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ABSTRACT 

All the practical systems in the real world are mostly non-linear in nature due to their dynamic 

behavior. Non-linear systems are extremely complex due to their uncertainties, parameter 

variations, and other complexities. Soft computing methods are commonly employed to address 

system dynamics and uncertainties. One of the most effective and successful soft computing 

methods is optimization. Due to numerous applications, optimization is a significant paradigm. 

Minimization or maximization are the forms of optimization that occur in nearly all engineering 

and industrial applications. The necessity to manage complex nonlinear processes with a high 

degree of uncertainty and satisfy performance requirements are the main drivers of progress in the 

field of control. Conventional control techniques cannot meet these objectives and have been 

proven ineffective for complicated nonlinear systems due to their complexity. To enhance the 

system's performance, an appropriate controller with optimal parameters is needed to be employed. 

Conventional Proportional-Integral-Derivative (PID) is still utilized in industries and other real-

world applications because of its simplicity. This thesis uses PID controllers with various 

optimization techniques, such as Particle Swarm Optimization (PSO) and Teaching Learning-

Based Optimization (TLBO) algorithm, to control non-linear benchmark systems such as artificial 

respiratory systems and vehicle cruise control systems. Performance indices were used to evaluate 

the suggested controllers' effectiveness. The robustness of the controllers was also examined. The 

suggested techniques were also used for the control and tuning of a non-linear ball and beam 

system by cascade-optimized PID. The controllers' ability to reject disturbances and variations in 

parameters was examined. Fractional order PID controllers (FOPIDs), which offer more controller 

flexibility, are frequently employed for the control of non-linear systems. Whale optimization 

algorithms (WOA), TLBO, and PSO are used in this thesis to tune the FOPID controller and 

control the inverted cart pendulum system. Several advantages of artificial neural networks have 

made them particularly attractive for use in modeling and controlling complex non-linear systems. 

They are capable of adaptation and self-learning. In this thesis, a new PID-like neural network is 

proposed, whose weights are optimized by the PSO algorithm. The optimization of weights with 

PSO has many advantages as compared to conventional back propagation learning since it is not 

based on gradient calculations.  The proposed controller was tested for its effectiveness on a highly 

non-linear Continuous stirred tank reactor. It was used to control the temperature of the CSTR. 
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The proposed controller was also tested for robustness under disturbance application. It was also 

compared with the optimization-based PID controllers. 
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CHAPTER 1  
 

                                    INTRODUCTION 

1.1 Overview 

In the domain of control systems, handling nonlinear systems is still a challenging task, due to 

the unpredictable behavior of these systems. Several complex control problems related to linear 

systems have been solved efficiently in past years. But mostly all the systems in real life are 

non-linear like systems employed in aircraft, robotics, and biomedical, all are inherently non-

linear [1]. There is a constant need to develop intelligent controllers that can evolve and adapt 

to these uncertainties and unpredictability offered by non-linear systems. PID controller 

remains one of the most popular controllers in the industry for decades due to its simplicity and 

ease of implementation [2]. However, system complexities and non-linearities make tuning the 

PID controller properly difficult with fixed gains [3]. Earlier PID controllers were mostly 

manually tuned till the 1940s when Zeigler and Nichols introduced the first empirical formula 

for tuning PID controllers [4]. Zeigler-Nichol’s method and frequency response methods were 

the first developed formulas for PID tuning. Later on, Cohen-Coon [5] introduced a new 

method that aimed at disturbance rejection it showed some improvement but was not able to 

provide much better results as compared to the Zeigler-Nichols method. The Cohen-coon 

method was developed for first-order plus delay systems, the calculations were based on gain 

and time-delay of step response. The gain phase method was introduced in 1984 [6], and was 

an improvement over previously introduced empirical methods, it was able to move the critical 

point to a specific location in the Nyquist plot. Then the internal model control [7], method is 

another model-based tuning method that offers better robust control in terms of disturbance 

rejection and parameter changes. The IMC method was applicable only for systems with 

constant-time delays, but later, some researchers proposed modifications in this method for 

varying time delays. However, these empirical methods were based on certain assumptions and 

were not able to perform optimally, as they did not give the desired results [8]. In the process 

industry, lambda tuning has been widely used, particularly in the pulp and paper industries [9]. 

These traditional methods are designed mostly for stable and linear-time invariant systems. To 

deal with the non-linear systems some modifications were introduced in the PID tuning 

methods like gain scheduling and non-linear PIDs [10]. In the gain-scheduling method, the PID 

gains are represented as a function of errors. By scheduling control gains, this technique 
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overcomes non-linear behavior; nevertheless, when learning capabilities are not incorporated 

into the control system, the system design becomes tedious. With the emergence of various AI 

methods, they have been used widely for the tuning of PID gains as they can adapt to the non-

linearities, uncertainties, and parameter variations efficiently.  

1.2 Structures of PID Controllers 

PID controllers are used in two structures, series, and parallel form [11]. In a parallel form of 

PID structure, the three control actions are considered separately in three different terms and 

the final control action is generated by summing the effect of these three controllers. The 

control action 𝑢𝑢(𝑡𝑡)  of a parallel controller is given as, 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0 + 𝐾𝐾𝑑𝑑

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

      (1.1) 

where, 𝐾𝐾𝑝𝑝 is the proportional gain, 𝐾𝐾𝑖𝑖 is the integral gain, 𝐾𝐾𝑑𝑑 is the derivative gain, and 𝑒𝑒(𝑡𝑡) is 

the error signal. The block diagram of the parallel PID-controlled system is shown in Figure 

1.1, 

 

Figure 1.1 Block Diagram of a parallel PID-controlled system 

The three gains of the PID controller are defined as [12], 

1. 𝐾𝐾𝑝𝑝, Proportional Gain: It generates a control action proportional to the error signal. It 

helps in decreasing the large error. It also improves the response of the system. 

2. 𝐾𝐾𝑖𝑖, Integral Gain: It generates a control action proportional to the integral of the error. 

Therefore, it reduces steady-state error and offset. 

3. 𝐾𝐾𝑑𝑑, Derivative Gain: It generates a control action proportional to the derivative of the 

error. It improves the transient part of the response. 

In earlier times, when pneumatic controllers were used in the industry, transfer functions of the 

PID controller were represented in series form. The series form of the PID controller is shown 

in Figure 1.2 [11], 

 

 

 

 

 

 Plant/Process  
+ _ 

Actual 
Plant 
Output  

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 � 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
+ 𝐾𝐾𝑑𝑑

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 

 Reference 
Step Signal 

Error Signal 
e(t) 

Control Signal to 
plant u(t) 
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Figure 1.2 Series form of PID Controller 

The mathematical representation of the PID controller in series form is represented as, 

𝑈𝑈𝑠𝑠𝑠𝑠(𝑠𝑠) = �𝐾𝐾𝑠𝑠𝑠𝑠 �1 + 1
𝑇𝑇𝑖𝑖𝑠𝑠
� (1 + 𝑇𝑇𝑑𝑑𝑠𝑠)� 𝐸𝐸(𝑠𝑠)      (1.2) 

where, 𝐾𝐾𝑠𝑠𝑠𝑠 is the series proportional gain, 𝑇𝑇𝑖𝑖 is the integral time constant and 𝑇𝑇𝑑𝑑 is the derivative 

time constant. To maintain consistency with the analogue PID devices, certain manufacturers 

choose to keep this series structure. But mostly the PID controllers used today are in digital 

form and they are applied in parallel form.  

1.3  Problems in PID Tuning for Non-linear Systems 

Tuning of PID parameters becomes a difficult task when the system to be controlled is 

nonlinear [13],[14]. The common problems faced in PID tuning of non-linear systems are: 

1. Presence of non-linearities: Various non-linearities like a dead zone, saturation, 

hysteresis, and backlash cause difficulty in tuning the PID controller to obtain the 

desired output. Due to the presence of the above-stated non-linearities, the system 

behaves differently in different operating regions. Therefore, it becomes difficult to set 

gains for the entire operating region. 

2. Interdependence of PID gains: The PID gains are dependent on each other.  If we 

change the value of one gain the performance due to the other gain gets affected. 

Therefore, it becomes difficult to tune them independently. 

3. Lack of known or accurate system dynamics: It is very difficult to derive a 

mathematical model for a non-linear system. Therefore, it becomes challenging to 

obtain PID parameters for such a system. 

To overcome the above-stated problems in PID tuning various AI-based methods can be used 

for proper tuning of PID gains [15]. These techniques should be capable of overcoming the 

non-linear effects and adjusting the controller gain in real-time to obtain the desired results. 

Nature-inspired algorithms, neural networks, and fuzzy logic are some techniques that were 

capable of handling nonlinearities and complexities present in the system and adjusting the PID 
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parameters accordingly. PID is often used in different structures like feedback, feedforward, 

and cascade. Tuning of two PID controllers interconnected in cascade is a difficult task, because 

of the presence of interrelated parameters.  

Cascade control is one of the most powerful control structures in which PID is implemented. 

It was first proposed by R.G. Franks [16] in 1956. A cascade control usually consists of two 

control loops, the primary and secondary loops. The cascade control structure offers various 

advantages as compared to a simple control structure [17]. It is efficient in rejecting the 

disturbances arising in the inner loop quickly and it also increases the speed of the system. 

However, the implementation of the PID controller in cascade configuration is complex, as two 

loops are to be tuned sequentially. The standard tuning methods available for PID tuning like 

Zeigler-Nichols [4] and Cohen-coon [5] are time-consuming and tedious as they are based on 

hit and trial methods. Some studies in the past have proposed auto-tuning methods for cascade 

control [18], [19]. But they were restricted to linear time-invariant systems only. Auto-tuning 

of cascade controllers becomes more difficult when they are applied to non-linear systems due 

to the presence of disturbance and parameter uncertainties [20]. Due to the challenges in the 

tuning of cascade PID controllers, the use of soft computing methods is becoming popular as 

they can reduce the effort of tedious and time-consuming calculations of sequential tuning 

[21]–[25]. Also, these methods can avoid manual retuning in the presence of disturbance and 

uncertainty. 

In recent years researchers have shown a lot of interest in fractional-order PID controllers. A 

fractional order PID controller has five degrees of freedom instead of three in conventional 

PID controller, therefore, they offer more flexibility in design [26]. A FOPID controller offers 

various advantages as compared to a conventional PID controller. It provides better response 

for higher-order systems and time-delay systems. It also offers more robustness as compared 

to a simple PID controller [27]. However, due to the increase in degree of freedom, the tuning 

of the FOPID controller becomes a difficult task. Some of the methods used for tuning FOPID 

controllers were frequency domain methods, time domain methods, optimization algorithm-

based and fuzzy logic, etc [27]–[29]. In a study [30], authors proposed a modified form of the 

Zeigler-Nichols method for tuning a FOPID controller. The parameters derived from the 

method were in quadratic equations. Some other researchers also proposed ZN-based tuning 

methods with some modifications to the original method [27]. One of the time domain methods 

used for tuning the FOPID controller is the ITAE method in which integral time absolute error 

is reduced to tune the parameters [31]. Another time domain method used for tuning of FOPID 
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controller is the modification of Cohen-coon method which uses step response data for tuning 

the parameters [5]. In a study [32], a modified IMC method was proposed for calculating 

FOPID parameters. Some researchers have proposed the use of optimization algorithms for 

tuning FOPID controllers like PSO, genetic algorithms, and differential evolution [33]–[35].  

1.4 Need of Intelligent Methods for PID tuning 

In almost all the processes in real world we encounter dynamic systems with uncertainty in 

their structure and parameters [36]. Moreover, it is vital to fulfill the desired performance 

indices. Due to their inability to regulate nonlinear systems in real time, conventional control 

techniques are unable to meet these demands. Ku and Lee [36] have identified another 

drawback of conventional control: the nonlinear control laws are hard to derive. Deterministic 

models are therefore not a practical option for characterizing these uncertainties, and as a result, 

traditional control techniques are probably not going to provide the intended performance. To 

create the controller using these techniques, the plant's mathematical model must be understood 

in order to develop the controller utilizing these techniques. However, the dynamics of most 

plants are typically complicated and poorly understood. The performance of the designed 

system is usually compromised by the mathematical modeling of the plants being inaccurate. 

For these and other reasons, a variety of soft computing based nonlinear control strategies have 

been created. They are discovered to be capable of managing the complex non-linear structures 

[37]. 

1.4.1  Fuzzy Logic-based Controllers 

Fuzzy logic is founded on the idea of fuzzy sets and was initially introduced by L. A. Zadeh in 

1965 [38]. About fuzzy logic, he provides broader concepts in [39]–[41]. Furthermore, he 

introduces the concept of "linguistic variables," which he describes as a fuzzy set in his article. 

Scientists and researchers are interested in control engineering, one of the most well-known 

applications of fuzzy set theory.. Scientists and researchers attempted to improve the 

capabilities of conventional PID controllers, applying intelligent methods in the 1990s by 

employing innovative techniques like fuzzy logic [42]. To mimic the behavior of a typical PID 

controller, they attempted to integrate fuzzy logic control technology with a traditional PID 

controller. Thus, it is thought that a superior control system can be obtained by combining these 

two strategies. Fuzzy logic can set the PID gains by a rule-based approach, linguistic rules can 

be designed from different inputs like error, change in error, etc [43], [44].  Many researchers 

earlier utilized PI or PD controllers proposed by Mamdani [45]. Wang et. al. [46] presented an 

analysis and synthesis of a controller based on fuzzy and PID. Ketata et. al. [47] proposed a 
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design based on parallel fuzzy controllers. Then in a study for the first time, fuzzy PID 

controllers were studied. Huang et. al. [48] proposed a practical fuzzy PID controller from 

conventional PID. Fuzzy logic and optimization algorithms can be hybridized to solve complex 

problems having uncertainty and optimization. The hybrid method has the advantages of 

individual methods, they can be integrated in the following different ways: 

1. Fuzzy-based optimization: This method defines linguistic variables and rules to direct the 

optimization process using fuzzy logic. Optimization algorithms can benefit from the 

dynamic parameter adaptation provided by fuzzy rules, which makes it easier for them to 

navigate complex solution spaces [11], [49], [50]. 

2. Selecting fuzzy fitness functions: Fuzzy logic can be used to generate fuzzy fitness 

functions that account for imprecise or uncertain data, as an alternative to crisp objective 

functions. This method makes it possible for optimization algorithms to operate on 

naturally fuzzy real-world data [51]. 

3. Multi-objective Optimization: By allocating varying degrees of membership to various 

trade-offs, fuzzy logic can be utilized to manage several competing objectives. The Pareto-

optimal solutions that balance these objectives can then be found by using multi-objective 

optimization algorithms such as MOGA or NSGA-II [52]. 

4. Adaptive control systems: An optimization algorithm's behavior can be changed in real 

time by using fuzzy logic to make it more responsive to changing external factors or the 

dynamics of the problem [53]. 

5. Decision Support Systems: By utilizing fuzzy logic to manage uncertainty in optimization 

algorithms' decision-making processes, decision-makers can make more informed 

decisions. 

Fuzzy logic and optimization algorithms can be combined for optimization in any one of the 

above ways to tune the PID controller. The optimization algorithm can be used to find the best 

membership function to minimize the membership function. A few examples of such systems 

are genetic fuzzy systems in which fuzzy rules are obtained by genetic algorithm. In PSO-

optimized fuzzy logic, rules of fuzzy logic are optimized by PSO [54]–[56].  In a study [57], 

authors have combined harmony search and cuckoo search algorithms to tune the parameters 

of fuzzy PID controllers. In another study [58], authors have used a modified whale 

optimization algorithm for tuning fuzzy PID parameters. In [59], authors have proposed an 

adaptive fuzzy PID controller whose output scaling factors are tuned online by a hybrid BFO-

PSO algorithm. Therefore, fuzzy logic and optimization algorithms can be combined in various 
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ways to improve the performance of PID. Till date several fuzzy PID structures have been 

presented, however, the fuzzy-logic controller has some disadvantages like, 

1. Implementation of fuzzy based controllers requires expertise in rule designing and variable 

selection. A lack of expert knowledge can lead to undesirable results [60].  

2. Fuzzy systems lack self-learning and accuracy and need to be altered by another entity. Due 

to the lack of emphasis on precision, this method may produce ambiguous findings. 

3. They involve several mathematical calculations for obtaining the output therefore, they 

have high computational time [46].  

1.4.2 Artificial Neural Networks (ANN) Based Controllers 

The information processing systems built and implemented to mimic the structure of the human 

brain is called artificial neural networks. ANN performs a wide range of tasks, including pattern 

matching, optimization, data clustering, etc. The use of ANN in control systems was a natural 

step to meet the requirements of handling complex systems, meeting the required design 

specifications, and dealing with plants whose dynamics are not known [61]. The neural network 

is a powerful AI tool that utilizes the input and output data to learn the relationship of the 

system used and identify plant dynamics. An ANN is made up of a collection of highly 

interconnected processing components, or neurons, such that the output of each processing 

element is found to be related through connections to itself or to other processing elements. 

The link between the input and output nodes in a network can be determined by the Transfer 

function, also known as the activation function. It includes a degree of non-linearity that is 

ideal for most ANN application implementations. The sigmoid is the most widely used of the 

four primary categories of activation functions, which are the sine or cosine, linear function, 

hyperbolic tangent, and sigmoid [62]. The arrangement in which these neurons form different 

connection patterns is called network architecture. Different architectures in which neural 

networks are connected are single and multilayer feedforward networks, single and multilayer 

recurrent networks, and feedback networks [61]. In a multilayer network, there are several 

layers interconnected between the output and input. If no neuron in the output layer is an input 

to a node in the same layer or one that comes previously it, then a network is said to be 

feedforward. Conversely, a feedback network is created when outputs can be sent back as inputs 

to nodes in the same layer or to a previous layer. If the feedback is towards neurons in the same 

layer, it is called lateral feedback whereas, the recurrent networks have closed-loop feedback. 

A variety of training algorithms are employed in the training of artificial neural networks 

(ANNs). Four commonly used algorithms are the Gaussian covariance kernel, the Levenberg-
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Marquardt (LM) algorithm, the Radial basis function (RBF), and the Multi-layer Feed-forward 

back propagation neural network (MLFFBPNN). The most popular type of neural network is 

called a multi-layer feed-forward back propagation neural network (MLFFBPNN. This 

algorithm seeks the optimal set of relation weights to minimize the predicted error between the 

virtual and the target values. Some researchers have applied different neural network-based 

methods to tune PID gains for various systems for example, a feedforward neural network was 

used to tune PID gains [21]. This method takes inputs and current PID gain values to determine 

output and next PID gain values. In the other type of neural network, a recurrent neural network 

is used in which the gains can be adjusted by the system parameter changes [25], [63]–[65]. 

The neural network has the advantage that it can handle system non-linearities, and 

complexities and can easily adapt to the system changes [62]. But mostly the neural network-

based controllers used gradient-based algorithms which can lead to local optimal solutions 

instead of global optimal solutions[66]. 

In literature [67], two categories of hybrid methods are defined which combine ANN and fuzzy 

systems. Neuro-fuzzy systems are the first method whose main function is to process 

mathematical relationships. Numerous studies [68]–[70] create neuro-fuzzy systems by 

combining elements of neural and fuzzy techniques. Fuzzy neural systems are utilized in the 

second way to handle knowledge-based data represented as fuzzy numbers as well as numerical 

(determination-based) information. Neural networks made from fuzzy neurons are called fuzzy 

neural networks (FNNs). The primary feature of these networks is the synergistic cooperation 

of fuzzy theory and neural networks, producing models that combine the neural network's 

capacity for learning and the fuzzy systems' ability to handle uncertainty and interpretability. 

Conversely, an intelligent model's algorithm can train a fuzzy system, and this is known as a 

Neuro-Fuzzy Network (NFN). Considering this parallel, the combination of fuzzy logic and 

neural networks aims to mitigate the shortcomings of each of these systems, resulting in a 

system that is more effective, reliable, and simple to comprehend [68], [69], [71]. 

1.4.3 Introduction to Metaheuristic Algorithms 

Metaheuristic algorithms have also gained popularity in recent years due to their efficiency and 

effectiveness in solving complex problems [72]. Most of the metaheuristic algorithms 

developed are not based on gradient optimization. They aim to improve fitness functions by 

finding optimal solutions to a problem. Since these algorithms are not based on gradient 

descent, they are immune from falling into the trap of local optimal solutions [73]. When a very 

good solution is originally identified but later becomes trapped in the solution and is unable to 
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escape, it is referred to as a local minima trap [74]. Although most of the metaheuristic 

algorithms are nature-inspired some of them are not inspired by nature like differential 

evolution.  Nature-inspired algorithms are optimization methods that are inspired by different 

natural phenomena like evolution, the growth of plants, the swarming of birds, fish schooling, 

etc. Since, their development these algorithms have found their applications in different areas 

like machine learning, data analysis, etc.[75]. These algorithms can search a wider search space 

for different possibilities of solutions. Several researchers have classified meta-heuristic 

algorithms based on their features. In a study [76], they were classified as evolutionary and 

non-evolutionary algorithms. In another study [77], they were classified as, evolutionary, 

swarm-based, physics-based based, and human-based algorithms. The algorithms used in this 

thesis for PID tuning of nonlinear plants are, PSO, TLBO, and WOA. 

1.4.4 Particle Swarm Optimization 

PSO is a swarm-based optimization algorithm that was first introduced by Kennedy in 

1995[78]. The PSO algorithm mimics the social behavior of various animals, such as insects, 

fish, birds, and herds. These swarms follow a cooperative approach for food gathering, and 

everyone in the swarm continuously modifies the search pattern in response to its own and 

other member's collective learning experiences. In PSO each feasible solution is referred to as 

a particle, and the group of potential solutions is called a swarm. Two different forms of particle 

learning impact the search in PSO. Throughout the movement, every particle picks up 

knowledge from its own experiences as well as from those of other particles. Social learning is 

the process of learning from others, whereas cognitive learning is the process of learning from 

one's own experiences. Due to social learning, the particle memorizes the optimal option that 

every particle in the swarm has visited and this is referred to as the global best solution. The 

particle saves in its memory the best solution it has found on its own thus far, this is called the 

local best solution, because of cognitive learning [79]. Any particle's change in direction and 

magnitude is determined by a factor known as velocity. This represents the rate at which the 

position is changing over time. In this manner, the velocity could be characterized as the rate 

at which the position changes with the iteration. Given that the iteration counter rises by one, 

the velocity and the location remain unchanged. The movement of particles in the particle 

swarm optimization is shown in Figure 1.3 [78]: 



10 
 

 

Figure 1.3 Movement of particles in PSO 

Any population-based algorithm's capacity to identify an optimal solution and its rate of 

convergence is significantly impacted by the parameters that are chosen. Since the 

characteristics of the problem heavily influence the algorithm's parameter selection, it is 

typically not viable to provide a generic recommendation for it [78]. 

1.4.5 Teaching Learning-Based Optimization Algorithm 

Teaching-Learning-Based Optimization (TLBO) is a recently developed metaheuristic 

algorithm in 2011 by Rao et. al. [80]. This population-based optimization technique was 

inspired by the knowledge transfer that occurs in a teaching environment, where students 

initially gather up knowledge from their teacher (also known as the Teacher Phase) and 

subsequently from other students (also known as the Learner Phase). The TLBO approach is 

depending on how a teacher’s influence affects the student’s performance in a class. In this 

case, the output is evaluated in terms of outcomes or scores. Most people view teachers as 

extremely intelligent individuals who impart their knowledge to students. The caliber of a 

teacher influences the student results, as a competent teacher prepares students to achieve 

greater outcomes regarding their grades or marks [81]. Like other, population-based techniques 

like GA, PSO, ABC, and HS, TLBO likewise uses a collection of solutions to arrive at the best 

one. Proper selection of algorithm parameters that impact algorithm performance is necessary 

for many optimization techniques. While PSO requires learning factors, weight variation, and 

maximum velocity, GA requires crossover probability, mutation rate, and selection technique; 

ABC requires the upper bound; HS needs the number of improvisations, pitch adjustment rate, 
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and harmony memory consideration rate. Since TLBO does not require any algorithm 

parameters to be adjusted, it can be implemented more easily than other optimization 

techniques [82]. Like PSO, TLBO modifies the population's current solution by using the 

iteration's best solution, which raises convergence. TLBO, or Teaching-Learning-Based 

Optimization, appears to be a promising metaheuristic among several others with comparable 

results. According to reports, it performs better than a few well-known metaheuristics when it 

comes to continuous non-linear numerical optimization problems, constrained mechanical 

design, and benchmark functions [83],[74]. 

1.4.6 Whale Optimization Algorithm 

Whale optimization algorithm metaheuristic algorithm proposed in 2016 [84]. It is a swarm 

intelligence method suggested for issues involving continuous optimization. It has been 

demonstrated that this method performs either comparably or better than several other 

algorithmic strategies. The way humpback whales hunt has served as an inspiration for the 

WOA. In WOA, each solution is condidered as a whale.. In this solution, the best among the 

group, a whale, attempts to repopulate a new location in the search space. Whales have two 

processes that they utilize to find their prey and attack it [85]. The prey are surrounded in the 

first, and bubble nets are made in the second. In terms of optimization, whales examine the 

entire area for prey, and they use this discovery during their attacking behavior. WOA is 

effectively used to support applications in a variety of domains, including engineering 

optimization issues. Creating a problem that makes sense and establishing variables and 

appropriate objective functions are the main things that can aid in addressing problems with 

engineering applications efficiently. The key issues with the optimization algorithm are 

population illustration, parameter setup, and operator usage [85]. 

1.5 Optimization Algorithms and Neural Networks 

The optimization of weights and biases is a crucial aspect of artificial neural networks. In 

actuality, the two pillars of structure and learning algorithm set efficient ANNs. Gradient-based 

techniques have been applied to architecture training in numerous previous research. However, 

it has been shown that optimization techniques are necessary due to the drawbacks of gradient-

based algorithms [86]. To apply BP in gradient-based learning methods, the cost function needs 

to be derivative. This is another drawback of learning methods that use gradients because the 

activation function and the cost function are not derivatives mostly. In these algorithms, 

sigmoid activation functions are frequently employed. Numerous gradient-based techniques, 

including Levenberg Marquardt (LM) and Back Propagation (BP) methods, have been 
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developed in the literature to develop neural network-based systems. Yet, gradient-based 

techniques have some significant shortcomings like, being stuck often at the local optima, high 

computational time, and cost function must be a derivative [87]. Metaheuristic algorithms can 

easily escape the trap of local optima because of their exploration and exploitation capabilities. 

They can be used to optimize the weights and biases of the ANN system, to obtain better 

solutions [86]. In the past different optimization algorithms like PSO, GA, ant colony 

optimization, GA, etc. have been utilized with ANN to obtain optimal solutions [88], [89]. 

Neural networks and optimization algorithms can be combined to achieve a better response. 

We can first set the initial parameters using the conventional Zeigler-Nichols or Cohen-coon 

method. Then we can use optimization algorithms like PSO, and GA to search for optimal PID 

parameters based on the objective function. Finally, we can fine-tune the PID parameters based 

on the real-time input and output data. The fine-tuned parameters can adapt to the changes in 

the process parameters and set point changes. 

1.6 Non-linear Benchmark Problems 

The non-linear benchmark problems that are utilized in this study for testing the proposed 

controllers are given below: 

1.6.1 Jacketed CSTR 

CSTR (Continuous stirred tank reactor) is an important reactor in the chemical industry. In a 

CSTR continuous mixing of reactants takes place inside the reactor, and a uniform 

concentration of product is obtained. In a reactor, a substance is converted to another substance 

by a chemical process that is exothermic and irreversible. The CSTR exhibits various non-

linear behaviors [90]. It is desired to maintain the temperature of a CSTR constant so that the 

reaction sustains under invariable conditions. In a jacketed CSTR, the temperature of the 

reactor is maintained by controlling the temperature of the fluid flowing in the jacket [91]. 

Since the reactions occurring in the reactor are exothermic, there is a sudden temperature 

change. Also, these reactors are affected by external disturbances and parameter changes. 

Therefore, this is a highly non-linear problem and control becomes difficult with standard 

controllers [92]. 

1.6.2 Ball and Beam Control 

The Position control of a ball and beam system is a famous benchmark non-linear problem. 

The goal is to maintain the ball and beam system's position in balance The nonlinearities 

present in the ball and beam system are dead zone, saturation, and nonlinearity in the motor 
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and pulley drive [93]. The control of a typical ball and beam system can be seen in various 

applications like the balance of objects by robots, and control of space vehicles. Many 

researchers have studied this problem in the past. The classical control theory fails because of 

the non-linearities present in the system. Researchers have suggested several control strategies 

for the ball and beam system, including fuzzy controllers, traditional PID controllers, and 

neural networks [9], [23]–[28].  

1.6.3 Automobile Cruise Control System 

An automobile cruise control system is a feature built into most automobiles nowadays. In an 

ACCS driver can set a particular vehicle speed and when ACCS is activated the speed of the 

vehicle is maintained at the reference speed [94]. ACCS also helps in collision prevention 

thereby, ensuring safety. A cruise control system also helps avoid collisions, reducing travel 

time and lowering fuel consumption. To embed these features in the ACCS several sensors are 

integrated. Due to sensor integration, ACCS control becomes a nonlinear control problem. The 

driver's reaction time and observation time cause a time delay in the system [95].  

1.6.4 Inverted Pendulum-cart System 

An inverted pendulum cart system is a popular non-linear benchmark control problem, in which 

an inverted pendulum is mounted on a moving cart. It is considered the simplest robotic system 

with a rigid body and a joint with rotational motion. The control problem here is to maintain 

the position of the inverted pendulum while the cart is moving. Although the structure of the 

cart system seems to be simple, standard control methods fail to control it [96]. The position 

control of the inverted cart system is difficult to control for many reasons, such as the fact that 

the system's geometric features are lost when the pendulum shifts into horizontal positions. 

There are no equilibrium locations on the output-zeroing manifold, the system's relative degree 

is not constant, and its controllability distribution lacks a constant rank [97]. Since inverted 

pendulum cart control is a benchmark problem for testing controllers, several researchers have 

applied various controllers to it, based on PID [98], fuzzy logic [99], [100], neural network 

[101], [102] for the control of inverted pendulum cart system.  

1.6.5  Artificial Respiratory System 

In an artificial respiratory system, a patient is supplied the required air artificially when he is 

not able to breathe on his own. It is a very important biomedical instrument. Although the first 

closed-loop artificial respiratory system was not available until the 1950s, still they were 

utilized to aid with respiration as early as the 18th century [103]. In an artificial respiratory 
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system, the air is cycled into the lungs using mechanical bellows and valves, and a basic 

proportional (P) or proportional-integral (PI) controller was employed. These controllers were 

later implemented with microprocessors, and several closed-loop control suggestions have 

been made since then. The PID controller, which has gained acceptance in the industry for 

years, was also employed for the control of ARS [104], [105]. PID, however, has certain 

drawbacks, for example, it does not function effectively when the dynamics of the system are 

not constant. The connection between pressure and ventilation serves as an illustration of this. 

To avoid lung damage during ventilation, pressure must be changed by the level of ventilation. 

Dai et al. [106] employed two different algorithms to enhance controller performance: the PD 

algorithm is used in the first phase, and the PI method is engaged when the output pressure 

starts to remain constant. In addition to this, additional methods were employed to enhance the 

performance of the PID controller for control of an artificial respiratory system. These methods 

included the application of optimization techniques such as an automatic PID gain tuning 

process using particle swarm optimization (PSO) [107], fuzzy logic [108], neural network, etc 

[109], [110]. 

1.1 Outline of Thesis 

Following the introduction, the rest of the thesis is organized into six parts, the brief description 

of each of these chapters is given below: 

Chapter 2: Literature Review 

This chapter gives a comprehensive review of the research works done in the past related to 

PID controllers, non-linear systems, conventional and AI-based PID tuning methods, and their 

implementation in non-linear systems. A detailed comparison of the existing AI methods is 

done comparing their advantages and disadvantages. The research gaps and contributions of 

the thesis are listed out in this chapter. 

Chapter 3: Design of Optimized PID Controller by Evolutionary Algorithms 

In this chapter optimized PID controllers are designed using a Teaching learning-based 

optimization algorithm and particle swarm optimization algorithm. The optimized PID 

controller was implemented on the automobile cruise control system and artificial respiratory 

system. This chapter also involves the mathematical modeling of these nonlinear systems. The 

proposed controllers are also tested for robustness in the presence of uncertainties in the system. 
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Chapter 4: Cascade Optimized PID Controller Implementation on the Non-linear Ball 

and Beam system 

This chapter involves the design of a cascade PID structure for position control of a ball and 

beam system. The two cascaded PID controllers were tuned by the particle swarm optimization 

algorithm and teaching learning-based optimization algorithm. The controller was also tested 

for robustness by applying a disturbance signal. A comparative analysis was done with 

conventional tuning methods. 

Chapter 5: Hybrid PSO-Neural Network-based PID tuning for temperature control of 

non-linear CSTR 

In this chapter, a hybrid PSO-neural network-based PID tuning method is designed. A very 

simple PID-like neural network is proposed having only three neurons. The weights of the 

controller are optimized by Particle swarm optimization. The controller is applied for 

temperature control of a non-linear jacketed CSTR system. The controller design was 

compared with a backpropagation-tuned PID controller, PSO-tuned PID controller, TLBO-

tuned PID controller, and conventional PID controller. The controller was then checked for 

robustness by application of a disturbance signal. 

Chapter 6: Optimized FOPID controller for position control of an inverted pendulum 

system 

This chapter proposes an optimized fractional-order PID controller for the position control of 

an inverted pendulum-cart system. The mathematical model of an inverted pendulum-cart 

system has been developed. The position control of the inverted pendulum-cart system is 

proposed by metaheuristic algorithms tuned to FOPID controllers. The responses of the 

proposed controller are compared with the previously proposed PSO-PID and TLBO-PID 

controllers. 

Chapter 7: Major Conclusions and Future Directions 

This chapter presents the major conclusions of the thesis and the future directions of the study. 
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CHAPTER 2  
 

LITERATURE REVIEW 
 

2.1 Introduction 

In this chapter, a literature review is presented focusing on the problems that are faced while 

applying a PID controller to a non-linear system. Most real-world systems have dynamic 

behavior that varies with time, making them more complex. Nonlinear systems are receiving 

more attention from researchers due to their unpredictability and uncertainty. In the literature, 

a variety of controllers have been used to handle nonlinearities and improve system 

performance [111]–[113]. This chapter summarizes the fundamental and most current 

developments in the field of PID tuning for non-linear systems. A brief survey of the 

applications of different metaheuristic algorithms is presented. Then the application of different 

AI methods used for tuning the PID controller is discussed. This chapter also presents the 

control methods applied for non-linear benchmark systems (automobile cruise control system, 

artificial respiratory system, ball, and beam system, jacketed CSTR, and inverted pendulum-

cart system). 

2.2 Review of PID based Control of Non-linear Systems 

A PID controller is still the widely used controller in the industry and the reasons for the 

popularity of PID controllers are that they are simple and easy to implement, even if the system 

is discrete the PID controller can be implemented with little modifications [114]. Earlier,  the 

PID controllers were tuned manually, till the first tuning method available was proposed by 

Zeigler-Nichols in 1942 [115]. After that several formulae-based tuning methods were 

proposed like Cohen-coon [116] and Tyreus-luyben [117] etc. All these methods were mostly 

designed for linear systems and had some limitations, they were time-consuming and required 

tedious calculations. After formulae-based methods, some methods were proposed based on 

gain margin and phase margin [12] but they needed the exact mathematical model of the 

system, which is not available accurately in the case of non-linear systems. In the past, some 

significant studies have categorized the PID tuning methods effectively like Moradi et al [118] 

have classified them according to the availability of the model of the system. To deal with the 

non-linearities some modifications were made to the PID, like gain scheduling [119]. In gain-

scheduling the gains are functions of error and, therefore, can adapt to the system variations. 
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However, it made the system design complex, and complete knowledge of the system was 

required to design the controller. Another method proposed to deal with the nonlinearity was 

model predictive control, which aimed at changing the controller parameters to reduce the error 

between desired and predictive response [44].  Then many researchers proposed different 

fuzzy-based PID tuning methods, most of them used error and change in error as the inputs 

[47].  

2.3 Review of Cascade PID tuning methods 

Cascade control is a powerful control method, which is used in higher-order systems for 

disturbance rejection. Cascade control is used as it can effectively reduce the disturbances 

occurring in the inner loop, because of its two-loop structure [20]. However, the tuning of two 

PID controllers is difficult due to the presence of interrelated parameters. In the past many 

researchers have suggested different methods for tuning of cascade PID controllers. In a study 

[20], authors have suggested an auto-tuning method based on a relay feedback test. The 

proposed method was tested on two different systems and was found robust and efficient. In 

another study [120], authors have proposed a PSO-based tuning for cascade PID control of a 

servo pneumatic system. The controller was compared with self-tuning PID control. J. Zhang 

et. al. [21], proposed a cascade PID control in which the primary controller was a neural 

network-based controller. The controller was tested on a superheated process. Recently, in a 

study [121], authors have proposed cascaded FOPID controllers tuned by sliding mode control 

to control the output of an artificial respiratory system. In another study [122], recently authors 

have controlled CSTR efficiently by cascade control. It was found that the cascade control 

performs better than the feedforward and feedback control. 

2.4 Review of Tuning of Fractional-order PID controllers 

The FOPID controllers have five degrees of freedom, instead of three in conventional PID 

controllers. It means in a conventional PID three parameters can be varied independently, 

whereas, in a FOPID five parameters can be varied. A FOPID controller has two additional 

parameters integral power and derivative power, due to the additional degrees of freedom the 

controller has wider flexibility and, therefore, gives more robustness to the system [123]. In 

the literature, some studies have shown that the FOPID controller performs better as compared 

to the PID controller [121], [123]–[125]. However, the tuning of an FOPID is more complex 

than PID because of the presence of five degrees of freedom. In a study [126], authors have 

compared analytical and heuristic methods of tuning FOPID controllers for first-order plus 

dead time systems. In another study recently [127], authors have proposed a fuzzy-based 
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fractional order PID controller for a buck converter. It was found that the controller gave a 

better performance in terms of robustness and efficiency than the PID controller. In another 

study [124], authors have proposed an efficient method to tune the FOPID controller for the 

liquid level control. 

2.5 Review of Metaheuristic Algorithms 

As the name implies, metaheuristic optimization approaches are problem-independent control 

strategies that have become increasingly popular when applied to challenging engineering 

problems [128]. This can be understood by their adaptability, simplicity, and high rate of 

efficiency in solving difficult tasks. Metaheuristic techniques rely heavily on the notion of 

randomness to find optimal solutions through intensification and diversification. Recent 

research suggests that optimization approaches based on heuristic algorithms have become a 

powerful tool for resolving a range of control engineering challenges [129]. Researchers have 

made considerable use of metaheuristic algorithms because of their quick response times, high 

optimization capabilities, and straightforward architecture. Metaheuristic algorithms are more 

effective in solving higher-dimensional optimization issues than classical optimization 

techniques [77], [130], [131]. They provide the best solution as compared to other AI methods 

because of several reasons: 

1. They explore a large search space effectively and hence provide the best solutions that are 

often missed by other methods [76]. 

2. They can be easily integrated with the existing classical controllers [132] 

3. It is not based on gradient information [132] 

2.5.1 Review of Particle Swarm Optimization 

The particle swarm optimization algorithm was proposed by Kennedy [78], in 1995. It is a 

swarm-based optimization technique based on fish schooling or bird flocking. A swarm 

represents the population. The optimization process mimics the process of searching for food 

by the swarm. Each candidate updates its velocity and position by achieving maximum fitness 

value. Since its development, many complex non-linear problems have been solved by PSO. 

Meetu Jain et. al. [133] reviewed all the modifications done in the PSO algorithm and its 

efficacy in solving complex problems to date. Z. Bingul et al. tuned the parameters of integer 

order and fractional order PID controllers using PSO and ABC algorithms [33]. The results 

showed that the PSO algorithm gave better results in terms of external and internal 

disturbances. Khanduja et al. [134] compared the performance of Z-N-tuned PID, IMC-tuned 
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PID, and PSO-tuned PID on a non-linear CSTR and found that the PSO-tuned controller gave 

the best results. A. Agalya et al.[135] proposed a PSO-tuned PID controller for concentration 

control of CSTR and found that the controller performed better than a conventional controller. 

R. Parouha et al.[136] reviewed a wide range of meta-heuristic algorithms and found that the 

PSO and DE outperformed all the other algorithms in terms of efficiency. A. Yimchunger et 

al.[107] efficiently applied a PSO-tuned PID controller for an artificial respiratory system. PSO 

has proved to be one of the most widely used metaheuristic algorithms due to its simplicity and 

ease of implementation [133], [137]. Several researchers have proposed modifications, 

extensions, and hybridization of PSO [133]. In a study, researchers have proposed concurrent 

PSO which aimed at increasing the convergence speed of PSO [138]. Then Kennedy proposed 

a binary PSO, the algorithm applied to both continuous and discrete objective functions. In 

subsequent years other modifications were proposed like fuzzy-PSO [53], guided PSO [79], 

and self-regulatory PSO [139]. 

2.5.2 Review of TLBO Algorithm  

The teaching-learning-based optimization algorithm was introduced by Rao et al.[80] in 2011. 

The algorithm has many advantages over various metaheuristic algorithms proposed to 

date[130]. It has been efficiently applied to complex problems and has given better results [80]. 

S. Chatterjee et al.[140] applied the TLBO algorithm for PID tuning of the AVR system and 

found the response better as compared to conventional methods. V. Srivastava et. al.[113] 

proposed a comparative analysis of different optimization algorithms categorically, it was 

concluded that the human-based algorithms performed better as compared to others. B. Sahu 

et. al.[141] proposed a fuzzy-PID controller for automatic generation control (AGC) of a two 

unequal area interconnected thermal system and they used the TLBO algorithm for 

optimization. The proposed controller was compared with the simulated algorithm, genetic 

algorithm, and LOCA algorithm. A. Lins et. al. [142] proposed a TLBO-tuned PID controller 

for a PV-fed BLDC motor. The response was compared with PSO-tuned and conventional PID 

and was found better in terms of performance indices and robustness. J. Bhookya et. al. [143] 

proposed a fractional order PID controller tuned by the TLBO algorithm for a multi-variable 

system. The proposed controller was effective in eliminating the interaction between loops. A. 

Tiwari et al. [144] optimized different manufacturing processes by the TLBO algorithm 

effectively. The review work presented a large-scale application of the proposed algorithm. 

Despite being a new algorithm TLBO has been successfully applied to various science and 
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engineering fields [81]. Many researchers have proposed modifications to the original TLBO 

algorithm for different applications [145]–[149]. 

2.5.3 Review of WOA (Whale optimization algorithm) 

The whale optimization algorithm was proposed by S. Mirjalili et al. [84] in 2016. The 

algorithm was competitive as compared to the algorithms proposed to date. It mimics the 

hunting behavior of humpback whales. M. Alquaness et al. [89] used six metaheuristic 

algorithms for predicting crude oil, it was concluded that PSO and WOA performed better as 

compared to other algorithms. S. Vavilala et al. [150] applied WOA and PSO for the 

optimization of fractional-order Internal model control and controlled the height of a conical 

tank system. The proposed controller was able to reject the disturbances more efficiently than 

other controllers. F. Gharehchopogh et al. [151] gave a detailed comprehensive review of the 

whale optimization algorithm and its applications in various engineering fields like image 

processing, clustering, pattern recognition, classification, etc. A. Kumar et al. [152] suggested 

employing the whale optimization algorithm (WOA) to optimize the Fuzzy-PID + PID hybrid 

controller for a hybrid power system's frequency control. In a study [153], authors have 

proposed optimized PID controllers for two interactive surge tank systems. They compared 

feedforward control, GA, PSO, and bubble-net whale algorithm-tuned PID controllers. It was 

found that the bubble net whale algorithm tuned PID performed better.  

2.5.4 Review of Hybrid Optimization Algorithms 

The application of typically prevalent metaheuristics characterized the first two decades of 

metaheuristics research. But it is evident now that concentrating just on one metaheuristic has 

its limitations. A hybrid metaheuristic is an algorithm that combines a metaheuristic with 

additional optimization techniques that may provide better flexibility and efficient behavior in 

real-world and large-scale scenarios. The complementary properties of metaheuristics on the 

one hand and all-encompassing strategies like branch and bound techniques or mathematical 

programming on the other can be combined to achieve this. Hybrid algorithms combine two or 

more algorithms to efficiently and concurrently tackle a given problem [128]. Researchers have 

proposed many hybrid algorithms to enhance the optimization of a particular problem. In a 

study, a novel PSO-GA hybrid algorithm is proposed to utilize variable population size of 

genetic algorithms [154]. In another study, a PSO and GWO hybrid optimization was proposed 

which used exploitation of PSO and exploration of GWO to enhance the performance of the 

hybrid algorithm [155]. Recently, many hybrid optimization algorithms have been proposed to 

solve complex problems in different fields [156]–[158]. 
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2.6 Review of Existing Artificial Intelligence (AI) Methods to tune PID controller 

With the development of fuzzy logic, many researchers applied it to designing fuzzy-based PID 

controllers [159]. The fuzzy-based controllers generally used error and change in error to obtain 

PID gain values. In a recent study fuzzy PID controller [55] was introduced for multi-area 

power systems. It was also tested for robustness in the presence of uncertainties and 

disturbances. In one more study, a fuzzy PID controller was proposed to maintain the oxygen 

level for fish survival. The proposed fuzzy controller was improved by particle swarm 

optimization gated recurrent unit [160]. The fuzzy-based controllers had the advantage of 

handling the non-linear effects and complexities of the system. However, fuzzy logic requires 

expert knowledge to determine appropriate membership functions and suffers from 

computational complexities [8]. With the development of metaheuristic algorithms, like 

Genetic algorithms and differential evolution, they were used widely for solving various non-

linear problems. They searched the entire search space to find the optimal solutions. Therefore, 

they were able to handle the non-linearities efficiently providing the optimal solution. In a study 

[161], authors applied several metaheuristic algorithms for human activity recognition 

efficiently. In a study in the year 2009 [162] authors proposed a self-organizing GA-based 

tuning method for PID controllers, it was found more effective than conventional PID tuning 

methods. Some researchers used a Differential evolution algorithm for PID tuning and applied 

it to different non-linear systems efficiently. However, the convergence of the results depended 

on the proper selection of algorithm parameters. Then, the development of PSO overcame these 

difficulties and became popular among researchers [79]. It was utilized for PID tuning by many 

researchers [134], [142], [163]. Recently, many researchers have used different metaheuristic 

algorithms like Teaching learning-based optimization [140], [142], [164], ant colony 

optimization, class topper optimization, gravitational search algorithms, etc. But these 

algorithms suffered from the disadvantage of slow convergence speed and again optimal 

solutions were obtained if the parameters of the algorithms were selected properly [75], [165]. 

To overcome these disadvantages some researchers proposed hybrid algorithms which 

combined the advantages of two algorithms and performed mostly better than the original 

algorithms [128]. In a recent study [166], authors have proposed a hybrid particle swarm 

optimization-cuckoo search optimization algorithm to tune fuzzy PID parameters of a micro 

gas turbine. In a study, authors have compared different metaheuristic algorithms like PSO, 

DE, GA, grey wolf optimization GWO, grasshopper optimization GOA, and proposed hybrid 

GA-GOA algorithms for the optimization of a staggered heliostat field for a PS10, a solar plant. 

The results showed that the hybrid algorithm performed better than the individual ones. In 
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another study [167] authors proposed a hybrid algorithm based on an enhanced Aquila 

optimizer that uses the search mechanism of the slime Mold algorithm for the prediction 

accuracy of 𝐶𝐶𝑂𝑂2 trapping. The proposed hybrid algorithm performed better than the individual 

ones. 

The neural network was also applied to various non-linear systems efficiently by the 

researchers [168]–[170]. They have high computational speed and have been used in the past 

for determining PID parameters efficiently [171]. In [172], authors have proposed an optimized 

Artificial neural network model called random vector functional Link for wind power 

prediction efficiently. Hui Liang et. al. [173] proposed a backpropagation-based PID Neural 

network controller for temperature control of a room heater. The controller performed better as 

compared to the conventional PID controller, as it was able to adapt easily to the parameter 

changes. In another study [174] authors have proposed an adaptive population extremal 

optimization for the initialization of a PID-based Neural network for a multi-variable system. 

Long Zhang et. al. [170] proposed a backpropagation-based NN-PID controller to suppress 

combustion instability in a cylindrical rijke tube. Therefore, back-propagation can be combined 

with the PID controller to obtain self-adaptation in the system. But back-propagation has a lot 

of disadvantages as compared to metaheuristic algorithms as they depend on gradient decent 

information because of which there are chances of being stuck in local optima whereas, 

metaheuristic algorithms search a wider space and provide a global optimal solution [73], 

[131]. Secondly, metaheuristic algorithms are less sensitive to initial conditions and constraints 

on the objective function as compared to back-propagation algorithms. Metaheuristic 

algorithms also provide a faster convergence rate as compared to backpropagation making them 

more efficient for various applications [168]. In a study [88], authors have trained two ANN 

networks, a feedforward neural network and a radial basis neural network using four 

metaheuristic algorithms, PSO, GA, Colliding bodies optimization (CBO), and Enhanced 

colliding bodies optimization (ECBO) algorithms. The results found were better than the 

backpropagation algorithm. Recently, in a study [89] authors have proposed a dendritic neuron 

model for crude oil prediction and forecasting, in the study they utilized six different 

metaheuristic algorithms to enhance the training process and selection of various parameters.  

In a recent study [66], authors have combined PSO with Backpropagation to obtain initial 

conditions for a PSO-BP-PID controller for parallel stabilized platforms in marine operations. 

The results of the proposed PSO-BP-PID controller were compared with BP-PID and PID 

controller and they were better as compared to them.  
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2.7 Review of Application of Various Control Techniques on Non-linear Benchmark 
Systems 

To test the efficiency and efficacy of the proposed controllers in the thesis, the controllers are 

applied to some benchmark nonlinear systems. The nonlinear systems used in the thesis are as 

follows: 

2.7.1 Control of Automobile Cruise Control System 

An automobile cruise control system is nowadays, an added feature in most vehicles. In 1997 

a study [94], authors proposed a review of cruise control and compared two cruise control 

methods, one based on fuzzy logic and the other based on classical control. In a study, authors 

have proposed GA-based tuning of PID controller for an automobile cruise control system 

[175]. In another study [176], authors have proposed an ant lion optimizer for PID tuning of an 

automobile cruise control system. Recently, in a study [177] author proposed a fuzzy PD plus 

I controller for an ACC and compared the results with classical tuning methods. In [178], 

authors have proposed a robust adaptive controller for cruise control of high-speed trains based 

on the Lyapunov method. The controller was robust enough to deal with the uncertainties and 

disturbances in the train. In [179], authors have presented a controller that is capable of 

modifying its structure by the disturbance signal present. Recently in a study [180], authors 

have proposed a novel arithmetic optimization algorithm. In a recent study, authors have 

proposed a proportional, fractional order integral, the derivative plus double derivative with 

filter tuned with an elite opposition tuned algorithm. The controller was tested with various 

operating points and uncertainties [181]. 

2.7.2 Control of an Artificial Respiratory System 

An artificial respiratory system is an automatic ventilation system that helps the patients in 

breathing. Some studies have suggested the mathematical Modeling of the ventilation system 

[103], [105], [182], [183]. To control the required airway pressure to the patients some 

controllers have been suggested in the past, like adaptive pole placement control [184]. In a 

study [108], authors have proposed a fuzzy PID controller for the respiratory system, which 

gave a quicker response with less overshoot. In another study [185], authors have proposed a 

direct adaptive control for an artificial respiratory system. Recently in a study [182], authors 

have applied a hybrid optimization tuned fractional-order PID controller for the efficient 

control of airway pressure in an artificial respiratory system. In another study, authors have 

proposed a fuzzy sliding mode controller for an artificial respiratory system [186]. In [187], 
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authors have applied a fractional order PID controller tuned by BFO and PSO to control the 

artificial respiratory system. 

2.7.3 Control of a Jacketed CSTR 

CSTR (Continuous Stirred tank reactor) is an important reactor in which continuous stirring is 

done. It is used mostly in chemical industries [92]. Temperature and concentration control of a 

jacketed CSTR becomes a challenging task due to the non-linear dynamics of the system. The 

control of these non-linear reactors is a big problem for chemical engineers working in the 

industry. In 1995 B. Wayne Bequette [188], gave a comparison of non-linear control methods 

used for the control of CSTR. In the study, it was found that non-linear predictive control 

performed better as compared to other methods. In, [189] the CSTR control is done by a 

fractional order PID controller tuned by a new hybrid algorithm combining the chaotic maps, 

SMS, and Elite opposition-based learning algorithm. The results were compared with the other 

optimization algorithm-tuned FOPID and PID controllers.  In another study [190], the authors 

have proposed a wavelet neural network for CSTR concentration and temperature control. The 

weights of the neural network were optimized by grey wolf optimizer and the initial parameters 

were decided by Mamdani fuzzy rules. For control of the continuous stirred tank reactor 

(CSTR) in the presence of an external disturbance, an asynchronous sliding mode control 

design approach based on the event-triggered technique is suggested in another study [191]. In 

another study, authors have proposed a unique approach to controller design for an unstable 

nonlinear continuously stirred tank reactor (CSTR) chemical system based on artificial bee 

colony (ABC) algorithms [192]. The results were compared with different controllers proposed 

in past literature. In the past some other researchers have also applied different controllers to 

control CSTR temperature based on classical controllers, neural networks, metaheuristic 

algorithms, [91], [111], [198], [122], [135], [191], [193]–[197], etc. 

2.7.4 Control of the Ball and Beam System 

Ball and beam are one of the most important laboratory experiments. It can be used to study 

most of the control methods. It is considered a benchmark problem in non-linear systems. In 

the past, a lot of researchers have applied different control mechanisms like classical and 

modern methods to balance the position of a ball in the system. In 1978, P.E. Wellstead et. al. 

[93] described the experiment and modeled the differential equations of the system. They also 

proposed the beam transfer function and ball transfer function. Then afterward few researchers 

tried to apply a fuzzy logic controller to balance the ball position in the experiment [93], [199], 

[200]. Recurrent neural networks were also applied to the ball and beam system control[201]. 
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Some researchers applied hybrid AI methods to better control ball and beam systems. 

Yeonghwa-Chang et. al. [202] applied fuzzy sliding mode controller enhanced by parameter 

optimization using ant colony algorithm. Sung-Kwun Qh et. al. [199] used fuzzy cascade 

controllers optimized by parallel genetic algorithms. Hybrid learning control algorithms can 

also be used for controlling ball and beam systems efficiently [203]. In a study author, the 

author examined the ball and beam system's fractional order control at two degrees of freedom. 

It uses a model-based approach to create the controller settings for the matching linear model 

[125]. In another study, authors have proposed the harmony search algorithm's dynamic 

parameter adaptation employing several fuzzy system types applied to the membership 

function optimization of a benchmark control issue, the ball and beam controller [204]. 

2.8 Research Gaps 

1. The problem of PID tuning has been identified as a problem in the literature for non-linear 

systems. Since standard tuning methods fail when they are applied to non-linear systems. 

2. The advantages of metaheuristic algorithms have been frequently described in the 

literature. In many studies, it has been observed that they have solved many complex 

problems. 

3. However, the effectiveness of the efficient application of the optimization algorithm to a 

particular problem depends on the number of parameters of the algorithm as it directly 

increases the complexity. TLBO (Teaching Learning optimization) and PSO (Particle 

swarm optimization) are two algorithms highlighted in the literature that have fewer 

parameters. They have solved many non-linear problems efficiently.  

4. But these algorithms suffered from the disadvantage of slow convergence speed and again 

optimal solutions were obtained if the parameters of the algorithms were selected properly. 

5. The neural network was also applied to various non-linear systems efficiently by the 

researchers. They have the ability to compute fast and have been effectively employed in 

the past to determine PID parameters. They can adapt and learn easily; therefore, Neural 

networks can efficiently overcome setpoint changes and parameter variations. 

6. But back-propagation optimization has a lot of disadvantages as compared to metaheuristic 

algorithms as they depend on gradient decent information because of which there are 

chances of being stuck in local optima whereas, metaheuristic algorithms search a wider 

space and provide global optimal solution.  
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2.9 Motivation 

PID is one of the controllers that is currently most commonly utilized in the industry. However, 

it is shown in past studies that almost 90% of the controllers used in the industries are poorly 

tuned. Conventional PID tuning methods are based on hit and trial, they are time-consuming 

and costly. So, there is a need for the development of new methods to improve the efficiency 

and effectiveness of PID controllers. With the development of AI methods, different problems 

can be solved efficiently with these methods. AI methods can also improve system response by 

considering the robustness of the control system. In dynamic systems where there are set point 

changes and parameter variations conventional tuning methods fail. AI tools such as 

optimization algorithms, neural networks, and hybrid AI techniques can be applied and tested 

for PID tuning of systems having non-linearities in them. 

2.10 Contributions 

The major contributions of this thesis are given below: 

1. The development of an optimized PID controller for an adaptive cruise control system and 

artificial respiratory system is done by applying the TLBO (Teaching-learning-based 

optimization) Algorithm and PSO (particle swarm optimization) Algorithm. 

2. The developed technique was applied to cascade PID controllers for a non-linear ball and 

beam system and the responses were compared with conventional tuned cascade PID 

controllers. The proposed controller was also tested under the application of a disturbance 

signal. 

3. A novel neural network-based PID controller structure is proposed in the thesis. The 

optimization of the proposed neural network like the PID controller is done by PSO. The 

controller is tested for the temperature control of a non-linear CSTR. 

4. The fractional order PID controller was optimized using different optimization algorithms 

and was applied to control the position of an inverted pendulum cart system. 
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CHAPTER 3  
 

DESIGN AND IMPLEMENTATION OF EVOLUTIONARY ALGORITHMS TUNED 
PID CONTROLLER FOR NON-LINEAR SYSTEMS 

 

 

3.1 Introduction 

PID controller tuning is a problem when applied to non-linear systems. The empirical formula-

based tuning methods are inefficient as they cannot adapt to the non-linearities and parameter 

changes in the system. Metaheuristics-based algorithms can be used to tune the PID controller 

applied to non-linear systems [110], [205]–[209]. In this chapter, we have considered two non-

linear problems, automobile cruise control systems and artificial respiratory systems. Particle 

swarm optimization and teaching-learning-based optimization algorithms are used to tune the 

PID controller applied to these systems. Cruise control is nowadays an added feature in most 

automobiles. It reduces driver fatigue while driving on highways and low-traffic areas. It also 

helps in reducing the probability of collision between vehicles, improves fuel optimization, and 

reduces traffic congestion [210]. When a vehicle is running on Automobile cruise control mode 

(ACCS), the speed is controlled and maintained to the reference speed set by the driver without 

the application of the accelerator. This reduces the collision of vehicles. Therefore, ACCS plays 

an important role in safety and collision prevention. Recently, automobile vendors have added 

several features to ACCS. But its main advantages are collision prevention, traffic congestion 

reduction, and fuel optimization. To embed these features efficiently in ACCS, the sensor 

information is integrated with the controller which takes the desired control action to the 

throttle system and brakes of the vehicle. In an ACCS, the nonlinearities present are mainly 

due to sensors integrations and the time delay in measuring, controller action etc., which affects 

the system stability. Therefore, an effective and robust control system is desired for automobile 

cruise control system. But due to presence of non-linearities tuning of PID parameters becomes 

difficult. In the past various methods have been proposed to control ACCS systems. Y. Prakash 

et. al. [211] developed a mathematical model for a cruise control system for an inclined road 

and plane road. Then they applied the PID controller for different conditions. A. Kuyumku et. 

al. [212] applied a neural network-based controller for the speed control of an automobile cruise 

control system efficiently. In a study [213], researchers have proposed an optimal robust 

controller for the control of an automobile cruise control system. Some more researchers have 

applied conventional PID controllers, fuzzy logic, neural network controllers, and genetic 
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algorithms to control automobile cruise control systems [179], [212], [214]–[217]. In an ACCS 

system tuning of PID gains becomes a crucial task due to the presence of the sensor and 

integration of its information to the feedback loop introduces non-linearity in the system. 

Therefore, standard PID tuning techniques cannot be applied to this system. Earlier some 

researchers applied fuzzy logic for PID tuning for automobile cruise control systems but fuzzy 

logic implementation requires expert knowledge for desirable results [177]. In a study [177], 

researchers have proposed a fuzzy based PD plus I controller for automobile cruise control 

system. Some have also used genetic algorithms for PID gain optimization effectively. 

Therefore, metaheuristic algorithms can be used for PID gain optimization of an artificial cruise 

control system [160], [176], [210].  

The other benchmark non-linear system used in this chapter is the artificial respiratory system. 

In ICUs (Intensive care units) we mostly use mechanical ventilators to support the breathing 

of the patient. It is an artificial respiratory system that provides appropriate respiratory support 

to the patient by controlling the flow of gas, pressure, and volume and maintaining the 

composition of gases [103],[218]. If we look at the history of mechanical ventilation techniques 

earlier iron lungs were used which had many disadvantages such as size, heavyweight, and 

difficult control mechanism. At present these techniques are completely replaced by ventilation 

systems based on positive pressure [103]. The most challenging task while controlling an 

artificial respiratory system is to set optimal parameter values according to the patient’s self-

respiration capability [110]. Bram Hunnekens et. al. introduced a variable gain method for the 

control of respiratory systems [105].  

 In the past, many researchers have developed various tuning methods for tuning PID gains 

based on various artificial intelligence techniques. M. J. Mahmoodabadi et. al. used a 

gravitational search algorithm to obtain optimized PID parameters for a ball and beam system 

[219]. Alkrwy et. al. used the Crow search algorithm for tuning PID parameters [220]. 

Yimchunger et. al. [107] developed a PSO-tuned PID controller and compared the results with 

conventional methods. In [108] authors developed a fuzzy-based PID controller for the 

controlling airway pressure of an artificial respiratory system. However, the fuzzy-based 

controller needs expert knowledge for rule formation. Therefore, to control the airway pressure 

of the artificial ventilator metaheuristic algorithms can be used to tune the PID controller.  
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3.2 Mathematical Modeling of an Automobile Cruise Control System 

The vehicle velocity of a cruise control system is regulated by the reference value of the 

velocity set by the driver. The block diagram of the cruise control system considered for this 

work is presented in Figure 3.1.  

 

 

The error signal generated between the desired reference velocity and actual output velocity is 

given to the controller, which is given to the throttle. The input for the throttle is denoted as 

uj(𝑡𝑡) which is required to reduce the error between actual speed 𝑉𝑉(𝑡𝑡) and desired reference 

speed Vref(𝑡𝑡). In case the road inclination angle 𝜃𝜃 increases it also generates a pedal force 

δp(𝑡𝑡). The longitudinal dynamics of a vehicle are derived on the basis of Newton’s force 

equations [221]: 

Fed(t) = mv
dV(t)
dt

+ Faero(t) + Fgr      (3.1) 

In (3.1),  𝐹𝐹𝑒𝑒𝑒𝑒(𝑡𝑡) is the engine force that is generated by the injection of fuel in the required 

quantity. The control of fuel is done by the throttle output. mv is the vehicle mass in Kg, 

mv
dV(t)
dt

 is the force due to inertia which opposes the engine force, Faero(𝑡𝑡) is the aerodynamic 

force which opposes the engine force. Aerodynamic force is the force because of the air density 

and speed of the vehicle. It is expressed as: 

Faero(t) = Caero(V(t) − Vw(t))2       (3.2) 

Where, Caero is the aerodynamic coefficient Vw(𝑡𝑡) is the wind gust speed in Km/hr 

Fgr = mvgsinθ         (3.3) 

Figure 3.1 Block Diagram of Automobile Cruise Control system 
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Where, Fgr is the gravitational force on the vehicle and θ is the inclination angle of the road. 

Generally, the actuator in a cruise control system is represented as a lag system of 1st order. If 

T represents the observation time and τo is the time of the driver reaction. Then, the engine's 

driving force now becomes, 

Fed(s) = COe−τos

Ts+1
         (3.4) 

 

Figure 3.2 Longitudinal Dynamics model of Cruise Control system 

Now we must simplify the above model for controller designing, to simplify the model we will 

assume all initial conditions to be zero and neglect the disturbance parameters like wind gust 

speed 𝑉𝑉𝑤𝑤(𝑡𝑡) 𝑖𝑖s assumed to be zero. The model is hence now simplified as a unity feedback 

loop. Here the state variables are chosen as output speed V(t) and engine driving force 𝐹𝐹𝑒𝑒𝑒𝑒(t). 

The state space equations derived from equations (3.1), (3.2), (3.3), and (3.4) are as follows: 

v̇(t) = 1
𝑚𝑚𝑣𝑣

(Fed(t) − Caerov(t)2)       (3.5) 

𝐹𝐹𝑒𝑒𝑒𝑒̇ (t) = 1
T

(Cu(t − T) − Fed(t))       (3.6) 

y = v(t)          (3.7) 

As we can see from the above equation (3.7) this is a non-linearized state space model due to 

the presence of the term v(t)2 in the equation. So, we will linearize this model by differentiating 

the state space equations. After differentiating on both sides, we get: 
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dv̇(t)
dt

= 1
m𝑣𝑣

(−2Caerov(t)δv(t) − δFed(t))      (3.8) 

d𝐹𝐹𝑒𝑒𝑒𝑒̇ (𝑡𝑡)
dt

= 1
T

(Cδ(t − T) −  δFed(t))       (3.9) 

y(t) = δv(t)          (3.10) 

The equation shows that the output variable 𝛿𝛿𝛿𝛿 is a discrete function and 𝛿𝛿𝐹𝐹𝑒𝑒𝑒𝑒 is also a discrete 

function. 𝛿𝛿(𝑡𝑡 − 𝑇𝑇) is the delay time of the engine. After linearizing the model, the transfer 

function is derived as follows: 

∆V1(s)
∆U1(s)

= K1e−τs

(s+K2)(s+K3)
        (3.11) 

Where, K1 = 𝐶𝐶/𝑚𝑚𝑣𝑣𝑇𝑇, K2 = 2Caerov
m𝑣𝑣

 and K3 = 1
T
 

By power series expansion, e−τs ≈ 1/(1 + τ1s) =
1
τ1
s+ 1

τ1

 

Now the transfer function becomes, Gp(s) = ∆V1(s)
∆U1(s) 

𝐺𝐺𝑝𝑝(s) =
K1

1
τ1

(s+K2)(s+K3)(s+ 1
τ1

)
       (3.12) 

We have chosen the operating point as 𝑣𝑣 = 30𝑘𝑘𝑘𝑘/ℎ𝑟𝑟 from the steady state conditions. The 

values obtained for the state space matrices and transfer function of the system as per the values 

chosen by Table 3.1 are as follows: 

A1 = �−0.0476 0.00067
0 −1 � , B1 = � 0

743� and C1 = [1 0] 

Gp(s) = ∆V1(s)
∆U1(s)

= 2.4767
(s+0.0476)(s+1)(s+5)

      (3.13) 
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Table 3.1 Parameters chosen for Automobile[211] 

Symbol Values  Units 

C 743 Unitless 

Caero 1.19 N/(m/sec2) 

mv 1500 kg 

τ 0.20 sec 

T 1.0 sec 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 3500 N 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 -3500 N 

G 9.8 m/sec2 

 

3.3 Mathematical Modelling of an Artificial Respiratory System 

The schematic diagram of a typical respiratory system is shown in Figure 3.3. There is a 

centrifugal blower system that compresses the ambient air which is then used to ventilate the 

patient. A hollow tube is used to connect the blower to the patient. The output flow 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 runs 

through the blower to the patient through a hollow tube. The process of exhalation is done in 

two parts, one part of exhalation is done through the centrifugal blower and the other part 

through the leak outlet connected to the patient. The provision of leak outlet is provided to fill 

the hollow tube with fresh air so that the chance of self-exhaled. 

 

Figure 3.3 Schematic of the artificial respiratory system[105] 
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The relation between different flows can be expressed as: 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝= 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 - 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙        (3.14) 

The output pressure from the blower is expressed as 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the airway pressure at 

the mouth of the patient and is less than 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, due to the resistance 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 offered by the tube. 

We can control the airway pressure. The actual pressure developed in the lungs is expressed as 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, which cannot be measured. The resistances 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are assumed to 

be linear. The equations can be expressed as: 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

    

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

        (3.15) 

The lung pressure is expressed by the differential equation: 

𝑑𝑑𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑

= 1
𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝        (3.16) 

Where, 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the compliance offered by the lungs. Now the dynamic equations of the lungs 

can be written as: 

𝑃̇𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

         (3.17) 

This is an RC network; the lung pressure will increase according to the time constant 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+

1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

̇
       (3.18) 

Now substituting the value of airway pressure in the lung dynamics we get, 

𝑃̇𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
−� 1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+
1

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙( 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

)
      (3.19) 

Converting Equations (3.16), (3.18), and (3.19) into a state space model. The lung pressure 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is considered as state variable, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 as the input variable and �
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� as the outputs. 
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𝑃̇𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐵𝐵𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜        (3.20) 

�
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� = 𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐷𝐷𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜       (3.21) 

Where, 

𝐴𝐴 = −
1

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
    

𝐵𝐵 =
1

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
  

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�

1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⎦
⎥
⎥
⎥
⎥
⎤

  

𝐷𝐷 =

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�

1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⎦
⎥
⎥
⎥
⎥
⎤

       (3.22) 

Therefore, we can derive the transfer function by the equation, 

𝐻𝐻𝑡𝑡(𝑠𝑠) = 𝐶𝐶[𝑆𝑆𝑆𝑆 − 𝐴𝐴]−1𝐵𝐵 + 𝐷𝐷        (3.23) 

To determine the respiratory system's transfer function, we must model the blower system. The 

blower system used generally is a DC motor. Therefore, we can assume it is a 2nd order control 

system. The equation of a general 2nd-order system is expressed as: 

𝐵𝐵𝑙𝑙(𝑠𝑠) = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠)
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)

= 𝑤𝑤𝑛𝑛2

𝑠𝑠2+2𝜀𝜀𝑤𝑤𝑛𝑛𝑠𝑠+𝑤𝑤𝑛𝑛2
       (3.24) 
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Figure 3.4 Block Diagram of Artificial Respiratory System 

For this study the values are chosen by a particular experimental blower system, 𝑤𝑤𝑛𝑛 is assumed 

to be 60π [105] and the damping ratio is unity. The overall transfer function P(s) is the cascade 

combination of 𝐻𝐻𝑡𝑡(𝑠𝑠) and 𝐵𝐵𝑙𝑙(𝑠𝑠). The block diagram representation of Artificial respiratory 

system is shown in Figure 3.5. The state space representation can be expressed as, 

𝑥𝑥𝑟̇𝑟(t) = �
𝑥̇𝑥𝑏𝑏𝑏𝑏
𝑃̇𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� = � 𝐴𝐴𝑏𝑏𝑏𝑏 0
𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏 𝐴𝐴� �

𝑋𝑋𝑏𝑏𝑏𝑏
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� + �𝐵𝐵𝑏𝑏𝑏𝑏0 � 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   

𝑦𝑦(𝑡𝑡) = �
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� = [𝐷𝐷𝐶𝐶𝑏𝑏𝑏𝑏 𝐶𝐶] �
𝑥𝑥𝑏𝑏𝑏𝑏
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�      (3.25) 

3.4 Conventional PID Tuning 

In this chapter, the Zeigler-Nichols method is used as a conventional method to determine the 

𝐾𝐾𝑝𝑝, 𝑇𝑇𝑖𝑖, and 𝑇𝑇𝑑𝑑 based on the open loop step response of the system. In this study parameters are 

determined from the open loop response of the system. If 𝜏𝜏 is the time-constant of the system 

and L is the dead time. The Z-N tuning rules are given in Table 3.2 

Table 3.2 ZN Method of PID parameter Determination [115] 

Controller 𝑲𝑲𝒑𝒑 𝑻𝑻𝒊𝒊 𝑻𝑻𝒅𝒅 

P 𝜏𝜏/𝐿𝐿 -- ---- 

PI 0.9𝜏𝜏/𝐿𝐿 𝐿𝐿/0.3 ---- 

PID 1.2𝜏𝜏/𝐿𝐿 2𝐿𝐿 0.5𝐿𝐿 
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3.5 Optimization Algorithms Used for Tuning PID Controller 

3.5.1  Particle Swarm Optimization 

PSO is an evolutionary optimization technique that is inspired by the action of food search by 

birds flocks or fishes[78] .PSO is one of the most popular algorithms among researchers and is 

applied in various areas because it is simple and efficient. It has been applied to solve a variety 

of optimization problems such as PID tuning, energy forecasting identification of parameters, 

etc. The PSO is comprised of a swarm of moving particles in a D-dimensional search space 

where a certain fitness measure is being improved. The position of each particle is represented 

by the position vector and a velocity vector. In the particle swarm optimization, the bird is 

known as a particle. Each particle is considered a solution candidate for the problem. The 

particles adjust their positions in the entire search space. In the entire process, each particle 

changes its location by its past best position called Pbest and global best position which is 

Gbbest.  

After each iteration, the velocity and location of the particle are modified according to the 

equations: 

vitk+1 = wvitk + c1rand1�Pbestit − xitk� + c2rand2(Gbbestit − xitk)   (3.26) 

xitk+1 = xitk + vitk          (3.27) 

Where it is the particle, k is the discrete-time xit is the position of the ith particle, vit is the 

velocity of ith particle, wi is the inertia factor, c1 and c2 are the acceleration constants, rand1 

and rand2 is a random number between 0 and 1, Pbestit is the best position found locally by the 

particle and Gbbestit is the best position found globally by the particle. The procedure of the 

PSO algorithm is explained in the flowchart given below in Figure 3.5: 
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Figure 3.5 Flowchart of PSO 

 

3.5.2  Teaching-Learning-based Optimization 

Teaching learning-based optimization is also a nature-inspired algorithm. In this algorithm 

population is the group learners. This algorithm works on two phases of learning: 

i. Learning through the teacher 

ii. Learning through other learners 

The best solution is a teacher[222] 

Phase 1: Learning through teacher 

The teacher puts maximum effort into increasing the mean of the subjects by the equation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗,𝑖𝑖 = 𝑅𝑅𝑖𝑖(𝑋𝑋𝑗𝑗,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑖𝑖 − 𝑡𝑡𝑓𝑓𝑀𝑀𝑗𝑗,𝑖𝑖)       (3.28) 

Where, 𝑋𝑋𝑗𝑗,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑖𝑖 is the best learner in a particular subject j, 𝑡𝑡𝑓𝑓 is the factor according to which 

the value of mean is changed. 𝑅𝑅𝑖𝑖 is the value between 0 and 1. 
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 Teaching factor 𝑡𝑡𝑓𝑓 is selected as: 

𝑡𝑡𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)[2 − 1]]       (3.29)  

where, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the random number in the range (0,1). According to the following equation: 

𝑋𝑋𝑗𝑗,𝑘𝑘,𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑖𝑖(𝑡𝑡) + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗,𝑖𝑖       (3.30) 

Phase 2: Learning through Other Learners 

In this phase, learning is done by interaction in their peer group. The learning in this phase is 

expressed as: 

Two learners are selected randomly like A and B 

𝑋𝑋(𝑡𝑡 + 1)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝐴𝐴,𝑖𝑖 ≠ 𝑋𝑋(𝑡𝑡 + 1)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵.𝑖𝑖        (3.31) 

Where, 𝑋𝑋(𝑡𝑡 + 1)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝐴𝐴,𝑖𝑖 & 𝑋𝑋(𝑡𝑡+1)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝐵𝐵,𝑖𝑖 are the updated values at the end of phase one. 

For minimization problem, 

𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 2) = 𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 1) + 𝑟𝑟𝑖𝑖(𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 1) − 𝑋𝑋𝑗𝑗,𝐵𝐵,𝑖𝑖(𝑡𝑡 + 1)   

  𝑖𝑖𝑖𝑖 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙_𝐴𝐴,𝑖𝑖 < 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙_𝐵𝐵,𝑖𝑖        (3.32) 

𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 2) = 𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 1) + 𝑟𝑟𝑖𝑖(𝑋𝑋𝑗𝑗,𝐵𝐵,𝑖𝑖(𝑡𝑡 + 1) − 𝑋𝑋𝑗𝑗,𝐴𝐴,𝑖𝑖(𝑡𝑡 + 1)  

   𝑖𝑖𝑖𝑖 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙_𝐵𝐵,𝑖𝑖 < 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙_𝐴𝐴,𝑖𝑖        (3.33) 

The flowchart of the teaching learning-based optimization algorithm is shown in Figure 3.6 
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Figure 3.6 Flow Chart of TLBO Algorithm 

3.5.3 Objective Functions Selected For PID Tuning 

Three objective functions are selected for the tuning of the PID controller and their 

performances are compared. The three objective functions selected are as follows:  

Integral time absolute error (ITAE)[223]: 

This error is expressed mathematically as: 

ITAE = ∫ t|e(t)|dt          (3.34) 

Integral absolute error (IAE)[223]: 

ITE=∫ te(t)dt          (3.35) 

Integral square error (ISE)[223]: 

ISE=∫|e(t)|2dt         (3.36) 

The three objective functions minimize different types of errors in the system. The integral time 

error reduces the error occurring in the initial instants of time. It is useful in minimizing the 

early transient errors. The integral square error reduces both large errors and smaller errors 

irrespective of the time of error. The ITAE reduces the errors which persists for a longer 

duration of time. 



40 
 

3.6 Implementation and Analysis 

3.6.1  PSO-based Controller Design of Automobile Cruise Control System 

The block diagram representation of the Particle Swarm Optimisation tuned Automobile cruise 

control system is given in Figure 3.7. The 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑑𝑑, and 𝐾𝐾𝑖𝑖 controller gains are optimized by the 

PSO algorithm. It compared with the conventional tuning methods like the Ziegler Nichols 

method and fuzzy logic. The tuning of PSO parameters is done by hit and trail method. The 

number of populations was first considered as 20 for which the objective function was not 

converging. Then, the number of populations was taken as 35 for which the objective function 

was converging but the value was not satisfactory. For the number of populations 50, the results 

gave the satisfactory minimum value of the objective function. The inertia factor is selected as 

0.9 which promotes more exploration. The value of 𝐶𝐶1 and 𝐶𝐶2 is usually kept at 1,1.5 or 2. In 

this case the value of 𝐶𝐶1 and 𝐶𝐶2 is selected as 2 and 1.5 respectively. The parameters considered 

for PSO optimization are shown in the Table 3.3 below: 

Table 3.2 Parameters Selected for PSO 

Parameters Values Chosen 

No. of Populations 50 

Inertia Factor 0.9 

Acceleration Factors 1.5,2 

 

 

 

Figure 3.7 Block diagram of PSO-tuned PID Controller for Automobile Cruise Control 

System 
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3.6.2  TLBO-based Controller Design of Automobile Cruise Control System 

The block diagram representation of the tuned PID controller is shown in Figure 3.8. The 𝐾𝐾𝑝𝑝, 

𝐾𝐾𝑑𝑑, and 𝐾𝐾𝑖𝑖  parameters of the PID controller are optimized by the TLBO algorithm.  To select 

the TLBO parameters first a small number of populations as 10 was considered since the results 

were not desirable. The algorithm was run for a higher number of populations 20, 30 ,40 and 

50. The maximum number of iterations selected in this problem is 25. For this value, the results 

are converging and the computational time is also low. To choose the appropriate teaching 

factor experiments were done selecting the teaching factor as 1, 1.5, and 2. The algorithm gave 

satisfactory converging results for teaching factor equal to 1. The TLBO parameters chosen are 

as given in Table 3.4 follows: 

 

Table 3.3 Parameters for TLBO 

Parameters Values 

chosen 

No. of Populations 50 

Maximum iterations 25 

Teaching factor 1 

 

 

Figure 3.8 Block Diagram of TLBO tuned PID controller for Artificial cruise control 

system 

3.6.3  PSO based Controller Design of Artificial Respiratory System 

The optimization of different error functions ITAE, ISE, and ITE is done using the PSO 

algorithm, and PID parameter values are obtained to get a better response. 
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 The block diagram of the PSO-based PID optimization scheme is shown in Figure 3.9. 

 

Figure 3.9 Block diagram of PSO tuned PID controller for Artificial respiratory system 

The PSO algorithm parameters are selected based on hit and trail. The algorithm was run with 

varying parameters starting from number of population equal to 10 and gradually increased. 

The best results were obtained for a number of iterations of 50, the inertia factor of 0.9, and 

acceleration factors of 1.5 and 2. 

3.6.4 TLBO-based Controller Design of Artificial Respiratory System 

The optimization of different error functions ITAE, ISE, and ITE is done using the TLBO 

algorithm, and PID parameter values are obtained to get a better response. The block diagram 

of the TLBO-based PID optimization scheme is shown in Figure 3.10. The parameters chosen 

for the TLBO Algorithm are initial populations as 50, the number of iterations as 25, and the 

teaching factor as 1. 
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Figure 3.10 Block diagram of TLBO tuned PID controller for Artificial respiratory 

system 

3.7 Results and Discussions 

3.7.1 Output Results of Automobile Cruise Control System 

In this thesis, the above-developed controllers are applied and evaluated on the artificial cruise 

control system using MATLAB 2017a software. The objective functions used for optimizing 

PID gains are ITAE, ITE, and ISE. TLBO and PSO algorithms are used for obtaining optimized 

PID gains. A comparative analysis is presented by comparing the intelligent controllers with 

the conventional Zeigler Nichols tuned and Fuzzy PD + I controller. The step responses of 

different controllers are given in Figures 3.11, 3.12 and 3.13. 

 

Figure 3.11 Comparative Step responses of Different controllers using ITAE as an 

Objective Function 
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Figure 3.12 Comparative Step response of Different controllers with ITE as an 

Objective Function 

 

Figure 3.13 Comparative responses of different controllers with ISE as an objective 

Function 

The comparison of different controllers based on various transient response parameters is as 

follows: 

Table 3.5 Comparison of transient response parameters of the proposed intelligent 

techniques with conventional methods (ITAE as an objective function) 

Method Rise time tr 

(seconds) 

Settling time ts 

(seconds) 

Max. Overshoot  

(%𝑴𝑴𝑷𝑷) 

Peak time tp, 

(seconds)  

ZN 1.0096 11.07 46.10 2.78 

Fuzzy PD+I 0.7130 13.05 22.17 2.65 

PSO ITAE 0.6150 3.46 0 1.28 

TLBO ITAE 0.3145 1.57 3.43 1.25 
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Table 3.6 Comparison of transient response parameters of the proposed intelligent 

techniques with conventional methods (ISE as an objective function) 

Method Rise time tr 

(seconds) 

Settling time ts 

(seconds) 

Max. Overshoot  

(%𝑴𝑴𝑷𝑷) 

Peak time tp, 

(seconds)  

ZN 1.0096 11.07 46.10 2.78 

Fuzzy PD+I 0.7130 13.05 22.17 2.65 

PSO ISE 0.2712 2.05 11.04 0.61 

TLBO ISE 0.6280 1.54 2.96 1.28 

 

 

Table 3.7 Comparison of transient response parameters of the proposed intelligent 

techniques with conventional methods (ITE as an objective function) 

Method Rise time tr 

(seconds) 

Settling time ts 

(seconds) 

Max. Overshoot  

(%𝑴𝑴𝑷𝑷) 

Peak time tp, 

(seconds) 

ZN 1.0096 11.07 46.10 2.78 

Fuzzy PD+I 0.7130 13.05 22.17 2.65 

PSO ITE 0.2818 1.52 17.77 0.62 

TLBO ITE 0.4210 1.39 10.96 0.90 

 

The comparative analysis of all the tuning methods shows that the TLBO-tuned controller gives 

a better response as compared to all the above methods used. By comparing various transient 

response performance indices, the following observations were made: 

1. From Table 3.5 we can observe that when we used ITAE as an objective function, the 

percentage overshoot was very high up to 46% in the ZN method and 22% in the fuzzy 

PD+I controller. In the PSO tuned controller the overshoot is reduced to 0% but the 

response time is greater as compared to the tuned controller. In the TLBO-tuned controller, 

there is a small overshoot of 3.43% but simultaneously the rise time, settling time, and peak 

time are reduced which makes the response fast. 

2. From Table 3.6 we can observe that when we used ISE as an objective function, the 

overshoot reduced from 46% to 22% in the fuzzy PD +I controller. In PSO tuned controller 
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the overshoot was reduced to 11% and the response time was also reduced to 0.2712 

seconds. In the tuned controller the overshoot was further reduced to 2.96% but the rise 

time was more than PSO tuned controller at 0.6280 seconds. 

3. From Table 3.7 we can observe that when we used ITE as the objective function the 

overshoot reduced to 17% in PSO tuned controller and 10% in the tuned controller. The 

rise time was 0.28 seconds in PSO tuned controller and 0.42 seconds in TLBO tuned 

controller. 

From the above comparative analysis, it is evident that controllers tuned with optimization 

algorithms, PSO, and TLBO gave better responses as compared to the conventional tuning 

methods. 

3.7.2 Robust Analysis 

The control system is said to be robust if it can maintain a stable and satisfactory output 

performance even in the presence of external disturbances, system's parameter variations and 

uncertainty. Therefore, to test the effectiveness and validity of the proposed controller it is 

crucial to test the robustness. To test the effectiveness of the proposed controller it is important 

to test whether the controller is robust in the presence of uncertainties and disturbances. The 

parameter 𝐶𝐶𝑎𝑎, air drag coefficient is varied from -50% to +50% nominal range. The step 

responses in the variation are presented in Figure 3.14. 
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Figure 3.14 Robust Analysis with variation in Ca 

 

The comparison of performance indices for the robust analysis with variation in Ca are given 

in Table 3.8 

Table 3.8 Comparison of Performance indices with variation in Ca 

Parameter 
Range of 

Change % 

Rise time 

𝒕𝒕𝒓𝒓(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) 

Settling 

Time, 𝒕𝒕𝒔𝒔(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) 

Peak 

Time, 𝒕𝒕𝒑𝒑(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) 

𝐶𝐶𝑎𝑎 

-50% 1.8447 0.8036 1.7638 

-25% 1.4562 0.8236 1.3256 

+25% 1.6752 0.8136 1.4562 

+50% 1.5789 0.8065 1.4558 

  

3.7.3  Output Results of Artificial Respiratory System 

The optimized controller’s performance is evaluated by simulating the model of the artificial 

respiratory system derived in MATLAB software. The performance indices used for simulation 

are ITAE, ISE, and ITE. The optimized PID gains are obtained by using the nature-inspired 

optimization techniques PSO and TLBO. For this simulation study, the set point pressure 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The system’s parameters selected are given in Table 3.9: 
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Table 3.9 Values of Parameter chosen 

Parameter Values 

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 5 × 10−3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚/s 

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 6 × 10−2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚/𝑠𝑠 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 45 × 10−4 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚/𝑠𝑠 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 20 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

The optimized response of the output airway pressure-tuned tuned with the Zeigler-Nichols 

method is shown in Figure 3.15. The tuned PID gain values are 𝐾𝐾𝑝𝑝=0.00035, 𝐾𝐾𝑖𝑖=1.75, and 

𝐾𝐾𝑑𝑑=0. The step response tuned by Zeigler Nichols method has a rise time equal to 8.2015 

seconds, and a settling time is approximately 15.4388 seconds, which shows a slow response. 

 

Figure 3.15 ZN Tuned Output Response of Airway Pressure 

The comparative step response of different controllers for output airway pressure 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of an 

artificial ventilation system are given below in Figures 3.16, 3.17, and 3.18. The objective 

functions chosen are ITAE, ITE, and ISE.  
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Figure 3.16 Comparative responses of controllers with ITAE as an objective function 

 

Figure 3.17 Comparative response of different controllers with ITE as an objective 

function 
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Figure 3.18 Comparative response of different controllers with ISE as an objective 

function 

The comparative analysis of the transient response characteristics of the proposed controllers 

with conventional controllers is presented in Table 3.8. The performance indices compare the 

rise time, settling time and overshoot of the output.  

Table 3.9 Comparative Analysis of Different Controllers 

Sno. 
Method 

used 

Objective 

Function 

used 

Rise 

time (in 

secs) 

Overshoot 

% MP 

Peak 

time (in 

secs) 

Settling 

time (in 

secs) 

1.  
Zeigler 

Nichols 
 8.2015 0.373 32.59 15.43 

2.  PSO 

ITAE 0.2546 0 0.5624 0.7885 

ITE 0.2529 0 0.5164 0.8823 

ISE 0.6950 0.0316 1.3408 2.0303 

3.  TLBO 

ITAE 0.2835 0 0.8854 0.5588 

ITE 0.2577 0 0.8841 0.5516 

ISE 0.1703 0.0316 1.1058 2.1762 

 

The ZN-tuned PID response had a very large rise time equal to 8.2015, the overshoot was 

0.373, and the peak time and settling time were 59 seconds and 15.43 seconds. The PSO-tuned 
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response with ITAE and ITE as objective functions has a better response. The rise time was 

reduced to 0.25 seconds, overshoot reduced to 0 percent, and settling time reduced to 0.88 

seconds. The TLBO-tuned response with ISE as the objective function gave rise time equal to 

0.1703 seconds, which is less as compared to PSO tuned response. The Figures 3.19, 3.20 ,3.21 

represent the convergence curves of the algorithms TLBO and PSO. 

 

Figure 3.19 Convergence Curve of Algorithms with ITAE as an objective function 
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Figure 3.20 Convergence Curves of Algorithms with ITE as an objective function 

 

Figure 3.21 Convergence Curves of algorithms with ISE as an objective Function 

3.8 Conclusion 

In this chapter two benchmark non-linear systems are considered, automobile cruise control 

system and artificial respiratory system. The dynamics equations of the systems are modelled 

mathematically and their transfer functions are obtained for a stable operating point. A PID 

controller tuned by particle swarm optimization algorithm and teaching-learning based 

optimization algorithm is applied to control both the systems. The different objective functions 

chosen for the optimization are ITAE, ISE, and IAE. The step response is obtained and it is 
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also compared with the conventionally used PID tuning methods like Zeigler Nichols and 

Fuzzy logic[177]. It is concluded that TLBO tuned PID controller gives a better response in 

comparison to all these controllers. 
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CHAPTER 4  

 IMPLEMENTATION OF CASCADE OPTIMIZED PID CONTROLLER 
ON THE NON-LINEAR BALL AND BEAM SYSTEM 

 

4.1 Introduction 

Cascade control is a powerful control method. However, the tuning of two controllers used in 

this technique is a complex problem. In a cascade PID control, there are two control loops, the 

inner loop, and the outer loop[224]. The cascade control technique is one of the most popular 

methods in the industry because it has many advantages as compared to other techniques. It is 

capable of rejecting disturbances in the inner loop. It increases the speed of the system and can 

overcome the effects of parameter variations in the inner loop. To obtain better control in non-

linear systems such as ball and beam systems conventional PID controllers can be replaced by 

other control techniques like feedforward and cascade methods[223]. However, the 

conventional cascade PID controller can give unsatisfactory results when subjected to 

variations in set point and parameter changes. Therefore, there is a need to apply advanced AI 

methods which can adapt to non-linear changes in the system. Cascade PID controllers have a 

lot of advantages as compared to conventional PID methods but PID parameter tuning becomes 

a difficult task due to interrelated parameters. The conventional tuning methods like the 

Zeigler-Nichols method and, Cohen-coon method are based on trial-and-error methods[13]. 

Therefore, they become tedious and inefficient. Another method of tuning PID controllers 

applied to non-linear systems is by gain-scheduling [119]. But its major disadvantage is that 

the controller design is time-consuming and when the dynamics of the system are unknown it 

cannot be used[225].  

Recently, many complex engineering problems have been solved by applying optimization 

algorithms efficiently. PID controllers applied to various nonlinear systems, have recently been 

tuned using a variety of bio-inspired algorithms such as Genetic Algorithm (GA)[88], [153], 

[162], [226], Particle swarm optimization (PSO)[64], [110], [133], [227], Ant bee colony 

(ABC)[33], [137], [192], [227], [228], and Ant colony optimization (ACO)[202], [229], [230]. 

A difficult issue with many variables and constraints can be solved almost perfectly using these 

bioinspired algorithms. One of the most popular algorithms used to date is GA but it is 

challenging to estimate population size, crossover rates, and mutation rates. The efficiency of 
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an algorithm changes if the selected parameters are varied. Inertia weight, and social, and 

cognitive characteristics are also used by PSO. With minimal computational effort and 

excellent consistency, the Teaching Learning optimization (TLBO) [80], algorithm is used to 

find global solutions for continuous nonlinear functions. It produces superior outcomes because 

fewer parameters are needed to use it [81]. 

A ball and beam system, a benchmark non-linear control problem, is taken into consideration 

in this thesis. The goal is to maintain the ball and beam system's position in balance. Due to the 

presence of nonlinearity, such as dead zone, saturation, nonlinear resistance, etc., it is a 

challenging task[93]. The ball and beam control can be used to solve several practical issues, 

including robot weight balance, space vehicle control, and aircraft in space control. Researchers 

have suggested several control strategies for the ball and beam system, including fuzzy 

controllers, traditional PID controllers, and neural networks[93], [219], [229], [231]–[236]. 

The TLBO algorithm is used to adjust the cascade PID controllers in this study, and it is applied 

to a ball and beam system. Both the PID controllers are tuned by PSO and TLBO. The 

performance of the tuned controller is compared with the PSO-tuned PID controller and 

conventional Ziegler Nichols-tuned PID controllers. Teaching learning-based Optimization 

algorithm is applied to tune the parameters of the PID controller to control beam angle and ball 

position. 

In this chapter, we have used the PSO algorithm and TLBO algorithm for tuning cascade PID 

controllers applied for the position control of the ball and beam system.  

4.2 Mathematical Modelling of Ball and Beam System 

A ball and beam system comprises of a long beam, a ball, and an electrical system that includes 

a servo motor. The ball's position is controlled by the servo motor. The force diagram of a ball 

and beam system is depicted in the Figure 4.1[22] below. By using a servo voltage, the control 

objective is to move the ball to the desired position. The physical system of the ball and beam 

system's transfer function is derived below. 

The ball is subject to two forces: 𝐹𝐹𝑡𝑡𝑥𝑥0(𝑡𝑡), the force resulting from translational motion, and 

𝐹𝐹𝑟𝑟𝑥𝑥0(𝑡𝑡), the force resulting from rotating motion[237]. 

𝐹𝐹𝑡𝑡𝑥𝑥0(t) = 𝑚𝑚𝑏𝑏𝑔𝑔 sin ∝0 (𝑡𝑡)        (4.1) 

𝐹𝐹𝑟𝑟𝑥𝑥0(t) = 2
5
𝑚𝑚𝑏𝑏𝑥̈𝑥𝑜𝑜(t)         (4.2) 
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Where, 𝑚𝑚𝑏𝑏 is the mass of the ball, g is the acceleration due to gravity & 𝑥𝑥𝑜̈𝑜(𝑡𝑡) is acceleration 

of ball 

𝑚𝑚𝑏𝑏𝑥̈𝑥𝑜𝑜(t) = ∑𝐹𝐹 = 𝐹𝐹𝑡𝑡𝑥𝑥0(t) − 𝐹𝐹𝑟𝑟𝑥𝑥0(t) = 𝑚𝑚𝑏𝑏𝑔𝑔 sin ∝0 (𝑡𝑡) − 2
5
𝑚𝑚𝑏𝑏𝑥̈𝑥𝑜𝑜(t)   (4.3) 

 

 

Figure 4.1 Force Diagram of Ball and Beam System 

 

The moment of inertia of a sphere is 2/5𝑚𝑚𝑏𝑏 

From (3) we get, 

𝑥̈𝑥𝑜𝑜(t) = 5
7
𝑔𝑔 sin ∝0 (𝑡𝑡)         (4.4) 

For small values of ∝0 we can write sin ∝0 (𝑡𝑡) ≈∝0 (𝑡𝑡) 

Taking Laplace transform, 

𝑠𝑠2𝑋𝑋0(𝑠𝑠) = 5𝑔𝑔
7𝑠𝑠2

∝0 (𝑠𝑠)        (4.5) 
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𝑋𝑋(𝑠𝑠)
∝0(𝑠𝑠)

= 5𝑔𝑔
7𝑠𝑠2

          (4.6) 

The transfer function of the servo motor relating 𝑉𝑉𝑚𝑚𝑚𝑚, input motor voltage and 𝜃𝜃𝑚𝑚𝑚𝑚, the servo 

load gear angle is  

𝜃𝜃𝑚𝑚𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑚𝑚𝑚𝑚(𝑠𝑠)

= 𝜂𝜂𝑔𝑔𝜂𝜂𝑚𝑚𝑚𝑚𝐾𝐾𝑡𝑡𝑡𝑡𝐾𝐾𝑔𝑔
𝐽𝐽𝑒𝑒𝑒𝑒𝑅𝑅𝑚𝑚𝑚𝑚𝑠𝑠2+�𝐵𝐵𝑒𝑒𝑒𝑒𝑅𝑅𝑚𝑚𝑚𝑚+𝜂𝜂𝑔𝑔𝜂𝜂𝑚𝑚𝑚𝑚𝐾𝐾𝑡𝑡𝑡𝑡𝐾𝐾𝑔𝑔2�𝑠𝑠

     (4.7) 

The transfer function relating to motor angle  𝜃𝜃𝑚𝑚𝑚𝑚, the servo load gear angle and beam angle 

∝0 is 

𝜃𝜃𝑚𝑚𝑚𝑚
∝0

= 𝑟𝑟
𝐿𝐿
          (4.8) 

The overall transfer function relating the ball position 𝑋𝑋0(𝑠𝑠) and motor input voltage 𝑉𝑉𝑚𝑚𝑚𝑚(𝑠𝑠) is 

given as, 
𝑋𝑋0(𝑠𝑠)
𝑉𝑉𝑚𝑚𝑚𝑚(𝑠𝑠)

= 𝜃𝜃𝑚𝑚𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑚𝑚𝑚𝑚(𝑠𝑠)

× ∝0(𝑠𝑠)
𝜃𝜃𝑚𝑚𝑚𝑚(𝑠𝑠)

× 𝑋𝑋0(𝑠𝑠)
∝0(𝑠𝑠)

      (4.9) 

Table no 4.1[238] Definitions of the parameters and their values selected 

 

 

 

 

 

 

 

 

 

 

Symbol Description Values 

𝐾𝐾𝑡𝑡 Torque Constant of the motor 0.00767 

𝐾𝐾𝑚𝑚𝑚𝑚 Constant of Back emf 0.00767 

𝐾𝐾𝑔𝑔 Gear ratio of the servo system 70 

𝑅𝑅𝑚𝑚𝑚𝑚 Armature resistance (in ohms) 2.6 

𝐽𝐽𝑒𝑒𝑒𝑒 Moment of Inertia(load) 2e-3 

𝐵𝐵𝑒𝑒𝑒𝑒 Viscous damping Coefficient 4e-3 

𝑟𝑟 Lever arm offset(inches) 1 

L Length of beam(inches) 16.75 

𝑔𝑔 The gravitational constant of Earth (𝑚𝑚/𝑠𝑠2) 9.8 

𝜂𝜂𝑔𝑔 Gearbox efficiency 0.9 

𝜂𝜂𝑚𝑚𝑚𝑚 Motor efficiency 0.36 
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4.3 Cascade Controller Design 

The ball and beam system is observed to be a fourth-order system. Consequently, creating a 

controller is challenging. As a result, a cascade control system is created for the entire system. 

There are two loops for feedback. A servo control loop controls the position of the motor gears 

in the inner loop. Ball location is controlled by the outer loop [8]. Figure 4.2 shows a ball and 

beam system under cascade control. PID 2 controls the ball and beam system, and PID 1 

controls the motor. 

 

Figure 4.2 Cascade Control of Ball and Beam System 

4.4 Proposed TLBO-tuned PID Cascade Design 

In this study, a cascade PID controller structure is proposed which is used to control ball 

position and beam angle. There are two control loops: the outer loop for ball position and the 

inner loop for motor angle control. The two PID controllers are tuned using the TLBO 

algorithm and the optimized PID gains are used for controlling the ball position and motor 

angle. The block diagram of the TLBO-tuned PID control ball and beam system is shown in 

Figure 4.3. In Figure 4.3, it is shown that the PID controllers are tuned using the TLBO 

algorithm. The objective functions chosen for tuning the TLBO algorithm are ITAE, ISE, and 

ITE. 

 

Figure 4.3 Block diagram of TLBO tuned Ball and beam system 
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The parameters used for Teaching Learning Based Algorithm, are the number of populations is 

50, the maximum number of iterations is 25, and the teaching factor is chosen to be 1. 

4.5 Proposed PSO-tuned Controller Design 

A PSO-tuned cascade PID controller is proposed PID 1 is used to control ball position and PID 

2 is used for servo motor control. There are two control loops one for ball position and the other 

for servo motor control. In the PSO-designed controllers, the two controllers are tuned using 

the PSO algorithm. The block diagram of PSO tuned cascade control ball and beam system is 

shown in Figure 4.4. In Figure 4.4 it is shown that the PID controllers are tuned using the PSO 

Algorithm. The objective functions used are ITAE, ISE, and ITE. 

 

Figure 4.4 Block Diagram of PSO tuned PID control ball and beam system 

The parameters chosen for tuning of PID controller using the PSO algorithm are, the number 

of populations is 50, the number of iterations is 50, acceleration constants are 1.5 & 2 and the 

inertia factor is 0.9. 

4.6 Simulation Results and Discussions 

4.6.1  PID tuning of Ball position. 

The PID tuning of outer loop controller 1 used for controlling ball position was tuned using the 

conventional Zeigler Nichols method, PSO Algorithm, and TLBO algorithms. The 𝐾𝐾𝑃𝑃1, 𝐾𝐾𝑖𝑖1 , 

and 𝐾𝐾𝑑𝑑1 parameters obtained are shown in Table 4.2. 
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Table 4.2 Tuning parameters for ball position 

S.no. 
Method 

Used 

Objective 

Function 
𝑲𝑲𝒑𝒑𝟏𝟏 𝑲𝑲𝒊𝒊𝟏𝟏 𝑲𝑲𝒅𝒅𝟏𝟏 

1. ZN  0.841 1.014 0.254 

2. 
PSO 

Algorithm 

ITAE 1.03 0.029 5.56 

ISE 15.96 4.60 0.87 

ITE 1.01 0.62 1.01 

3. 
TLBO 

Algorithm 

ITAE 2.64 10 0.05 

ISE 10 0.000012 0.8016 

ITE 4.86 10 0.57 

 

4.6.2 PID Tuning of Servo Motor Angle 

The PID tuning of inner loop controller 2 used for controlling the servo motor was tuned using 

the conventional Zeigler Nichols method, PSO Algorithm, and TLBO algorithms. The 𝐾𝐾𝑃𝑃2, 

𝐾𝐾𝑖𝑖2, and 𝐾𝐾𝑑𝑑2 parameters obtained are shown in Table 4.3. 

Table 4.3 Tuning parameters for servo motor angle 

S.no. Method Used 
Objective 

Function 
𝑲𝑲𝒑𝒑𝟐𝟐 𝑲𝑲𝒊𝒊𝟐𝟐 𝑲𝑲𝒅𝒅𝟐𝟐 

1. Zeigler Nichols  0.015 0.00004 1.119 

2. PSO Algorithm 

ITAE 1.03 0.029 5.568 

ISE 0.1819 0.022 15.57 

ITE 1.0880 2.226 6 

3. 
TLBO 

Algorithm 

ITAE 10 0.0022 10 

ISE 0.841 1.014 0.254 

ITE 10 0.148 10 
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The comparative step responses of various controllers based on ITAE, ITE, and ISE as 

objective functions are shown in Figures 4.5, 4.6, and 4.7. 

 

Figure 4.5 Step response of Ball position with ZN tuned, PSO tuned and TLBO tuned 

PID controller with ITAE as an objective function 

 
 

Figure 4.6 Step response of Ball position using ZN-tuned, PSO-tuned, and TLBO-tuned 

PID controller with ITE as an objective function 
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Figure 4.7 Step response of Ball position using ZN-tuned, PSO-tuned, and TLBO-tuned 

PID controller with ISE as an Objective Function 

The performance specifications of various controllers are shown in Table 4.4: Comparative 

Study of Controllers 

Table 4.4 Comparative performance of controllers 

Sno. Tuning 
Method 

Objective 
Function 

Rise time 
(in seconds) Overshoot % Peak time 

(in seconds) 
Settling time 
(in seconds) 

1.  Zeigler 
Nichols  3.60 0 7.20 8.62 

2.  PSO 
ITAE 0.3284 10 1.2 3.10 
ITE 0.2174 5.50 1.34 2.60 
ISE 0.2150 9.67 0.4564 0.7722 

3.  TLBO 
ITAE 0.2150 10.97 0.4794 2.60 
ITE 0.01 4.56 0.21 0.456 
ISE 2.86 1.93 3.60 4.55 

 

From the various response specifications shown in Table 4.4, it is observed that the 

conventional tuned response based on Zeigler-Nichol’s method is slow and sluggish. The 

Zeigler Nichols tuned response has a rise time of 3.6 seconds and a settling time of 8.62 

seconds. It can be observed that the PSO-tuned and TLBO-tuned responses based on ITAE as 

an objective function have shown a much better response as compared to the conventionally 

tuned responses, the rise time has reduced to 0.3284 seconds in PSO tuned controller and to 

0.2150 in TLBO tuned controller. Settling time has also reduced to 3.10 seconds in PSO tuned 

controller and 2.60 seconds in TLBO tuned controller. From Table 4.4 it is observed that the 

evolutionary algorithm-tuned response based on ITE as an objective function is better as 

compared to conventionally tuned controllers. In the case of the PSO-tuned controller, the rise 

time has reduced to 0.2174 seconds and the settling time 2.60 seconds whereas, in the case of 
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TLBO tuned response the rise time is 0.01 seconds and the overshoot is 4.56 % also in this case 

settling time is minimum 0.456 seconds. It can be observed from the comparative analysis that 

the optimized responses based on ISE objective function gives the best performance in terms 

of rise time and settling time. The TLBO Tuned controller gives better performance as 

compared to PSO Tuned controller and ZN tuned controller. To test the controller’s 

performance for different sources, it was also tested with unit ramp input. Figure 4.8 shows the 

comparative performance of different controllers for a unit ramp input in case of ITE as an 

objective function. 

 

Figure 4.8 Comparative Response of different controllers for ramp input 

4.6.3 Disturbance Analysis 

 The proposed controller was also analyzed under step disturbance conditions, the step response 

for the disturbance signal added at t=3 seconds is shown in Figures 4.9, 4.10, and 4.11. 
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Figure 4.9 Comparative step response of the controllers with disturbance and ITAE as 

the objective function 

 

Figure 4.10 Comparative Step responses of the controller with disturbance and ISE 

objective function 
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Figure 4.11 Comparative Step responses of controllers with disturbance and ITE as the 

objective function 

It can be observed from the responses that when the disturbance is added at t=3 seconds, the 

TLBO tuned response performs best as compared to the PSO-tuned and Zeigler Nichols tuned 

response. The comparative values of the settling time are given in Table 4.5 

Table 4.5 Comparative performance of different controllers in case of disturbance signal 

Sno. Tuning Method Objective Function Settling Time (Seconds) 

1. Zeigler Nichols  6.86 

2. 

PSO 

ITAE 5.70 

ITE 5.77 

ISE 4.65 

3. 

TLBO 

ITAE 3.86 

ITE 4.80 

ISE 4.04 

 

From Table 4.5 it can be observed that the TLBO-tuned controller was able to reject the 

disturbance within 3.86 seconds in the case of ITAE as an objective function. The TLBO-tuned 

response has a minimum settling time as compared to the PSO-tuned controller and Zeigler-

Nichols-tuned controller. The control signals generated by TLBO Tuned, PSO Tuned, and ZN 

Tuned controllers are shown in Figures 4.12, 4.13, and 4.14 for different objective functions. 
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Figure 4.12 Control signals generated by TLBO Tuned, PSO Tuned and ZN Tuned 

controllers with ISE as objective Function 

 

Figure 4.13 Control signals generated by TLBO Tuned, PSO Tuned and ZN Tuned 

controllers with ITAE as objective Function 
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Figure 4.14 Control signals generated by TLBO Tuned, PSO Tuned and ZN Tuned 

controllers with ITE as objective Function 

It can be observed from Figures 4.12,4.13 and 4.14 that the control signal comes into action as 

soon as the disturbance is applied at t=0 and t=3 seconds and can control the output signal 

within seconds.  

4.6.4 Sensitivity Analysis 

The sensitivity analysis of the proposed TLBO-tuned cascade PID controller is carried out for 

the parameter variations. In the first case, the controller is tested for robustness by varying the 

system parameter, lever arm offset. It varied from 1 inch to 0.85 inches and 1.25 inches. 

 

Figure 4.15 Sensitivity Variation with change in Lever arm offset 



68 
 

Figure 4.15 shows the response of the controller for the variations. It can be observed from 

Figure 4.15 that the controller can cope with the system variations. In the second case, the 

controller sensitivity was tested for wear and tear by varying the value of gearbox efficiency 

𝜂𝜂𝜂𝜂, from 0.9 to 0.85 and 0.7. Figure 4.16 shows the response of the controller with variation in 

𝜂𝜂𝜂𝜂. 

 

Figure 4.16 Sensitivity Analysis with variation in Gearbox efficiency 

It can be observed from Figure 4.16 that the proposed TLBO controller can overcome the 

variation due to the gearbox efficiency. 

4.7 Conclusion 

In this chapter, it can be concluded that TLBO and PSO optimization-based algorithms can be 

used efficiently for tuning PID controllers in a cascade configuration. The proposed controllers 

are tested on a non-linear ball and beam system benchmark challenge. The mathematical 

analysis of the ball and beam system is performed. A cascade PID control strategy is used. The 

traditional Zeigler Nichols method, PSO algorithm, and TLBO algorithm are used to tune the 

two PID controllers. By comparing the responses of different controllers tested, it was 

discovered that the TLBO-tuned controller with ITAE and ITE as objective functions produced 

the best response as compared to the PSO-tuned controller and the conventionally tuned 

controller. With a settling time of 8.62 seconds, the response of a typically Zeigler Nichols-

tuned PID controller is exceedingly slow. The settling time is lowered to 3.20 seconds when 

the PSO-tuned response is used. However, the TLBO-tuned controller had the best response 
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time of 2.66 seconds. The TLBO-tuned controller is also tested in case of disturbance input. 

The comparative analysis indicates that the proposed TLBO controller performs well when the 

disturbance is applied at t=3 seconds. 
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CHAPTER 5  

OPTIMIZATION OF FRACTIONAL ORDER PID CONTROLLER BY 
METAHEURISTIC ALGORITHMS FOR INVERTED PENDULUM-

CART SYSTEM 
 

 

5.1  Introduction 

In the past many researchers have proposed various methods to tune conventional PID 

controllers for non-linear systems[224]. Since PID is still one of the most widely used 

controllers in the industry[239]. But its tuning is difficult by standard methods if we are dealing 

with a system having a lot of uncertainties and parameter changes. Recently, some researchers 

have proposed a fractional-order PID controller whose performance was more precise as 

compared to conventional PID controllers[14], [33], [35]. The addition of fractional calculus 

to the conventional PID controller can enhance the performance, as they have many 

advantages. A fractional-order operator can add memory to the controller. In a fractional-order 

PID controller, the degrees of derivative and integration terms are added. The values of the 

degrees can be an integer or a fractional value. This makes it a controller having five degrees 

of freedom instead of three in a conventional PID controller. However, this addition increases 

the system's complexity. 

It is evident from the past literature, that a FOPID controller performs better than a conventional 

PID controller. Several tuning methods have been proposed and implemented by various 

researchers in the past for tuning PID and FOPID controllers. Out of the various tuning 

methods, bio-inspired algorithm-based tuning methods are the most popular ones because of 

their good performance. In [33], Zafer Bingul et. al. applied PSO and ABC for tuning of FOPID 

and PID controller on two systems with delay. The results proved that the ABC-tuned controller 

proved better in terms of robustness and external disturbance. In [240], Prashant Kumar et. al. 

applied a simulated annealing method to tune the parameters of a FOPID controller applied to 

a field-controlled DC motor. The results found were compared with conventional methods like 

frequency design-based method and genetic algorithm-based method. In [241] Ruchi V. Jain et 

al. used PSO to fine-tune the FOPID controller's parameters for controlling the speed of a DC 

motor. Amlan Basu et al. created numerous ways [35]to derive the parameters of the FOPID 

controller using traditional PID tuning methods, and they compared the results. The 
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performance of the FOPID controller was shown to be superior to that of the traditional PID 

and the neural network-tuned PID controller in [242]by Naser Sadati et. al.  

One of the most important problems in control theory that has been extensively studied in 

control literature is the inverted pendulum problem, which we have addressed in this chapter. 

It is a well-known benchmark challenge that presents numerous difficult control design 

problems. The system is an underactuated, nonminimum phase, unstable, and nonlinear. 

Pendulums have maintained their usefulness due to their nonlinear character, and many of the 

concepts being developed in the field of nonlinear control are currently shown using them. The 

inverted pendulum systems became a standard tool in control laboratories due to the control 

issues. An inverted-pendulum cart system is modeled mathematically and controlled by a 

FOPID controller whose five parameters are tuned by various meta-heuristic algorithms. 

5.2  Development of a Mathematical Model of an Inverted-pendulum Cart System 

This section models an inverted pendulum that is mounted on a moving cart mathematically. A 

location on the cart that is fixed to the pendulum is the only place the pendulum is free to move 

about. The cart glides on a horizontal platform and is propelled by a stepper motor. The control's 

main objective is to push the cart hard enough to keep the pendulum upright. Figure 5.1 depicts 

a cart and an inverted pendulum. F is the force expressed in Newtons (N), 𝑚𝑚𝑝𝑝 is the pendulum's 

mass expressed in kilograms (kg), 𝑀𝑀𝑐𝑐 is the mass of the cart, 𝐹𝐹𝐻𝐻 is the force acting on the cart, 

𝐹𝐹𝑠𝑠𝑠𝑠  is the friction on the cart's surface, 𝑥𝑥 is the displacement of the cart, 𝑙𝑙 is the length of the 

cart and θ is the angle of the pendulum with vertical axis. 

 

Figure 5.1 Schematic Diagram of an inverted-cart pendulum system 
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Figure 5.2a. Free body diagram of cart b. Freebody diagram of pendulum c. Diagram 

depicting the relation between the length and angle of the pendulum 

If we calculate the centre of the gravity coordinates of the part pendulum, we get, 

𝑥𝑥𝑝𝑝𝑝𝑝 = 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙          (5.1)  

𝑦𝑦𝑝𝑝𝑝𝑝 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙          (5.2)  

The forces in the horizontal direction are given as, 

𝑀𝑀𝐶𝐶
𝑑𝑑2𝑥𝑥
𝑑𝑑2𝑡𝑡

= 𝐹𝐹𝐻𝐻 − 𝑏𝑏𝑓𝑓
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝐹𝐹𝑥𝑥        (5.3) 

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑝𝑝
𝑑𝑑2

𝑑𝑑𝑑𝑑2
(𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )                    (5.4) 

Summing all the forces in the horizontal direction, 
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𝐹𝐹𝑋𝑋 = 𝑀𝑀𝐶𝐶
𝑑𝑑2𝑥𝑥
𝑑𝑑2𝑡𝑡

+ 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑2𝑡𝑡

− 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
          (5.5) 

Substituting the value of equation (5.2) in equation (5.1) 

(𝑀𝑀𝐶𝐶 + 𝑚𝑚𝑝𝑝) 𝑑𝑑
2𝑥𝑥
𝑑𝑑2𝑡𝑡

+ 𝑏𝑏𝑓𝑓
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑2𝑡𝑡

− 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 𝐹𝐹𝐻𝐻   (5.6) 

In the vertical direction, the forces are,     

𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑝𝑝𝑔𝑔 −𝑚𝑚𝑝𝑝
𝑑𝑑2

𝑑𝑑𝑑𝑑2
(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)        (5.7) 

Also,  

𝐹𝐹𝑦𝑦 −𝑚𝑚𝑝𝑝𝑔𝑔 = −𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑2𝑡𝑡

− 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
     (5.8) 

Eliminating 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 terms,   

−𝐹𝐹𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐹𝐹𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼 𝑑𝑑
2𝜃𝜃
𝑑𝑑2𝑡𝑡

                     (5.9) 

𝜃𝜃 = 𝜋𝜋 + 𝜑𝜑, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐼𝐼 = 1
3
𝑚𝑚𝑝𝑝𝑙𝑙2  

4
3
𝑚𝑚𝑝𝑝𝑙𝑙2𝜃𝜃 + 𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = −𝑚𝑚𝑝𝑝𝑙𝑙

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      (5.10) 

Considering 𝜃𝜃 = 𝜋𝜋 as the operating point. Linearizing the equations around the operating point, 

we get 

 4
3
𝑙𝑙 𝑑𝑑

2𝜑𝜑
𝑑𝑑𝑑𝑑2

− 𝑔𝑔𝑔𝑔 = 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

         (5.11) 

(𝑀𝑀𝐶𝐶 + 𝑚𝑚𝑝𝑝) 𝑑𝑑
2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 𝑏𝑏𝑓𝑓
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑚𝑚𝑝𝑝𝑙𝑙

𝑑𝑑2𝜑𝜑
𝑑𝑑𝑑𝑑2

= 𝑢𝑢      (5.12) 

To determine the transfer function let us find the Laplace transform of equations, 

�𝐼𝐼 + 𝑚𝑚𝑝𝑝𝑙𝑙2�𝜑𝜑(𝑠𝑠)𝑠𝑠2 − 𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠) = 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙(𝑠𝑠)𝑠𝑠2     (5.13) 

�𝑀𝑀𝐶𝐶 + 𝑚𝑚𝑝𝑝�𝑋𝑋(𝑠𝑠)𝑠𝑠2 + 𝑏𝑏𝑓𝑓𝑋𝑋(𝑠𝑠)𝑠𝑠 − 𝑚𝑚𝑝𝑝𝑙𝑙𝑙𝑙(𝑠𝑠)𝑠𝑠2 = 𝑈𝑈(𝑠𝑠)    (5.14) 

Where X(s) and 𝜑𝜑(𝑠𝑠) are Laplace transform of x(t) and 𝜑𝜑(𝑡𝑡) 

𝜑𝜑(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= 4
3
𝑙𝑙 − 𝑔𝑔

𝑠𝑠2
          (5.15) 
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Substituting the values of X(s) in equation (5.12) we get, 

𝜑𝜑(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

=
𝑚𝑚𝑝𝑝𝑙𝑙
𝑞𝑞 𝑠𝑠2

𝑠𝑠4+
4
3𝑏𝑏𝑓𝑓𝑚𝑚𝑝𝑝𝑙𝑙2

𝑞𝑞 𝑠𝑠3−
𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔�𝑀𝑀𝑐𝑐+𝑚𝑚𝑝𝑝�

𝑞𝑞 𝑠𝑠2−
𝑏𝑏𝑓𝑓𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔

𝑞𝑞 𝑠𝑠
     (5.16) 

where, 𝑞𝑞 = [�𝑀𝑀𝐶𝐶 + 𝑚𝑚𝑝𝑝��𝐼𝐼 + 𝑚𝑚𝑝𝑝𝑙𝑙2� − (𝑚𝑚𝑝𝑝𝑙𝑙)2] 

Table 5.1 represents the values of parameters of the inverted pendulum cart system, 

 

Table 5.1 Inverted Pendulum-Cart Parameters 

 

 

 

 

 

 

 

 

 

 

Putting the values from Table 5.1 the transfer function is derived as, 

𝜃𝜃(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

= 2.35655𝑠𝑠
𝑠𝑠3+0.00883𝑠𝑠2−27.9169𝑠𝑠−2.30942

      (5.17) 

5.3  Fractional-order PID Controller 

The FOPID controller was first made available by Podlubny in 1999, [26]. It was a modified 

form of the standard PID controller. Through several experimental outcomes, Podlubny shown 

in [26], that FOPID generates results that are superior to those of a standard PID controller. 

The FOPID controller has five degrees of freedom compared to the PID controller which has 

only three degrees of freedom. The five degrees for a FOPID are the proportional gain 

S. No. Parameters Values 

1. 
Length of 

pendulum(l) 
0.25m 

2. 
Mass of cart 

system (𝑀𝑀𝐶𝐶) 
1.096Kg 

3. 
Mass of pendulum 

system (𝑚𝑚𝑝𝑝) 
0.109Kg 

4. 
Frictional 

coefficient,( 𝑏𝑏𝑓𝑓) 
0.1Nm-1s-1 

5. Inertia(I) 1.0036 Kgm2 
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𝐾𝐾𝑝𝑝,integral gain 𝐾𝐾𝑖𝑖,derivative gain 𝐾𝐾𝑑𝑑,integral power, and derivative power term, µ. Figure 5.3 

depicts the block diagram of a FOPID Controller. In a fractional order PID controller there is a 

fractional order integrator having order 𝜇𝜇 and a fractional order integrator of order 𝜆𝜆. These 

fractional powers help in better closed-loop responses due to the addition of two extra degrees 

of freedom. Many researchers have suggested that FOPID controllers perform better than 

classical PID controllers. The main tuning methods available for fractional order PID 

controllers are analytical formula based, based on frequency domain specifications and 

optimization based[35]. IMC method is one of the analytical methods applicable to FOPID 

controllers, but they depend on plant model. The gain margin-phase margin method is also 

applied by some researchers for tuning FOPID controllers. A study [243] used the frequency 

domain approximation method for tuning the FOPID controller. But to apply a FOPID 

controller one should ensure that it is better than a conventional PID controller. Therefore, 

optimization methods are the best tuning methods for FOPID controllers [244]. 

 

Figure 5.3 Block diagram of Fractional-order PID Controller 

The equation of a FOPID system is given as, 

𝑈𝑈(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝐾𝐾𝑖𝑖𝑑𝑑−𝜆𝜆𝑒𝑒𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝐾𝐾𝑑𝑑𝑑𝑑𝜇𝜇𝑒𝑒𝑟𝑟𝑟𝑟(𝑡𝑡)     (5.18) 

Taking Laplace transform, 

𝑈𝑈(𝑠𝑠) = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑖𝑖
𝑠𝑠𝜆𝜆

+ 𝐾𝐾𝑑𝑑𝑠𝑠𝜇𝜇        (5.19) 

To convert a FOPID to a classical PID put 𝜆𝜆 = 1 & 𝜇𝜇 = 1. By putting the integral and 

derivative powers to 1. The controller will be a simple PID controller. 
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5.3.1 Fractional Order Calculus 

For fractional order calculus, a differential integration operator 𝐷𝐷𝑏𝑏𝑡𝑡
𝜆𝜆 is defined. In the operator 

𝜆𝜆 is defined as the order, 𝑏𝑏  & 𝑡𝑡 are the limits. 

𝐷𝐷𝑏𝑏𝑡𝑡
𝜆𝜆 = �

𝑑𝑑𝜆𝜆

𝑑𝑑𝑑𝑑𝜆𝜆
,     𝜆𝜆 > 0

1            𝜆𝜆 = 0
∫ 𝑑𝑑𝜏𝜏−𝜆𝜆𝑡𝑡
𝑏𝑏 ,   𝜆𝜆 < 0

        (5.20) 

𝜆𝜆 can be a real or a complex number 

Consider a LTI system with r(t) as input and y(t) as output 

𝑎𝑎𝑛𝑛𝐷𝐷𝜆𝜆𝑛𝑛𝑦𝑦(𝑡𝑡) + 𝑎𝑎𝑛𝑛−1𝐷𝐷𝜆𝜆𝑛𝑛−1𝑦𝑦(𝑡𝑡) + ⋯… … . . +𝑎𝑎𝑜𝑜𝐷𝐷𝜆𝜆𝑜𝑜𝑦𝑦(𝑡𝑡) = 𝑏𝑏𝑚𝑚𝐷𝐷𝜇𝜇𝑚𝑚𝑟𝑟(𝑡𝑡) + 𝑏𝑏𝑚𝑚−1𝐷𝐷𝜇𝜇𝑚𝑚−1𝑟𝑟(𝑡𝑡) +

⋯… … … . . +𝑏𝑏𝑜𝑜𝐷𝐷𝜇𝜇𝑜𝑜𝑟𝑟(𝑡𝑡)        (5.21) 

Where, 𝑎𝑎𝑖𝑖, 𝜆𝜆𝑖𝑖,𝑏𝑏𝑖𝑖, 𝜇𝜇𝑖𝑖 are all real constants for i=0,1,2…..,n). 

Taking Laplace transform and considering zero initial conditions, 

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

= 𝑏𝑏𝑚𝑚𝑠𝑠𝜇𝜇𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑠𝑠𝜇𝜇𝑚𝑚−1+⋯..+𝑏𝑏𝑜𝑜𝑠𝑠𝜇𝜇𝑜𝑜

𝑎𝑎𝑛𝑛𝑠𝑠𝜆𝜆𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑠𝑠𝜆𝜆𝑛𝑛−1+⋯……𝑎𝑎𝑜𝑜𝑠𝑠𝜆𝜆𝑜𝑜
      (5.22) 

5.4 Proposed Optimized FOPID Controller 

The inverted pendulum position is controlled by an FOPID controller with proportional, 

integral, derivative, integral order, and derivative order gains optimized via the Whale 

optimization method. The objective function of the ITAE that has been utilized to achieve the 

best outcome It can be mathematically represented as, 

ITAE (Integral time absolute error)  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∫ 𝑡𝑡|𝑒𝑒𝑟𝑟(𝑡𝑡)|𝑑𝑑𝑑𝑑𝑇𝑇
0         (5.23) 

Where, 𝑒𝑒𝑟𝑟(𝑡𝑡) is the error signal between the desired level and actual level 
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Figure 5.4 Block Diagram of the Proposed Metaheuristic Algorithms tuned FOPID 

Controller 

5.5  Whale Optimization Algorithm 

The whale optimization algorithm is a recently developed swarm-based algorithm[84]. In some 

research, it was found that like humans, whales also have spindle cells. Therefore, they also 

show emotional and social behaviors. The Whale optimization algorithm has the main 

advantages of a faster convergence rate and high capability to reach a globally optimal solution. 

The approach employed for whale optimization is that it mimics the hunting techniques used 

by humpback whales. A unique form of hunting used by humpback whales is known as the 

bubble net feeding method. In this behavior, the whale first dives down in the water and then 

creates spiral-shrinking bubbles around the prey while coming towards the surface. The 

algorithm of WOA is as follows: 

1. In the first step, a random initial population, the maximum number of iterations, and 

variables are specified 

2. In the second step, for each variable fitness function is calculated for every search agent, 

and the best solution is obtained. The rest of the search agents update the positions 

accordingly. 

3. Updating of position for search agent is done by following equations, 

i. If 𝑃𝑃𝑟𝑟 < 0.5 where, 𝑃𝑃𝑟𝑟 is a random number between 0 and 1. 

a. If  |𝐴𝐴𝑤𝑤|��������⃗  <1, then position is updated by encircling the prey method. The equation for 

encircling the prey is defined as, 
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𝑋𝑋𝑊𝑊(𝑘𝑘 + 1)����������������������⃗ = 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�����������⃗ (𝑘𝑘) − 𝐴𝐴𝑊𝑊������⃗ 𝐷𝐷𝑊𝑊������⃗       (5.24) 

Where, k denotes current iteration, 𝐴𝐴𝑊𝑊 and C denotes coefficient vectors, 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�����������⃗  denotes best 

solution’s position and 

𝐴𝐴𝑊𝑊������⃗ = 2𝑎⃗𝑎𝑟𝑟1���⃗ − 𝑎⃗𝑎         (5.25) 

𝐶𝐶 = 2𝑟𝑟2���⃗           (5.26) 

𝑟𝑟1���⃗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟2���⃗  are random numbers between [0,1]. 

𝐷𝐷𝑊𝑊������⃗ = �𝐶𝐶.𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘)������������������⃗ − 𝑋𝑋𝑊𝑊(𝑘𝑘)�������������⃗ �       (5.27) 

b. If  |𝐴𝐴𝑤𝑤|��������⃗  <1, then the updating of position is done by exploration phase method, 

       𝑋𝑋𝑊𝑊(𝑘𝑘 + 1)����������������������⃗ = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�����������⃗ (𝑘𝑘) − 𝐴𝐴𝑊𝑊������⃗ 𝐷𝐷𝑊𝑊������⃗       (5.28) 

        𝐷𝐷𝑊𝑊������⃗ = �𝐶𝐶.𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)������������������⃗ − 𝑋𝑋𝑊𝑊(𝑘𝑘)�������������⃗ �       (5.29) 

       Where, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�����������⃗ (𝑘𝑘) is the random position vector 

ii. If 𝑃𝑃𝑟𝑟 > 0.5, then position is updated by spiral movement 

The equations for spirally updating the position of bubbles are given as, 

𝐷𝐷𝑊𝑊������⃗ = �𝐶𝐶𝑋⃗𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) − 𝑋⃗𝑋(𝑡𝑡)�        (5.30) 

𝑋𝑋𝑊𝑊(𝑘𝑘 + 1) = 𝐷𝐷𝑊𝑊������⃗ . 𝑒𝑒𝑏𝑏𝑏𝑏 cos(2𝜋𝜋𝜋𝜋) + 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�����������⃗ (𝑡𝑡)      (5.31) 

Where, l is a random number between (-1,1) 

4. Repetition of the 2nd and 3rd steps is done for updating position and calculation of fitness 

function till maximum iteration is reached. 

The flowchart of the whale optimization algorithm is shown in Figure 5.4, 
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Figure 5.5 Flowchart of Whale Optimization Algorithm 
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5.6  Simulation Results 

The FOPID and PID parameters are tuned by three metaheuristic algorithms PSO, TLBO, and 

WOA using ITAE as an objective function.  The comparative step response of the WOA tuned, 

PSO Tuned and TLBO Tuned FOPID Controller WOA-tuned, PSO tuned and TLBO-tuned 

PID controller is shown in Figure 5.6. 

 

Figure 5.6 Comparison of step responses of WOA-tuned FOPID and PID 

 Controller 

The Figure 5.6 compared the optimized PID controllers to the optimized FOPID controllers.  

The performance specifications of the proposed controllers are shown in Table 5.2. 
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Table 5.2 Performance Indices of Various Controllers (With ITAE As Objective Function) 

 

 

Table 5.3 Values Of 𝑲𝑲𝒑𝒑, 𝑲𝑲𝒊𝒊 , 𝑲𝑲𝒅𝒅, μ and λ parameters 

Method 𝑲𝑲𝒑𝒑 𝑲𝑲𝒊𝒊 𝑲𝑲𝒅𝒅 𝝀𝝀 𝝁𝝁 

WOA - PID 51.99 100 6.2141 - - 

TLBO-PID 56.45 993.63 25.53 - - 

PSO-PID 292.15 994.65 88.85 - - 

WOA -FOPID 94.55 67.66 98.83 0.766 0.336 

TLBO-FOPID 208.58 543.29 39.85 0.3579 0.9038 

PSO-FOPID 70 543.49 51.86 0.4764 0.8908 

 

The comparison of the values of the objective function ITAE is shown in Table 5.4 

 

 

 

Method Rise time, tr 

seconds 

Settling time, ts 

seconds 

Max. Overshoot 

(% Mp) 

Peak time tp, 

(seconds) 

WOA tuned PID 0.0659 0.8477 35.47 0.2547 

TLBO tuned PID 0.0301 3.76 14.72 0.2360 

PSO Tuned PID 0.0299 3.34 14.56 0.2346 

WOA Tuned FOPID 0.0164 0.6143 7.98 0.1498 

TLBO Tuned 

FOPID 

0.0191 0.6322 6.18 0.1507 

PSO Tuned FOPID 0.0299 0.7173 4.15 0.1324 



82 
 

 

Table 5.4 Comparison of ITAE values 

Controller ITAE 

WOA-PID 0.00625 

TLBO-PID 0.00135 

PSO-PID 0.00236 

WOA-FOPID 0.00025 

TLBO-FOPID 0.00012 

PSO-FOPID 0.00024 

 

The results of the simulation demonstrate that the TLBO-FOPID controller outperforms the 

other controllers in terms of settling time. The metaheuristic algorithms tuned FOPID 

controllers were compared with the conventional PID controller. The FOPID controllers gave 

better results as compared to PID controllers. There is a substantial improvement in the 

overshoot, settling time, and rise time. The overshoot decreased from 35% in the case of the 

WOA-tuned PID controller to 7.98% in the case of the WOA-tuned FOPID controller. The 

value of the TLBO-FOPID controller is minimal as compared to other controllers. 

5.7  Conclusion 

In this chapter, a FOPID controller whose parameters are tuned using three optimization 

algorithms, PSO, TLBO, and the Whale optimization algorithm is used to control the position 

of a nonlinear inverted cart pendulum system. The rise time, settling time, and peak time of the 

FOPID controllers are all improved when compared to the performance of the conventional 

PID controllers. If we compare the performance of three proposed metaheuristic algorithms 

TLBO has performed better as compared to the PSO and TLBO. TLBO-tuned FOPID gives 

the best results in terms of rise time, settling time, and overshoot. 

 

 

 

 

 



83 
 

 

CHAPTER 6  
 

DESIGN OF PSO-NN PID CONTROLLER FOR CONTROL OF NON-LINEAR 
JACKETED CSTR SYSTEM 

 

6.1  Introduction 

To address the issue of PID tuning for non-linear systems, metaheuristic algorithm-based PID 

controllers were applied to automobile cruise control systems, artificial respiratory systems, 

and ball and beam systems in the previous chapters. It was observed from the study that the 

optimized PIDs performed better as compared to conventional PID controllers. They searched 

the entire search space to find the optimal solutions[244]. However, these algorithms mainly 

suffered from the issue of adaptability to variations in the system and external disturbances. 

Also, there are certain parameters in each algorithm which are needed to be properly tuned to 

obtain converging results. In the literature, it was observed that many researchers have also 

used neural network-based controllers for tuning PID gains[169], [171], [245], [246]. Neural 

network-based controllers provide better adaptability to the system’s parameter variation and 

setpoint changes. However, most of the neural network-based controllers were based on 

backpropagation. The back propagation is based on a gradient descent algorithm which mostly 

gives local optimal solution instead of global optimal solution[171]. Therefore, we can use the 

metaheuristic algorithm to tune the neural network-based controller. From the literature survey, 

it is evident that metaheuristic algorithm-based controllers have the advantage of having wider 

space to search solutions and they are less sensitive to initial conditions and objective function 

constraints. Therefore, instead of using a backpropagation algorithm, it is better to use 

metaheuristic algorithms.  

In this chapter, a simple PID-like neural network-based controller is proposed whose gains are 

optimized by the PSO algorithm. PSO algorithm has proved itself to be one of the most 

successful optimization techniques because of the various advantages it offers like having 

fewer parameters and providing a global optimal solution. The proposed controller is simple 

and easy to implement as compared to controllers proposed in the literature till now. 
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6.2 Mathematical Modeling of the CSTR system 

Continuous Stirred Tank Reactor (CSTR) is a reactor mostly used in chemical industries[195]. 

It is generally used in processes where a continuous flow of products is required to obtain a 

product[92]. Chemical reactors have a lot of effects on the output due to heat, so it is important 

to control heat in a chemical reactor. Since, in a CSTR continuous stirring takes place therefore, 

it is assumed that the products are perfectly mixed. A perfect mixing assumption means that 

there is uniform concentration maintained, there are no dead zones present and rapid mixing is 

done continuously. Another assumption considered in the study is constant reactor volume is 

maintained, which means there is continuous flow of reactant and extraction of product. In a 

jacketed CSTR temperature control can be done by controlling the temperature of the jacket 

around the reactor. The jacket temperature can be controlled by a coolant flowing in it. It 

operates with the following assumptions[91]: 

1. The reactor volume is kept constant 𝑉𝑉𝑅𝑅. 

2. It is operated under steady-state conditions with perfect mixing 

In the CSTR considered we consider a simple reaction 𝐴𝐴
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝐵𝐵. The concentration of the feed 

flown initially of product A is donated as 𝐶𝐶𝐴𝐴𝐴𝐴0, the initial temperature of product A is 𝑇𝑇𝑅𝑅0 and 

it is assumed that there is a constant flow rate 𝑞𝑞𝑅𝑅. Irreversible reactions take place inside the 

reactor. The final products generated have a concentration 𝐶𝐶𝐴𝐴𝐴𝐴 and temperature 𝑇𝑇𝑅𝑅. The heat 

produced in the exothermic reaction is controlled by flowing a coolant in the jacketed layer of 

the reactor. The coolant temperature is 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 and its flow rate is 𝑞𝑞𝐶𝐶𝐶𝐶. The material balance of 

jacketed CSTR can be given as[91]: 

𝑑𝑑𝑉𝑉𝑜𝑜𝜌𝜌𝑜𝑜
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑖𝑖𝑖𝑖𝜌𝜌𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜        (6.2) 

Where, 𝑉𝑉𝑜𝑜 is the reactor volume, 𝜌𝜌𝑜𝑜 is the density of the reactor, 𝜌𝜌𝑖𝑖𝑖𝑖 is the density of feed flow 

input, 𝑞𝑞𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 are the flow rates of input and output feed. In this case, as per the 

assumptions 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜. The flow rates are also equal. 

The balance equation for component A is given as[91], 

𝑉𝑉𝑜𝑜
𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑅𝑅(𝐶𝐶𝐴𝐴𝐴𝐴0 − 𝐶𝐶𝐴𝐴𝐴𝐴)𝑉𝑉𝑅𝑅 − 𝑉𝑉𝑜𝑜𝑟𝑟𝐴𝐴       (6.3) 

Where, 𝐶𝐶𝐴𝐴𝐴𝐴 is the concentration of component A in the reactor, 𝑟𝑟𝐴𝐴 is the rate of reaction and is 

given as[91], 
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𝑟𝑟𝐴𝐴 = 𝐾𝐾𝑅𝑅0exp (−𝐸𝐸𝑅𝑅
𝑅𝑅𝑇𝑇𝑅𝑅

)𝐶𝐶𝐴𝐴𝐴𝐴        (6.4)  

where, 𝐾𝐾𝑅𝑅0 is the frequency factor, 𝐸𝐸𝑅𝑅 is the activation energy and 𝑇𝑇𝑅𝑅 is the reactor temperature. 

The energy balance equations for the reactor considering above-given assumptions and 

neglecting kinetic and potential energy are given as[91],   

𝑉𝑉𝑅𝑅𝜌𝜌𝑅𝑅𝐶𝐶𝑃𝑃
𝑑𝑑𝑇𝑇𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑅𝑅𝜌𝜌𝑅𝑅𝐶𝐶𝑃𝑃(𝑇𝑇𝑅𝑅 − 𝑇𝑇) − (−∆𝐻𝐻)𝑉𝑉𝑅𝑅𝑟𝑟𝐴𝐴 + 𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑞𝑞𝐶𝐶𝐶𝐶 

�1 − exp ( −ℎ𝐴𝐴
𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑞𝑞𝐶𝐶𝐶𝐶

)� (𝑇𝑇𝑅𝑅 − 𝑇𝑇)       (6.5) 

In Equation 6.3 RHS represents heat accumulation in the reactor, in LHS the first term 

represents energy in and out due to flow of component A, the second term represents the heat 

due to reaction in the reactor and the third term represents heat transferred to the jacket. Where, 

𝑇𝑇𝑅𝑅 is the reactor temperature and T is the jacket temperature in Kelvin. 

The above equations can be presented in the state variable form choosing 𝐶𝐶𝐴𝐴𝐴𝐴 and 𝑇𝑇𝑅𝑅 as state 

variables, 

𝑑𝑑𝐶𝐶𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑅𝑅
𝑉𝑉𝑅𝑅

(𝐶𝐶𝐴𝐴𝐴𝐴0 − 𝐶𝐶𝐴𝐴𝐴𝐴)−𝐾𝐾𝑅𝑅0exp (−𝐸𝐸𝑅𝑅
𝑅𝑅𝑇𝑇𝑅𝑅

)𝐶𝐶𝐴𝐴𝐴𝐴      (6.6)  

𝑑𝑑𝑇𝑇𝑅𝑅
𝑑𝑑𝑑𝑑

=
𝑞𝑞𝑅𝑅
𝑉𝑉𝑅𝑅

((𝑇𝑇𝑅𝑅𝑅𝑅 − 𝑇𝑇𝑅𝑅) − �
−∆𝐻𝐻
𝜌𝜌𝑅𝑅𝐶𝐶𝑃𝑃

�𝐾𝐾𝑅𝑅0 exp �
−𝐸𝐸𝑅𝑅
𝑅𝑅𝑇𝑇𝑅𝑅

�𝐶𝐶𝐴𝐴𝐴𝐴 + (
𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃
𝜌𝜌𝑅𝑅𝑉𝑉𝑅𝑅𝐶𝐶𝑃𝑃

)𝑞𝑞𝐶𝐶𝐶𝐶 

�1 − exp ( −ℎ𝐴𝐴
𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑞𝑞𝐶𝐶𝐶𝐶

)� (𝑇𝑇𝑅𝑅𝑅𝑅 − 𝑇𝑇𝑅𝑅)       (6.7) 

         

The steady-state solutions can be obtained by putting the two equations 5 & 6 to zero. For this 

study, the parameters of the jacketed CSTR chosen are shown in Table 6.1. 
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Table 6.1 Parameters of Jacketed CSTR[92] 
Parameters Values 

𝐶𝐶𝐴𝐴𝐴𝐴 Concentration of input feed 

component A 
0.0882 mol/l 

Flow rate of the coolant 𝑞𝑞𝑐𝑐𝑐𝑐 100 l/min 

Reactor Temperature 442 K 

Feed flow rate 𝑞𝑞𝑅𝑅 100 l/min 

Input Feed temperature 𝑇𝑇𝑂𝑂 350 K 

Jacket temperature, T 350 K 

The volume of reactor 𝑉𝑉𝑅𝑅 100 l 

Coefficient of heat transfer hA 7× 105 𝑐𝑐𝑐𝑐𝑐𝑐/(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

Reaction rate constant 𝐾𝐾𝑅𝑅 7.2×1010 min-1 

Activation Energy 𝐸𝐸𝑅𝑅
𝑅𝑅

 1×104 K 

The heat produced in the Reaction (∆𝐻𝐻) -2× 105 𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐻𝐻,𝐶𝐶𝐻𝐻𝐻𝐻  Specific heat 1 Cal (g/K) 

Densities, 𝜌𝜌𝑅𝑅,𝜌𝜌𝐶𝐶𝐶𝐶 1 × 103𝑔𝑔/𝑙𝑙 

 

6.3  Proposed Structure of NN-Based PID Controller 

The structure of the proposed NN-based PID Controller consists of one input layer, one hidden 

layer, and an output layer as shown in Figure 6.2. There is a single node in the input layer, three 

nodes in the hidden layer, and one node in the output layer. Therefore, the proposed NN-PID 

structure is a 1-3-1 structure. The three neurons of the hidden layer 𝑎𝑎1,𝑎𝑎2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎3 correspond 

to integral, proportional, and derivative control actions of the PID controller. The activation 

functions, f used are all linear. To produce the integral action the integral node 𝑎𝑎1 is taken as 

feedback to 𝑛𝑛1 by using the me delaying effect (𝑧𝑧−1). To produce the derivative effect the 

derivative node 𝑛𝑛3 is given negative feedback.  The proportional node 𝑎𝑎2 is the general node 

without any feedback.  
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Figure 6.1 Structure of Proposed NN-PID Controller 

As seen in the structure shown in Figure 6.2, 𝑒𝑒(𝑘𝑘) is the input data to each node which is the 

error signal i.e. the difference between the reference step input and the actual output of the 

system. The outputs of the three hidden layers 𝑎𝑎1,𝑎𝑎2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎3 at sampling times k may be given 

as, 

𝑎𝑎1(𝑘𝑘) = 𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖1(𝑘𝑘) + 𝑎𝑎1(𝑘𝑘 − 1)           (6.8) 

𝑎𝑎2(𝑘𝑘) = 𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖2(𝑘𝑘)             (6.9) 

𝑎𝑎3(𝑘𝑘) = 𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖3(𝑘𝑘) − 𝑤𝑤𝑖𝑖3(𝑘𝑘 − 1)𝑒𝑒(𝑘𝑘 − 1)           (6.10) 

Where, 𝑤𝑤𝑖𝑖1(𝑘𝑘) represents the weight connecting the input neuron to the first hidden node, 

𝑤𝑤𝑖𝑖2(𝑘𝑘) represents the weight connecting the input neuron to the second hidden node and 𝑤𝑤𝑖𝑖3(𝑘𝑘) 

represents the weight connecting the input neuron to the third hidden node. The output of the 

proposed neural network-based controller is, 

𝑢𝑢(𝑘𝑘) = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑘𝑘)𝑎𝑎𝑗𝑗(𝑘𝑘)3
𝑗𝑗=1 = 𝑤𝑤1𝑜𝑜(𝑘𝑘)𝑎𝑎1(𝑘𝑘) + 𝑤𝑤2𝑜𝑜(𝑘𝑘)𝑎𝑎2(𝑘𝑘) + 𝑤𝑤30(𝑘𝑘)𝑎𝑎3(𝑘𝑘)  (6.11) 

In the first node 𝑧𝑧−1 is added as delay. So, 𝑎𝑎(𝑘𝑘 − 1) = 𝑎𝑎(𝑘𝑘)𝑧𝑧−1 

Then, 𝑒𝑒(𝑘𝑘 − 1) = 𝑧𝑧−1𝑒𝑒(𝑘𝑘)        (6.12) 
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The output of the first hidden layer is  

𝑎𝑎1(𝑘𝑘) = 𝑤𝑤𝑖𝑖1(𝑘𝑘)𝑒𝑒(𝑘𝑘)
1−𝑧𝑧−1

         (6.13) 

An integral relationship is represented by this equation. As a result, this node produces a gain 

equal to the error's integral. Activation feedback was used by the derivative node to generate 

the derivative action. 

𝑎𝑎3(𝑘𝑘) = 𝑤𝑤𝑖𝑖3(𝑘𝑘)𝑒𝑒(𝑘𝑘)[1 − 𝑧𝑧−1]       (6.14) 

A differential mode of operation is represented by this equation. The control output u(k) clearly 

shows that the neural network-based controller generates output similar to that of a PID 

controller. The neural network's first node generates output similar to an integral action, the 

second node generates action similar to a proportional control, and the third node generates 

output similar to a derivative control. The PID NN that is being proposed here has a simple 

structure, with its output layers producing the sum or controller output, as opposed to the typical 

BP-based NN, which is complex and has multiple layers. Thus, we can simply modify the PID 

parameters to achieve the desired results by training the weights of the PID-based neural 

network. 

6.4  Proposed PID Like Neural Network tuning by PSO 

The study proposes an innovative PSO-based PID NN tuning technique. PSO is still one of the 

most employed algorithms for solving many types of non-linear problems, even after the 

development of several metaheuristic algorithms. The reason for the selection of the PSO 

algorithm in this study is that it is simple to implement, as it has fewer parameters as compared 

to other complex metaheuristic algorithms developed. It has a faster convergence rate. Another 

advantage of PSO is that there are fewer chances of having a locally optimal solution as 

compared to other metaheuristic algorithms. The block diagram explaining the function of 

PSO-NN-PID is shown in Figure 6.4. 
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Figure 6.2 Block Diagram of PSO-based novel NN-PID controller 

It can be seen in Figure 6.4 that the NN-like PID controller parameters are tuned by PSO. The 

objective function used is mean square error (MSE). The tuning of weights by the PSO 

algorithm is done to minimize the objective function MSE. The error 𝑒𝑒(𝑘𝑘) is the difference 

between temperature output 𝑡𝑡(𝑘𝑘) and the reference step input r(k).  

The cost function is calculated after each iteration. The objective of the controller is to 

minimize the cost function: 

𝐸𝐸𝑐𝑐 = 1
2
∑ (𝑟𝑟(𝑘𝑘) − 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘))2𝑇𝑇
𝑘𝑘=1        (6.15) 

Where, 𝑟𝑟(𝑘𝑘) is the desired reference input and 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) is the actual output. 

The PSO-tuned NN-based PID controller then gives the control signal to the Jacketed CSTR 

for temperature control. The algorithm of the proposed PSO-tuned NN-PID Controller is 

described below: 

6.4.1 Algorithm of the proposed PSO-tuned NN-PID Controller 

1. Define PID as a neural network having one neuron in the input layer, three neurons 

in the hidden layer, and one neuron in the output layer. 

2. Initialize random weights within the range [-1,1].  

3. PSO is initialized with dimension size 3, population size 25, and a maximum 

number of iterations of 50. 

4. The fitness function is chosen as the Mean square error. 

5. For all particles do  
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6. Calculation of the control law 𝑢𝑢(𝑘𝑘) by initial weights. 

7. Calculation of output 𝑦𝑦𝑖𝑖(𝑘𝑘) 

8. Evaluate the current position and velocity in the search space 

9. Calculate the value of the objective function for the current iteration 

10. If the current position gives the best objective function, then, 

11. 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑖𝑖
𝑘𝑘 

12. Else If the current objective function is the best overall objective function, then, 

13. 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑖𝑖
𝑘𝑘 

14. Endif 

15. Move the particles in the search space 

16. Update the position and velocity of the particles,  

17. Do until the stopping criteria are met 

18. End 

6.5 Back propagation algorithm for tuning NN-PID controller 

The objective of the controller is to minimize the error between the actual output and the desired 

reference input. The output error can be written mathematically as, 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝑘𝑘) = 𝑟𝑟𝑖𝑖(𝑘𝑘) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)           (6.16) 

Where, i = 1,2,….S and 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘) are the output variables measured and 𝑟𝑟𝑖𝑖(𝑘𝑘)  is the reference 

input. The fitness function MSE is given as, 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘) = ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑘𝑘)𝑠𝑠
𝑖𝑖=1             (6.17) 

Now, we state the rules for updating the weights of the neural network controller 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘−1)

= ∑ �𝜕𝜕𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑘𝑘)
𝜕𝜕𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)

. 𝜕𝜕𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘−1)

�𝑆𝑆
𝑖𝑖=1

𝜕𝜕𝜕𝜕(𝑘𝑘−1)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘−1)

          (6.18) 

𝜕𝜕𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘−1)

≈ Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)
Δ𝑢𝑢(𝑘𝑘−1)

≈ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘−1)
𝑢𝑢(𝑘𝑘−1)−𝑢𝑢(𝑘𝑘−2)

            (6.19) 

We use the sign function to find the result. The final rule of updating weights is, 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) = −𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘−1)

=𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝑘𝑘). 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖(𝑘𝑘)
Δ𝑢𝑢(𝑘𝑘−1)

.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝑘𝑘 − 1)        (6.20)          

Where, j=1,2,3 

The weights of the output layer are, 
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𝑤𝑤𝑜𝑜𝑜𝑜 = 1, 𝑖𝑖 = 1,2,3           (6.21)  

The function of the back propagation-based NN PID controller is shown in Figure 6. 

 

Figure 6.3 Block Diagram of BP-NN-based PID controller 

The BP-based NN-like PID controller shown in Figure 6.5 gives the optimized PID parameters. 

The NN-based PID controller gives the control signal to control the temperature of jacketed 

CSTR. 

6.6 Simulation Results 

To check the effectiveness and viability of the proposed PSO-based NN-PID controller a 

comparative simulation study has been performed with a BP-tuned NN-PID controller and ZN-

tuned PID controller to control the temperature of CSTR. The dynamic equations for a non-

linear CSTR are developed in equations 5 & 6. The temperature of the CSTR is selected as the 

controlled variable. From equation 6 difference equation can be calculated and reference input 

is taken as the step input. The data for the proposed tracking control is obtained CSTR 

temperature control difference equation and the input data is a step signal. The simulation 

studies are performed on MATLAB 2018 software. The simulations are performed on a PC 

with an Intel Core i3 processor with a speed of 2.10GHz and a RAM of 8.00 GB. The 

parameters chosen while applying the PSO algorithm are presented in Table 6.2. 
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Table 6.2 Parameters Selected for PSO 

S.no. Parameters Values 

1. 

𝐶𝐶1&𝐶𝐶2 

Acceleration 

Constants 

2 

2. 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 0.9 

3. 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 0.4 

4. 
Maximum no. of 

Iterations 
50 

 

The comparative step responses for various controllers for temperature control of jacketed 

CSTR are given in Figure 6.6. 

 

Figure 6.4 Comparative Step Responses of Various Controllers 

The performance indices explaining the step responses quantitatively are presented in Table 

6.3. 
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Table 6.3 Comparative Step performance indices of various Controllers 

S.no. Method Rise 

time ,tr 

seconds 

Settling 

time, ts 

seconds 

Max. 

Overshoot 

(% Mp) 

Peak time 

tp, 

(seconds) 

1.  Zeigler 

Nichols 

0.1810 44.08 0.4900 1.6731 

2.  BPNN-

PID 

0.2727 26.33 0.6200 1.8194 

3.  PSO-NN-

PID 

0.1283 23.13 0.2900 0.7480 

4.  PSO-PID 0.1565 25.64 0.4233 0.9073 

5.  TLBO-

PID 

0.1465 24.63 0.3562 0.8989 

 

It is evident from Figure 6.6 and Table 6.3 that rise time, tr is lowest at 0.1283 in the case of 

PSO-NN-PID tuned controller as compared to BPNN-PID, PSO-PID and TLBO-PID and ZN 

tuned PID. The maximum overshoot has also reduced from 44.08% in ZN-tuned PID to 26.33% 

in BPNN-PID and has further reduced to 23.13% in PSO-NN-PID. The PSO-PID and TLBO-

PID also have an overshoot slightly higher than the proposed method. The settling time is also 

lowest at 0.7480 in the case of the PSO-NN-PID controller. The values of different optimized 

PID gains 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖and 𝐾𝐾𝑑𝑑  are given in Table 6.4. 

Table 6.4 𝑲𝑲𝒑𝒑, 𝑲𝑲𝒊𝒊 and 𝑲𝑲𝒅𝒅 parameters of various Controllers 

S.no. Method Used 𝑲𝑲𝒑𝒑 𝑲𝑲𝒊𝒊 𝑲𝑲𝒅𝒅 

1. ZN Tuned 4.0795 0.8703 12.019 

2. PSO-NN-PID 𝟗𝟗.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 𝟐𝟐.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟗𝟗.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 

3. BPNN-PID 4.3300 0.3100 6.1100 

4. PSO-PID 10 8.75 10 

5. TLBO-PID 8.3940 4.7184 2.0562 
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The proposed controller is also tested for disturbance rejection. The comparative step responses 

of different controllers in case of disturbance application from time = 1 second to time = 1.75 

seconds are presented in Figure 6.7.  The performance indices of the responses presented in 

Figure 6.5 are quantitatively compared in Table 6.5. 

 

 

Figure 6.5 Comparative Step responses of various controllers under disturbance 

application 

Table 6.5 Comparative Step performance indices of various controllers under 

disturbance application 

S.no. Method Rise 

time, tr 

seconds 

Settling 

time, ts 

seconds 

Max. 

Overshoot 

(% Mp) 

Peak time 

tp, 

(seconds) 

1.  Zeigler 

Nichols 

0.1839 47.03 1.21 2.77 

2.  BPNN-

PID 

0.2713 30.00 1.21 2.36 

3.  PSO-NN-

PID 

0.1289 50.00 1.20 1.88 

4.  PSO-PID 0.2715 59.94 1.65 2.79 

5.  TLBO-

PID 

0.1873 68.85 1.91 3.79 
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Table 6.5 shows that the PSO-NN-PID has the best rise time of 0.1289 seconds as compared to 

0.2713 seconds in BPNN-PID, 0.1839 seconds in ZN-PID, 0.2715 seconds in PSO-PID and 

0.1873 seconds in case of TLBO-PID. There is a slight increase in maximum overshoot in the 

case of the PSO-NN-PID controller but if we compare the settling time, it shows that the 

controller efficiently reduces the effect of disturbance quickly. The settling time is lowest at 

1.88 seconds in the case of the PSO-NN-PID controller. The values of controller gains are given 

in Table 6.6. 

Table 0.6  𝑲𝑲𝑷𝑷, 𝑲𝑲𝒊𝒊 and 𝑲𝑲𝒅𝒅 parameters of various Controllers under disturbance 

application 

S.no. 
Method 

Used 
𝑲𝑲𝑷𝑷 𝑲𝑲𝒊𝒊 𝑲𝑲𝒅𝒅 

1. ZN Tuned 4.0795 0.8703 12.019 

2. 
PSO-NN-

PID 
9.9000 1.9983 9.4000 

3. 
BPNN-

PID 
4.2145 0.2909 6.2350 

4. PSO-PID 8.8566 2.4566 8.8564 

5. 
TLBO-

PID 
1.3969 0.3564 6.2345 

 

The comparative analysis of the performance indices is shown in Figure 6.8.  
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Figure 6.6 Comparative graph of rise time, overshoot, peak time, and settling time for 

various controllers 

The control signal u(t) and error signal e(t) are shown in Figures 6.9 & 6.10. 

 

Figure 6.7 Control Signal in case of PSO-NN-PID controller 
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Figure 6.8 Error Signal in case of PSO-NN-PID controller 

The graph showing variation of  𝐾𝐾𝐾𝐾, 𝐾𝐾𝐾𝐾 and 𝐾𝐾𝐾𝐾  with respect to time is shown in Figure 6.11. 

 

Figure 6.9 Variation of 𝑲𝑲𝑷𝑷, 𝑲𝑲𝒊𝒊 and 𝑲𝑲𝒅𝒅 values with time 
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The comparative bar graph of MSE in the case of three controllers, ZN-PID, BPNN-PID, and 

PSO-NN-PID is shown in Figure 6.12.  

 

Figure 6.10 Comparative bar graph of MSE values for various controllers 

Table 6.7 Mean Square Error for Different Controllers 

S.no. Controller Name MSE 

1. BP-NN-PID 

controller 

0.00070923 

2. PSO-NN-PID 

controller 

0.00040892 

3. ZN-PID controller 0.0024 

4. Deep learning neural 

network model 

predictive control 

[36] 

0.0357 

5. DGWO-Fuzzy WNN 

model [28] 

0.0065 
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Table 6.8 Integral Square Error for Different Controllers 

S.no. Controller Name ISE 

1. ZN-PID Controller 0.4561 

2. BP-NN-PID controller 11.0025e-5 

3. PSO-NN-PID 

Controller 

9.0012e-5 

 

6.7  Discussion 

A comparison of the simulation results of the three controllers is presented in the above section. 

ZN-tuned PID, BP-tuned PID-NN, and PSO-tuned PID-NN are compared for temperature 

control on a non-linear jacketed CSTR plant. Table 6.3 presents the comparative step 

performance indices of the proposed controller with a BP-tuned NN PID controller and a 

conventional ZN-tuned PID controller. It is clear from the comparative study that the proposed 

controller gives a faster response as compared to the BP-NN-PID controller and the ZN-tuned 

PID controller. The rise time was 0.2727 seconds for the BP-NN-PID controller, and it is about 

0.1283 seconds for the proposed PSO-tuned PID controller. The proposed controller is also 

effective in reducing the overshoot significantly. The overshoot of the response was about 

44.08% for a ZN-tuned PID controller, which reduced to 26.33% in a BP-tuned PID controller 

and further reduced to 23.13% in a PSO-tuned NN-PID controller. Similarly, a significant 

improvement can be observed in peak time and settling time with the proposed PSO-tuned NN-

PID controller. The optimized values of 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖  and 𝐾𝐾𝑑𝑑 in the case of the proposed controller 

are 9.900, 2.0272, and 9.400, respectively. To test the robustness of the proposed scheme a 

disturbance signal of amplitude 1.5 was applied for a time period of 1 second. In the case of 

PSO tuned PID-NN controller there is a slight increase in overshoot but it can be observed that 

the controller was able to subside the disturbance quickly in 1.88 seconds as compared to ZN-

tuned PID taking 2.77 seconds and BP-tuned PID-NN taking 2.36 seconds. Figure 6.9 shows a 

comparative graph of rise time, peak time, overshoot, peak time, and settling time. It can be 

seen from the graph that there is a reduction in rise time, overshoot, and settling time in the 

case of PSO-PID-NN. Figures 6.9 & 6.10 represent the variation of the control signal and error 

signal with time in the case of PSO-PID-NN. Figure 6.11 represents the variation of 

𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑑𝑑 in the case of PSO-PID-NN. The values of 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖   and 𝐾𝐾𝑑𝑑 stabilize around 9.900, 

1.983, and 9.400 respectively.  
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Figure 6.12 shows a comparative bar graph of different controllers. The value of cost function 

MSE is least in the case of PSO-PID-NN and largest in the case of ZN-tuned PID. Table 8 

shows a comparison of integral square error for different controllers. It is observed from the 

comparison that the proposed controller has a minimum integral square error of 9.0012e-5. The 

computational time of the proposed PSO-tuned NN-PID controller is 0.7546 seconds which is 

slightly larger than BP BP-based NN-PID controller with a computational time of 0.5689 

seconds. However, since the accuracy and disturbance rejection of the proposed PSO-based 

NN-PID controller is good, a slightly higher computational time can be ignored. Comparing 

the BP-tuned NN-PID controller and PSO-based NN-PID controller, we can say that the PSO-

based NN-PID controller performs better as compared to the BP-tuned NN-PID controller. The 

reason is that backpropagation performance depends on the correct initial value selection and 

gradient descent which causes it to fall mostly in local optimal solutions. PSO is a metaheuristic 

algorithm that has been applied effectively to various complex problems. As compared to 

backpropagation PSO has the advantage that it searches a large search space for feasible 

solutions, therefore there are fewer chances of the solution falling in the local optima. The 

global best solutions found by swarms provide better solutions with MSE as an objective 

function. Therefore, PSO-based NN-PID controller provides better solutions as compared to 

BP-based NN-PID controllers in terms of robustness, speed, and adaptability. 

6.8  Comparison of the proposed controller with previous studies in Literature 

From Table 6.7 it can be concluded that the proposed controller has a Mean square error of 

0.00040892 which is the smallest as compared to other controllers proposed recently in the 

literature [28], [36]. The studies done in the past to control CSTR reactors have different 

objectives. But they can be compared because they were used to control the reactor. In the past 

many researchers have applied different controllers like conventionally tuned PID controllers, 

fuzzy logic-based PID controllers, neural network-based adaptive controllers, and 

metaheuristic-based PID controllers to control CSTR concentration and temperature [27], 

[29]–[35], [37]. The limitations of these studies are that the controllers proposed till now had 

complex structures, more computational time, large steady-state error, higher rise time, and 

settling time, some of the controllers resulted in falling into local optimal solutions instead of 

global solutions. Therefore, to reduce the limitations the proposed PSO-tuned NN-PID 

controller gives a very simple structure having only three neurons in the hidden layer which 

reduces complexity. The simple structure of NN and optimization of weights by PSO give a 
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faster convergence. The proposed controller gives a smaller overshoot, rise time, and settling 

time. The hybridization of PSO with NN ensures the attainment of the global optimal solution. 

6.9 Conclusion 

The study aims to overcome the limitations of backpropagation-tuned PID controllers and 

conventional ZN-tuned PID controllers when applied to a non-linear system. The novel neural 

network structure proposed as a PID controller is very simple, therefore it reduces system 

complexity and gives higher accuracy. The proposed controller is tested by controlling the 

temperature of a non-linear jacketed CSTR. The major findings of the proposed study are as 

follows: 

1. The proposed PSO-tuned NN-PID controller is proved to be better in terms of rise time, 

overshoot, peak time, and settling time as compared to the backpropagation-tuned NN-PID 

controller, metaheuristic algorithms tuned PSO-PID, TLBO-PID, and conventional ZN-

tuned PID controller. 

2. The proposed controller is simple in structure. Therefore, reduces complexity as compared 

to structures proposed earlier in the literature. Also, the proposed controller gives better 

accuracy as compared to BP-NN-PID and ZN-PID.  

3. The proposed controller was effective in disturbance reduction efficiently as compared to 

the backpropagation-tuned NN-PID controller, PSO-PID, TLBO-PID, and ZN-tuned PID 

controller. It was able to reject the disturbance faster as compared to other controllers. 

The comparison of MSE values from different controllers from the literature proves the 

effectiveness of the proposed PSO-tuned NN-PID controller 
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CHAPTER 7  

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1  Conclusion 

In this thesis, a detailed investigation was carried out about the complexities of PID tuning 

when applied to a non-linear system. It explored how the performance in complex, dynamic 

non-linear systems can be improved by integrating the areas of control systems, artificial 

intelligence, and optimization techniques. After getting an insight into how traditional tuning 

methods fail for the PID controllers applied to non-linear systems. We shifted our focus towards 

the integration of control and AI for the specific problem. Some intelligent methods are 

proposed in this work for PID tuning of different bench-mark non-linear systems. In the thesis, 

applications of some prominent metaheuristic algorithms have been explored like PSO, TLBO, 

and WOA algorithms. Each of these algorithms was studied and applied to the specific non-

linear system PID tuning. These algorithms brought success and adaptability to the applied 

non-linear problems. The application of neural networks is also studied and was found that it 

can provide better adaptability to the system's non-linearities and uncertainties. Therefore, a 

hybrid approach is proposed in the thesis combining neural network and PSO algorithm to tune 

PID controller applied to a benchmark non-linear system. A novel PID controller like neural 

network is proposed in the thesis which is simple in structure and easy to implement. An 

extensive study is carried out for each of the proposed controllers. Their performance indices 

and error indices were compared with the traditional tuning methods and some intelligent 

controllers proposed recently in the literature. 

In Chapter 3, we designed an optimized PID controller by using TLBO and PSO algorithms 

and applied them to automobile cruise control systems and artificial respiratory systems. The 

controllers were analysed based on performance indices of the output responses and error 

indices obtained. The results were also compared with the conventional Zeigler-Nichols tuning 

method and a recently proposed fuzzy PD plus I controller. The proposed controller was also 

tested for robustness in the presence of uncertainty and the results by changing the system 

parameter were found within permissible limits. 
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In Chapter 4, a cascade-optimized PID controller is proposed for a fourth-order ball and beam 

system. The two cascade PID controllers were optimized by TLBO and PSO algorithm and the 

results were compared with classical tuning methods. The proposed controllers were also tested 

for robustness under the presence of a disturbance signal. The TLBO controller performed 

better as compared to other controllers, as it was able to settle the disturbance within a 

minimum time. 

In Chapter 5, an optimized Fractional-order PID controller is proposed whose parameters are 

tuned by three metaheuristic algorithms, TLBO, PSO, and a new whale optimization algorithm. 

The proposed optimized Fractional-order PID controllers were compared with the previously 

proposed TLBO-tuned PID controller, PSO-tuned PID controller, and whale optimization-

tuned PID controller in terms of output response and error indices. The fractional order PID 

controllers performed better as compared to PID controllers. 

In Chapter 6, a novel PID-like neural network was proposed whose weights were optimized by 

the PSO algorithm. The efficacy of the proposed method was the simple structure of the NN-

PID controller proposed. The proposed method was applied for temperature control of a CSTR 

system. It was also tested for robustness under the presence of a disturbance signal. 

7.2 Major Contributions of the Present Thesis 

1. Novel intelligent PID optimization methods: In this thesis, some novel PID 

optimization methods are proposed for non-linear systems by applying the power of 

optimization algorithms and neural networks. 

2. Highlighting the advantages and disadvantages of various intelligence techniques: In 

this work, we have given a deep insight into the advantages and weaknesses of different 

intelligent methods used for PID tuning. Like, optimization algorithms, fuzzy logic, and 

neural networks. Therefore, thesis work can guide engineers in selecting a particular 

intelligent method for their specific application. 

3. Study of different bench-mark non-linear systems: In this work, we have developed the 

mathematical models of some bench-mark non-linear systems like a continuous stirred 

tank reactor, ball and beam system, inverted-pendulum system, and artificial respiratory 

system. 

4. Applications to real-world systems: The thesis provides insight into the proposed 

methods for real-world problems ranging from automobile cruise control systems, 

artificial respiratory systems in health care, and CSTR systems in the process industry, 
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to popular bench-mark non-linear systems like ball and beam systems and inverted 

pendulum-cart system. 

 

7.3  Limitations and Future Directions 

While the present work has given various valuable insights into the efficient PID tuning of non-

linear systems and has contributed to the field significantly. But the following limitations are 

enlisted of the present work which could be the future research directions: 

1. Study of complex non-linearities: Non-linear systems have a big span of complexity. 

Therefore, future research can explore more deeply the different non-linear behaviors 

and understand specialized intelligent techniques for the specific non-linear complexity. 

2. Real-time implementation: The implementation of the proposed intelligent PID tuning 

methods into real-world systems is a challenge. Further research can be done on the 

constraints during the real-time implementation of the proposed methods. 

3. Robustness: The testing of the proposed methods for different uncertainties and non-

linearities is another prospect of research. 

4. Implementation of the proposed methods for MIMO systems: The proposed intelligent 

methods can be also tested for MIMO systems and compared with the conventional 

methods. 

5. Extension of the proposed intelligent methods for plant identification: The methods 

applied in the present work are all based on known plant dynamics. Therefore, future 

research directions can be toward unknown plant identification and control. 
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APPENDIX 

Codes of Optimization Algorithms Used 

PSO 

%Initialization% 

n = 50;           % Size of the swarm  

bird_step  =50;   % Maximum number of "birds steps" 

dimension = 3;          % Dimension of the problem 

c2 =1.2;          % PSO parameter C1  

c1 = 0.12;        % PSO parameter C2  

w =0.9;           % momentum or inertia   

fitness=0*ones(n,bird_step); 

%    initialize the parameter % 

R1 = rand(dimension, n); 

R2 = rand(dimension, n); 

current_fitness =0*ones(n,1); 

% Initializing swarm and velocities and position %                                  

current_position = 10*(rand(dimension, n)-.5); 

velocity = .3*randn(dimension, n) ; 

local_best_position  = current_position ; 

%     Evaluate initial population           %            

for i = 1:n 

current_fitness(i) = pso_pid_cstr1(current_position(:,i));     

end 

local_best_fitness  = current_fitness ; 

[global_best_fitness,g] = min(local_best_fitness) ; 

for i=1:n 

global_best_position(:,i) = local_best_position(:,g) ; 

end 

 %  Velocity Update  % 

velocity = w*velocity + c1*(R1.*(local_best_position-current_position)) + 
c2*(R2.*(global_best_position-current_position)); 

 %   SwarmUpdate % 
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current_position = current_position + velocity ; 

%  evaluate new swarm   %                                              

% Main Loop% 

iter = 0 ;        % Iteration  counter 

while  ( iter < bird_setp ) 

iter = iter + 1; 

for i = 1:n, 

current_fitness(i) = pso_pid_cstr1(current_position(:,i)) ;     

end 

for i = 1 : n 

if current_fitness(i) < local_best_fitness(i) 

local_best_fitness(i)  = current_fitness(i);   

local_best_position(:,i) = current_position(:,i)   ; 

end    

end 

[current_global_best_fitness,g] = min(local_best_fitness); 

if current_global_best_fitness < global_best_fitness 

global_best_fitness = current_global_best_fitness; 

for i=1:n 

global_best_position(:,i) = local_best_position(:,g); 

end  

end 

velocity = w *velocity + c1*(R1.*(local_best_position-current_position)) + 
c2*(R2.*(global_best_position-current_position)); 

current_position = current_position + velocity;  

 sprintf('The value of interation iter %3.0f ', iter ); 

end % end of while loop its mean the end of all step that the birds move it  

 xx=fitness(:,50); 

 [Y,I] = min(xx); 

 current_position(:,I) 

 figure; 

%plot(BestCosts, 'LineWidth', 2); 
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semilogy(global_best_position, 'LineWidth', 2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on;               

  

TLBO Algoithm 

% Objective Function 

ObjectiveFunction = @(x) pso_pid_respiratory_new(x); 

noVar = 3;          % Number of Unknown Variables 

Varvec = [1 noVar]; % Unknown Variables Matrix Size 

VarMin = 0;       % Unknown Variables Lower Bound 

VarMax =100;       % Unknown Variables Upper Bound 

%Define TLBO Parameters% 

MaxIter =50;        % Maximum Number of Iterations 

noPop = 50;           % Population Size 

%Initialization % 

empty_individual.Position = []; 

empty_individual.Cost = []; 

% Initialize Population Array% 

pop = repmat(empty_individual, noPop, 1); 

% Initialize Best Solution% 

BestSol.Cost = inf; 

% Initialize Population % 

for i=1:noPop 

pop(i).Position = unifrnd(VarMin, VarMax, VarSize); 

pop(i).Cost = CostFunction(pop(i).Position); 

if pop(i).Cost < BestSol.Cost 

 BestSol = pop(i); 

end 

end 

% Initialize Best Cost obtained% 

BestCosts = zeros(MaxIter,1); 
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% TLBO Main Loop start% 

for it=1:MaxIter 

% Calculate Population Mean% 

Mean = 0; 

for i=1:noPop 

Mean = Mean + pop(i).Position; 

end 

Mean = Mean/noPop; 

% Select Teacher as best solution% 

 Teacher = pop(1); 

for i=2:noPop 

if pop(i).Cost < Teacher.Cost 

Teacher = pop(i); 

end 

end   

% Teacher Phase% 

for i=1:noPop 

% Create Empty Solution% 

newsol = empty_individual; 

% Select Teaching Factor randomly% 

 TF = rand([1 2]);    

 % Teaching (moving towards teacher)% 

 newsol.Position = pop(i).Position + rand(VarSize).*(Teacher.Position - TF*Mean);  

 % Clipping% 

newsol.Position = max(newsol.Position, VarMin); 

newsol.Position = min(newsol.Position, VarMax); 

% Evaluation% 

newsol.Cost = CostFunction(newsol.Position); 

% Comparision% 

if newsol.Cost<pop(i).Cost 

pop(i) = newsol; 

if pop(i).Cost < BestSol.Cost 
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BestSol = pop(i); 

end 

end 

end 

% Learner Phase% 

for i=1:noPop 

A = 1:noPop; 

A(i)=[]; 

j = A(randi(noPop-1)); 

Step = pop(i).Position - pop(j).Position; 

if pop(j).Cost < pop(i).Cost 

Step = -Step; 

end 

% Create Empty Solution% 

newsol = empty_individual   

% Teaching (moving towards teacher)% 

newsol.Position = pop(i).Position + rand(VarSize).*Step;  

  % Clipping% 

newsol.Position = max(newsol.Position, VarMin); 

newsol.Position = min(newsol.Position, VarMax);   

 % Evaluation% 

newsol.Cost = CostFunction(newsol.Position 

% Comparision% 

if newsol.Cost<pop(i).Cost 

pop(i) = newsol; 

if pop(i).Cost < BestSol.Cost 

BestSol = pop(i); 

End 

end 

end 

% Store Record for Current Iteration% 

BestCosts(it) = BestSol.Cost; 
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% Show Iteration Information% 

disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]);    

end 

% Results% 

figure; 

%plot(BestCosts, 'LineWidth', 2); 

semilogy(BestCosts, 'LineWidth', 2); 

xlabel('Iteration'); 

ylabel('Best Cost'); 

grid on; 
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