [217]. 

Table 5.1 provides a comprehensive listing of the impact assessment of DG on the protection 

system of the distribution network. 

5.3 Voltage Regulation 

The integration of DG systems into the distribution network can introduce a range of disturbances, 

presenting challenges for effective system operation. While power flow is typically unidirectional 

under heavy load, it may become bidirectional during light load conditions due to reverse power 

flow to the grid. This surplus power generation from DG sources has the potential to cause 

significant voltage fluctuations and compromise voltage regulation. This section provides a 

comprehensive analysis of the issues and potential remedies arising from voltage limit violations. 

Ineffective voltage regulation hinders the efficient utilization of DG resources. Several factors may 

impact the distribution network in the presence of DG: 

• The magnitude of the voltage. 

• The type of distribution network. 

• The level of power consumption. 

• The capacity of the DG. 

5.3.1 Grid Power Cutbacks 

In the absence of a suitable voltage control method, the grid operator may disconnect all DG 

sources from the distribution network. While this may reduce poor voltage control, it comes at the 

cost of forfeiting the benefits of DG and renewable energy. As an alternative, the authors have 

proposed a voltage droop methodology involving the control of wind turbine generator pitch angles 

during periods of suboptimal voltage regulation. This approach has been successfully implemented 

in small-scale wind turbines in North America, yielding significant improvements [218]. 

Additionally, in rooftop photovoltaic arrays integrated into low voltage distribution networks, 

active power curtailment offers a practical solution for charging electric vehicles during periods of 

high-power generation or light load. In the presence of solar energy-based DG, the authors have 

suggested a mutually agreeable approach to managing reverse power flow, resulting in enhanced 

voltage regulation during light load hours [219]. 

5.3.2 Reframing of Distribution Network 

Reframing the distribution network can be achieved by regulating the operating times of circuit 

breakers between feeders to enable loop operation. This reconfiguration brings benefits such as 

improved voltage profiles, reduced power losses, and maximized resource utilization. The authors 

have demonstrated how to reframe a distribution network in the presence of DG, with a focus on 

optimizing cost and voltage levels. The methodology, incorporating multiple regulators and VAR  
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Table 5.1 Assessment of protection system impact caused by DG 

Ref. Complication Remedial Methodology Encounters 

[209] Integration of DG in 

distribution systems leads 

to the need for adaptive 

overcurrent protection 

Division of the distribution 

system into multiple 

independent operating zones 

Identification of fault zones 

and categories while 

operating with DG 

[210] Overcurrent protection in 

the presence of DG 

requires real-time signal 

analysis 

Real-time signal 

segmentation into limit 

grading and wavelet energy 

components to identify fault 

initiation time 

Reduction in the operating 

time of overcurrent relays 

during DG operation in the 

distribution network 

[211] Integration of DG in 

distribution systems 

necessitates an adaptable 

overcurrent protection 

approach 

Automatic operation of all 

circuit breakers by applying 

optimized real parameters 

directly 

Reduction in the number of 

false operating actions and a 

decrease in the average 

operating time of protection 

relays 

[212] Coordination of 

directional overcurrent 

relays in DG-integrated 

systems 

Utilization of the simplex 

technique to solve linear 

programmed problems 

Procurement of a set of relay 

setting parameters for all 

types of DG scenarios 

[213] Optimization of 

overcurrent relay 

coordination in 

distribution networks with 

DG 

Implementation of 

multiagent-based 

technology on the Java 

platform 

Coordinated protection 

through communication 

arrangements to facilitate 

the exchange of necessary 

information 

[214] Overcurrent relay 

protection in DG-

integrated power systems 

Adoption of an adaptive 

fortification-based approach 

to optimize relay 

performance post DG 

integration 

Reduction in the reach or 

line protection covered by 

distance relays 

[215] Protection of DG-based 

distribution networks 

Utilization of a Fourier 

transform-dependent fuzzy 

logic-based protection 

module 

Understanding various 

network procedures and 

methodologies 

[216] Adaptive overcurrent 

protection with multi-

level definite time in DG-

Calculation of optimized 

parameters of Thevenin's 

Line-interacted 

measurement of fault current 

for various relevant cases 
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incorporated distribution 

networks 

equivalent circuit based on 

local parameters 

 

compensators, was applied to the IEEE 33 and IEEE 392 test systems. Both continuous and 

discrete voltage regulation approaches produced remarkably positive results. The reconfiguration 

of the network also led to a reduction in the cost of energy production [220]. To mitigate voltage 

limit violations, the three-phase power generation model is transformed into a mixed-integer 

second-order cone programming model using various techniques. The results demonstrate 

significant improvements compared to other methodologies [221]. 

5.3.3 On Load Tap Changer (OLTC) 

Voltage regulation is a critical aspect of power system operation, especially in the presence of DG. 

One commonly employed tool for achieving effective voltage regulation is the OLTC. It operates 

by adjusting the phase angle and balancing the voltage magnitude, working in conjunction with 

other control and regulation equipment. 

In scenarios where power generation is predominantly single-phase, voltage variations become 

more pronounced due to uneven distribution. To address this, the authors have developed a 

coordinated OLTC system integrated with solar cells. This innovation has been successfully 

implemented in a Danish low voltage system. The methodology involves specific procedures 

including OLTC framing, load framing, active PV power generation, and control of VAR [222]. 

In cases where OLTC alone may not suffice to manage a specific voltage fluctuation, 

enhancements can be made to ensure that voltage fluctuations remain within specified limits. An 

advanced multi-stage optimization approach, reliant on data acquisition and working in tandem 

with OLTC, is presented [223]. 

5.3.4 Static Synchronous Compensator (STATCOM) 

Reactive power compensation offers an effective means of controlling voltage levels in distribution 

networks, particularly when integrating DG sources. This is achieved through the utilization of 

solid-state devices like the Static STATCOM within the realm of flexible AC transmission systems. 

The procedure of reactive volt-ampere compensation stands out as a reliable corrective measure 

for voltage level optimization. In order to mitigate voltage fluctuations, the authors propose the 

deployment of distributed reactive power compensators. In this scenario, both positive sequence 

admittance and negative sequence conductance need to function concurrently. These sequences are 

dynamically adjusted to optimize voltage levels through a proportional resonator. Acting as a 

regulator, the current resonator efficiently mitigates harmonic distortion and safeguards the crucial 

current component [224]. 

5.3.5 Inverter Controlled DG 

Inverter-based DG units provide an effective means of regulating voltage fluctuations by supplying 

or absorbing reactive electricity to/from the electric grid. During islanded grid operation in hybrid 

mode, a photovoltaic system serves as a VAR correction component. The test module consists of 
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a wind-powered generator, a diesel engine, and a solar inverter unit. Through simulation using a 

fuzzy-based proportional integral controller, optimal configurations for the integrated units are 

determined. The study extensively evaluates the benefits of a self-tuned distribution network 

coupled with renewable DG, comparing the findings with existing optimization methods [225]. 

The authors strongly advocate for the use of three-phase converters to mitigate voltage waveform 

distortion, effectively eliminating the adverse effects of upper-level harmonics without the need 

for additional filtration devices. Results are evaluated in the context of DG powered by renewable 

energy [226]. 

5.3.6 Energy Demand Management (EDM) 

The evolution of modern power systems is being steered by the advent of the smart grid, which 

revolves around the concept of demand management of energy. This initiative is driven by 

distribution corporations and end-users, relying on mutual agreements for load shifting and 

curtailment. To ensure the efficacy of EDM, the authors emphasize key parameters that can be 

fine-tuned [183]. 

• Political support is pivotal in attracting participants, spanning from low-level to high-level 

energy users, to engage in energy management. 

• A clear policy plan is indispensable in steering the process in the right direction within the 

allotted timeframe. The effectiveness of the approach is contingent on EDM rules. 

• EDM necessitates a precise list of objectives to monitor progress and achieve goals. This 

list may be based on prior experiences and input from relevant stakeholders. 

• Financial stability is crucial for establishing a self-sustaining system under various 

conditions, whether favorable or unfavorable. 

• User engagement is paramount to the operation of EDM, as it hinges on human 

intelligence. 

Voltage regulation is a proactive concern addressed by EDM. The authors introduce a method for 

regulating voltage variations wherein ice thermal storage is converted into an electrical load. The 

integration of DGs into the concept of a smart building is highlighted to showcase the impact of 

EDM. The adaptability of the thermal load further mitigates the intermittent nature of renewable 

energy sources [227]. 

5.3.7 Battery Storage 

The variable generation patterns of renewable energy sources, influenced by specific local climatic 

and atmospheric conditions, present a challenge to their seamless integration. Battery storage plays 

a pivotal role in mitigating this intermittent nature by either supplying or absorbing electrical 

energy to and from the grid. Through real-time power management, a system can attain an optimal 

level of voltage regulation. During periods of heightened energy generation or low demand, the 

energy storage system undergoes a charging process. Subsequently, it will feed energy into the grid 

during intervals of low energy generation or high demand. A recommended approach involves the  
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Table 5.2 Assessment of voltage regulation impact caused by DG 

Ref. Problem Solution 

[218] Regulation of voltage levels in a 

distribution grid employing wind 

energy-driven DG. 

Optimizing the pitch angle of a wind turbine to 

align with the real-time power demand. 

[219] Limiting the voltage of rooftop solar-

powered DG systems during periods of 

high load demand and low energy 

production. 

Decreasing the actual solar power output and 

proficiently managing energy storage in electric 

vehicles. 

[220] Voltage variation management in 

unbalanced distribution networks with 

DG 

Optimization of setting parameters for various 

voltage regulating devices. 

[221] Voltage fluctuations in the distribution 

network due to intermittent DG power 

output during varying load conditions 

Integration of reactive volt-ampere compensation 

in the reconfigured distribution network. 

[222] Minimizing voltage infractions 

resulting from SPV systems and uneven 

distribution of single-phase supply. 

Utilization of OLTC transformers to control 

reactive power and enhance voltage regulation, 

thereby maximizing the benefits of DG in the 

distribution network. 

[223] Poor voltage regulation due to extensive 

deployment of distributed energy 

sources. 

Effective communication and coordination among 

essential components of the generation and 

protection systems. 

[224] Maintenance of voltage magnitude in 

renewable DG-based distribution 

networks 

Deployment of a static reactive power 

compensator with continuous current regulation. 

[225] Distribution grids incorporating voltage 

regulation for DG derived from both 

renewable and non-renewable sources. 

Control of reactive power through solid-state 

inverter-based DG systems. 

[227] Control of voltage and intermittency in 

renewable energy-based DG within the 

distribution network 

Ice thermal storage is transformed into an 

electrical load in order to regulate voltage 

fluctuations. 

[228] Addressing voltage rise challenges in 

low voltage solar photovoltaic systems 

Utilization of battery storage for state of charge 

control and voltage management. 

 

implementation of a coordinated consensus strategy to maintain the voltage magnitude within 

predefined thresholds. This method is put into practice within a low voltage distribution system, 
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where local control devices oversee the state of charge. To interconnect end users, battery storage, 

and solar systems within a DC link, bidirectional converters and a voltage booster are employed. 

The methodology is subjected to simulations to account for variations in daily load patterns [228]. 

For a comprehensive assessment of the impact of DG on voltage regulation within the distribution 

network, Table 5.2 provides an exhaustive list of evaluations. 

5.4 Conclusion 

The integration of DGs in electrical power networks brings forth a host of benefits encompassing 

technical advancements, improved financial viability, and noteworthy environmental gains. 

Nevertheless, this integration also gives rise to certain challenges, primarily in the domains of 

protection systems and voltage regulation, which could potentially impede the widespread 

adoption of DG technologies. As the global reserves of fossil fuels continue to dwindle, the future 

of energy generation hinges significantly on the utilization of DG and renewable energy sources. 

This report offers an in-depth exploration of the intricate interactions that arise from the 

amalgamation of DG with distribution networks. 

In order to forge a more robust, reliable, and proficient electrical power system underpinned by 

DG and high levels of renewable energy integration, it is imperative to conduct a comprehensive 

examination of the hurdles, concerns, and corresponding remedial measures. This report has 

specifically addressed two pivotal challenges: variations in the peak values and directions of fault 

currents, as well as violations of voltage limits. 

To mitigate the issues pertaining to fault currents, alternative approaches and recommended relay 

settings have been introduced. These measures effectively circumvent fault current problems, 

bolstering the overall stability and resilience of the system. Additionally, strategies have been 

proposed to rectify instances of poor voltage regulation, further enhancing the operational efficacy 

of the system. 

In summation, the successful integration of DG into distribution networks not only augments the 

overall efficiency and sustainability of the power grid but also necessitates a nuanced 

understanding of the associated challenges. By meticulously investigating and proactively 

addressing issues concerning fault currents and voltage regulation, we pave the way for a more 

robust and adaptive electrical power system, poised to accommodate the escalating demands of a 

dynamic energy landscape. 
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Chapter- VI  

Main Conclusion and Future Scope 

 

6.1 Main Conclusion 

 The integration of Distributed Generation (DG) within distribution systems presents a 

transformative opportunity for enhancing power networks across various dimensions. Through a 

comprehensive exploration of optimization techniques, this thesis has illuminated the path toward 

effective DG allocation while adhering to specific constraints. This endeavor not only fortifies the 

stability, reliability, and consistency of distribution networks but also serves as a pivotal tool for 

dissecting the intricacies of optimization algorithms. 

 The comparative analysis of conventional, modern mathematical, and hybrid optimization 

methods has shed light on their respective strengths and trade-offs. While conventional approaches 

offer simplicity, precision, and ease of execution, their single-objective focus may lead to slower 

convergence. In contrast, modern mathematical techniques excel in solving multi-objective 

complex problems, though they introduce challenges such as increased coding complexity and 

diverse settling parameters. Hybrid optimization approaches, though capable of handling intricate 

problems with swifter convergence, may entail greater complexity and possess a smaller existing 

body of literature. 

 Furthermore, the amalgamation of renewable energy sources with DG has emerged as a 

powerful catalyst for amplifying the benefits of DG planning within distribution networks. 

However, this integration has underscored the imperative need for a reliable assessment tool for 

renewable energy. Addressing the intermittent nature of renewable sources necessitates effective 

energy storage solutions, potentially mitigating the challenges posed by intermittency. 

 Demand Response (DR) emerges as a linchpin in the development of smart distribution 

systems, offering a vital solution, especially in light of the high costs associated with energy 

storage systems. There lies a promising opportunity to develop a comprehensive system that 

encompasses the planning and optimal dispatch of renewable DG, coupled with energy storage 

and demand response mechanisms. 

 However, as DG penetration escalates, potential challenges come to the fore, including 

voltage level rise and reverse power flow into the grid. These limitations accentuate the need for a 

nuanced approach to DG integration within the distribution network. Incorporating DR emerges 

as a pivotal strategy, balancing the load profile, minimizing disparities between peak and off-peak 

load demands, and alleviating strain on the system. A higher DR rate offers a promising avenue 

for improving demand normalization efficiency. 

 In conclusion, the impact assessment of DR on the optimal placement of Solar Photovoltaic 

(SPV) systems within the distribution network presents substantial promise in enhancing the 

efficiency and effectiveness of renewable energy integration. Through rigorous simulation studies 
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and empirical analyses, it has been demonstrated that the integration of demand response 

mechanisms leads to improved power quality parameters and increased penetration levels of 

renewable energy sources. This research offers invaluable insights for policymakers, utilities, and 

stakeholders involved in the planning and management of distribution networks. 

 As the energy landscape evolves, the integration of DR into energy systems planning and 

design emerges as an indispensable component for meeting future energy needs sustainably. This 

thesis underscores the importance of adopting a holistic approach to energy systems planning, 

considering the intricate interplay between different components of the energy system and the 

potential for innovative solutions to address complex challenges. 

 The essential components of a futuristic distribution network encompass renewable energy 

utilization, DR planning, and energy storage systems. The optimized planning and coordination of 

these parameters maximize the benefits of distribution networks in terms of technical, financial, 

and environmental factors. The proposed multilevel optimization methodology exhibited 

optimized coordination for the dispatch of Photovoltaic (PV) penetration, scheduling of DR, and 

Battery Energy Storage System (BESS) allocation. The findings underscore the importance of a 

coordinated approach among DGs, BESS, and DR in distribution systems. 

 The integration of DGs into electrical power networks ushers in a host of benefits, ranging 

from technical advancements to improved financial viability and noteworthy environmental gains. 

Nevertheless, this integration also gives rise to certain challenges, particularly in the realms of 

protection systems and voltage regulation, which could potentially impede the widespread 

adoption of DG technologies. As global reserves of fossil fuels continue to dwindle, the future of 

energy generation hinges significantly on the utilization of DG and renewable energy sources. This 

thesis offers an in-depth exploration of the intricate interactions that arise from the amalgamation 

of DG with distribution networks. 

 To build a more robust, reliable, and efficient electrical power system underpinned by DG 

and high levels of renewable energy integration, a comprehensive examination of hurdles, 

concerns, and corresponding remedial measures is imperative. This thesis has specifically 

addressed two pivotal challenges: variations in the peak values and directions of fault currents, as 

well as violations of voltage limits. 

 To mitigate the issues pertaining to fault currents, alternative approaches and recommended 

relay settings have been introduced. These measures effectively circumvent fault current problems, 

bolstering the overall stability and resilience of the system. Additionally, strategies have been 

proposed to rectify instances of poor voltage regulation, further enhancing the operational efficacy 

of the system. 

 In summation, the successful integration of DG into distribution networks not only 

augments the overall efficiency and sustainability of the power grid but also necessitates a nuanced 

understanding of the associated challenges. By meticulously investigating and proactively 

addressing issues concerning fault currents and voltage regulation, we pave the way for a more 

robust and adaptive electrical power system, poised to accommodate the escalating demands of a 

dynamic energy landscape. This thesis endeavors to contribute to the evolving discourse on 
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Distributed Generation Planning in Distribution Systems, with the hope of propelling our energy 

systems into a more sustainable and resilient future. 

6.2 Future Scope 

The research conducted in this thesis opens up avenues for further exploration and development 

in the field of Distributed Generation (DG) planning within distribution systems. Several areas of 

future research are identified based on the findings and implications of this study: 

• Advanced Optimization Techniques:  

Future studies could delve deeper into the development and application of advanced optimization 

techniques, including machine learning algorithms and artificial intelligence, to enhance the 

accuracy and efficiency of DG allocation and planning. 

• Integration of Energy Storage Systems:  

Given the critical role of energy storage in mitigating the intermittent nature of renewable energy 

sources, further research can focus on optimizing the integration of energy storage systems with 

DG and their impact on the overall performance of distribution networks. 

• Dynamic Demand Response Strategies:  

Investigating dynamic demand response strategies that adapt to real-time changes in energy 

demand patterns can further enhance the efficiency and effectiveness of distribution networks, 

especially in the context of high DG penetration. 

• Cybersecurity and Resilience:  

With the increasing reliance on digital technologies for monitoring and control of distribution 

systems, future research should address the cybersecurity aspects to ensure the resilience and 

security of the integrated DG networks. 

• Microgrid Development: 

Exploring the potential for microgrid development within distribution networks, incorporating 

DG, energy storage, and demand response, could lead to more localized and resilient energy 

systems. 

• Grid-Interactive Buildings:  

Investigating the role of grid-interactive buildings, equipped with technologies for demand 

response and integration of DG, in enhancing the overall efficiency and stability of distribution 

networks. 

• Multi-Objective Optimization:  

Future studies could focus on multi-objective optimization techniques that balance technical, 

financial, and environmental considerations to achieve more comprehensive and sustainable DG 

planning outcomes. 
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• Real-World Case Studies:  

Conducting extensive real-world case studies and field trials to validate and refine the 

methodologies proposed in this thesis, taking into account specific regional and contextual factors. 

• Policy and Regulatory Frameworks:  

Research on policy and regulatory frameworks that incentivize and facilitate the integration of DG 

into distribution networks, including mechanisms for grid interconnection and market 

participation. 

• Economic Viability Analysis: 

Further studies can delve into the economic viability of DG projects, considering factors such as 

return on investment, cost-benefit analysis, and financial models for different stakeholders. 

• Environmental Impact Assessment:  

Conducting detailed environmental impact assessments to quantify the reduction in greenhouse 

gas emissions and other environmental benefits associated with the integration of DG. 

• Smart Grid Technologies:  

Investigating the incorporation of advanced smart grid technologies, including advanced metering 

infrastructure, grid automation, and real-time monitoring, to enhance the performance and 

capabilities of distribution networks. 

By addressing these future research areas, the field of DG planning in distribution systems can 

continue to evolve and contribute to the development of more sustainable, efficient, and resilient 

energy networks. The ongoing pursuit of these research directions will play a crucial role in 

shaping the future of distributed energy systems and their integration into the broader energy 

landscape. 
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Appendix A 

 

Table A.1 Line data and Load of System IEEE 33 bus 

 

Branch No. 

 

From bus 

 

To bus 

 

R (Ω) 

 

X (Ω) 

Load at to bus 

P (kW) Q (kW) 

1 1 2 0.0922 0.0477 0 0 

2 2 3 0.4930 0.2511 100 60 

3 3 4 0.3660 0.1864 90 40 

4 4 5 0.3811 0.1941 120 80 

5 5 6 0.8190 0.7070 60 30 

6 6 7 0.1872 0.6188 60 20 

7 7 8 1.7114 1.2351 200 100 

8 8 9 1.0300 0.7400 200 100 

9 9 10 1.0400 0.7400 60 20 

10 10 11 0.1966 0.0650 60 20 

11 11 12 0.3744 0.1238 45 30 

12 12 13 1.4680 1.1550 60 35 

13 13 14 0.5416 0.7129 60 35 

14 14 15 0.5910 0.5260 120 80 

15 15 16 0.7463 0.5450 60 10 

16 16 17 1.2890 1.7210 60 20 

17 17 18 0.7320 0.5740 60 20 

18 2 19 0.1640 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 40 
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23 23 24 0.8980 0.7091 90 50 

24 24 25 0.8960 0.7011 420 200 

25 6 26 0.2030 0.1034 420 200 

26 26 27 0.2842 0.1447 60 25 

27 27 28 1.0590 0.9337 60 25 

28 28 29 0.8042 0.7006 60 20 

29 29 30 0.5075 0.2585 120 70 

30 30 31 0.9744 0.9630 200 600 

31 31 32 0.3105 0.3619 150 70 

32 32 33 0.3410 0.5302 210 100 

*R: resistance *X: reactance 
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