Smartphone Malware Detection based on Enhanced
Correlation -based Feature Selection on Permissions
A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE
OF
MASTER OF SCIENCE
IN
MATHEMATICS

Submitted by:
Shagun
(2K21/MSCMAT/47)
Deepak Kumar
(2K21/MSCMAT/12)
Under the supervision of

Dr. ANSHUL ARORA

nnnnn

ﬂs
DEL’

,__rsn,'_:..‘:;'_ Wi

DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

We, Shagun (2K21/MSCMAT/47) and Deepak Kumar (2K21/MSCMAT/12), students of
MSc in Mathematics, hereby solemnly declare that the Dissertation titled "Smartphone
Malware Detection based on Enhanced Techniques," which we have submitted to the
Department of Applied Mathematics at Delhi Technological University, Delhi, fulfills the
requirements for the degree of Master of Science. We affirm that this project is entirely
original and has been developed independently, without any form of plagiarism or improper
citation. We have diligently conducted our research, and the content presented in this
dissertation 1s the result of our own intellectual efforts. Furthermore, this work has not been
previously submitted or utilized in any way to obtain any other degree, diploma,
associateship, fellowship, or similar academic recognition. We acknowledge the importance
of academic integrity and take full responsibility for the authenticity and originality of our

project.

Place: Delhi SHAGUN AND DEEPAK KUMAR

Date: 25 " May 2023

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I, Anshul Arora, hereby confirm that the Project Dissertation titled " Smartphone Malware
Detection based on Enhanced Techniques " has been submitted by Shagun
(2K21/MSCMAT/47) and Deepak Kumar (2K21/MSCMAT/12) from the Department of
Applied Mathematics at Delhi Technological University. This dissertation fulfills partial

requirements for the Master of Science degree.

I attest that this project represents the diligent efforts of the students under my supervision. To
the best of my knowledge, this work has not been previously submitted, either partially or in

its entirety, for any degree or diploma at this University or elsewhere.

Place: Delhi Dr ANSHUL ARORA
Date: 25 t* May 2023 SUPERVISOR

ASSISTANT PROFESSOR

ABSTRACT

In the present day, smartphones are becoming increasingly ubiquitous, with people of all ages
relying on them for daily use. The number of app downloads continues to skyrocket, with 1.6
million apps downloaded every hour in 2022, amounting to a staggering total of 142.6 billion
downloads. Google Play outpaces i10OS with 110.1 billion downloads compared to 10S's 32.6
billion. Given the growing threat of malware applications for Android users, it is essential to
quickly and effectively identify such apps. App permissions represent a promising approach
to malware detection, particularly for Android users. Researchers are actively exploring
various techniques for analyzing app permissions to enhance the accuracy of malware
detection. Overall, understanding the importance of app permissions in identifying potentially

harmful apps is a critical step in protecting smartphone users from malware threats.

In our thesis, we have successfully employed the Enhanced Correlation-based Feature
Selection (ECFS) technique to discern the nature of mobile applications, distinguishing
between malicious and non-malicious ones. This approach leverages both feature-feature and
feature-class correlation scores, specifically the ENMRS and crRelevance measures, to
compute the relevance of each feature. By employing ECFS, we were able to identify the

most informative features for accurate prediction.

We further assessed the performance of various Machine Learning Techniques by utilizing
the ECES scores. Notably, we achieved the highest accuracy of 92.25% by employing the
Random Forest ML Technique. This accuracy was obtained by setting the nl and n2 values to
0.9 and 0.1, respectively. Our findings highlight the effectiveness of ECFS in enhancing the
prediction accuracy for distinguishing between malicious and non-malicious apps, with

Random Forest emerging as the most successful ML Technique in this regard.

ACKNOWLEDGEMENT

The culmination of an endeavor, marked by its successful completion, owes its realization to
the collective efforts of individuals who have been involved implicitly or explicitly. The
meticulous execution of the planning and research phases of our project stands as a testament
to the unwavering dedication exhibited by numerous individuals, and it is with utmost
sincerity that we acknowledge their invaluable contributions. This acknowledgment serves as

a humble expression of gratitude, recognizing their indispensable assistance in our pursuit.

First and foremost, we extend our heartfelt appreciation to our esteemed project guide, Prof.
Anshul Arora ,whose profound guidance and expertise have consistently guided us through
the complexities encountered and Prof. S. Sivaprasad Kumar (Professor), the esteemed Head
of the Department of Applied Mathematics, along with all the faculties who have been
instrumental in our learning journey. . It has been a great honor and privilege to work under
their guidance. Their profound teachings and invaluable insights have greatly enriched our
understanding and paved the way for the successful execution of our work on " Smartphone

Malware Detection based on Enhanced Techniques ".

Last but certainly not least, we extend our heartfelt thanks to our colleagues, friends, and
parents, who have been unwavering sources of encouragement and inspiration throughout the
course of this project. Their constant support and belief in our abilities have propelled us

forward, enabling us to overcome challenges and achieve our goals.

In conclusion, we are deeply indebted to all those who have played a significant role in our
journey, and we wholeheartedly express our sincerest appreciation for their unwavering

support, guidance, and inspiration.

Thanking You
Shagun

Deepak Kumar

CONTENTS

CANDIDATE’S DECLARATION.......cccoviiiiiiiiiiiiiiiiiinicnennn.
CERTIFICATE. ... e
PSR NI s o R S B S B S B RS R SR RS S
ACKNOWLEDGEMENTE ... coosummvemmamin s swsssassisasismins
CONTENTS - oo s s s s S s s So s s Ea s
LIST OF TABLES ..ot ima s s imas
LISTOF FIGURES.o
CHAPTER 1L INERODUL TN, o cvssommsssmossnmsnssmssmmsossmsssmsmmes

1.1 COMMENCEMENT
1.2 MOTIVATION

CHAPTER 2 LITERATURE REVIEW.........cccciiiiiiiiiiiiiininnn
2.1 RELATED WORK

CHAPTER 3 PROPOSED METHODOLOGY..........................
3.1 FLOW OF PROCEDURE

3.2 FEATURE EXTRACTION

3.3 FEATURE-FEATURE CORRELATION WITH ENMRS

3.4 FEATURE-CLASS CORRELATION WITH crRELEVANCE

3.5 PROPOSED FEATURE SELECTION TECHNIQUE :ECES

3.6 MACHINE LEARNING TECHNIQUES USED

CHAPTER 4 RESULTS AND DISCUSSION.............cooiiiinean.
4.1 RESULTS

4.2 CONCLUSION

vii

LIST OF TABLES

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

viii

LIST OF FIGURES

Figure 1- Graph showing use of android

Figure 2- Graph showing number of malware attacks (in billions) from year 2015 to 2022

CHAPTER 1 INTRODUCTION

1.1 COMMENCEMENT

Over the past decade, smartphones have experienced an unprecedented rise in popularity,
transforming from niche gadgets to ubiquitous necessities in our modern world. With each
passing year, smartphones have become more affordable, technologically advanced, and
accessible to a wider range of users, leading to explosive growth in adoption rates. According
to industry reports, the global smartphone market is projected to continue its upward
trajectory, with an estimated 5.5 billion smartphone users by 2025. The global smartphone
market size was valued at USD 457.18 billion in 2021 and is projected to grow from USD
484.81 billion in 2022 to USD 792.51 billion by 2029, exhibiting a CAGR of 7.3% during the

forecast period.

This phenomenal growth can be attributed to several factors, including the increasing demand
for mobile internet access, the proliferation of social media, the rise of e-commerce, and the
integration of smartphones into various aspects of our daily lives. From communication and
entertainment to productivity and beyond, smartphones have become indispensable tool for
people of all ages and backgrounds. As smartphones continue to evolve with new features
and capabilities, such as augmented reality, artificial intelligence, and 5G connectivity, their
popularity is expected to continue growing in the foreseeable future, shaping the way we live,

work, and connect in a rapidly changing digital landscape.

The versatility of smartphones is a key factor that contributes to their widespread appeal.
They have become an all-in-one device that seamlessly integrates various aspects of our lives
into a single device. In fact, for many people, smartphones have become the primary means
of accessing the internet, checking emails, and staying connected with the world.The
convenience and flexibility offered by smartphones have made them an essential tool for

modern living.

Moreover, smartphones have become more accessible and affordable than ever before. The

availability of budget-friendly smartphone models and affordable data plans has expanded the

consumer base, allowing more people to purchase smartphones. This has resulted in increased
smartphone adoption, particularly in emerging markets where affordability plays a crucial
role in consumer choices. As smartphones become more affordable, they become more

accessible to a wider range of individuals, driving their popularity even further.

Additionally, the constant evolution of technology has also contributed to the growing
popularity of smartphones. Technological advancements in areas such as processor power,
camera capabilities, and connectivity options have made smartphones more powerful,
feature-rich, and attractive to consumers. As new technologies emerge and smartphones
continue to innovate, consumers are drawn to the latest and greatest offerings, further fueling

the popularity of these devices.

In conclusion, the adaptability of smartphones, their affordability, and the continuous
evolution of technology are key factors that have contributed to the widespread popularity of
smartphones. They have become indispensable companions in our modern lives, offering
versatility, convenience, and accessibility that appeal to a wide range of consumers. As
technology continues to advance, smartphones are likely to remain a dominant force in the

realm of consumer electronics, shaping the way we live, work, and connect in the digital age.

Graph showing use of android in Fig.1.1

KilKat
1.4)

8.9

Lallipop 5.0
Jelly Bran 4 7 x
Jelly Bean 1. 1.x
=9

Lollipog

Jeity Rean 4 3

Acrcid platform vesion

Clngerbread
(2.3.3 -2.3.7)

lec Cream Sandwich
“EnN3i-4a04)

Froyo {Z2.4)

0% 5% 10% 59% Z0% 25% 30% s bk 1 0%
= "

When it comes to mobile operating systems, Android has gained significant popularity in

recent years, emerging as a dominant force in the smartphone market.

Android's widespread usage can be attributed to several factors. One of the main reasons is
the sheer diversity of devices that run on Android, ranging from budget-friendly options to
high-end flagship phones, catering to a wide range of consumers with varying budgets and
preferences. This versatility has allowed Android to capture a larger market share,
particularly in emerging markets where affordability plays a crucial role in consumer
decisions. Additionally, Android's open-source nature has fostered a vibrant ecosystem of
developers and app creators, resulting in a plethora of apps and customization options for

users.

Android stands out as the undeniable front-runner when considering the global usage of
mobile operating systems. According to recent findings by Stat counter, Android commands a
staggering 71.45 percent of the worldwide market share, while 1OS trails behind with a 27.83
percent share. Together, these two giants account for over 99 percent of the total market
share, leaving scant room for other contenders like Samsung and KaiOS, which collectively
make up less than 1 percent of the market. These numbers clearly highlight the indomitable
dominance of Android and iOS as the preeminent mobile operating systems that remain

unrivaled in the industry.

The ability to customize and personalize the user experience has been a significant draw for
many Android users. Moreover, Android's seamless integration with Google services, such as
Google Drive, Google Maps, and Google Assistant, has also played a pivotal role in its
widespread adoption. Finally, Android's compatibility with a wide range of third-party
devices and accessories, such as smartwatches, smart TVs, and smart home devices, has
further cemented its position as a preferred choice for tech-savvy users who seek seamless
connectivity across different devices. Overall, Android's flexibility, affordability,
customization options, and compatibility have contributed to its growing popularity and

market dominance in the realm of mobile operating systems.

1.2 MOTIVATION

Android has emerged as the primary target for malware apps due to several factors. First and
foremost, Android's widespread adoption as the most widely used mobile operating system
makes it an attractive target for cybercriminals seeking a large user base to exploit.
Additionally, the open-source nature of Android allows for customization and flexibility, but
it also means that potential vulnerabilities can be exploited by malicious actors. The
decentralized nature of the Android app ecosystem, with multiple app stores and varying
levels of app review processes, can also create opportunities for malware to slip through the

cracks.

Furthermore, the diverse hardware and software configurations across different Android

devices can make it challenging to implement uniform security measures.

Lastly, the popularity of third-party app stores and the availability of apps outside of the
official Google Play Store can increase the risk of downloading malware-laden apps.
Collectively, these factors make Android the biggest target for malware apps, necessitating

robust security measures to safeguard users' devices and data.

Android users, like users of any operating system, may fall victim to social engineering
attacks, such as phishing, scams, and other forms of social manipulation, which can lead to
the unwitting installation of malware. Human error, lack of awareness, and risky online

behavior can all contribute to the increased likelihood of malware attacks on Android devices.

During 2022, the worldwide number of malware attacks reached 5.5 billion, an increase of
two percent compared to the preceding year. In recent years, the highest number of malware

attacks was detected in 2018, when 10.5 billion such attacks were reported across the globe.

10.5

Number of malware attacks in billions

2015 2016 2007 2018 2019 2020 2021 2022

Fig. 1.2 showing number of malware attacks (in billions) from year 2015 to 2022.

Malware, or malicious software, can pose various risks to Android devices. Some potential

risks of having malware on an Android device may include:

1. Financial Loss: Certain malware can initiate unauthorized transactions, make
premium service subscriptions, or send SMS messages to premium numbers, resulting

in unexpected charges and financial losses.

2. Data Theft: Malware can steal sensitive information from your device, such as
passwords, credit card details, personal documents, and more. This information can be

used for identity theft or financial fraud.

3. Privacy Invasion: Malware may access and collect personal data, including contacts,
messages, photos, and browsing history, without your consent. This invasion of

privacy can lead to various forms of misuse or exploitation.

Unauthorized Access: Some malware can grant remote access to cybercriminals,
allowing them to control your device, install additional malicious software, or use it

as part of a botnet for illegal activities.

Performance Degradation: Malware can consume system resources, such as CPU
and memory, causing your device to slow down, freeze, or crash frequently. This

degradation in performance affects the overall user experience.

Battery Drain and Excessive Data Usage: Malware may run in the background,
constantly consuming battery power and using up your data plan, resulting in faster

battery drain and increased data charges.

Malicious Activity Propagation: Malware can spread to other devices through
various means, such as infecting shared files, apps, or network connections. This can

lead to a wider impact and potential harm to others.

It is crucial to install reputable antivirus software, regularly update your device's operating

system and apps, and exercise caution when downloading apps or clicking on suspicious links

to mitigate the risks associated with malware on Android devices.

Efforts to develop effective techniques for detecting malware in application stores are critical

due to the dynamic nature of permission usage in apps.

Common issues with permission feature-based detection methods include:

I

Over-Privileged Apps: Permission-based detection relies on analyzing the permissions
requested by apps. However, some legitimate apps may request excessive permissions
that they don't actually require for their intended functionality. This can lead to false

positives, where harmless apps are flagged as potentially malicious.

Limited Contextual Information: Permission-based detection focuses solely on the
requested permissions of an app, without considering the context or purpose of those
permissions. This can result in limited insight into the app's actual behavior and

potential risks, as malicious apps can dynamically misuse granted permissions.

3. Permission Abuses: Malicious apps can employ various techniques, such as
permission misuse or permission chaining, to bypass permission-based detection.
They may request seemingly benign permissions individually but combine their

capabilities to perform harmful actions once installed on a user's device.

4. Lack of Timeliness: Permission-based detection methods may not keep up with the
evolving landscape of app permissions. As new permissions are introduced or existing
ones are repurposed, detection systems may lag behind in detecting potential risks

associated with these changes.

5. Difficulty Detecting Stealthy Malware: Sophisticated malware can employ
obfuscation techniques to hide their malicious behavior and evade detection.
Permission-based methods alone may struggle to identify such stealthy malware, as

they primarily rely on static analysis of requested permissions.

6. Limited Coverage: Permission-based detection methods focus solely on permissions
and may not consider other aspects of an app's behavior or characteristics. This can
result in overlooking certain types of malware that do not exhibit suspicious

permission patterns but engage in other malicious activities.

By leveraging innovative techniques, the proposed work aims to provide a fresh perspective

on detecting malicious apps in Android.

Proposed work different from others :

The novelty of our proposed work can be best described on the basis of the statistical
selection procedure that we have adopted, there are many works that use only feature class
correlation adoption method, but we used both feature-feature and feature-class correlation
based on Enhanced Correlation-based Feature Selection (ECFS). The preliminary results
based on the work we did were satisfactory but need more evaluation on evaluating for

various values of nl and n2 in future work.

1.3 CONTRIBUTIONS

In this thesis, we have used a statistical feature selection technique called Enhanced
Correlation-based Feature Selection (ECFS) which uses feature-feature correlation scores
evaluated using ENMRS and feature-class correlation scores evaluated using crRelevance.
The ECFS method was introduced by the authors of [3] for using these correlations
effectively to extract relevant feature subsets from multi-class gene expression and other
machine learning datasets. They then evaluated the performance of ECFS using decision
tree, random forest, and KNN classifiers, and was found to be highly satisfactory across

multiple benchmark datasets.

We have adopted this feature selection technique in our thesis for a multi-binary form of
data which has features named as different permissions needed by malicious and benign
apps. Moreover, the objects that were required by our adopted method are in the form of
malicious and non-malicious application names, and as for the multi-class parameter we
have defined Class A for non-malicious applications and Class B for malicious

applications. The following points summarize the contributions of this work.

1. Data collection from Androzoo and google play store.

2. We extracted permissions from malicious and non-malicious applications.

3. Data cleaning, renaming permissions as feature 1, feature 2,.. feature 129. Also
putting the columns and features into python 2-D lists for easier estimation of
ENMRS and crRelevance

We evaluated ENMRS scores for both malicious and non-malicious applications.

We evaluated crRelevance scores for both malicious and non-malicious applications.

Next, we evaluated ECFS scores for different values of nl and n2.

>~ o B

Lastly, we evaluated the accuracy for each combination of nl and n2 using various
machine-learning techniques.
8. We concluded our paper by noting the highest accuracy achieved is 92.25 \% for the

combination n1=0.9 and n2=0.1 with the Random Forest technique.

CHAPTER 2 LITERATURE REVIEW

2.1 RELATED WORK

In this section, we shall embark on an intriguing expedition, delving into the depths of
preexisting or interconnected studies conducted in this specialized domain. The authors in [3]
proposed a permission-ensemble-based mechanism to detect Android malware with
permission combinations. The authors in [4], developed a new method for Android
application analysis that involved using static analysis to collect important features and

passing them to a functional API deep learning model.

Li et al [5] described a reliable Android malware classifier using Factorization Machine
architecture and app feature extraction. Their results showed that interactions among features
were critical to revealing malicious behavior patterns. Qiu et. al. [6] proposed Multiview
Feature Intelligence (MFI) for detecting evolving Android malware with similar capabilities.
MFI extracts features via reverse engineering to identify specific capabilities from known

malware groups and detect new malware with the same capability.

The authors in [7] proposed a hybrid deep learning-based malware detection method,
utilizing Convolutional Neural Networks and Bidirectional Long Short-Term Memory
(BILSTM) to accurately detect long-lasting malware. The authors in [8] introduced a
Malware Capability Annotation (MCA) to detect security-related functionalities of
discovered malware. MCA analyzes zero-day family malware using knowledge from known

malware groups that share similar abilities.

The authors in [9] proposed a malware detection mechanism using transparent artificial
intelligence. This approach leverages app attributes to distinguish harmful from harmless
malware.Khalid et. al [10] analyzed the impact of dynamic analysis categories and features
on Android malware detection. Using filter and wrapper methods,identified the most

significant categories and list important features within them..

10

The authors in [11] introduced SHERLOCK, a deep learning algorithm that uses self-
supervision, and ViT model to identify malware. SHERLOCK learns distinguishing attributes

from binary image-based representations to separate harmful from safe software.

The authors in [12] identified and ranked permissions commonly found in normal and
malicious apps. They proposed a machine learning algorithm that detects Android malware

by analyzing hybrid vectors containing permissions and traffic features.

Li et al. [13] proposed a stealthy backdoor that is triggered when a specific app is introduced
and demonstrated the attack on common malware detectors. The authors in [14] introduced
AndroOBES, a released obfuscated malware dataset spanning three years (2018-2020). It
consisted of 16,279 real-world malware samples across six obfuscation categories, providing

valuable temporal information.

The authors in [15] proposed AdMat, a framework that uses an adjacency matrix to classify
Android apps as images. This enables the Convolutional Neural Network to differentiate
between benign and malicious apps,even identifying malware families, making it a simple yet

effective way to analyze Android applications.

Canfora et al. [16] designed LEILA, a tool that uses model checking to verify Java bytecode
and detect Android malware families. This paper presents LEILA's novel approach, design,

and implementation as a formal tool for identifying malicious behavior in mobile devices.

Yousefi-Azar et al. [17] proposed Byte2vec, which improves static malware detection by
embedding semantic similarity of byte-level codes into feature and context vectors. It allows
for binary file feature representation and selection, enhancing malware detection capabilities.
The authors in [18] presented Alterdroid, a dynamic analysis approach for detecting
obfuscated malware components within apps. It works by creating modified versions of the

original app and observing the behavioral differences.

Eom et al. [19] used three feature selection methods to build a machine learning-based
Android malware detector, showing its effectiveness on the Malware Genome Project dataset
and their own collected data. Zhang et al. [20] proposed a process for Android malware

detection using static analysis and ensemble learning.It incorporates semantics-based features

11

to overcome obfuscation techniques, and collects features through static analysis of code and

app characteristics..

Dissanayake et. al [21] study evaluates K Nearest Neighbor (KNN) algorithm's performance
with different distance metrics and Principal Component Analysis (PCA). Results show
improved classification accuracy and efficiency with the right distance metric and PCA.The
authors in [22] focused on detecting Android malware in APK files by analyzing obfuscation
techniques, permissions, and API calls. They highlighted the challenges faced by traditional

antivirus software in detecting these malware variants.

Amenova et al [23] proposed a CNN-LSTM deep learning approach for Android malware
detection, achieving high accuracy through efficient feature extraction. Mantoro et. al [24]
employed dynamic analysis using the Mobile Security Framework to detect obfuscated
malware. It showcases the effectiveness of dynamic analysis in detecting various types of

malware.

The authors in [25] compared state-of-the-art mobile malware detection methods, addressing
android malwares and various detection classifiers. It provided insights into the progress of
the android platform and offers a clear understanding of the advancements in malware

detection.

The authors in [26] proposed a framework, FAMD, for fast Android malware detection based
on a combination of multiple features. The original feature set is constructed by extracting
permissions and Dalvik opcode sequences from samples. The dimensionality-reduced
features are then input into the CatBoost classifier for malware detection and family

classification.

Awais et. al [27] introduced ANTI-ANT,a unique framework that detects and prevents
malware on mobile devices. It used three detection layers, static and dynamic analysis, and
multiple classifiers.Islam et. al [28] investigated the effectiveness of unigram, bigram, and
trigram with stacked generalization and finds that unigram has the highest detection rate with
over 97 percent accuracy compared to bigram and trigram. Overall, this study established a

strong foundation for using n-gram techniques in developing android malware detection.

12

The authors in [29] proposed a fitting factor technique to identify duplicate malicious files in
the Drebin datasets based on opcode occurrence. They found that 51.57 percent of malicious
samples had duplicates. We evaluated popular detection models with and without duplicates,
using all features and the top 26 features engineered by IG and AE techniques. Goyal et
al.[30] proposed SafeDroid which is a lightweight, open-source distributed service for
detecting malicious Android apps with static features and machine learning through three

micro-services, providing user-friendly feedback upon malware detection.

The authors in [31] proposed Android malware installation by introducing robust and
lightweight classifiers. Relevant malware behavior features are extracted through API-level
analysis, and various classifiers are evaluated with the feature set. The study demonstrated the

effectiveness of the proposed classifiers in mitigating Android malware installation.

The authors in [32] presented two novel deep learning-based methods for end-to-end Android
malware detection. The approach included raw bytecode resampling from classes.dex files as

input enhancing detection effectiveness and efficiency.

Kong et al.[33] proposed FCSCNN, a unique approach for Android malware detection by
calculating mean centers of benign and malicious samples from a database, and measuring
distances to determine class. The authors in [34] described a novel detection framework
called PermPair, which utilized permission pairs extracted from an application's manifest file
to construct and compare graphs for both malware and normal samples .The proposed method

was innovative and aims to identify potential threats efficiently.

Mathur et al. [35] proposed a framework NATICUSdroid for detecting malware in Android
devices with machine learning classifiers by examining the local and specialized Android
permissions. The feature selection methods were used to determine the effectiveness of eight

machine learning algorithms in detecting malware.

In [36], authors proposed a system for detecting mobile malware on Android devices using
multi-criteria decision-making and fuzzy analytical hierarchy process. The system utilizes
static analysis techniques, specifically permission-based features, to identify malicious
activity.The authors in [37] introduced EveDroid, an Android malware detection system that

used behavioral patterns in different events to effectively detect new malware. It used event

13

groups to describe app behaviors in the event level, which captures higher levels of

semantics.

Srivastava et al. [38] developed a malware detector and analyzer with a focus on
understanding malware attacks on mobile devices during the COVID-19 pandemic. They
implemented a model that extracts intrinsic features from Android application files for quick
and accurate analysis, resulting in improved app classification accuracy as benign or

malicious.

The authors in [39] compareed existing methods for detecting Android malwares and
provides a concise overview of the progress of the Android platform. Emphasis was given to
various techniques for detecting Android malwares and presenting the current state of
malware detection classifiers.Aktas et al.[40] proposed a dynamic analysis-based method for
detecting malicious applications by extracting features from runtime behavior.Using machine
learning techniques,they developed a detection system using these features to distinguish

between malicious and benign applications.

The authors in [41] introduced contrasting permission patterns as a means to differentiate
between malware and clean applications based on their permission usage. A framework is

presented for Android malware detection that utilizes these contrasting permission patterns.

Xi et al. [42] proposed a new method for detecting malicious Android applications using a
feature vector extracted from the AndroidManifest file, combining permission and component
information, and leveraging the naive Bias classification algorithm. Garcia et al.[43]
proposed RevealDroid,a machine learning-based approach for Android malware detection
and family identification, utilizing categorized API usage, reflection-based features, and
native binary features, without the need for complex program analyses or extensive feature

extraction.

The authors in [44] discussed the dendritic cell algorithm (DCA) to detect anomalies in the
behaviors of 100 Android applications based on logged system calls. The DCA features are
then utilized for classifying the applications as benign or malicious, providing a concise
approach for Android malware detection.The authors in [45] proposed a novel approach for

Android malware detection using gray scale image visualization and GIST descriptor for

14

feature extraction. Three classifiers (KNN, RE, and DT) were utilized for detection and

comparison, offering a concise and innovative approach.

Igbal et al [46] proposed SpyDroid which is a real-time malware detection framework that
can incorporate third-party detectors and facilitates efficient and controlled monitoring. It
includes monitoring and detection modules, and application layer sub-detectors are

supported. The detection module determines when to flag an app as malicious.

The authors in [47] presented an Android malware detection approach using the XGBoost
model and evaluated the impact of feature selection on classification. Results showed high
effectiveness and accuracy, comparable to SVM but with less time consumption.The authors
in [48] presented DroidGraph which uses hierarchical behavior graphs with 136 identical

nodes, representing the semantics of Android API calls in APK files.

The authors in [49] defined Droid-NNet, a deep learning framework for Android malware
classification, outperforming existing methods on Malgenome-215 and Drebin-215 datasets.
The authors in [50] introduced a permission-based malware detection system and re-
implement Juxtapp for malware and piracy detection. Performance is evaluated on a dataset

with original, pirated, and malware-infected applications.

The authors in [51] introduced DynaMalDroid,a dynamic analysis-based framework for
detecting malicious Android apps. It employs system call extraction and three modules:

dynamic analysis, feature engineering, and detection.

15

CHAPTER 3 PROPOSED METHODOLOGY

We explain the system design in various sub-phases described below.

Our study involved the use of two datasets, one comprising normal apps, and the other
containing malicious apps. The dataset for normal apps was collected from the Google Play
Store, while the dataset for malicious apps was obtained from the AndroZoo. In March 2023,
we collected data on the apps available in the Google Play Store, which amounted to a total

of 2,673,292 apps.

It is important to note that our study solely focused on apps in the Google Play Store and did
not consider apps available on other platforms. The Google Play Store was chosen due to its
popularity and the accessibility of its data, rather than being an accurate representation of all

available apps across all devices.

The AndroZoo website is a growing library of Android apps collected from various sources,
including the official Google Play app market. It also contains a collection of app-related
metadata aimed at facilitating research on Android devices. The library currently contains
15,097,876 unique APKs, which have been scanned by multiple antivirus programs to
identify malicious software. Each software in the dataset has over 20 different types of
metadata, including VirusTotal reports. Our dataset consisted of 111,010 applications, with

55.505 labeled as malicious and the remaining 55,505 labeled as normal.

3.1 FLOW OF PROCEDURE

Data Extraction from Androzoo
website

Filtering & Cleaning the data
(renaming/droping columns)

Calculating both normal and
malware
ECFS(ENMRS+crRelevance)scores

calculating application's ECFS
scores for both normal & malware

Training the datasets based on
various combinations of n1 & n2
values

Evaluating mean accuracy scores
for various applied ML algorithms

Concluding best & worst mean
accuracy scores obtained

| |
| |
| |
| |
| |
| |

16

17

3.2 Feature Extraction

Feature extraction is a vital process in Android malware analysis as it helps in identifying the
characteristics of malware and distinguishing it from benign applications. Android
permissions are commonly used as features for building a probable model for Android

malware analysis.

Permissions related to the network, reading privacy, receiving and sending SMS, dialing, and
others are considered dangerous permissions and are used to distinguish between malicious
and benign applications. Hence, we have selected permissions as the feature for experiments

in this proposed work.

Android permission extraction is a crucial process used to detect potential malware by
extracting and analyzing permissions from Android apps. There are two main techniques for

extracting permissions: static analysis and dynamic analysis.

We followed a static approach to extract permissions that involves decompiling the app's
APK file using tools such as Apktool, JADX, or Androguard to extract the manifest file,
which contains details about the app's rights. The permission declarations are then extracted
from the manifest file using XML parsing libraries.These extracted permissions can be
further analyzed by comparing them to a predefined list of known dangerous permissions or
by looking for anomalous or excessive permissions that an app seeks beyond the scope of its

authorized functionality.

In contrast, dynamic analysis involves running the app on a device or emulator and observing
its behavior during runtime using tools like DroidBox, TaintDroid, or MobSF. During
runtime, dynamic analysis tools record the permissions that the app seeks, either through the
uses-permission> tag in the manifest file or through runtime permission requests made using

the Android Runtime Permissions system.

We had a total of 129 unique permissions from both datasets.

18
3.3 Feature-Feature Correlation with ENMRS

In order to evaluate the ECES scores in our dataset, we used the Effective Normalized Mean
Residue Similarity (ENMRS) measure, which is an extension of the Normalized Mean

Residue Similarity (NMRS) measure.

While Pearson’s correlation coefficient is another widely used correlation measure, we
opted for NMRS due to its strict confinement to detecting shifting correlation only, rather
than scaling correlation. However, both NMRS and Pearson’s correlation coefficient are
highly sensitive to outlier or noisy values, which can cause important features to be dropped
from the optimal feature subset. To address this limitation, we replaced the object mean with
object local means in ENMRS, computed by taking the average of the element and its left
and right neighbors. This characteristic is highly required in feature-feature correlation
analysis due to the availability of correlation over a subset of homogeneous objects. In our
case, we used a single left and right neighbor and decided to use the single neighborhood
scheme in our local mean computation. ENMRS between a pair of objects d1 =[ai,az,...,ax]
and d2 = [by, ba,...,bs] can be defined as follows.

ENMRS(dvd>) =1 — 2|8 @imean —Pi+bimean)|

meax(z?zl I(ai—atmean(i}) |'E?=1|bi_blmean(i}|)

where,
AUmean() = (@i-1 + @i +a;41)/3 i 1<i<n,
Amean() = (@i + @41)/2 =1,

Aimean(i) = (aj.; +a)/2 if,i=n.

3.4 Feature-class correlation measure: crRelevance

The crRelevance measure evaluates the ability of a feature to distinguish various class
labels, in our case two, i.e., Malware and Normal, and returns a value in the range of [0, 1].
A class range is defined as a range for a feature, in which all objects have the same class
label. The class range can be determined by assigning a range of consecutive values for a

feature that has the same class label.

19

The crRelevance measure is based on four definitions that provide the theoretical basis of
crRelevance. The first definition is for a feature with values corresponding to n objects or
instances in the dataset, a class range can be defined as a range such that all objects in this
range have the same class label. The second definition states the cardinality of a class range
as the cardinality of the set of all objects for the feature in the given range. The third
definition defines the class-cardinality of class A as the cardinality of the set of all objects
having the class label A. The fourth definition is the core class range of class A, which is the

highest class range for class A.

CTRE!EUHHCEClaSE (A) is defined as follows

rcard(ccrange(A))
ccard(A)

cheLevairlce;'f"’Ss (A) =

For dataset D, the core class relevance of a feature f; € F can be defined as the highest
crRelevance for a given class A;. Mathematically, crRelevance of a feature f;,

crRelevance(f;) , for a dataset with n classes A4, 45, ..., A, can be defined as follows.

crRelevance(f;) = max crRelevanceff* (4;)
<jsn

3.5 Proposed feature selection technique: ECFS

The proposed feature selection method uses ENMRS and crRelevance to compute an ECES
value for each pair of features, which ranges from 0 to 1. The method ensures that a high
ECES value corresponds to a high crRelevance score (or featureclass correlation) and a low
ENMRS score (or feature-feature correlation) by subtracting the ENMRS value for the pair
from 1 and adding it to the average crRelevance score. The constants n; and n2 are
multiplied with computed feature-feature and feature-class components to bring the range
[0,2] to [0,1] and control their contribution to the ECFES score. The method selects a user-
defined number of features by iteratively choosing the next highest unprocessed feature pair
with at least one common feature and including the common feature(s) in the selected
subset. The selected feature subset is presented as an output. ENMRS between the pair of
features is directly computed, while crRelevance of the individual feature is averaged to

obtain the crRelevance value of the pair of features. To ensure that a high ECES value

20

(which ranges from 0 to 1) corresponds to a high crRelevance score (or feature-class
correlation) and low ENMRS score (or feature-feature correlation), we subtract the ENMRS
value for the pair from 1 and add it to the average Table 10 Sizes of optimal feature subsets.
crRelevance score is used to obtain the final ECFS value. ECFS value of a pair of features

fi, > can be computed as follows.

ECFS(f.fo) = (nl x(1- ENMRS(fl,fz))) + (n, x avgRelevance(fy, f;))

where,

n1 and nz are constants such that n; + 2= 1, and

crRelevance(f;)+crRelevance(f;)
2

avgRelevance(f,, f5) =

The constants nl and n2 are multiplied with computed feature-feature and feature-class
components in the equation to bring the range [0,2] to [0,1] and to control the contribution
of feature-feature and feature-class correlations on the ECFS score. These constants are set
such that n; +n2 = 1. Setting n; = n2= 0.5 will lead to the equal contribution of these
components. Setting the value n; > 0.5 will lead to a result that will have more contributions

from ENMRS,

1.e., feature-feature correlation while setting the value n2 > 0.5 will lead to a result with

contribution from crRelevance or feature class correlation.

3.6 Machine Learning Techniques Used

We used the following Machine Learning Techniques to evaluate the efficiency of the ECES

scores for different values of nl & n2.
« Decision Tree: A decision tree is a supervised machine learning algorithm that is used for
both classification and regression tasks. It is a graphical representation of a flowchart-like

structure where each internal node represents a test on a feature attribute, each branch

21

represents the outcome of the test, and each leaf node represents the final decision or the
predicted outcome.

The decision tree algorithm starts with the entire dataset at the root node and recursively
splits the data based on the feature values to create a tree-like structure. The splitting is
done in a way that maximizes the information gain or minimizes the impurity measure at
each node.

The information gain is a measure of the reduction in uncertainty after the split. It
calculates the difference between the impurity of the parent node and the weighted
impurity of the child nodes. The impurity measures commonly used in decision trees
include Gini impurity and entropy.

In a classification task, each leaf node represents a class label, and the majority class in
the leaf node is assigned to instances that reach that node. For regression tasks, the leaf
nodes contain the predicted numerical values.

The decision tree algorithm is advantageous due to its simplicity and interpretability. It
can handle both categorical and numerical features, as well as missing values. Decision
trees can also capture non-linear relationships between features. However, decision trees
are prone to overfitting, especially when the tree becomes too complex. This issue can be
mitigated by techniques such as pruning, setting a maximum depth for the tree, or using
ensemble methods like random forests.

Decision trees have numerous applications in various domains, including finance,
healthcare, marketing, and customer relationship management. They are widely used for
tasks such as credit scoring, fraud detection, disease diagnosis, and recommendation

systems.

Support Vector Machine: A Support Vector Machine (SVM) is a supervised machine
learning algorithm used for both classification and regression tasks. It is a powerful and
versatile algorithm that can effectively handle complex datasets.

The goal of an SVM is to find the best hyperplane that separates the data points of
different classes in the feature space. A hyperplane is a decision boundary that maximizes
the margin or the distance between the nearest data points of different classes. The data
points closest to the hyperplane are called support vectors, hence the name "Support

Vector Machine."

22

The SVM algorithm can handle linearly separable data by finding a linear hyperplane.
However, it can also handle non-linearly separable data by using kernel functions. Kernel
functions transform the original feature space into a higher-dimensional space where the
data points can be linearly separated. Common kernel functions include linear,
polynomial, radial basis function (RBF), and sigmoid.

In the case of classification, once the hyperplane is determined, new data points can be
classified based on which side of the hyperplane they fall on. SVM aims to maximize the
margin between the classes, which leads to better generalization and improved
performance on unseen data.

For regression tasks, SVM aims to find a hyperplane that best fits the data points, while
considering a certain tolerance or error margin. The predicted value for a new data point

is determined based on its position relative to the hyperplane.

Logistic Regression: Logistic regression 1s a statistical model used for binary
classification problems, where the goal is to predict a binary outcome or assign an
observation to one of two classes. It is a popular and widely used algorithm in machine
learning and statistics.

The key idea behind logistic regression is to model the relationship between a set of
independent variables (also known as features or predictors) and the probability of an
event occurring. The dependent variable, or the outcome variable, is binary and takes one
of two values (e.g.. 0 or 1, true or false, yes or no). The logistic regression model
estimates the probability that an observation belongs to the positive class (1) given its
feature values.

The logistic regression model uses the logistic function (also known as the sigmoid
function) to map the output of a linear combination of the features to a value between 0
and 1. The logistic function has an S-shaped curve that smoothly transitions between the

two extremes, representing the probability of the positive class.

« Random Forest: Random Forest is a popular machine learning algorithm used for
both classification and regression tasks. It belongs to the ensemble learning methods,
which combine multiple individual models to make predictions. Random Forest is known
for its effectiveness, versatility, and robustness. Random Forest has several advantages.

Firstly, it can handle high-dimensional data and large feature sets effectively. It can

23

capture complex relationships between features and the target variable and handle non-
linear decision boundaries. Secondly, Random Forest is less prone to overfitting
compared to a single decision tree due to the ensemble of trees and the random feature
selection. Moreover, it can handle missing values and maintain good performance even
with noisy or irrelevant features. Random Forests are widely used in various applications
such as classification, regression, feature importance ranking, and anomaly detection.
They are known for their robustness, scalability, and ability to provide insights into

feature importance.

K-Nearest Neighbor Classifier (KNN): K-Nearest Neighbors (KNN) is a supervised
machine learning algorithm used for both classification and regression tasks. It is a non-
parametric algorithm that makes predictions based on the similarity of a new observation
to its k nearest neighbors in the training data.

KNN has several notable characteristics. It is a lazy learning algorithm, meaning it does
not explicitly build a model during the training phase. Instead, it stores the entire training
dataset and performs computations at the time of making predictions. KNN also assumes
that nearby points in the feature space have similar target values. Therefore, it can work
well when there is a local structure or clustering in the data.

One of the advantages of KNN is its simplicity and ease of implementation. It can handle
both numerical and categorical data, and it can adapt to changes in the training data
without the need for retraining the model. However, KNN can be computationally
expensive, especially for large datasets, as it requires calculating distances for each
prediction. Additionally, choosing the right value of k and selecting appropriate distance

metrics are crucial for obtaining good results with KNN.

Gaussian Naive Bayes: Gaussian Naive Bayes is a supervised machine learning
algorithm based on the principles of Bayes' theorem. It is primarily used for classification
tasks and is particularly suited for handling continuous numerical features.

Gaussian Naive Bayes has several advantages. It is computationally efficient and
performs well even with a small amount of training data. It can handle both numerical
and continuous features, making it suitable for a wide range of applications. Additionally,
it provides interpretable results by estimating the class probabilities and allowing the

examination of feature importance. However, Gaussian Naive Bayes has limitations. The

24

assumption of feature independence may not hold in certain scenarios, leading to
suboptimal results. It also assumes a Gaussian distribution for the features, which may
not be appropriate for all types of data. In situations where feature interactions or non-
Gaussian distributions are significant, other algorithms such as decision trees or support

vector machines may be more appropriate.

Perceptron: The perceptron is a basic building block of artificial neural networks and is
one of the oldest and simplest types of artificial neurons. It is a binary classification
algorithm used for supervised learning tasks. The perceptron algorithm is suitable for
linearly separable datasets, where a single straight line can separate the two classes. If the
dataset is not linearly separable, the perceptron may not converge or produce accurate
results. In such cases, more advanced neural network architectures, such as multi-layer
perceptrons (MLPs) or deep neural networks, can be employed. Perceptrons have
historically played a significant role in the development of neural networks and machine
learning. Although they are relatively simple compared to modern neural network

architectures, they form the foundation for understanding more complex algorithms.

SGD Classifier: SGD Classifier is a fast and scalable algorithm that can handle large
datasets with high-dimensional features. It is particularly useful for online learning and
can adapt to changes in the data. In conclusion, each of these machine learning
algorithms has its strengths and weaknesses, and the choice of algorithm depends on the
specific problem and the characteristics of the data. It is important to understand the
underlying assumptions, limitations, and trade-offs of each algorithm before applying it

to real-world problems.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 RESULTS

As discussed in the above section, we can apply different values of nl and n2 with a

constraint that their sum leads up to one. Hence, we have used different combinations of nl

and n2 and we have summarized the results from each of the combinations in the sub-

sections described below.

1. n1=0.1 and n2=0.9

From Table I we conclude that for nl =0.1 and n2=0.9, the highest accuracy i.e 89.21% is

obtained with Random Forest and the lowest accuracy i.e 70.16 % is obtained by

Perceptron. As nl > n2, the accuracy scores are more inclined towards the crRelevance

value of the ECFS score.

Table 1 ML Accuracy Results for n1=0.1 and n2=0.9

ML Accuracy
nl |n2 (ML Model |Accuracy Scores Accuracy(%)
0.1]0.9 |Decision 0.8762 0.8744 0.8675 0.8819 (0.8788 0.8650 0.8788 |87.21
Tree 0.8625 0.8681 0.8681
0.1]0.9 SVM 0.8100 0.8197 0.8125 0.8184 0.8150 81.51
0.1/0.9 |Logistic 0.7881 0.8038 0.8125 0.7994 0.8019 0.7838 79.88
Regression |0.8000 0.8038 0.7925 0.8031
0.1/0.9 [Random 0.8956 0.8888 0.8988 0.8919 0.8938 0.8806 89.21
Forest 0.9038 0.8844 (.8888 (.8950
0.1/0.9 |[KNeighbors |0.8694 0.8669 0.8669 0.8675 0.8744 (.8575 86.78
Classifier 0.8681 0.8631 0.8706 0.8738
0.1]0.9 |Gaussian 0.6844 0.7006 0.7013 0.7044 0.6913 0.6819 69.88
NB 0.7075 0.7131 0.7006 0.7038
0.1/0.9 |Perceptron |0.7394 0.7400 0.7369 0.7463 0.7356 0.7713 70.16
0.5388 0.7550 0.5031 0.7500
0.1/0.9 |SGD 0.7881 0.8044 0.8131 0.7963 0.8044 0.7825 79.91
Classifier 0.8006 0.8019 0.7944 0.8056

2. n1=0.2 and n2=0.8

From Table II we conclude that for nl =0.2 and n2=0.8, the highest accuracy i.e 87.90% is

obtained with Random Forest and the lowest accuracy i.e 68.08 % is obtained by

Perceptron. As nl > n2, the accuracy scores are more inclined towards the crRelevance

value of the ECFES score.

Table 2 ML Accuracy Results for n1=0.2 and n2=0.8

ML Accuracy
nl [n2 [ML Model |Accuracy Scores Accuracy (%)
0.2/0.8 |Decision tree [0.8581 0.8638 0.8713 0.8581 0.8650 0.8613 86.07
0.8463 0.8606 0.8488 0.8738
0.2/0.8 |SVM 0.7778 0.7922 0.7850 0.7859 0.7900 78.62
0.2]0.8 |Logistic 0.7694 0.7581 0.7894 0.7744 0.7844 0.7688 7139
Regression |0.7594 0.7881 0.7544 0.7931
0.2|0.8 |[Random 0.8831 0.8856 0.8925 0.8694 0.8769 0.8769 87.90
Forest 0.8669 0.8769 0.8713 0.8906
0.2|0.8 [KNeighbors [0.8563 0.8631 0.8756 0.8488 0.8563 0.8400 85.58
Classifier 0.8463 0.8588 0.8394 0.8738
0.2|0.8 |Gaussian 0.7094 0.6919 0.7169 0.6931 0.7169 0.6944 70.50
NB 0.6950 0.7131 0.6938 0.7256
0.2|0.8 |Perceptron |0.6275 0.5019 0.5275 0.6813 0.7394 0.7325 68.08
0.7269 0.7625 0.7313 0.7775
0.2/0.8 |SGD 0.7713 0.7619 0.7888 0.7681 0.7844 0.7813 |77.33
Classifier 0.7575 0.7731 0.7519 0.7944

26

27

3.n1=0.3 and n2= 0.7

From Table III we conclude that for nl =0.3 and n2=0.7, the highest accuracy i.e 88.54% is
obtained by Random Forest and the lowest accuracy i.e 70.91 % is obtained by Gaussian

NB. As nl > n2 , the accuracy scores are more inclined towards the crRelevance value of

the ECES score.

Table 3 ML Accuracy Results for n1=0.3 and n2=0.7

ML Accuracy
nl [n2 ML Model |Accuracy Scores Accuracy (%)

0.3|0.7 |Decision tree |0.8656 0.8662 0.8563 0.8613 0.8631 0.8613 85.84
0.8606 0.8500 0.8456 0.8544

0.3/0.7|SVM 0.8016 0.8050 0.8000 0.7991 0.7938 79.99

0.3|0.7 |Logistic 0.7594 0.7813 0.7806 0.7825 0.7688 0.7769 77.93
Regression |0.7894 0.7625 0.7813 0.7725

0.3|0.7 |Random 0.8831 0.8894 0.9013 0.8881 0.8919 0.8838 88.54
Forest 0.8819 0.8869 0.8731 0.8750

0.3|0.7 |[KNeighbors [0.8588 0.8662 0.8713 0.8538 0.8656 0.8588 85.94
Classifier 0.8613 0.8588 0.8506 0.8494

0.3|0.7 |Gaussian 0.6938 0.7106 0.7344 0.7150 0.7019 0.6994 7091

NB 0.7213 0.7069 0.7019 0.7063
0.3|0.7 |Perceptron |0.7406 0.7863 0.7656 0.6881 0.7688 0.7531 74.28
0.7731 0.7525 0.6613 0.7388
0.3|0.7 |SGD 0.7669 0.8019 0.7925 0.7938 0.7550 0.7925 78.39

Classifier 0.7925 0.7725 0.7850 0.7863

4. nl1=0.4 and n2=0.6

From Table IV we conclude that for nl =0.4 and n2=0.6, the highest accuracy i.e 89.91% is

obtained by Random Forest and the lowest accuracy i.e 62.14 % is obtained by Perceptron.

As nl > n2 , the accuracy scores are more inclined towards the crRelevance value of the

ECES score.

Table 4 ML Accuracy Results for n1=0.4 and n2=0.6

ML Accuracy
nl [n2 |ML Model |Accuracy Scores Accuracy (%)
0.4/0.6 |Decision tree [0.8856 0.8681 0.8788 0.8762 0.8738 0.8712 87.71
0.8819 0.88 0.8831 0.8725
0.4/0.6 SVM 0.8281 0.8281 0.8203 0.8153 0.8278 82.39
0.4|0.6 |Logistic 0.7962 0.7938 0.7844 0.7875 0.7831 0.7831 78.82
Regression |0.8006 0.775 0.7925 0.7863
0.4|0.6 |Random 0.905 0.8994 0.9062 0.8988 0.8962 0.8906 89.91
Forest 0.8994 0.8981 0.9025 0.8944
0.4|0.6 |[KNeighbors [0.8731 0.8813 0.88 0.8688 0.8681 0.8763 87.34
Classifier 0.8869 0.865 0.8656 0.8688
0.4/0.6 |Gaussian 0.7219 0.7113 0.7056 0.7238 0.7106 0.7256 71.89
NB 0.7375 0.7088 0.725 0.7188
0.4/0.6 |Perceptron |0.595 0.78 0.7625 0.7644 0.43690.6 0.4988 |62.14
0.4981 0.7794 0.4988
0.4/0.6 |SGD 0.8044 0.7956 0.7894 0.7663 0.7856 0.7913 79.38

Classifier

0.8113 0.7863 0.7956 0.8119

29

5. nl1=0.5 and n2=0.5

From Table V we conclude that for nl =0.5 and n2=0.5, the highest accuracy i.e 87.80% is
obtained by the Random Forest and the lowest accuracy i.e 71.79 % is obtained by Gaussian
NB. As nl = n2, the accuracy scores are balanced towards the crRelevance and ENMRS

values of the ECES score.

Table 5 ML Accuracy Results for n1=0.5 and n2=0.5

ML Accuracy
nl (n2 (ML Model |Accuracy Scores Accuracy (%)

0.5|0.5 |Decision 0.8556 0.8431 0.8506 0.8437 0.8594 0.8681 85.21
Tree 0.8513 0.8475 0.8650 0.8363

0.5|0.5|SVM 0.7981 0.7903 0.7984 0.8034 0.7934 79.68
0.5|0.5 |Logistic 0.7812 0.7750 0.7750 0.7700 0.7681 0.7800 |77.54
Regression |0.8006 0.7644 0.7669 0.7725
0.5/0.5 |[Random 0.8788 0.8775 0.8713 0.8575 0.8825 0.8931 |87.80
Forest 0.8913 0.8781 0.8856 0.8644
0.5|0.5 [KNeighbors [0.8306 0.8431 0.8263 0.8194 0.8419 0.8419 |83.61
Classifier 0.8513 0.8250 0.8506 0.8306
0.5|0.5 |Gaussian 0.7188 0.7188 0.7250 0.7138 0.7194 0.7156 |71.79
NB 0.7425 0.7019 0.7131 0.7100
0.5|0.5 [Perceptron |0.7325 0.5006 0.7594 0.7775 0.7719 0.7844 |73.94
0.7888 0.7550 0.7663 0.7581
0.5/0.5|SGD 0.7863 0.7863 0.7719 0.7688 0.7675 0.7856 |77.86
Classifier 0.8044 0.7669 0.7694 0.7788

6. n1=0.6 and n2=0.4

From Table VI we conclude that for nl =0.6 and n2=0.4, the highest accuracy i.e 90.96% is
obtained by Random forest and the lowest accuracy i.e 72.19 % is obtained by Gaussian
NB. As nl < n2, the accuracy scores are more inclined towards the ENMRS value of the

ECES score.

Table 6 ML Accuracy Results for n1=0.6 and n2=0.4

MI Accuracy

nl [n2 ML Model |Accuracy Scores Accuracy (%)

0.6|0.4 |Decision 0.8875 0.9 0.9075 0.8919 0.8819 0.8938 0.88 89.09
Tree 0.8831 0.89 0.8938

0.6/0.4 |SVM 0.8528 0.8519 0.8422 0.8519 0.8553 85.08

0.6|0.4 |Logistic 0.8256 0.8013 0.8238 0.8125 0.805 0.7994 80.91
Regression |0.8069 0.8113 0.81 0.795

0.6|0.4 |Random 0.9113 0.91 0.9231 0915 0.8969 0.9063 0.9013 |90.96
Forest 0.9069 0.9125 0.9125

0.6|0.4 | KNeighbors [0.8925 0.8888 0.885 0.8931 0.8806 0.8894 88.59
Classifier 0.8875 0.8794 0.8806 0.8819

0.6|0.4 |Gaussian 0.7481 0.7013 0.7281 0.7081 0.7194 0.7081 72,19
NB 0.745 0.7175 0.7275 0.7156

0.6|0.4 |Perceptron |0.8331 0.5775 0.8156 0.81 0.7781 0.7675 0.805677.28
0.7763 0.7938 0.77

0.6/0.4SGD 0.83 0.8069 0.8138 0.8169 0.7919 0.8075 81.08
Classifier 0.8125 0.8138 0.8238 0.7906

7. nl1=0.7 and n2=0.3

From Table VII we conclude that for n1 =0.7 and n2=0.3, the highest accuracy i.e 91.64% is

obtained by Random forest and the lowest accuracy i.e 72.64 % is obtained by Gaussian

NB. As nl < n2, the accuracy scores are more inclined towards the ENMRS value of the

ECES score.

Table 7 ML Accuracy Results for n1=0.7 and n2=0.3

ML Accuracy
nl [n2 ML Model |Accuracy Scores Accuracy (%)
0.7]0.3 |Decision tree |0.9000 0.8981 0.8894 0.8894 0.9069 0.8969 89.50
0.8881 0.8856 0.9081 0.8875
0.7|0.3|SVM 0.8538 0.8547 0.8634 0.8588 (0.8638 85.89
0.7|0.3 |Logistic 0.8138 0.7944 0.8038 0.8244 0.8269 0.8213 81.48
Regression |0.8206 0.8000 0.8294 0.8138
0.7|0.3 |Random 0.9150 0.91750.9038 0.9113 0.9294 0.9275 91.64
Forest 0.9144 0.9056 0.9219 09175
0.7|0.3 |[KNeighbors [0.8894 0.8925 0.8813 0.8781 0.9025 0.9019 89.30
Classifier 0.9025 0.8875 0.9006 0.8938
0.7]0.3 |Gaussian 0.7244 0.7063 0.7250 0.7219 0.7413 0.7331 72.64
NB 0.7263 0.7125 0.7375 0.7363
0.7]0.3 [Perceptron |0.7425 0.7756 0.7619 0.5519 0.7975 0.8500 75.21
0.7981 0.8319 0.8656 0.5463
0.7|0.3|SGD 0.8056 0.7975 0.8088 0.8281 0.8263 (.8288 81.60
Classifier 0.8250 0.7994 0.8300 0.8106

32

8. n1=0.8 and n2=0.2

From Table VIII we conclude that for nl =0.8 and n2=0.2, the highest accuracy i.e 91.96%
is obtained by Random Forest and the lowest accuracy i.e 70.76 % is obtained by
Perceptron. As nl < n2, the accuracy scores are more inclined towards the ENMRS value of

the ECES score.

Table 8 ML Accuracy Results for n1=0.8 and n2=(.2

ML Accuracy
nl [n2 ML Model |Accuracy Scores Accuracy (%)
0.8|0.2 |Decisionsree [0.8994 0.9156 0.8931 0.8912 0.9019 0.8969 89.975
0.9094 0.8950 0.9019 0.8931
0.8/0.2|SVM 0.8628 0.8641 0.8663 0.8741 0.8713 86.7688
0.8]0.2 |Logistic 0.8088 0.8356 0.8244 0.8163 0.8294 0.8281 82.4250
Regression |0.8250 0.8269 0.8319 0.8163
0.8/0.2 |Random 0.9169 0.9150 0.9169 0.9163 0.9288 0.9194 91.9625
Forest 0.9244 0.9163 0.9225 0.9200
0.8]|0.2 |[KNeighbors [0.8938 0.8963 0.9000 0.8925 0.8988 0.8931 89.8500

classifier 0.9100 0.8956
0.9075 0.8975

0.8(0.2 |Gaussian 0.7150 0.7363 0.7500 0.7219 0.7494 0.7425 73.7063

NB 0.7419 0.7363 0.7469 0.7306
0.8|0.2 |Perceptron |0.5588 0.8050 0.8113 0.7213 0.7375 0.7175 70.7625
0.7988 0.8013 0.7281 0.3969
0.8/0.2|SGD 0.8081 0.8381 0.8100 0.8100 0.8363 0.8256 82.2000

Classifier 0.8238 0.8219 0.8306 0.8156

9. n1=0.9 and n2=0.1

From Table IX we conclude that for nl =0.9 and n2=0.1, the highest accuracy i.e 92.25% is
obtained by Random Forest and the lowest accuracy i.e 71.20 % is obtained by Perceptron.
As nl < n2, the accuracy scores are more inclined towards the ENMRS value of the ECFS

score.

Table 9 ML Accuracy Results for n1=0.9 and n2=0.1

ML Accuracy

nl n2 ML Model |Accuracy Scores Accuracy (%)

0.9]0.1 |Decision tree [0.9013 0.9056 0.9000 0.9100 0.9063 0.9069 90.2938
0.9094 0.9019 0.8913 0.8969

0.9/0.1|SVM 0.8831 0.8797 0.8747 0.8813 0.8559 87.4938

0.9]0.1 |Logistic 0.8188 0.8319 0.8263 0.8369 0.8269 0.8344 82.7063
Regression |0.8313 0.8256 0.8200 0.8188

0.9/0.1 |Random 0.9113 0.9256 0.9256 0.9225 0.9319 0.9325 92.2500
Forest 0.9256 0.9206 0.9194 0.9100

0.9|0.1 |KNeighbors [0.8925 0.9000 0.9156 0.9094 0.9063 0.9188 90.5375

Classifier 0.9019 0.9094 0.9088 0.8913
0.9/0.1 |Gaussian 0.7388 0.7344 0.7381 0.7538 0.7381 0.7413 73.8750

NB 0.7450 0.7281 0.7388 0.7313
0.9/0.1 |Perceptron |0.8500 0.7988 0.8388 0.5619 0.6325 0.8544 71.2000
0.6206 0.8506 0.5619 0.5506
0.9/0.1 |SGD 0.8163 0.8256 0.8250 0.8363 0.8200 0.8213 82.2625

Classifier 0.8294 0.8219 0.8175 0.8131

34

4.2 CONCLUSION

From Table X we conclude our thesis by evaluating that the highest accuracy i.e 92.25 %

was achieved by Random Forest ML technique for the values of n1=0.9 and n2=0.1.

As nl > n2, our accuracy results were more inclined towards the ENMRS values of the
ECES scores. Also in Table X, we interpret the pattern as for higher nl values i.e for the
feature-feature correlation (ENMRS) factor, the accuracy increases. And the accuracy
decreases for higher n2 values meaning for feature-class correlation (crRelevance) scores.
Thus, for higher nl value and lower n2 value of the ECES score the ML techniques have
better accuracy. The preliminary results based on the work we done were satisfactory but

need more evaluation on evaluating for various values of nl and n2 in future work.

Table 10 ML Accuracy for different value of n1 & n2

Highest Accuracy

nl&n2 (0.1&09|02& (03& |04& |05& [06& [0.7& [08& [|09&
0.8 0.7 0.6 0.5 04 |03 0.2 0.1

Accuracy (89.21 87.89 |88.54 |89.90 (87.80 [90.95 [91.63 |91.96 [92.25
(%)

[—

10.

1.

35

REFERENCES

https://androzoo.uni.lu
https://www.statista.com/statistics/873097/malware-attacks-per-vear-worldwide/

E. Amer, "Permission-Based Approach for Android Malware Analysis Through
Ensemble-Based Voting Model," 2021 International Mobile, Intelligent, and
Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 2021, pp. 135-139, doi:
10.1109/MIUCC52538.2021.9447675.

M. Ibrahim, B. Issa and M. B. Jasser, "A Method for Automatic Android Malware
Detection Based on Static Analysis and Deep Learning," in IEEE Access, vol. 10, pp.
117334-117352, 2022, doi: 10.1109/ACCESS.2022.3219047.

C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H. Kinawi, "Android Malware
Detection Based on Factorization Machine," in IEEE Access, vol. 7, pp. 184008-
184019, 2019, doi: 10.1109/ACCESS.2019.2958927.

J. Qiu et al., "Cyber Code Intelligence for Android Malware Detection," in IEEE
Transactions on Cybernetics, vol. 53, no. 1, pp. 617-627, Jan. 2023, doi:
10.1109/TCYB.2022.3164625.

U. Haq, T. A. Khan and A. Akhunzada, "A Dynamic Robust DL-Based Model for
Android Malware Detection,” in IEEE Access, vol. 9, pp. 74510-74521, 2021, doi:
10.1109/ACCESS.2021.3079370.

J. Qiu et al., "A3CM: Automatic Capability Annotation for Android Malware," in
IEEE Access, vol. 7 pp- 147156-147168, 2019, doi:
10.1109/ACCESS.2019.2946392.

M. M. Alani and A. I. Awad, "PAIRED: An Explainable Lightweight Android
Malware Detection System," in IEEE Access, vol. 10, pp. 73214-73228, 2022, doi:
10.1109/ACCESS.2022.3189645.

S. Khalid and F. B. Hussain, "Evaluating Dynamic Analysis Features for Android
Malware Categorization," 2022 International Wireless Communications and Mobile
Computing (IWCMC), Dubrovnik, Croatia, 2022, pp. 401-406, doi:
10.1109/TWCMC55113.2022.9824225.

S. Seneviratne, R. Shariffdeen, S. Rasnayaka and N. Kasthuriarachchi, "Self-
Supervised Vision Transformers for Malware Detection," in IEEE Access, vol. 10, pp.

103121-103135, 2022, doi: 10.1109/ACCESS.2022.3206445.

12,

13.

14.

15.

16.

17:

18.

19.

20.

36

M. Upadhayay, A. Sharma, G. Garg and A. Arora, "RPNDroid: Android Malware
Detection using Ranked Permissions and Network Traffic," 2021 Fifth World
Conference on Smart Trends in Systems Security and Sustainability (WorldS4),
London, United Kingdom, 2021, Pp- 19-24, dot:
10.1109/WorldS451998.2021.9513992.

C. Li et al., "Backdoor Attack on Machine Learning Based Android Malware
Detectors," in IEEE Transactions on Dependable and Secure Computing, vol. 19, no.
S, pp- 3357-3370, 1 Sept.-Oct. 2022, doi: 10.1109/TDSC.2021.3094824.

S. Kumar, D. Mishra, B. Panda and S. K. Shukla, "AndroOBFS: Time-tagged
Obfuscated Android Malware Dataset with Family Information," 2022 [EEE/ACM
19th International Conference on Mining Software Repositories (MSR), Pittsburgh,
PA, USA, 2022, pp. 454-458, doi: 10.1145/3524842.3528493.

L. N. Vu and S. Jung, "AdMat: A CNN-on-Matrix Approach to Android Malware
Detection and Classification," in IEEE Access, vol. 9, pp. 39680-39694, 2021, doi:
10.1109/ACCESS.2021.3063748.

G. Canfora, F. Martinelli, F. Mercaldo, V. Nardone, A. Santone and C. A. Visaggio,
"LEILA: Formal Tool for Identifying Mobile Malicious Behaviour," in IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1230-1252, 1 Dec. 2019,
doi: 10.1109/TSE.2018.2834344.

M. Yousefi-Azar, L. Hamey, V. Varadharajan and S. Chen, "Byte2vec: Malware
Representation and Feature Selection for Android," in The Computer Journal, vol. 63,
no. 1, pp. 1125-1138, Jan. 2020, doi: 10.1093/comjnl/bxz121.

G. Suarez-Tangil, J. E. Tapiador, F. Lombardi and R. D. Pietro, "Alterdroid:
Differential Fault Analysis of Obfuscated Smartphone Malware," in IEEE
Transactions on Mobile Computing, vol. 15, no. 4, pp. 789-802, 1 April 2016, doi:
10.1109/TMC.2015.2444847.

T. Eom, H. Kim, S. An, J. S. Park and D. S. Kim, "Android Malware Detection Using
Feature Selections and Random Forest," 2018 International Conference on Software
Security and Assurance (ICSSA), Seoul, Korea (South), 2018, pp. 55-61, doi:
10.1109/ICSSA45270.2018.00023.

Xiaohan Zhang and Zhengping Jin, "A new semantics-based android malware
detection," 2016 2nd IEEE International Conference on Computer and
Communications (ICCCQ), Chengdu, 2016, pp- 1412-1416, doi:
10.1109/CompComm.2016.7924936.

21

22,

23.

24,

25.

26.

217.

28.

29.

37

. S. Dissanayake, S. Gunathunga, D. Jayanetti, K. Perera, C. Liyanapathirana and L.
Rupasinghe, "An Analysis on Different Distance Measures in KNN with PCA for
Android Malware Detection," 2022 22nd International Conference on Advances in
ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 2022, pp. 178-182, doi:
10.1109/ICTer58063.2022.10024079.

M. Hassan and I. Sogukpinar, "Android Malware Variant Detection by Comparing
Traditional Antivirus," 2022 7th International Conference on Computer Science and
Engineering (UBMK), Diyarbakir, Turkey, 2022, pp. 507-511, doi:
10.1109/UBMK55850.2022.9919458.

S. Amenova, C. Turan and D. Zharkynbek, "Android Malware Classification by
CNN-LSTM," 2022 International Conference on Smart Information Systems and
Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp. 1-4, doi:
10.1109/S1IST54437.2022.9945816.

T. Mantoro, D. Stephen and W. Wandy, "Malware Detection with Obfuscation
Techniques on Android Using Dynamic Analysis," 2022 IEEE 8th International
Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia,
2022, pp. 1-6, doi: 10.1109/ICCED56140.2022.10010359.

J. B. S and K. R, "A state-of-the-art Analysis of Android Malware Detection
Methods," 2022 6th International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, 2022, pp. 851-855, doi:
10.1109/ICOEI53556.2022.9777170.

H. Bai, N. Xie, X. Di and Q. Ye, "FAMD: A Fast Multifeature Android Malware
Detection Framework, Design, and Implementation," in IEEE Access, vol. 8, pp.
194729-194740, 2020, doi: 10.1109/ACCESS.2020.3033026.

M. Awais, M. A. Tariq, J. Igbal and Y. Masood, "Anti-Ant Framework for Android
Malware Detection and Prevention Using Supervised Learning," 2023 4th
International Conference on Advancements in Computational Sciences (ICACS),
Lahore, Pakistan, 2023, pp. 1-5, doi: 10.1109/ICACS55311.2023.10089629.

T. Islam, S. Rahman, M. Hasan, A. Rahaman, 1. Jabiullah,”“Evaluation of N-Gram
Based Multi-Layer Approach to Detect Malware in Android,Procedia Computer
Science,”Volume 171,2020,Pages 1074-1082.

J. Mishra, S. K. Sahay, H. Rathore and L. Kumar, "Duplicates in the Drebin Dataset
and Reduction in the Accuracy of the Malware Detection Models," 2021 26th IEEE

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

38

Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, Malaysia,
2021, pp. 161-165, doi: 10.1109/APCC49754.2021.9609892.

R. Goyal, A. Spognardi, N. Dragoni and M. Argyriou, "SafeDroid: A Distributed
Malware Detection Service for Android," 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), Macau, China, 2016, pp. 59-
66, doi: 10.1109/SOCA.2016.14.

Z. Ren, H. Wu, Q. Ning, I. Hussain, B. Chen, End-to-end malware detection for
android IoT devices wusing deep learning,Ad Hoc Networks,”Volume
101,2020,102098.

S. R. Tuan Mat, M. Razak, M. Kahar, J. Arif, A. Firdaus,"A Bayesian probability
model for Android malware detection,"ICT Express,Volume 8, Issue 3,2022,Pages
424-431.

K. Kong, Z. Zhang, Z. Yang, Z. Zhang,”FCSCNN: Feature centralized Siamese CNN-
based android malware identification,”Computers & Security,Volume
112,2022,102514,ISSN 0167-4048.

A. Arora, S. K. Peddoju and M. Conti, "PermPair: Android Malware Detection Using
Permission Pairs," in IEEE Transactions on Information Forensics and Security, vol.
15, pp. 1968-1982, 2020, doi: 10.1109/TIFS.2019.2950134.

A. Mathur, L. M. Podila, K. Kulkarni, Q. Niyaz, A. Y. Javaid, "NATICUSdroid: A
malware detection framework for Android using native and custom permissions,”
Journal of Information Security and Applications, Volume 58,2021.

Juliza Mohamad Arif, Mohd Faizal Ab Razak, Sharfah Ratibah Tuan Mat, Suryanti
Awang, Nor Syahidatul Nadiah Ismail, Ahmad Firdaus,Android mobile malware
detection using fuzzy AHP,Journal of Information Security and Applications,Volume
61,2021,102929,ISSN 2214-2126.

T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye, "EveDroid: Event-Aware Android Malware
Detection Against Model Degrading for IoT Devices," in IEEE Internet of Things
Journal, vol. 6, no. 4, pp. 6668-6680, Aug. 2019, doi: 10.1109/JI0T.2019.2909745.

R. Srivastava, R. P. Mishra, V. Kumar, H. K. Shukla, N. Goyal and C. Singh,
"Android Malware Detection Amid COVID-19," 2020 9th International Conference
System Modeling and Advancement in Research Trends (SMART), Moradabad, India,
2020, pp. 74-78, doi: 10.1109/SMART50582.2020.9337105.

J. B. S and K. R, "A state-of-the-art Analysis of Android Malware Detection

Methods," 2022 6th International Conference on Trends in Electronics and

40.

41.

42.

43.

44.

45.

46.

47.

48.

39

Informatics (ICOEI), Tirunelveli, India, 2022, pp. 851-855, doi:
10.1109/ICOEI53556.2022.9777170.

K. Aktas and S. Sen, "Android malware detection based on runtime behaviour," 2018
26th Signal Processing and Communications Applications Conference (SIU), Izmir,
Turkey, 2018, pp. 1-4, doi: 10.1109/S1U.2018.8404768.

P. Xiong, X. Wang, W. Niu, T. Zhu and G. Li, "Android malware detection with
contrasting permission patterns,” in China Communications, vol. 11, no. 8, pp. 1-14,
Aug. 2014, doi: 10.1109/CC.2014.6911083.

X. Li, J. Liu, Y. Huo, R. Zhang and Y. Yao, "An Android malware detection method
based on AndroidManifest file," 2016 4th International Conference on Cloud
Computing and Intelligence Systems (CCIS), Beijing, China, 2016, pp. 239-243, doi:
10.1109/CCIS.2016.7790261.

J. Garcia, M. Hammad and S. Malek, "[Journal First] Lightweight, Obfuscation-
Resilient Detection and Family Identification of Android Malware," 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), Gothenburg, Sweden,
2018, pp. 497-497, doi: 10.1145/3180155.3182551.

D. V. Ng and J. -I. G. Hwang, "Android malware detection using the dendritic cell
algorithm," 2014 International Conference on Machine Learning and Cybernetics,
Lanzhou, China, 2014, pp. 257-262, doi: 10.1109/ICMLC.2014.7009126.

F. M. Darus, N. A. A. Salleh and A. F. Mohd Ariffin, "Android Malware Detection
Using Machine Learning on Image Patterns," 2018 Cyber Resilience Conference
(CRC), Putrajaya, Malaysia, 2018, pp. 1-2, doi: 10.1109/CR.2018.8626828.

S. Igbal and M. Zulkernine, "SpyDroid: A Framework for Employing Multiple Real-
Time Malware Detectors on Android," 2018 13th International Conference on
Malicious and Unwanted Software (MALWARE), Nantucket, MA, USA, 2018, pp. 1-
8, doi: 10.1109/MALWARE.2018.8659365.

J. Wang, B. Li and Y. Zeng, "XGBoost-Based Android Malware Detection," 2017
13th International Conference on Computational Intelligence and Security (CIS),
Hong Kong, China, 2017, pp. 268-272, doi: 10.1109/CIS.2017.00065.

P. Zhang, S. Cheng, S. Lou and F. Jiang, "A Novel Android Malware Detection
Approach Using Operand Sequences,” 2018 Third International Conference on
Security of Smart Cities, Industrial Control System and Communications (SSIC),
Shanghai, China, 2018, pp. 1-5, doi: 10.1109/SSIC.2018.8556755.

49.

50.

51.

40

M. Masum and H. Shahriar, "Droid-NNet: Deep Learning Neural Network for
Android Malware Detection," 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, 2019, PP- 5789-5793, doi:
10.1109/BigData47090.2019.9006053.

N. Kumari and M. Chen, "Malware and Piracy Detection in Android Applications,"
2022 IEEE 5th International Conference on Multimedia Information Processing and
Retrieval (MIPR), CA, USA, 2022, pp- 306-311, doi:
10.1109/MIPR54900.2022.00061.

H. Haidros Rahima Manzil and M. Naik S, "DynaMalDroid: Dynamic Analysis-Based
Detection Framework for Android Malware Using Machine Learning Techniques,"
2022 International Conference on Knowledge Engineering and Communication
Systems (ICKES), Chickballapur, India, 2022, pp- 1-6, doi:
10.1109/ICKECS56523.2022.10060106.

Z"_.I turnitin Similarity Report ID. 0id:27535:36227968

® 13% Overall Similarity
Top sources found in the following databases:

* 9% Internet database » 8% Publications database

« Crossref database » Crossref Posted Content database
* 5% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

link.springer.com

5%
Internet
statista.com 4
<1%
Internet
Huo, Yuchong, Ping Jiang, Yuan Zhu, Shuang Feng, and Xi Wu. "Optima... <1%
Crossref ’
fortunebusinessinsights.com a
<1%
Internet
University of Essex on 2023-04-25 <1%
Submitted works °
Pallabi Borah, Hasin A. Ahmed, Dhruba K. Bhattacharyya. "A statistical ... <1%
(+]
Crossref
hotelnear.in o
<1%
Internet
University of Essex on 2023-01-18 <1%

Submitted works

Sources overview

