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Abstract  

 

Efficiency of  a computer vision system depends on accuracy of information extraction and 

data processing capabilities of the computer vision system. A camera frame capturing an object 

of interest in the center of a field of view carries the maximum information of the object. Thus, 

to enhance the accuracy of the information, the system requires continuous reconfiguration of 

configuration spaces of one or more camera sensors deployed in the system. However, 

identification of the object requires processing images, and the position of an object of interest 

in the frame can change dynamically. Thus, reconfiguration of configuration space is difficult 

for real time applications. A computer vision system capable of re-configuring its configuration 

space (i.e., through dynamic calibration of camera sensors) is known as an active vision system. 

For a better understanding of an event (or scene), the active vision system further requires 

association of various activities detected by the camera sensors temporally, which requires high 

processing capabilities to perform accurate spatiotemporal analysis of various image frames 

captured temporally by different camera sensors. Such systems rely on high computational 

complexity models and require enormous resources (such as Artificial Intelligence based 

systems). Systems deployed in mobile environment have limited resources (i.e., limited power 

supply, storage and processing capabilities), and thus are incapable of performing tasks with 

higher computational complexity, and thus lack efficient reconfiguration of camera sensor 

parameters (i.e., the configuration space) which leads to images (or frames) being captured 

with very low information of the objects of interest, yielding low performance and accuracy of 

the system. To address the aforementioned problem, this thesis presents a computer 

implemented framework (i.e., Spatiotemporal Activity Mapping (SAM) framework) that 

enables pixel-wise sensitivity allotment based on spatiotemporal activity analysis of frames 

captured over a flexible time period. The SAM framework presents various filters efficiently 
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designed with very low computational complexity for accurate detection of areas of interest, 

for re-configuration of calibration parameters. The SAM framework presents a flexibility of 

selection of the criticality of activities detected by the system, and thus is effective in a variety 

of computer vision applications such as road surveillance, sports analysis, ambient living 

applications, and the like. 

Model-based systems only work in known conditions and fail miserably in unforeseen 

conditions. Systems employing Artificial Intelligence (AI) can manage to tackle unforeseen 

environments, however, such systems require iterative training to learn and train to develop 

understanding of new events and activities over a long period of time, and thus are not reliable 

for real-time applications. Thus, the contemporary systems lack real-time reconfiguration of 

configuration space for an adequate scene understanding of a new activity or event. To address 

the aforementioned problem, this thesis presents another computer implemented framework 

(i.e., Adaptive Self-Reconfiguration (AdapSR)) framework that enables a number of computer 

vision systems to exchange information and data sharing, and thus learn to tackle an unforeseen 

condition at a very high rate. The AdapSR framework is fairly efficient in performance for 

applications employing higher computational and storage capabilities for high levels of 

accuracy and fast learning such as driverless navigation, adaptive activity analysis, and the like. 

The AdapSR framework further provides a concept of decentralized network of active vision 

systems that enables establishment of standardization of protocols for a plurality of computer 

vision applications associated together over a blockchain network in near future. 

Thus, by developing these novel techniques and framework models, all major issues regarding 

self-reconfiguration of computer vision systems have been addressed. This thesis incorporates 

the developed techniques and their performance evaluation along with future directions. 
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Chapter 1 

INTRODUCTION 

Sight is considered as the most powerful sense of a human being. The reason behind sight being 

the most powerful sense is the content of visual information in each vision (or visual frame) 

captured through the sight. The visual information is processed by the human brain to derive an 

understanding of the captured scene. A computer vision system is an artificial system that tries 

to mimic the functionality of a human vision system. According to Reisslein et al. in [1], 

computer vision systems are distributed systems configured to extract visual information from 

data sensed by a plurality of cameras via co-operative sensing in real-time. 

With advancement of technology and processing capabilities of artificial systems, computer 

vision has found new domains of applications in the last two decades. Today, computer vision 

systems find applications in the areas of surveillance for security and detection of trespassing 

[2], driverless vehicles [3], sports analysis [4], healthcare robotics, aviation, ambient living [5], 

tele-immersion, disaster management, situation cognizance [6] and many more. A survey in [2] 

reports an estimated 7.6% annual growth of computer vision applications (in terms of 

Compound Annual Growth Rate (CAGR)) from 2020 to 2027 based on the progressive growth 

of computer vision applications observed in recent years. 

Computer vision systems [7] commonly utilize one or more camera sensors coupled to 

processing circuitry (such as a processing unit or a data processor) having a combination of 
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software-hardware components capable of image processing to derive a desired functionality. 

The camera sensors of the computer vision system are configured to capture one or more image 

frames (bearing information of the scene) of a desired environment (e.g., scene) and provide 

the image frames (hereinafter interchangeably referred to as “frames”) to the processing 

circuitry for further processing. The processing circuitry of the computer vision system is 

configured to perform one or more data processing tasks on each frame to derive an 

understanding of one or more activities in the environment of the captured scene. More 

specifically, the processing circuitry receives sensed data (or image frames) from the camera 

sensors, combines the sensed data, and performs data processing to obtain visual understanding 

of the scene. The computer vision system is generally coupled to a control circuitry (e.g., an 

actuation unit) that receives the visual understanding of the scene from the processing circuitry 

and performs one or more actions based on the functionality of the system. The aforementioned 

process flow of a typical computer vision system is shown in Figure 1.1 hereinbelow. 

   

Figure 1.1 Process flow of a Computer Vision application 
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Performance of the computer vision system depends on accuracy of data extraction (in terms of 

the information content of objects of interest in the frame) and the computer vision system's 

data processing capabilities. High accuracy of the captured data demands continuous 

reconfiguration (e.g., calibration) of the configuration space of the computer vision system's 

camera sensors in response to the activity detected by the computer vision system. As a person 

skilled in the art will appreciate, a frame with an object of interest captured in the centre of the 

field of view (FoV) of the camera sensor bears the maximum information about the object of 

interest (as the camera sensor captures the object in the centre of its field of view with highest 

resolution). Thus, a timely re-configuration of the configuration space is required to maximise 

the information contained in each frame and enhance the efficiency of the computer vision 

system. To achieve the aforementioned, the computer vision system must be competent enough 

to derive a configuration state (through configuration space of the camera sensors) based on the 

scene understanding derived by processing the previous frames captured by the sensors and 

calibrate its configuration state accordingly for the upcoming frames (i.e., self-reconfiguration). 

To address the aforementioned issues concerning, we have conducted our research and 

developed several techniques for adaptive self-reconfiguration of smart camera networks 

employed in computer vision applications with low latency. 

1.1  Active vision 

A human vision system sends impulse responses to the vision system by processing the visual 

data, and thus in response, the human vision system changes the field of view for the upcoming 

events accordingly. Similarly, for a computer vision system, it is critical to understand what to 

look at (i.e., identify the objects of interest) and where to look for (i.e., determine regions of 

presence of objects of interest in field of views of the camera sensors). Each camera sensor has 

a configuration space that includes internal calibration parameters (such as aspect ratio, 
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aperture, focal length etc.) and external calibration parameters (such as orientation, rotation, 

translation, Pan, Tilt, Zoom etc.). To capture scenes with maximum information of the objects 

of interest (i.e., at highest resolution), the camera’s configuration space (i.e., the internal and 

external calibration parameters) must be adjusted in accordance with the information of the 

objects of interest derived by processing the frame. 

Active vision systems [8] (also known as ‘active computer vision systems’) are computer vision 

systems capable of calibrating (or re-configuring) the internal and external parameters (i.e., the 

configuration space) of their camera sensors to alter viewpoints of the cameras according to the 

functionality of the system. Operations of active vision systems can be classified into two 

fundamental levels: a deployment level (i.e., for data extraction and calibration of the camera 

sensors) and a processing level (i.e., where the visual processing takes place to derive an 

understanding). Thus, the challenges associated with designing an ideal active vision system is 

also categorised into two types (i.e., the challenges associated with the deployment of the active 

vision system [9] and the challenges associated with data processing [2]). The first type of 

challenges [9] is associated with sensor node reconfiguration in order to obtain sensor data 

containing optimal information in relation to each camera's resource limitations. The second 

type of challenges [2] is associated with the data-processing level of operation to maximize the 

scene understanding of while keeping computational complexity as low as possible. As a result, 

an effective active vision system necessitates deployment efforts at both the hardware and 

software levels. Therefore, to design an efficient and adaptive self-reconfigurable active vision 

system, there is a requirement to understand the taxonomy of operational levels of active vision 

system, the challenges at each level, and effects of enhancement at one level of deployment to 

other levels. Figure 1.2 depicts a multi-tier taxonomy of challenges for active vision systems 

employing camera networks based on the aforementioned operational classification. 
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Figure 1.2 Classification of challenges in Active Vision Systems 

As shown in Figure 1.2 hereinabove, enhancement of the efficiency of active vision systems 

demands attention at the deployment level as well as the processing level. Further, the inter-

dependence of the calibration of the camera sensor’s configuration space and the processing 

performance of the active vision system makes it more difficult to develop an idol adaptive and 

self-reconfigurable active vision system. Thus, an objective of this research is to derive an 

accurate relationship between the calibration of configuration spaces of the camera sensors and 

the spatiotemporal activity analysis of the scene without high computational complexity. 

Another objective of this research is to design an efficient framework for adaptive self-

reconfiguration of active vision systems with capabilities of information and data sharing to 

enhance the learning rate of the systems to tackle an unforeseen condition in near real-time.  
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Yet another objective of this research is to enable standardization of operational protocols 

(through a framework) for a plurality of active vision systems associated together over a 

decentralized network to enhance security of data and information sharing. 

Yet another objective of this research is to design a simple autoencoder model to sufficiently 

compress the size of data to be shared between the plurality of active vision systems in the 

decentralized network without a high burden of computational resources on the active vision 

system. 

1.2 Research Motivation 

An active vision system employing a multi camera network results in an increase in the 

availability of frames captured by the plurality of camera sensors, thus the possibility of 

obtaining better information from the captured frames is increased. However, processing 

enormous data from the plurality of frames also increases the computational load of the active 

vision system. Further, a higher degree of freedom (e.g., flexibility or movability) of the camera 

sensor enables capturing frame with enhanced accuracy in terms of the information of the 

objects of interest in the frame. However, a higher degree of freedom of the camera sensor 

increases the calibration parameters of the camera sensor and thus increases the computational 

complexity and load of the system. An active vision system employing a single fixed camera 

has much lower computational load and thus faces fewer deployment challenges than an active 

vision system employing a network of mobile Pan-Tilt-Zoom (PTZ) cameras. However, an 

active vision system with multiple camera sensors with flexible movement can have occlusion-

avoidance capabilities that the active vision system with a single camera for sensing may not 

have.  

As for near real-time applications, re-configuration of calibration parameters based on the 

understanding of scene and the objects of interest is very difficult (especially for systems with 
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limited resources), contemporary active vision systems rely on a user-defined prioritized area 

of interest. Such systems enable a user to select the prioritized area in the field of view of each 

camera, either prior to the deployment of the system or while operation of the system. However, 

such systems require a constant need of a personnel (i.e., the user) to monitor the environment 

under observation. 

As computer vision systems [7] aim to leverage human efforts by developing an understanding 

of events through the processing of data obtained from a number of sensors, the aforementioned 

scenarios compromise on the basic fundamental of computer vision system. An ideal active 

vision system must be capable of deriving information of the scene and calibrate the 

configuration spaces of the camera sensors based on the derived information. High 

computational complexity of the active vision system for image processing being the major 

issue here must be addressed appropriately. Further, to match the human intellect, the active 

vision system must be adaptive and capable of associating the temporally derived information 

for re-reconfiguration of camera sensors. 

Model-based computer vision systems only work in known environments and fail miserably in 

unknown environments. Systems that use Artificial Intelligence (AI) can deal with unexpected 

situations, however such systems require iterative training to learn and train over time to 

develop understanding of new events and activities, making them unsuitable for real-time 

applications. For an adequate scene understanding of a new activity or event in real time, 

modern computer vision systems lack real-time reconfiguration of configuration space. As a 

result, techniques for near real-time adaptive reconfiguration of sensors for capturing data with 

optimal information are required to derive optimised information about the objects of interest 

and enhancement of the system’s quality of service (QoS). In addition, adequate research on 

optimal resource utilisation for computer vision systems with limited resources is lacking. 
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1.3 Research Problem 

The challenges of designing active vision systems are vastly divided into two broad categories 

(as shown in Figure 1.2 as deployment level challenges and processing level challenges) that 

are interdependent. However, the base problem is the computational complexity and load on 

the processing circuitry for reconfiguration of calibration parameters based on the scene 

understanding. Each computer vision system is specifically designed to address specific sets of 

challenges based on its functionality, and thus requires different specifications and capabilities. 

For example, a surveillance system used in military defense may require a mobile carrier for 

the computer vision system (such as a drone) with limitations on computational, battery and 

storage resources, whereas a surveillance system employing computer vision for ambient living 

installed in a facility may be powered by constant power supply and may not require high 

computational and/or storage resources based on the limited functionality of the system. 

Thus, the broader problem of self-reconfiguration of the camera sensors can be categorized into 

two classes: (i) Self-reconfiguration of active vision systems with limited resources, and (ii) 

Adaptive self-reconfiguration of active vision systems with sufficient resources for reduced 

latency that can be used for near real-time applications. 

Self-reconfiguration of active vision systems with limited resources demands reconfiguration 

framework with low computational complexity and accurate activity detection. Further, there 

is a need to derive a spatiotemporal relationship between frames captured in past (i.e., past 

activities) and the present frames (real-time activities) to achieve enhanced understanding of 

the scene without exploiting the resources of the active vision system. 

Adaptive self-reconfiguration of active vision systems with sufficient resources for reduced 

latency can be used for near real-time applications. Such systems do not deprive of resources, 

rather demand high learning capabilities to tackle unforeseen conditions efficiently. Adaptive 

self-reconfiguration of active vision systems requires data and information sharing in a 
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decentralized environment for adaptive learning. Further, such systems demand an efficient 

compression tool (such as an autoencoder) to compress data while sharing and storing data that 

can be retrieved without losing essential and critical information. 

1.4 Objectives of Research Work 

The objectives of this research work are to develop techniques and methods to address the key 

problems for development of adaptive self-reconfiguration of smart camera networks deployed 

in active vision systems. These specific objectives are summarized as follows: 

Objective 1: 

• To review of the existing literature and compare different methodologies proposed to 

address challenges at various operational levels of active vision system.  

• To classify the challenges based on the type, requirements, and functionality of the 

application employing active vision system, and determine the broad problem areas for 

each type of application of the active vision systems. 

Objective 2: 

• To associate past and present activities/events detected by the active vision system by a 

spatiotemporal relationship without extensively exploiting resources of the active vision 

system.  

• To generate an accurate and efficient spatiotemporal activity map with pixel-wise 

importance value assigned to each pixel of the field of view of each camera that can be 

used for self-reconfiguration of the camera sensors of the active vision system. 

• To design a reconfiguration framework for improved camera sensor calibration based 

on the spatiotemporal activity map without exploiting resources of the active vision 

system. 
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Objective 3: 

• To incorporate self-adaptation in an active vision system. 

• To design an adaptive self-reconfiguration framework for improved performance with 

low reconfiguration latency of the active vision system. 

• To develop a distributed network of active vision systems capable of data and 

information sharing, that can be used for self-reconfiguration of camera sensor 

parameters. 

Objective 4: 

• To enable establishment of standardization of protocols for a plurality of active vision 

applications associated together over the decentralized network of active vision system.  

• To design a simple autoencoder model that can sufficiently compress the size of data to 

be shared between the plurality of active vision systems in the decentralized network 

without a high burden of computational resources on the active vision system. 

1.5 Thesis Contribution 

In this thesis, we showcase that the key to enhance performance of an active vision system is to  

incorporate adaptive self-reconfiguration to the system. The active vision systems are classified 

based on the functionality and resources available into two categories. The objectives, 

problems, and type of challenges for reconfiguration of calibration parameters depend on the 

functionality and application of the active vision system. 

The principal contributions of this thesis are: 

• A Self-reconfiguration Activity Mapping (SAM) framework is presented for generation 

of spatiotemporal activity maps with pixel-wise importance value assigned to each pixel 

that can be used for self-reconfiguration of the camera sensors of the active vision 
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system and showcases improved camera sensor calibration based on the spatiotemporal 

activity map with very low computational load and complexity. 

• An Adaptive Self-Reconfiguration (AdapSR) framework is presented for improved 

performance and low reconfiguration latency in handling unforeseen conditions. The 

AdapSR framework enables a distributed network of a number of active vision systems 

to share data, information, instructions and model to learn from each other’s past 

experiences, and thus learn to tackle unforeseen conditions at a relatively higher rate. 

The AdapSR framework enables establishment of standardization of protocols for the 

number of active vision systems in the distributed network.  

• Sharing and storing data, models, information and instructions in a distributed network 

of active vision systems require a large database for storage. Further, the size limitation 

of the database (or datacenters) is a never-ending challenge for distributed networks. To 

address the aforementioned, an autoencoder model with low computational load and 

complexity is presented utilizing basic cryptography principles of Gyrator transform to 

compress and enhance security of data prior to transfer/storage without losing any 

important or critical information of the data. 

1.6 Thesis Overview  

The thesis comprises of seven chapters, and a brief description of the seven chapters of this 

thesis is given hereinbelow:  

Chapter 1 (Introduction): This chapter covers the motivation and purpose of adaptive self-

reconfigurable active vision system. This chapter further contain thesis overview, research 

problem and the objectives of the research work. 

Chapter 2 (Literature Review): This chapter provides a detailed study of active vision systems 

and associated challenges at various taxonomical levels. This chapter covers the state-of-the-

art techniques developed in existing research work for development of adaptive smart camera 
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networks. Further, chapter 2 highlights the research gaps in the existing work that has stimulated 

the development of research objectives. Furthermore, Chapter 2 will showcase the practicability 

of applications employing SCNs and will provide potential directions for further research in 

this area. 

Chapter 3 (Spatiotemporal Activity Mapping): This chapter will provide a detailed discussion 

on Spatiotemporal Activity Mapping (SAM) framework for SCN-enabled active vision 

systems. The framework evaluates the scene spatiotemporally and produces adaptive activity 

maps for re-configuration of the sensor, such that the region(s) of importance can be captured 

in the centre of the sensor’s field of view. The framework utilizes simple image processing tools 

such as adaptive background subtraction, binarization, thresholding and federated optical flow 

for pre-processing the sensor data. Half-width Gaussian distribution is used for temporal 

relationship between present and past frames. The simple model of the proposed framework 

results in low computation complexity, and thus low resource utilization. 

Chapter 4 (Adaptive Self Reconfiguration): This chapter provides a detailed discussion on 

Adaptive Self-Reconfiguration (AdapSR) framework for SCN-enabled active vision systems. 

The framework enables active vision systems to share their derived learning about an activity 

or an unforeseen environment, which can be utilized by other active vision systems in the 

network, thus lowering the time needed for learning and adaptation to new conditions. Further, 

as the learning duration is reduced, the duration of the reconfiguration of the cameras is also 

reduced, yielding better performance in terms of understanding of a scene. The AdapSR 

framework enables resource and data sharing in a distributed network of active vision systems 

and outperforms state-of-the-art active vision systems in terms of accuracy and latency, making 

it ideal for real-time applications. 
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Chapter 5 (Autoencoder for AdapSR): This chapter provides a detailed discussion on the 

Gyrator Transform based data compression and security enhancement. The proposed system 

enables sharing the compressed datasets and model parameters in the distributed environment, 

and thus can be utilized as an alternative to highly complex auto-encoder model for AdapSR 

based systems. 

Chapter 6 (Dynamic Speed limit allocation): This chapter provides a detailed discussion on a 

used case of AdapSR framework (i.e., dynamic speed allocation ‘DSA’ framework) for 

dynamic traffic speed limit allocation and effect of the speed limits on accident prediction. The 

DSA framework utilizes data corresponding to different areas in the form of a plurality of 

parameters such as traffic density, accident count, static speed limit etc., to predict a most 

suitable speed limit for each area. 

Chapter 7 (Conclusion): This chapter provides a brief summary of all the ideas, observations, 

and contributions of the results obtained in each objective. Also, the future directions in each 

field will be sketched in this section. 
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CHAPTER 2 

LITERATURE REVIEW  

Applications employing computer vision systems have grown tremendously over the last few 

years due to advancement in technology and leading research in the area of computer vision. 

Specifically, the success of any computer vision system highly relies on the data captured by 

the camera sensors employed in the computer vision system and the processing capabilities of 

the computer vision system, which are inter-dependent. In this direction, the computer vision 

systems have taken a next leap as active vision systems are specifically designed to obtain data 

with higher information by periodic calibration of camera sensor’s configuration space and thus 

performing better in terms of the overall efficiency of the system. 

As discussed earlier in Chapter 1, the challenges in active vision systems employing a number 

of camera sensors (i.e., a camera network) can be categorised into two categories: deployment-

level challenges and processing-level challenges. Apparently, the challenges in deployment of 

the active vision system affect the processing performance of the system and vice-versa. A brief 

discussion on both categories of challenges is presented hereinbelow. 

2.1 Deployment level challenges 

Applications of computer vision systems vary in a large domain of areas, and so is the 

configuration and requirements of the system. Most often, low resource availability and high 

computational complexity are major set-backs of an active vision system that restrict the 
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calibration capabilities and thus supresses the performance of the system. Additionally, 

resources optimization by each camera sensor employed in the active vision system is equally 

important. Further, dealing with unforeseen environments and conditions is another problem 

for real-time applications of active vision systems, where the systems fail majorly. Designing 

an accurate sensor architecture with a precise sensor placement to optimize the performance of 

the active vision system is a further challenge. Lack of visual understanding due to occlusions 

and false detection due to environmental variations result in inappropriate calibration of the 

sensors, and thus affects the overall performance of the system. A brief description of the 

deployment level challenges is as follows. 

2.1.1 Sensor Placement 

Cameras in SCNs are typically placed with overlapping FOVs to capture the entire operating 

environment. However, with limited resources, it can be difficult to place cameras with 

overlapping FOVs for larger operational areas. Camera placement has a direct impact on the 

amount and quality of data available for processing. For example, if an object is captured in the 

centre of a camera's field of view (FOV), the quality of the data and thus the visual information 

available from the data is much higher than if the object is captured at the camera's edges. 

Further, the camera placement must ensure maximum event coverage, which makes camera 

placement critical for SCN deployment. Thus, sensor (e.g., camera) placement plays a crucial 

role in the performance and efficiency of an active vision system. Specifically, most of the 

research in the area of accurate sensor placement is confined to solving two major problems: 

(i) maximization of area covered by the camera sensors and (ii) managing non-overlapping 

camera field of views. 

Indu et al. in [10] and Zhang et al. in [11] proposed methods for placement of camera sensors 

to maximize the surveillance areas covered by a network of camera sensors. Silva et al. in [12] 

proposed co-ordination between camera sensors employed on a network of unmanned aerial 
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vehicles (UAVs) to improve the efficiency of aerial surveillance. Solutions proposed in [10] - 

[12] provide camera placement solutions for optimised functionality in a pre-defined 

configuration of environment, however, they lack architectural flexibility and surveillance 

space prioritisation. Jamshed et al. in [13] proposed an activity-based prioritization of area 

under surveillance. In [14], Vejdanparast proposed enhancement of fidelity of camera sensors 

in a smart camera network for maximization of the surveillance area. In [15], Wang et al. 

proposed Latin-Hypercube-based Resampling Particle Swarm Optimization (LH-RPSO) based 

camera placement algorithm for Internet of Things (IoT) devices networks. 

Redding et al. in [16], using cross-matching for non-overlapping FOVs, proposed use of a 

variety of features, such as grey-level co-occurrence matrices, scale-invariant feature 

transformation, Zernike moments, and colour models, etc., for object handover to manage non-

overlapping field of views. Esterele et al. in [17] proposed handover of information for handing 

non-overlapping field of views of a decentralized network of camera sensors by generating an 

online real-time vision graph. The information handover for handling non overlapping field of 

views by the online real-time vision graph in [17] was independent of any a-priory knowledge 

of the operating environment, and thus provided a flexibility of usage. In [18], Lin et al. 

proposed a method for active real-time FoV handover control for a single object by captured 

by a number of Pan-Tilt-Zoom (PTZ) camera sensors. The method proposed in [18] suggested 

a spatial relation between the PTZ cameras employing a shortest distance rule to determine 

readiness of each camera sensor prior to the handover. Table 2.1 presents an evolution of 

techniques and their advantages presented in the prior art for efficient sensor placement. 

Table 2.1 Techniques addressing sensor placement problems. 

Ref. Year Methodology Advantages 

[16] 2008 

Online system for tracking 

multiple people in an SCN 

with overlapping and non-

overlapping views 

Development of a larger, more capable, and fully 

automatic system without prior localization information  
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[10] 2009 Genetic Algorithm 

Maximum coverage of users; Defined priority areas with 

optimum values of parameters; 

 The proposed algorithm works offline and does not 

require camera calibration; 

Minimizes the probability of occlusion due to randomly 

moving objects 

[17] 2011 

Ant-colony-inspired 

mechanism used to grow the 

vision graph during runtime 

Generates a vision graph online; 

Increased autonomy, robustness, and flexibility in smart 

camera networks 

[18] 2012 

Approach to construct the 

automatic co-operative 

handover of multiple cameras 

for real-time tracking 

Tracking a moving target quickly and keeping the target 

within the viewing scope at all times 

[11] 2015 

Novel model with non-

uniformly distributed 

detection capability (DC) 

Orientation of each visual sensor can be optimized 

through a least-squares problem; 

More efficient with an averaged relative error of about 

3.4% 

[13] 2015 

Node-level optimal real-time 

priority-based dynamic 

scheduling algorithm 

Portable system with ease of access in hard-to-access 

areas. 

[12] 2017 

Coordination of embedded 

agents using spatial 

coordination on strategical 

positioning and role exchange 

Persistent surveillance with dynamic priorities 

[14] 2020 

Novel decomposition method 

with an intermediate point of 

representation 

Low computational expense; Higher fidelity of the 

outcomes 

[15] 2020 

Latin-Hypercube-based 

Resampling Particle Swarm 

Optimization (LH-RPSO) 

LH-RPSO has higher performance than the PSO and the 

RPSO; LH-RPSO is more stable and has a higher 

probability of obtaining the optimal solution 
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2.1.2 Camera Sensor Calibration 

Each camera sensor of the smart camera network deployed in an active vision system has an 

individual configuration space that is dependent on the parameters (i.e., the internal and external 

parameters of the camera sensor). A field of view (FoV) of each camera sensor is dependent on 

the configuration space of that camera sensor, which impacts the area under observation of the 

smart camera network. Specifically, calibration of the camera sensors enables the smart camera 

network to capture images accurately that impacts the performance of the active vision system 

using the smart camera network for image acquisition. Some systems are designed in such a 

way that the camera sensors are calibrated to efficiently utilize resources. Some other systems 

focus on calibration of camera sensors to capture the object(s) of interest at the best possible 

resolution. For example, when the object(s) of interest change their positions in the camera 

sensor’s field of view, to capture the object(s) of interest with optimized resolution, the 

configuration space of the camera sensors is required to be adjusted based on an information of 

position(s) of the object(s) of interest in the camera’s field of view. 

At some other instances, some smart camera networks having limited resources and restricted 

functionality (i.e., non-critical applications) rely on dynamic alteration of topology of the smart 

camera network by temporarily turning off camera sensors when no activity is detected by them. 

At the operational level, camera sensor calibration can be further divided into three 

subcategories that are discussed as follows. 

• Camera Sensor Modelling: Each camera sensor deployed in active vision application is 

specifically selected as per the particular requirements (based on the objectives and 

functionality) of the active vision system, thus the system’s overall state of each active 

vision system is unique. A camera sensor model enables the active vision system to 

determine the system’s overall state in terms of system’s state parameters such as power 
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consumption, available resources, bandwidth utilization, calibration parameters, 

Quality of Service (QoS), and the like. Thus, camera sensor modelling plays an 

important role to enable self-reconfiguration of smart camera network in an active vision 

system. Some traditional camera models include thin lens camera model or projection 

models (such as orthographic projection models, para-perspective projection models, 

scaled orthographic projection models, linear perspective projection models, and the 

like). The thin lens camera model (i.e., a linear camera calibration model) accounts for 

effects of translation and rotation with respect to a view plane. A pin-hole camera model 

(i.e., a linear perspective projection model) performs better in terms of the performance 

and QoS, however, it has a high computational complexity as compared to the thin lens 

model due to a higher number of model parameters. Hall et al. in [19], based on 3D 

affine transformation with linear perspective projection, proposed a simplified and 

efficient linear model with reduced computational complexity and a comparatively 

higher QoS. However, the linear models fail to account for non-linear distortions and 

thus result in poor QoS. Tsai et al. in [20] by way of a non-linear perspective projection, 

Toscani in [21] and Wang et al. in [22], by way of non-linear calibration, proposed non-

linear camera models for better performance of the system in terms of the overall QoS 

of the system considering the non-linear distortions. 

• Camera Localization: Camera localization facilitates each camera sensor of the smart 

camera network to have an awareness of a relative position with respect to the other 

sensors, which plays a vital role while exchanging objects of interest from one camera 

sensor to the other (i.e., object handover). The camera localization further enables the 

active vision system to have dynamic topology based on an information of the locations 

and/or movements of the objects of interest. Furthermore, the camera localization helps 

in identification of active nodes in the camera network. Points, lines, spheres, cones, 
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circles, and features etc. are some commonly used markers (i.e., identifiers) for camera 

localization. Simultaneous Localization And Mapping (SLAM) as presented in [23] and 

[24], respectively, and Structure From Motion (SFM) as presented in [25] are designed 

for dynamically changing or unknown environmental conditions. The functional 

architecture of SFM [25] is motivated by human’s vision perseverance. SMF [25] 

combines data of each frame with its motion information to estimate a 3-Dimensional 

(3D) scene from a 2D image data. In [26], Monte Carlo method proposed using particle 

filter for sensor (camera) localization. Monte Carlo method in [26] further proposed 

Recursive Bayesian Estimation based sampling and sorting of samples. Montzel et al. 

in [27] proposed use of sparse overlapping to design an energy efficient localization 

method for localization of camera sensors of a distributed camera network. Brachmann 

and Rotheren in [28] presented an end to end localization pipeline that facilitates 6D 

pose estimation of objects. Geometric localization proposed in [29] enabled self-

calibration of camera sensors through estimated distribution algorithm (EDA) to detect 

head-to-foot location of pedestrians, which were used for self-calibration of camera 

sensors. Table 2.2 presents an evolution of techniques and their associated advantages 

presented in the prior art to address the camera localization problem. 

Table 2.2 Techniques addressing camera localization problems. 

Ref. Year Methodology Advantages 

[26] 1999 

Online system for tracking 

multiple people in an SCN with 

overlapping and non-overlapping 

views 

Development of a larger, more capable, and fully 

automatic system without prior localization 

information 

[27] 2004 Sparse overlapping 
Better energy efficiency and able to cope with 

networking dynamics 

[23] 2006 SLAM 
Locally optimal maps with computational 

complexity independent of the size of the map 

[24] 2006 SLAM 
Locally optimal maps with computational 

complexity independent of the size of the map 
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[29] 2016 
Estimated distribution algorithm 

(EDA) 

Accurate estimation of the features of moving 

objects (person) 

[25] 2017 SFM Better ambiguity handling in 3D environments 

[28] 2018 
6D pose estimation using an end-to-

end localization pipeline 

Efficient, highly accurate, robust in training, and 

exhibits outstanding generalization capabilities 

• Parameter Estimation and Correction: Parameter estimation and correction enables real-

time calibration of configuration space of each camera sensor of the smart camera 

network deployed in the active vision system. Based on the parameter estimation 

through the camera model, the active vision system enables a correction of parametric 

values, for calibration of camera sensors of the smart camera network. Zheng et al. in 

[30], by way of parallel particle swarm optimization (Parallel-PSO) proposed an 

efficient method with low computational complexity for estimation of focal length of 

the camera sensors. In [31], Jung and Führ proposed a method for self-calibration of 

multiple camera sensors deployed in a sensor network. The self-calibration method in 

[31] used non-linear optimization of a projection matrix for localization of camera 

sensors. Yao et al. in [32] proposed a field model for self-calibration of a number of 

multi-view camera sensors deployed in a camera network. The field model in [32] 

utilized golf and soccer datasets for self-calibration of the multi-view camera sensors. 

A camera-projector pairs framework based on greedy-descent optimisation was 

proposed by Li et al. in [33] for parameter estimation and scene reconstruction that 

facilitated self-calibration of camera sensors. The framework proposed in [33] provided 

basis for possible enablement of tele-immersion applications with an evolution in 

resources and technology in future. A self-reconfiguration approach for a camera 

network with focal-length estimation using homograph from unidentified planar scenes 

was put forth by Janne and Heikkilä in [34]. Tang et al. in [35] proposed a simultaneous 

distortion-correction method for self-configuration of parameters specifically for 
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tracking and segmentation of objects of interest. The method in [35] is based on an 

evolutionary optimisation scheme on an estimated distribution algorithm (EDA). Table 

2.3 presents an evolution of techniques and their associated advantages proposed in the 

prior art to address the parameter estimation and correction problem. 

Table 2.3 Techniques addressing parameter estimation and correction problem. 

Ref. Year Methodology Advantages 

[31] 2015 

Projection matrix 

obtained from non-linear 

optimization 

Better accuracy 

[32] 2016 Field model 
Automatic estimation of camera parameters 

with high accuracy 

[33] 2017 
Greedy descent  

optimization 

Stable and robust automatic geometric 

projector camera calibration with high 

accuracy; and Efficient in tele-immersion 

applications 

[34] 2017 
Homography from 

unknown planar scenes 
Highly stable 

[30] 2018 
Parallel particle swarm 

optimization (PSO) 

Low time complexity and efficient 

performance 

[35] 2019 
Evolutionary optimization 

scheme on an EDA 

Capability of reliably converting 2D object 

tracking into 3D space 

2.1.3 Resource optimization 

The active vision system must be capable of efficiently estimating an overall task load and 

resources available with each component of the smart camera network to achieve the desired 

functionality from the active vision system. Further, the active vision system must be capable 

of determining an optimized task load distribution amongst each component of the smart 

camera network. Particularly, the resource optimization problem of the active vision system can 

be divided into two sub categories as discussed hereinbelow. 

• Topology Estimation: Sensors switching from active to inactive states cause the network 

topology to change dynamically. To avoid deviating from the primary goal (i.e., 

capturing data with high-quality visual information), the overall functionality of the 
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smart camera network is dynamically distributed amongst various camera sensors in the 

form of task loads. Thus, it is challenging for the Smart Camera Network to compute 

the dynamic topology, determine the node localizations, and distribute the task load 

amongst the active nodes for real-time applications. In [36], Marinakis and Dudek 

proposed a method for generation of weighted directed graph for estimation of topology 

of a visual sensor network based on statistical Monte Carlo expectation and sampling 

models. Hangel et al. in [37] proposed a window-occupancy (WO) based method for 

estimation of camera network topology. The WO based method in [37] had a lot of 

assumptions, and was insufficient to handle huge amount of visual data captured by the 

large camera network over a period of time. A topology estimation method presented in 

[38] by Detmold et al. suggested an exclusion algorithm based on scaling collective 

stream processing method to handle data from a distributed clusters of nodes in a large 

network of nodes. The method in [38] provided a decentralized processing scheme for 

topology estimation of large network of nodes. In [39], Clarot et al. proposed an network 

topology for distributed networks based on activity matching. Topology estimation 

using identity and appearance similarity in a distributed network environment was 

suggested by Zhou et al. [40]. Farrel and Davis in [41] proposed network topology 

estimation in a decentralized sensor network. A centralized topology estimation for 

variable lightening conditions (i.e., lightening variations) was presented by Zhu et al. in 

[42]. Misra and Gautam in [43] proposed a trust-based topology management system 

for distributed sensor networks. Tan et al. in [44] proposed a topology estimation 

method based on a blind distance calculation technique. Li et al. in [45] proposed a 

topology estimation method for a distributed camera network using mean cross-

correlation functions and Gaussian functions. Table 2.4 presents an evolution of 
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techniques and their associated advantages proposed in the prior art to address the 

network topology estimation problem. 

Table 2.4 Techniques addressing network topology estimation problem. 

Ref. Year Methodology Advantages 

[36] 2005 
Monte Carlo expectation maximization and 

sampling 
Minimum effects of noise and delay 

[37] 2006 Window-occupancy-based method 

Efficient and effective way to learn an 

activity topology for a large network of 

cameras with a limited number of data 

[38] 2007 Exclusion algorithm in distributed clusters High scalability 

[40] 2007 
Statistical approach in distributed network 

environment 

Robustness with respect to appearance 

changes and better estimation in a time 

varying network 

[41] 2008 Decentralized data processing 
Robustness with respect to variable 

appearance and better scalability 

[39] 2009 
Activity-based multi-camera matching 

procedure 
Flexible and scalable 

[42] 2015 Pipeline processing of lightning variations 

Automated tracking and 

reidentification across large camera 

networks 

[43] 2015 Trust-based topology management system 
Higher average coverage ratio and 

average packet delivery ratio 

[44] 2018 
Blind-area distance  

estimation 
Finer granularity and high accuracy 

[45] 2018 Gaussian and mean cross-correlations 

Better target tracking under a single 

region and better interference in multi-

view regions 

• Task load balancing: In order to achieve an optimized functionality, an effective active 

vision system must divide the overall functionality of the application into a number of 

smaller tasks. The task load of each active node of the smart camera network is 

determined by its local state, orientation, and resource availability. A distributed 

approach for adaptive task-load assignment based on available energy from the network 

environment was presented by Kansal et al. [46], which significantly increased the 

system's lifetime. In [47], Rinner et al. proposed a task allocation framework based on 

heterogeneous mobile agents for a distributed multi-view camera network. Rinner et al. 

later in [48] updated the task allocation framework by clustering the areas under 
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observation (i.e., surveillance areas). Karuppiah et al., in [49] proposed a hierarchy-

based algorithm for task-load balancing and resource allocation to multiple components 

of a distributed multi-sensor network. The algorithm in [49] detected fault tolerance 

using activity density as a parameter for task load balancing and resource allocation in 

the distributed multi-sensor network. In [50], Dieber et al., using expectation 

maximization (EM) proposed a task load balancing algorithm deliberately designed to 

provide efficient resource utilization and optimized monitoring performance. Dieber et 

al. further extended their work in [51] through market-based handover of objects to 

efficiently balance task load between multiple camera sensors used for real-time 

tracking application. A market-based bidding framework was proposed by Christos et 

al. in [52] for efficient multi-task allocation and task load balancing in a distributed 

network of camera sensors. Table 2.5 presents an evolution of techniques and their 

associated advantages proposed in the prior art to address the challenges in task load 

balancing. 

 Table 2.5 Techniques addressing task load balancing problem. 

Ref. Year Methodology Advantages 

[46] 2003 
Method for distributed adaptive task-

load assignment 
Better resource efficiency 

[47] 2005 
Multiple-mobile-agent-based task-

allocation framework 

Selective operation of the tracking 

algorithm to reduce the resource utilization 

[48] 2005 
Multiple-mobile-agent-based task-

allocation framework 

Selective operation of the tracking 

algorithm to reduce the resource utilization 

[49] 2010 
Hierarchy-based automatic resource 

allotment 
Robust tracking  

[50] 2011 
Expectation-maximization-based 

approximation 

Efficient approximation method for 

optimizing the coverage and resource 

allocation 

[51] 2012 Market-based handover 
Improved quality of surveillance with 

optimized resources  

[52] 2016 Market-based handover 
Improved quality of surveillance with 

optimized resources  
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2.1.4 Occlusion handling 

Occasionally, an object of interest can be occluded by one or more unwanted objects which 

results in loss of information of the object of interest at the time of occlusion. Several techniques 

proposed to handle such a situation involve handing over the object of interest to another camera 

sensor capable of capturing the objects of interest without occlusion. However, finding a next-

best camera sensor with non-occluded object of interest in the FoV in real-time is quite 

challenging. Occlusion handling becomes more challenging in systems with dynamic topology. 

Traditionally, solutions proposed for occlusion handling rely on prediction-based approaches 

to reproduce or predict the portion of the object of interest that is occluded, thus impacts the 

performance of the system. There is a high possibility of missing critical information (due to 

prediction), which makes such prediction-based approaches unreliable. In [53], Wang et al., 

proposed a red-green-blue (RGB) model using patch-match optimization for occlusion 

detection using smoothness regularization and feature consistency as performance parameters. 

Quyang et al. in [54] proposed a part-based deep model framework capable of occlusion 

handling by estimating information loss due to occlusion in the form of an error in detection of 

visible parts of the occluded object. In [55], Shahzad et al. proposed a statistical approach using 

K-means technique for occlusion handling in a multi-object tracking environment. Rehman et 

al. in [56] proposed a social force model to mitigate the effect of occlusion from the occluded 

images. The model in [56] proposed variational Bayesian method for clustering and concepts 

of repulsive and attractive forces for multi-object tracking. Chang et al. in [57] proposed a 

convolution neural network (CNN) based multi-object tracking system capable of handling 

occlusions by classifying surveillance areas into zones. In [58], Zhao et al. proposed a Gaussian 

model based adaptive background formulation technique for object tracking and occlusion 

handling. Liu et al. in [59] proposed a 3-dimensional (3D) mean shift algorithm for handling 
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occlusions based on a derived depth information. Table 2.6 presents an evolution of techniques 

and their associated advantages proposed in the prior art to address occlusion handling. 

Table 2.6 Approaches addressing Occlusion handling problem 

Ref. Year Methodology Advantages 

[53] 2015 Patch-match optimization 
Reduced computational complexity by large 

displacement motion 

[54] 2015 Part-based deep model 
Handles illumination changes, appearance change, 

abnormal deformation, and occlusions effectively 

[56] 2015 Social force model 
Improved tracking performance in the presence of 

complex occlusions 

[55] 2016 
K-means algorithm and 

statistical approach 

Cost-effective in terms of resources (memory and 

computation) 

[58] 2017 
Gaussian model for occlusion 

handling 

Handles appearance changes and is capable of 

dealing with complex occlusions 

[57] 2018 CNN 
High performance with a limited labelled training 

dataset 

[59] 2018 
Distraction-aware tracking 

system 

Effective and computationally efficient occlusion 

handling 

2.2 Processing level challenges 

Computer vision systems rely on processing images captured by one or more camera sensors to 

derive understanding of activities and events in the scene. Performance of active vision systems 

employing camera network highly rely on the computational capabilities of the system. Real-

time applications make it more challenging for the active vision systems as such systems require 

deriving understanding of scenes in real-time. A brief description of the processing level 

challenges is presented hereinbelow. 

2.2.1 Selection of processing platform 

Selection of processing platforms for deployment of an active vision system is as critical as the 

algorithm used for processing images captured by the camera sensors. Specifically, the selection 

of a processing platform is based on the functional complexity and the processing time of the 

processing platform, which is typically dependent on the used case or application of the active 
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vision system. For example, the architecture of a system requiring complex computations in 

real time may be more complex and thus more expensive than that of a system with a relaxed 

processing window for applications requiring simpler computations. The processing platforms 

are typically deployed either on hardware such as Application Specific Integrated Circuits 

(ASIC) and Field Programmable Gate Array (FPGA), or on software such as Graphical 

Processing Unit (GPU) and Central Processing Unit (CPU). Choice of the processing platform 

depends on accuracy of result, need of processing capabilities, timeliness, resource use, and 

adaptability. Hardware based processing platforms are used in deployment of systems with 

specific and dedicated functionalities. Such systems can have great processing capabilities with 

a very low latency, however such systems lack flexibility of operations. On the other hand, 

software based platforms provide high flexibility of operation at the cost of higher latency. 

Thus, hardware based platforms can be used for real-time active vision applications which 

require high efficiency, better performance, and faster computations. Software based platforms 

can be utilized for applications which require higher flexibility in terms of customizable used 

cases. 

Fang et al. in [60] presented a comparative analysis for selection of processing platforms in 

detail. A comparison of general-purpose computations carried out by CPUs and GPUs in 

computer vision systems is presented in by Horup et al. in [61]. Guo et al. in [62] proposed a 

flexible and fast CPU-based computation system for human pose estimation. Tan et al. in [63] 

proposed a flexible and fast GPU-based deep-learning-based computer vision system. Irmak et 

al. in [64], Costa et al. in [65], and Carbajal et al. in [66] proposed computer vision systems 

using Field Programmable Gate Array (FPGA). Xiong et al. in [67] presented computer vision 

system using Application Specific Integrated Circuit (ASIC) for enhancement of operational 

flexibility. High processing capabilities, low latency, and flexibility of operation can be derived 

by hybrid processing platforms (i.e., hardware-software combination) as presented in [68]. The 
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state-of-art research aims to develop stable and efficient hybrid systems with high flexibility of 

operation and low processing latency. 

2.2.2 Scene reconstruction 

To obtain useful information from the captured images (i.e., the captured data), the images 

captured by the active camera sensors must be synchronised. The data captured by each camera 

sensor must be combined for scene reconstruction to identify the activity of objects of interest 

over a period of time by analysing temporal frames. Particularly, the reconstruction of scene 

becomes very challenging when the topology of camera network changes dynamically. 

In [69], R. Szeliski proposed a volumetric scene-reconstruction method using a multiple depth 

maps with layered structure. Martinec et al. in [70] proposed a 3-dimensional (3D) scene 

reconstruction method. The method in [70] used an uncalibrated image dataset with a pipelining 

approach to detect regions of interest (ROIs), and match the ROIs by way of a random sample 

consensus (RANSAC) mechanism. In [71], Peng et al. proposed a network geometry-estimation 

method for scene reconstruction. The method in [71] suggested two-view geometry estimation 

by way of an L-2 Estimation Local Structure Constraint (L2E-LSC) algorithm based on local 

structure constraint. 

Effective point matching approaches provide imperative solutions for effective scene 

reconstruction. In [72], Brito et al. compared different point matching approaches, such as Scale 

Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Oriented Fast and 

Rotated Brief (ORB), Fast Retina Key-points (FREAK), and Binary Robust Invariant Scalable 

Key-points (BRISK). Milani [73] proposed localization-based reconstruction for heterogeneous 

camera sensor networks. In [74], Ali Akbar et al., using parametric homographs proposed a 

scene reconstruction method. Ali Akbar et al. in [74] further reviewed various scene-

reconstruction approaches. Wang and Guo in [75], using plane primitives of an RGB-D frame, 

presented an effective scene reconstruction method. In [76], Ma et al., using an adaptive octree 
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division algorithm proposed a mesh-reconstruction system for point-cloud segmentation, mesh 

re-labelling, and scene reconstruction. In [77], Ichimru et al. utilizing transfer learning, 

presented 3D scene reconstruction using a CNN under water bubble dataset to avoid distortions. 

2.2.3 Data processing 

Data processing is one of the major factors that contribute to an overall performance of the 

active vision system. The accuracy of image processing, deriving information, and 

understanding of activities in the scenes highly rely on the data processing algorithms used in 

the active vision system. The selection of an algorithm majorly depends on accuracy and 

timeliness of the algorithm. Data processing algorithms are specifically selected to fulfil all the 

requirements of the active vision system based on the used case of the active vision system. 

Thus, to be used for a variety of applications, the data processing algorithm must be versatile 

and customizable. Some of the major problem areas in data processing include object detection, 

object classification and tracking, object re-identification, pose and behaviour estimation, 

activity recognition, and scene understanding that are discussed hereinbelow. 

• Object Detection: The first and primitive step towards deriving an understanding of the 

scene under observation is to derive the information of the object(s) of interest. To do 

so, most of the active computer vision systems rely on segregation of foreground from 

the frame (commonly known as background-foreground segregation) which typically 

requires analysis of temporal frames captured by the same camera sensor. Detection of 

multiple objects present in a single frame makes the object detection even more 

challenging. For real-time active vision applications, multi-object detection becomes 

very critical as the reconfiguration of camera sensors depend on detection of objects of 

interest in real-time. Various other factors such as variations in illumination, camera 

viewpoints, occlusions etc. make real-time object detection even more challenging. 
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Viola and Jones technique as presented in [78], scale-invariant feature transformation 

(SIFT) as presented in [79], HOG-based object detection as presented in [80], optical 

flow based object detection as presented in [81] and [82], and background subtraction 

technique for object detection as presented in [83] are some of the most commonly used 

techniques for object detection. Contemporary object detection methods use machine 

learning based approaches such as neural networks as used in [84], you-only-look-once 

(YOLO) as used in [85], region proposals (R-CNN) as used in [86], single shot 

refinement neural networks as used in [87], Retina-Net as used in [88], and single-shot 

detectors (SSDs) as used in [89]. Advanced machine learning based object detection 

methods [84]-[89] provide better performance than the traditional model based object 

detection methods [78]-[83] in terms of object detection accuracy. However, machine 

learning based methods highly rely on accurate training datasets, which is not a 

limitation in model based approaches. Progress of object detection techniques used for 

various computer vision applications from traditional probabilistic prediction based 

approaches to contemporary and more advanced artificial intelligence (AI) based 

approaches is presented in [2]. 

As discussed earlier, occlusions, variations in illumination, and movement of objects of 

interest are some of the factors of concern for efficient detection of objects of interest. 

An adaptive background subtraction model, using a single sliding window, by way of a 

histogram minimum–maximum bucket method was proposed by Roy and Ghosh in 

[90]. The adaptive background subtraction model in [90] used a median-finding based 

approach to tackle illumination changes in the evaluating temporal frames. In [5], Bharti 

et al. proposed an adaptive real-time kernelized correlation framework to handle 

occlusions. The framework in [5], based on a determined confidence values of object 

tracker, enabled drones to update their location and boundary information on a 
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distributed network of drones. In [91], Min et al., using pixel lifespan proposed a multi-

object detection method to merge pseudo-shadows (specifically ghost shadows) to the 

image background. Min et al. in [91] proposed state vector machine (SVM) and 

convolutional neural network (CNN) based classifier to avoid occlusions. 

Active vision model for detection of moving objects of interest requires complex 

computations and relies on estimations and approximations, as the camera sensor is 

required to follow the objects to capture the objects at highest possible resolution in real 

time. In [92], Wu et al. proposed a computational model to efficiently address the 

moving object detection problem with very low latency. The computational model by 

Wu et al. in [92] suggested evaluating a coarse foreground using singular-value 

decomposition, and using foreground information to reconstruct the background by way 

of an in-painting technique. Wu et al. in [92] further used mean shift segmentation 

refinement of the detected foreground. In [93], Hu et al. used tensor flow to detect 

moving objects without hampering or altering the scene dynamics. Hu et al. in [93] 

utilized saliently fused sparse regularization to detect initial foreground and tensor 

nuclear norms to handle redundancy in the background. To compute spatiotemporal 

variations, Hu et al. in [93] further proposed a 3D regression kernel with local 

adaptability, that enabled refinement of the initial foreground. Table 2.7 presents an 

evolution of techniques and their associated advantages presented in the prior art to 

address object detection challenges. 

Table 2.7 Evolution of techniques addressing object detection problem 

Ref. Year Methodology Advantages 

[83] 1989 Background subtraction Low computational complexity 

[78] 2001 Viola and Jones technique  Low processing latency with high detection rate 

[80] 2005 HOG-based detection  Precise object detection and classification 

[79] 2012 
Scale-invariant feature 

transformation  

Efficient detection and localization of duplicate 

objects under extreme occlusion 



33 
 

[81] 2013 Optical flow Accurate detection of moving objects 

[86] 2014 Region proposals (R-CNNs)  High accuracy and precision for object detection 

[92] 2015 
Background subtraction and mean 

shift 
Refined and precise foreground detection 

[85] 2016 You only look once Low latency multi-object detection 

[89] 2016  Deep-neural-network-based SSD 
Prediction-based detection for variable shapes of 

objects 

[93] 2016 Tensor flow Detection of mobile objects in FOVs 

[84] 2017 Neural network  
Multi-object detection with  

variable shapes 

[90] 2017 
Adaptive background subtraction 

model 

Better accuracy as compared to traditional 

background subtraction 

[91] 2017 
State-vector machine and CNN-

based classifier 

Multiple-object-detection approach to detect 

ghost shadows and avoid occlusions 

[82] 2018 Optical flow Accurate detection of moving objects 

[87] 2018 
Single-shot refinement neural 

network  
High detection accuracy 

[5] 2018 Kernelized correlation framework  Real-time occlusion handling 

[88] 2019 Retina-Net  
Balanced detection performance in terms of 

latency, accuracy, and precision of detection 

• Object Classification and Tracking: After the detection of object(s) from the scene, the 

active vision system undergoes object classification to segregate the detected objects 

into classes, distinguish one object from the other, and determine whether the object is 

an object of interest or not. Object classification majorly includes three steps: (i) pattern 

recognition, (ii) clustering of pixels, and (iii) Segregation of pixels. Classification of 

objects requires selection of appearance parameters (i.e., features) such as shape, colour, 

texture, temporal pixel motion etc. as discussed in [94], and silhouettes, points, contours, 

etc. as discussed in [95]. Conventionally, the techniques for object-classification as 

discussed in [96] can be categorized into the following broad categories: (i) decision 

based object classification such as decision trees as presented in [97] and [98], and 

random forest as presented in [99], (ii) statistical-probability based object classification 

such as Bayesian classification as presented in [100], [101], and [102], discriminant 

analysis as presented in [103], logical regression as presented in [104], and nearest-

neighbour as presented in [105], and (iii) soft-computing based object classification 
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such as SVM presented in [106], multi-layered perceptron as presented in [107], and 

neural networks as presented in [108] and [109]. Tracking the objects of interest is 

required to determine one or more activities performed by the objects of interest by 

analysing consecutive temporal frames. Due to different viewpoints (i.e., difference in 

perseverance of the objects) in consecutive frames captured by the camera sensors, the 

computational complexity of the active vision system and chances of error increase 

drastically as the system encounters distortion of the objects of interest due to different 

viewpoints. In [110], Villiers et al. proposed a real-time inverse distortion method for 

correction of distorted images. In [111], use of a number of properties of vanishing 

properties for calibration of parameters and distortion correction was proposed. In [35], 

Caprile et al. proposed a distributed algorithm for calibration and correction of radial 

distortion using vanishing points. Caprile et al. in [35] further proposed tracking a 

waking human’s movement (as poles) for determination of vanishing points. Methods 

suggested in [112] and [113] used estimation of a centre of distortion for detection and 

correction of radial distortion. In [114], Huang et al. proposed detection and correction 

of radial distortion correction based on linear-transformation functions, whereas in 

[115], Zhao et al. proposed a pipelined process for the same. Methods proposed in [116], 

[117] and [118] suggested detection and correction of radial and tangential distortions. 

In [119], Yang et al., using information of depth of the objects proposed estimation and 

correction of perspective distortion. In [120], detection and correction of optical 

distortion was addressed by Finlayson et al. using colour-calibration theory. Wong et 

al. in [121], using a multi-spectral camera model extended the use of colour-calibration 

theory for distortion estimation. Motion-blur is often a challenge for multi-object 

tracking systems that impacts the performance of the active vision system. A motion-

aware tracker was proposed in [122] by Han et al. to detect and correct motion-blur by 
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estimation and correction of tracking fragments caused by motion-blur or occlusion. A 

former tracking system proposed by Meinhardit et al. in [123] addressed motion blur 

estimation and correction in a multi-object tracking environment. 

• Pose and Behaviour estimation: Techniques used for pose and behaviour estimation 

utilize models to associate poses, patterns of postures, and/or shapes of detected objects 

of interest in consecutive temporal frames to derive a behavioural understanding of 

activities performed by the objects. Accuracy of pose and behaviour detection depends 

majorly on selection of  models for pose-estimation and deriving a relationship between 

poses derived from consecutive temporal frames. Particularly, the commonly used 

techniques for pose and behaviour estimation are either model-based techniques (such 

as planar models, volumetric models, and kinematic models) or model-free techniques. 

Planar models use contours as features, volumetric models use volume distributions as 

features, and kinematic models use pixel motion as features for pose and behavioural 

estimation. Kinematic models provide pose and behaviour estimation with low 

computational complexity, however, the performance and efficiency of such models is 

not reliable, and varies with dynamic changes in the captured scene. Planar models and 

volumetric models provide better efficiency and performance at a cost of high 

computational complexity. In [129], Chen et al. proposed an anatomically aware 3D 

pose-estimation model capable of efficient pose and behaviour estimation with low 

computational complexity. Staraka et al. in [130] proposed an efficient and accurate 

kinematic skeletal-model based technique for pose and behaviour estimation in real-

time. 

• Object Re-identification: To derive an appropriate understanding of a scene, the active 

vision system is required to associate multiple activities performed by objects of interest 
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by analysing consecutive frames captured by multiple cameras that are captured over 

different periods of time. Due to several factors such as change in viewpoints, 

illumination changes, and ghost shadows (as presented in [124]) etc., the possibility of 

wrong detection (i.e., mis-interpretation or false detection of objects) is very high. To 

address the challenges of illumination changes that may hamper re-identification of the 

objects of interest, Zhang et al. in [125], by way of a Fisher vector learning technique 

proposed an adaptive re-identification framework for the spatiotemporal alignment of 

frames. Yang et al. in [126] proposed a logical determinant metric learning method to 

overcome the limitations of variable viewpoints and occlusions in object re-

identification. It has been observed that a combination of more than one feature 

enhances the accuracy of re-identification, if the features and weights of each selected 

feature are selected appropriately. For the determination of the most efficient features 

for specific object re-identification problems, Geng et al. in [127] proposed a feature-

fusion method based on weighted-center graph theory. The method in [127] proved to 

be effective in determining an importance value (i.e., efficiency) of each feature of a set 

of selected features for object re-identification. In [128], Yang et al. proposed a method 

for using partial information of an occluded object for re-identification of occluded 

objects. 

2.2.4 Activity Recognition and Scene Understanding 

There are two paradigms for activity detection and recognition: static and dynamic. Static 

activity recognition is the process of identifying an activity solely from the spatial analysis of a 

single frame and thus does not necessities pose estimation. In contrast to static activity 

recognition, the dynamic activity recognition requires spatiotemporal computations of multiple 

consecutive frames using scene reconstruction which essentially requires the estimation of the 

pose and behaviour of the objects of interest over a period of time. Campbell et al. in [131] 
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depicted human motion using phase-space constraints. For activity detection of pedestrians, 

Oren et al. in [132] proposed a single-frame wavelet templates method. Static activity 

recognition is commonly used for image captioning [133], manuscript review in the medical 

field [134], and academia [135]. Nguyen et al. in [136] proposed multi-objective optimisation 

to monitor real-time activity. Use of dynamic activity recognition for sports analysis is 

illustrated in [137] and [3], whereas Wu et al. in [4] proposed dynamic activity recognition for 

smart home applications. Xiang et al. in [138] proposed a multiple-object tracking system 

capable of making smart decisions based on dynamic activity recognition. Laptev et al. in [139] 

proposed an abnormal human activity recognition system based on state vector machines. 

2.3 Contemporary Research Paradigm 

Trained AI/ML models facilitate the active vision systems with fast and accurate data 

processing capabilities. Thus, most contemporary systems presented in [140] to [156] utilize 

AI/ML based techniques to address various problems of the active vision system. Over the last 

few years, a shift has been observed from model-based solutions to Artificial Intelligence (AI) 

and Machine learning (ML) based solutions to address various challenges of the active vision 

system. It has further been observed that the state-of-art research majorly focuses on occlusion 

handling, enhancement of multi-object tracking accuracy, and reducing the re-configuration 

latency of multi-sensor networks. According to a market report presented in [157], artificial 

intelligence has an annual growth of over 45% in active computer vision applications. Some 

recently proposed models presented in [147] and [151] generate highly accurate hybrid systems 

by combining the concepts of traditional model-based methods with modern AI-based 

approaches. AI based active vision system as proposed in [153] use the basic principles of 

traditional model-based methods. However, efficient ML-based operational models for active 

vision applications require highly accurate and application specific training datasets. Thus, to 

address active vision challenges for unforeseen conditions, the ML-based systems require 
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intensive training to understand the unforeseen condition, which requires a lot of time and 

processing capabilities. Thus, active vision systems employing centralised camera networks fail 

to address various challenges of active vision systems in new unforeseen conditions miserably. 

Table 2.8 shows some of the most advanced AI-based systems addressing the challenges of 

self-reconfiguration faced by active vision systems. 

Table 2.8 Contemporary Active vision approaches. 

Ref. Challenge Addressed AI/ML- Based Approach Used 

[140] 
Camera calibration 

Convolutional neural network (CNN) 

[141] Neural network 

[142] 
Parameter estimation 

Convolutional neural network (CNN) 

[143] Deep neural network (DNN) 

[144] Pose estimation Neural network 

[145] Object detection Modified CNN 

[146] 

Object tracking 

Residual neural network 

[147] Deep CNN and Kalman filter 

[148] Deep neural network (DNN) 

[149] CNN and deep sort  

[150] Deep-learning-based CNN 

[6] 
Activity detection 

Slow–fast CNN 

[151] Neural network and strider algorithm 

[152] 
Object re-identification 

CNN 

[153] Sparse graph-wavelet-based CNN 

[154] 
Object re-identification and 

occlusion handling 
Deep-neural-network-based transfer learning 

[155] 
Localization 

CNN 

[156] Neural network 

AI/ML based active vision systems are further prone to visual attacks [158] (such as adversarial 

attacks as presented in [159] and [160]) which affects the efficiency of the active vision system 

over a period of time. Visual attacks can be targeted if the model predicts their outcome 

correctly as shown in [158], however in most cases, visual attacks introduce random noise to 
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the model parameters, and are therefore very challenging to undo, resulting in a long-term 

decline in the model’s performance. A study presented in [161] suggests effects of adversarial 

attacks on the performance of AI/ML based active vision models. A study on different types of 

visual attacks and methods for mitigation of visual attacks (such as adversarial attacks) is 

presented in [162] and [163]. 

2.4 Active vision systems with Limited Resources 

Majority of active vision systems, including those suggested in [10], [11], and [12], prioritise 

the surveillance area based on predefined assumptions about the camera sensor's field of view 

and manually decided critical areas of surveillance under the camera sensor’s field of view. The 

predefined placement and orientation of the camera sensors results in an inappropriate sensor's 

pose (as the activities are highly dynamic in their occurrence and can occur anywhere in or 

outside the camera sensor’s field of view), making it difficult for the camera sensors to capture 

the objects of interest in the centre of its field of view (FOV) for best possible resolution. Such 

a configuration of the camera network results in inappropriate sensing by the camera sensors 

that results in inefficient performance of the active vision system. 

To optimize the information from the captured frames, the active vision system must locate a 

region of importance (ROI) in the camera sensors' field of view (FOV), and then reconfigure 

the configuration space of the camera sensors to align a centre of the region of importance (or 

interest) with the centre of the camera’s field of view. There are a number of ways to determine 

ROI, activity mapping based detection of region of interest as presented in [164] being one of 

the most effective ones. The majority of proposed active vision systems for ROI determination 

ignore the effects of historical events on the activity map and instead concentrate on the 

activities detected in the present frame for activity mapping. Instead of establishing a 

spatiotemporal relationship between the current event and earlier events, such systems typically 

concentrate on reducing frame noise. 
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The active vision systems used for mobile surveillance applications generally employ a network 

of camera sensors deployed on mobile drones. Such systems usually have limited resources, 

which makes it critical to utilize the resources efficiently. The idea of pre-defined prioritization 

of areas under surveillance as presented in [10] to [12] to capture frames of the scene without 

activity based reconfiguration fails miserably in such conditions. To deliver an efficient 

performance, such systems further require relating consecutive frames temporally to derive an 

effective understanding of the scene and calibrate the configuration space of each camera sensor 

in real time. The computational complexity of such an active vision system becomes very high 

and demands high resource utilization, which is a limitation of such mobile systems. 

Region of interest (ROI) estimation for vehicle flow detection using morphological operations 

to filter noise was proposed by Pan et al. [165] and Mehboob et al. [166]. Pan et al. in [165] 

suggested edge detection for object detection, background subtraction for traffic estimation, 

and morphological features for noise reduction. Mehboob et al. in [166] used motion vectors 

for traffic flow estimation and centroid detection using morphological close and erode operation 

for noise reduction. Although, Pan et al. in [165] and Mehboob et al. in [166] made efforts to 

reduce the noise in detection of objects of interest, they were unable to stop the scene's 

undesirable activities from being detected and included in the activity map. Pan et al. in [165] 

and Mehboob et al. in [166] further failed to tackle unidentified and unforeseen activities 

efficiently. The ROI detection in [165] and [166] was proposed based on the activity detected 

from only one frame, and lacked temporal relationship for scene understanding. 

Modern methods for activity mapping either use artificial intelligence techniques for ROI 

detection or extremely complex computational models. A non-parametric spatiotemporal 

activity model based on Gaussian process regression (GPR) was presented by Marvin and 

Moritz in [167]. For the purpose of identifying group activity, Sattar et al. in [168] proposed a 

convolution neural network (CNN) based spatiotemporal activity mapping method. An online 
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feature learning model for spatiotemporal event forecasting was put forth by Zhao and Gao in 

[169]. Using spatiotemporal activity patterns, Liu and Jing in [170] proposed an artificial 

intelligence (AI) based activity mapping method for sports analytics. Long short-term memory 

(LSTM) was used by Yan et al. in [171] to propose an end-to-end position aware spatiotemporal 

activity analysis. 

The methods in [165] and [166] offer straightforward models for activity mapping and ROI 

detection, however, such methods lack precision of ROI detection. The approaches suggested 

in [167] to [171] offer effective spatiotemporal activity mapping for ROI detection, but at the 

expense of high computational complexity, making them unsuitable for systems with scarce or 

constrained resources. From the aforementioned references, there appears a trade-off between 

accuracy and computational complexity of the activity mapping approaches. 

2.5 Research Gaps 

From the review of existing literature as discussed in this chapter, the following research gaps 

in active vision systems are observed that require exclusive attention: 

• From the literature survey, it has been observed that the data captured by camera sensors 

deployed in active vision systems specifically designed for low resource utilization 

carry unoptimized information. Such systems rely on either pre-defined prioritization of 

areas under observation or activity mapping based on only one frame (i.e., most recently 

captured frame). Thus, such active vision systems results in inefficient activity mapping 

that results in low efficiency of the systems. 

• For efficient calibration of configuration space of each camera sensor deployed in active 

vision systems, appropriate understanding of the scene is critical. Typically, activities 

of an object of interest detected over different periods of time, when analysed over a 

timeline presents an understanding of the events in the scene. From the literature survey, 
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it has been observed that spatiotemporal relationship between activities and events 

missing. 

• From the literature survey, it has been further observed that the task load for each camera 

sensor is distributed based on predefined protocols established at the time of deployment 

of active vision systems which results in inefficient task load balancing between nodes 

of camera network. 

• The state-of-art active vision systems follow a centralized control paradigm for 

reconfiguration of camera sensors. Such systems fail miserably in unforeseen 

conditions, and thus lacks security and reliability. From the literature survey, the active 

vision systems lack adaptiveness which requires a technical solution to incorporate 

adaptiveness and high data exchange security to the active vision systems. 

2.6 Conclusion 

A successful computer vision system depends on accurate sensor data collection and a 

spatiotemporal understanding of the scene. Most sophisticated computer vision systems use a 

highly complex computation model to address both of the aforementioned issues, which is very 

problematic for most active vision systems with constrained resources. 

As mentioned above, the functionality of active vision systems and the reconfiguration of the 

camera sensors that feed such active vision systems with data are interdependent. Modern active 

vision systems struggle miserably to deal with unforeseen conditions as it takes time for the 

reconfiguration model to be trained and adjust to the new circumstances and develop 

understanding of the unforeseen event. Thus, it is nearly impossible to reconfigure the 

configuration spaces of camera sensors deployed in such active vision systems in real-time. 

Furthermore, to process sensor data and create an understanding of an event, majority of  the 

contemporary active vision systems rely on Artificial Intelligence-based models. However, 
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such models run the risk of data loss because they are vulnerable to visual attacks such as 

adversarial attacks. 

Thus there remains a need to associate the understanding of each activity temporally with a 

model having low computational complexity such that the model can be used with resource 

limitations. There further remains a need to incorporate self-adaptation to active vision systems 

to manage unforeseen conditions with low latency. Furthermore, such a system needs to be 

highly secure, scalable, and reliable. 

The literature review is presented in one of our research papers cited as [172]. 
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Chapter 3 

SPATIOTEMPORAL ACTIVITY 

MAPPING 

As there remains a need for a system to derive an understanding of an event by spatiotemporally 

evaluating a feed from a camera sensor network without exhausting the resources. This chapter 

presents a Spatiotemporal Activity Mapping (SAM) framework to generate efficient and 

dynamic spatiotemporal activity maps for a smart camera network with a low computational 

load and complexity. Thus, the SAM framework provides a solution for efficient and reliable 

activity based reconfiguration for active vision systems with limited resources. The SAM 

framework utilizes fundamental computer vision techniques such as frame differencing, 

binarization, thresholding, and federated optical flow for spatial activity mapping. The SAM 

framework further presents a temporal relationship function based on half width of normalized 

Gaussian Distribution to relate past and present frames temporally. 

3.1 Foreground detection  

As the framework requires low computational complexity and efficient foreground detection, 

the SAM framework proposes an adaptive background subtraction technique for initial 

background-foreground segregation. For initial foreground detection, the adaptive background 
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subtraction utilizes frame differencing [173], adaptive thresholding inspired by recursive 

adaptive thresholding in [174], and binarization in progression to the adaptive thresholding. The 

frame differencing technique enables the SAM framework to detect pixels in motion in a 

number of consecutive temporal frames captured by a camera sensor network over a period of 

time. The adaptive thresholding enables the SAM framework to selectively segregate the pixels 

of each temporal frame for initial background-foreground segregation. After the adaptive 

thresholding, the SAM framework generates the initial foreground with original pixel values 

(i.e., from 0-255). Binarization, in progression to the adaptive thresholding enables the SAM 

framework to binarize the pixel values of the initial foreground corresponding to each camera 

sensor of the camera sensor network. The adaptive background subtraction provides an efficient 

filter for initial foreground detection in each temporal frame at a cost of low resource utilization. 

• Frame differencing: frame differencing utilizes differences in pixel values of 

consecutive frames captured by a stable camera sensor to determine regions in motion 

captured in the camera sensor’s field of view. The ADAPSR framework identifies 

individual frame differences for each frame by comparing two temporally consecutive 

frames captured by the same camera sensor. Differences in pixel values of each 

consecutive frame for a range of ‘t’ from 2nd frame to tth frame is computed using 

equation 3.1 as presented hereinbelow. 

                                                Ft (i,j) = Pt(i,j)- Pt-1(i,j)              (3.1) 

Where, i and j represent the pixel width and height, respectively, Ft (i,j) denotes the 

frame difference for tth frame, Pt(i,j) denotes the (i,j)th pixel value of the tth frame, and 

Pt(i,j) denotes the (i,j)th pixel value of the (t-1)th frame. 

• Adaptive Thresholding: Adaptive thresholding provides a selective filtering for pixels 

of each frame by determining a cumulative mean values of the frame differences in each 

frame ‘Ft (i,j)’. Each frame difference value Ft (i,j) below the cumulative mean value 
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(i.e., adaptive threshold value specific to the frame) is assigned a numerical ‘zero’ pixel 

value, and each pixel value above the cumulative mean value is retained. The cumulative 

mean value of frame difference corresponding to each frame is determined using 

equation 3.2 as presented hereinbelow. 

                                                   𝑇ℎ𝑡 = (∑ 𝐹𝑡 (𝑖, 𝑗))/𝑖 ∗ 𝑗
𝑖.𝑗
1                 (3.2) 

Where Tht represents denotes the cumulative mean value of the frame differences (i.e., 

the adaptive threshold value) for the tth frame. 

• Binarization: Binarization enables the SAM framework to represent the initial 

foreground pixels of each image frame in either of “zero” binary value (i.e., zero pixel 

value) or “one” binary values (i.e., 255 pixel value) based on the adaptive threshold 

value, which reduces the computational load for the upcoming steps of activity mapping. 

The binarization of each pixel of each frame based on the respective adaptive threshold 

value is determined by using a conditional equation 3.3 as presented hereinbelow. 

 

                        0 (i.e., binary value ‘0’); if Pt (i,j) < Tht 

                           Pt(i,j) =                                            (3.3) 

                          255 (i.e., binary value ‘1’); if Pt (i,j) > Tht.  

  

Upon binarization of the initial foreground, the SAM framework derives an initial 

foreground of each pixel with reduced dimensions. 

• Federated optical flow: The initial foreground detected by the SAM framework includes 

errors due to unwanted activities such as shadows and undesirable moving portions 

(such as tree leaves moving in consecutive frames and the like) captured by the camera 

sensors. To address this problem of detecting undesirable objects in the scene, the SAM 

framework presents a federated optical flow based activity filter to remove such 
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unwanted portions from the initial foreground. The SAM framework proposes 

determination of an optical flow in consecutive frames captured by each camera sensor 

parallel to adaptive background subtraction. The optical flow of each pixel is determined 

in terms of a pixel heading (i.e.,  pixel distance moved and a direction of movement of 

each pixel in each frame with respect to its previous frame). The SAM framework 

further proposes determining a cumulative optical flow of each pixel in the consecutive 

frames in terms of the pixel heading. To avoid the effects of atmospheric interference, 

the direction of motion is detected with a tolerance of ‘𝛿’ ( i.e., obtained through 

comparison with the ground truth data over a number of images from various datasets). 

The cumulative optical flow ‘Oc’ for each pixel in the frames captured by a camera 

sensor is determined by equation 3.4 as presented hereinbelow. 

                                    Oc (i,j)dir = ∑ 𝑂(𝑖, 𝑗)𝑡
1 dir+𝛿              (3.4) 

Where ‘Oc (i,j)dir’ represents the cumulative optical flow of (i,j) pixel moving in ‘dir’ 

direction, ‘t’ represents the number of frames, and ‘O(i,j)dir+𝛿’ represents the optical flow 

of (i,j)th pixel in ‘dir’ direction with tolerance value ‘𝛿’. 

Furthermore, the SAM framework proposes determining a cumulative mean value ‘Tho’ 

from the cumulative optical flow ‘Oc’ as presented by equation 3.5 hereinbelow. 

                                                          𝑇ℎ𝑜 = ∑
𝑂𝑐(𝑖,𝑗)𝑑𝑖𝑟

𝑖.𝑗
                                                                      (3.5) 

The cumulative mean value ‘Tho’ is further used to filter the initial foreground to 

determine the actual foreground. The filtration of initial foreground using federated 

optical flow is presented through equation 3.6 hereinbelow. 

                      255 (i.e., binary value ‘1’); If Oc(i,j) > Th0  

                        Pt (i,j) =                                                              (3.6) 

                                                         0 (i.e., binary value ‘0’); If Oc(i,j) < Tho 
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Through the proposed adaptive background subtraction and the federated optical flow, the SAM 

framework provides an efficient foreground detection for accurate activity mapping without 

extensive exploitation of computational resources. 

3.2 Temporal Relationship Function 

Adaptive background subtraction and federated optical flow based filtering enable an efficient 

foreground detection by processing consecutive frames captured by the camera sensors. 

However, for efficient activity mapping and scene understanding, there is a need for an accurate 

yet non-complex temporal frame relationship. To achieve the same, the SAM framework 

proposes utilization of a normalized Half Width of the Gaussian distribution curve (partially or 

completely) for temporal association of frame captured by a camera sensor over a period of 

time. Specifically, for illustration of effect of spatiotemporal relationship in activity mapping, 

a normalized Half Width Half Maxima (HWHM) Gaussian distribution curve is utilized. 

Although, the use of the normalized HWHM Gaussian distribution curve is subjected to 

illustration of the effects of temporal activity mapping for specific circumstances assumed for 

testing on 300 consecutive frames captured by a camera sensor, it will be apparent to a person 

skilled in the art that the temporal relationship is not limited to the use of normalized HWHM 

Gaussian distribution curve as shown in Figure 3.1. Rather, the Half width Gaussian distribution 

function can be partially or completely utilized for temporal relationship of the consecutive 

frames based on the criticality and application of the active vision system, it is deployed in. 

The normalized Gaussian distribution curve and the normalized HWHM gaussian curves are 

presented hereinbelow through equations 3.7 and equation 3.8, respectively. 

                                      G (x|,2) = (𝑒𝑥𝑝(𝑥−𝜇)/2𝛼)/√2𝜋𝛼2                                        (3.7) 

                                H(x|µ,α2) = (1/(sqrt(2πα2))* exp ((x-µ)/ 2α2))                            (3.8) 



49 
 

Where, G(x|,2) represents the Gaussian distribution function, H(x|µ,α2) represents the 

normalized HWHM Gaussian function (i.e., temporal relationship function used for association 

of consecutive frames),  and  represent a mean value and the standard deviation value of the 

normalized HWHM Gaussian distribution. For normalized Gaussian function being a 

normalized function, the value of  is set to ‘1’, that reduces the equation 3.8 to equation 3.9 as 

presented hereinbelow. 

                                      H(α) = (sqrt(2*logn(2))* α)/2 =1.799 α                                          (3.9) 

 
Figure 3.1 Normalized HWHM Gaussian curve for spatiotemporal relationship 

3.3 Spatiotemporal activity mapping 

The SAM framework proposes determining temporal importance function ‘Ht’ from the 

spatiotemporal relationship through Normalized HWHM Gaussian function ‘H(α)’ as presented 

above. Further, the SAM framework proposes using the temporal importance function for 

generation of spatiotemporal activity maps corresponding to each camera sensor. The 

spatiotemporal activity map bears information of Regions of Importance (ROI) corresponding 

to each camera sensor. Pixel importance ‘A(i,j)’ can be derived through spatiotemporal activity 

map can be derived through equation 3.10 as presented hereinbelow. 

                                                A(i,j)= ∑ 𝑃𝑡(𝑖, 𝑗).𝑡
1  Ht                                                                (3.10) 

The pixel importance derived through spatiotemporal activity map cumulatively presents a 

pixel-wise activity value detected by the camera sensor. However, for analyzing an event that 

lasts for a very long period of time, the activity map can have very high values which may tend 

0.5

1
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to infinity, specifically for active vision systems deployed for applications such as continuous 

surveillance/monitoring, analytics of continuous data, and the like. High values corresponding 

to pixel importance in the activity map further increases the computational load on the system 

for further computations. Thus, to address the abovementioned challenge, the SAM framework 

proposes determining normalized importance for each pixel (i.e., pixel sensitivity). The pixel 

sensitivity can be derived through equation 3.11 as presented hereinbelow. 

                                               S(i,j) = A(i,j)/ max(A(i,j))                                                           (3.11) 

Where, ‘S (i,j)’ represents pixel sensitivity value of (i,j) pixel, ‘A(i,j)’ presents the pixel 

importance value for (i,j) pixel and ‘max(A(i,j))’ presents a maximum value of the pixel 

importance values of the spatiotemporal activity map. 

Based on the pixel sensitivity values, the SAM framework proposes generation of a sensitivity 

map for each camera sensor in the form of a heat map. The SAM framework further proposes 

segregation of pixels into a number of clusters using the variational Bayesian method presented 

in [56]. 

Furthermore, the SAM framework proposes determination of one or more important clusters 

from the number of clusters based on a sensitivity threshold ‘Ths’ derived through mean 

thresholding of the pixel sensitivity values as presented in equation 3.12 hereinbelow. 

                                                         𝑇ℎ𝑠 = ∑
𝑆(𝑖,𝑗)

(𝑖.𝑗)
                                   (3.12) 

For identification of the important clusters, the SAM framework presents determining average 

sensitivity value of each cluster and comparing the average sensitivity value of each cluster with 

the sensitivity threshold ‘Ths’ as presented in equation 3.13 hereinbelow. 

 

               Sn(i,j); If Sn(avg) > Ths (i.e., important clusters) 

             Sn(i,j) =               (3.13) 

            0; If Sn(avg) < Ths (i.e., non-important clusters) 



51 
 

The SAM framework further proposes determining a center point of each cluster of the one or 

more important clusters. From each center point, the SAM framework proposes determination 

of a center of Region of Importance (ROI). The SAM framework further proposes 

reconfiguration of calibration parameters such that a center of the field of view (FOV) is 

matched to the corresponding center of ROI. As the SAM framework proposes calibration of 

camera sensors through low computational load, it provides efficient spatiotemporal activity-

based calibration for active vision systems with limited resources. 

3.4 Model 

As discussed earlier, the SAM framework is specifically designed with low computational 

complexity to enhance the performance of an active vision system by providing activity based 

reconfiguration of calibration parameters of the camera sensors deployed in the system without 

extensive utilization of resources. Specifically, the development of an operational model based 

on the SAM framework requires at least one camera sensor, a processing circuitry, and a local 

memory unit. The camera sensor is configured to capture consecutive images of a scene (i.e., 

an environment under observation) over a period of time, which is specific to either of, one or 

more activities captured in the scene and the criticality of an application for which the model is 

deployed. For flexibility of operation of the model, the period of time for each application is 

customizable. The camera sensor, by way of either of, an internal camera processing circuitry 

(i.e., in case of smart cameras) and the processing circuitry of the model is configured to 

determine its configuration space in real time such that the configuration space includes internal 

and external calibration parameters of the camera sensor. 

The processing circuitry is configured to perform various image processing tasks as discussed 

earlier in section 3.1 to section 3.3 such as initial foreground detection using adaptive 

background subtraction, background filtration through federated optical flow, temporal 

relationship assignment to consecutive images captured by the camera sensor, spatiotemporal 
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activity mapping, and normalization of spatiotemporal activity map to determine pixel 

sensitivity map. The processing circuitry is further configured to perform various computational 

tasks such as clustering of the pixels in the pixel sensitivity map, determining one or more 

important clusters, determining a centre of each important cluster, determining a centre point of 

the sensitivity map (i.e., a cumulative centre point of the various individual centre points 

corresponding to the one or more important clusters), determining a calibration model based on 

objectives and calibration parameters of the camera sensor, and calibrating the calibration 

parameters to match the centre point of the sensitivity map with the centre of the camera sensor’s 

field of view. 

The local memory unit is configured to store the images captured by the camera sensor, activity 

maps, pixel sensitivity maps, configuration space values, calibration parameters, camera 

calibration models etc. 

3.5 Process 

The SAM framework provides calibration of configuration space of one or more camera sensors 

deployed in the active vision system based on the spatiotemporal activities detected and 

analysed in the field of view of each camera in the process shown in Figure 3.2 hereinbelow. 

 
Figure 3.2 Process flow of SAM framework 
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Notations Used: 

k: Number of past frames (images) captured by the camera sensor; 

S(t): Image data (in pixel values) sensed by the camera sensor in the present frame; 

S(t-i): Image data (in pixel values) sensed by the camera sensor in “i” frames prior to the 

present frame; 

S1i: Initial activity data obtained by object detection on S(t-i) using frame differencing; 

S2i: Data obtained by applying adaptive thresholding on S1i for initial filtration of noise from 

the initial activity data; 

S3i: Initial foreground data in binary pixel values obtained by binarization of S2i; 

S4i: Enhanced foreground Data obtained by filtering S3i using federated optical flow to remove 

unwanted portions from the initial foreground data; 

H(t-k): Temporal function for kth frames prior to the present frame; 

S5i: Temporal component of S4i obtained as a product of S4i and H(t-i); 

X: Cumulative spatiotemporal activity map for the present frame; 

N: Normalized spatiotemporal pixel sensitivity map for the present frame; 

R: Reconfiguration parameters for the camera sensor; 

C: Data from calibrated camera sensor; and 

Y: Activity analysis after processing C. 

In operation, the camera sensor captures consecutive images of the environment corresponding 

to a scene (i.e., one or more activities). The camera sensor further determines and sends the 

calibration parameters to the processing circuitry. The processing circuitry receives the 

consecutive images and arranges them according to a respective timestamp attached to each 

image. The processing circuitry further determines an initial foreground from each image of 

the consecutive images using adaptive background subtraction that includes frame 

differencing for determining initial activity data corresponding to each image of the 
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consecutive images to generate an initial activity data, adaptive thresholding for initial 

filtration of noise from the initial activity data, and binarization for downscaling the pixel 

values of the filtered initial activity data to binary form to reduce the computational load of 

proceeding computations. Furthermore, upon determination of initial foreground regions from 

each image of the consecutive images, the processing circuitry filters unwanted regions from 

the initial foreground using the federated optical flow technique to determine accurate 

foreground regions for each image of the consecutive images.  

Upon the determination of the accurate foreground regions corresponding to each image, the 

processing circuitry determines a temporal relationship function value for each image using 

complete (or partial) half width of Gaussian distribution curve. The portion of the half width 

Gaussian distribution is selected based on the criticality and type of application and is 

customizable to provide flexibility of operation for various types of applications. The 

processing circuitry further determines a corresponding temporal component for each image 

of the consecutive images by multiplying each image with its corresponding temporal 

relationship function value. The processing circuitry further determines a cumulative activity 

map by pixelwise addition of each temporal component of each image of the consecutive 

images. To avoid high computational complexity due to cumulative pixel values approaching 

infinite values, the processing circuitry determines normalized values for each pixel (i.e., pixel 

sensitivity value) for each pixel in the cumulative activity map to generate a sensitivity map 

(i.e., heat map). 

Based on the sensitivity map, the processing circuitry segregates the pixels of the sensitivity 

map into a number of clusters and determines one or more important clusters using mean 

thresholding technique. The processing circuitry further determines the centre of each 

important cluster, and a centre point from all the centres of the important clusters. Furthermore, 
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the processing circuitry calibrates the parameters of the camera sensor such that the centre of 

the camera sensor’s field of view coincides with the centre point. 

3.6 Performance Parameters 

The performance of the proposed SAM framework is evaluated in terms of multi-object 

tracking accuracy (MOTA) (i.e., the accuracy of detection of regions having pixels of 

importance) based on the spatiotemporal pixel sensitivity map derived by processing the 

number of consecutive images captured by the camera sensors. The MOTA (%) increases 

when the truly detected importance pixel count increases and the falsely detected importance 

pixel count reduces. To obtain the ground truth data for sensitivity maps, markers are applied 

on the consecutive temporal images for evaluation of the performance of SAM framework in 

terms of MOTA (%). Specifically, the MOTA (%) depends on true positive pixel count (TPC), 

true positive pixel detection rate (TPR), false positive pixel count (FPC), false positive pixel 

detection rate (FPR), true negative pixel count (TNC), true negative pixel detection rate (TNR), 

false negative pixel count (FNC), and false negative pixel detection rate (FNR) as presented 

in equation 3.14 hereinbelow. 

                                    MOTA (%) = {(Pt- Pf)/Pt} * 100          (3.14) 

where, ‘Pt’ represents the total pixel count in the pixel sensitivity map, and ‘Pf’ represents the 

count of falsely detected or non-detected pixels in pixel sensitivity map. 

The total pixel count ‘Pt’ in the pixel sensitivity map is represented by equation 3.15 as: 

                                    Pt = TPC + FPC + TNC +FNC          (3.15) 

and the count of falsely detected pixels ‘Pf’ in the pixel sensitivity map is represented by 

equation 3.16 as: 

                                                 Pf = FPC + FNC           (3.16) 

Based on the MOTA (%), the efficiency of the SAM framework is compared with other state 

of art systems. 
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3.7 Simulations 

For illustration of the effectiveness of the proposed SAM framework, the model is tested using 

various video datasets, where each video dataset mimics the images captured by a single 

stationary camera sensor capturing consecutive images over a predefined period of time. 

Specifically, the video datasets include surveillance datasets and sports datasets with 

specifications of 30 frames per second, resolution of 360x640 pixels per frame, and a duration 

of 10 seconds of each video dataset for multi-object detection and tracking application. As the 

model is demonstrated for a very short duration of video datasets, the framework is proposed 

to use HWHM Gaussian with normalized value of mean (µ) and standard deviation (α) of 1 

and 0.5, respectively. The performance of the model based on SAM framework is compared 

with approaches in [165], [166], and [175] in terms of MOTA (%) for traffic flow estimation 

and multi-object tracking. The simulations and results are derived using MATLAB Image 

Processing Toolbox on a work station (GPU) with 128 GB of Random-access memory and 

Intel(R) Xeon(R) Silver 4214 CPU @ 2.19-2.20 GHz. Simulation results of randomly selected 

frames from the video datasets are shown hereinbelow. Specifically, the extracted frames, the 

initial foreground after adaptive background subtraction, and the federated optical flow is 

shown in Figure 3.3 for video data sample 1, Figure 3.5 for video data sample 2, Figure 3.7 

for video data sample 3, Figure 3.9 for video data sample 4, Figure 3.11 for video data sample 

5, and Figure 3.13 for video data sample 6, respectively. A comparison of activity map and 

normalized pixel sensitivity derived by different approaches is as shown in Figure 3.4 for video 

data sample 1, Figure 3.6 for video data sample 2, Figure 3.8 for video data sample 3, Figure 

3.10 for video data sample 4, Figure 3.12 for video data sample 5, and Figure 3.14 for video 

data sample 6, respectively. 
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Video data sample-1 (Traffic Surveillance dataset): 

 
Figure 3.3 Simulation results from video data sample 1 using SAM framework. 

 
Figure 3.4 Activity maps and pixel sensitivity maps of video data sample 1 by different approaches; [A] by Pan 

et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using 

SAM framework model. 
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Video data sample-2 (Traffic Surveillance dataset): 

 
Figure 3.5 Simulation results from video data sample 2 using SAM framework. 

 
Figure 3.6 Activity maps and pixel sensitivity maps of video data sample 2 by different approaches; [A] by Pan 

et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using 

SAM framework model. 
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Video data sample-3 (Traffic Surveillance dataset): 

 
Figure 3.7 Simulation results from video data sample 3 using SAM framework. 

 
Figure 3.8 Activity maps and pixel sensitivity maps of video data sample 3 by different approaches; [A] by Pan 

et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using 

SAM framework model. 
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Video data sample-4 (Sports dataset - Badminton): 

 
Figure 3.9 Simulation results from video data sample 4 using SAM framework. 

 
Figure 3.10 Activity maps and pixel sensitivity maps of video data sample 4 by different approaches; [A] by 

Pan et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach 

using SAM framework model. 
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Video data sample-5 (Sports dataset - Sword fight): 

 

Figure 3.11 Simulation results from video data sample 5 using SAM framework. 

 

Figure 3.12 Activity maps and pixel sensitivity maps of video data sample 5 by different approaches; [A] by 

Pan et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach 

using SAM framework model. 
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Video data sample-6 (Sports dataset - Tennis): 

 

Figure 3.13 Simulation results from video data sample 6 using SAM framework 

 
Figure 3.14 Activity maps and pixel sensitivity maps of video data sample 6 by different approaches; [A] by 

Pan et al. in [165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach 

using SAM framework model. 
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3.8 Results 

A comparative performance analysis of different approaches proposed in [165], [166], [175], 

and the proposed SAM framework model in terms of performance parameters (i.e., MOTA 

(%)) is presented in Table 3.1 hereinbelow. 

Table 3.1 Comparison of performance parameters by different approaches tested on video data sample 1; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOTA 

 (%) 

Video Data sample 1 (Traffic Surveillance): 

[A] 67,830 92 39,114 53.0 1,17,558 75.03 5898 3.76 43.15 

[B] 66,245 89.85 32,761 44.4 1,23,911 79.09 7483 4.77 50.80 

[C] 65,924 89.41 6,273 8.51 1,50,399 95.99 7804 4.98 86.51 

[D] 65,138 88.34 1,071 0.14 1,55,591 99.31 8590 5.48 94.38 

[E] 73,728 100 0 0 1,56,672 100 0 0 100 

Table 3.2 Comparison of performance parameters by different approaches tested on video data sample 2; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOTA 

(%) 

Video Data sample 2 (Traffic Surveillance): 

[A] 83,262 94.50 43,149 48.97 99,146 69.67 4843 3.40 47.63 

[B] 81,989 93.05 38,102 43.24 1,04,193 73.22 6116 4.29 52.46 

[C] 80,594 91.47 8,122 9.21 1,34,173 94.29 7511 5.27 85.52 

[D] 79,813 90.59 1622 0.18 1,40,673 98.86 8292 5.82 94.00 

[E] 88,105 100 0 0 1,42,295 100 0 0 100 
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Table 3.3 Comparison of performance parameters by different approaches tested on video data sample 3; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOT

A (%) 

Video Data sample 3 (Traffic Surveillance): 

[A] 1,06,274 96.15 41,827 37.84 78,051 65.11 4248 3.54 57.11 

[B] 1,04,483 94.53 34,131 30.88 85,747 71.54 6039 5.03 64.09 

[C] 1,02,173 92.44 9138 8.27 1,10,740 92.37 8349 6.96 84.77 

[D] 1,00,628 91.04 1122 0.10 1,18,756 99.06 9894 8.25 91.65 

[E] 1,10,522 100 0 0 1,19,878 100 0 0 100 

Table 3.4 Comparison of performance parameters by different approaches tested on video data sample 4; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOTA 

(%) 

Video Data sample 4 (Traffic Surveillance): 

[A] 82107 95.35 26,187 30.41 1,18,105 81.85 4001 2.77 66.82 

[B] 80926 93.98 19,223 22.32 1,25,069 86.68 5182 3.59 74.09 

[C] 78446 91.10 5,982 6.94 1,38,310 95.8 7662 5.31 87.75 

[D] 77102 89.54 2,321 2.69 1,41,971 98.39 9006 6.24 91.07 

[E] 86108 100 0 0 1,44,292 100 0 0 100 

Table 3.5 Comparison of performance parameters by different approaches tested on video data sample 5; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOT

A (%) 

Video Data sample 5 (Sports dataset- Sword fight): 

[A] 66,121 91.87 23, 877 33.17 1,28,547 81.14 5,885 3.71 63.12 

[B] 63,964 88.86 21, 232 29.49 1,37,192 86.59 8,012 5.05 65.46 

[C] 58,372 81.10 12,121 16.84 146303 92.35 13,604 8.58 74.58 

[D] 54, 232 75.34 8,962 12.45 1,49462 94.32 17744 11.2 76.35 

[E] 71,976 100 0 0 158424 100 0 0 100 
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Table 3.6 Comparison of performance parameters by different approaches tested on video data sample 6; [A] by 

[165]; [B]. by Mehboob et al. in [166]; [C]. by Indu, S. in [175]; [D] is our proposed approach using SAM 

framework model; and [E] is the true data obtained using markers. 

Ref.  TPC TPR 

(%) 

FPC FPR 

(%) 

TNC TNR 

(%) 

FNC FNR 

(%) 

MOTA 

(%) 

Video Data sample 6 (Sports dataset- Tennis): 

[A] 46,185 94.34 20,863 42.61 1,60,602 88.50 2,768 1.52 55.87 

[B] 43,266 88.38 18,286 37.35 1,63,179 89.92 5,687 3.13 59.52 

[C] 38,128 77.89 12,112 24.74 1,69,353 93.32 10,825 5.97 69.29 

[D] 37,109 75.81 8,934 18.25 1,72,531 95.08 11,844 6.52 75.23 

[E] 48,953 100 0 0 1,81,465 100 0 0 100 

The average performance of the proposed SAM framework is compared with systems 

proposed in [176] and [177] through video data sample 1 to video data sample 3 for traffic 

surveillance applications, and RGB sequence as presented in [178] with data sample 4 to data 

sample 6 for sports analytics application. The comparison of performance of the SAM 

framework model with [176], [177] and [178] is presented in Figure 3.15. 

 
Figure 3.15 Comparison of SAM performance with [176], [177] and [178] (in average MOTA %). 

3.9 Conclusion 

Performance of a successful active vision system depends on the accuracy of images captured 

by the camera sensor, a spatiotemporal understanding of the scene, and data processing 
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capabilities of the system. Advanced active vision systems typically use highly complex 

computation model to address the aforementioned issues, which may be problematic for 

systems with constrained resources. The SAM framework addresses the challenge of 

spatiotemporal activity mapping that can balance the performance of active vision system with 

limited resource availability. 

The SAM framework model analyses the scene in both spatial and temporal perspectives, and 

generates adaptive activity maps for sensor reconfiguration so that the important region(s) can 

be captured near to the center of the camera sensor's field of view. The framework pre-

processes the sensor data using simplistic image processing techniques like background 

subtraction, binarization, thresholding, and federated optical flow. The temporal relationship 

between the consecutive image frames is represented by a half-width Gaussian distribution. 

The proposed SAM framework's straightforward model yields highly accurate spatiotemporal 

activity mapping with low computation complexity and load, and thus requires low system 

resources. The performance is compared in terms of MOTA (%), where the SAM framework 

model outperforms contemporary systems presented in [165], [166], [175], [176], [177] and 

[178]. Specifically, the SAM framework model showcases 0.79% better average MOTA 

relative to [176] and 8.39% better average MOTA relative to [177], when tested on traffic 

surveillance datasets (i.e., data samples 1, 2 and 3). The SAM framework model further 

showcases 4.21% better average MOTA as compared to [178], when tested on sports datasets 

(i.e., data samples 4, 5 and 6). The development of SAM framework model resulted in two 

research publications cited as [175] and [179]. 
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Chapter 4 

ADAPTIVE 

SELF-RECONFIGURATION 

Computer vision has seen tremendous advancement in technology and an exponential increase 

in the number of used case applications in the last decade. The growth in future leads to 

development and deployment of futuristic, advanced, and adaptive computer vision 

applications such as completely automated driverless vehicles, tele-immersion, advanced 

sports analysis, and the like. Most of the advanced computer vision applications require 

performing highly complex computations in real time. Presently, such capabilities are only 

confined to large datacentres which are not accessible to all, due to humongous expenses and 

unavailability for specific applications. 

As most of the advanced computer vision technologies use artificial intelligence (in one form 

or the other), it is nearly impossible to train such systems in near real time for any unforeseen 

condition, even after extensive exploitation of datacenter resources. Thus, there is a need to 

develop an adaptive system that is capable of data and information sharing such that the 

training latency can be reduced. The contemporary art presents systems based on transfer 

learning to facilitate an adaptive trait to the system, however such systems are also far away 

to tackle unforeseen conditions without any prior training experience in near real time. To 
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address the aforementioned problem, an Adaptive Self-Reconfiguration (AdapSR) framework 

is presented in this chapter. 

4.1 Self-Reconfiguration 

Self-Reconfiguration is a property of a system to understand a situation of operation and re-

configure its performance parameters to optimize its performance. To achieve a state of self-

reconfiguration, the system must be capable of understanding the objectives of operation, 

derive a relationship of reconfiguration parameters and their effects on the performance of the 

system. Specifically, a self-reconfigurable active vision system requires determining a 

relationship between calibration parameters of the camera sensors and re-configuration of the 

calibration parameters to capture better scene yielding to an improved understanding of 

activities from the scene. More particularly, if an active vision system employs a network of 

camera sensors (i.e., a smart camera network), to possess self-reconfiguration the active vision 

system must be capable of understanding the effects of dynamic changes and unforeseen 

situations and/or activities to calibrate the configuration space of each camera sensor deployed 

in the network. The ability to adapt to such changes and situations, and reconfigure 

performance parameters for optimized overall performance of the system is known as self-

adaptation [180]. 

Various approaches have been proposed in the past for self-adaptation of computer vision 

systems. Leong et al. in [181] proposed self-reconfiguration of parameters of unmanned aerial 

vehicles used for surveillance. Self-reconfiguration of distributed smart camera network for 

vehicle re-identification is proposed by Martinel et al. in [182] using deep learning models. 

Various models are compared by Nataranjan et al. in [183] for self-reconfiguration of computer 

vision systems for data extraction through active camera nodes of a computer vision system. 

However, for an efficient and accurate self-reconfiguration, the active vision system must be 

capable of identification of its state, its performance parameters, and most critically it must be 
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capable of deriving a relationship between the performance parameters and the outcome of 

calibration of the parameters, which is found missing in the state-of-art. Further, an optimized 

self-reconfiguration of an active vision system demands self-adaptation. Figure 4.1 depicts a 

dynamic reconfiguration framework for SCNs proposed by Piciarelli et al. in [8]. 

 

Figure 4.1 Dynamic Self-reconfiguration framework [8] 

The dynamic reconfiguration framework of [8] used a Smart Camera Network to determine an 

overall state (F), overall quality (Q), and overall resource utilization (R) of the system from 

set of data corresponding to node’s local states (f), local QoS of nodes (q) and resource 

utilization of the nodes (r), respectively. Piciarelli et al. in [8] through the dynamic 

reconfiguration framework further demonstrated the capabilities of a re-configurator to 

identify changes in parameters in accordance with a resource model and the system's goals. 

However, as the dynamic reconfiguration framework in [8] was developed for a centralized 

environment, the framework failed to tackle unforeseen conditions with utmost efficiency. To 

tackle an unforeseen condition that is not identified within the smart camera network, the 

framework had to completely determine the reconfiguration parameters from the scratch, 
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which makes it unfavorable to tackle unforeseen conditions in near real-time, and thus limits 

the operational applications of the system. The dynamic reconfiguration framework proposed 

by Piciarelli et al. in [8] was later improved by Rudolf et al. in [190], Cai et al. in [191], and 

Suresh et al. in [192] for adaptive self-reconfiguration of smart camera networks, however, it 

also lacked adaptiveness. 

4.2 Self-Adaptation  

Self-adaptation is referred to as the ability of a system to learn and adapt to dynamic changes 

in its state of performance, and update its performance parameters accordingly through 

information and knowledge received from other systems. In contrast to self-reconfiguration, 

self-adaptation facilitates a system to enhance its performance through updating configuration 

space of nodes, active participants, model parameters, and algorithms shared by other systems 

in a network. Self-adaptation further enables a system to provide a best configuration space 

suitable to tackle a particular condition that may be unforeseen to another system, thus 

provides an established pretrained model for enhanced performance in terms of efficiency and 

timeliness of computation. 

To achieve self-adaptation, a system must possess two fundamental properties: self-expression 

and self-awareness. Self-expression is an ability of a system to determine local states of each 

component deployed in the system towards the overall state in terms of the Quality of Service 

(QoS) delivered by the system (computed by way of the performance parameters of the 

system). Self-expression further enables the system to share the state parameters 

corresponding to its local and overall state, the objectives of operation and associated data 

and/or metadata to other systems associated with the system. Furthermore, self-expression 

enables the system to receive feedbacks from other systems based on the information shared 

by the system. Self-awareness is an ability of the system to question its local and overall 
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operational states, and adjust its configuration space based on the feedback from other systems 

that is best suitable to tackle the unforeseen condition. 

Rinner et al. in [181] proposed six major steps for self-adaptation based on a market-based 

approach to self-awareness: resource monitoring, object tracking, topology learning, object 

handover, strategy selection, and objective formation. In [182], Lewis et al. distinguished 

between explicit and implicit events and discussed the privacy, scope, and quality of self-

adaptation. Lewis and Chandra in [183] discussed formal models for self-adaptation and their 

applications in Artificial Intelligence systems, conceptual systems, engineering, automotive 

systems, computing, and the like. Wang et al. in [184] discussed self-adaptation methods with 

online learning capabilities. Ali et al. in [185] proposed an auto-adaptive multi-stream 

architecture with multiple heterogeneous sensors and pipelined switches between processing 

states and ideal states to reduce power utilising a Field Programmable Gate Array (FPGA) 

implementation that demonstrated inter-frame adaptation capability with a relatively low 

overhead. In [186], Guettalfi et al. proposed an architecture for public and private self-

awareness using actuators that incorporate QoS, resource estimation, a feedback mechanism, 

and state estimation. Zhu et al. in [187] and Lin et al. in [188] proposed unsupervised learning 

based self-adaptation for person re-identification. Wu et al. in [189] and Rudolph et al. in [190] 

proposed adaptive self-reconfiguration systems for computer vision applications based on 

sharing of information amongst nodes that are internally deployed in the smart camera 

network. However, both systems being designed for centralized systems limit the knowledge 

sharing to internal nodes of the camera network, and thus are confined to limited learning and 

knowledge sharing within the smart camera network. Further, the adaptive self-reconfiguration 

systems proposed in [189] and [190] were also prone to visual attacks if AI/ML models are 

utilized for operation. Rudolf et al. in [190], Cai et al. in [191], and Suresh et al. in [192] 

improved the dynamic reconfiguration framework proposed by Piciarelli et al. in [8] for 
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adaptive self-reconfiguration of smart camera networks to enhance the detection accuracy, 

however, the operation in centralized network environment limits their adaptiveness and thus 

capabilities to tackle unforeseen conditions in near real-time. 

4.3 Adaptive Self-Reconfiguration Framework 

From the aforementioned, it is well established that the scene understanding and the 

reconfiguration of calibration parameters of camera sensors are interdependent, which makes 

it very challenging for a system to determine an accurate configuration space to derive 

optimized scene understanding for completely unknown environments in near real-time. With 

some preliminary understanding of an event, the latency and efficiency of complex 

computations used for deriving scene understanding can be highly improved. 

To address the abovementioned challenge, The Adaptive Self-reconfiguration (AdapSR) 

framework is specifically designed to extend the scope of the dynamic re-configuration 

framework by Piciarelli et al. in [8] for a distributed network of systems. It is a well-known 

fact that sharing information is simpler and less exerting than deriving information, and thus 

requires less resources. The AdapSR framework mimics human learning and knowledge 

sharing based on past experiences to a distributed network of systems, and thus facilitates 

systems with a self-adaptive capability to tackle unforeseen situations more efficiently than 

those solutions operating in a centralized environment. 

More particularly, the AdapSR framework utilizes data and information sharing among a 

distributed network of computer vision systems. In situations when an unforeseen activity is 

detected by a system, the AdapSR framework enables determining a similar activity that was 

analysed by any other system in the distributed network in the past and fine tuning its 

information and model to tackle the unforeseen conditions in near real-time without 

extensively exploiting the resources of datacenters. Thus, the AdapSR framework provides an 
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efficient solution for efficient and adaptive active vision systems to tackle unforeseen 

conditions in near real time. 

4.4 Model 

As discussed earlier, the AdapSR framework is specifically designed to facilitate a plurality of 

smart camera networks with an adaptive self-reconfiguration capability to enable calibration 

of configuration space of each camera sensor network efficiently. The AdapSR model 

architecture is as shown in Figure 4.2 hereinbelow. 

 

Figure 4.2 AdapSR architecture for active vision systems 

Notations used: 

Xi: ith active vision system; 

SCNi: ith smart camera network 

sij: jth camera sensor of the ith smart camera network; 

Ni: Number of camera sensors in the ith smart camera network; 

{Ci}: Set of input data for the ith smart camera network; 

{Ci’}: Set of output data for the ith smart camera network; 
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Ei: Self-expression data for the ith active vision system; 

Ai: Self-awareness data for the ith active vision system; 

m: Number of active vision systems utilizing the AdapSR framework; 

B: Distributed blockchain network comprising “M” number of datacenters; and 

Dk: kth datacenter in the distributed blockchain network. 

Specifically, the development of an operational model based on the AdapSR framework 

requires a plurality of active vision systems and a plurality of processing nodes co-operatively 

coupled to each other in a distributed network. More particularly, the plurality of processing 

nodes are datacenters coupled to each other in a distributed blockchain network. The 

functionality of an active vision system is defined by the objectives of the active vision system. 

Each active vision system of the plurality of active vision systems deployed in the AdapSR 

framework model includes a smart camera network that includes a plurality of camera sensors, 

an information fusion unit, and a reconfiguration unit. Each camera sensor of the plurality of 

camera sensors is configured to capture images of an environment to be analysed. Each smart 

camera network is configured to determine local state of each camera sensor in terms of local 

configuration space, values of the calibration parameters, and the amount of the resources 

utilized and left with each camera sensor. Each smart camera network is further configured to 

determine an overall state of the active vision system based on the local states of each camera 

sensor and the functionality of the active vision system. The information fusion unit associated 

with each active vision system is configured to attach a timestamp and a camera identifier to 

each image for identification. Further, the information fusion unit combines the timestamped 

images with camera identifiers to generate an image data for each active vision system. 

Furthermore, the information fusion unit is further configured to fuse the image data with the 

system’s state to generate a self-expression information corresponding to the active vision 

system. 
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The reconfiguration unit of each active vision system is configured to receive a self-awareness 

information from the plurality of processing nodes deployed in the distributed network of 

processing nodes. The reconfiguration unit is further configured to determine reconfiguration 

parameters from the self-awareness information and calibrate the configuration space of each 

camera sensor of the smart camera network based on the self-awareness information. 

The plurality of processing nodes is configured to receive the self-expression information from 

each active vision system. The plurality of processing nodes is further configured to identify 

the functionality of each active vision system from the self-expression information, and 

segregate the active vision systems into a number of groups based on their respective 

functionalities. 

Upon segregation of the active vision systems, the plurality of processing nodes is configured 

to determine a spatiotemporal sensitivity map for each active vision system based on the 

consecutive timestamped images from the self-expression information (as presented in 

Chapter 3). Furthermore, the plurality of processing nodes is configured to determine a QoS 

of each active vision system based on analysis of the spatiotemporal sensitivity map of each 

active vision system. The plurality of processing units further includes a distributed ledger to 

store models, sensitivity maps and configuration space associated with an activity identified 

by any active vision system of the plurality of activity systems corresponding to a particular 

functionality of the active vision system. The plurality of processing units is further configured 

match the spatiotemporal sensitivity map with the sensitivity maps derived from past 

experiences of the plurality of active vision systems in the distributed ledger based on the 

functionality of the active vision system to identify a best suitable sensitivity map for the active 

vision system and send the self-expression information to the active vision system including 

the configuration space of associated with the best suitable sensitivity map. 
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4.5 Process 

The AdapSR framework provides calibration of configuration space of the camera sensors 

deployed in each active vision system of the plurality of active vision systems based on the 

self-expression information generated by the plurality of processing nodes. In operation, the 

AdapSR model, by way of each active vision system, further generates a self-expression 

information and sends the self-expression information to the plurality of processing nodes. 

Further, the AdapSR model, by way of the plurality of nodes segregates the plurality of active 

vision systems based on the functionality of each active vision system. Furthermore, the 

AdapSR model, by way of the plurality of processing nodes generates a spatiotemporal 

sensitivity map for each active vision system, and determine a QoS of each active vision 

system based on analysis of the corresponding spatiotemporal sensitivity map. Furthermore, 

the AdapSR model, by way of the plurality of processing nodes identifies a best suitable 

sensitivity map for the active vision system and send the self-expression information to the 

active vision system including the configuration space of associated with the best suitable 

sensitivity map. 

Specifically, to evaluate the performance of the AdapSR framework, Region Proposal 

Network model (i.e., a faster R-CNN model) presented by Ren et al. in [193] is used for 

segmentation and comparison of spatiotemporal sensitivity maps. It must be apparent to a 

person skilled in the art that the Region Proposal Network model is used just for illustration of 

the effectiveness of AdapSR framework as compared to the centralized reconfiguration 

systems, and the functionality of the AdapSR framework is not limited to it. The AdapSR 

framework can be utilized with any kind of segregation and comparison model without 

deviating from its scope. More particularly, the Region Proposal Network model (i.e., a faster 

R-CNN model) presented by Ren et al. in [193] provides determination of a number of regions 

of interest (ROI) from the spatiotemporal sensitivity maps. Each region of interest is then 
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classified by the Convolution Neural Network (CNN) classifier to identify a class 

corresponding to each Region of Interest detected of the number of Regions of Interest. The 

AdapSR model further generates a matching score by comparing each Region of Interest with 

the Regions of Interest of the predefined sensitivity maps stored in the distributed ledger to 

generate a matching score. Based on the matching score, one or more sensitivity map and their 

corresponding configuration parameters are determined matching the spatiotemporal 

sensitivity map of the active vision system that are used to generate self-expression 

information for the active vision system using CNN of the Proposal Network model. 

The sensitivity map from the distributed ledger is selected for an active vision when the 

matching score is greater than a threshold value, that is determined using mean thresholding (as 

presented in Chapter 3) of all the activities determined by the plurality of processing nodes, and 

thus provides an adaptive improvement of the protocols over a period of deployment time. 

Further, the AdapSR model selects the sensitivity map with highest matching score above the 

mean threshold value to be most suitable for the active vision system. In a scenario, when none 

of the sensitivity maps has a matching score higher than the threshold value, the AdapSR 

framework proposes segregating the plurality of processing nodes into two categories: processor 

nodes and validator nodes. The processor nodes generate a set of protocols for determination of 

the configuration model for the active vision system using CNN and the validator nodes are 

configured to validate the configuration parameters based on update in the Quality of Service 

of the active vision system received in the form of the self-awareness information provided by 

the active vision system. Specifically, the AdapSR framework model identifies the center of 

Regions of Interest and determines its deviation from the centre of the spatiotemporal activity 

map. Further, based on the calibration parameters and the functionality of the active vision 

system from the self-expression information, the AdapSR framework model identifies an 

updated configuration space for the active vision system. For a seamless and unbiased operation 
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of the plurality of processing nodes (i.e., the processor nodes and the validator nodes), the 

plurality of processing nodes are categorized based on proof of active participation (POAP) 

consensus mechanism as presented in [194], and the validator nodes are rewarded based on 

proof of stake (POS) consensus mechanism as presented in [195]. Due to distribution of the task 

load amongst the processor and validator nodes, it is possible to tackle the unforeseen situation 

in near real-time, when encountered for the first time by the entire system of smart camera 

networks. 

4.6 Performance Parameters 

The performance of the proposed AdapSR framework is evaluated in terms of multi-object 

tracking accuracy (MOTA) i.e., the accuracy of detection of Regions of Interest in the 

spatiotemporal sensitivity maps determined over specific periods of time (e.g., epochs) that 

represents the rate of learning of the AdapSR framework with respect to other contemporary 

systems. Specifically, the MOTA (%) depends on true positive pixel count (TPC), true positive 

pixel detection rate (TPR), false positive pixel count (FPC), false positive pixel detection rate 

(FPR), true negative pixel count (TNC), true negative pixel detection rate (TNR), false 

negative pixel count (FNC), and false negative pixel detection rate (FNR) as presented in 

equation 4.1 hereinbelow. 

                                     MOTA (%) = {(Pt- Pf)/Pt} * 100            (4.1) 

where, Pt represents the total pixel count in the spatiotemporal sensitivity map; and ‘Pf’ 

represents the count of falsely detected or non-detected pixels in the spatiotemporal sensitivity 

map. 

The total pixel count ‘Pt’ in the spatiotemporal sensitivity map is represented by equation 4.2 

as: 

                                     Pt = TPC + FPC + TNC +FNC             (4.2) 
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and the count of falsely detected pixels ‘Pf’ in the spatiotemporal sensitivity map is represented 

by equation 4.3 as: 

                                                  Pf = FPC + FNC              (4.3) 

Based on the progressive MOTA (%) through training over epochs, the efficiency of the SAM 

framework is compared with other state of art systems. 

4.7 Results 

For illustration of the effectiveness of the proposed AdapSR framework, the model is tested 

using various video datasets, where each video dataset mimics the images captured by a single 

stationary camera sensor capturing consecutive images over a predefined period of time. 

Specifically, the video datasets include surveillance datasets of 30 frames per second (i.e., data 

sample 1 and 2 as presented earlier in Chapter 3), resolution of 360x640 pixels per frame, and 

a duration of 10 seconds of each video dataset for multi-object detection and tracking 

application. To evaluate the performance of the AdapSR framework, Region Proposal 

Network model (i.e., a faster R-CNN model) presented by Ren et al. in [193] is used for 

segmentation and comparison of spatiotemporal sensitivity maps. Due to the lack of resources 

required to develop a private blockchain network with datacenters, we used lower processing 

capabilities. The simulations and results are derived using MATLAB Image Processing 

Toolbox on a work station (GPU) with 128 GB of Random-access memory and Intel(R) 

Xeon(R) Silver 4214 CPU @ 2.19-2.20 GHz. The results are represented with respect to 

training cycles or epochs (Ti) (each of 15 minutes duration). It must be apparent to a person 

skilled in the art that the processing capabilities of a datacenter are much higher and can be 

used to achieve results in near real-time. 

The performance of the proposed AdapSR framework is compared with the dynamic 

reconfiguration model by Piciarelli et al. in [8], in terms of MOTA when trained progressively 
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over epochs and is presented in Table 4.1 and Figure 4.3 for data sample 1, and Table 4.2 and 

Figure 4.4 for data sample 2, respectively. 

Data Sample-1: 

Table 4.1 Comparison of performance of AdapSR with [8] tested on video data sample 1 in terms of MOTA%, 

trained over epochs (T) of 15 minutes each. 

Pixels: 640 × 360 T1 T2 T3 T4 T5 T6 T7 

[8] 

TPC 30,541 41,556 52,956 56,871 60,279 74,638 76,267 

TNC 18,719 20,268 28,514 33,400 39,277 35,098 41,905 

FPC 80,271 74,352 69,183 66,418 63,116 60,947 59,104 

FNC 1,00,869 94,024 79,747 73,711 67,728 59,717 53,124 

MOTA (%) 21.38 26.92 35.36 39.18 43.21 47.63 51.29 

Training cycles to obtain above 80% MOTA: 18 

AdapSR 

TPC 63,018 69,217 72,141 76,238 78,908 79,519 86,211 

TNC 33,128 37,320 41,169 46,473 48,042 52,793 51,775 

FPC 47,982 43,755 40,073 36,117 36,431 31,824 29,273 

FNC 86,272 80,108 77,017 71,512 67,019 66,264 63,141 

MOTA (%) 41.73 46.24 49.18 53.26 55.10 57.34 59.89 

Training cycles to obtain above 80% MOTA: 12 

 
Figure 4.3 Comparison of the performances of the system in [8] and AdapSR for data sample 1. 

Data Sample-2: 

Table 4.2 Comparison of performance of ADAPSR with [8] tested on video data sample 2 in terms of MOTA%, 

trained over epochs (T) of 15 minutes each. 

Pixels: 640 × 360 T1 T2 T3 T4 T5 T6 T7 

[8] 

TPC 23,211 27,324 29,841 33,266 36,421 39,972 41,101 

TNC 50,080 58,477 66,581 69,515 76,451 77,601 83,591 

FPC 89,233 85,161 82,686 79,957 75,277 72,098 69,035 

FNC 67,876 59,438 51,292 47,662 42,251 40,729 36,673 

MOTA (%) 31.81 37.24 41.85 44.61 48.99 51.03 54.12 

Training cycles to obtain above 80% MOTA: 15 

ADAPS

R 

TPC 38,211 40,128 41,007 42,091 43,108 43,236 43,901 

TNC 70,860 77,652 83,017 84,952 90,317 92,884 96,666 
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FPC 77,102 71,928 69,982 67,041 66,101 65,384 63,687 

FNC 44,227 40,692 36,394 36,316 30,874 28,896 26,146 

MOTA (%) 47.34 51.12 53.83 55.14 57.91 59.08 61.01 

Training cycles to obtain above 80% MOTA: 11 

 
Figure 4.4 Comparison of the performances of the system in [8] and AdapSR for data sample 2 

4.8 Conclusion and Scope 

The functionality of active vision systems and the reconfiguration of the sensors that feed those 

systems with data are interdependent. However, it can be difficult to reconfigure the calibration 

space of an active vision system using a network of sensors. The contemporary computer 

vision systems struggle miserably to deal with unforeseen conditions, as it takes ample amount 

of time to develop understanding of the unforeseen condition. Thus, it is almost impossible to 

reconfigure such a system in real-time. Further, to process sensor data and derive an 

understanding of the scene, majority of contemporary active vision systems rely on Artificial 

Intelligence (AI) based models that are vulnerable to visual attacks (such as adversarial attack). 

The proposed AdapSR framework model provides fast and efficient reconfiguration of a smart 

camera networks to tackle unforeseen conditions by deriving an understanding of the condition 

based on past events experienced by other smart camera networks coupled to a blockchain 

network. The blockchain network of the AdapSR framework acts as a system of systems, 

connecting a number of smart camera networks together in a distributed environment. The 
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performance of AdapSR framework surpasses the state of art dynamic reconfiguration 

presented in [8] that is the base of various adaptive reconfiguration systems in terms of multi-

object tracking accuracy (MOTA) and processing latency. With some limitations and 

presumptions, the proposed AdapSR framework is tested in a homogeneous sensor 

environment, however, the AdapSR framework aims to be developed for heterogeneous 

systems to broaden the scope of its applications in the future. The AdapSR framework model 

is presented in one of our research papers cited as [172]. 

Further, for storage of large data (corresponding to training models, datasets etc.) in the 

distributed ledger, the AdapSR framework proposes data compression using an autoencoder 

model which is presented in Chapter 5. 
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Chapter 5 

AUTO-ENCODER FOR 

ADAPTIVE  

SELF-RECONFIGURATION 

 

 

The Adaptive Self-Reconfiguration (AdapSR) framework presents an efficient solution for 

self-adaptation and self-reconfiguration of active vision systems. However, the accessibility 

of datacentres required by the AdapSR is limited and so is the data storage capability of each 

datacentre deployed in the blockchain network and performing active vision tasks for the 

AdapSR model. As the blockchain network determines, analyses and stores a number of 

activities associated with each active vision system utilizing its resources, with time the size 

and the data pertaining to activities and events analysed by the blockchain network increases 

drastically. As the storage capacity associated with each datacentre is limited, and the 

parametric data, datasets, protocols, and other data/metadata associated with the activities is 

distributed throughout the network of datacentres, it is a matter of concern for the blockchain 

network deploying datacenters to manage such a big data. Addition of new datacentres to the 

network is an expensive affair and leads to an everlasting increase in expenses of the network. 

Typically, the consecutive images captured by the smart camera network of each active vision 
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systems used to determine the spatiotemporal activity maps and the training datasets used for 

training the models (such as the training dataset of fast R-CNN as proposed in Chapter 4) 

exploit the storage resources extensively. 

Thus, storage of the training datasets and consecutive frames associated with the activities 

(hereinafter cumulatively referred to as “activity data”) in the distributed ledger needs 

immediate attention and demands a technical solution to optimize the storage size by 

appropriate and efficient compression of the activity data. There further remains a need to 

determine critical information associated with the activity data for efficient storage of the 

compressed form of the activity data such that the critical information associated with the data 

is not lost and the activity data can be retrieved in its original form whenever required by the 

blockchain network. To address this problem, we propose a simple yet effective auto-encoder 

model for compression of the activity data based on the properties of Gyrator Transform (GT). 

5.1 Gyrator Transform  

Gyrator transform (GT) is widely exploited in cryptography as presented in [196]-[198] due 

to its simplistic computations and resultant properties. The Gyrator Transform as presented in 

[199] is a linear canonical integral transform, that results in a twisted rotational effect in 

position-spatial frequency planes of phase space. Gyrator Transform is an extension to Fast 

Fourier Transform (FFT) that produces a similar effect to rotation of an input signal about the 

optical axis. The rotation angle (α) of transform is used as encryption parameter whereas 

negative of the rotation angle is utilized as the key to revert the effect at the decryption phase. 

This holds a strong security as the rotational angle can take any value from 0 to 2π. At π/2 the 

Gyrator Transform behaves as FFT. Gyrator Transform holds scalability, periodicity and 

additive property with respect to the rotation angle which makes it an efficient tool for 

cryptography. 
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Initially, the input data ‘g(x,y)’ (preferably in the form of a matrix, however not limited to it) 

is multiplied with a first conversion factor to determine a first intermediate state ‘g2(x,y)’ as 

presented in equation 5.1 hereinbelow. 

                                           g2(x,y) = e jxy(Δ1)(Δ1) cot(α) . g(x,y)                                               (5.1) 

where, ‘e jxy(Δ1)(Δ1)cot(α)’ represents the first conversion factor, x and y represents the input 

coordinates, respectively, ‘Δ1’ represents the differential value of input coordinates x and y, 

and α represents the rotation angle. 

Further, a Discrete Fourier Transform (DFT) is applied to the first intermediate state ‘g2 (x,y)’ 

to determine a second intermediate state ‘Gα,2 (p,q)’, which upon transpose generates a third 

intermediate state ‘Gα,3 (p,q)’. Furthermore, the third intermediate state ‘Gα,3 (p,q)’ is  

multiplied by a second conversion factor as presented in equation 5.2 hereinbelow. 

                 Gα,3 (p,q) = ((Δ2)2. (|csc (α)|/2 π). e jpq(Δ2)(Δ2) cot(α)). Gα,2 (p,q)                 (5.2) 

where, ‘Δ22. (|csc (α)|/2 π). e jpq(Δ2)(Δ2) cot(α)’ represents the second conversion factor, p and q 

represents the output coordinates, respectively, ‘Δ2’ represents the differential value of the 

output coordinates p and q, and α represents the rotation angle. 

The transformation of data through the Gyrator Transform is shown in Figure 5.1 hereinbelow. 

 

Figure 5.1 Computation of Gyrator Transform for Autoencoder 

INPUT DATA ‘g (x,y)’

e jxy(Δ1)(Δ1) cot α

‘g2 (x,y)’

DFT

‘G α,2 (p,q)’

Transpose

‘G α,3 (p,q)’

OUTPUT DATA ‘G (p,q)’

(Δ2)2. (|cscα|/2π). e jpq(Δ2)(Δ2) cot α
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5.2 Autoencoder Model  

The compression properties of Gyrator transform as shown in Figure 5.1 are used by the 

proposed autoencoder for self-adaptive re-configurator to compress the activity data for 

storage in the distributed ledger of the blockchain network. From the above discussion on 

transformation of data by way of the Gyrator Transform (GT), it is well-established that the 

encryption-decryption of data typically depend on the dimension of the input and output data, 

the differential value of the input and output coordinates corresponding to the input and output 

data, respectively, and most importantly the rotation angle (α). Thus, the autoencoder model 

proposes selection of random values from 0 to 2π for selection of the rotation angle, a random 

value for output dimension that is less than the input dimension, and a random value for 

selection of the differential value of the output co-ordinates. Based on the selected values and 

the dimensions and differential value of input coordinates from the input images, the 

autoencoder model, by way of the plurality of processing nodes is configured to generate a 

feature vector for each image. 

For compression of each image of the activity data, the autoencoder model is configured to 

perform pre-processing of each image by binarization and thinning of each image of the 

activity data. The autoencoder is further configured to encrypt each image of the activity data 

using the corresponding feature vector by way of Gyrator Transform (GT), which encrypts and 

compresses the data of each image of the activity data. Furthermore, the autoencoder model is 

configured to identify the non-zero pixels of each encrypted image. Upon identification of the 

non-zero pixels of each encrypted image, the autoencoder model is configured to generate an 

encrypted data for each image based on the metadata of the non-zero pixels of the encrypted 

image, and the feature vector, that is stored in the distributed ledger. The image can be 

retrieved using the Gyrator transform (GT) with the values in the feature vector using (-α) as 

the rotation angle. 
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5.3 Process 

The autoencoder provides compression and encryption of the activity data by way of Gyrator 

Transform (GT) using random parametric values, that results in increased security and reduced 

size of the activity data for efficient storage of activity data in the distributed ledger. In 

operation, the autoencoder generates a random feature vector for each image of the activity 

data, and encrypts the images based on the corresponding feature vector using Gyrator 

Transform (GT). Upon encryption of the images, the autoencoder identifies non-zero pixel 

values of each encrypted image and generates an encrypted data for each image based on the 

metadata of the non-zero pixel values and the feature vector corresponding to the image. The 

encrypted data is then stored in the distributed ledger. The Gyrator transform is further used 

on the encrypted data with the encryption parameters in the feature vector, and a negative 

rotation angle (-α) to retrieve the original image. The autoencoder model is tested on a sample 

image in the next section. 

5.4 Simulations and Results 

For testing the efficiency of the proposed autoencoder, the autoencoder model is tested on a 

sample fingerprint image. The fingerprint image is selected to verify the performance of the 

autoencoder in retaining the important information associated with each fingerprint. It is a 

well-established fact that each fingerprint is different from the other based on its features 

known as minutiae. Minutiae carry the important information of each fingerprint image and 

thus are critical to each fingerprint. For illustration, the autoencoder model is tested with the 

basic three minutiae associated with any fingerprint that are (i) ridge bifurcation, (ii) ridge 

continuation, and (iii) ridge ending. To determine the abovementioned minutiae, the 

fingerprint image is pre-processed by binarization and thinning to one pixel width. Further, a 

(3x3) pixel mask is used on the fingerprint image to determine fingerprint minutiae shifting 
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the mask to each pixel of the pre-processed image. The minutiae are determined by the values 

of the pixels surrounding the center of the mask. For example, when the center pixel of the 

(3x3) pixel mask is surrounded by two dark pixels on one side, such a situation corresponds to 

a ridge bifurcation, else when the center pixel is surrounded by only one dark pixel continuing 

along the ridge, such a situation corresponds to ridge continuation, else when the center pixel 

is not surrounded by any dark pixel on a side of the center pixel, such situation corresponds to 

ridge ending as shown in Figure 5.2. 

 
Figure 5.2 Classification of fingerprint minutiae 

For testing the efficiency of the autoencoder, we determined minutiae from original fingerprint 

image and then encrypted the original image using GT based autoencoder using rotation angle 

(α) equal to 0.8 π. The output pixel dimensions are kept equal to the input pixel dimensions, 

and the input and output differential values are kept equal to ‘1’ for simplicity. The results 

obtained by the autoencoder through the process are shown from Figure 5.3 to Figure 5.6 

hereinbelow. 

 
Figure 5.3 Minutiae determined from input image 
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Figure 5.4 Encryption of pre-processed image using GT with α =0.8 π  

 

Figure 5.5 Minutiae determined from the encrypted image 

The minutiae derived from the input pre-processed image and the minutiae derived by the 

decrypted thinned image (i.e., received after decryption of the encrypted image) are compared, 

and it is observed that each minutia of the input image is preserved. Due to less information 

contained in the image encrypted by the autoencoder, the size of the image is reduced. 

Specifically, for the configuration mentioned hereinabove, a 33KB custom fingerprint image 

is pre-processed and encrypted resulting in an 8KB encrypted image with a feature vector of 

approximately 1KB associated with it. 

 5.5 Conclusion and Scope 

By the comparison of the features of the input and output fingerprint images, it has been 

observed that the autoencoder encrypts the image without losing the critical information of the 
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image. The autoencoder further provides an efficient reduction in the size of the image in terms 

of memory occupancy, which specific to the custom fingerprint image with a rotation angle 

value (α) equal to 0.8 π, output pixel dimensions equal to the input pixel dimensions, and the 

input and output differential values equal to ‘1’, resulted in 9KB data (including 1KB feature 

vector) compressed from 33KB (original size of the fingerprint image) such that the 

compressed image occupies only 0.28 times the memory size as compared to the original 

image. As the occupancy of the distributed ledger of the AdapSR framework model is highly 

affected by the humongous size of datasets and the consecutive images captured by each active 

vision system, the autoencoder provides a relief to the exploited utilization of the distributed 

ledger. It must be apparent to a person skilled in the art that the abovementioned ratio of the 

reduction in size is specific to the use of autoencoder in the specific configuration used on the 

custom fingerprint image and may vary with the type of information contained by the image, 

however the compression of the image is confirmed for any image without losing the critical 

features of the image. 

The autoencoder is proposed to compress and encrypt activity data including the consecutive 

images and the image datasets, however the autoencoder model is yet to be modified and tested 

for encryption and compression of the parametric data, protocols, model data, and other 

data/metadata associated with the AdapSR model. 

The use of Gyrator Transform of the autoencoder model for compression and encryption of 

image data is presented in one of our research papers cited as [200]. 

 

 

 

 

 



91 
 

 

Chapter 6 

DYNAMIC SPEED LIMIT 

ALLOCATION 

 

 

Injuries, fatalities and deaths caused by road accidents are the major public health hazards 

affecting families mentally, physically, emotionally and financially. As presented in a road 

accident report of the year 2018-2019 by Delhi police [201], more than 90% of the vehicles 

on road are motorcycles and private cars with an average yearly growth of over 6% in India. 

Most of the causalities are faced by best productive age group of 25 to 50 years old which 

affects as an overall dip of 3% in GDP of a nation. New Delhi, the national capital of India 

records the second largest population density of the nation with a total population of over 32 

million people. As reported in the report [201], over 5000 road accidents, and over 1400 deaths 

due to road accidents is recorded every year in the capital. An average of 24.63% are reported 

severe accidents every year out of which over 85% of the victims with fatal injuries and deaths 

are pedestrians, car occupants and two-wheeler riders. Various factors like over speeding, red 

light jumping, driving without helmet, drink and drive, using mobile phones while driving, 

wrong lane driving and poor maintenance of road and vehicles enhance the possibility of road 

accidents, over speeding being one of the major reasons of fatal injuries and death. The main 
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reason of such accidents is impatience of people due to traffic jams, but what causes traffic 

jams? The answer is simple, traffic density is uneven throughout the day, however, traffic 

speed limits are fixed. This fixed speed limit causes chaos and traffic jams resulting in higher 

number of accidents, causalities and even death. Thus, there remains a need of an automated 

dynamic speed allocation system that can predict and allocate speed limit of an area based on 

a number of parameters such as the traffic analysis, conditions of the road and probability of 

accidents at a specific speed limit particular to that area. This chapter presents a Dynamic 

Speed Allocation (DSA) framework for prediction of traffic speed limit for different areas.   

6.1 Dynamic Speed Allocation Framework 

The Dynamic Speed Allocation (DSA) framework presents dynamic speed allocation, and is 

inspired by the AdapSR framework as presented in Chapter 4 for adaptive prediction of 

suitable speed limits in different areas. The DSA framework, based on input data 

corresponding to different areas in the form of a plurality of parameters such as traffic density, 

accident count, static speed limit etc., predicts a most suitable speed limit for each area. 

6.2 Model 

The operational model based on the DSA framework requires a plurality of smart sensor 

networks deployed in different areas and a plurality of processing nodes co-operatively 

coupled to each other in a distributed network. More particularly, the plurality of processing 

nodes can be datacenters coupled to each other in a distributed blockchain network (when 

deployed for real time dynamic traffic speed limit allocation based on real-time analysis of 

video feed of each area). Each smart sensor network is configured to obtain in real time, a 

number of parameters that correspond to determination of speed limit of an area. Specifically, 

the speed limit of each area depends on two major factors: Traffic density, and probability of 

accidents. The objective of the DSA framework is to determine an optimum speed limit for 
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each area for minimizing the traffic density and probability of accidents. The DSA model 

architecture is as shown in Figure 6.1 hereinbelow. 

   

Figure 6.1 Framework for dynamic speed limit allocation. 

Notations used: 

Xi: ith area under observation; 

Pij: jth parameter of the ith area; 

ni: Number of parameters in the ith area; 

{Si}: Input parametric data of ith area; 

{Si’}: Revised parametric data for the ith area; 

Ei: Self-expression data (i.e., cost function) for the ith area; 

P11

P12

P1n

X1



94 
 

Ai: Self-awareness data (i.e., optimized cost function) for the ith area; 

m: Count of areas utilizing the DSA framework; 

B: Distributed network comprising “M” number of datacenters/processors; and 

Dk: kth datacenter in the distributed network. 

Each smart sensor network includes a number of smart sensors for determination of the 

plurality of parameters associated with the speed limit of that particular area. The area further 

has a fusion unit to generate an initial cost function comprising weighted sum of the plurality 

of parameters, that is transferred to the plurality of processing nodes of the distributed network. 

Each area further has a re-configurator unit that is configured to receive an optimized cost 

function from the plurality of processing nodes and derive the revised values of the plurality 

of parameters based on the optimized cost function. The plurality of processing nodes is 

configured to receive the initial cost function from each area, and derive a relationship between 

the plurality of parameters for optimizing the cost function. The plurality of processing nodes 

is further configured to compare the initial cost function of each area to determine a best area 

with the highest initial cost function. Furthermore, the plurality of processing nodes is 

configured to determine a relative efficiency of speed limit (in terms of a normalized efficiency 

score) of each area in reference to the best area. Based on the normalized efficiency score of 

each area, the plurality of processing nodes is configured to generate the optimized cost 

function of each camera with optimized values of each parameter of the plurality of parameters 

and a relationship between the plurality of parameters, that is specific to each area. 

Specifically, as the plurality of parameters for DSA framework include traffic density (T), 

static speed limit (V), and probability of accident i.e., measured in terms of count of accidents 

per unit area (A), such that the speed limit (V) is inversely related to the count of accidents per 

unit area (A) and the traffic density (T). Thus, the initial cost function (E) (i.e., the self-
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expression) of each area is a weighted sum of the plurality of parameters as presented in 

equation 6.1 hereinbelow. 

                            E =  ∑(𝑊1. 𝑉) + (𝑊2.  (
1

𝑇
)) + (𝑊3.  (

1

𝐴
))                                            (6.1) 

The plurality of processing nodes utilizes the parametric data from each area to train a neural 

network for determination of the relationship between the parameters. Specifically, the neural 

network is configured to determine based on the count of accidents per unit area (A) and the 

traffic density (T) of each area, a best area amongst all the areas. Further, the plurality of 

processing nodes, by way of the neural network is configured to determine the relative score 

for each area, and update the speed limit (V), and predict the count of accidents per unit area 

and the traffic density based on the updated speed limit. The plurality of processing nodes is 

further configured to send the updated parametric value to each area, where based on the 

updated speed limit, the static speed limit is adjusted to compare the effect of the updated 

speed limit on the traffic density and the accidents per unit area. Each smart sensor network is 

further configured to generate an updated set of parametric data based on the updated speed 

limit which is compared with the predicted values by the plurality of processing nodes to 

determine an error function (or the loss function). After iterative updating of the parametric 

values, the DSA framework model achieves a steady relationship between the plurality of 

parameters in terms of individual weights corresponding to each area. The steady relationship 

in terms of weights is further used to dynamically allocate the speed limit to each area. 

6.3 Process 

The DSA model provides iterative updating of the plurality of parameters of each area 

associated with the speed limit to derive a relationship between each parameter specific to the 

area, and thus determine a dynamic speed limit for each area. The DSA model further predicts 

the traffic density and the effect of the updated speed limit on the total count of accidents in 
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each area. In operation, the smart sensor networks associated with each area provide the initial 

cost function in terms of weighted sum of the plurality of parameters. The plurality of 

processing nodes in the distributed network, by way of the neural network, using a combined 

parametric data received from the different areas, determines an efficiency score for each area 

and further determines an updated parametric data for each area. The updated parametric area 

includes the updated speed limit, the predicted accident count (based on the updated speed 

limit), and the predicted traffic density (based on the updated speed limit) for each area, which 

is sent to the respective area. The updated speed limit is imposed to the respective area, and a 

new parametric data is obtained. The new parametric data is further sent to the plurality of 

processing nodes to determine a between the predicted traffic density, the predicted accident 

count and the actual effect of the updated speed limit on the traffic density and the accident 

count to determine the loss function. The loss function is minimized by iteratively updating 

the weights (i.e., training the neural network) to determine relationship between the plurality 

of parameters (in terms of the weights associated with the plurality of parameters in the cost 

function) to determine the optimized cost function for each area. The optimized cost function 

is further used by each area to derive the dynamic speed limit based on the dynamic value of 

plurality of parameters for each area. 

6.4 Results 

The DSA model is tested on the dataset presented in [201] for traffic density of 2-wheelers and 

cars, number of accidents of 2-wheelers and cars and the static speed limit of different areas 

of New Delhi, India, to determine the dynamic speed limit for each area. Table 6.1 and Table 

6.2 present the results generated by the DSA model for dynamic speed limit and prediction of 

the accident count based on the dynamic speed limit of the different areas of New Delhi, for 

2-wheelers, and 4-wheelers, respectively. 
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Table 6.1 Dynamic speed limit allocation and prediction of the accident count based on the dynamic speed limit 

of the different areas of New Delhi, for 2-wheelers. The data is a monthly data derived from a yearly report [201], 

thus is scaled accordingly. 

S.No Location 

Two 

wheeler 

Count 

Area 

(km) 

Traffic 

density 

Static  

speed  

limit 

(km/h) 

Two 

Wheeler 

Accident 

Count 

Efficiency 

Score 

2-wheelers 

Revised  

speed  

limit 

(km/h) 

Predicted 

Decrease 

In 

Accident 

2-w (%) 

1 August Kranti Marg 4841 9 537.9 60 1.16 1 60 0 

2 Mayapuri Road 10289 10 1028.9 30 2.25 0.986027 29.6 2.79 

3 Auchandi Bawana 2228 7 318.3 50 1.33 0.9823334 49.1 3.53 

4 Africa Avenue 14875 13 1144.2 60 3.018 0.965242 57.9 6.95 

5 Rani Jhansi Road 11816 7 1688.0 50 5.16 0.958388 47.9 8.32 

6 Sardar Patel Marg 3666 10 366.6 50 1.25 0.954599 47.7 9.08 

7 Bahadur Shah Zafar Marg 2417 12 201.4 50 2.66 0.921318 46.1 15.74 

8 Prithviraj Road 1765 8 220.6 60 3.018 0.917445 55 16.51 

9 Guru Ravidas Marg 4231 7 604.4 60 8.16 0.915815 54.9 16.83 

10 Pankha Road 7774 10 777.4 65 11 0.914754 59.5 17.05 

11 Maa Anandmayee Marg 13675 11 1243.2 70 19.33 0.913978 64.0 17.20 

12 Aurobindo Marg 8029 10 802.9 40 13.16 0.912808 36.5 17.44 

13 Nangloi Najafgarh Road 4219 8 527.4 50 10 0.911239 45.6 17.75 

14 Lodhi Road 1664 9 184.9 50 4.5 0.90926 45.5 18.15 

15 Mehrauli Badarpur Road 16389 13 1260.7 50 31 0.908164 45.4 18.37 

16 Bawana Road 5644 15 376.3 50 10.25 0.907263 45.4 18.55 

17 Wazirabad Road 14390 12 1199.2 70 34.018 0.907062 63.5 18.59 

18 Vikas Marg 7609 12 634.1 50 18.25 0.906861 45.3 18.62 

19 Najafgarh Road 12351 10 1235.1 60 47.66 0.904943 54.3 19.01 

20 Mathura Road 18370 37 496.5 50 37 0.901778 45.1 19.64 

21 Grand Trunk Road 6566 12 547.2 100 42.82 0.901772 90.2 19.644 

22 Rohtak Road 25102 27 929.7 60 75.16 0.901470 54.1 19.706 

23 GT Karnal Road 25333 46 550.7 100 61.25 0.900749 90.1 19.85 

24 Ring Road 16965 15 1131.0 50 144.166 0.900439 45 19.91 

25 Outer Ring Road 72143 101 714.3 70 119.66 0.9 63 20 
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The results are presented in Tables 6.1 and 6.2 for a relative decrease of maximum 10 % in the 

speed limits of two-wheelers in one iteration. The difference in speed limits based on the 

efficiency score through the DSA model is presented in Figure 6.2, and the effect of the 

updated speed in terms of predicted 2-wheeler accidents is presented in Figure 6.3 

hereinbelow. 

 
Figure 6.2 Comparison of speed limits of 2-wheelers before and after DSA. 

 
Figure 6.3 Comparison of accidents of 2-wheelers before and after DSA (predicted) 
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Table 6.2 Dynamic speed limit allocation and prediction of the accident count based on the dynamic speed limit 

of the different areas of New Delhi, for 4-wheelers. The data is a monthly data determined from a yearly report 

[201], thus is scaled accordingly. 

S.No Location 

Four 

wheeler 

Count 

Area 

(km) 

Traffic 

density 

Static  

speed  

limit 

(km/h) 

Four 

Wheeler 

Accident 

Count 

Efficiency 

Score 

4-wheelers 

Revised  

speed  

limit 

(km/h) 

Predicted 

Decrease 

In 

Accident 

4-w (%) 

1 August Kranti Marg 8468 9 940.9 60 0.083 1 60 0 

2 Mayapuri Road 5283 10 528.3 30 0.166 0.93528 28.1 12.94 

3 Auchandi Bawana 1770 7 252.9 50 0.083 0.94482 47.2 11.036 

4 Africa Avenue 22686 13 1745.1 60 0.22 0.9589 57.5 8.22 

5 Rani Jhansi Road 4080 7 582.9 50 0.44 0.91265 45.6 17.47 

6 Sardar Patel Marg 6419 10 641.9 50 0.083 0.95498 45.7 9.004 

7 Bahadur Shah Zafar Marg 2706 12 225.5 50 0.166 0.91392 46.1 17.216 

8 Prithviraj Road 3815 8 476.9 60 0.166 0.92211 55.3 15.578 

9 Guru Ravidas Marg 1829 7 261.3 60 0.664 0.90335 54.2 19.29 

10 Pankha Road 5741 10 574.1 65 0.833 0.90609 58.9 18.78 

11 Maa Anandmayee Marg 5455 11 495.9 70 1.33 0.90273 63.2 19.454 

12 Aurobindo Marg 11632 10 1163.2 40 0.916 0.91098 36.4 17.804 

13 Nangloi Najafgarh Road 2407 8 300.9 50 0.75 0.90335 45.2 19.33 

14 Lodhi Road 5438 9 604.2 50 0.25 0.91873 45.9 16.254 

15 Mehrauli Badarpur Road 10200 13 784.6 50 2.166 0.90253 45.1 19.494 

16 Bawana Road 4183 15 278.9 50 0.75 0.90283 45.1 19.43 

17 Wazirabad Road 4429 12 369.1 70 2.25 0.9005 63 19.9 

18 Vikas Marg 6671 12 555.9 50 1.33 0.90324 45.2 19.352 

19 Najafgarh Road 6331 10 633.1 60 3.33 0.90098 54.1 19.804 

20 Mathura Road 23597 37 637.8 50 2.66 0.9015 45.1 19.7 

21 Grand Trunk Road 6832 12 569.3 100 3 0.90098 90.1 19.804 

22 Rohtak Road 14858 27 550.3 60 5.5 0.90001 54 20 

23 GT Karnal Road 21861 46 475.2 100 4.83 0.9 90 20 

24 Ring Road 22997 15 1533.1 50 10.33 0.9005 45 19.9 

25 Outer Ring Road 122085 101 1208.8 70 8.5 0.9004 63 19.98 
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The difference in speed limits based on the efficiency score through the DSA model is presented 

in Figure 6.4, and the effect of the updated speed in terms of predicted 2-wheeler accidents is 

presented in Figure 6.5 hereinbelow. 

 
Figure 6.4 Comparison of speed limits of 4-wheelers before and after DSA 

 
Figure 6.5 Comparison of accidents of 2-wheelers before and after DSA (predicted) 
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6.5 Conclusion and Scope 

The DSA framework is based on the architecture of SAM framework presented in Chapter 4, 

and provides an efficient adaptive dynamic speed limit allocation based on the plurality of 

parameters derived from different areas under observation. The effect of the change speed limit 

on the accident count for 2-wheelers and 4-wheelers is shown in Figure 6.6 and Figure 6.7, 

respectively. The effect of the change in speed limit on the change in accidents is found to be 

in accordance with the relationship presented by Cameron et al. in [202], that validates the 

effectiveness of the proposed DSA framework model. 

 
Figure 6.6 Effect of speed limit change on 2-wheeler accidents (predicted) 

 

Figure 6.7 Effect of speed limit change on 4-wheeler accidents (prediction) 
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The DSA framework is tested on a steady dataset [201], and not on a real-time analysis of video 

feeds from different areas. Thus the traffic density is assumed to be constant, however for real-

time applications, the traffic density can be determined by the total count of two-wheelers and 

four-wheelers per unit area dynamically captured by a computer vision system. Further, the 

DSA framework can be used to regularize the traffic speed based on the actual traffic density 

of each area, which requires development and deployment of the DSA model in cooperation 

with a network of computer vision system, and thus requires future advancements. 

The DSA framework is presented in a research paper submitted for publication, that is under 

review. 
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Chapter 7 

CONCLUSION  

AND FUTURE SCOPE 

 

This chapter will summarize the major contributions and achievements that come out of the 

present work. The summary of the major contributions follows in the following Section 7.1. 

Despite the significant contributions, no research is said to be complete unless it directs to a 

few topics for future research. Hence, the potential work that can be explored further is briefly 

discussed as directions to future work in the Section. 7.2. 

7.1 Summary of Major Contributions 

The essence of this thesis work is to design and develop efficient techniques for adaptive 

reconfiguration of calibration parameters of active vision systems to capture objects of interest 

with enhanced resolution, that yields to an improved understanding of the scene. In order to 

address the limitations of various aspects in this field, several innovative frameworks and 

methods have been suggested under current work which are summarized as follows: 

• Smart camera networks deployed for a variety of applications require different resource 

utilization models based on the objectives and resource availability. Thus, there is a 

requirement to understand the requirements and objectives prior to designing an active 
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vision system prior to its deployment in computer vision applications. This thesis 

segregates the computer vision applications into two categories based on the 

requirements, objectives and resource availability, and proposes framework models 

specifically designed to fulfil the requirements of each category. Particularly, both the 

framework models are designed for an directed objective of adaptive reconfiguration of 

the smart sensor networks deployed for active vision applications for improved object 

detection and enhanced understanding of the scene. 

•  Advanced and complex systems are the possible state-of-art options for re-

configuration of sensor’s parameters. However, such approaches are not feasible to be 

used for mobile systems with limited computational, power, and storage resources. To 

address the aforementioned challenge, this thesis presents the SAM framework for 

spatiotemporal activity mapping that can balance the performance of active vision 

system with limited resource availability, and is used for reconfiguration of the active 

vision system.  

The SAM framework model analyses the scene in both spatial and temporal 

perspectives, and generates adaptive activity maps for sensor reconfiguration so that 

the important region(s) can be captured in the camera sensor's field of view. The 

framework pre-processes the sensor data using simplistic image processing techniques 

like background subtraction, binarization, thresholding, and federated optical flow. The 

temporal relationship between the consecutive image frames is represented by a half-

width Gaussian distribution. The proposed SAM framework's straightforward model 

yields highly accurate spatiotemporal activity mapping with low computation 

complexity, and thus employ system low resources. The performance is compared in 

terms of MOTA, where the SAM framework model outperforms contemporary systems 

presented in [165], [166], [176], [177] and [178]. Specifically, the SAM framework 
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model showcases 0.79% better average MOTA relative to [176] and 8.39 % better 

average MOTA as relative to [177], when tested on traffic surveillance datasets (i.e., 

data samples 1, 2 and 3). The SAM framework model further showcases 4.21% better 

average MOTA as compare to [178], when tested on sports datasets (i.e., data samples 

4, 5 and 6). 

• The contemporary computer vision systems struggle miserably to deal with unforeseen 

conditions, as it takes ample amount of time to develop understanding of the unforeseen 

condition. Thus, it is almost impossible to reconfigure such a system in real-time. 

Further, to process sensor data and derive an understanding of the scene, majority of 

contemporary active vision systems rely on Artificial Intelligence (AI) based models 

that are vulnerable to visual attacks (such as adversarial attack). The proposed AdapSR 

framework model provides fast and efficient reconfiguration of a smart camera 

networks to tackle unforeseen conditions by deriving an understanding of the condition 

based on past events experienced by other smart camera networks coupled to a 

blockchain network. The blockchain network of the AdapSR framework acts as a 

system of systems, connecting a number of smart camera networks together in a 

distributed environment. The performance of AdapSR framework surpasses the state of 

art dynamic reconfiguration presented in [8] that is the base of various adaptive 

reconfiguration systems in terms of multi-object tracking accuracy (MOTA) and 

processing latency. 

• The AdapSR framework model relies on storage of activity data, models, parametric 

data and large image datasets and consecutive images to be saved in the distributed 

ledger of the distributed network utilized by the AdapSR model. However, the 

accessibility of datacentres required by the AdapSR is limited and so is the data storage 

capability of each datacentre deployed in the blockchain network and performing active 
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vision tasks for the AdapSR model. Thus, the AdapSR model requires compression of 

large datasets for optimum utilization of storage resources. To achieve the same, the 

autoencoder presented in Chapter 5 presents a model for compression of the large image 

data by utilizing the properties of Gyrator Transform for image encryption without 

hampering the features of the image. Further the autoencoder presents generating a 

feature vector for each compressed image that includes the metadata of each compressed 

image, and is associated with each image before storage in the distributed ledger. The 

autoencoder showcases generation of the compressed image that occupies only 0.28 

times the memory size as compared to the original image. 

• The application of the proposed AdapSR framework is not limited to self-

reconfiguration of calibration parameters of the smart sensor network. Rather, the 

adaptive reconfiguration properties of the AdapSR framework can be used for 

reconfiguration of any set of parameters, and is not specific only to computer vision 

applications. To demonstrate the same, the DSA model is realized based on the 

architecture of AdapSR framework for dynamic allocation of speed limits to various 

locations (areas), and is used to establish a relationship between speed limit variation 

and possibility of accident avoidance. 

7.2 Future Directions  

In this thesis, numerous reconfiguration frameworks for active vision systems are investigated 

and explored in detail to provide novel contribution in this area. But there are some research 

dimensions that arise out of the current work which demand future study. These dimensions are 

summarized as directions to future work and are enlisted as follows: 

• The models for the SAM framework as presented in Chapter 3 and the AdapSR 

framework as presented in Chapter 4 are simulated and tested on video datasets with 
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a few limitations of the specifications of the video dataset. The efficiency of both the 

models is yet to be tested on real-time video feed. 

• Deployment of the AdapSR framework (as presented in Chapter 4) is expensive due 

to the utilization of distributed blockchain network, and thus the AdapSR framework 

is presented and tested through simulations and model ideally. However, a real-life 

deployment of the AdapSR framework is yet to be achieved for real-time adaptive 

self-reconfiguration of a number of active vision systems. 

• The AdapSR framework is presented and tested in Chapter 4 for a homogeneous 

sensor environment, however, improvements in the AdapSR framework is required 

to be developed for heterogeneous systems to broaden the scope of its applications 

in the future. 

• The autoencoder presented in Chapter 5 is tested and presented for compression of 

the image datasets, however, the autoencoder model is yet to be modified and tested 

for encryption and compression of the parametric data, protocols, model data, and 

other data/metadata associated with the AdapSR model. 

• The DSA framework as presented in Chapter 6 can be used to regularize the traffic 

speed based on the actual traffic density of each area, which requires development 

and deployment of the DSA model in cooperation with a network of computer vision 

system, and thus requires future advancements. 

 

 

 

 

 

 



108 
 

References 

[1] M. Reisslein, B. Rinner, B. R. Chowdhury, “A Smart Camera Networks,” In Computer, vol. 

47, no. 5, pp. 23–25, May 2014, doi: 10.1109/MC.2014.134. 

[2] T. Zhang, W. Aftab, L. Mihaylova, C. L. Wheeler, S. Rigby, D. Fletcher, S. Maddock, G. 

Bosworth, “Recent Advances in Video Analytics for Rail Network Surveillance for Security, 

Trespass and Suicide Prevention - A Survey,” In Sensors, vol. 22, no.12, 4324, June 2022, doi: 

10.3390/s22124324. 

[3] R. Theagarajan, F. Pala, X. Zhang, B. Bhanu, “Soccer: Who has the ball? Generating visual 

analytics and player statistics,” In Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition Workshops, Salt Lake City, Utah, USA, pp. 1749–1757, June 2018, 

doi: 10.1109/CVPRW.2018.00227. 

[4] C. Wu, A.H. Khalili, H. Aghajan, “Multiview activity recognition in smart homes with 

spatio-temporal features,” In Proceedings of the Fourth ACM/IEEE International Conference 

on Distributed Smart Cameras, New York, USA, pp. 142–149, September 2010, doi: 

10.1145/1865987.1866010. 

[5] S. P. Bharati, Y. Wu, Y. Sui, C. Padgett, G. Wang, “Real-time obstacle detection and 

tracking for sense-and-avoid mechanism in UAVs,” In IEEE Transactions on Intelligent 

Vehicles, vol 3, no. 2, pp.  185–197, June 2018, doi: 10.1109/TIV.2018.2804166. 

[6] M. Agarwal, P. Parashar, A. Mathur, K. Utkarsh, A. Sinha, “Suspicious Activity Detection 

in Surveillance Applications Using Slow-Fast Convolutional Neural Network,” In Proceedings 

of Advances in Data Computing, Communication and Security, Springer, Berlin/Heidelberg, 

Germany, vol. 106, pp. 647–658, March 2022, doi: 10.1007/978-981-16-8403-6_59. 

[7] A. Hanson, “Introduction to Computer Vision Systems,” Book Chapter in Computer Vision 

Systems, 1st Edition, Elsevier, Amsterdam, The Netherlands, pp. 127-156, January 1978. 

[8] C. Piciarelli, L. Esterle, A. Khan, B. Rinner, G. L. Foresti, “Dynamic reconfiguration in 

camera networks: A short survey,” In IEEE Transactions on Circuits and Systems Video 

Technolgy, vol. 26, No. 52015, pp. 965–977, May 2016, doi: 10.1109/TCSVT.2015.2426575. 

[9] T. C. Jesus, D. G. Costa, P. Portugal, F. Vasques, “A Survey on Monitoring Quality 

Assessment for Wireless Visual Sensor Networks,” In Future Internet, vol. 14(7), no. 213, pp. 

1-26, July 2022, doi: 10.3390/fi14070213. 



109 
 

[10] S. Indu, S. Chaudhury, N.R. Mittal, A. Bhattacharyya, “Optimal sensor placement for 

surveillance of large spaces,” In Proceedings of the 3rd ACM/IEEE International Conference 

on Distributed Smart Cameras (ICDSC), Como, Italy, pp. 1–8, October 2009, doi: 

10.1109/ICDSC.2009.5289398. 

[11] G. Zhang, B. Dong, J. Zheng, “Visual Sensor Placement and Orientation Optimization for 

Surveillance Systems,” In Proceedings of the 10th International Conference on Broadband and 

Wireless Computing, Communication and Applications (BWCCA), Krakow, Poland, pp. 1–5, 

November 2015, doi: 10.1109/BWCCA.2015.19. 

[12] L. C. Da’Silva, R. M. Bernardo, H. A. De’Oliveira, P. F. Rosa, “Multi-UAV agent-based 

coordination for persistent surveillance with dynamic priorities,” In Proceedings of the 

International Conference on Military Technologies (ICMT), Brno, Czech Republic, pp. 765–

771, May 2017, doi: 10.1109/MILTECHS.2017.7988859. 

[13] M. A. Jamshed, M. F. Khan, K. Rafique, M. I. Khan, K. Faheem, S. M. Shah, A. Rahim, 

“An energy efficient priority based wireless multimedia sensor node dynamic scheduler,” In 

Proceedings of the 12th International Conference on High-capacity Optical Networks and 

Enabling/Emerging Technologies (HONET), Islamabad, Pakistan, pp. 1–4, December 2015, 

doi: 10.1109/HONET.2015.7395435. 

[14] A. Vejdanparast, “Improving the Fidelity of Abstract Camera Network Simulations,” 

Ph.D. Thesis, Aston University: Birmingham, UK, 2020. 

[15] X. Wang, H. Zhang, H. Gu, “Solving Optimal Camera Placement Problems in IOT Using 

LH-RPSO,” In IEEE Access, vol. 8, pp. 40881–40891, September 2019, doi: 

10.1109/ACCESS.2019.2941069. 

[16] N. J. Redding, J. F. Ohmer, J. Kelly, T. Cooke, “Cross-matching via feature matching for 

camera handover with non-overlapping fields of view,” In Proceedings of the 2008 Digital 

Image Computing: Techniques and Applications, Canberra, ACT, Australia, pp. 343–350, 

January 2008, doi: 10.1109/DICTA.2008.38. 

[17] L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, X. Yao, “A socio-economic approach to 

online vision graph generation and handover in distributed Smart Camera Networks,” In 

Proceedings of the 5th ACM/IEEE International Conference on Distributed Smart Cameras, 

Ghent, Belgium, pp. 1–6, August 2011, doi: 10.1109/ICDSC.2011.6042902. 



110 
 

[18] J. L. Lin, K. S. Hwang, C. Y. Huang, “Active and Seamless Handover Control of Multi-

Camera Systems With 1-DoF Platforms,” In IEEE Systems Journal, vol. 8, no. 3, pp. 769–777, 

2012, doi: 10.1109/JSYST.2012.2224611. 

[19] E. L. Hall, J. B. Tio, C. A. Mc’Pherson, F. A. Sadjadi, “Measuring curved surfaces for 

robot vision,” In Computer, vol. 15, pp. 42–54, 1982, doi: 10.1109/MC.1982.1653915. 

[20] R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision 

metrology using off-the-shelf TV cameras and lenses,” In IEEE Journal of Robotic Automation, 

vol. 3, no. 4, pp. 323–344, 1987, doi: 10.1109/JRA.1987.1087109. 

[21] O. D. Faugeras, “The Calibration Problem for Stereo,” In Proceedings of the Computer 

Vision and Pattern Recognition, Miami, FL, USA, vol. 52, pp. 15–20, 1986, doi: 

https://doi.org/10.1007/978-3-642-74567-6_15. 

[22] J. Weng, P. Cohen, M. Herniou, “Camera calibration with distortion models and accuracy 

evaluation,” In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 

10, pp 965–980, 1992, doi: 10.1109/34.159901. 

[23] H. D. Whyte, T. Bailey, “Simultaneous localization and mapping: Part I,” In IEEE 

Robotics and Automation Management, vol 13, no. 2, pp. 99–110, 2006, doi: 

10.1109/MRA.2006.1638022. 

[24] H. D. Whyte, T. Bailey, "Simultaneous localization and mapping (SLAM): Part II,” In 

IEEE Robot. Autom. Mag., Vol 13, no. 3, pp. 108–117, 2006, doi: 

10.1109/MRA.2006.1678144. 

[25] O. Özyeşil, V. Voroninski, R. BAdapSRi, A. Singer, “A survey of structure from motion,” 

In Cambridge University Press Acta Numerica, vol. 26, pp. 305–364, May 2017, doi: 

10.1017/S096249291700006X. 

[26] D. Fox, W. Burgard, F. Dellaert, S. Thrun, “Monte carlo localization: Efficient position 

estimation for mobile robots,” In Proceedings of the Sixteenth National Conference on 

Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial 

Intelligence, July 18-22, 1999, Orlando, Florida, USA, pp. 343-349, 1999, doi: 

http://robots.stanford.edu/papers/fox.aaai99.pdf. 

[27] W. E. Mantzel, C. Hyeokho, G. B. Richard, “Distributed camera network localization,” In 

Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, 

http://ieeexplore.ieee.org/document/1638022/
http://ieeexplore.ieee.org/document/1678144/


111 
 

Systems and Computers, Pacific Grove, CA, USA, Vol 2, pp. 1381–1386, November 2004, doi: 

10.1109/ACSSC.2004.1399380. 

[28] E. Brachmann, C. Rother, “Learning less is more-6d camera localization via 3d surface 

regression,” In Proceedings of the Computer Vision and Pattern Recognition, Salt lake city, 

Utah, USA, pp. 4654–4662, June 2018, doi: 10.48550/arXiv.1711.10228. 

[29] Z. Tang, Y. S. Lin, K. H. Lee, J. N. Hwang, J. H. Chuang, Z. Fang, “Camera self-calibration 

from tracking of moving persons,” In Proceedings of the 23rd International Conference on 

Pattern Recognition (ICPR), Cancun, Maxico, pp. 265–270, December 2016, doi: 

10.1109/ICPR.2016.7899644. 

[30] C. Zheng, H. Qiu, C. Liu, X. Zheng, C. Zhou, Z. Liu, Z. J. Yang, “A Fast Method to Extract 

Focal Length of Camera Based on Parallel Particle Swarm Optimization,” In Proceedings of 

the 37th Chinese Control Conference (CCC), Wuhan, China, pp. 9550–9555, July 2018, doi: 

10.23919/ChiCC.2018.8483981. 

[31] G. Führ, C. R. Jung, “Camera self-calibration based on nonlinear optimization and 

applications in surveillance systems,” In IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 27, no. 5, pp. 1132–1142, 2015, doi: 10.1109/TCSVT.2015.2511812. 

[32] Q. Yao, H. Sankoh, K. Nonaka, S. Naito, “Automatic camera self-calibration for 

immersive navigation of free viewpoint sports video,” In Proceedings of the 18th International 

Workshop on Multimedia Signal Processing (MMSP), Montreal, Canada, pp. 1–6, September 

2016, doi: 10.1109/MMSP.2016.7813399. 

[33] F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D Clausi, J. Zelek, A. Wong, 

“Simultaneous projector-camera self-calibration for three-dimensional reconstruction and 

projection mapping,” IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 74–83, 

2017, doi: 10.1109/TCI.2017.2652844. 

[34] J. Heikkila, “Using sparse elimination for solving minimal problems in computer vision,” 

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, pp. 

76–84, October 2017, doi: 10.1109/ICCV.2017.18.  

[35] Z. Tang, Y. S. Lin, K. H. Lee, J. N. Hwang, J. H. Chuang, “ESTHER :Joint camera self-

calibration and automatic radial distortion correction from tracking of walking humans,” In 

IEEE Access, vol. 7, pp. 10754–10766, 2019, doi: 10.1109/ACCESS.2019.2891224. 



112 
 

[36] D. Marinakis, G. Dudek, “Topology inference for a vision-based sensor network,” In 

Proceedings of the 2nd Canadian Conference on Computer and Robot Vision (CRV'05), 

Victoria, British Columbia, Canada, pp. 121–128, May 2005, doi : 10.1109/CRV.2005.81. 

[37] A. Van Den Hengel, A. Dick, R. Hill, “Activity topology estimation for large networks of 

cameras,” In Proceedings of the IEEE International Conference on Video and Signal Based 

Surveillance, Sydney, Australia, pp. 44, November 2006, doi: 10.1109/AVSS.2006.17. 

[38] H. Detmold, A. V. D. Hengel, A. Dick, A. Cichowski, R. Hill, E. Kocadag, K. Falkner, D. 

S. Munro, “Topology estimation for thousand-camera surveillance networks,” In Proceedings 

of the 1st ACM/IEEE International Conference on Distributed Smart Cameras, Vienna, Austria, 

pp. 195–202, September 2007, doi: 10.1109/ICDSC.2007.4357524. 

[39] P. Clarot, E. B. Ermis, P. M. Jodoin, V. Saligrama, “Unsupervised camera network 

structure estimation based on activity,” In Proceedings of the 3rd ACM/IEEE International 

Conference on Distributed Smart Cameras (ICDSC), Como, Italy, pp. 1–8, 2009, doi: 

10.1109/ICDSC.2009.5289362. 

[40] X. Zou, B. Bhanu, B. Song, A. K. Roy-Chowdhury, “Determining topology in a distributed 

camera network,” In Proceedings of the IEEE International Conference on Image Processing, 

San Antonio, Texas, U.S.A, Volume 5, pp. V-133, 2007, doi: 10.1109/ICIP.2007.4379783. 

[41] R. Farrell, L. S. Davis, “Decentralized discovery of camera network topology,” In 

Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras, 

Palo Alto, CA, USA, pp. 1–10, 2008, doi : 10.1109/ICIP.2007.4379783. 

[42] M. Zhu, A. Dick, A. V. D. Hengel, “Camera network topology estimation by lighting 

variation,” In Proceedings of the International Conference on Digital Image Computing: 

Techniques and Applications (DICTA), Adelaide, Australia, pp. 1–6, 2015, doi: 

10.1109/DICTA.2015.7371245. 

[43] G. Mali, M. Sudip, “TRAST: Trust-based distributed topology management for wireless 

multimedia sensor networks,” In IEEE Transactions on Computers, vol. 65, no. 6, pp. 1978–

1991, 2016, doi: 10.1109/TC.2015.2456026. 

[44] T. Feigang, Z. Xiaoju, L. Quanmi, L. Jianyi, “A Camera Network Topology Estimation 

Based on Blind Distance,” In Proceedings of the 11th International Conference on Intelligent 



113 
 

Computation Technology and Automation (ICICTA), Changsha, China, pp. 138–140, 2018, 

doi: 10.1109/ICICTA.2018.00039. 

[45] Z. Li, J. Wang, J. Chen, “Estimating Path in camera network with non-overlapping FOVs,” 

In Proceedings of the 5th International Conference on Systems and Informatics (ICSAI), 

Nanjing, China, pp. 604–609, 2018, doi: 10.1109/ICSAI.2018.8599452. 

[46] A. Kansal, M. B. Srivastava, “An environmental energy harvesting framework for sensor 

networks” In Proceedings of the 2003 International Symposium on Low Power Electronics and 

Design, Seoul, Korea, pp. 481–486, 2003, doi: 10.1145/871506.871624. 

[47] M. Bramberger, M. Quaritsch, T Winkler, B. Rinner, H. Schwabach, “Integrating multi-

camera tracking into a dynamic task allocation system for smart cameras,” In Proceedings of 

the IEEE Conference on Advanced Video and Signal Based Surveillance, Como, Italy, pp. 474-

479, 2005, doi: 10.1109/AVSS.2005.1577315. 

[48] M. Bramberger, B. Rinner, H. Schwabach, “A method for dynamic allocation of tasks in 

clusters of embedded smart cameras,” In Proceedings of the IEEE International Conference on 

Systems, Man and Cybernetics, Waikolova, USA, vol. 3, pp. 2595–2600, 2005, doi: 

10.1109/ICSMC.2005.1571540. 

[49] D. R. Karuppiah, R. A. Grupen, Z. Zhu, A. R. Hanson, “Automatic resource allocation in 

a distributed camera network,” In Machine Vision Applications, vol. 21, pp. 517–528, 2010, 

doi: 10.1007/s00138-008-0182-7. 

[50] B. Dieber, C. Micheloni, B. Rinner, “Resource-aware coverage and task assignment in 

visual sensor networks,” In IEEE Transactions on Circuits and Systems for Video Technology, 

vol. 21, no. 10, pp. 1424–1437, 2011, 10.1109/TCSVT.2011.2162770. 

[51] B. Dieber, L. Esterle, B. Rinner, “Distributed resource-aware task assignment for complex 

monitoring scenarios in visual sensor networks,” In Proceedings of the 6th International 

Conference on Distributed Smart Cameras (ICDSC), Hong Kong, China, pp. 1–6, 2012. 

[52] C. Kyrkou, C. Laoudias, T. Theocharides, C. G. Panayiotou, M. Polycarpou, “Adaptive 

energy-oriented multitask allocation in smart camera networks,” In IEEE Embedded Systems 

Letter, vol. 8, no. 2, pp. 37–40, 2016, doi: 10.1109/LES.2016.2526071. 

[53] Y. Wang, J. Zhang, Z. Liu, Q. Wu, P. A. Chou, Z. Zhang, Y. Jia, “Handling occlusion and 

large displacement through improved RGB-D scene flow estimation,” IEEE Transactions on 



114 
 

Circuits and Systems for Video Technology, vol. 26, no. 7, pp. 1265–1278, 2015, doi: 

10.1109/TCSVT.2015.2462011. 

[54] W. Ouyang, X. Zeng, X. Wang, “Partial occlusion handling in pedestrian detection with a 

deep model,” In IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 

11, pp. 2123–2137, 2015, doi: 10.1109/TCSVT.2015.2501940. 

[55] M. I. Shehzad, Y. A. Shah, Z. Mehmood, A. W. Malik, S. Azmat, “K-means based multiple 

objects tracking with long-term occlusion handling,” In IET Computer Vision, vol. 11, pp. 68–

77, 2016, doi: 10.1049/iet-cvi.2016.0156. 

[56] A. Ur-Rehman, S. M. Naqvi, L. Mihaylova, J. A. Chambers, “Multi-target tracking and 

occlusion handling with learned variational Bayesian clusters and a social force model.” In 

IEEE Transactions on Signal Processing, vol. 64, pp. 1320–1335, 2015, doi: 

10.1109/TSP.2015.2504340. 

[57] J. Chang, L. Wang, G. Meng, S. Xiang, C. Pan, “Vision-based occlusion handling and 

vehicle classification for traffic surveillance systems,” In IEEE Intelligent Transportation 

System Management, vol. 10, no. 2, pp. 80–92, 2018, doi: 10.1109/MITS.2018.2806619. 

[58] S. Zhao, S. Zhang, L. Zhang, “Towards occlusion handling: Object tracking with 

background estimation,” In IEEE Transactions on Cybernetics, vol. 48, no. 7, pp. 2086–2100, 

2017, doi: 10.1109/TCYB.2017.2727138. 

[59] Y. Liu, X. Y. Jing, J. Nie, H. Gao, J. Liu, G. P. Jiang, “Context-Aware Three-Dimensional 

Mean-Shift with Occlusion Handling for Robust Object Tracking in RGB-D Videos,” In IEEE 

Transactions on Multimedia, vol. 21, no. 3, pp. 664–677, 2018, doi: 

10.1109/TMM.2018.2863604. 

[60] X. Feng, Y. Jiang, X. Yang, M. Du, X. Li, “Computer vision algorithms and hardware 

implementations: A survey,” In Integration, vol. 69, pp. 309–320, 2019, doi: 

10.1016/j.vlsi.2019.07.005. 

[61] S. A. Hørup, S. A. Juul, H. H. Larsen, “The Art of General-Purpose Computations on 

Graphics Processing units”, Technical Project Report, Aalborg University, Aalborg, Denmark, 

2011,https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f1879480362c92e8df

c720005fcbe2c7ffeeac5b. 



115 
 

[62] Y. Guo, J. Liu, G. Li, L. Mai, H. Dong, “Fast and Flexible Human Pose Estimation with 

HyperPose,” In Proceedings of the 29th ACM International Conference on Multimedia, 

Chengdu, China, pp. 3763–3766, 2021, doi: 10.1145/3474085.3478325. 

[63] S. Tan, B. Knott, Y. Tian, D. J. Wu, “CryptGPU: Fast privacy-preserving machine learning 

on the GPU,” In Proceedings of the IEEE Symposium on Security and Privacy (SP), San 

Francisco, CA, USA, pp. 1021–1038, 2021, doi: 10.1109/SP40001.2021.00098 

[64] H. Irmak, D. Ziener, N. Alachiotis, “Increasing Flexibility of FPGA-based CNN 

Accelerators with Dynamic Partial Reconfiguration,” In Proceedings of the 31st International 

Conference on Field-Programmable Logic and Applications (FPL), Dredsen, Germany, pp. 

306–311, 2021, doi: 10.1109/FPL53798.2021.00061. 

[65] A. Costa, N. Corna, F. Garzetti, N. Lusardi, E. Ronconi, A. Geraci, “High-Performance 

Computing of Real-Time and Multichannel Histograms: A Full FPGA Approach,” In IEEE 

Access, vol. 10, pp. 47524–47540, 2022, doi: 10.1109/ACCESS.2022.3169760. 

[66] M. A. Carbajal, R. P. Villa, D. E. Palazuelos, G. J. Astorga, Rubio Astorga, 

“Reconfigurable Digital FPGA Based Architecture for 2-Dimensional Linear Convolution 

Applications,” In Identitad Energetica, Madrid, Spain, 2021, doi: 

http://www.cinergiaug.org/Revista/RIE_V4_N1_Dic2021.pdf. 

[67] H. Xiong, K. Sun, B. Zhang, J. Yang, H. Xu, “Deep-Sea: A Reconfigurable Accelerator 

for Classic CNN,” Wirel. Commun. Mob. Comput., vol. 2022, no. 4726652, 2022, doi: 

10.1155/2022/4726652. 

[68] L. Wei, L. Peng, “An Efficient OpenCL-Based FPGA Accelerator for MobileNet,” In 

Journal of Physics: Conference Series, vol. 1883, no. 012086, 2021, doi: 10.1088/1742-

6596/1883/1/012086. 

[69] R. Szeliski, “Scene Reconstruction from multiple cameras,” In Proceedings of the 

International Conference on Image Processing (ICISP), Vancouver, BC, Canada, vol. 1, pp. 13–

16, 2000, doi: 10.1109/ICIP.2000.900880.  

[70] B. Micušık, D. Martinec, T. Pajdla, “3D metric reconstruction from uncalibrated 

omnidirectional images,” In Proceedings of the Asian Conf. on Comp. Vision (ACCV’04), Jeju 

Island, Korea, 2014, doi: ftp://cmp.felk.cvut.cz/pub/cmp/articles/micusik/Micusik-

ACCV2004.pdf.  



116 
 

[71] L. Peng, Y. Zhang, H. Zhou, T. Lu, “A robust method for estimating image geometry with 

local structure constraint,” In IEEE Access, vol. 6, pp. 20734–20747, 2018, doi: 

10.1109/ACCESS.2018.2803152. 

[72] D. N. Brito, C. F. Nunes, F. L. Padua, A. Lacerda, “Evaluation of interest point matching 

methods for projective reconstruction of 3D scenes,” In IEEE Latin American Transactions, 

vol. 14, no. 3, pp. 1393–1400, 2016, doi: 10.1109/TLA.2016.7459626. 

[73] S. Milani, “Three-dimensional reconstruction from heterogeneous video devices with 

camera-in-view information,” In Proceedings of the IEEE International Conference on Image 

Processing (ICIP), Quebec, Canada; pp. 2050–2054, 2015, doi: 10.1109/ICIP.2015.7351161. 

[74] H. Aliakbarpour, V. S. Prasath, K. Palaniappan, G. Seetharaman, J. Dias, “Heterogeneous 

multi-view information fusion: Review of 3-D reconstruction methods and a new registration 

with uncertainty modeling,” In IEEE Access, vol. 4, pp. 8264–8285, 2016, doi:  

10.1109/ACCESS.2016.2629987. 

[75] C. Wang, X. Guo, “Plane-Based Optimization of Geometry and Texture for RGB-D 

Reconstruction of Indoor Scenes,” In Proceedings of the International Conference on 3D Vision 

(3DV), Verona, Italy; pp. 533–541, 2018, doi: 10.1109/3DV.2018.00067. 

[76] D. Ma, G. Li, L. Wang, “Rapid Reconstruction of a Three-Dimensional Mesh Model Based 

on Oblique Images in the Internet of Things,” In IEEE Access, vol. 6, pp. 61686–61699, 2018, 

doi: 10.1109/ACCESS.2018.2876508. 

[77] K. Ichimaru, R. Furukawa, H. Kawasaki, “CNN based dense underwater 3D scene 

reconstruction by transfer learning using bubble database,” In Proceedings of the IEEE Winter 

Conference on Applications of Computer Vision (WACV), Waikolova Village, Hawaii, USA, 

pp. 1543–1552, 2019, doi: 10.1109/WACV.2019.00169. 

[78] P. Viola, M. Jones, “Robust real-time object detection,” In International Journal of 

Computer Vision, vol. 4, pp. 34–47, 2001, doi: 10.1023/B:VISI.0000013087.49260.fb. 

[79] P. Piccinini, A. Prati, R. Cucchiara, “Real-time object detection and localization with 

SIFT-based clustering,” Image Vis. Comput., vol. 30, no. 8, pp. 573–587, 2012, doi: 

10.1016/j.imavis.2012.06.004. 

[80] N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection,” In 

Proceedings of the IEEE computer society conference on computer vision and pattern 



117 
 

recognition (CVPR'05), San Diago, California, USA, vol 1, pp. 886–893, 2005, doi: 

10.1109/CVPR.2005.177. 

[81] S. Aslani, H. Mahdavi-Nasab, “Optical flow based moving object detection and tracking 

for traffic surveillance,” In International Journal of Electrical, Compututer, Energetic 

Electronics and Communication Engineering, vol. 7(9), pp. 1252–1256, 2013, 

doi.org/10.5281/zenodo.1088502. 

[82] J. Huang, W. Zou, J. Zhu, Z. Zhu, “Optical flow based real-time moving object detection 

in unconstrained scenes,” arXiv 2018, arXiv:1807.04890.  

[83] S. Tougaard, “Practical algorithm for background subtraction,” In Surface Science, 

Elsevier, vol. 216, no. 3, pp. 343–360, 1989, doi: 10.1016/0039-6028(89)90380-4. 

[84] J. Rieke, “Object detection with neural networks-a simple tutorial using keras,” In Towards 

Data Science, Vol. 6(12), 2017, https://towardsdatascience.com/object-detection-with-neural-

networks-a4e2c46b4491. 

[85] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time 

object detection,” In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, 

USA, pp. 779–788, 2016, doi: 10.48550/arXiv.1506.02640. 

[86] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object 

detection and semantic segmentation,” In Proceedings of the Computer Vision and Pattern 

Recognition, Columbus, OH, USA, pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81. 

[87] S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, “Single-shot refinement neural network for 

object detection,” In Proceedings of the Computer Vision and Pattern Recognition, Salt lake 

city, USA, pp. 4203–4212, 2018, doi: 10.48550/arXiv.1711.06897. 

[88] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, D. Lin, “Libra R-CNN: Towards balanced 

learning for object detection,” In Proceedings of the Computer Vision and Pattern Recognition, 

Long beach, CA, USA, pp. 821–830, 2019, dio: 10.48550/arXiv.1904.02701. 

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, “SSD: Single 

shot multibox detector,” In Proceedings of the European Conference on Computer Vision, 

October 11-14, 2016, Amsterdam, The Netherlands; pp. 21–37, doi: 

10.48550/arXiv.1512.02325. 



118 
 

[90] S. M. Roy, A. Ghosh, “Real-time adaptive Histogram Min-Max Bucket (HMMB) model 

for background subtraction,” In IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 28, no. 7, pp. 1513–1525, 2017, doi: 10.1109/TCSVT.2017.2669362. 

[91] W. Min, M. Fan, X. Guo, Q. Han, “A new approach to track multiple vehicles with the 

combination of robust detection and two classifiers,” In IEEE Transactions on Intelligent 

Transportation Systems, vol. 19, no. 1, pp. 174–186, 2017, doi: 10.1109/TITS.2017.2756989. 

[92] Y. Wu, X. He, T.Q. Nguyen, “Moving object detection with a freely moving camera via 

background motion subtraction,” In IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 27, pp. 236–248], 2015, doi: 10.1109/TCSVT.2015.2493499. 

[93] W. Hu, Y. Yang, W. Zhang, Y. Xie, "Moving object detection using tensor-based low-

rank and saliently fused-sparse decomposition,” In IEEE Transactions on Image Processing, 

vol. 26, no. 2, pp. 724–737, 2016, doi: 10.1109/TIP.2016.2627803. 

[94] H.S. Parekh, D.G. Thakore, U.K. Jaliya, “A survey on object detection and tracking 

methods,” In International Journal of Innovative Research in Computer and Communication 

Engineering, vol. 2, pp. 2970–2979, 2014, https://www.rroij.com/open-access/a-survey-on-

object-detection-and-tracking-methods.pdf. 

[95] A. Yilmaz, O. Javed, M. Shah, “Object tracking: A survey,” In ACM Computer Survey, 

vol. 38, no. 4, pp. 13, 2006, doi: 10.1145/1177352.1177355. 

[96] C. J. Du, H. J. He, D. W. Sun, “Object Classification Methods,” In Computer Vision 

Technology for Food Quality Evaluation; Academic Press: Cambridge, MA, USA, 2016, pp. 

87–110, doi: 10.1016/B978-0-12-802232-0.00004-9. 

[97] M. Ankerst, C. Elsen, M. Ester, H.P. Kriegel, “Visual classification: An interactive 

approach to decision tree construction,” In Proceedings of the 5th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, San Diago, California, USA, pp. 392–

396, 1999, doi: 10.1145/312129.312298. 

[98] S. Anurag, Eu. Han, V. Kumar, V. Singh, “Parallel formulations of decision-tree 

classification algorithms,” In High Performance Data Mining; Springer, Boston, MA, pp. 237–

261, 1998, doi: 10.1109/ICPP.1998.708491. 



119 
 

[99] F. Schroff, A. Criminisi, A. Zisserman, “Object Class Segmentation using Random 

Forests,” In Proceedings of the British Machine Vision Conference, University of Leeds, 

England, pp. 1–10, 2008, doi: 10.5244/C.22.54. 

[100] T. Bayes, “LII - An essay towards solving a problem in the doctrine of chances,” technical 

Letter by the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, 

AMFR S,” Philos. Trans. R. Soc. Lond., vol 53, pp. 370–418, 1763, doi: 

10.1098/rstl.1763.0053. 

[101] K. M. Leung, “Naive Bayesian Classifier,” Thesis Report, Polytechnic University 

Department of Computer Science/Finance and Risk Engineering, New York, USA, pp. 123–

156, 2007, doi: 10.1128/AEM.00062-07. 

[102] I. Kononenko, “Semi-Naive Bayesian Classifier,” In European Working Session on 

Learning, Springer, Berlin, Heidelberg, pp. 206–219, 1991, doi: 10.1007/BFb0017015. 

[103] W.R. Klecka, R.I. Gudmund, W.R. Klecka, “Discriminant Analysis,” Book,  Sage, New 

York, NY, USA, 1980; Volume 19. 

[104] S. Menard, “Interpretting the canonical discriminant functions,” Book Chapter in Applied 

Logistic Regression Analysis, vol. 19, New York, USA, 2002, pp-23-40.  

[105] T. Hastie, R. Tibshirani, “Discriminant adaptive nearest neighbor classification,” In IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 6, pp. 607–616, 1996, 

doi: 10.1109/34.506411. 

[106] K. S. Durgesh, B. Lekha, “Data classification using support vector machine,” Journal of 

Theoritical Applied Information Technology, vol. 12, pp. 1–7, 2010, 

https://www.researchgate.net/publication/285663733_Data_classification_using_support_vect

or_machine.  

[107] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, “Face recognition: A convolutional 

neural-network approach,” In IEEE Transactions on Neural Networks, vol. 8, pp. 98–113, 1997, 

doi: 10.1109/72.554195. 

[108] F. Murtagh, “Multilayer perceptrons for classification and regression,” In 

Neurocomputing, vol. 2, pp. 183–197, 1991, doi: 10.1016/0925-2312(91)90023-5. 

[109] N. Jmour, S. Zayen, A. Abdelkrim, “Convolutional neural networks for image 

classification,” In Proceedings of the International Conference on Advanced Systems and 



120 
 

Electric Technologies (IC_ASET), Hammamet, Tinisia, pp. 397–402, 2018, doi: 

10.1109/ASET.2018.8379889. 

[110] J. P. De’Villiers, F. W. Leuschner, R. Geldenhuys, “Centi-pixel accurate real-time inverse 

distortion correction,” In Proceedings of the International Symposium on Optomechatronic 

Technologies, West Harbor, San Diago, CA, USA, vol 7266, pp. 726611, 2008, doi: 

10.1117/12.804771. 

[111] B. Caprile, V. Torre, “Using vanishing points for camera calibration,” In International 

Journal of Computer Vision, vol. 4, pp. 127–139, 1990, doi: 10.1007/BF00127813. 

[112] A. Wang, T. Qiu, L. Shao, “A simple method of radial distortion correction with centre 

of distortion estimation,” In Journal of Mathematical Imaging and Vision, vol. 35, pp. 165–172, 

2009, doi: 10.1007/s10851-009-0162-1. 

[113] R. Hartley, S.B. Kang, “Parameter-free radial distortion correction with center of 

distortion estimation,” In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

29, no. 8, pp. 1309–1321, 2007, doi: 10.1109/TPAMI.2007.1147. 

[114] K. Huang, S. Ziauddin, M. Zand, M. Greenspan, “One Shot Radial Distortion Correction 

by Direct Linear Transformation,” In Proceedings of the IEEE International Conference on 

Image Processing (ICIP), Abu Dhabi, Dubai, pp. 473–477, 2020, doi: 

10.1109/ICIP40778.2020.9190749. 

[115] H. Zhao, Y. Shi, X. Tong, X. Ying, H. Zha, “A Simple Yet Effective Pipeline For Radial 

Distortion Correction,” In Proceedings of the IEEE International Conference on Image 

Processing (ICIP), Abu Dhabi, Dubai, pp. 878–882, 2020, doi: 

10.1109/ICIP40778.2020.9191107. 

[116] Y. M. Wang, Y. Li, J. B. Zheng, “A camera calibration technique based on OpenCV,” In 

Proceedings of the 3rd International Conference on Information Sciences and Interaction 

Sciences, Chengdu, China, pp. 403–406, 2010, doi: 10.1109/ICICIS.2010.5534797. 

[117] S. Lee, H. Hong, “A robust camera-based method for optical distortion calibration of 

head-mounted displays,” In IEEE Virtual Reality (VR), Lake Buena Vista, FL, USA, 2013, pp. 

27-30, doi: 10.1109/VR.2013.6549353. 



121 
 

[118] Z. Wang, M. Liu, S. Yang, S. Huang, X. Bai, X. Liu, J. Zhu, X. Liu, Z. Zhang, “Precise 

full-field distortion rectification and evaluation method for a digital projector,” In Optical 

Review, vol. 23, pp. 746–752, 2016, doi: 10.1007/s10043-016-0255-1. 

[119] S. Yang, M. Srikanth, D. Lelescu, K. Venkataraman, “Systems and Methods for Depth-

Assisted Perspective Distortion Correction,” In U.S. Patent application no. 9,898,856, 2018. 

[120] G. Finlayson, H. Gong, R.B. Fisher, “Color homography: Theory and applications,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 20–33, 2017, 

doi:  10.1109/TPAMI.2017.2760833. 

[121] H. Wang, J. Yang, B. Xue, X. Yan, J. Tao, “A novel color calibration method of multi-

spectral camera based on normalized RGB color model,” In Results in Phyics, vol. 19, pp. 

103498, 2020, doi: 10.1016/j.rinp.2020.103498. 

[122] S. Han, P. Huang, H. Wang, E. Yu, D. Liu, X. Pan, “Mat: Motion-aware multi-object 

tracking,” In Neurocomputing, vol. 476, pp. 75–86, 2022, doi: 10.1016/j.neucom.2021.12.104. 

[123] T. Meinhardt, A. Kirillov, L. Leal-Taixe, C. Feichtenhofer, “Trackformer: Multi-object 

tracking with transformers,” In Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, New Orleans, LA, USA, pp. 8844–8854, 2022, doi: 

10.48550/arXiv.2101.02702. 

[124] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, “Detecting moving objects, ghosts, and 

shadows in video streams,” In IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 25, pp. 1337–1342, 2003, doi: 10.1109/TPAMI.2003.1233909. 

[125] W. Zhang, B. Ma, K. Liu, R. Huang, “Video-based pedestrian re-identification by 

adaptive spatio-temporal appearance model,” In IEEE Transactions on Image Processing, vol 

26, pp. 2042–2054, 2017, doi: 10.1109/TIP.2017.2672440. 

[126] X. Yang, M. Wang, D. Tao, “Person re-identification with metric learning using 

privileged information,” In IEEE Transactions on Image Processing, vol. 27, pp. 791–805, 

2017, doi: 10.1109/TIP.2017.2765836. 

[127] S. Geng, M. Yu, Y. Guo, Y. Yu, “A Weighted Center Graph Fusion Method for Person 

Re-Identification,” In IEEE Access, vol. 7, pp. 23329–23342, 2019, doi: 

10.1109/ACCESS.2019.2898729. 



122 
 

[128] X. Yang, Y. Tang, N. Wang, B. Song, X. Gao, “An End-to-End Noise-Weakened Person 

Re-Identification and Tracking with Adaptive Partial Information,” In IEEE Access, vol. 7, pp. 

20984–20995, 2019, doi: 10.1109/ACCESS.2019.2899032. 

[129] T. Chen, C. Fang, X. Shen, Y. Zhu, Z. Chen, J. Luo, “Anatomy-aware 3d human pose 

estimation with bone-based pose decomposition,” In IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 32, pp. 198–209, January 2021, doi: 

https://doi.org/10.48550/arXiv.2002.10322 . 

[130] M. Straka, S. Hauswiesner, M. Rüther, H. Bischof, “Skeletal Graph Based Human Pose 

Estimation in Real-Time,” In Proceedings of the BMVC, Dundee, UK, pp. 1–12, 2011, doi: 

10.5244/C.25.69. 

[131] L. W. Campbell, A. F. Bobick, “Using phase space constraints to represent human body 

motion”, In Proceedings of the International Workshop on Automatic Face and Gesture 

Recognition, Zurich, Switzerland, pp. 338–343, 1995, doi: 10.1109/ICCV.1995.466880. 

[132] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio, “Patch-Based Experiments 

with Object Classification in Video Surveillance”, In Proceedings of IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, Puerto Rico, vol. 97, pp. 193–199, 

1997, doi.org/10.1007/978-3-540-74607-2_26. 

[133] Q. You, H. Jin, Z. Wang, C. Fang, J. Luo, “Image captioning with semantic attention,” 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las 

Vegas, USA, pp. 4651–4659, 2016, doi: 10.48550/arXiv.1603.03925. 

[134] P. Wcg, “Role of the manuscript reviewer,” In Medical Journal, Singapore, vol. 50, pp. 

931–934, 2009. 

[135] J. F. Polak, “The role of the manuscript reviewer in the peer review process,” Am. J. 

Roentgenol., vol. 165, pp. 685–688, 1995. 

[136] H. Nguyen, B. Bhanu, A. Patel, R. Diaz, “VideoWeb: Design of a wireless camera 

network for real-time monitoring of activities,” In Proceedings of the 3rd ACM/IEEE 

International Conference on Distributed Smart Cameras (ICDSC), Como, Italy, pp. 1–8, 2009, 

doi: 10.1109/ICDSC.2009.5289418. 

[137] O.W. Ibraheem, A. Irwansyah, J. Hagemeyer, M. Porrmann, U. Rueckert, 

“Reconfigurable vision processing system for player tracking in indoor sports,” In Proceedings 



123 
 

of the Conference on Design and Architectures for Signal and Image Processing (DASIP), 

Dresden, Germany; pp. 1–6, 2017, doi: 10.1109/DASIP.2017.8122114. 

[138] Y. Xiang, A. Alahi, S. Savarese, “Learning to Track: Online multi-object tracking by 

decision making,” In Proceedings of the IEEE International Conference on Computer Vision, 

Santiago, Chile, pp. 4705–4713, 2015, doi: 10.1109/ICCV.2015.534. 

[139] I. Laptev, B. Caputo, “Recognizing human actions: A local SVM approach,” In 

Proceedings of the 17th International Conference on Pattern Recognition, Washington DC, 

USA, pp. 32–36, 2004, doi: 10.1109/ICPR.2004.1334462. 

[140] A.N. Duy, M. Yoo, “Calibration-Net: LiDAR and Camera Auto-Calibration using Cost 

Volume and Convolutional Neural Network,” In Proceedings of the 2022 International 

Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, 

Korea, pp. 141–144, 2022, doi: 10.1109/ICAIIC54071.2022.9722671. 

[141] Y. Cao, H. Wang, H. Zhao, X. Yang, “Neural-Network-Based Model-Free Calibration 

Method for Stereo Fisheye Camera,” In Front, Bioeng. Biotechnol., vol. 10, 955233, 2022, doi: 

10.3389/fbioe.2022.955233. 

[142] H. Chen, S. Munir, S. Lin, “RFCam: Uncertainty-aware Fusion of Camera and Wi-Fi for 

Real-time Human Identification with Mobile Devices,” In Proceedings of the ACM on 

Interactive, Mobile, Wearable and Ubiquitous Technologies, vol 6, No. 2, pp. 1–29, July 2022, 

doi : 10.1145/3534588. 

[143] T. T. Dufera, Y. C. Seboka, C. F. Portillo, “Parameter Estimation for Dynamical Systems 

Using a Deep Neural Network,” In Applications of Computer Intelligence and Soft Computing, 

vol. 2022, no. 2014510, 2022, doi: 10.1155/2022/2014510. 

[144] A. Doula, A. Sanchez Guinea, M. Mühlhäuser, “VR-Surv: A VR-Based Privacy 

Preserving Surveillance System,” In Proceedings of the CHI Conference on Human Factors in 

Computing Systems Extended Abstracts, New Orleans, NY, USA, pp. 1–7, 2022, doi: 

10.1145/3491101.3519645. 

[145] C. Pooja, K. Jaisharma, “Novel Framework for the Improvement of Object Detection 

Accuracy of Smart Surveillance Camera Visuals Using Modified Convolutional Neural 

Network Technique Compared with Global Color Histogram,” In ECS Transactions, vol. 107, 

no. 18823, 2022, doi: 10.1149/10701.18823ecst. 



124 
 

[146] T. Jiang, Q. Zhang, J. Yuan, C. Wang, C. Li, “Multi-Type Object Tracking Based on 

Residual Neural Network Model,” In Symmetry, vol. 14, no. 8, 2022, doi: 

10.3390/sym14081689. 

[147] T. Jaganathan, A. Panneerselvam, S.K. Kumaraswamy, “Object detection and multi‐

object tracking based on optimized deep convolutional neural network and unscented Kalman 

filtering,” In Concurrncy and Computation: Practice and Experience, vol. 34, no.25, 2022, doi: 

10.1002/cpe.7245. 

[148] T. R. Deshpande, S. U. Sapkal, “Development of Object Tracking System Utilizing 

Camera Movement and Deep Neural Network,” In Proceedings of the 2022 IEEE Region 10 

Symposium (TENSYMP), Mumbai, India, pp. 1–6, 2022, doi:  

10.1109/TENSYMP54529.2022.9864420. 

[149] S. M. Praveenkumar, P. Patil, P. S. Hiremath, “Real-Time Multi-Object Tracking of 

Pedestrians in a Video Using Convolution Neural Network and Deep SORT,” In Proceedings 

of the ICT Systems and Sustainability, (ICT4SD), Goa, India, pp. 725–736, 2022, doi: 

10.1007/978-981-16-5987-4_73. 

[150] M. Jhansi, S. Bachu, N. U. Kumar, M. A. Kumar, “IODTDLCNN: Implementation of 

Object Detection and Tracking by using Deep Learning based Convolutional Neural Network,” 

In Proceedings of the 2022 First International Conference on Electrical, Electronics, 

Information and Communication Technologies (ICEEICT), Trichy, India, pp. 1–6, 2022, doi: 

10.1109/ICEEICT53079.2022.9768632. 

[151] J. Barazande, N. Farzaneh, “WSAMLP: Water Strider Algorithm and Artificial Neural 

Network-based Activity Detection Method in Smart Homes,” J. AI Data Min., vol. 10, pp. 1–

13, 2022, doi: 10.22044/jadm.2021.10781.2215. 

[152] P. K. Y. Wong, H. Luo, M. Wang, J.C. Cheng, “Enriched and discriminative 

convolutional neural network features for pedestrian re-identification and trajectory 

modelling,” In Computer Aided Civil Infrastructural Engineering, vol. 37, pp. 573–592, 2022, 

doi: 10.1111/mice.12750. 

[153] Y. Yao, X. Jiang, H. Fujita, Z. Fang, “A sparse graph wavelet convolution neural network 

for video-based person re-identification,” In Pattern Recognition, vol. 129, 108708, 2022, doi: 

10.1016/j.patcog.2022.108708. 



125 
 

[154] M. Mohana, S. Alelyani, M. S. Alsaqer, “Fused Deep Neural Network based Transfer 

Learning in Occluded Face Classification and Person re-Identification,” In Online article 

arXiv:2205.07203, 2022, doi: 10.48550/arXiv.2205.07203. 

[155] C. You, H. Zheng, Z. Guo, T. Wang, T. Wu, “Tampering detection and localization base 

on sample guidance and individual camera device convolutional neural network features,” In 

Expert Systems, vol. 40, no. 1, August 2022, doi: 10.1111/exsy.13102. 

[156] S. Karamchandani, S. Bhattacharjee, D. Issrani, R. Dhar, “SLAM Using Neural Network-

Based Depth Estimation for Auto Vehicle Parking,” In IOT with Smart Systems, Springer, 

Berlin/Heidelberg, Germany, pp. 37–44, 2022, doi: 10.1007/978-981-16-3945-6_5. 

[157] Expert Market Search, “AI In Computer Vision Market based on Component (Hardware, 

Software), Vertical (healthcare, security, automotive, agriculture, sports & entertainment, and 

others), and Region–Global Forecast to 2027,” Research Report by Expert Market Search, 

2023, https://www.expertmarketresearch.com/reports/ai-in-computer-vision-market. 

[158] N. Andriyanov, “Methods for preventing visual attacks in convolutional neural networks 

based on data discard and dimensionality reduction,” In Applied Sciences, vol. 11, no. 11, 5235, 

2021, doi: 10.3390/app11115235. 

 

[159] B. Wang, M. Zhao, W. Wang, X. Dai, Y. Li, Y. Guo, “Adversarial Analysis for Source 

Camera Identification,” In IEEE Transactions on Circuits and Systems for Video Technology, 

vol. 31, no. 11 pp. 4174–4186, 2021, doi: 10.1109/TCSVT.2020.3047084. 

[160] C. Zhang, P. Benz, C. Lin, A. Karjauv, J. Wu, I.S. Kweon, “A survey on universal 

adversarial attack,” In 30th International Joint Conference on Artificial Intelligence, Montreal, 

pp. 4687- 4694, August 2021, doi: 10.48550/arXiv.2103.01498. 

[161] D. M. Edwards, E. D. Rawat, “Study of Adversarial Machine Learning with Infrared 

Examples for Surveillance Applications,” In Electronics, vol. 9, no. 8, 1284, August 2020, doi: 

10.3390/electronics9081284. 

[162] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, “A survey on 

adversarial attacks and defences,” CAAI Trans. Intell. Technol., vol. 6, pp. 25–45, 2021, doi: 

10.1049/cit2.12028. 



126 
 

[163] N. Akhtar, A. Mian, N. Kardan, M. Shah, “Advances in adversarial attacks and defenses 

in computer vision: A survey,” IEEE Access, vol. 9, pp. 155161–155196, 2021, doi: 1 

0.1109/ACCESS.2021.3127960. 

[164] M. A. R. Ahad, “Motion History Images for Action Recognition and Understanding”, 

Book Chapter in Action Representations, 2013, pp. 19-29, doi.org/10.1007/978-1-4471-4730-

5. 

[165] X. Pan, Y. Guo, A. Men, “Traffic Surveillance System for Vehicle Flow Detection,” In 

Proceedings of Second International Conference on Computer Modeling and Simulation, 

Sanya, China, pp. 314-318, 2010, doi: 10.1109/ICCMS.2010.75. 

[166] F. Mehboob, M. Abbas, R. Almotaeryi, R. Jiang, S.A. Maadeed, A. Bouridane, “Traffic 

Flow Estimation from Road Surveillance,” IEEE International Symposium on Multimedia 

(ISM), Miami, FL, USA, pp. 605-608, 2015, doi: 10.1109/ISM.2015.14. 

[167] M. Stuede, M. Schappler, “Non-Parametric Modeling of Spatio-Temporal Human 

Activity Based on Mobile Robot Observations,” In Proceedings of IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), 2022, doi: 

10.1109/IROS47612.2022.9982067. 

[168] S. Sattar, Y. Sattar, M. Shahzad, M. M. Fraz, “Group Activity Recognition in Visual 

Data: A Retrospective Analysis of Recent Advancements,” In Proceedings of International 

Conference on Digital Futures and Transformative Technologies (ICoDT2), IEEE, Islamabad, 

Pakistan, pp. 1-8, 2021, doi: 10.1109/ICoDT252288.2021.9441478. 

[169] L. Zhao, Y. Gao, J. Ye, F. Chen, Y. Ye, C.T. Lu, N. Ramakrishnan, “Online dynamic 

multi-source feature learning and its application to spatio-temporal event forecasting,” In ACM 

transactions on knowledge discovery from data, vol. 1, no. 1, 2021, 

https://cs.emory.edu/~lzhao41/materials/papers/TKDD2020_preprinted.pdf. 

[170] L. Yuanqiang, H. Jing, “A Sports Video Behavior Recognition Using Local 

Spatiotemporal Patterns,” In Mobile Information Systems, vol. 2022, 2022. doi: 

10.1155/2022/4805993. 

[171] R. Yan, X. Shu, C. Yuan, Q.Tian, J. Tang, “Position-aware participation-contributed 

temporal dynamic model for group activity recognition,” In IEEE Transactions on Neural 



127 
 

Networks and Learning Systems, Early Access, vol. 3, no. 12, 2021, doi: 

10.1109/TNNLS.2021.3085567. 

[172] Shashank, I. Sreedevi, “Distributed Network of Adaptive and Self-Reconfigurable Active 

Vision Systems,” In Symmetry, vol. 14, no. 11, p-2281,  2022, doi: 

https://doi.org/10.3390/sym14112281.  

[173] A.T. Ali, E. L. Dagless, "Computer vision for security surveillance and movement 

control," In IEE Colloquium on Electronic Images and Image Processing in Security and 

Forensic Science, pp. 6-1, 1990, https://ieeexplore.ieee.org/document/190222. 

[174] F.Y. Shih, O.R. Mitchell, "Automated fast recognition and location of arbitrarily shaped 

objects by image morphology," In Proceedings CVPR'88: The Computer Society Conference 

on Computer Vision and Pattern Recognition, pp. 774-775, 1988, doi: 

10.1109/CVPR.1988.196322. 

[175] Shashank, S. Indu, “Sensitivity-Based Adaptive Activity Mapping for Optimal Camera 

Calibration,” In Proceedings of International Conference on Intelligent Computing and Smart 

Communication, Springer, 2019, Tehri, India, pp. 1211-1218, doi.org/10.1007/978-981-15-

0633-8_118. 

[176] J.I. Isaac, J. Martin, R. Barco, “A low-complexity vision-based system for real-time 

traffic monitoring,” In IEEE Transactions on Intelligent Transportation Systems, vol. 18, no.5, 

pp. 1279-1288, 2016, doi: 10.1109/TITS.2016.2603069. 

 

[177] K. Achim, M. Sefati, S. Arya, A. Rachman, K. Kreisköther, P. Campoy, “Towards Multi-

Object Detection and Tracking in Urban Scenario under Uncertainties,” In Proceedings of 4th 

International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS, 

Funchal, Madeira, Portugal, pp. 156-167, 2018, doi: 10.5220/0006706101560167. 

[178] G. Rikke, T.B. Moeslund, “Constrained multi-target tracking for team sports activities,” 

In IPSJ Transactions on Computer Vision and Applications, vol. 10, no. 1, pp. 1-11, 2018, doi: 

10.1186/s41074-017-0038-z. 

[179] Shashank, Indu Sreedevi, “Spatiotemporal activity mapping for enhanced multi-object 

detection with reduced resource utilization,” In Electronics, vol. 12, no. 1, p-37, 2022, 

https://doi.org/10.3390/electronics12010037. 



128 
 

[180] J. C. SanMiguel, C. Micheloni, K. Shoop, G.L. Foresti, A. Cavallaro, “Self-

reconfigurable smart camera networks,” Computer, vol. 47, no. 5, pp. 67–73, 2014, doi: 

10.1109/MC.2014.133. 

[181] B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder, G.F. Dominguez, P.R. 

Lewis, “Self-aware and self-expressive camera networks,” Computer, vol. 48, no. 7, pp. 21–28, 

2015, doi: 10.1109/MC.2015.209. 

[182] P. R. Lewis, A. Chandra, K. Glette, “Self-awareness and Self-expression: Inspiration 

from Psychology,” In Self-Aware Computing Systems, Springer, Berlin/Heidelberg, Germany, 

pp. 9–21, 2016, doi: 10.1007/978-3-319-39675-0_2. 

[183] K. Glette, P.R. Lewis, A. Chandra, “Relationships to Other Concepts,” In Self-aware 

Computing Systems, Springer, Berlin/Heidelberg, Germany, pp. 23–35, 2016, doi: 

10.1007/978-3-319-39675-0_3. 

[184] S. Wang, G. Nebehay, L. Esterle, K. Nymoen, L.L. Minku, “Common Techniques for 

Self-awareness and Self-expression,” In Self-Aware Computing Systems. Natural Computing 

Series, Springer, Berlin/Heidelberg, Germany, pp. 113–142, doi: 10.1007/978-3-319-39675-

0_7. 

[185] A. Isavudeen, N. Ngan, E. Dokladalova, M. Akil, “Auto-adaptive multi-sensor 

architecture,” In Proceedings of the International Symposium on Circuits and Systems 

(ISCAS), Montreal, QC, Canada, pp. 2198–2201, 2016, doi: 10.1109/ISCAS.2016.7539018. 

[186] Z. Guettatfi, P. Hübner, M. Platzner, B. Rinner, “Computational self-awareness as design 

approach for visual sensor nodes,” In Proceedings of the 12th International Symposium on 

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Madrid, Spain, pp. 1–8, 

2017, doi: 10.1109/ReCoSoC.2017.8016147. 

[187] Z. Zhu, Y. Luo, S. Chen, G. Qi, N. Mazur, C. Zhong, Q. Li, “Camera style transformation 

with preserved self-similarity and domain-dissimilarity in unsupervised person re-

identification,” In Journal of Visual Communication and Image Representation, vol. 80,  2021, 

doi:10.1016/j.jvcir.2021.103303. 

[188] S. Lin, J. Lv, Z. Yang, Q. Li, W.S. Zheng, “Heterogeneous graph driven unsupervised 

domain adaptation of person re-identification,” In Neurocomputing, vol. 471, pp. 1–11, 2022, 

doi: 10.1016/j.neucom.2021.11.009. 



129 
 

[189] M. Wu, C. Li, Z. Yao, “Deep Active Learning for Computer Vision Tasks: 

Methodologies, Applications, and Challenges,” In Applied Science, vol. 12, no. 16 , 2022, doi: 

10.3390/app12168103. 

[190] S. Rudolph, S. Tomforde, J. Hähner, “On the Detection of Mutual Influences and Their 

Consideration in Reinforcement Learning Processes,” 2019, doi: 10.48550/arXiv.1905.04205. 

[191] L. Cai, H. Ma, Z. Liu, Z. Li, Z. Zhou, “Coverage Control for PTZ Camera Networks 

Using Scene Potential Map,” In Proceedings of the IEEE International Conference on 

Multimedia and Expo (ICME), Taipei, Taiwan, pp. 1–6, 2022, doi: 

10.1109/ICME52920.2022.9859676. 

[192] S. Suresh, V. Menon, “An Efficient Graph Based Approach for Reducing Coverage Loss 

From Failed Cameras of a Surveillance Network,” In IEEE Sensors Journal, vol. 22, no. 8, pp. 

8155–8163, 2022, doi: 10.1109/JSEN.2022.3157819. 

[193] S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards Real-Time Object Detection 

with Region Proposal Networks," IEEE Transactions on Pattern Analysis & Machine 

Intelligence, vol. 39, no. 06, pp. 1137-1149, 2017, doi: 10.48550/arXiv.1506.01497,doi: 

10.1109/TPAMI.2016.2577031. 

[194] K. Liang, “Fission: A Provably Fast, Scalable, and Secure Permissionless Blockchain,”, 

Technical Article in Cryptography and Security, Cornell University, december 2018, doi: 

10.48550/arXiv.1812.05032. 

 

[195] W. Zhao, “On Nxt Proof of Stake Algorithm: A Simulation Study,” In IEEE Transactions 

on Dependable and Secure Computing, vol. 20, no. 4, pp. 1–12, 2022, doi: 

10.1109/TDSC.2022.3193092. 

[196] M.S. Milan, P. C. Elisabet , "Secure image encryption and authentication using the photon 

counting technique in the Gyrator domain," In Proceedings of IEEE 20th Symposium on Signal 

Processing, Images and Computer Vision (STSIVA), pp. 1-6, 2015, doi: 

10.1109/STSIVA.2015.7330460. 

[197] J.A.Rodrigo, T. Alieva, M.L.Colvo, “Applications of gyrator transform for image 

processing,” In Optics Communications, vol. 278, no.2, pp. 279-284, 2007, doi: 

10.1016/j.optcom.2007.06.023. 



130 
 

[198] S. P. Chang, J. J. Dian, “Properties, Digital Implementation, applications and self image 

phenomenon of Gyrator Transform,” In Proceedings of 17th European Signal Processing 

Conference(EUSIPCO), pp. 441-445, 2009, https://ieeexplore.ieee.org/document/7077823. 

[199] S. Yeom, B. Javidi, E. Watson, “Photon counting passive 3D image sensing for automatic 

target recognition,” Optics express, vol. 13, no. 23, pp.9310-9330, 2005, doi: 

10.1364/OE.15.001513. 

[200] Shashank, Indu Sreedevi, “Cryptography for Biometric Fingerprint Information Using 

Gyrator Transform” In Proceedings of International Conference on Signal Processing VLSI and 

Communication Engineering, IEEE, 2019, https://10.1109/ICSPVCE46182.2019. 

[201] Delhi Traffic police, “Road accidents in Delhi 2019” 

https://delhitrafficpolice.nic.in/sites/default/files/uploads/2020/Road-accident-in-delhi2019.pdf. 

[202] Cameron, H. Max , E. Rune, "Nilsson's Power Model connecting speed and road trauma: 

Applicability by road type and alternative models for urban roads,” Accident Analysis & 

Prevention, vol. 42, no. 6, pp. 1908-1915, 2010, doi: 10.1016/j.aap.2010.05.012. 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

Appendix-A 

 

List of Publications 

1. Shashank, Indu Sreedevi, “Spatiotemporal activity mapping for enhanced 

multi-object detection with reduced resource utilization,” In Electronics, SCIE 

Journal (IF: 2.94), vol.12, no. 1, p-37, 2022. 

https://doi.org/10.3390/electronics12010037. 

 

2. Shashank, Indu Sreedevi, “Distributed Network of Adaptive and Self-

Reconfigurable Active Vision Systems,” In Symmetry, SCIE Journal (IF:. 2.69), 

vol. 14, no. 11, p-2281,  2022. 

 https://doi.org/10.3390/sym14112281. 

 

3. Shashank, Indu Sreedevi, "Sensitivity-Based Adaptive Activity Mapping for 

Optimal Camera Calibration." in International Conference on Intelligent 

Computing and Smart Communication 2019, pp. 1211-1218. Springer, Singapore, 

2020. 

https://doi.org/10.1007/978-981-15-0633-8_118 

 

4. Shashank, Indu Sreedevi, “Cryptography for Biometric Fingerprint 

Information Using Gyrator Transform” International Conference on Signal 

Processing VLSI and Communication Engineering, IEEE, 2019. (Accepted and 

Presented). 

https:// 10.1109/ICSPVCE46182.2019  

 

 

 

 

 

 

 

 

https://doi.org/10.3390/electronics12010037
https://doi.org/10.3390/sym14112281
https://doi.org/10.1007/978-981-15-0633-8_118
https://ieeexplore.ieee.org/xpl/conhome/9085266/proceeding


132 
 

 Appendix-B 

 

List of Patents Filed 

 
1. Shashank, Professor Indu Sreedevi, Delhi Technological University, Indian 

patent Application No. IN202311030910 titled “System and method for 

reconfiguration of a sensing unit” filed at Indian Patent Office (IPO). 

 

2. Shashank, Professor Indu Sreedevi, Delhi Technological University, Indian 

patent Application No. IN202311030913 titled “System and method for 

adaptive reconfiguration of sensor networks” filed at Indian Patent Office 

(IPO). 



133 
 

                Appendix-C 

 

Biodata 

 

Shashank completed his B.Tech degree in Electronics and Communication Engineering (with 

CGPA 8.38/10) from Jamia Millia Islamia university, New Delhi in 2014, and M.Tech 

degree (with CGPA 8.08/10) specializing in Microwave and Optical Communication 

Engineering from Delhi Technological university, New Delhi in 2016. Shashank joined Delhi 

Technological University, New Delhi as a full time Ph.D. Scholar in Electronics and 

Communication department under the supervision of Professor S. Indu in 2017. His areas of 

research interest are Computer vision, Artificial Intelligence, Smart Sensor Networks, and 

Blockchain Technology. During the period of his Ph.D. research, Shashank has published two 

papers in SCIE indexed Journals, and has presented two papers in International Conferences. 

He has also filed two Indian Patent Applications to protect his research models developed 

through his Ph.D. research. More particularly, Shashank has extensively researched on 

developing frameworks for adaptive self-reconfiguration of active vision systems. He has 

proposed various robust and efficient frameworks and models in this research area. 


	References

