# **COVID-19 USING NUMERICAL METHOD**

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE OF

> MASTER OF SCIENCE IN MATHEMATICS

SUBMITTED BY:

Pradeep Kumar (2K19/MSCMAT/27)

UNDER THE SUPERVISION OF

Prof. Vivek Kumar Aggarwal



# **DEPARTMENT OF APPLIED MATHEMATICS**

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi – 110042

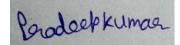
May-2021

# Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

# **CANDIDATE'S DECLARATION**

I PRADEEP KUMAR, Roll No. 2K19/MSCMAT/27 of Master of science in mathematics, hereby declare that the project Dissertation titled "COVID-19 USING NUMERICAL METHOD" which is submitted by me to the Department of Applied Mathematics, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master of science, is original and not copied from any source without proper citation. This work has not previously formed the basis for the award of any degree, diploma associateship or other similar title or recognition.

Place: Delhi Date: 06/05/2021 PRADEEP KUMAR



Department of Mathematics Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

# CERTIFICATE

I hereby certify that the dissertation report "COVID-19 USING NUMERICAL METHOD" Which is submitted by PRADEEP KUMAR, Roll No. 2K19/MSCMAT/27 Department of Applied mathematics, Delhi Technological University, Delhi for the partial fulfillment of the requirement for the award of the degree of Master of science is record of the project work carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part or full for any degree or diploma to this university or elsewhere.

Place: Delhi Date: 06/05/2021

**Prof. Vivek kumar Aggarwal** SUPERVISOR

## ACKNOWLEDGEMENT

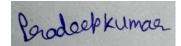
I want to like express my sincere thank to Prof. S. SIVAPRASAD KUMAR, Head, Department of Applied Mathematics for his kind hearted support. I also wish to express my gratitude of my teachers for giving me this opportunity to undertake this project. I am also grateful to

my instructors for their consistent help and direction.

It gives me colossal joy to communicate my most profound feeling of appreciation and sincere thanks to my highly respected and esteemed guide Prof. Vivek Kumar Aggarwal for his valuable guidance, encouragement and help for completing this work. His useful suggestion for this whole work and co-operative behaviour are sincerely acknowledged.

I also extend thanks to all other faculty and non- teaching staff of Department of Mathematics for their external support and guidance.

PRADEEP KUMAR M.SC MATHEMATICS, IV SEM DTU, NEW DELHI



#### Abstract

The SIR model is used to discuss the spread of the covid-19 epidemic in the Indian state of Maharashtra and its eventual end. Here we have examined about the spread of Coronavirus pandemic in extraordinary profundity utilizing Runge-kutta fourth-order method. The Rungekutta fourth-order method is a solving of the non-linear ordinary differential. We have used the data of covid-19 Outbreak of state Maharashtra on 29 April, 2021. The total population of Maharashtra is 122153000, according to this data. For the initial stage of experimental purposes, we used 113814181 susceptible cases, 4539553 infectious cases, and 3799266 recovered cases. The SIR model was used to analyse data from a wide range of infectious diseases. As a result, several scientists and researchers have thoroughly tested this model for infectious diseases. As a result of the research and simulation of this proposed covid-19 model using data on the number of covid-19 outbreak cases in state Maharashtra of India, show that the covid-19 epidemic infection cases rise for a period of time after the outbreak decreases, and then the covid-19 outbreak ends in Maharashtra cases. The model's findings also show that the Runge-kutta fourth-order method is used for forecast and avoid the covid-19 outbreak in India's Maharashtra state. Finally, we determine that the outbreak of the covid-19 epidemic in Maharashtra will peak on 11 May 2021, after which it will progress steadily and will likely end in the fourth week of October 2021.

Keywords- covid-19, Data set of Maharashtra state of India, SIR model, Runge-kutta fourthorder method.

# **TABLE OF CONTENT**

| Candidate's D   | eclaration                            | 2  |
|-----------------|---------------------------------------|----|
| Certificate     |                                       | 3  |
| Acknowledge     | ment                                  | 4  |
| Abstract        |                                       | 5  |
| Contents        |                                       | 6  |
| List of Figures | 3                                     | 7  |
| CHAPTER 1       | Introduction                          | 8  |
| CHAPTER 2       | Modelling of Covid-19 Disease         | 10 |
| 2.1 Spread Ra   | te of Covid-19                        | 11 |
| 2.2 Maximum     | number of infected people             | 13 |
| CHAPTER 3       | Method for Solving the Covid-19 Model | 15 |
| 1.1 Runge-ku    | itta fourth-order method              | 15 |
| 1.2 Covid-19    | model Simulation                      |    |
| 1.2.1 Graphs    |                                       | 24 |
| CHAPTER 4       | Conclusion                            |    |
| CHAPTER 5       | References                            | 29 |

# List of Figures

| 1. | Covid-19 model                              | .11 |
|----|---------------------------------------------|-----|
|    | Susceptible population of covid-19          |     |
|    | Outbreak of infected population of covid-19 |     |
| 4. | Recovered population of covid-19            | 26  |

# CHAPTER 1

## **INTRODUCTION**

Today, The corona virus outbreak has emerged as a major challenge for India. Covid-19 has about 18755183 confirmed cases and 15374052 recovered cases of 29 April, 2021. Almost population of the India and world is now using lockdown, social distancing and masks to stop this. At the moment, India and all states are using certain tools to combat the covid-19 epidemic. The covid-19 outbreak is a member of SARS-Cov-2. India medicine was created by the Indian Serum Institute and Bharat Biotech. Vaccine name is covishield and covaxin. India began its vaccination program from 16 January2021. Covid-2019 is an epidemic that spreads quickly from one person to another through infected person's breathing or touch.

As a result, covid-2019 is a communicable disease. This disease has a 2 to 14-day incubation period. According to a new survey, the covid-19 epidemic is estimated to be around. This infection deadly for individuals over 60 years and more fatal those people who have already suffered from a major disease such as cancer, tuberculosis etcetera. On April 29, 2021, a patient with Covid-19 was discovered in Kerala, India. This individual arrived in Kerala state of India from Wuhan, China. The primary instance of Coronavirus was found in China's Wuhan city at the end of November 2019. After 30 January 2020, the covid-19 virus began to spread in India and has now spread throughout the world.

India's Prime Minister, Narendra Modi, declared the Janata curfew for March 22, 2020 on March 19, 2020. After this, India's Prime Minister declared a countrywide lockdown for 21 days on March 24, 2020 though an investigation has recommended that this period might be lacking for controlling the Coronavirus pandemic offered lockdown in all over India from 25 march to till 14 April 2020 we called a phase 1. Even after 14 April lockdown again government of india offered lockdown to all over india from 15 April to till 3 may 2020 (19 days) The number of covid-19 epidemic patients in India has risen so government of india apply lockdown Phase 3 and Phase 4 till 31 may 2020.

Now Maharashtra government announced lockdown date from 12 April 2021 to 30 April 2021 and now day government extend lockdown for 15 days. Today, the Covid-19 outbreak data in India, which was made available by the Ministry of Health and Family Welfare, covid-19 India and my government website, 18755183are infected (confirmed), were 15374052 recovered and 208314 people died on 29 April 2021. Similar Maharashtra data initial data is 4539553 are infected (confirmed), 3799266 were recovered (cured) and 67985 people died on 29 April 2021. However, India has a much higher population density than other nations, and medical services are scarce. As a result, the chance of corona virus transmission in this area is extremely high. Despite this, Maharashtra has a high rate of corona virus infection in Maharashtra is due to population. All of these findings are observational, and no scientific evidence of this form of research has been found to date. Hence there is a need to examine Coronavirus outbreak with more proof at this point. In this

report, we presented an epidemic model of covid-19 outbreak in Maharashtra. We have likewise viewed as the impacts of social separating on infection formation, lockdown, and face masking in this proposed analysis. From the time of the spread to India, we presumed the empacts of social distancing steps, lockout, and face cover in Maharashtra.

The objectives of these studies are given below:

- 1. Find the maximum Infected population of covid-19 in Maharashtra.
- 2. Finding the rate of spread of the covid-19 in Maharashtra.
- 3. Find the end stage of covid-19 in Maharashtra.

# **CHAPTER 2**

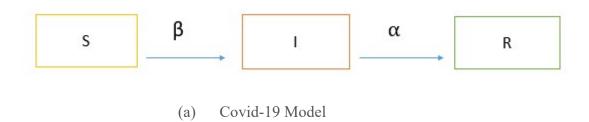
# Modelling of covid-19 disease

In this proposed analysis, we considered an outbreak model created by Kermack and McKendrick in 1991. This epidemic model is also known as SIR (Susceptible, Infective, and Recover). it have already successfully used in Many infectious outbreaks such as avian influenza, cholera, SARS, Aids, Plague, Yellow Fever, Zika, Rift Valley Fever, Lassa Fever, Leptospirosis. This SIR model is extremely useful for forecasting future events, such as the height of infectious disease activity and recovered cases.

This project work aims to use SIR model for covid-19 and quantify the prevalence of covid-19 in Maharashtra, where the virus spreads more quickly and causes disastrous outcomes. Model assumption

- No birth in covid-19 model and also no death include in this model.
- The population size is fixed (NO one enters or leaves the population throughout the duration of the disease) i.e no birth, death due to other disease or natural death.
- The population is well mixed (All individual have an equally likely chance of being infected).
  - 1. S: number of susceptible of covid-19 population in Maharashtra.
  - 2. I: the number of infected (is known as confirmed) of covid-19 population in Maharashtra.
  - 3. R: Number of recovered (is known as cured) of covid-19 population in Maharashtra.

The flow diagram of our model represent by given below the classification which divide the population into three compartments for Covid-19 is Susceptible (S), Infected (I) and Removed (R). In Figure (a).



Let us find the following three non-linear differential conditions being utilized for Maharashtra of Indian covid-19 experimental studies and experimental debate. The definition is given below for these three differential equations:

S' (t) = - 
$$\beta$$
 \*S\*I (2.1)

I' (t) = 
$$\beta * S*I - \alpha * I$$
 (2.2)

$$\mathbf{R}'(\mathbf{t}) = \boldsymbol{\alpha} * \mathbf{I} \tag{2.3}$$

Where,

- S(t) is susceptible
- I(t) is infected of covid-19 population.
- R(t) is recovered population.
- β is a rate of susceptible of covid-19 population convert into infected of covid-19 population.
- α is a rate of infected of covid-19 population removed into recovered of covid-19 population.
- S + I + R = N, Where N = total population of covid-19

The system of differential equations are known as covid-19 in Maharashtra state of India. The average outbreak time for covid-19 in Maharashtra is about 14 days, according to the proposed report. In the early stages of resolving Maharashtra's three differential covid-19 outbreak equations, these numerical  $\beta$  and  $\alpha$  values are extremely useful.

At all covid-19 outbreak rates, the population remains stable. The expression above can also be denoted in the following form:

$$S(t) + I(t) + R(t) = N$$
 (2.4)

We will utilized initial values condition for the Covid-19 model, i.e., for the experimental reason of data analysis of the covid-19 epidemic of Maharashtra

$$S(0) = S0, I(t) = I0$$
, and  $R(0) = R0$ 

#### 2.1 SPREAD RATE OF COVID-19

The estimated number of cases directly generated by one case in a population where all individuals are susceptible to infection is known as the basic reproduction number or spread rate (Rn) of an infection. The basic reproduction number for Covid-19 model can be derived

based on multiple methods. Here, we illustrate the method that depends on the eigenvalues of the Jacobian of the differential equation of the SIR model.

Write the Jacobian matrix from equation 1, 2 and 3

$$J(S,I,R) = \begin{bmatrix} -\beta^*I & -\beta^*S & 0\\ \beta^*I & \beta^*S \cdot \alpha^*I & 0\\ 0 & \alpha & 0 \end{bmatrix}$$

Now, equilibrium of the model is  $(S_0, 0, 0)$ , We have calculated the Jacobian matrix

$$J_{0} = \begin{bmatrix} 0 & -\beta^{*}S_{0} & 0 \\ 0 & \beta^{*}S_{0} - \alpha & 0 \\ 0 & \alpha & 0 \end{bmatrix}$$

To find out the eigenvalues of the Jacobian matrix, we have put the 21

$$\det(J_0 - \lambda I) = 0$$

Then the characteristics polynomial of matrix

$$\lambda^3 - \lambda^2 \beta^* S_0 + \lambda^2 \alpha = 0$$
$$\lambda^2 (-\beta^* S_0 + \alpha) = 0$$

The root of polynomial

$$\lambda_1$$
,  $\lambda_2 = 0$  and  $\lambda_3 = \beta * S_0 - \alpha$ 

Then  $\lambda_3 = \beta * S_{0} - \alpha$ =  $\alpha \left( \frac{\beta S_0}{\alpha} - 1 \right)$ 

Model is stable then  $\lambda_3 < 0$  and unstable when  $\lambda_3 > 0$ 

$$\lambda_3 = \alpha (R_n - 1)$$
 where  $R_n = \frac{(\beta^* S_0)}{(\alpha)}$ 

As we know that model is stable  $\lambda_3 < 0$ 

Case (1) 
$$\lambda_3 = \beta * S_0 - \alpha < 0 \Rightarrow \alpha \left(\frac{\beta S_0}{\alpha} - 1\right) < 0$$
. It means  $\lambda_3 < 0$  then  $\frac{\beta S_0}{\alpha} < 1$ . i.e.  $R_n < 1$   
Case (2)  $\lambda_3 > 0$  then  $\frac{\beta S_0}{\alpha} > 1$ . i.e.  $R_n > 1$ 

These model of covid-19 outbreak behaviour is determined by the values of the following expressions.

$$R_n = \frac{(\beta^* S_0)}{(\alpha)}$$
(2.5)

Finally we conclude that if  $R_n$  is less than one then covid-19 epidemic will be does out from Maharashtra. If  $R_n$  is greater than one, then the outbreak of covid-19 is still in epidemic form in Maharashtra.

#### 2.2 Maximum number of infected people

The system of differential equations with three unknowns. Such differential equation schemes are extremely difficult to solve. After solve equations (1) and (2), we obtain a single differential equation with an unknown of this model. In order to find out the maximum infected people. We have solved first two differential equation of model.

According to the chain rule It means

$$\frac{dI}{dS} = \frac{dI/dt}{dS/dt} = \frac{\beta * S * I - \alpha * I}{-\beta * S * I} = \frac{\beta * S * I}{-\beta * S * I} - \frac{-\alpha * I}{-\beta * S * I}$$
$$= \frac{\alpha}{\beta * S} - 1$$
$$dI = (\frac{\alpha}{\beta * S} - 1) dS$$

Integrating both side

$$\int dI = \int (\frac{\alpha}{\beta * S} - 1) \, dS$$

$$I = \frac{\alpha}{\beta} \ln(S) - S + C \tag{2.6}$$

Where, C is arbitrary constant

$$R = N - I - S$$

SIR model is equal equipped with the initial condition

$$I_0 = \frac{\alpha}{\beta} \ln(S_0) - S_0 + C$$
$$C = I_0 + S_0 - \frac{\alpha}{\beta} \ln(S_0)$$

Using equation (6)

 $S = S_0$  and  $I = I_0$ 

$$I = \frac{\alpha}{\beta} \ln(S) - S + C$$
  
$$I I I \le 1 \frac{\alpha}{\beta} \ln(S) - S \quad I + I C \quad (2.7)$$

Now, we apply Theorem maxima and minima.

Take

$$F(S) = \frac{\alpha}{\beta} \ln(S) - S$$

We know that function is maximum if let find a F''(S) < 0 and dF'(S) = 0. So by function F(S)

$$F'(S) = \frac{\alpha}{\beta^* S} - 1 = 0 S^2$$
$$S = \frac{\alpha}{\beta}$$
$$F''(S) = \frac{-\alpha}{\beta^* S^2} < 0$$

Put the value of S in F''(S) then

 $S = \frac{\alpha}{\beta} \implies 1 \frac{\alpha}{\beta} \ln(S) - S 1 \text{ is maximum}$ F''(S) is less than zero. It means F''(S) is maximum.

Put the value of S in equation (7)

$$I_{\max} = \frac{\alpha}{\beta} \ln(\frac{\alpha}{\beta}) - \frac{\alpha}{\beta} + 1 C 1$$
 (2.8)

Where,  $I_{max}$  is maximum number of infected cases from covid-19 in Maharashtra.

Put the value of C in equation (8)

$$I_{\max} = \frac{\alpha}{\beta} \ln(\frac{\alpha}{\beta}) - \frac{\alpha}{\beta} + I_0 + S_0 - \frac{\alpha}{\beta} \ln(S_0)$$
(2.9)

The above equation is maximum number of infected.

### CHAPTER 3

### Method for solving the covid-19 model

We have various type of method to solve the system such as euler method, Runge-Kutta fourth order. Runge-Kutta fourth is better as compare to euler because order of one of euler method and order of Runge-Kutta fourth methed is four. Accuracy, stability, and can be easily programmed level of Runge-Kutta fourth methed.

So that we have taken Runge-Kutta fourth order for solving the model. The step of Runge-Kutta fourth order to solve the model are discuss below.

#### 3.1 <u>Runge-Kutta fourth order</u>

Let an initial value problem be specified as follows:

$$\frac{dy}{dx} = f(t,y) \qquad y(t_0) = y_0$$

Here y is an unknown function (scalar or vector) of time t, which we would like to approximate; we are told that  $\frac{dy}{dx}$ , the rate at which y changes, is a function of t and of y itself. At the initial time t<sub>0</sub> the corresponding y value is y<sub>0</sub>. The function f and the initial conditions t<sub>0</sub>,y<sub>0</sub> are given.

we have used Runge-Kutta fourth order for solving covid-19 model based differential equation. we used the MATLAB programme to solve the differential equation using initial conditions.

The 4th order Runge-Kutta method for a non-linear differential equations has the following

$$\frac{dS}{dt} = f(t, S, I, R) = -\beta S_n I_n$$

$$\frac{dI}{dt} = f(t, S, I, R) = \beta S_n I_n - \alpha I_n$$
$$\frac{dR}{dt} = f(t, S, I, R) = \alpha I_n$$

Where  $f(t_n, y_n)$  is the slope of the curve and is a small phase size in the time domain. Here, we want to measure the dependent variables called S, I and R to the proposed SIR model. Therefore the solution of proposed SIR model based differential is transformed into Runge-Kutta fourth order method forms which are given below:

$$S_{n+1} = S_n + \frac{\Delta t}{6} \left( K_1^S + 2K_2^S + 2K_3^S + K_4^S \right)$$
(3.1)  

$$K_1^S = f\left( t_n, S_n, I_n \right) = -\beta S_n I_n$$
  

$$K_2^S = f\left( t_n + \frac{\Delta t}{2}, S_n + \frac{K_1^S \Delta t}{2}, I_n + \frac{K_1^I \Delta t}{2} \right) = -\beta \left( S_n + \frac{K_1^S \Delta t}{2} \right) \left( I_n + \frac{K_1^I \Delta t}{2} \right)$$
  

$$K_3^S = f\left( t_n + \frac{\Delta t}{2}, S_n + \frac{K_2^S \Delta t}{2}, I_n + \frac{K_2^I \Delta t}{2} \right) = -\beta \left( S_n + \frac{K_2^S \Delta t}{2} \right) \left( I_n + \frac{K_2^I \Delta t}{2} \right)$$
  

$$K_4^S = f\left( t_n + \frac{\Delta t}{2}, S_n + \frac{K_3^S \Delta t}{2}, I_n + \frac{K_3^I \Delta t}{2} \right) = -\beta \left( S_n + \frac{K_3^S \Delta t}{2} \right) \left( I_n + \frac{K_3^I \Delta t}{2} \right)$$

$$I_{n+1} = I_n + \frac{\Delta t}{6} \left( K_1^I + 2K_2^I + 2K_3^I + K_4^I \right)$$
(3.2)  

$$K_1^I = f(t_n, S_n, I_n) = \beta S_n I_n - \alpha I_n$$
  

$$K_2^I = f(t_n + \frac{\Delta t}{2}, S_n + \frac{K_1^S \Delta t}{2}, I_n + \frac{K_1^I \Delta t}{2}) = \beta (S_n + \frac{K_1^S \Delta t}{2}) (I_n + \frac{K_1^I \Delta t}{2}) - \alpha (I_n + \frac{K_1^I \Delta t}{2})$$
  

$$K_3^I = f(t_n + \frac{\Delta t}{2}, S_n + \frac{K_2^S \Delta t}{2}, I_n + \frac{K_2^I \Delta t}{2}) = \beta (S_n + \frac{K_2^S \Delta t}{2}) (I_n + \frac{K_2^I \Delta t}{2}) - \alpha (I_n + \frac{K_2^I \Delta t}{2})$$
  

$$K_4^I = f(t_n + \frac{\Delta t}{2}, S_n + \frac{K_3^S \Delta t}{2}, I_n + \frac{K_3^I \Delta t}{2}) = \beta (S_n + \frac{K_3^S \Delta t}{2}) (I_n + \frac{K_3^I \Delta t}{2}) - \alpha (I_n + \frac{K_3^I \Delta t}{2})$$

$$R_{n+1} = R_n + \frac{\Delta t}{6} (K_1^R + 2K_2^R + 2K_3^R + K_4^R)$$
(3.3)  

$$K_1^R = f(t_n, I_n) = \alpha I_n$$
  

$$K_2^R = f(t_n + \frac{\Delta t}{2}, I_n + \frac{K_1^I \Delta t}{2}) = \alpha (I_n + \frac{K_1^I \Delta t}{2})$$
  

$$K_3^R = f(t_n + \frac{\Delta t}{2}, I_n + \frac{K_2^I \Delta t}{2}) = \alpha (I_n + \frac{K_2^I \Delta t}{2})$$
  

$$K_4^R = f(t_n + \frac{\Delta t}{2}, I_n + \frac{K_3^I \Delta t}{2}) = \alpha (I_n + \frac{K_3^I \Delta t}{2})$$

Applying the 4th order Runge-Kutta method, initial conditions are required. The data obtained from covid-19 India and my government website (29 April 2021 to 13 November 2021). Taking the total population of Maharashtra as N=12.2153000,

$$S_0=11.3814181$$
,  $I_0=0.4539553$ ,  $R_0=0.3799266$ .

The following expression can be used to measure the value of the covid-19 recovered rate and covid-19 infection rate of Maharashtra's covid-19 outbreak:

$$\beta = \frac{\text{Infected population of Maharashtra on 29 April 2021}}{\text{Susceptible population of Maharashtra on 29 April 2021}}$$
$$\beta = \frac{0.4539553}{11.3814181}$$
$$\beta = 0.0398856$$
$$\alpha = 1/14 = 0.0714$$
$$\Delta t = 1$$

Using the values of  $\beta$ ,  $\alpha$ , S<sub>0</sub>, I<sub>0</sub>, R<sub>0</sub> and  $\Delta t$  in condition (3.1), (3.2) and (3.3) to get the next generation values S<sub>1</sub>, I<sub>1</sub> and R<sub>1</sub> can be obtained. Similarly, we can assess other iterations in the same way. The numerical results of Runge-kutta fourth-order method of covid-19 model.

#### 3.2 Covid-19 model Simulation

The Covid-19 model related in Matlab 2012 b envolvement. The inbuilt function ode45 solver was used this solver is based on Runge-Kutta fourth order.

On solving the covid-19 model. we have obtained the solution and numerical values of solution it present in table.

| Dates      | Susceptible | Infected | recovered |
|------------|-------------|----------|-----------|
| 29/04/2021 | 11.3814     | 0.4540   | 0.3799    |
| 30/04/2021 | 11.1336     | 0.6624   | 0.4193    |
| 01/05/2021 | 10.7835     | 0.9553   | 0.4765    |
| 01/05/2021 | 10.3019     | 1.3551   | 0.5583    |
| 02/05/2021 | 9.6629      | 1.8794   | 0.6729    |
| 03/05/2021 | 8.8516      | 2.5338   | 0.8298    |
| 04/05/2021 | 7.8817      | 3.2962   | 1.0374    |
| 05/05/2021 | 6.7979      | 4.1154   | 1.3020    |
| 06/05/2021 | 5.6778      | 4.9128   | 1.6246    |
| 07/05/2021 | 4.6018      | 5.6125   | 2.0011    |
| 08/05/2021 | 3.6360      | 6.1569   | 2.4223    |
| 09/05/2021 | 2.8251      | 6.5149   | 2.8753    |
| 10/05/2021 | 2.1687      | 6.6993   | 3.3473    |
| 11/05/2021 | 1.6532      | 6.7344   | 3.8277    |
| 12/05/2021 | 1.2607      | 6.6479   | 4.3068    |
| 13/05/2021 | 0.9689      | 6.4704   | 4.7761    |
| 14/05/2021 | 0.7518      | 6.2337   | 5.2297    |
| 15/05/2021 | 0.5893      | 5.9608   | 5.6652    |
| 16/05/2021 | 0.4669      | 5.6678   | 6.0806    |

#### Table: Covid-19 model Simulation using Runge- Kutta Fourth Order Method

| 15/05/2021 |        |        |         |
|------------|--------|--------|---------|
| 17/05/2021 | 0.3746 | 5.3661 | 6.4745  |
| 18/05/2021 | 0.3043 | 5.0642 | 6.8468  |
| 19/05/2021 | 0.2501 | 4.7674 | 7.1978  |
| 20/05/2021 | 0.2080 | 4.4795 | 7.5279  |
| 21/05/2021 | 0.1749 | 4.2027 | 7.8377  |
| 22/05/2021 | 0.1487 | 3.9383 | 8.1283  |
| 23/05/2021 | 0.1277 | 3.6871 | 8.4005  |
| 24/05/2021 | 0.1108 | 3.4494 | 8.6552  |
| 25/05/2021 | 0.0970 | 3.2250 | 8.8933  |
| 26/05/2021 | 0.0856 | 3.0137 | 9.1160  |
| 27/05/2021 | 0.0762 | 2.8151 | 9.3240  |
| 28/05/2021 | 0.0684 | 2.6286 | 9.5183  |
| 29/05/2021 | 0.0618 | 2.4538 | 9.6997  |
| 30/05/2021 | 0.0562 | 2.2901 | 9.8690  |
| 31/05/2021 | 0.0515 | 2.1369 | 10.0270 |
| 01/06/2021 | 0.0474 | 1.9935 | 10.1744 |
| 02/06/2021 | 0.0439 | 1.8595 | 10.3119 |
| 03/06/2021 | 0.0409 | 1.7343 | 10.4401 |
| 04/06/2021 | 0.0383 | 1.6174 | 10.5597 |
| 05/06/2021 | 0.0359 | 1.5081 | 10.6712 |
| 06/06/2021 | 0.0339 | 1.4061 | 10.7753 |
| 07/06/2021 | 0.0321 | 1.3108 | 10.8724 |
| 08/06/2021 | 0.0305 | 1.2219 | 10.9629 |
| 09/06/2021 | 0.0291 | 1.1390 | 11.0472 |
| 10/06/2021 | 0.0279 | 1.0616 | 11.1258 |
| 11/06/2021 | 0.0268 | 0.9896 | 11.1990 |
| 12/06/2021 | 0.0258 | 0.9224 | 11.2671 |
| 13/06/2021 | 0.0249 | 0.8598 | 11.3306 |
| 14/06/2021 | 0.0242 | 0.8014 | 11.3898 |
| 15/06/2021 | 0.0234 | 0.7470 | 11.4449 |
| 16/06/2021 | 0.0228 | 0.6961 | 11.4964 |
| 17/06/2021 | 0.0222 | 0.6487 | 11.5444 |
| 18/06/2021 | 0.0216 | 0.6045 | 11.5892 |
| 19/06/2021 | 0.0211 | 0.5632 | 11.6310 |
| 20/06/2021 | 0.0207 | 0.5248 | 11.6698 |
| 21/06/2021 | 0.0203 | 0.4890 | 11.7060 |
| 22/06/2021 | 0.0199 | 0.4557 | 11.7397 |
| 23/06/2021 | 0.0195 | 0.4246 | 11.7711 |
| 24/06/2021 | 0.0192 | 0.3957 | 11.8003 |
| 25/06/2021 | 0.0189 | 0.3688 | 11.8275 |
| 26/06/2021 | 0.0187 | 0.3437 | 11.8529 |

| 27/06/2021 | 0.0184 | 0.3203 | 11.8766 |
|------------|--------|--------|---------|
| 28/06/2021 | 0.0184 | 0.2984 | 11.8987 |
| 29/06/2021 | 0.0182 | 0.2984 | 11.9193 |
| 30/06/2021 |        |        |         |
|            | 0.0178 | 0.2590 | 11.9385 |
| 01/07/2021 | 0.0176 | 0.2413 | 11.9563 |
| 02/07/2021 | 0.0175 | 0.2248 | 11.9730 |
| 03/07/2021 | 0.0173 | 0.2095 | 11.9885 |
| 04/07/2021 | 0.0172 | 0.1952 | 12.0029 |
| 05/07/2021 | 0.0170 | 0.1819 | 12.0164 |
| 06/07/2021 | 0.0169 | 0.1695 | 12.0289 |
| 07/07/2021 | 0.0168 | 0.1580 | 12.0405 |
| 08/07/2021 | 0.0167 | 0.1472 | 12.0514 |
| 09/07/2021 | 0.0166 | 0.1371 | 12.0615 |
| 10/07/2021 | 0.0165 | 0.1278 | 12.0710 |
| 11/07/2021 | 0.0165 | 0.1190 | 12.0798 |
| 12/07/2021 | 0.0164 | 0.1109 | 12.0880 |
| 13/07/2021 | 0.0163 | 0.1033 | 12.0957 |
| 14/07/2021 | 0.0162 | 0.0962 | 12.1028 |
| 15/07/2021 | 0.0162 | 0.0897 | 12.1094 |
| 16/07/2021 | 0.0161 | 0.0836 | 12.1156 |
| 17/07/2021 | 0.0161 | 0.0779 | 12.1214 |
| 18/07/2021 | 0.0160 | 0.0726 | 12.1267 |
| 19/07/2021 | 0.0160 | 0.0676 | 12.1317 |
| 20/07/2021 | 0.0159 | 0.0630 | 12.1364 |
| 21/07/2021 | 0.0159 | 0.0587 | 12.1407 |
| 22/07/2021 | 0.0159 | 0.0547 | 12.1448 |
| 23/07/2021 | 0.0158 | 0.0509 | 12.1485 |
| 24/07/2021 | 0.0158 | 0.0474 | 12.1521 |
| 25/07/2021 | 0.0158 | 0.0442 | 12.1553 |
| 26/07/2021 | 0.0157 | 0.0412 | 12.1584 |
| 27/07/2021 | 0.0157 | 0.0384 | 12.1612 |
| 28/07/2021 | 0.0157 | 0.0358 | 12.1638 |
| 29/07/2021 | 0.0157 | 0.0333 | 12.1663 |
| 30/07/2021 | 0.0157 | 0.0310 | 12.1686 |
| 31/07/2021 | 0.0156 | 0.0289 | 12.1707 |
| 01/08/2021 | 0.0156 | 0.0269 | 12.1727 |
| 02/08/2021 | 0.0156 | 0.0251 | 12.1746 |
| 03/08/2021 | 0.0156 | 0.0234 | 12.1763 |
| 04/08/2021 | 0.0156 | 0.0218 | 12.1779 |
| 05/08/2021 | 0.0156 | 0.0203 | 12.1794 |
| 06/08/2021 | 0.0156 | 0.0189 | 12.1808 |

| 07/00/2021 | 0.0155 | 0.017( | 10 1001 |
|------------|--------|--------|---------|
| 07/08/2021 | 0.0155 | 0.0176 | 12.1821 |
| 08/08/2021 | 0.0155 | 0.0164 | 12.1834 |
| 09/08/2021 | 0.0155 | 0.0153 | 12.1845 |
| 10/08/2021 | 0.0155 | 0.0143 | 12.1855 |
| 11/08/2021 | 0.0155 | 0.0133 | 12.1865 |
| 12/08/2021 | 0.0155 | 0.0124 | 12.1874 |
| 13/08/2021 | 0.0155 | 0.0115 | 12.1883 |
| 14/08/2021 | 0.0155 | 0.0107 | 12.1891 |
| 15/08/2021 | 0.0155 | 0.0100 | 12.1898 |
| 16/08/2021 | 0.0155 | 0.0093 | 12.1905 |
| 17/08/2021 | 0.0155 | 0.0087 | 12.1912 |
| 18/08/2021 | 0.0155 | 0.0081 | 12.1918 |
| 19/08/2021 | 0.0155 | 0.0075 | 12.1923 |
| 20/08/2021 | 0.0155 | 0.0070 | 12.1928 |
| 21/08/2021 | 0.0155 | 0.0065 | 12.1933 |
| 22/08/2021 | 0.0155 | 0.0057 | 12.1938 |
| 23/08/2021 | 0.0155 | 0.0053 | 12.1942 |
| 24/08/2021 | 0.0155 | 0.0049 | 12.1946 |
| 25/08/2021 | 0.0155 | 0.0046 | 12.1949 |
| 26/08/2021 | 0.0155 | 0.0043 | 12.1953 |
| 27/08/2021 | 0.0155 | 0.0040 | 12.1956 |
| 28/08/2021 | 0.0155 | 0.0037 | 12.1959 |
| 29/08/2021 | 0.0155 | 0.0035 | 12.1962 |
| 30/08/2021 | 0.0155 | 0.0032 | 12.1964 |
| 31/08/2021 | 0.0155 | 0.0030 | 12.1967 |
| 01/09/2021 | 0.0155 | 0.0028 | 12.1969 |
| 02/09/2021 | 0.0155 | 0.0026 | 12.1971 |
| 03/09/2021 | 0.0155 | 0.0024 | 12.1973 |
| 04/09/2021 | 0.0155 | 0.0023 | 12.1975 |
| 05/09/2021 | 0.0155 | 0.0021 | 12.1976 |
| 06/09/2021 | 0.0155 | 0.0020 | 12.1978 |
| 07/09/2021 | 0.0155 | 0.0018 | 12.1979 |
| 08/09/2021 | 0.0155 | 0.0017 | 12.1981 |
| 09/09/2021 | 0.0155 | 0.0016 | 12.1982 |
| 10/09/2021 | 0.0155 | 0.0015 | 12.1983 |
| 11/09/2021 | 0.0155 | 0.0014 | 12.1984 |
| 12/09/2021 | 0.0155 | 0.0013 | 12.1985 |
| 13/09/2021 | 0.0155 | 0.0012 | 12.1986 |
| 14/09/2021 | 0.0155 | 0.0011 | 12.1987 |
| 15/09/2021 | 0.0155 | 0.0010 | 12.1988 |
| 16/09/2021 | 0.0155 | 0.0010 | 12.1989 |
|            |        |        |         |

| 17/09/2021 | 0.0155 | 0.0009  | 12.1990 |
|------------|--------|---------|---------|
| 18/09/2021 | 0.0155 | 0.0008  | 12.1991 |
| 19/09/2021 | 0.0155 | 0.0008  | 12.1991 |
| 20/09/2021 | 0.0155 | 0.0007  | 12.1992 |
| 21/09/2021 | 0.0155 | 0.0007  | 12.1992 |
| 22/09/2021 | 0.0155 | 0.0006  | 12.1993 |
| 23/09/2021 | 0.0155 | 0.0006  | 12.1993 |
| 24/09/2021 | 0.0155 | 0.0005  | 12.1994 |
| 25/09/2021 | 0.0155 | 0.0005  | 12.1994 |
| 26/09/2021 | 0.0155 | 0.0005  | 12.1994 |
| 27/09/2021 | 0.0155 | 0.0004  | 12.1995 |
| 28/09/2021 | 0.0155 | 0.0004  | 12.1995 |
| 29/09/2021 | 0.0155 | 0.0004  | 12.1995 |
| 30/09/2021 | 0.0155 | 0.00043 | 12.1996 |
| 01/10/2021 | 0.0155 | 0.0003  | 12.1996 |
| 02/10/2021 | 0.0155 | 0.0003  | 12.1996 |
| 03/10/2021 | 0.0155 | 0.0003  | 12.1996 |
| 04/10/2021 | 0.0155 | 0.0003  | 12.1996 |
| 05/10/2021 | 0.0155 | 0.0002  | 12.1996 |
| 06/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 07/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 08/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 09/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 10/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 11/10/2021 | 0.0155 | 0.0002  | 12.1997 |
| 12/10/2021 | 0.0155 | 0.0001  | 12.1997 |
| 13/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 14/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 15/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 16/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 17/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 18/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 19/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 20/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 21/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 22/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 23/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 24/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 25/10/2021 | 0.0155 | 0.0001  | 12.1998 |
| 26/10/2021 | 0.0155 | 0.0001  | 12.1999 |
| 27/10/2021 | 0.0155 | 0.0000  | 12.1999 |

| 28/10/2021  | 0.0155 | 0.0000 | 12.1999 |
|-------------|--------|--------|---------|
| 29/10/2021  | 0.0155 | 0.0000 | 12.1999 |
| 30/10/2021  | 0.0155 | 0.0000 | 12.1999 |
| 31/10/2021  | 0.0155 | 0.0000 | 12.1999 |
| 01/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 02/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 03/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 04/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 05/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 06/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 07/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 08/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 09/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 10/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 11/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 12/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| 13/11/2021  | 0.0155 | 0.0000 | 12.1999 |
| · · · · · · |        |        |         |

Simulation proposed for covid-19 epidemic of Maharashtra start from 29 April 2021.

The maximum number of infected covid-19 cases  $I_{max}$  outbreak of Maharashtra can be calculated by equation (2.9)

$$I_{\max} = \frac{\alpha}{\beta} \ln(\frac{\alpha}{\beta}) - \frac{\alpha}{\beta} + I_0 + S_0 - \frac{\alpha}{\beta} \ln(S_0)$$

 $S_0=11.3814181$ ,  $I_0=0.4539553$ ,  $\beta = 0.0398856$ ,  $\alpha = = 0.0714$ 

Put all the given value in  $I_{max}$ 

Then  $I_{max} = 6.7392339$ . we multiply by 10000000 in  $I_{max}$ . Therefore  $I_{max} = 6.7392339$  x 10000000 = 67392339.

And real data point of covid-19 infected at 67344 in table.

In the numerical simulation, we can see the maximum infected population of covid-19 in Maharashtra on the date of 11 may 2021. Then it will continuous decrease till the fourth week of October 2020.

# 3.2.1 Graphs

In figure (b) show the number of susceptible population of Covid-19 with respect to time t. the maximum number of susceptible are found at initial day on 29 April 2021 (it means initial data S<sub>0</sub>) and it is continuous decreasing tends to zero.

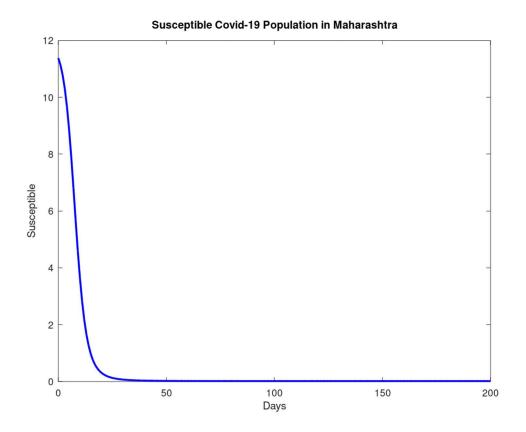


Figure (b); Susceptible population of covid-19

In figure (c) this show the number of infected population of covid-19 with respect to time t. on 29 April 2021 some initial cases after this infected cases continuous increasing till peak on 11 may 2021 and it is continuous decreasing till the end of covied-19 outbreak from Maharashtra.

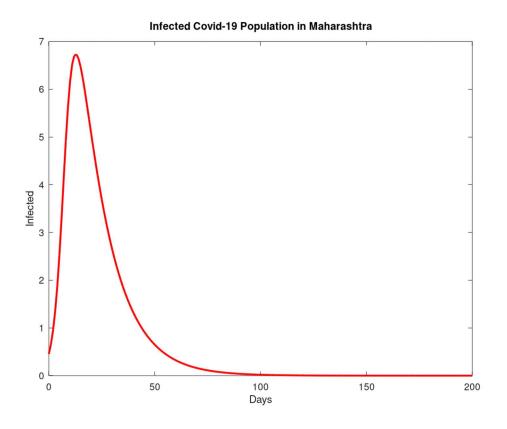


Figure (c) outbreak of infected population of covid-19

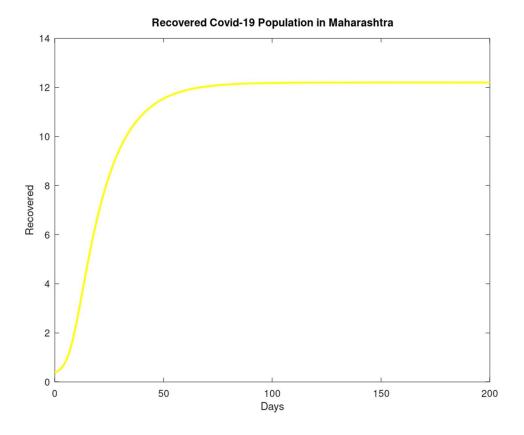


Figure (e); recovered population of covid-19

The spread rate of the Covid-19 outbreak can also be measured at the beginning, height, and end of the epidemic, as well as at any point during the epidemic of covid-19 of Maharashtra. Estimates reproductive number by using equation number (2.5):

1.) Initial level of covid-19

$$R_n = \frac{(\beta^* S_0)}{(\alpha)} = \frac{0.0398856*11.3814181}{0.0714} = 6.3579088$$

2.) Peak level of covid-19

$$R_n = \frac{(\beta^* S_{\text{peak}})}{(\alpha)} = \frac{0.0398856*11.3814181}{0.0714} = 6.3579088$$

3.) End level of covid-19

$$R_n = \frac{(\beta^* S_\infty)}{(\alpha)} = \frac{0.0398856*0.0155}{0.0714} = 0.0086586$$

We found that if the reproductive number is  $R_n > 1$ , the covid-19 increases continuously at the peak point (Cases 1 and 2), whereas if the reproductive number is  $R_n < 1$ , the covid-19 dies off (case-3). However, the spread of Covid-19 model has been determined by epidemiological scientists all over the India.

# **CHAPTER 4**

## Conclusion

According to this Covid-19 model show that covid-19 outbreak will be peak in Maharashtra on 11 may 2021. After the peak value of Covid-19 will decrease slowly till fourth week of October 2021. when the epidemic will be nearing its end. Prediction Based on the data determine through Covid-19 model, it would be incorrect to predict that the covid-19 outbreak in Maharashtra will continue because people here today are not practising social distancing or wearing face masks. As a result, Maharashtra faces a very high risk from this epidemic. This study also demonstrates that if social distancing, and masks, among other things, are used perfectly, then the outbreak of Covid-19 epidemic can be almost terminated in the fourth week of October 2021. In this report, study will be very useful in predicting Covid-19 outbreaks. This model will calculate the number of cases per day automatically. As a result, we can say that the Maharashtra government and doctors can keep an eye on this covid-19 situation.

# References

- [1.] Tanu Singhal. A review of coronavirus disease-2019 (Covid-19).
- [2.] Stephen L. Campbell and Richard Haberman, INTRODUCTION To DIFFERENTIAL EQUATIONS with Dynamical Systems. book
- [3.] P Umamaheswari. Stochastic Modelling and Simulation of SIR Model for Covid-19 Epidemic Outbreak in India. Sona College of Arts and Science, Salem-5, India
- [4.] Prema Ramachandran Krishnamurthy Kalaivani. Health System Response to Covid-19 Epidemic in India. Annals of the National Academy of Medical Sciences (India)
- [5.] Clinical Epidemiology and Global Health Volume 9, January–March 2021.
- [6.] Computer oriented numerical methods, R. S. SALARIA, BOOK
- [7.] Data collect from my government, Ministry of health and family welfare government of India.
- [8.] Data collect from covid-19 India. (https://www.covid19india.org/state/MH)