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ABSTRACT 
 

Landslides are a prominent natural disaster that impacts numerous mountainous areas worldwide, 

like the Himalayas, Andes, and Alps. It can cause injuries, loss of life, and widespread destruction 

of land and property, leading to substantial economic losses. Mountainous areas heavily rely on 

road transport, and when landslides obstruct these routes, it brings severe difficulties to the 

affected communities. Around 12.6% of India's total land area, equivalent to approximately 0.42 

million square kilometers, is susceptible to landslide occurrences, with the north region being 

particularly susceptible. The Himalayan region is characterized by substantial rainfall, an 

extended monsoon season, heightened seismic activity, a relatively young geological profile, 

anthropogenic activities and formidable mountain terrain. These factors collectively result in the 

Himalayas being responsible for more than 70% of fatal landslides worldwide, with a significant 

share of these destructive events occurring within India. Despite the increasing information and 

awareness about landslides, the harm and destruction keep on rising with a massive increase in 

landslide occurrence throughout the rainy season. Therefore, conducting a well-targeted research 

study is of utmost importance to understand the mechanism of rainfall-induced landslides and 

their potential threat to human life and property. 

Due to the unpredictable nature of landslides, understanding the complex mechanisms behind 

such events is crucial for effective monitoring and mitigation strategies. In this study, physical 

and numerical modelling methods have been utilized to effectively study the mechanism and 

determine the relative factor of safety under the given rainfall condition. Physical modelling 

offers a valuable approach to simulate and analyse the processes that trigger and control landslide 

occurrences under varying rainfall conditions. Hydro-mechanical parameters have been 

calculated, and a semi-similar material physical model test has been conducted to study the 

sliding mechanisms. In order to simulate the desired rainfall, a self-developed artificial rainfall 

generator is used. Furthermore, numerical modelling has been employed to determine the safety 

factor under dry and rainfall conditions. The study further affirms the validation of numerical 

simulations when compared to physical modelling. This validation is particularly valuable given 

the inherent complexities associated with physical modelling, making numerical modelling a 

more feasible alternative. 
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In this study, two landslide sites, Jhakri (N31º29’08”, E77º41’43”) in Shimla district and Kotrupi 

(N31º54‟37.60, E76º53”26.30) in the Mandi district of Himachal Pradesh, lying in the northern 

region of the Indian subcontinent have been selected. Laboratory investigation has been 

performed to determine the geotechnical parameters of soil, which have further been utilised in 

physical and numerical modelling. 

The physical modelling performed for the Jhakri landslide revealed that a rainfall depth of 80mm 

and an intensity of 30mm/hr led to debris type of slope failure. The numerical analysis confirmed 

the slope's stability with a safety factor of 1.23 pre-rainfall and its subsequent instability with a 

safety factor of 0.626 post-rainfall, highlighting the primary role of rainfall in triggering 

landslides. 

Although numerical and physical techniques are frequently used, their limitations in dealing with 

unpredictable rainfall-induced landslides highlight the importance of sensor-based monitoring. 

This study introduces an inventive and cost-effective slope monitoring system that incorporates 

micro-electromechanical system (MEMS) based tilt and moisture sensors. It allows the collection 

of real-time data on tilt deformation and moisture content. The effectiveness of this monitoring 

system has been verified using a custom direct shear-based testing setup and physical slope 

modelling.  

The developed low-cost monitoring system proved its efficiency in detecting both gradual and 

sudden movements during rainfall-induced landslides, with precise tilt angle measurements and 

moisture content readings contributing to its accuracy and precision. The tilt sensor can record 

even the slightest changes in the slope angle with a precision of 0.01 degree, enabling early 

detection of slope movement. Additionally, the volumetric water content sensor can detect 

variations with a precision of 1 percent, aiding in the identification of critical conditions that 

could lead to landslides.  

The developed early warning system, designed for identifying impending slope failures, utilized 

a combination of tilt angle and moisture content variations. Through continuous monitoring, the 

system observed a gradual shift in the tilt angle of the slope over a two-hour period, displaying 

a variation ranging from approximately 0.5 degrees to 1.5 degrees. This specific range can be 

served as a predefined warning threshold. At the crucial second-hour mark, coinciding with the 

slope failure, there was a sudden and notable deviation 3 degrees to 3.5 degrees in the tilt angle. 

This deviation acted as a key indicator, marking the system's ability to accurately detect the onset 

of failure conditions. 
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Furthermore, the soil moisture sensor integrated into the system exhibited substantial variations 

of approximately 40% during periods of rainfall. These variations signalled a notable rise in soil 

saturation, reaching up to 95%, suggesting that elevated moisture levels may serve as a potential 

triggering factor for slope failure.  

The physical and numerical analysis performed on the Jhakri landslide revealed a decrease in the 

safety factor from 1.045 pre-rainfall to 0.670 post-rainfall conditions, affirming the role of 

rainfall as the primary trigger for slope failure. 

The results of the physical and numerical modelling very well establish the initiation of rainfall-

induced landslides. The factor of safety is one of the crucial parameters in assessing the stability 

of slopes. The obtained safety factor values highlight the role of hydrology (rainfall) in activating 

and triggering the failure of slope mass. The findings, thus, corroborate the recent increase in 

landslide occurrences in the monsoon season. This study further demonstrated the greater 

significance of hydrological conditions, and recommends Bureau of Indian Standards for 

emphasizing the importance of assigning higher weightage than other contributing factors. 

This study also proves the suitability and feasibility of numerical modelling to analyse different 

slopes, providing scientific guidance for monitoring and early warning so that preventive 

measures can be taken to reduce its effect. The proposed low-cost monitoring system for rainfall-

induced landslides is effective and accurate and holds potential for wide-scale implementation 

in monitoring precarious slopes in hilly terrains. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Landslides are a prominent natural disaster that impacts numerous mountainous areas 

worldwide, like the Himalayas, Andes, and Alps. It can cause injuries, loss of life, and 

widespread destruction of land and property, leading to substantial economic losses. 

Mountainous areas heavily rely on road transport, and when landslides obstruct these routes, it 

brings severe difficulties to the affected communities. Despite the increasing information and 

awareness about the landslide, the harm and destruction keep on rising with a massive increase 

in landslide occurrence throughout the rainy season. The region receives exceptionally high and 

intense rainfall during the monsoon season, which spans approximately six months from April-

May to September-October. As the Himalayan region constitutes young fold mountain which 

makes them prone to seepage, which is the leading cause for an increased number of the 

landslides during the rainy season. Around 12.6% of India's total land area, equivalent to 

approximately 0.42 million square kilometres, is susceptible to landslide occurrences, with the 

North Region being particularly susceptible [1]. 

Landslides depend on factors like rainfall intensity, pore water pressure, duration of rainfall, and 

shear strength of the soil. By effectively monitoring these factors, it becomes possible to make 

approximate predictions of potential landslides. This enables authorities to allocate sufficient 

time for evacuation, implement necessary repairs and maintenance to critical infrastructure, and 

undertake measures to stabilize the slopes, mitigating the impact of landslides.  It is observed 

that slopes at a steeper angle can remain stable, but with the influence of water, even the gentle 

slopes get failed as water plays a crucial role in decreasing soil suction which leads to a 

subsequent reduction in the soil's shear strength causing failure of slopes. This phenomenon 

could be attributed to the occurrence of landslides in the rainy season.  In regions experiencing 

rapid development, various unaccounted activities pose a significant risk to slope stability. For 

instance, deforestation has become prevalent during the development process, resulting in a 

decrease in the soil's shear strength. This occurs because tree roots, which act as natural 

reinforcement by binding the soil particles together, are lost due to deforestation. Consequently, 
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the increased pace of development often results in the implementation of substandard 

construction practices, further compromising the stability of slopes. 

Fig. 1. 1 displays India's landslide hazard zonation map as provided by the Geological Survey of 

India, which illustrates the general risk of landslides in India by highlighting different levels of 

hazard zones across several states. It is worth mentioning that the Himalayas in Northwest and 

Northeast India, along with the Western Ghats, are particularly susceptible to landslides, posing 

a significant threat to the surrounding area and hereby settled communities. 

 

Fig. 1. 1: Landslide hazard zonation map of India [2] 

 

The combination of steep slopes, heavy rainfall, and seismic activity contributes to the frequent 

occurrence of landslides necessitating effective measures for understanding, predicting, and 

mitigating landslide hazards. 

 

1.2  Rainfall Induced Landslides 

The global recognition of the substantial influence of rainwater infiltration on triggering 

landslides is well documented. When rainfall seeps into the soil, it increases the water content 

and reduces the matric suction, leading to higher unit weight of soil and decreased soil shear 

strength in the colluvium of the landslide-prone areas. The primary cause of landslides often 

stems from an increase in groundwater levels or the development of perched water tables. Since 
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most hill slope soils are unsaturated, the traditional approach of saturated soil mechanics is 

insufficient for assessing their stability. To understand the potential risk of rainfall-induced 

landslides, effective and appropriate modelling is crucial to study the changes in water content 

and matric suction due to rainwater infiltration. Numerous studies in the literature analyses 

rainfall-induced slope stability under different scenarios of rainfall intensity and duration [3], [4] 

and antecedent conditions [5]–[9]. These studies have emphasized the significance of unsaturated 

soil properties in elucidating the factors contributing to slope instability triggered by rainfall. The 

integrated effect of rainfall parameters and unsaturated soil action on infiltration and sliding 

mechanisms has also been explored. [10]–[12]. In these studies, the factors considered were soil 

parameters, HCC, and SWCC. In Fig. 1. 2, [13] provided a comprehensive illustration depicting 

the clarification of a landslide and its associated terminology. The figure explores various factors 

contributing to the understanding of landslides. 

 

Fig. 1. 2: Earth flow labelled with different components of a landslide [13]  

 

1.3 Variability of Geotechnical Properties 

Geotechnical properties, such as soil strength, cohesion, and internal friction angle, play a 

crucial role in determining the stability of slopes. However, these properties can exhibit 

significant variability across different geological formations and regions. When geotechnical 

properties vary widely within a slope, it can lead to inconsistent Factor of Safety (FOS) values. 

The FOS is a crucial parameter used to assess slope stability, and its variation may indicate zones 

of potential instability. Higher variability in geotechnical properties can result in areas with lower 

FOS, being more susceptible to landslides. The variability of geotechnical properties also 

influences the initiation and propagation of landslides. Slope materials with contrasting strengths 
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can create zones of weakness and differential movement, increasing the likelihood of slope 

failure. 

To mitigate the impact of geotechnical property variability on slope instability and landslides, 

comprehensive site investigations and geotechnical surveys are essential. Understanding the 

spatial distribution of properties can help for identifying appropriate stabilization measures 

further improving slope management practices. Moreover, advanced monitoring systems can 

help detect changes in slope behavior, allowing for timely responses and hazard mitigation 

strategies. 

 

1.4 Physical Modelling of Rainfall Induced Landslides 

Rainfall-induced landslides pose significant threats to communities and infrastructure 

worldwide. Understanding the complex mechanisms behind such events is crucial for effective 

risk assessment and mitigation strategies. Physical modelling offers a valuable approach to 

simulate and analyse the processes that trigger and control landslide occurrences under varying 

rainfall conditions. By replicating real-world scenarios in controlled laboratory settings, 

researchers can gain insights into the factors influencing landslide initiation, propagation, and 

behaviour. This study explores the importance of physical modelling in enhancing the 

understanding of rainfall-induced landslides and its potential applications for engineering 

practices and disaster management. 

 

1.5 Numerical Modelling of Rainfall Induced Landslides 

Numerical modelling has emerged as a powerful tool to simulate and analyse the complex 

interactions between rainfall, soil behaviour, and slope stability. By using advanced 

computational techniques, researchers can better assess landslide susceptibility, predict potential 

occurrences, and develop more robust mitigation strategies. This study delves into the realm of 

numerical modelling to explore the intricate dynamics of rainfall-induced landslides and its 

implications for safeguarding vulnerable regions. 

 

1.6  Instrumentation Based Landslide Monitoring and Detection 

Landslides triggered by heavy rainfall have been a recurring and catastrophic natural disaster 

in various regions worldwide. The increasing frequency and intensity of these rainfall-induced 

landslides have prompted the need for more effective monitoring and detection strategies to 

mitigate their devastating impacts on communities and infrastructure. In recent years, 
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advancements in instrumentation-based technologies have revolutionized the field of 

geotechnical engineering, providing new tools and methodologies to enhance the understanding 

of landslide mechanisms and offer improved early warning systems. 

The study of landslide-prone areas, particularly those prone to rainfall-induced landslides, 

requires a multidisciplinary approach that combines geotechnical engineering, hydrology, and 

data science. In the past, landslide monitoring primarily relied on visual inspections and manual 

surveys, which had limitations in providing timely and accurate information about potential 

landslide occurrences. However, the advent of cutting-edge technologies, such as real-time 

sensor networks, now offers the ability to continuously and remotely monitor critical parameters 

that govern landslide initiation and movement. These advancements enable one to collect large 

volumes of data that can be analysed using sophisticated algorithms and modelling techniques to 

identify precursors and assess the potential risk of landslides in real-time with considerable 

accuracy. 

Instrumentation-based monitoring and detection of rainfall-induced landslides, aims to explore 

the significance of employing advanced sensors, data acquisition systems, and analytical 

techniques to predict and respond to rainfall-triggered slope failures. 

 

1.7 Motivation of The Study 

The motivation behind studying rainfall-induced landslides stems from the significant threats 

they pose to lives and infrastructure. With India's diverse topography and monsoon climate, these 

landslides occur frequently, making it essential to comprehend their mechanisms and 

contributing factors. By conducting comprehensive research, one can develop effective early 

warning systems and risk management strategies. The goal is to enhance understanding, promote 

informed decision-making, and protect lives and property from the devastating consequences of 

these natural disasters. Fig. 1. 3 and Fig. 1. 4 shows recent incidences of landslides in the 

Northern Himalayan Region, which have hampered vehicular movement and caused loss of life 

and property. Fig. 1. 3 illustrates the substantial impact of landslides on several crucial national 

highways, disrupting vehicular traffic significantly. Meanwhile, in Fig. 1. 4a, the location of the 

landslide incident where rescue efforts are currently underway, resulting in a tragic loss of 27 

lives. Furthermore, Fig. 1. 4b displays the aftermath of the landslide in the Kathua district of 

Jammu and Kashmir, which has led to the demolition of houses and the unfortunate loss of 8 

lives. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 1. 3: (a) Vehicular movement from Chaura to Wangtu NH stopped after landslide on 

14 July 2023 [14], (b) NH-5 blocked in Shimla districts on 23 July 2023 [15], (c) Gangotri 

NH blocked due to landslide on 20 July 2023 [16], (d) Mandi-Kullu National Highway 

blocked due to landslide on 18 July 2023 [17] 

 

 

(a) 

 

(b) 

Fig. 1. 4: (a) Landslide incidence at Raigad, Maharashtra on 23 July 2023 [18], (b) 

Landslide in Kathua, J&K on 19 July 2023 [19] 

 

1.8 Scope of The Thesis 

Despite the severe consequences of landslides causing significant damage during the 

monsoon season in India, there has been a lack of attention given to landslide research. Rainfall 
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acts as the main triggering factor for landslides; the Himalayan region’s newly folded mountains 

and seepage adversely affect slope stability, causing an increased number of slope failures during 

the monsoonal season [20]–[22]. The relationship between rainfall and landslide has been widely 

discussed in the existing studies [23]–[25]. Researchers have developed a threshold-based 

approach to assess the occurrence of landslides. Various methods can assess these thresholds: 

empirical methods [26], [27], probabilistic methods [28]–[31], and mathematical methods [32], 

[33]. With the advancement in technology, there are other tools, such as geological information 

system (GIS) and Global Positioning System (GPS) based on remote sensing and satellite data 

that can be used to develop a hazard zonation map [34]–[37] and to identify landslides through 

automatic process and calculation [38], [39]. These methods require a skilled team for 

deployment, which increases the cost. These are suitable for regional or larger areas for early 

warning, requiring a large amount of data; the rigorous processing of such large data and its 

inherent variability might lead to false alarms in some scenarios. Physical model methods are 

best suited to analyse the mechanism of rainfall-induced landslides for individual slopes due to 

their unpredicted nature and associated numerous triggering factors [40]–[43]. Numerical 

modelling methods are widely known to analyse the stability and seepage parameters for 

individual slopes, as it is not feasible to perform a physical model test for every individual slope 

due to its complex setup and procedure. Most of the existing studies performed numerical 

simulation but lacks validation with physical modelling results [8], [44]–[49].  However, the 

above methods can be combined for hazard risk zonation and to identify the critical slope. It can 

be seen that sometimes a steeper slope remains stable, whereas a gentle slope may fail under 

critical conditions. Keeping this in mind, it is important to consider individual slope monitoring 

for early prediction. As rainfall-induced landslides show an unpredictable nature of failure than 

the landslide initiated by the effect of gravity, scheduled field inspections at regular intervals 

alone may not be sufficient and effective [50]. With the advancement in electronic components 

and wireless networks, in-situ ground-based monitoring of slopes is another emerging method 

for real-time monitoring of slopes. These methods are also applicable to places not suitable for 

frequent visits. Different equipment and sensors have been used for monitoring and prediction 

of slopes. Extensometers are used to find the displacement of the moving slope from a stable 

portion [51]. However, this method needs extreme precision in selecting the critical slip surfaces 

to be installed. but the installation and maintenance costs are much higher, and thus cannot be 

suitable for low-cost purposes. The use of MEMS based sensors for the detection and monitoring 

of critical slopes is widely known due to their reasonable development and installation costs, and 
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are found to be effective in monitoring shallow slope failures [52]–[54]. Further slope 

stabilization methods can be applied to strengthen the slope to minimize the failure [55]–[57]. 

To overcome dependency on a single method or threshold value, a multi-method data fusion 

technique is suggested. This method integrates data from multiple method to enhance estimations 

and predictions, providing a more comprehensive and accurate approach to landslide monitoring 

and warning systems. 

The examination of research literature focusing on the analysis and prediction of rainfall-induced 

landslides indicates a significant rise in landslide occurrences in the Indian Himalayan region 

during the monsoon season. Due to the distinct geological characteristics of the Himalayan 

region as a young mountainous area, featuring intricate soil and rock formations, the failure 

mechanisms here differ from those in other regions. This necessitates a comprehensive study of 

these failure mechanisms to facilitate appropriate preventive measures. 

Unfortunately, there is a scarcity of studies investigating rainfall-induced landslides in the Indian 

Himalayan region, hindering the understanding of failure mechanisms. Additionally, conducting 

physical modelling for each critical slope is impractical due to resource constraints. Therefore, 

there is a need for numerical modelling methods, which offer a quicker means of determining 

critical failure planes and related safety factors. Despite the global use of numerical techniques, 

their reliance on input parameters and calibration for result analysis emphasizes the importance 

of validating results through physical modelling—a step lacking in previous studies. 

Once critical failure planes are identified, precise slope monitoring becomes essential to reduce 

false alarms and enhance mitigation efforts. While instrumentation-based monitoring is 

widespread globally, the associated complexity, maintenance requirements, and high-cost limit 

its application for monitoring individual slopes, especially when extensive coverage for large-

scale implementation is required. The recent advancements in MEMS-based sensors and IoT-

enabled devices offer a cost-effective alternative to traditional monitoring methods. The 

developed system, featuring new-edge IoT connectivity, allows sensors to link with the internet 

for cloud-based data transfer and storage, facilitating subsequent analysis. In order to validate 

the functionality of the developed system, it is tested in a simulated real environment using 

physical modelling, demonstrating its working effectiveness with minimal missing data.  

However, the utilization of these technologies in the Indian Himalayan region requires careful 

evaluation due to the region's distinct geology and hydrological patterns. While MEMS-based 

sensors for low-cost monitoring are widely adopted globally, their exploration in India and the 
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Indian Himalayan region is still limited. This creates opportunities for future research to innovate 

and develop monitoring systems tailored to the unique conditions of the region, enhancing their 

effectiveness and capacity.  

This study introduces an innovative strategy that integrates three methodologies: physical 

modelling, numerical modelling, and the installation of a self-developed cost-effective 

instrumentation-based monitoring device. This combined holistic approach aims to achieve 

precise slope monitoring, minimizing false alarms. Initially, physical and numerical modelling 

methods are employed to comprehend failure mechanisms and identify critical slopes. 

Subsequently, a sensor-based system is installed to enable accurate and real-time monitoring, 

enhancing the overall capability for mitigation measures. 

 

Assumptions and limitations of the present study along with some possible scope for future 

research are outlined as follows: 

1. Uniform values were used for the geotechnical input parameters and applied rainfall 

across the entire slope area. However, taking account of spatial changes in geotechnical 

and hydrological parameters could prove significant in making the analysis more 

realistic. 

2. The current research approach does not consider the impact of common contributing 

factors such as human activities, runoff, erosion, evaporation, and plant roots. Future 

investigations in these domains should prioritize the incorporation of these elements 

alongside the occurrences of precipitation. 

3. Transporting a large amount of material from the site to the laboratory for the experiment 

was unfeasible. Consequently, certain assumptions and limitations were inherent in 

material modelling. It is important to acknowledge the possibility of inaccuracies in 

material similarity, necessitating thorough checks during the interpretation of data. 

4. The mass that failed moves downward under saturated conditions, causing erosion of the 

bed material and subsequently increasing the volume of flow. Therefore, the assumption 

in this study that the slope fails in a single layer with circular failure can be a significant 

limitation. 

5. The system has undergone testing solely in a controlled laboratory setting. Before 

deploying it on-site, it is imperative to evaluate its performance in real-world conditions. 
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This assessment is critical to pinpoint any potential signal losses or internet connectivity 

issues, particularly in hilly and remote areas. 

 

1.9 Objectives of The Study  

The primary goal of this study is to comprehensively investigate the mechanisms behind 

landslides in the Himalayan region. To achieve this, a physical model has been developed in the 

laboratory. Additionally, numerical modelling has been used to study the failure mechanism, to 

assess the safety factor during rainfall, and to validate the physical model. This could enable the 

use of numerical modelling to analyse critical slopes and their mechanisms, which may not be 

feasible through physical modelling for every slope. Furthermore, the study aimed to create an 

early detection monitoring system for rainfall-induced landslides. By achieving these objectives, 

the research aims to gain a deeper understanding of the factors leading to landslides in specific 

sites and develop effective solutions for mitigation. After analysing the research gaps, the 

following objectives are proposed for the present research:  

• To study the failure mechanism of rainfall-induced landslides by using the Physical 

modelling method. 

• To investigate the failure mechanism of landslides using Numerical modelling techniques 

and subsequently validate the findings of the Physical modelling method. 

• To design and develop an efficient and cost-effective landslide monitoring and Early 

Warning System using different sensors. 

• To design and develop an Internet of Things (IoT)-based landslide monitoring system. 

• To analyse the performance of the Early Warning System in a realistic environment by 

preparing a physical model of slope in the laboratory. 

 

The significant findings of this study have been summarized, highlighting the key outcomes and 

insights gained from the research. These findings shed light on various aspects related to 

landslides, including their mechanisms, contributing factors, and monitoring measures. Based on 

these findings, recommendations for future studies and further research avenues have been 

provided. These recommendations aim to address any remaining gaps in knowledge and to 

encourage further exploration in the field of landslide research. 

 

The critical outline of the proposed study is simplified and presented in the following flow chart 

(Fig. 1. 5):  
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Fig. 1. 5: Flow chart of the study 
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1.10 Organization of The Thesis  

This thesis consists of six chapters, outlined briefly as follows: 

• CHAPTER 1 gives a brief introduction on rainfall induced landslide the objective and 

scope of the present study. 

• CHAPTER 2 enumerates knowledge regarding numerical and experimental studies for 

determining threshold values for rainfall induced landslide on various slopes. 

• CHAPTER 3 summarizes the findings of an experimental study conducted on a physical 

model, detailing the results obtained at various slopes. 

• CHAPTER 4 summarizes the numerical study and the results obtained at various slopes. 

• CHAPTER 5 cover the details of design and development of monitoring system for 

determining threshold values. 

• CHAPTER 6 summarizes the observations, major conclusions drawn and 

recommendations proposed from the present study. Scope of future research work is also 

provided in this chapter. 

• List of publications made during the present study are in the end of thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  General 

Landslides pose a significant threat to mountainous regions worldwide, necessitating 

extensive research on this phenomenon. This chapter presents a comprehensive literature review 

of previous studies related to landslides and establish connections with the findings of the current 

research. The review covers a wide range of internal and external factors that affect landslides 

and the mechanisms underlying their occurrence. Landslide events are caused by an interaction 

between internal variables, including land slope, soil composition, and rock characteristics, as 

well as external triggers like rainfall and earthquakes. The mechanics of landslides involve the 

convergence of these internal and external factors, with the initiation and movement of landslides 

occurring based on the prevailing conditions determined by these factors [58], [59]. 

In light of the above, this chapter provides an overview of relevant studies pertaining to 

landslides, examining a range of elements, encompassing both internal and external factors, 

along with the mechanisms behind the occurrence of landslides. By analysing the existing body 

of knowledge, this review aims to contribute to a deeper understanding of landslides and their 

dynamics. 

 

2.2 Definition and Classification of Landslides  

2.2.1 Definition 

Bates & Jackson (1987) [60] defined that, a landslide is commonly defined as the process 

in which soil and rock material is transported down a slope under the influence of gravity. This 

movement typically occurs along a relatively confined zone or a surface of shear. The term 

“landslide” encompasses various types of mass movements, including but not limited to debris 

flows, rockfalls, and slope failures. These events can be triggered by a range of factors such as 

heavy rainfall, seismic activity, human activities, or geological conditions. Understanding the 

mechanisms and characteristics of landslides is essential for assessing and mitigating the 

associated risks. Extensive research has been conducted to investigate the causes, behaviour, and 

prediction of landslides, employing various techniques such as monitoring systems, geotechnical 
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analyses, and numerical modelling. By advancing the knowledge in this field, one can enhance 

the ability to anticipate and manage the impacts of landslides, ultimately promoting the safety 

and resilience of communities in landslide-prone areas. 

Cruden & Varnes (1996) [61], defined landslides as “Landslides encompass the downward 

displacement of rocks, debris, or earth along a slope.” These events can exhibit a wide range of 

sizes, extending from isolated rock falls involving a single boulder to massive avalanches of 

debris carrying substantial volumes of rock and soil, with the potential to spread across vast 

distances measuring several kilometres. The scale and magnitude of a landslide can vary 

significantly and are influenced by factors such as the geological characteristics of the slope, 

weather conditions, and the underlying processes triggering the movement. This natural 

phenomenon can cause extensive damage to infrastructure, disrupt ecosystems, and pose a severe 

threat to human lives and livelihoods. Understanding the diverse dimensions of landslides, from 

minor rockfalls to colossal debris avalanches, is crucial for developing effective mitigation 

strategies and implementing early warning systems to mitigate the devastating consequences of 

these events. 

Crozier (1999) [62] stated landslides are a specific category within the broader classification of 

slope processes known as mass movement. The term ‘mass movement’ encompasses all 

geological processes characterized by the downward or outward movement of materials 

composing a slope, influenced primarily by the force of gravity. Landslides, in particular, are 

mass movements characterized by relatively high velocities and distinct boundaries, typically 

formed by shear surfaces. 

The distinction between landslides and other forms of mass movement lies in their speed of 

movement and the presence of well-defined boundaries. Unlike slower processes such as soil 

creep or solifluction, landslides exhibit rapid rates of displacement. This velocity is often 

associated with the presence of clear boundaries, typically manifested as shear surfaces within 

the slope material. These shear surfaces serve as identifiable markers, differentiating landslides 

from other types of mass movement. 

By recognizing landslides as a subset of mass movement and understanding their distinctive 

characteristics, researchers and practitioners can gain insights into their behaviour, mechanisms, 

and potential hazards. This differentiation enables more accurate identification, assessment, and 

mitigation of landslide risks, leading to improved slope management and enhanced safety in 

areas prone to such events. 
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2.2.2  Classification  

Landslides have been commonly classified based on the nature of their occurrence and 

the material characteristics of the sliding mass, as shown in Fig. 2. 1. Landslides are also 

categorised based on sliding velocity, ranging from extremely slow to extensively quick, as 

represented in Fig. 2. 2. It has been determined that landslides can be categorized into eight 

distinct groups according to their level of activity. These groups include active, suspended, 

reactivated, inactive, dormant, abandoned, stabilized, and relict mass movements [63], [64].  

 

 

Fig. 2. 1: Classification of landslides based on process type and materials [61] 
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Fig. 2. 2: Mass movement classification based on velocity of displacement [64] 

Geological mass movements exhibit various types of behaviours, each with distinct 

characteristics and triggers. These movements can significantly impact landscapes and pose risks 

to communities and infrastructure. Different types of mass movements are described (as shown 

in Fig. 2. 3): 

I. Falls: Falls occur when masses of geologic materials, like rocks and boulders, detach 

from steep slopes or cliffs due to gravity and mechanical weathering. The movement 

involves free-fall, bouncing, and rolling along fractures, joints, and bedding planes. 
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II. Topple:  Toppling failures occur when a unit or units undergo forward rotation around a 

pivotal point due to the combined effects of gravity and the forces exerted by 

neighbouring units or fluids within cracks.  

III. Flows: There are five main categories of flows, each differing in fundamental ways: 

a. Debris flow: A rapid movement of a slurry-like mixture of loose soil, rocks, 

organic matter, air, and water downslope, commonly triggered by heavy 

precipitation, snowmelt, or other landslides. 

b. Debris avalanche: A debris flow characterized by an exceptionally high speed. 

c. Earthflow:  Described as having an “hourglass” configuration, this phenomenon 

involves the liquefaction and subsequent flow of slope material, resulting in the 

creation of a depression at the upper end. It is frequently observed in materials 

that are fine-grained or contain clay.  

d. Mudflow: A swift movement of substances composed of particles measuring at 

least 50 percent in sand, silt, and clay sizes.  

e. Creep: The gradual and nearly imperceptible downward displacement of soil or 

rock caused by shear stress, without reaching the point of shear failure, is referred 

to as “creep.” This phenomenon is often evidenced by the curvature of tree trunks, 

the bending of fences, and the formation of subtle soil ripples. 

IV. Lateral Spreads: These phenomena take place on mild inclines or level ground, where 

motion is predominantly defined by horizontal expansion, often accompanied by the 

formation of shear or tensile fractures. Lateral spreading is often triggered by 

liquefaction, transforming saturated, loose sediments into a liquefied state, and can be 

induced by earthquakes or other factors. 

It is essential to understand these various types of mass movements to effectively assess and 

mitigate their potential risks, especially in areas prone to landslides. A comprehensive 

understanding of their mechanisms can aid in the development of appropriate early warning 

systems and implementation of risk reduction strategies. 
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Fig. 2. 3: Major types of landslide movements [65] 

 

2.3 Causative Factors 

The causes of landslides can be classified into three main categories: geological, 

morphological, and human-induced factors. Geological causes include weak or sensitive 

materials, weathered materials, sheared or jointed materials, and the presence of adverse 

orientations in discontinuities. Morphological factors encompass tectonic or volcanic uplift, 

glacial rebound, erosion of slope toe or lateral margins by fluvial, wave, or glacial actions, and 

subterranean erosion. Human activities, such as excavation, loading, deforestation, irrigation, 
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mining, artificial vibration, and water leakage, also contribute to landslides. Fig. 2. 4 presents the 

causative factors for occurrences of landslide. 

Among these causes, water saturation plays a significant role in triggering most damaging 

landslides globally. Slope saturation can occur due to intense rainfall, snowmelt, changes in 

groundwater levels, and water-level fluctuations along coastlines, dams, lakes, reservoirs, canals, 

and rivers. Landslides and floods are closely related, and debris flows and mudflows often 

coincide with floods, causing additional confusion. Landslides can lead to flooding by creating 

landslide dams that block valleys and stream channels, resulting in backwater flooding and 

downstream flooding if the dam fails. Moreover, landslides can cause overtopping of reservoirs 

and reduced capacity to store water. 

Understanding the various causes of landslides is crucial for effective risk management, early 

warning systems, and disaster preparedness. The influence of water saturation, seismic activity, 

and volcanic events on landslides underscores the importance of proactive measures to minimize 

the devastating impacts of these natural hazards on human lives and infrastructure. 

 

2.4 Landslide Study and Mitigation Approach  

Studies related to landslides can be grouped into qualitative and quantitative methods. 

Qualitative methods involve analytical descriptions and expert opinions for prediction, while 

quantitative methods utilize mathematical descriptions and numerical simulations of landslides. 

These techniques can be further classified into local models, which highlight individual landslide 

processes, and region-specific models, which address landslide occurrences on a larger scale. 

Landslide analysis has predominantly adopted a local approach in geotechnical engineering, 

particularly in slope stability assessments for natural and artificial slopes like road cuts, dams, 

embankments, and open-pit mines. This regional strategy provides: 

i. A thorough understanding of the failure processes 

ii. The effect of the triggering events 

iii. The efficiency of remedial or stabilizing interventions. 

By concentrating on specific sites, geotechnical engineering applications benefit from a thorough 

investigation of slope stability, ensuring the safety and reliability of various infrastructure 

projects. Fig. 2. 5 presents the approach for landslide early warning system. 
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Fig. 2. 5: Approach for landslide early warning system (LEWS) 

 

2.4.1 Literature Based on Instrumentation 

  Bhandari (2006) [66] discussed the Indian landslide scenario, including strategic issues 

and action points. The Central Road Research Institute (CRRI, India) initiated landslide 

instrumentation efforts in the 1970s, utilizing hydraulic standpipe piezometers for pore pressure 

measurements. The electrical resistivity method was employed to determine slip surfaces, while 

water level indicators monitored ground subsidence. A tilt measurement device measured crack 

widths and tilts in affected buildings. Continuous rain monitoring, estimation of infiltration and 

evaporation, linking rainfall to pore pressures and displacements, and stability analyses carried 

out in this study provided insights into exploring landslide possibilities. Deformation 

measurement is conducted using Satellite Radar Imaging (SAR) and the Global Positioning 

System (GPS). 

 

 Alcik et al. (2009) [67] developed a robust and simple algorithm for the Istanbul earthquake 

early warning system by utilizing exceedance of threshold time-domain amplitude and 

cumulative absolute velocity (CAV) levels in the study. The establishment of threshold levels 
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for the novel Bracketed CAV Window approach (BCAV-W) relied on an analysis of seismic 

ground motion records obtained from earthquake events occurring at fault distances less than 

100 kilometers. Within this framework, three distinct alarm levels were defined, characterized 

by their respective critical velocity thresholds: 0.2 m/s, 0.4 m/s, and 0.7 m/s. In the BCAV-W 

protocol, when any recorded Cumulative Absolute Velocity (CAV) measurement surpasses the 

value of the first specified threshold, it is considered as a preliminary indication or ‘vote’ of 

seismic activity. To ensure the robustness of the detection system, a crucial condition must be 

met: the receipt of data from a minimum of three monitoring stations within a predefined 

selectable time interval. Once this condition is satisfied, the system proceeds to declare the first-

level seismic alarm. This innovative approach represents a significant advancement in seismic 

monitoring and alarm systems, allowing for timely and accurate assessment of seismic activity 

based on ground motion records obtained from fault distances of less than 100 kilometers. The 

implementation of multiple threshold levels and a voting system enhances the reliability and 

precision of early earthquake detection. The BCAV-W approach is suggested, with threshold 

levels of 0.20, 0.40, and 0.70 m/s for the three alarm levels. 

 

Ramesh (2014) [68] developed a comprehensive functional system comprising 50 geological 

sensors and 20 wireless sensor nodes. This wireless sensor network system gathers data on 

rainfall, moisture, pore pressure, movement, and various geological, hydrological, and soil 

properties. The integration of these sensors enabled a deeper comprehension of landslide 

conditions. By utilizing wireless sensor networks, an advanced three-level landslide warning 

system (Early, Intermediate, and Imminent) was developed within the system, enhancing 

landslide monitoring and prediction capabilities. 

 

Uchimura et al. (2015) [69] presented a novel monitoring method for rainfall-induced landslides 

using tilt sensors for detection of abnormal deformation on slope surfaces. Tilt sensors were 

attached to steel rods and placed at depths of 0.5–1 m below the slope surface layer. A wireless 

sensor unit, combining MEMS tilt sensors and volumetric water content sensors, was developed 

and deployed on real slopes in the study areas of Japan and China for long-term monitoring. 

While tilt sensors were relatively new as an early warning technique, their monitoring data was 

less extensive compared to extensometers. The tilting behaviours in pre-failure stages might vary 

based on site conditions and sensor positions, necessitating further data collection to enhance the 

efficiency and applicability of this early warning method. 
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 Biansoongnern et al. (2016) [70] developed an early warning system for landslides using 

microcontroller PIC12F683 and ATmega328 based on a low-cost Wi-Fi sensor network using a 

vibration sensor.  

 

Smethurst et al. (2017) [71] explored the present and prospective functions of instrumentation 

and slope monitoring, including an examination of the prevailing monitoring infrastructure, 

frequently employed instrumentation, and the parameters that are typically measured. The 

existing monitoring infrastructure, commonly installed instrumentation, and measured 

parameters were discussed. The study also examined technological advancements and its 

potential impact on monitoring applications. Additionally, the article addresses the barriers and 

challenges hindering the widespread adoption of instrumentation in slope engineering. These 

challenges include integrating instrumentation economics into risk management, developing a 

better understanding of slope performance, identifying performance deterioration, and 

effectively managing and utilizing large volumes of data. Overall, the work provides insights 

into the evolving landscape of slope monitoring and the complexities associated with its 

implementation. 

 

Intrieri et al. (2018) [72] developed a novel low-cost wireless network utilizing ultra-wideband 

impulse radiofrequency technology. The network, called Wireless sensor network for Ground 

Instability Monitoring (Wi-GIM), can measure distances between nodes using the same signals 

used for transmission, eliminating the need for separate measurement sensors. Wi-GIM consists 

of a wireless sensor network (WSN) that utilizes time-of-flight (ToF) measurements of Ultra-

wideband impulses to determine inter-distances between nodes. The system's limitations include 

precision (up to 2-5cm with data filtering and averaging) and battery duration (a few weeks with 

hourly data acquisition, depending on air temperature). These limitations may be attributed to 

the prototype nature and the use of cost-effective components, which could be addressed through 

industrialization and the availability of advanced cost-effective modules. 

 

Dikshit et al. (2018) [73] designed a dependable and sturdy system using microelectromechanical 

systems (MEMS) tilt sensors in conjunction with volumetric water content sensors for the 

purpose of monitoring both tilting angles and lateral displacement on slope surfaces. The goal 

was to create a dependable warning system with a low false alarm rate. The findings led to the 

development of an effective early warning system and the calibration of warning thresholds using 

empirical techniques for enhancing slope stability assessment and risk mitigation efforts. 
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Madhusudhan et al. (2018) [74] designed an Arduino-based sensor network technology that can 

develop large-scale systems for real-time monitoring of landslide-prone areas and give warning 

signals. The landslide detection system uses a vibration sensor to measure vibration, which 

monitors track and sends the necessary information to railway authorities to take necessary 

actions if chances of a landslide is detected. 

 

Berg et al. (2018) [75] aimed to achieve three objectives: (i) gather a long-term dataset of 

continuous deformation measurements with high temporal resolution for a Peace River slope, (ii) 

enhance understanding of the behaviour of this creeping slope in response to climatic factors, 

and (iii) explore the effectiveness of an acoustic emission (AE) monitoring system in providing 

early warnings for accelerating deformation. Shape Accel Array (SAA) and acoustic emission 

(AE) instruments were installed alongside conventional inclinometers and piezometers. The 

measurements revealed that the landslide exhibited an “extremely slow” movement, averaging 5 

mm per year. Seasonal activity with periods of acceleration and deceleration driven by pore-

water pressures was observed. The measured AE correlated strongly with the rate and magnitude 

of displacement measured by SAA, indicating the efficiency of AE as an early warning tool for 

detecting deformation. 

 

Dixon et al. (2018) [76] developed an affordable and reliable acoustic emission (AE) monitoring 

system to detect early signs of landslides. Physical model experiments were conducted to 

evaluate the system's effectiveness in measuring accelerating deformation, establishing a clear 

correlation between AE and displacement rates. Once the AE surpassed a predetermined 

threshold, an alarm is triggered to notify users of an imminent slope failure, allowing for timely 

evacuation or preventive measures to be taken. The developed system may serve as a practical 

solution for landslide detection and an early warning system to protect at-risk individuals. The 

system was simple and could be easily implemented by communities worldwide to safeguard 

vulnerable populations. 

 

Kaur et al. (2019) [77] utilized a comprehensive strategy that involved the integration of random 

forest (RF) combined with probabilistic likelihood ratio (RF-PLR), fuzzy logic (FL), and the 

index of entropy (IOE) to quantify landslide susceptibility in Gangtok city, Sikkim state, India. 

Landslide inventories were compiled through the utilization of satellite imagery, Google Earth, 

and information sourced from the Geological Survey of India. Twelve conditioning factors, 

including slope, elevation, land use, geology, rainfall, and distance to roads, were used for 
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geospatial modelling. The resulting landslide susceptibility maps were classified into four hazard 

zones. The comparison of models revealed that RF-FL exhibited the highest accuracy of 69.36%, 

with a lower Type I error of 9.68% and Type II error of 19.35% compared to the other models. 

 

Purnomo et al. (2019) [78] created a landslide monitoring system to detect soil movement and 

humidity, which are common causes of landslides. The project harnessed the capabilities of soil 

movement sensors, which effectively transformed spatial changes into stress measurements, and 

humidity sensors to record moisture levels. These sensors interfaced with a sophisticated 10-bit 

Analog to Digital Converter (ADC) embedded in the ATmega8535 microcontroller. The ADC 

facilitated the conversion of analog sensor data into digital format for further analysis. Once the 

data was digitized, the system seamlessly transmitted the acquired values, which included soil 

movement and humidity metrics, via a serial USB communication protocol. This protocol 

ensured a reliable and efficient means of conveying the information to a host computer or any 

other connected device for comprehensive data analysis and monitoring. This integrated setup 

allowed for real-time monitoring and analysis of the soil conditions, providing valuable insights 

into soil stability and moisture levels for a wide range of applications. This system enabled 

continuous monitoring and provided valuable data for landslide detection and prevention. 

 

Ribeiro and Lameiras (2019) [79] presented an experimental evaluation of the performance of 

six low-cost MEMS accelerometers in identifying natural frequencies, damping ratios, and noise 

characteristics of a three-storey frame model and a reinforced concrete slab. The study utilized a 

low-cost Arduino-based data acquisition system. The findings indicated that the MEMS 

accelerometers exhibited an overall satisfactory performance. 

 

Llorens et al. (2019) [80] developed a wireless multichannel seismic noise recorder system called 

Geophonino-W for array measurements. The system consists of components such as a 

microcontroller board (Arduino), conditioning circuit, Xbee module, SD card, and GPS module. 

Laboratory tests, including frequency response, synchronization, and battery duration, were 

conducted to evaluate the system's performance. The Geophonino-W was also compared with 

commercial systems and tested in field measurements. The study revealed that the MEMS 

accelerometers demonstrated a generally satisfactory performance. 

 

Kafadar (2020) [81] presented an affordable and computer-aided system that utilized geophones 

to record, monitor, and analyse three-component microtremor data. In contrast to basic data 
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acquisition systems, the integrated system in question boasts an ingenious capability – it 

seamlessly incorporates the interpretation of microtremor data by leveraging the horizontal-to-

vertical spectral ratio (H/V) method. This remarkable feature eliminates the need for external 

software, making data analysis more efficient. This advanced system facilitates the effortless 

estimation of both H/V peak frequency and amplitude, greatly enhancing its usability for 

researchers and professionals in various fields. It comes equipped with an array of impressive 

specifications, including a robust 200 Hz sampling frequency, an impressive dynamic range of 

approximately 72 dB, and an intuitive text data format. Furthermore, the system provides a 

comprehensive suite of data analysis tools to assist users in extracting meaningful insights from 

the collected data. Adding to its user-friendliness, the system is complemented by a graphical 

user interface (GUI) meticulously developed using the .NET Framework 4.5.2. This GUI 

streamlines the data acquisition and analysis process, ensuring a smooth and efficient workflow 

for users. In terms of hardware, the system is not just self-contained, but also incorporates various 

external components. These include signal conditioning circuits, a voltage converter circuit, an 

external analog-to-digital converter, and an Arduino Uno board. These additional components 

contribute to the system's robustness, reliability, and flexibility in addressing a wide range of 

data acquisition and analysis needs. This software facilitated communication, data transfer, 

monitoring, recording, and interpretation of seismic data between the external hardware and 

computer. The system demonstrated an overall satisfactory performance. 

 

Abraham et al. (2020) [52] developed a Landslide Early Warning System (LEWS) that was 

meticulously designed and implemented in the challenging terrain of the Darjeeling Himalayas. 

This innovative system harnessed the power of a sensor network, featuring state-of-the-art 

Micro-electro-mechanical systems (MEMS)-based tilt sensors and volumetric water content 

sensors, to effectively monitor active slopes and predict potential landslides. The heart of this 

system was an Internet of Things (IoT)-based network, enabling seamless wireless 

communication between the various components involved. These components included the 

sensors themselves, data loggers responsible for data collection, and a centralized internet 

database for comprehensive analysis and storage. In a rigorous field trial conducted over three 

monsoon seasons, the functionality and reliability of the tilt sensors in this unique setting were 

fully demonstrated. This not only showcased their effectiveness in detecting slope movement but 

also revealed its adaptability to the specific environmental conditions of the Darjeeling 

Himalayas. One of the most significant outcomes of this study was the recognition of the 

importance of considering long-term rainfall patterns as opposed to merely focusing on 
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immediate weather events when defining rainfall thresholds. This revelation underscored the 

need for a more holistic approach to landslide prediction, one that takes into account the 

cumulative impact of sustained rainfall on slope stability. 

 

Zhu et al. (2020) [82] introduced a novel calibration technique for improving the measurement 

accuracy of Micro-electro-mechanical system (MEMS) accelerometer-based inclinometers used 

in civil structure deformations. In this study, a novel approach was employed to enhance the 

accuracy of angle measurements. The methodology revolved around the development of a 

calibration model with a single parameter. This calibration model served as the cornerstone for 

obtaining highly precise angles. To determine the essential parameter for this calibration model, 

an image-processing-based method was meticulously designed and integrated into the system.  

To validate the viability and reliability of this innovative technique, an ADXL355 accelerometer-

based inclinometer was chosen as the benchmark instrument. The results of the validation 

process underscored the technique's robustness and dependability. Consequently, this paved the 

way for the utilization of the calibrated MEMS inclinometer as the primary tool for measuring 

the deflections of a scale beam model. The primary objective was to assess the performance of 

the proposed technique in the real-world context. Experimental findings demonstrated that this 

cutting-edge approach delivered highly accurate deformation measurements for MEMS 

inclinometers. The precision and reliability of the measurements obtained through this 

methodology represent a significant leap forward in the field of in-clinometry, promising a wide 

array of applications in various industries and scientific endeavours. This new calibration 

technique offered a promising approach to enhance the measurement accuracy of MEMS 

accelerometer-based inclinometers in civil engineering applications. 

 

Qiao et al. (2020) [54] conducted a series of model and field tests to examine the tilting direction 

and pre-failure behaviour of slopes under various conditions. To explore the dynamics of surface 

tilting, an array of tilt sensors with varying rod lengths were employed in this study. The objective 

was to gain insights into the underlying mechanisms governing surface tilting behaviour. The 

findings from our experiments revealed an intriguing pattern in the readings obtained from these 

tilt sensors. Remarkably, the data demonstrated that surface tilting measurements obtained from 

tilt sensors lacking rods and those equipped with short rods directly above the slip surface 

exhibited a remarkable and consistent alignment. This outcome implied that the rotation of the 

surface in response to external forces followed a predictable pattern under these conditions. 
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Conversely, the results took an unexpected turn when tilt sensors with elongated rods were 

introduced into the equation. These particular sensors exhibited a conspicuous departure from 

the established rotational direction. The surface tilting behaviour observed in conjunction with 

the longer rods was notably distinct, showcasing a counterintuitive or opposing rotational 

direction.  

This striking observation underscores the complexity of surface tilting dynamics and hints at the 

significance of rod length as a contributing factor. Further analysis and investigation are 

warranted to elucidate the precise mechanisms that underlie this intriguing phenomenon. These 

findings provided valuable insights into understanding contradictory surface tilting behaviours 

in real-life landslide monitoring cases and further established a correlation between slip surface 

depth and surface tilting. The authors also offered a standard for tilt sensor installation in field 

monitoring applications. 

 

Supekar et al. (2018) [83] aimed to develop a warning system which could alert people about 

impending landslides and thunderstorms. The system collects data from input sensors, which was 

then transmitted to a controller. Using a GSM module, an alert message is sent to notify 

individuals. The sensor readings were displayed on an LCD screen as a percentage. By 

employing an SMS system, this approach could effectively alert people, potentially saving lives 

and protecting property. Integrated with Wireless Sensor Networks (WSN), the developed 

system could provide accurate and continuous data for analysis. The research highlights the 

importance of monitoring changing geotechnical conditions using sensors like soil moisture 

sensors, rain sensors, and strain gauges. Furthermore, it discussed the concept of data 

transmission via Global System for Mobile Communication (GSM) to a remote data centre. 

 

Kanungo et al. (2017) [84] implemented a real-time and cost-effective landslide monitoring 

system as a measure for risk mitigation. In the Garhwal Himalayas of India, a Landslide 

Observatory was established at Pakhi Landslide. This observatory utilized wireless 

instrumentation to monitor ground deformation and hydrologic parameters in real time. The 

comprehensive monitoring system in place featured an array of sensors, notably in-place 

inclinometers (IPI), piezometers, wire-line extensometers, and an automated weather station 

(AWS). These sophisticated sensors were instrumental in continuously collecting valuable real-

time data, which was subsequently leveraged to establish crucial warning thresholds. A thorough 

analysis of this data illuminated intriguing findings. One prominent observation was that the 
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stable region of the landslide, situated beyond the primary scarp, displayed minimal 

displacement, indicating relative geological stability. However, within the main body of the 

landslide, a more intricate pattern of movement emerged, particularly evident at various depths. 

This dynamic behaviour was most pronounced at the interface between colluvium and 

significantly weathered bedrock, highlighting the intricate interplay between geological features. 

Interestingly, the interface between the greatly weathered bedrock and the un-weathered bedrock 

also exhibited notable activity, suggesting a complex interaction that merits further investigation. 

The work presented signifies the diverse array of sensors within the monitoring system provided 

an invaluable window into the geological dynamics of the landslide, shedding light on localized 

areas of movement and stability within the study area. In addition to that, a correlation between 

intense rainfall events and displacement patterns across the inclinometer sensors was also 

presented.  

 

Artese et al. (2015) [85] developed a cost-effective and compact integrated sensor for position 

and inclination measurement and monitoring at the University of Calabria. The sensor was 

specifically designed for monitoring landslides and structures. The sensor's measurement 

accuracy and range could be adjusted by selecting bubble vials with different characteristics. 

Equipped with a computer, the instrument could independently process data from a single sensor 

or a network of sensors. It could also generate alert signals if predetermined thresholds set by the 

monitoring centre were exceeded. It provided a detailed description of the sensor's hardware and 

software, calibration process, laboratory tests, and initial field data acquisitions. 

 

Intrieri et al. (2013) [86] presented a landslide Early Warning Systems (EWSs) and provided 

practical guidelines for designing such systems, specifically targeting end-users with limited 

experience in this area. The guidelines were based on two flow chart-based tools developed as 

part of the Safe Land project, aimed at ensuring simplicity and adaptability to various types and 

settings of landslides for the individual slope scale. The authors highlighted that it is almost 

impossible to account for all possible real-life scenarios in a landslide early warning system. 

Therefore, it is crucial for end-users to customize the process according to the specific 

characteristics of the interest area where the landslide EWS is to be implemented. The article 

emphasizes the need for flexibility and adaptation to local conditions. The guidelines served as 

a useful resource for stakeholders involved in the design and implementation of landslide EWSs, 

enabling them to tailor the systems to meet the unique requirements and challenges of their 

respective areas. 
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Intrieri et al. (2012) [51] presented in detail the full process of implementing an early warning 

system for rockslides in the Central Italy region. The research delved into a comprehensive 

analysis of the early warning system, encompassing a wide spectrum of critical components. 

These facets included geological comprehension, the formulation of risk scenarios, a thorough 

kinematic characterization of landslide dynamics, the meticulous selection and subsequent 

installation of monitoring equipment, the establishment of alert thresholds, and the development 

of civil protection strategies. This multifaceted system was composed of an array of monitoring 

instruments, featuring 13 wire extensometers, 1 thermometer, 1 rain gauge, and 3 cameras. In 

practice, the early warning system functioned in a sophisticated manner. It utilized the data 

collected by its instruments to monitor and assess the prevailing conditions. When the velocity 

thresholds of two or more sensors were surpassed, the system automatically triggered attention 

levels, which, in turn, led to an escalation in the intensity of monitoring and surveillance efforts. 

This real-time response mechanism allowed for a swift and proactive approach to potential 

landslide events, enhancing the system's overall effectiveness in safeguarding vulnerable areas 

and communities from such natural hazards. In the event of a change in the landslide's behaviour, 

combined with the use of expert assessment and predictive techniques suggesting an impending 

failure, an alarm would be activated, resulting in the closure of the upper road. 

 

Uchimura et al. (2010) [53] introduced a cost-effective and straightforward monitoring method 

for early landslide warning. Instead of using an extensometer, a tilt sensor was employed to detect 

abnormal deformation on the slope surface. Model tests were conducted to investigate the 

relationship between rotation angle measured by the tilt sensor and slide displacement along the 

slope surface. The results showed that rotation data responded approximately 30 minutes prior 

to failure, suggesting its potential as an early warning signal. However, the behaviour of rotation 

varied between cases, necessitating careful definition of warning criteria. In the investigation of 

a model slope constructed with loosely packed sand, the methodology employed for failure 

detection exhibited noteworthy efficacy. One facet of this approach involved the measurement 

of slide displacement along the surface of the slope, which proved instrumental in the early 

detection of instability and potential failure at the toe of the slope. This critical assessment 

allowed for the timely recognition of impending issues at the base of the slope. Furthermore, the 

study expanded its focus to encompass the monitoring of rotational movements occurring on the 

slope's surface. This facet of the research provided valuable insights into the development of 

progressive failures further up the slope. By scrutinizing the rotation dynamics of the slope, the 

study was able to identify the onset and progression of instability along the entire slope, offering 
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comprehensive and in-depth insights into its behaviour. Moreover, the research delved into the 

deployment of advanced wireless sensor units equipped with tilt sensors and volumetric water 

content sensors. These sensor units were strategically placed on a real-life slope in Kobe City, 

providing a genuine and representative testing environment. Through the deployment of these 

sensors, the study aimed to establish a robust system for long-term monitoring, aiming to capture 

the slope's behaviour over extended periods and facilitate the early detection of potential 

instabilities. This comprehensive investigation not only demonstrated the efficacy of measuring 

slide displacement and monitoring rotational behaviour in detecting slope failures but also 

ventured into the realm of advanced sensor technology for real-world slope monitoring, paving 

the way for improved safety and risk management in geological and geotechnical contexts. By 

combining data from tilt sensors and volumetric water content sensors, a simple approach to 

defining warning criteria was proposed.  

A brief summary of the existing literature based on instrumentation studies is provided in Table 

2. 1. 

 

Table 2. 1: Literature based on instrumentation 

S. No. Authors Work done 

1.  Bhandari (2006) [66] Used a tilt measurement device and hydraulic standpipe 

piezometer to determine the slip surfaces, ground subsidence 

and PWP 

2.  Ramesh (2014) [68] Developed a monitoring system comprising 50 geological 

sensors and 20 wireless sensor nodes. This network system 

gathered data on rainfall, moisture, PWP, movement, and 

other geological, hydrological and soil properties 

3.  Uchimura et al. 

(2015) [69] 

Presented a novel monitoring method using tilt sensors for 

detection of deformation on slope surfaces. The sensors were 

attached to steel rods and placed at a depth of 0.5 to 1 m below 

the surface 

4.  Biansoongnern et al. 

(2016) [70] 

Developed an LEWS using microcontroller PIC12F683 and 

ATmega328 based on a low-cost Wi-Fi sensor network using 

a vibration sensor 
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5.  Smethurst et al. 

(2017) [71] 

Carried out examination of the prevailing monitoring 

infrastructure conditions and the parameters that influences 

the functioning of instrumentation for slope monitoring 

6.  Intrieri et al. (2018) 

[72] 

Developed a low-cost wireless network using impulse 

radiofrequency technology. The system can measure 

distances between nodes using the same signals used for 

transmission, eliminating the need for separate measurement 

sensors. 

7.  Dikshit et al. (2018) 

[73] 

Designed MEMS based warning system including tilt and 

VWC sensors to monitor tilt angles and lateral displacement 

of slope surfaces 

8.  Madhusudhan et al. 

(2018) [74] 

Designed an Arduino-based sensor network technology that 

can develop large-scale systems for real-time monitoring of 

landslide-prone areas and give warning signals 

9.  Dixon et al. (2018) 

[76] 

Developed an acoustic emission (AE) based monitoring 

system and conducting physical model experiments to check 

the system effectiveness 

10.  Ribeiro and 

Lameiras (2019) [79] 

Utilized a low-cost Arduino-based data acquisition system 

comprised of six low-cost MEMS accelerometers to measure 

natural frequencies, damping ratios, and noise characteristics 

of a three-storey frame model and a RC slab 

11.  Abraham et al. 

(2020) [52] 

Developed an IoT based LEWS for terrain of Darjeeling 

Himalayas. The system included MEMS based tilt and VWC 

sensors. 

12.  Qiao et al. (2020) 

[54] 

Conducted a series of model and field tests to examine the 

tilting direction and pre-failure behaviour of slopes under 

varying conditions by using an array of tilt sensors with 

varying rod lengths. 

13.  Supekar et al. (2018) 

[83] 

Developed a warning system for landslides and thunderstorm 

using a GSM module for emergency alerts   

14.  Kanungo et al. 

(2017) [84] 

Devised a real-time landslide monitoring system comprised 

of an array of sensors, in-place inclinometers (IPI), 
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piezometers, wire-line extensometers, and an automated 

weather station (AWS) 

15.  Artese et al. (2015) 

[85] 

Developed a cost-effective and compact integrated sensor for 

position and inclination measurement and monitoring 

equipped with a computer, the instrument could 

independently process data from a single sensor or a network 

of sensors 

 

2.4.2  Literature Based on Rainfall Intensity-Duration 

             Harilal et al. (2019) [87] attempted to set rainfall thresholds as a component of creating 

a more effective early warning system for landslides. The establishment of landslide rainfall 

thresholds involved a meticulous examination of daily rainfall records procured from the India 

Meteorological Department (IMD) encompassing six distinct weather stations situated in the 

region of Sikkim. An exhaustive scrutiny of both the daily precipitation data and historical 

records of landslide occurrences spanning the time frame from 1990 to 2017 was diligently 

undertaken. This comprehensive analysis formed the foundation for determining the specific 

precipitation levels at which landslides become a significant concern in the Sikkim region. A 

regional rainfall threshold specific to the Sikkim region for rainfall-triggered landslides was 

established using an intensity-duration (I-D) relationship, expressed as 𝐼 = 43.26𝐷(−0.78),  

(where I represents rainfall intensity in millimetres per day, and D denotes the duration in days) 

for the rainfall-triggered landslides in the Sikkim region, and a local threshold of 𝐼 = 100𝐷(−0.92) 

was developed for the Gangtok area. 

 

Kanungo and Sharma (2014) [21] developed localized rainfall thresholds for landslides by 

analysing daily precipitation data within the geographical expanse of the Chamoli-Joshimath 

region situated in the Garhwal Himalayas, India. After analysing 81 landslides out of 128 that 

occurred between 2009 and 2012, an empirical intensity-duration threshold of 𝐼 = 1.82𝐷(−0.23), 

(where I is the intensity of rainfall in millimetres/hour and D is time duration taken in hours unit) 

was determined for landslide occurrences. Also, the research attempted an extensive 

investigation into the influence of antecedent rainfall, uncovering a crucial threshold for landslide 

initiation in the study region. The findings revealed that a minimum antecedent rainfall of 55 mm 

over a 10-day period and an even more substantial antecedent rainfall of 185 mm spanning 20 

days were both indispensable factors for triggering landslides in this specific geographical area. 

These findings shed light on the essential role that antecedent rainfall plays in the initiation of 
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landslides, providing valuable insights for understanding and mitigating landslide risks in the 

studied locale. Further refinement of these thresholds using hourly rainfall data and additional 

years of data was recommended. 

 

Dikshit et al. (2020) [6] carried out the evaluation of landslide risk by utilizing a rainfall threshold 

model, which incorporated both daily and cumulative antecedent rainfall measurements for 

instances of landslides. The process of establishing threshold values for predicting landslides in 

a particular area encompassed a comprehensive examination of daily rainfall and prior 

precipitation data, incorporating records of precipitation and landslide occurrences from 2010 to 

2016. This comprehensive examination revealed that a 20-day antecedent rainfall period 

demonstrated the highest degree of correlation with landslide events within the area. To ensure 

the robustness and reliability of these threshold values, they were subsequently subjected to 

validation, incorporating data from the year 2017, which was excluded from the initial threshold 

estimation process. The validated threshold values, having proven their efficacy in predicting 

landslides, were leveraged to establish temporal probabilities for landslide occurrence using a 

Poisson probability model. This critical step allows for a more comprehensive understanding of 

the temporal dynamics of landslides, offering insights into the likelihood of such events at 

different points in time. The validated results suggested that the model could be used as a 

preliminary early warning system. 

 

Abraham et al. (2020) [27]  developed an early warning system based on empirical rainfall 

thresholds correlated with landslide initiation. The research focused on selecting appropriate 

rainfall parameters and developing regional-scale thresholds using intensity and duration 

conditions. Four different approaches were considered, including using the nearest rain gauge, 

selecting the most extreme rainfall event irrespective of location, modifying intensity definition, 

and defining local-scale thresholds based on meteo-hydro-geological conditions. The results 

indicated that choosing the rain gauge on the basis of most severe rainfall parameters yielded the 

best performance. The findings highlighted the significance of sensitivity in intensity-duration 

threshold models to variables like the choice of rain gauge, the definition of intensity, and zone 

subdivision. 

 

Dikshit et al. (2020) [20] presented a comprehensive review of studies conducted in the Indian 

Himalayas, encompassing forecasting, monitoring, hazard analysis, and susceptibility 

assessment. The analysis highlighted the need for additional research, such as incorporating 
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climate change factors and obtaining high-quality data for computational models. It also revealed 

a geographical bias in the studies, with certain regions receiving more attention than others. The 

review could be a valuable resource for stakeholders and researchers working or planning to 

work in the Indian Himalayas, emphasizing the research gaps and strengths, and promoting future 

advancements in landslide risk reduction in the region. 

 

Abraham et al. (2020) [88] applied an algorithm-based model, the SIGMA (“Sistema Integrato 

Gestione Monitoraggion Allerta”) model to Kalimpong town in the Darjeeling Himalayas, a 

region highly susceptible to landslides. The research encompassed a dual-fold investigation with 

the primary goals of (i) ascertaining the specific precipitation thresholds necessary for triggering 

landslides within the geographical region of Kalimpong, and (ii) evaluating the suitability and 

adaptability of the SIGMA model within the context of a physically diverse environment. This 

multifaceted study was designed to shed light on the critical factors influencing landslide 

occurrences in Kalimpong, while simultaneously examining the practicality and effectiveness of 

the SIGMA model when applied to a region characterized by its unique physical characteristics. 

Daily rainfall and landslide data from 2010 to 2015 were used for model calibration, and 2016-

2017 data were used for validation. The findings of the study indicate that the SIGMA model 

exhibited a remarkable level of precision in forecasting all documented landslide occurrences 

within the specific geographical area under investigation. This high level of accuracy was 

quantified at 92%, affirming the model's effectiveness in landslide prediction. Additionally, the 

likelihood ratio for the model's predictions stood at an impressive 11.28, further underscoring its 

reliability and potential for practical application in landslide risk assessment and management 

within this region. These findings confirmed the potential of integrating SIGMA with rainfall 

forecasting to establish a reliable landslide early warning system for Kalimpong town. 

 

Yang et al. (2020) [89] defined empirical rainfall thresholds based on intraday rainfall and 

antecedent rainfall up to 7 days before landslide occurrences. The research region was partitioned 

into six distinct alert zones, wherein an analytical approach employing logistic regression was 

applied to scrutinize the daily rainfall and landslide data recorded during the monsoon seasons 

spanning from 2003 to 2010. In this extensive examination, the dataset underwent rigorous 

calibration to establish a spectrum of probability thresholds. The most suitable threshold was 

determined via a meticulous analysis involving the receiver operating characteristic (ROC) 

method. Within the purview of this investigation, the study encompassed the integration of two 

distinct sets of criteria, complemented by their respective indicators. This comprehensive 
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approach led to the formulation of three distinct rainfall thresholds within a sophisticated warning 

model, catering to a total of four alert classes. Validation using data from 2011-2015 confirmed 

the suitability and robustness of the thresholds. The optimal threshold, with a probability range 

of 4-10 %, was suitable for issuing a moderate warning, while thresholds for high and very high 

warnings corresponded to probabilities ranging from 30-55 % and 75-95 %, respectively. The 

performance of these thresholds remained consistent over different time periods, indicating their 

practical applicability and reliability. 

 

Dikshit et al. (2019) [90] developed an effective early warning system based on determination 

of rainfall thresholds for triggering landslides. The article focused on Chukha Dzongkhag, a 

region along the Phuentsholing-Thimphu highway, which experiences frequent landslides during 

the monsoon season. The study calculated event rainfall-duration thresholds using a equation 

based on available rainfall and landslide data from 2004 to 2014. The results indicated that a 

cumulative rainfall of 53 mm over a 24-hour period could trigger landslides. Additionally, the 

study explored the impact of antecedent rainfall ranging from 3 to 30 days on landslide 

occurrences and identified thresholds of 88 mm for a 10-day period and 142 mm for a 20-day 

period. Further improvements could be made with additional data and hourly rainfall 

measurements. 

 

Teja et al. (2019) [23] introduced an algorithm-based model that identified the precipitation 

conditions responsible for landslide occurrences. Traditional empirical models for rainfall-

induced landslides rely on statistical approaches and power-law equations, but they often fail to 

account for uncertainties in threshold calculations. The methodology involved an automated tool 

that determines rainfall-duration thresholds, along with associated uncertainties, at various 

exceedance probabilities. After applying this approach to the Kalimpong region of the Darjeeling 

Himalayas using rainfall and landslide data from 2010 to 2016, the study revealed that a 

cumulative event rainfall of 36.7 mm over a 48-hour period could trigger landslides in the area.  

 

Abraham et al. (2019) [4] focused on defining a rainfall threshold at a regional local scale and 

determining the occurrence of landslides within the Idukki district. Using data from 2010 to 2018 

on rainfall and landslides, an intensity-duration threshold equation, 𝐼 = 0.9𝐷(−0.16), was derived. 

This research also delves into the investigation of how antecedent rainfall conditions play a 

pivotal role in the initiation of landslides, with a specific focus on cumulative rainfall over 

various durations leading up to the failure event. The results of this study unveiled a significant 
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trend: as the number of days preceding a landslide event expanded, a discernible shift was 

observed in the distribution of landslide occurrences toward instances with elevated antecedent 

rainfall conditions. In particular, the data demonstrated that the likelihood of a landslide event 

was substantially influenced by the cumulative rainfall experienced in the lead-up to the failure 

event. An intriguing insight from this investigation pertains to the escalating influence of 

antecedent rainfall conditions as one extend the temporal scope. When considering a shorter 

timeframe of just 3 days prior to a landslide event, the occurrence of landslides exhibited a 

biasness of 72.12 % towards higher antecedent rainfall conditions. However, this biasness 

intensified dramatically as the authors extended the analysis window to a longer period of 40 

days, reaching an astonishing 99.56 %. In essence, these findings highlight the intricate 

relationship between antecedent rainfall and landslides, emphasizing the critical importance of 

understanding the temporal dynamics of rainfall conditions leading up to such natural disasters. 

The obtained mathematical expressions, when coupled with a rainfall prediction framework, 

have the potential to be utilized for the purpose of issuing advanced warnings for landslides 

within the study region. 

 

Naidu et al. (2018) [91] studied a combined cluster and regression analysis to establish the 

precipitation threshold responsible for initiating landslides within the susceptible Amboori 

region of Kerala, India. The rainfall data for 2, 3, and 5 days prior to the landslides were clustered 

to identify critical events that could potentially trigger landslides. Regression analysis was then 

applied to the cluster of critical events to develop threshold equations. The analysis revealed that 

the best fit was obtained by considering the precipitation occurring in the five days leading up to 

a given day (x-variable) with the daily rainfall on that specific day (y-variable), resulting in the 

threshold equation 𝑌 = 80.7 − 0.1981𝑋. The intercept specified by the equation indicated that 

a minimum daily rainfall of 80.7 mm was required to trigger landslides when the 5-day 

antecedent rainfall was zero. The slope stability analysis using the Probabilistic Infinite Slope 

Analysis Model (PISA-m) identified areas in Amboori with lower Factors of Safety, indicating 

vulnerability to landslides. The study suggested that integrating rainfall threshold analysis with 

FOS values from slope stability analysis could lead to the development of a simple, cost-

effective, and all-encompassing early detection system for shallow landslides in areas like 

Amboori and its counterparts. 

Dikshit and Satyam (2018) [92] established rainfall thresholds for landslide occurrence in 

Kalimpong using the power law equation, with an intensity–duration threshold relationship of  

I = 3.52 D(−0.41), (I represent rainfall intensity in mm/h and D represents duration in hours). The 
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findings of this study suggest that rainfall events featuring an intensity of 0.95 mm/h, coupled 

with a duration lasting a full 24 hours, present a significant hazard in terms of triggering 

landslides. Moreover, it was observed that, in the context of antecedent rainfall over periods of 

both 10 and 20 days, landslide incidents were contingent on rainfall intensities of 88.37 mm and 

133.5 mm, respectively, within the region. These results underscore the critical role of rainfall 

characteristics in landslide susceptibility and offer valuable insights for hazard mitigation and 

management strategies in the area. This data could contribute to the implementation of early 

warning systems focused on rainfall thresholds and forecasting, which could be further improved 

with additional precipitation and landslide data as they become available. 

 

Melillo et al. (2018) [93] created an all-encompassing utility known as CTRL-T, which stands 

for “Calculation of Thresholds for Rainfall-induced Landslides-Tool.” CTRL-T streamlines the 

process of objectively reconstructing rainfall events and pinpointing the triggering conditions 

associated with landslides. Additionally, it calculates rainfall thresholds at varying exceedance 

probabilities. The tool incorporates adjustable parameters to account for variations in 

morphological and climatic settings. Testing was conducted in Liguria region, Italy, which is 

highly susceptible to landslides. It is anticipated that CTRL-T would have a significant impact 

on rainfall threshold determination not only in Italy but also in other regions, leading to a 

reduction in the risk associated with rainfall-induced landslides. 

 

Rosi et al. (2016) [94] established rainfall thresholds for rainfall-triggered landslides in Slovenia 

acquiring data from around 900 landslide incidents and concurrent rainfall measurements from 

41 rain gauges. An objective procedure, based on a software developed for a different region 

(Tuscany, central Italy), was employed to establish the thresholds. At the outset, a singular 

national threshold was established, and subsequently, the geographical expanse of the nation was 

partitioned into four distinct zones, delineated in accordance with the prominent river basins that 

traverse the land. The thresholds' effectiveness was assessed using various statistical parameters, 

demonstrating favourable performance, albeit with some uncertainties potentially arising from 

data quality limitations.  

 

Papa et al. (2013) [95] proposed a methodology to overcome previous limitations specifically for 

debris flows and mud flows induced by shallow landslides or debris avalanches. A frequently 

employed strategy proposed by researchers involves evaluating the potential occurrence of debris 

flows through a comparative analysis of observed and projected rainfall in relation to critical 
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rainfall threshold (CRT) curves. Nonetheless, the practicality of deriving CRT curves empirically 

from historical rainfall data can become quite intricate, especially in situations where there is a 

scarcity of documented debris flow events or when environmental conditions undergo significant 

transformations over time. 

 

The development of CRT curves is achieved through a rigorous process of mathematical and 

numerical simulations, wherein the infinite-slope stability model takes centre stage. This model 

considers the escalation of groundwater pressure resulting from rainfall as the dominant factor 

influencing slope stability. In essence, it provides a theoretical framework to quantify the 

vulnerability of slopes to debris flows, offering valuable insights into the interplay between 

rainfall, terrain characteristics, and the predisposition of the landscape to mass movement. This 

approach enabled the derivation of CRT curves even in situations where historical rainfall data 

is limited or when environmental conditions are dynamic. 

 

Tiranti and Rabuffetti (2010) [96] presented the development of a forecasting tool tailor-made 

for predicting shallow landslides induced by heavy precipitation in the Piemonte region. An 

empirical model was constructed based on historical documents correlating rainfall with past 

landslide occurrences. The research aimed to establish rainfall thresholds for landslide triggering 

by considering the geological characteristics of different territories. Calibration of the system 

was carried out using data from 160 landslides with detailed hourly information and triggering 

time from the period 1990 to 2002. The study identified two distinct zones: alpine environments 

with metamorphic rocks, igneous rocks, dolostones, or limestones requiring higher critical 

rainfall values, and hilly environments with sedimentary bedrock requiring lower critical rainfall 

values. Verification of the model was performed using data from 429 landslides with known 

dates of occurrence, demonstrating a high level of accuracy and operational effectiveness without 

missed alarms and minimal false alarms. 

 

Gupta et al. (2010) [97] proposed a rainfall threshold, suggesting that if the normalized 

cumulative rainfall exceeded 250 mm over a period of more than 15 days, landslide might likely 

would occur. By examining rainfall and landslide data from 1998 to 2006, it was observed that 

the relationship between cumulative rainfall (E) and rainfall duration (D) could not be accurately 

modelled using typical exponential relationships. This threshold indicates that surpassing the 

cumulative rainfall limit resulted in saturation and failure of the debris zone, leading to landslides 

in the affected area. 
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Caine (1980)  [98] compiled data from various locations around the world, identifying 73 

different combinations in both the duration and intensity of rainfall that resulted in shallow 

landslides and debris flows. The author utilized an extensive dataset to establish a first-ever 

global rainfall intensity-duration (ID) threshold for the commencement of landslides and 

consequent debris flows. This pioneering research represents a significant milestone in the 

understanding of the conditions required for these geological events to occur on a worldwide 

scale. The threshold curve he formulated is represented by the equation  I = 14.82 ∗ D(−0.39) , 

where I stand for rainfall intensity in millimetres/hour, and D represents rainfall duration in 

hours. This pioneering work has since laid the foundation for understanding the relationship 

between rainfall patterns and the triggering of shallow landslides and debris flows, providing 

valuable insights for future research and disaster mitigation strategies. 

 

Guzzetti et al. (2008) [26] compiled an extensive global database comprising 2,626 instances of 

rainfall-triggered shallow landslides and debris flows by conducting a comprehensive review of 

the existing literature. The rainfall and landslide data collected played a pivotal role in updating 

the previously established minimum rainfall duration and intensity thresholds, which were 

initially set forth by Nel Caine in 1980. This update was critical in enhancing the understanding 

of the conditions that lead to shallow slope failures.  

By employing a sophisticated approach, the rainfall intensity-duration (ID) values were plotted 

on logarithmic coordinates. This method allowed to uncover an intriguing relationship between 

duration of precipitation and the minimum aggregate rainfall intensity required to trigger shallow 

slope failures. It is observed that as the duration of rainfall extends, there's a linear decrease in 

the minimum average intensity necessary for triggering such events. This phenomenon was 

evident within a specific range of durations, spanning from short periods of just 10 minutes to 

prolonged durations lasting up to 35 days. Objective statistical methods were employed to 

determine the minimum ID threshold required to trigger shallow landslides and debris flows. 

These techniques ensured that the findings were rooted in sound empirical evidence, contributing 

to the reliability and robustness of the results. It is worth noting that regional variations in rainfall 

patterns can significantly impact the risk of shallow landslides and debris flows. Therefore, to 

account for these variations across different climatic regions. The rainfall data were normalized 

using key parameters, such as mean annual precipitation and rainy-day norms, which were 

derived from a global climate dataset. This normalization process allowed make the findings 
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more universally applicable, ensuring that the established thresholds were relevant and adaptable 

to various geographical locations. The resulting global ID thresholds were found to be 

significantly lower than Caine's original threshold and other thresholds proposed in the existing 

literature. These thresholds hold the potential to be employed in a global operational landslide 

EWS based on worldwide precipitation measurements, particularly in the absence of local or 

regional thresholds. presents threshold equation presented by various authors.  

 

Baum and Godt (2010) [9] highlighted that the establishment and functioning of effective early 

warning systems for debris-flow or rapid landslide events relies on various essential resources. 

The available resources encompass a range of essential components for the development of 

effective landslide susceptibility prediction systems and early warning mechanisms. These 

components include dependable landslide susceptibility maps, location-specific warning 

thresholds, meteorological and geotechnical monitoring networks, as well as robust computer 

and communication networks that facilitate seamless operations. In order to provide accurate and 

timely warnings, it is imperative to establish rain gauge networks, soil moisture monitoring 

systems, and pore pressure sensors in regions prone to landslides, especially those frequently 

affected by debris flows. These regions often face the challenges of rapidly changing weather 

conditions and short lead times, particularly in areas that have experienced wildfires or have 

sparse vegetation cover. This necessitates the need for continuous and real-time monitoring 

operations to ensure the safety of vulnerable communities. A critical piece of the puzzle for a 

comprehensive landslide warning system is the development of a standardized national-scale 

shallow landslide hazard map. Such a map would serve as the cornerstone for a coordinated 

national initiative aimed at enhancing landslide warning systems across the country. 

Additionally, the creation of a comprehensive landslide database is crucial to support these 

efforts. This database would not only improve the understanding of landslide occurrences but 

also provide invaluable data for the development and refinement of early warning strategies. 

 

Capparelli and Versace (2011) [99] discussed the FLaIR (“Forecasting of Landslides Induced by 

Rainfall”) and SUSHI (“Saturated Unsaturated Simulation for Hillslope Instability”) models. 

FLaIR is a hydrological model that determines the probability of landslide occurrence by 

considering a mobility function based on landslide characteristics and antecedent rainfall. SUSHI 

is an integrated model that encompasses hydraulic processes at the slope level, encompassing 

Darcy flow in saturated conditions and addressing variations in subsoil pore pressure over time 

and space. This model comprises a hydraulic component for studying water movement during 
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rainfall infiltration and a geotechnical slope stability component founded on the principles of 

Limit Equilibrium Methods. These models provided valuable tools for understanding and 

predicting landslide events induced by rainfall. 

 

Lepore et al. (2013) [100] introduced a rainfall-triggered landslide module into an 

ecohydrological model called tRIBS-VEGGIE, a physically based spatially distributed 

ecohydrological model. The developed framework offered a reliable tool for assessing the 

possibility of landslides brought on by rainfall by combining the ability of the hydrologic model 

to reflect soil moisture dynamics with the infinite slope model. This development enhanced the 

modelling capabilities of tRIBS-VEGGIE, enabling more accurate assessments of rainfall-

induced landslide hazards. 

 

Martha et al. (2015) [101] studied the devastating landslides and consequential damage in the 

Bhagirathi and Alaknanda River valleys, particularly in Kedarnath town, resulting from extreme 

rainfall between June 15 and 17, 2013. Through the analysis of high-resolution satellite data, the 

study confirmed that two closely occurring events led to the destruction in Kedarnath town. 

 

Matziaris et al. (2015) [41] defined specific rainfall thresholds that trigger landslide initiation 

across a spectrum of diverse initial conditions. To achieve this, a series of model tests were 

meticulously designed and executed. These tests employed plane-strain slope models constructed 

from finely granulated silica sand. These models were intentionally fabricated at various 

densities to represent a broad range of natural soil conditions. The models were subsequently 

subjected to gravity equivalent to ‘1g’ to simulate real-world conditions. In order to closely 

mimic the real-world circumstances that can lead to landslides, these prepared models were 

placed within a specially designed centrifuge container. This container, capable of generating 

forces equivalent to 60 times Earth's gravity (60g), offered a controlled environment for 

experimentation. To induce slope failure and gather data under different circumstances, a rainfall 

simulator was employed. The rainfall simulator was programmed to generate a variety of rainfall 

events characterized by distinct intensities, durations, and groundwater conditions. By 

systematically subjecting the slope models to these simulated rainfall scenarios, the researchers 

aimed to gain valuable insights into the critical conditions that result in slope instability and 

ultimately lead to landslides. This comprehensive investigation not only expanded the 

understanding of landslide initiation but also provided essential data for assessing the risks 

associated with varying initial conditions and rainfall patterns. The study sought to understand 
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the impact of these factors on landslide initiation and provide valuable insights into the 

mechanisms governing slope failure under rainfall-induced conditions. 

 

Yang et al. (2015) [102] carried out a comprehensive set of field and laboratory studies to uncover 

the precise mechanisms behind the initiation of these shallow landslides during the torrential 

rains. Portable dynamic cone penetration tests were employed to ascertain the thickness of the 

soil layer. These tests revealed a gradual thinning of the soil layer from the upper slopes to the 

lower ones, with a thickness of approximately one meter. Furthermore, in-situ infiltration 

assessments illuminated the low hydraulic conductivity of this slender soil layer. During episodes 

of heavy rainfall, it was evident that the majority of the precipitation would run off the surface 

instead of infiltrating the soil. 

Findings from consolidated-undrained triaxial compression tests indicated specific soil 

properties, with the effective friction angle measured at 36.9° and cohesion at 6.3 kPa. These 

results demonstrated the robust shear strength of the soil, suggesting that under normal rainfall 

conditions, the steep slopes on the northeastern rim of the Aso caldera would remain stable. 

In the quest to understand the likely trigger for the shallow landslides, it became apparent that 

the initial failure process commenced with toe erosion due to surface runoff during periods of 

heavy rainfall. The erosion of the slope's base resulted in a critical state as the pore-water pressure 

within the slope continued to rise, ultimately setting the stage for these devastating events. 

 

Gupta et al. (2016) [103] Ground-penetrating radar technology was done for ground investigation 

and the study showed that rocks were overlain by thin debris cover of the order of 5–10 m. The 

paper concluded that the rocks were unstable and the landslide was initiated due to the excessive 

precipitation in the region. 

 

KS and K (2016) [104] focused on the examination of slope instability and the underlying 

elements contributing to the vulnerability of landslides within the upper Alaknanda valley, 

located in the state of Uttarakhand, India. The research findings indicated that both landslides 

and flash floods were triggered by atmospheric precipitation. Furthermore, these natural events 

could be reliably forecasted provided that up-to-the-minute rainfall data is accessible, and 

specific thresholds are established for various catchment areas. These thresholds should be 

determined based on several key factors, including the slope of the terrain, geological 

characteristics, the distribution of quaternary deposits, the extent of the catchment area, and the 
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land use patterns within those areas. The findings emphasize the critical role of real-time rainfall 

information and the need for a nuanced, context-specific approach to predicting and managing 

the risks associated with landslides and flash floods in diverse geographic regions. This approach 

takes into account the unique environmental and geographical features that contribute to the 

susceptibility of different catchments, paving the way for more effective disaster mitigation 

strategies.  

A brief summary of the Intensity-Duration relationships proposed by various researchers is 

provided in Table 2. 2. 

Table 2. 2: Intensity-Duration relationship proposed by various researchers 

S. No. Author Equation  

1.  Caine (1980) [98] I = 14.82 D(−0.39) 

2.  Innes (1987) [105] I = 4.93 D(−0.50) 

3.  Crosta and Frattini (2003) [106] I = 0.48 + 7.2 D(−1) 

4.  Guzzetti et al. (2008) [26] I = 2.20 D(−0.44) 

5.  Harilal et al. (2019) [87] I = 43.26 D(−0.78) 

6.  Kanungo and Sharma (2014) [21] I = 1.82 D(−0.23) 

7.  Dikshit and Satyam (2017) [107] I = 3.72 D(−0.48) 

8.  Dahal and Hasegawa (2008) [7] I = 73.9 D(−0.79) 

Where, “I stand for rainfall intensity in millimetres/hour, and D represents rainfall duration in 

hours.” 

 

2.4.3 Literature Based on Susceptibility Mapping 

            Mondal and Mandal (2023) [108] applied the Weight of Evidence (WoE) model to assess 

landslide susceptibility (LS) in the Darjeeling Himalaya region of Eastern India. Fifteen 

landslide-triggering factors, including elevation, geology, slope angle, and rainfall, were used as 

spatial databases. Remote Sensing (RS) and Geographical Information System (GIS) methods 

were employed to develop the WoE model and create a landslide susceptibility zonation (LSZ) 

map. The LSZ map revealed varying levels of LS, ranging from very low to very high. The 

obtained accuracy of the model was evaluated using identified landslide locations, yielding a 

prediction accuracy of 78.90%. The study confirmed the significance of the WoE model as a 

statistical tool for LS mapping in the region and provides valuable insights for effective landslide 

hazard mitigation. 



45 

 

Liao et al. (2010) [109] created early warning system for rainfall-induced shallow landslides on 

Java Island, Indonesia, integrates three vital components. First, a susceptibility mapping module 

uses geospatial data, including topography, soil properties, and local landslide records, to identify 

high-risk areas. Second, the authors employed a satellite-based precipitation monitoring system 

from http://trmm.gsfc.nasa.gov for real-time rainfall data. Lastly, a specialized physically-based 

modelling approach called SLIDE was applied, tailored to predict rainfall-triggered landslides. 

This comprehensive system enhances landslide prediction accuracy, bolstering disaster 

preparedness and risk mitigation for the region. By integrating these components, the early 

warning system demonstrated its potential for improving landslide prediction and mitigation 

efforts in the region. 

 

Nanda et al. (2023) [110] focused on delineating landslide susceptibility zones along National 

Highway 1D in the northwestern Himalaya region. Various geo-environmental factors such as 

slope angle, land use/land cover, distance to faults, precipitation, soil, slope aspect, lithology, 

altitude, distance to streams, and distance to road were considered to create a comprehensive 

landslide susceptibility map. The Analytical Hierarchy Process (AHP) was used to generate a 

weighted pairwise comparison matrix, which was combined with the geo-environmental factors 

using the index overlay module in ArcGIS 10.2. Analysis of past landslide events identified 

approximately 913.55 km2 area as high and very high susceptibility zones, characterized by 

challenging terrain, frequent landslides, and significant impacts. The study highlighted the need 

of urgent mitigation measures along the Sona Marg to Kargil Road stretch to minimize human 

and economic losses caused by frequent disruptions from landslides. 

 

Gokul et al. (2023) [111] focused on assessing landslide susceptibility in the high-range local 

self-governments (LSGs) of Kottayam district, Western Ghats, after a significant landslide 

incident in the Koottickal area in 2021. The analytical hierarchy process (AHP) and fuzzy-AHP 

(F-AHP) models were used to evaluate landslide susceptibility and compare existing susceptible 

maps. Influencing parameters like slope, geomorphology, soil texture, and satellite image-

derived indices, land use/land cover (LULC), were considered. The resulting landslide-

susceptible zones were classified as low, moderate, and high. The TISSA model demonstrated 

the best performance in validating the maps. Key factors contributing to landslides were 

identified as slope, soil texture, LULC, geomorphology, and the normalized difference road 

landslide index (NDRLI). Highly susceptible LSGs include Koottickal, Poonjar-Thekkekara, 
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Moonnilavu, Thalanad, and Koruthodu. These findings aided decision-makers in identifying 

vulnerable infrastructure and establishing emergency evacuation routes. 

 

Makonyo and Zahor (2023) [112] utilized Geographical Information Systems (GIS) and Remote 

Sensing (RS) techniques to identify landslide susceptibility areas in Lushoto district, Tanzania. 

Remote datasets, including Digital Elevation Models (DEMs) and Landsat 8 imageries, were 

integrated with past landslide coordinates obtained through GPS for analysis. Various GIS 

techniques were employed to evaluate factors influencing landslides, such as rainfall, elevation, 

soil type, slope angle, lithology, faults, proximity to roads, rivers, and Normalized Difference 

Vegetation Index (NDVI). These factors were weighted and ranked using the Analytical 

Hierarchy Process (AHP). The results showed that rainfall, slope angle, elevation, and soil types 

significantly influenced landslides, while proximity to faults, lithology, roads, rivers, and NDVI 

had minimal impact. The model achieved an overall accuracy of 81% in determining landslide 

susceptibility levels. 

 

Liu et al. (2023) [113] utilized Synthetic Aperture Radar Interferometry (InSAR) technology to 

determine the average annual deformation rate in Yunnan Province over a four-year period. The 

deformation rate, combined with various factors such as elevation, slope, lithology, rainfall, and 

distance from roads and rivers, was used to assess landslide susceptibility. The random forest 

model was employed for accurate analysis, and the results showed that incorporating the annual 

mean deformation rate enhanced prediction accuracy. Approximately 10% of the province was 

identified as high susceptibility areas, which accounted for 68% of the landslides. The random 

forest model exhibited high accuracy, with a prediction accuracy of 0.80 and an AUC value of 

0.87, making it a reliable method for evaluating landslide susceptibility in Yunnan Province. 

 

Bhadran et al. (2023) [114] applied a GIS-coupled fuzzy “Multi-Criteria Decision Making” 

(MCDM) technique to assess landslide-susceptible zones in the Southern Western Ghats 

highland segment. Fuzzy numbers were used to determine relative weights for nine landslide 

influencing factors, and ArcGIS was utilized to establish and delineate these factors. The 

“Analytical Hierarchy Process” (AHP) enabled pairwise comparison of fuzzy numbers, resulting 

in standardized causative factor weights. Thematic layers were assigned normalized weights, 

producing a landslide susceptibility map. Validation using area under the curve values (AUC) 

and F1 scores confirmed the model's validity. Results showed that 27% of the study area was 

highly susceptible, 24% moderately susceptible, 33% low susceptible, and 16% very low 
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susceptible. Plateau scarps in the Western Ghats were identified as highly susceptible areas. The 

model's high predictive accuracy, demonstrated by AUC scores (79%) and F1 scores (85%), 

established the reliability of the landslide susceptibility mapping for future hazard mitigation and 

land use planning in the region. 

 

Zhang et al. (2022) [115] compared four neural network models, namely convolutional neural 

network (CNN), gated recurrent unit (GRU), multi-layer perceptron (MLP), and multi-scale 

convolutional neural network (MSCNN), for landslide susceptibility mapping (LSM) in Lanzhou 

city, China. Historical landslide/non-landslide locations and eight landslide-related influencing 

factors were used. The models were trained and validated using a 7:3 split. Performance 

assessment includes statistical indicators, confusion matrix, Kappa coefficient, F1-score, and 

evaluation through receiver operating characteristic (ROC) and Precision-Recall (PR) curves. 

Results indicated that the MSCNN model outperforms the others, demonstrating higher Recall, 

Kappa, and F1-score values. Comparatively, models considering neighbourhood features, like 

CNN and MSCNN, showed better performance than those considering sequence features. The 

study suggested prioritizing neighbourhood features in future LSM models to accurately 

represent landslide occurrence characteristics. 

 

Shano et al. (2021) [116] focused on landslide susceptibility mapping as a crucial step in 

environmental planning. By analysing 1554 landslides and nine causative factors, including 

conditioning and triggering factors, the study identified influential factor classes. These include 

slope ranged between 12 and 45°, convex and concave curvature classes, aspect classes in 

specific directions, and elevation classes within a certain range. Factors such as distance to 

streams and lineaments within specific ranges also significantly contributed to landslide 

occurrences. The land use/land cover factor exhibited varying levels of direct and indirect 

influence on landslides. The resulting landslide susceptibility map was classified into different 

classes, providing valuable information for local, zonal, regional, and federal governments in 

disaster management and prevention, land use planning, and risk mitigation efforts. The model's 

reliability was verified through a receiver operating characteristic curve analysis, yielding an 

82% accuracy rate, further supported by field observations. 

Saha et al. (2020) [117] focused on the delineation of landslide susceptibility zones (LSZ) in 

Kurseong municipality and its surrounding hill slope in the Darjeeling Himalayan region of 

India. Nine parameters, including slope, altitude, rainfall, geological structure, distance from 

river channels, distance from lineament, soil type, land-use/land-cover, and aspect, were utilized 
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to map the LSZ using analytic hierarchy process (AHP), frequency ratio (FR), binary logistic 

regression (BLR) models, and their ensemble combinations (AHP-FR, AHP-BLR, and FR-BLR) 

with the assistance of ArcGIS, SPSS, and ERDAS software. The LSZ maps produced by the 

different models were classified into five susceptibility classes. The evaluation of map accuracy 

involved the utilization of receiver operating characteristics (ROC) and kappa statistics to 

calculate the area under the curve (AUC). The results exhibited that all models achieved 

considerable accuracy, with AUC values ranging from 78.86% to 84.73% and kappa statistics 

ranging from 0.789 to 0.868. The LSZ mapping yielded significant insights for land-use planning 

and the development of strategies to mitigate future landslide hazards. 

 

Sestras et al. (2019) [118] utilized bivariate statistical analysis to assess the dynamic potential of 

a geographical area, considering the statistical correlations between independent variables such 

as factors like slope, geology, and land use, and their influence on dependent variables related to 

landslide occurrences. The evaluation of result validation's extent was ascertained by computing 

the AUROC (Area under the Receiver Operating Characteristic) score, which yielded a notable 

value of 0.854, highlighting the model's apt representation. The examination of landslides 

susceptibility has revealed that the hilly terrain surrounding the Cluj-Napoca metropolitan area 

in Romania has been categorized into the spatial classes of landslides occurrence. 

 

Chen et al. (2019) [119] carried a comparative analysis of three advanced machine learning 

methods like “kernel logistic regression (KLR), naive Bayes (NB), and radial basis function 

network (RBF Network) models”, to assess their effectiveness in modelling landslide 

susceptibility in Long County, China. The research involved identified 171 landslide locations 

through historical reports, aerial photographs, and field surveys. These landslide locations were 

randomly divided into training and validation sets. Twelve landslide conditioning factors, 

including slope, curvature, elevation, distance to various features, lithology, NDVI, land use, and 

rainfall, were considered for modelling. Correlations between these factors and landslide 

occurrences were analysed using normalized frequency ratios, and multicollinearity was 

assessed. Feature selection was conducted using chi-squared statistic and cross-validation 

techniques. The trained models were then used to create landslide susceptibility maps, and their 

performance was evaluated using receiver operating characteristics (ROC) curve, area under the 

curve (AUC), accuracy, F-measure, mean absolute error (MAE), and root mean squared error 

(RMSE). The KLR model demonstrated the most stable and best performance, making it a 

promising technique for landslide susceptibility mapping. However, all three models showed 
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reasonably good performance and could be efficiently utilized for landslide susceptibility 

analysis. 

 

Mondal and Mandal (2019) [120] focused on assessing landslide susceptibility in the Darjeeling 

Himalaya region by employing the index of entropy (IOE) model. The IOE model examined the 

relationship between landslide occurrences and various causative factors. The model 

incorporated fifteen distinct data layers related to landslide conditioning, encompassing factors 

such as elevation, aspect, slope, curvature, geology, soil type, lineament density, proximity to 

lineaments, drainage density (DD), distance to drainage, stream power index (SPI), topographic 

wetted index (TWI), precipitation, normalized differential vegetation index (NDVI), and land 

use and land cover (LULC). The relative importance of each causative factor was determined, 

with soil type identified as the most influential factor and NDVI playing the least significant role 

in landslide susceptibility. Using the IOE model, a landslide susceptibility map was generated in 

a GIS platform, achieving a prediction accuracy of 78.2% as validated by the ROC curve. The 

study concluded that the IOE model demonstrated reliability and authenticity in assessing 

landslide susceptibility based on the estimated frequency ratio values across susceptibility zones. 

 

Chen et al. (2017) [121] compared three statistical models, namely the “weight of evidence model 

(WoE), logistic regression model (LR), and support vector machine method (SVM)”, to 

determine landslide-prone areas in the Zhouqu to Wudu segment of the Bailong River Basin in 

Southern Gansu, China. Six environmental factors, comprising elevation, slope, aspect, 

proximity to fault lines, rock composition, and population density, were chosen as independent 

variables through the application of principal component analysis (PCA) and Chi-square testing. 

Three distinct models were employed to investigate the correlation between the distribution of 

landslides and these factors, ultimately estimating landslide susceptibility (LS). The models' 

efficacy was assessed using the Small Baseline Subset Interferometric Synthetic Aperture Radar 

technique and the Receiver Operating Characteristic (ROC) curve. The results showed that the 

SVM model had better prediction accuracy and classification ability, with areas of high LS levels 

exhibiting more deformation points. The WoE and LR models provided insights into the factors 

contributing to landslide occurrence, such as elevation, settlement density, and distance from 

fault. The SVM model could be utilized to identify potential landslide zones for land planning 

and landslide hazard mitigation in the Bailong River Basin. 
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Lin et al. (2017) [122] presented a statistical model for global landslide susceptibility mapping 

using logistic regression. Five factors, including relative relief, extreme precipitation, lithology, 

ground motion, and soil moisture, were selected based on an extensive review of the literature. 

Logistic regression was conducted using 70% of randomly selected landslide and non-landslide 

points, while the remaining data were used for model validation. The accuracy of the predictive 

models was evaluated using criteria such as the receiver operating characteristic (ROC) curve 

method. The results indicated that all five factors were significant in explaining landslide 

occurrences on a global scale. The confusion matrix analysis showed an approximately 80% 

correct classification rate for landslides, and the area under the curve (AUC) was nearly 0.87. 

During the validation process, these statistics improved to approximately 81% and 0.88, 

respectively. The findings suggested that the model exhibited strong robustness and stable 

performance. Additionally, the model revealed that soil moisture has a dominant influence on 

global landslide occurrences, while topographic factors play a secondary role. 

 

Chalkias et al. (2016) [123] presented an integrated landslide susceptibility model, called the 

Landslide Susceptibility Index (LSI), which combined expert-based knowledge and bivariate 

statistical analysis. An examination of various factors linked to the occurrence of landslides, such 

as elevation, slope aspect, slope angle, land cover, rock type, Mean Annual Precipitation (MAP), 

and Peak Ground Acceleration (PGA), was conducted within a Geographic Information System 

(GIS) framework. This comprehensive approach produced a susceptibility map for landslides 

that categorized the study area based on the likelihood of landslides. Using a separate validation 

dataset of landslide occurrences, Receiver Operating Characteristics (ROC) analysis was used to 

assess the accuracy of this map. The model demonstrated a predictive ability of 76%, 

underscoring that the combination of statistical analysis and expert insights can yield a reliable 

assessment of landslide susceptibility at a regional level. The LSI model offered a valuable tool 

for landslide risk management and mitigation strategies in the study area. 

 

Saha et al. (2013) [124] focused on generating a comprehensive Landslide Susceptibility 

Zonation (LSZ) map for the Ganeshganga watershed, known for the Patalganga landslide, to 

facilitate effective landslide prevention and mitigation measures. The creation of the Landslide 

Susceptibility Zone (LSZ) map involved the utilization of a binary logistic regression (BLR) 

model. This model incorporated various thematic layers designed to represent the contributing 

factors associated with landslide occurrences. These layers encompassed a spectrum of 

parameters, including slope, aspect, lithology, tectonic structures, land use, distance to drainage, 
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as well as anthropogenic influences such as proximity to roads. The data necessary for 

constructing these thematic layers were derived from a combination of remote sensing imagery, 

comprehensive field surveys, supplementary datasets, and Geographical Information System 

(GIS) techniques. The BLR model generated coefficients for each of these causative factors, 

which, when combined with a constant term, were instrumental in the formulation of the final 

Landslide Susceptibility Map. This map was then categorized into four distinct susceptibility 

zones, each with varying degrees of susceptibility, ranging from high to very low. In order to 

assess the accuracy and reliability of the resulting map, a rigorous validation process was 

undertaken. Receiver Operator Characteristic (ROC) curve analysis was employed to gauge the 

performance of the LSZ map. Remarkably, the map exhibited an impressive accuracy rate of 

95.2% when applied to an independent set of test samples. This validation outcome underscores 

the robustness of the LSZ map as a tool for assessing landslide susceptibility and represents a 

significant step forward in understanding and mitigating the risk of landslides in the study area. 

Moreover, a robust correlation was evident in the alignment of preexisting landslide locations 

and the forecasted areas with a susceptibility to landslides. 

 

Roy et al. (2013) [125] focused on assessing landslide susceptibility in the Darjeeling Himalayas 

using a bivariate statistical technique. Seven factor layers with 24 categories, derived from 

Cartosat and Resourcesat - 1 LISS-IV MX data, were used to analyse the factors contributing to 

landslides in the region. The Information Value Method was employed to allocate weights to 

each category, and the cumulative sum of these weighted values was utilized in the production 

of a landslide susceptibility map. The results indicated that 8% of the area was classified as highly 

susceptible to landslides, 32% as moderately susceptible, and the remaining 60% as low 

susceptibility zones. The prediction model's robust performance was exemplified by its 

impressive area under the receiver operating characteristic curve (0.89), indicating a notably high 

level of accuracy. This study highlighted the effectiveness of the bivariate statistical technique 

in landslide susceptibility assessment in the Darjeeling Himalayas. 

 

2.4.4 Literature Based on Numerical Modelling 

           Chandrasekaran et al. (2013) [126] conducted Finite Element Analyses on the case 

histories employing PLAXIS2D software to comprehend the failure mechanism and the factors 

contributing to it. They also performed slope stability analysis by employing the strength 

reduction technique to identify the critical slip surface and assess the factor of safety. 
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Paswan and Shrivastava (2022) [127] focused on an area prone to recurrent rainy season 

landslides, aimed to understand the triggering mechanisms. Extensive fieldwork and laboratory 

experiments were conducted to compute hydro-mechanical parameters. A semi-similar physical 

model test was performed to investigate the sliding mechanism and key factors. Numerical 

modelling using GeoStudio was carried for studying seepage and slope stability parameters for 

validating and comparing the results. A simulation system for artificial rainfall was developed to 

emulate the quantity and intensity of rain and rainfall thresholds for triggering landslides. The 

physical model failed at a rainfall depth of 80 mm with a fixed intensity of 30 mm/h. The 

numerical analysis indicated that the slope exhibited stability with a safety factor of 1.23 prior to 

the onset of rainfall. However, upon replicating rainfall conditions, the slope experienced failure 

at identical intensity and depth, displaying a similar failure plane and a diminished safety factor 

of 0.626. This study confirmed rainfall as the primary triggering factor for landslides and 

demonstrated the suitability of numerical modelling for slope analysis, providing valuable 

insights for monitoring and early warning systems to mitigate landslide impacts. 

 

Dahal et al. (2009) [50] examined the failure occurrences in the granitic terrain of northeast 

Shikoku Island, Japan, during the 2004 typhoon. It explored the relationship between rainfall and 

failures and discusses synoptic descriptions of the failures. By utilizing data from laboratory 

experiments and field observations, the study conducted sensitivity and stability analyses, 

considering different slope angles, strength parameters, and saturated residual soil thicknesses. 

The main objective was to apply a standardized method for stability analysis of translational 

slides under extreme rainfall conditions. The findings contributed to a better understanding of 

landslide behaviour and provided insights for assessing slope stability during severe rainfall 

events. 

 

Singh and Kumar (2021) [128] focused on the slope stability assessment along a section of the 

pilgrimage route NH-154A, which connects the holy shrines of Bharmour and Manimahesh in 

addition to linking hydroelectric dams and power stations via a tunnel. The study involved the 

identification and investigation of soil slopes along the road corridor, specifically targeting failed 

soil slope sections. Geotechnical studies were conducted, including the collection of soil samples 

from selected sites. The study area featured slopes with inclination angles ranging from 40° to 

80°. Circular failure charts (CFC) were employed to determine the factor of safety values based 

on relevant slope parameters. The findings of this study have implications for mitigating unstable 

slopes along the highway stretch. Factors such as slope steepness, proximity to the river Ravi, 
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rainfall, and human disturbances resulting from road widening are identified as significant 

triggers for slope instability along NH-154A. 

 

Harris et al. (2012)  [129] validated the numerical models employed in creating a rainfall-induced 

landslide early warning system by conducting a back analysis was conducted on a roadway 

embankment. Field measurements were taken using volumetric water content sensors and a 

rainfall gauge to monitor the soil's response to rainfall. Slope stability analysis was performed to 

calculate the factor of safety for the slope. 

 

Dahal (2012) [130] conducted an assessment of landslide processes and their associated hazards 

in Nepal. They approached the evaluation of rainfall-induced landslides from three different 

angles: through hydrological and slope stability modelling, the determination of rainfall 

thresholds for triggering landslides, and the overall assessment of landslide hazards. 

 

Lee et al. (2014) [131] described mechanism of rainfall-induced landslide in the Hulu Kelang 

area using field observation and numerical modelling and concluded that daily rainfall 

information was insufficient for predicting landslides in the area. 

 

Zhang et al. (2019) [132] investigated the interaction between internal erosion and infiltration in 

soil slopes composed of mixed coarse and fine particles. A combined model integrating 

unsaturated flow and internal erosion was formulated to assess how internal erosion impacts pore 

water pressure distributions and the stability of slopes. Parametric studies were conducted to 

assess the impact of erosion and hydraulic parameters. The results demonstrated that internal 

erosion primarily occurs within the zone of the wetting front, accelerating its advancement and 

reducing slope stability. The coefficient of erosion flux rate (Ber) was identified as the main factor 

influencing internal erosion. Larger values of Ber exhibited a more pronounced effect on the 

movement of the wetting front. Parameters i* and Aer have less significant effects compared to 

Ber. Significantly, it is worth noting that when the intensity of rainfall exceeds the saturated 

coefficient of permeability, it has a pronounced effect on both water infiltration and the stability 

of slopes. In contrast, if the rainfall intensity remains below the saturated coefficient of 

permeability, the significance of internal erosion in these processes becomes negligible. This 

phenomenon underscores the critical role that rainfall flux plays in the complex interplay 

between water infiltration and slope stability, with the threshold of the saturated coefficient of 

permeability serving as a pivotal point determining the extent of internal erosion's influence. 
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Consequently, understanding and monitoring the relationship between rainfall flux and 

permeability is essential for managing erosion-related challenges in various environments. 

Additionally, higher air-entry values of the soil diminished the impact of internal erosion on 

infiltration and slope stability. 

 

Singh et al. (2018) [45] adopted an integrated geotechnical and numerical approach to analyse 

the stability of road-cut slopes along the highway. The geotechnical analysis conducted in this 

study served to ascertain the specific soil characteristics that exert a significant influence on slope 

stability. Furthermore, a unique antecedent rainfall threshold was formulated to quantitatively 

capture the intricate connection between precipitation and slope failure in the context of the 

particular event under investigation. To comprehensively assess the stability of the slope both 

prior to and following failure, a two-dimensional limit equilibrium method was meticulously 

employed. This method allowed for an in-depth examination of the structural integrity of the 

slope, both in its pre-failure state and in the aftermath of a failure event, shedding light on crucial 

insights into the slope's overall performance under varying conditions. The results indicated that 

slope geometry was a major influencing factor in the failure pattern. Furthermore, proactive 

strategies such as implementing benching and soil nailing were proposed and confirmed through 

a limit equilibrium analysis to guarantee both sustained stability and secure transportation. This 

study highlighted the need for comprehensive stability investigations and provided valuable 

insights for managing slope failures along NH-5 in the Jhakri region. 

 

Kumar et al. (2018) [133] quantified the global factor of safety (FOS) and compared the 

conventional Limit Equilibrium (LE) Model with the advanced Numerical Model for rock slopes 

in Amiya, Nainital, Uttarakhand, India, using the Mohr-Coulomb failure criterion. Rock-mass 

characteristics were determined based on physio-mechanical properties estimated from field 

samples using the joint weakening coefficient for LE and numerical analysis. An examination of 

stability was carried out using various methods, such as the Swedish slip circle, the Ordinary 

method of slices, the Modified Bishop method, the Janbu method, Finite difference static 

analysis, Finite element static analysis, and Finite difference dynamic analysis. The results 

indicated global Factor of Safety (FOS) values of 0.65, 1.34, 1.38, 1.29, 1.57, 1.144, and 0.84 

for each respective method. The results indicated that the slope was generally stable, and failure 

was likely only in the event of downslope movement with a minor seismic event. The 

combination of LE and numerical approaches proved to be more effective for determining critical 

slip surfaces and FOS. 
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Jamir et al. (2017) [134] focused on three slope sections (S-1, S-2, S-3) to analyse displacement 

and shear strain patterns. Using 2D Finite Element Method (FEM) and Shear Strain Reduction 

(SSR) analysis, the potential slope instability of Kharsali village was assessed. Results indicated 

that the southern edge (S-1) housing the Shani Temple was critically unstable with a Stress 

Reduction Factor (SRF) of 1.5. The S-2 section was identified as the most vulnerable with a 

critical SRF of 1.08, as evidenced by failure surfaces and displacements. Conversely, the S-3 

section in the northern part of Kharsali was relatively stable, with the highest critical SRF of 

2.76. An un-metalled road near S-3 had experienced a failure surface and subsidence. Overall, 

S-2 section of the village was the most susceptible to slope failure. 

 

Senthilkumar et al. (2017) [135] investigated geotechnical characterization and analysis of the 

landslide. Field and laboratory investigations were conducted, including mapping, topographical 

survey, borehole and geophysical investigations, as well as testing of soil and rock samples. The 

results revealed that the slope at Marappalam consisted of a loose and soft soil layer with low 

permeability, interspersed with boulders, which contributed to debris flow. Scanning electron 

microscopic (SEM) and x-ray diffraction (XRD) analyses were performed to examine the 

influence of weathering on slope failure. Numerical analysis using the LS-RAPID landslide 

simulation program identified the failure mechanism of the landslide. The analysis showed that 

the slope became saturated due to intense rainfall (405 mm) on November 10, 2009, following 5 

days of antecedent rainfall (303 mm). This saturation led to a decrease in matric suction, an 

increase in pore water pressure, a reduction in shear resistance, and ultimately resulted in 

progressive failure. 

 

Jeong et al. (2017)  [136] analysed rainfall-induced landslides on partially saturated soil slopes, 

specifically investigating the 2011 Umyeonsan landslides in Seoul, Korea. The study employed 

a comprehensive approach that combined laboratory tests, field tests, and numerical analysis to 

understand the factors contributing to landslide occurrence. The results from investigations 

conducted in the Umyeonsan region revealed a strong correlation between landslide activity and 

rainfall, soil properties, slope geometry, and vegetation. Numerical analysis further confirmed 

the influence of these factors on landslide occurrence. The study gave special attention to rainfall 

penetration analysis to determine the depth of the wetting band, which was critical for 

understanding shallow and deep-seated slope failures in large-scale landslides. The simulated 

results aligned closely with the findings from the investigations, demonstrating the suitability of 

the applied method for simulating landslides in unsaturated soils. Overall, this research enhanced 
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the understanding of rainfall-induced landslides on partially saturated soil slopes and provided 

valuable insights for landslide risk assessment and mitigation. 

 

Gupta et al. (2016) [137] studied the Surabhi Resort landslide located in Mussoorie township, 

Garhwal Himalaya, and employed the shear strength reduction technique for finite element 

analysis of the failed slope. Two slope models, debris and rock mass, were analysed to assess the 

potential future failure of the slope. The critical strength reduction factor (SRF) was found to be 

0.28 for the debris model and 0.83 for the rock mass model. A low SRF value indicated 

significant progressive displacement in the detachment zone. This displacement was further 

confirmed by cracks in the Surabhi Resort building and subsidence zones in the Mussoorie 

International School. The findings of this study aligned with previous research conducted using 

different methodologies. The results highlighted the vulnerability of the slope and emphasized 

the need for mitigation measures to prevent future slope failures in the area. 

 

Acharya et al. (2016) [44] investigated the relationship between topographic hollows, flow 

direction, flow accumulation, and pore-water pressure development in slope failure occurrences. 

A small catchment in Niihama city, Shikoku Island, Japan, which experienced seven slope 

failures triggered by heavy rainfall during a typhoon in October 2004, was chosen for analysis. 

Through fieldwork and laboratory experiments, hydro-mechanical parameters were computed 

for unsaturated and saturated conditions. Seepage and slope stability modelling were conducted 

in the GeoStudio environment using precipitation data from the event. The results revealed that 

porewater pressure exhibited rapid transient behaviour in silty sand, with larger topographic 

hollows exhibiting higher maximum porewater pressures near their bases. The study also 

identified a threshold relationship between topographic hollow area and maximum porewater 

pressure, indicating that a topographic hollow of 1000 sq. m area could generate a maximum 

porewater pressure of 1.253 kPa. Furthermore, the porewater pressures required to trigger slope 

instability were found to be relatively smaller in the upper part of the topographic hollows 

compared to the lower part. 

 

Igwe et al. (2014) [138] examined the dominant mechanisms of slope failures and potential 

obstacles to reduce landslide hazards in the Iva Valley area of Enugu, Nigeria. The landscape 

was characterized by numerous landslide scars and gullies, with slope deposits consisting of 

unconsolidated, friable sands interspersed with thin layers of montmorillonitic claystone. The 

study identified 43 landslide events, primarily shallow movements with slip-surface depths 



57 

 

below 2 meters. The examination demonstrated that landslides predominantly occur during the 

commencement of the rainy season, marked by short yet strong precipitation. A holistic 

methodology that encompasses on-site mapping, laboratory examinations, and computational 

assessments unveiled a multitude of elements that contribute to instability. These factors 

encompass the presence of baren slopes prior to the rainy season, intense rainfall, erosion, 

overgrazing, soil properties, and the distinctive lithological arrangement at the location. Shearing 

tests demonstrated strain-softening behaviour of the soils until reaching a low steady-state 

strength. A computer code simulated a similar landslide using input parameters obtained from 

field and laboratory studies. The study highlighted the increased vulnerability of marginalized 

communities due to urbanization and unplanned settlements on slopes. The research contributed 

to a regional study aimed at generating data for future landslide susceptibility mapping to protect 

vulnerable populations. 

 

Rahardjo et al. (2007) [8] established the role of rainwater infiltration in causing landslides, but 

there were differing opinions on the importance of antecedent rainfall. This research entailed a 

comprehensive set of parametric investigations aimed at assessing the various factors that impact 

the stability of a uniform soil slope under changing rainfall scenarios. The factors under scrutiny 

included soil properties, rainfall intensity, initial water table location, and the geometrical 

characteristics of the slope. The outcomes of these analyses shed light on the dominant and 

subsidiary roles played by these factors in slope instability. The results of this study unveiled that 

the stability of the slope was predominantly influenced by two key factors: soil properties and 

the intensity of rainfall. Specifically, variations in soil properties, such as cohesion and internal 

friction, had a substantial impact on the slope's stability. Additionally, the intensity of rainfall, 

when subject to change, significantly affected the slope's structural integrity. However, the 

influence of the initial water table location and the slope geometry on the stability of the soil 

slope was found to be of secondary importance. These two factors, while still contributing to the 

overall behaviour of the slope, appeared to exert a lesser influence compared to soil properties 

and rainfall intensity. One particularly noteworthy discovery from this study was the 

identification of a threshold rainfall intensity level that was specific to different durations of 

rainfall. This threshold marked the point at which the factor of safety reached its global 

minimum. In other words, the slope was most susceptible to instability when subjected to this 

critical rainfall intensity, which was unique for each duration of rainfall. The research has 

elucidated the primary and secondary factors affecting the stability of a uniform soil slope under 

changing rainfall conditions. The findings offer valuable insights into the intricate interplay of 
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soil properties, rainfall intensity, initial water table location, and slope geometry, shedding light 

on the critical threshold of rainfall intensity that poses a significant risk to slope stability under 

varying conditions. Furthermore, the study connected these parametric findings to field 

observations by other researchers and established that the significance of antecedent rainfall was 

dependent on soil permeability. 

 

Collins and Znidarcic (2004) [139] focused on the slope stability issues related to rainfall-induced 

slope failures. It investigated at how the stability of initially unsaturated slopes was affected by 

both positive and suction pore water pressures. Infinite slope assessment methods were paired 

with these factors to create a predictive framework for slope falls induced by rainfall events. This 

formulation served as a fundamental analysis approach for assessing the stability of soil slopes 

subjected to surface infiltration, considering factors such as slope geometry, soil strength, and 

infiltration parameters. The research presented a systematic approach to employing analytical 

formulation to anticipate alterations in the safety factor for slopes undergoing infiltration. This 

method provides a structured framework for predicting how the infiltration process may affect 

slope stability. By utilizing this analytical procedure, engineers and geologists can gain valuable 

insights into the potential safety risks associated with slopes in the presence of water infiltration. 

This predictive technique is useful for assessing and mitigating slope stability concerns in 

geotechnical engineering, ultimately contributing to safer infrastructure development and 

management. A detailed case study analysis was presented to validate the method, providing 

quantitative information on the timing and depth of failure in relation to soil, slope, and rainfall 

characteristics. Overall, this research contributed to the understanding and prediction of rainfall-

induced slope failures, enabling improved slope stability assessments. 

 

Cheng and Lau (2013)  [140] utilized SLOPE 2000 software to accurately identify the critical 

failure surface, which could be either circular or non-circular. A comprehensive comparative 

investigation was undertaken to assess the contrasting characteristics of circular and non-circular 

failure surfaces, along with an examination of 2D circular and 3D spherical failure surface 

analyses. This thorough analysis investigated the effects of multiple variables, such as slope 

inclinations, soil properties, and external loading condition and their influence on slope stability. 

The results demonstrated that non-circular failure surfaces consistently exhibit greater criticality 

than circular ones in 2D analysis. Additionally, the 3D analysis using spherical failure surfaces 

yielded larger factors of safety than the corresponding 2D analysis. Moreover, significant 

differences in failure mechanisms were observed between 2D and 3D analyses. These findings 
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emphasized the importance of considering non-circular failure surfaces and performing 3D 

analyses in slope stability assessment and design processes. 

 

Fredlund et al. (1994) [141] estimated the coefficient of permeability in unsaturated soils using 

the soil-water characteristic curve primarily influenced by the pore-size distribution. A 

previously proposed equation by the authors described the curve across the entire suction range 

(0 to 106 kPa) and enabled the prediction of permeability in unsaturated soils. This equation 

eliminated the need for evaluating the residual water content when predicting permeability. The 

proposed permeability function integrated the relationship between suction and water content. 

The equation proved to be an exceptionally accurate fit when applied to existing literature data, 

encompassing measurements for both the soil-water characteristic curve and the coefficient of 

permeability. This remarkable success underscores the precision with which the presented model 

aligns with empirical observations, highlighting its robust performance in this context. The 

integration in the equation could be performed from zero water content to saturated water 

content, allowing for the use of normalized water content or degree of saturation data in 

predicting the permeability function.  

 

Ng et al. (2001) [142] employed three-dimensional (3D) numerical simulations to explore how 

groundwater reacts in an initially unsaturated cut slope at Lai Ping Road in Hong Kong when 

subjected to different rainfall patterns, durations, and return periods. Field monitoring data was 

used to establish initial and boundary conditions. The computed results revealed that rainfall 

patterns had a notable impact on pore-water pressures near the ground surface, with the influence 

diminishing as depth increased. Among the analysed rainfall patterns, a 24-hour duration with 

an advanced storm pattern was found to be the most critical, leading to the highest pore-water 

pressure in the slope. The impact of rainfall patterns on pore-water pressures exhibited a distinct 

sensitivity to the initial groundwater conditions, where higher initial water tables played a pivotal 

role in mitigating the effect. Additionally, it was observed that the escalation of pore-water 

pressure was notably pronounced when the return period was extended from 10 years to 100 

years. Still, this escalation was less prominent when transitioning from a 100-year return period 

to a 1000-year one. It is important to note that the influence of rainfall on pore-water pressure 

distribution manifested differently depending on the duration and intensity of the precipitation 

events. In short-duration, intense rain, the primary influence was concentrated in the upper soil 

layers, impacting shallow depths. On the other hand, prolonged and more moderate rainfall 

exhibited a more profound effect on groundwater, with deeper soils experiencing a more 
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pronounced impact. This variation in response highlights the complex interplay between rainfall 

characteristics, initial groundwater conditions, and the temporal scale at which the evaluation of 

the influence of these factors on pore-water pressures have been examined. Prolonged rainfalls 

exhibited less significant differences in pore-water pressure distribution compared to short-

duration, intense rainfalls. 

 

Dudeja et al. (2017) [143] focused on the slope stability analysis and geotechnical assessment of 

a section of the Yamunotri pilgrimage route in India. The way included a possible location for a 

204 m high concrete gravity dam intended to span the Yamuna River and generate power. 

Various slide zones were identified, classified as planar, wedge, or circular failures based on 

discontinuity orientation, structural features, and debris materials. A comprehensive 

investigation was undertaken through fieldwork and laboratory examinations to assess various 

aspects of circular failure slides in weathered quartzites, phyllites, and shale formations. This 

multidimensional analysis explored morphological dimensions, structural characteristics, 

orientations, and geotechnical parameters. The primary objective of these investigations was to 

provide a solid foundation for conducting a rigorous stability analysis of these geological 

phenomena. The cohesion, angle of internal friction, and other geotechnical properties were 

assessed. The slopes have an average inclination of 40°–43° with sparse vegetation. The 

materials in and around the slide zones consist of sands with significant fines. The factor of 

safety, computed based on strength, soil, and slope properties, indicated stability in dry 

conditions but decreased below unity with increasing saturation during rainfall, rendering the 

slopes unstable. Steep slopes, proximity to stream channels, weathering, jointing, rainfall, and 

road widening were identified as causative factors and triggers for slope failures along the route. 

 

Kanungo et al. (2013) [144] focused on landslide and slope failures in the Indian Himalayas, 

specifically along a 1.5 km road stretch located 9 km from Pipalkoti on the Chamoli-Badrinath 

highway (NH-58). The study area was divided into different zones based on field surveys, 

contour maps, and hillshade analysis. Three specific zones were selected for investigation and 

modelling, including a potential debris slide, a stable debris slope, and a potential rock slide. 

Field mapping, data collection, and laboratory testing of soil and rock samples were conducted 

to determine the physical and mechanical properties of the slopes. Numerical simulations using 

a 2D finite element plain strain approach were employed to model the failure process and assess 

the stability of the slopes. The results of the analysis demonstrated high instability in the rock 

and debris slide slopes, accurately depicting observed failure patterns. The stable slope was 
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validated to be stable through the analysis. The findings from this study contributed to landslide 

hazard assessment in the study area. 

 

Sarkar et al. (2012) [145] carried a study around the Amiyan area near Kathgodam, Nainital, 

Uttarakhand, which belongs to the Lower Siwalik formation and is susceptible to landslides. The 

authors investigated the slope instability in this area through extensive field surveys and 

laboratory experiments to determine the physicomechanical properties of the rock mass. 

Numerical simulations, using both two-dimensional and three-dimensional slope stability 

models, were employed to analyse the failure mechanism and zone of influence. The computed 

deformations and stress distribution aligned well with field observations, highlighting the 

vulnerability of the Amiyan slope and the need for appropriate protective measures. The study 

emphasized the importance of three-dimensional slope stability analysis in understanding slope 

behaviour and facilitating effective slope protection. 

 

Hammouri et al. (2008) [146] compared the limit equilibrium method and the finite element 

analysis for slope stability analysis, considering homogeneous and inhomogeneous slopes under 

conditions such as rapid drawdown, undrained clay soils, and tension cracks. The examination 

was performed with the utilization of PLAXIS 8.0, employing the finite element method, in 

addition to SAS-MCT 4.0, which follows a limit equilibrium approach. The focus was on 

determining the safety factor and identifying the critical slip surface using both methods. By 

comparing the results obtained from the two methods, the study aimed to evaluate their 

effectiveness and accuracy in slope stability assessment. The limit equilibrium method, known 

for its simplicity, was compared to the more complex finite element analysis. The findings of the 

study provided insights into the similarities and differences between the two methods, enabling 

a comprehensive assessment of slope stability and informing the selection of the most suitable 

method for future slope stability analyses. 

 

Singh et al. (2008) [147] investigated and compared the limit equilibrium method and finite 

element analysis for slope stability assessment, specifically considering homogeneous and 

inhomogeneous slopes under various conditions such as rapid drawdown, undrained clay soils, 

and tension cracks. PLAXIS 8.0 (based on Finite Element Method) and SAS-MCT 4.0 (based on 

Limit Equilibrium approach) were utilized to perform the analyses. The primary focus was to 

determine the safety factor and identify critical slip surfaces using both methods. By comparing 

the results obtained from the two approaches, the study aimed to assess their effectiveness and 
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accuracy in slope stability analysis. The simplicity of the limit equilibrium method was 

contrasted with the complexity of the finite element analysis. The findings of this study provide 

valuable insights into the similarities and differences between these methods, enabling a 

comprehensive evaluation of slope stability. The outcomes could assist in selecting the most 

appropriate method for future slope stability analyses. 

 

Zhu et al. (2003) [148] proposed a generalized framework that integrated various existing limit 

equilibrium methods for slope stability analysis with general slip surfaces.  The framework 

established in this study formulates force and moment equilibrium equations by incorporating 

the factor of safety and initially hypothesizing a normal stress distribution across the slip surface. 

This distribution is subsequently adjusted by including a function that relies on two auxiliary 

variables. The primary objective is to derive analytical solutions for the factor of safety by 

manipulating these equations. By introducing this framework, the authors utilised various 

assumptions regarding interslice forces into a single, comprehensive expression that governs the 

normal stress distribution along the slip surface. This unification streamlines the analysis process 

and facilitates a more cohesive approach to slope stability assessment. An iterative procedure has 

been meticulously developed to ensure the efficient convergence of the factor of safety solution. 

This procedure typically demonstrates rapid convergence, often requiring only a few iterations 

to yield an accurate result. Moreover, it is recognized that there are specific numerical challenges 

associated with the computation of the factor of safety, particularly when utilizing the Janbu 

method. To address these challenges, the authors proposed typical computation schemes, which 

alleviate numerical difficulties and enhance the accuracy of a factor of safety calculations. An 

additional advantage of the presented framework is its adaptability for practical implementation. 

It can be readily incorporated into computer programs, enabling the assessment of slope stability 

using various conventional methods of slices. This adaptability enhances the accessibility and 

usability of the framework in real-world engineering and geotechnical applications.  

A brief summary of the existing studies based on numerical modelling is provided in Table 2. 3. 

 

Table 2. 3: Literature based on Numerical modelling 

S. No. Authors Work done 

1.  Chandrasekaran et al. 

(2013) [126] 

Conducted FEA in Plaxis2D software to understand the 

failure mechanism and the factors contributing to slope 



63 

 

stability by employing the strength reduction technique to 

identify the critical slip surface and assess the FOS 

2.  Harris et al. (2012)  

[129] 

Conducted back analysis using volumetric water content 

sensors and a rainfall gauge to monitor the soil's response to 

rainfall 

3.  Singh et al. (2018) 

[45] 

Analysed the stability of road-cut slopes along the highway 

by employing a two-dimensional limit equilibrium method. 

The authors formulated a unique antecedent rainfall 

threshold. 

4.  Kumar et al. (2018) 

[133] 

Quantified the global FOS and compared the conventional LE 

Model with the advanced Numerical Model for rock slopes in 

Uttarakhand, India, using the Mohr-Coulomb failure criterion 

5.  Jamir et al. (2017) 

[134] 

Analysed displacement and shear strain patterns on three 

slope sections (S-1, S-2, S-3) using 2D FEM and SRR 

methods to determine the potential of slope instability 

6.  Senthilkumar et al. 

(2017) [135] 

Conducted numerical analysis using the LS-RAPID landslide 

simulation program to identify the failure mechanism of the 

landslide 

7.  Acharya et al. (2016) 

[44] 

Carried fieldwork and laboratory experiments and computed 

hydro-mechanical parameters for unsaturated and saturated 

conditions to determine seepage and slope stability using 

GeoStudio software 

8.  Rahardjo et al. 

(2007) [8] 

Conducted comprehensive set of parametric investigations to 

assess various factors that impact the stability of a uniform 

soil slope under changing rainfall scenarios 

9.  Fredlund et al. 

(1994) [141] 

Estimated the coefficient of permeability in unsaturated soils 

using the SWCC primarily influenced by the pore-size 

distribution 

10.  Kanungo et al. 

(2013) [144] 

Carried numerical simulations using a 2D FE plain strain 

approach to assess the stability of the slopes by selecting three 

specific zones including a potential debris slide, a stable 

debris slope, and a potential rock slide 
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11.  Hammouri et al. 

(2008) [146] 

Compared LE method (SAS-MCT 4.0) and FEA (Plaxis 8.0) 

for slope stability analysis, considering homogeneous and 

inhomogeneous slopes under conditions such as rapid 

drawdown, undrained clay soils, and tension cracks 

 

2.4.5  Literature Based on Physical Modelling 

Guan et al. (2023) [149] examined the failure mechanisms of landslide dams by 

conducting experiments and analysing debris composition and geomorphic parameters. The 

interaction between the dam and the backwater lake played a crucial role in dam breaching. Soil 

properties, such as shear strength and seepage, regulated the failure modes of dams. Overtopping, 

seepage instability, and head cutting contributed to the failure of fine-grained and widely graded 

dams, while coarse-grained dams remained stable. Geomorphic parameters influence infilling 

time and affect failure modes through seepage. Peak outflow rates were predicted using 

regression analysis with lake volume, dam height, and soil properties. This research enhanced 

concepts of breach mechanisms and allowed for predicting peak outflow rates based on dam 

parameters. 

 

Cogan and Gratchev (2019) [150] examined the combined effects of rainfall intensity, slope 

angle, and slope moisture content on landslide initiation. Previous research focused on individual 

factors, while this study considered their amalgamation. Experiments using a flume device were 

conducted to model single soil layer slope failures. The tests were categorized based on rainfall 

intensity (40, 70, and 100 mm/h), with variations in slope angle (45-55°) and initial moisture 

content (5-12%). Failure times occurred when pore-water pressure peaked and moisture content 

equalized. Changes in failure time were observed with alterations in slope angle and initial 

moisture content. The study developed an intensity-duration threshold function of I =

80.065 D(−0.596), based on the summarized initial failure times. 

 

Li et al. (2016) [42] investigated the startup conditions and sliding mechanism of rainfall-induced 

loess-mudstone interfacial landslides through a semi-similar material physical model test. The 

study investigated landslides that transpired within the confines of Qingshuihe County, in the 

Inner Mongolia region of China. The primary driving force behind these events was rainwater 

infiltration along the loess strata. This gradual seepage of rainwater softened the soil in proximity 

to the loess-mudstone interface, which, in turn, diminished the frictional constraints that were 

holding the soil layers in place. A crucial element in this geological narrative was the presence 
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of mudstone, which functioned as a critical barrier within the subsurface geological makeup. The 

relatively impermeable mudstone presented a stark contrast in terms of permeability coefficients 

when compared to the overlying loess strata. This disparity in permeability was a significant 

factor in the chain of events leading to the landslides. As the rainfall persisted and continued its 

steady infiltration, the softened zone near the loess-mudstone interface underwent a progressive 

expansion. This expansion, over time, culminated in a state of fluidization, a condition in which 

the soil lost its mechanical integrity and essentially transformed into a fluid-like state. This, in 

turn, precipitated the occurrence of interfacial landslides. In essence, the interplay of rainwater 

infiltration, soil softening, differences in permeability coefficients, and the ultimate transition to 

a fluidized state at the loess-mudstone interface was the intricate sequence of events that resulted 

in the observed landslides within the study area. The startup conditions were influenced by 

rainfall intensity, duration, and the thickness of overlying loess. The study provided scientific 

guidance for prevention, monitoring, early warning, and control of geologic landslide hazards. 

 

Zhang et al. (2017) [151] investigated the response of a loess-mudstone landslide model to 

seismic activity using centrifuge shaking table tests and 2D seismic input waves. The model was 

subjected to different amplitudes of simulated seismic signals, and the dynamic response was 

analysed in terms of relative peak ground acceleration (PGA). The results showed that relative 

PGA increased with increasing landslide height, with maximum values at the crest and slightly 

larger values at the toe compared to the middle of the slope. The outer surface exhibited the 

highest PGA, while the sliding surface had the weakest. Horizontal values of PGA were generally 

larger than vertical values, and the seismic input amplitude strongly influences the landslide's 

dynamic response. The study highlighted the deformation and failure mechanisms of the slope, 

such as displacement, cracks, collapsed soil deposition, and shallow sliding. Both centrifuge 

model testing and numerical modelling provided consistent results in terms of dynamic responses 

and failure characteristics induced by seismic activity. 

 

Wen and He (2012) [152] studied irrigation practices in loess areas of northwest China which 

have led to frequent landslides, specifically loess–red mudstone landslides. The presence of salt 

sinters at the landslide toes suggested that irrigation water's leaching effect on soluble salts in 

weathered red mudstone (WRM) may weaken its shear strength, contributing to landslide 

occurrence. Tests on WRM samples near landslides in Lanzhou city revealed that leaching by 

irrigation water reduced the residual shear strength and friction angle by up to 65% and 62% 

respectively after six leaching cycles, accompanied by significant dissolution of soluble salts. 
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Particle size distribution indicated that leaching mainly caused disaggregation of coarser particles 

and weakened interparticle forces among clays. Clay mineralogy may affect particle 

disaggregation. 

 

Zhou et al. (2014) [153] investigated the soil behaviour and failure mechanisms of loess slopes 

in Heifangtai Plateau, Gansu Province, China, which is prone to frequent landslides. High-quality 

soil samples were collected behind a landslide's failure plane. Three sets of stress path tests were 

conducted, simulating the process of loess slope failures. The tests included undrained 

compression (UC), drained shear, and wetting on anisotropically consolidated saturated and 

unsaturated samples. Results revealed strain-softening behaviour in saturated loess during 

undrained compression, sudden failure at low confining stress during drained shear, and 

progressive deformation during wetting in unsaturated loess. The study discussed the failure 

mechanisms of loess slopes based on these experimental findings. 

 

Wang et al. (2021) [154] focused on the detection, shear characteristics, and formation 

mechanism of loess-mudstone landslides in the loess Plateau of China. Field investigations, ring 

shear tests, and numerical simulations were conducted on loess specimens collected from the 

Dingjiagou landslide in Yan'an city. Results revealed that moisture content decreased the peak 

and residual strength of slip zone soils, while increased normal stress enhances shear strength. 

Heavy precipitation was found to play a significant role in slope instability compared to 

excavation. Well-developed cracks in loess soils and underlying mudstone soils contributed to 

the formation of loess-mudstone landslides. The study proposed three stages of formation: local 

deformation, penetration, and creeping-sliding stages, providing valuable insights for 

understanding and mitigating such landslides. 

 

Li et al. (2022) [155] conducted a physical model test to simulate loess landslide failure under 

rainfall conditions. Pore-water pressure and soil pressure sensors were used to monitor the failure 

process. The results demonstrated the random nature of loess landslide failures and highlighted 

the inadequacy of single-scale or linear mechanical models. However, by considering micro and 

macro scales, the failure process of loess landslides could be effectively described. The study 

suggested analysing loess landslide mechanics from various perspectives, including liquid 

bridge, force chain, soil mechanics tests, physical models, real landslides, and tectonic stress, to 

enhance scientific understanding and effectiveness in future research. 
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Ling and Ling (2012) [156] investigated landslides triggered by heavy precipitation, specifically 

focusing on rainfall associated with hurricanes. Using centrifuge model simulations, the 

researchers replicated a landslide event that occurred during Typhoon Nabi in Japan in 2005. The 

simulations involved a sand-clay soil mixture and incremental application of rainfall until it 

surpassed field measurements. Instability was analysed using an infinite slope analysis, and the 

mechanism of rainfall-induced failure was discussed. The results demonstrated that rainfall 

increments below 200 mm caused localized failures, while a cumulative rainfall of 400 mm led 

to a widespread slope failure. The instability was attributed to reduced soil cohesion and 

increased pore pressure resulting from infiltration during rainfall. 

 

Zhang et al. (2012) [12] investigated the infiltration-deformation-failure process of slopes with 

cracks under rainfall-induced deep-seated landslides. Centrifuge model tests were conducted, 

measuring suction, displacement, and wetting front behaviour. The results showed that the 

wetting front curved significantly near the cracks, and deformation was mainly influenced by 

soil saturation and crack-affected water infiltration. The displacement process of slopes with 

cracks exhibited stages of small displacement, rapid increase, and stability. With increasing 

distance, cracks showed lesser impact on infiltration and deformation. Vertical deformation was 

prominent near vertical cracks, while horizontal deformation was less significant. Rainfall style 

and intensity also impacted the slope's deformation-failure behaviour. Vertical cracks on the 

slope top were less likely to trigger global landslides compared to oblique cracks. 

 

Askarinejad et al. (2012) [157] performed small-scale physical modelling experiments using a 

geotechnical drum centrifuge to examine the factors that lead to landslides triggered by rainfall. 

The tests were carried out in a controlled setting concerning temperature, humidity, wind, and 

the amount and duration of rainfall. The purpose was to examine potential failure mechanisms 

proposed for full-scale landslide experiments. The model included different shapes and hydraulic 

properties of the bedrock to simulate drainage and exfiltration. Close-range photogrammetry and 

high-speed cameras were used to track ground movements, monitor volumetric changes, and 

analyse deformation vectors and strains using the PIV method. The paper also discussed the 

design details of the climate chamber used in the experiments. 

 

Peranic et al. (2022) [158] presented the monitoring of downscaled slope models under simulated 

rainfall in ‘1g’ to understand the hydraulic response. The study focused on the sensor network 

used to monitor soil moisture and pore-water pressure (PWP) changes. The results demonstrated 
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that the sensor network effectively monitors soil moisture and PWP changed during rainfall 

infiltration and under fully saturated conditions. The simultaneous monitoring of soil moisture 

and PWP allowed for the reconstruction of stress paths. The study also discussed hydraulic 

hysteresis, surface erosion, and challenges in achieving and maintaining the desired initial 

moisture distribution in slope models. 

 

Zhan et al. (2022) [159] conducted a rainfall-induced landslide model test to investigate the 

change in hydrological indices during the evolution process. The results showed that volumetric 

moisture content reached its maximum value before failure, accompanied by an increase in pore-

water pressure. A sudden change in volumetric moisture content occurred during failure. Pore-

water pressure and volumetric moisture content were commonly used as indicators for landslide 

early warnings, with pore-water pressure-based models often outperforming moisture content-

based models. However, some failures occurred even with small positive pore-water pressure 

due to heavy rainfall. To address this, a model focusing on volumetric moisture content and its 

time variation was established, providing reliable early warnings for landslides triggered by 

saturated conditions or low pore-water pressure. 

 

Prodan et al. (2023) [160] examined the failure mechanism of a landslide induced by simulated 

rainfall through the utilization of small-scale slope modelling. The models, constructed with 

varying soil types (sand and sand-kaolin mixtures) but having the same slope angle, were 

subjected to simulated rainfall while monitoring parameters like water content, pore-water 

pressure, matric suction, slope deformation, and failure development. The findings revealed that 

rainfall infiltration increases water content, reduces suction, and weakens the slope's effective 

stress and shear strength, leading to movement and slope failure. Observations indicated that 

sandy slopes experience retrogressive failure due to rising groundwater, while sand-kaolin 

mixtures exhibit crack instabilities caused by matric suction dissipation from rainfall infiltration 

in unsaturated conditions. 

 

Peranic et al. (2022) [161] introduced a model platform developed at the University of Rijeka, 

Croatia, to conduct physical simulations of downscaled slopes subjected to rainfall infiltration 

under gravitational forces less than ‘1g’. The need for a comprehensive understanding of rainfall-

induced landslides was emphasized due to climate change and urban expansion. Observing how 

slopes responded hydromechanically to rainfall loads was essential to better understanding the 

mechanisms behind them. The platform included a sensor network for precise monitoring of soil 
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moisture and pore water pressure during rainfall simulations. The study highlighted the 

importance of such models in providing accurate insights into relevant variables. Two examples 

of monitoring data were analysed, demonstrating the applicability of the model platform in 

studying scaled slope models exposed to rainfall. 

 

Arbanas et al. (2020) [162] used scaled physical models to study landslide behaviour originated 

in Japan during the 1970s. Laboratory experiments using scaled models, also known as flume 

tests, were conducted in Canada, Japan, and Australia in the 1980s and 1990s under normal 

gravity conditions. The work aimed to model the behaviour of landslide remediation structures 

in scaled physical models under static (rainfall-triggered) and seismic (earthquake-triggered) 

conditions, as well as their combined effects. This research presented preliminary results from a 

rainfall simulation test on a sandy slope, including observations of water content, pore-water 

pressure, and surface displacement using structure-from-motion techniques. The article also 

examined the commencement and progression of the observed instability within the sandy slope 

model. 

 

Wang et al. (2022) [163] derived a new debris flow rainfall threshold based on real-time rainfall 

intensities in Beijing. Severe flooding and debris flows occurred in Beijing's mountainous areas 

during three storms on July 21, 2012, July 20, 2016, and July 16, 2018. These events provided 

an opportunity to evaluate rainfall intensity thresholds for debris flow occurrence. Different 

threshold types based on average intensities during the rainfall period and entire duration were 

estimated. Results indicated that various threshold types differ in their ability to distinguish 

storms with positive and negative debris flow responses, with the real-time threshold performing 

the best. The results also indicated that the initiation of debris flows in Beijing was associated 

with a combination of rainfall intensity and cumulative precipitation, requiring both to reach a 

threshold level for initiation. 

 

Zhang et al. (2022) [164] presented a method for determining rainfall types based on their impact 

on slope instability, aiming to enhance early warning systems for rainfall-induced slope failures. 

Through simulations of slope instability scenarios under various rainfall conditions and soil 

properties, threshold curves for slope failure were obtained. Examining these graphical 

representations allowed for categorizing rainfall patterns into two distinct types: those 

characterized by short-duration and high-intensity (referred to as SH) and those described by 

long-duration and low-intensity (referred to as LL). The findings from the analysis revealed a 
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compelling connection between the specific rainfall types and their impact on the onset of slope 

failure. The authors observed that varying intensity-duration (I-D) conditions pronounced 

affected the initiation of slope failure under LL-type rainfall. In contrast, such conditions did not 

exert a significant influence under SH-type rainfall. Expanding further on the results, the work 

highlights the intricate relationship between rainfall characteristics and their role in slope failure. 

The SH-type rainfall, characterized by its brief but intense downpours, has a relatively consistent 

effect on slope stability. In contrast, the LL-type rainfall, characterized by prolonged and gentler 

precipitation, demonstrated a more complex response to variations in intensity and duration. This 

insight suggests that slope stability during rainfall events is a multifaceted phenomenon, 

influenced not only by the overall amount of rainfall but also by the specific characteristics of 

the rain, including its duration and intensity. Understanding these aspects in rainfall patterns and 

their impact on slope stability is crucial for effective slope management and risk mitigation in 

geotechnical engineering and related fields. Soil shear strength parameters do not affect rainfall 

type classification, although they can shift the threshold curve of slope failure. This research 

contributed to understanding rainfall's role in slope failure initiation, aiding the development of 

future early warning systems. 

 

Arnhardt et al. (2007) [165] focused on investigating the entire information chain, from data 

gathering through wireless sensor networks to information retrieval, specifically for landslides 

and mass movements. The importance of early warning systems in disaster prevention for natural 

hazards is increasing, especially in areas where mitigation strategies are limited. However, data 

gathering and system interoperability pose significant challenges. The project emphasized the 

need for cost-effective and easily deployable measurement systems, as well as modern 

information systems with interoperability and service-oriented architecture concepts. The 

proposed wireless network served as a foundation for additional techniques such as sensor fusion 

and malfunction identification. The obtained geodata was processed according to user 

requirements and could be integrated into local, regional, or global information structures, 

ensuring flexibility and accessibility for a wide range of users. 

 

Gidon and Sahoo (2023) [166] performed real-time monitoring of slopes for accurate assessment 

of slope behaviour and analysis based on received data. In India, 15% of the landmass is prone 

to landslides according to the “National Disaster Management Authority” (NDMA). By 

measuring pore water pressure, site displacement, and hydrological conditions, a deeper 

understanding of slope behaviour and failure mechanisms can be gained. Proper instrumentation 
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during monitoring revealed the failure surface caused by rainwater seepage, aiding in the 

reduction of catastrophic effects. Tensiometers placed at various slope levels highlighted the 

significance of pore water pressure during rainfall. Finite element analysis validated field study 

results, identifying potential slip surfaces and enabling the development of reliable slope 

stabilization techniques. Advanced warning criteria could be established by identifying a 

threshold level through the system. 

 

Menon (2023) [167]  introduced a methodology for identifying the key parameters affecting 

rainfall-induced landslides. Two laboratory-scale slope models were constructed using a tilting 

fume setup and rainfall simulators to study landslide processes. Various sensors and cameras 

were employed to monitor the landslides. The results obtained from this study contributed to the 

identification of effective monitoring parameters for the development of a landslide early 

warning system (LEWS). The study focused on the measurement of pore water pressure 

parameters and continuous capture of instantaneous photographs during artificial rainfall 

simulations. The findings suggested that while pore-water pressure monitoring is not ideal for 

developing an early warning system due to the unpredictable nature of pressure values in 

heterogeneous soil and sloping angles, a sudden release of pore pressure occurs after mass failure, 

as observed in the results. 

 

Kuradusenge et al. (2021) [168] determined rainfall and soil water content thresholds for the 

landslide early warning system (LEWS) using Internet of Things (IoT) technology. shallow 

landslides pose a significant threat, often triggered by rainfall in mountainous regions. The 

rainfall threshold for landslide occurrence varies based on geographical characteristics. 

Determining soil water content is crucial for landslide prediction and early warning systems. 

Real-time monitoring with rain gauges, soil moisture sensors, and rainfall simulating tools was 

conducted. Results showed that landslide occurrence is influenced by rainfall amount, intensity, 

soil moisture, and internal and environmental factors. A comprehensive investigation conducted 

at a particular geographical location has yielded valuable insights regarding the temporal 

dynamics of slope failure. It was determined that the onset of slope failure at this specific site 

necessitates a minimum duration of 8 hours and 41 minutes. This critical temporal threshold was 

observed in conjunction with specific meteorological and soil conditions. Specifically, this 

threshold emerged under sustained rainfall, an intensity of 8 millimetres per hour, and notably 

high soil moisture levels exceeding 90% as measured by deeper sensors. These findings hold 

significant implications for advancing Landslide Early Warning Systems (LEWS). By 
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identifying the temporal threshold associated with slope failure in this specific geographic 

context, the authors established a crucial reference point for predictive modelling. These values, 

derived from empirical research, can be employed as pivotal components within LEWS 

algorithms, enhancing the system's accuracy and reliability in predicting impending slope 

failures in similar regions. This represents a substantial step forward in bolstering the 

effectiveness of LEWS, ultimately contributing to improved landslide risk management and 

mitigation strategies.  

Table 2. 4 shows the summary of existing literature based on Physical modelling. 

Table 2. 4: Literature based on Physical modelling 

S. No. Authors Work done 

1.  Guan et al. (2023) 

[149] 

Examined the failure mechanisms of landslide dams by 

conducting experiments and analysing debris composition 

and geomorphic parameters 

2.  Cogan and Gratchev 

(2019) [150] 

Examined the combined effects of rainfall intensity, slope 

angle, and slope moisture content on landslide initiation using 

a flume device to model single soil layer slope failures 

3.  Li et al. (2016) [42] Investigated the startup conditions and sliding mechanism of 

rainfall-induced loess-mudstone interfacial landslides in 

China through a semi-similar material physical model test 

4.  Wang et al. (2021) 

[154] 

Conducted field investigations, ring shear tests, and 

numerical simulations to understand the detection, shear 

characteristics, and formation mechanism of loess-mudstone 

landslides in the loess Plateau of China 

5.  Li et al. (2022) [155] Carried a physical model test to simulate loess landslide 

failure under rainfall conditions by using PWP and soil 

pressure sensors to monitor the failure process. 

6.  Askarinejad et al. 

(2012) [157] 

Performed small-scale physical modelling experiments using 

a geotechnical drum centrifuge to examine the factors that 

lead to landslides triggered by rainfall including different 

shapes and hydraulic properties of the bedrock to simulate 

drainage and exfiltration by utilising close-range 

photogrammetry and high-speed cameras to track ground 
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movements, monitor volumetric changes, and analyse 

deformation vectors and strains using the PIV method 

7.  Peranic et al. (2022) 

[158] 

Presented the monitoring of downscaled slope models under 

simulated rainfall in ‘1g’ to understand the hydraulic response 

and developed a sensor network to monitor soil moisture and 

PWP changes 

8.  Prodan et al. (2023) 

[160] 

Examined the failure mechanism of a landslide induced by 

simulated rainfall through the utilization of small-scale slope 

constructed with varying soil types (sand and sand-kaolin 

mixtures) modelling and by monitoring parameters like water 

content, pore-water pressure, matric suction, slope 

deformation, and failure development 

9.  Arbanas et al. (2020) 

[162] 

used scaled physical models and conducted flume tests under 

normal gravity conditions to study landslide behaviour 

observed in Japan 

10.  Zhang et al. (2022) 

[164] 

Proposed a method for determining rainfall types based on 

their impact on slope instability to develop LEWS for rainfall-

induced slope failures. Threshold curves for slope failure 

were obtained through simulations of slope instability 

scenarios under various rainfall conditions and soil properties 

11.  Menon (2023) [167]   Constructed two laboratory-scale slope models utilising a 

tilting fume setup and rainfall simulators to study landslide 

processes. PWP parameters were noted and instantaneous 

photographs were captured during artificial rainfall 

simulations by employing sensors and cameras to monitor the 

landslide process. 

 

2.4.6 Literature Based on Statistical and Probability Modelling 

Abraham et al. (2020) [30] proposed a Bayesian analysis method that calculated the 

likelihood of landslides happening based on various combinations of rainfall intensity and the 

antecedent soil moisture levels. The “Système Hydrologique Européen Transport” (SHETRAN) 

hydrological model simulated soil moisture, and event rainfall-duration (ED) thresholds are used 

to characterize rainfall severity. The approach was applied in Kalimpong, a landslide-prone area 

in the Darjeeling Himalayas, to define two-dimensional Bayesian probabilities for landslide 
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occurrence. The research illustrated the practicality of utilizing the SHETRAN model for 

simulating moisture conditions, offering a viable strategy for enhancing the accuracy of empirical 

threshold predictions tailored to the local context. 

 

Uwihirwe et al. (2020) [169] endeavoured to employ empirical-statistical methods, utilizing both 

landslide and precipitation data, to achieve two main objectives in Rwanda, Central-East Africa. 

Firstly, they sought to pinpoint the precipitation-related variables with the greatest capacity for 

explaining landslide occurrences. Secondly, they aimed to establish threshold levels for 

landslides based on both triggering events and their underlying causes. To accomplish these 

goals, they employed a combination of the Bayesian probabilistic approach, maximum true skill 

statistics, and the minimum radial distance technique to identify informative threshold levels 

indicating the likelihood of landslide occurrences. 

 

Dikshit et al. (2017) [107] employed a probabilistic approach in the Kalimpong region of 

Darjeeling Himalayas using rainfall and landslide data from 2010 to 2016. The frequency of 

landslides in the Indian Himalayan regions has increased, leading to severe consequences in 

terms of loss of life and property. This necessitated the development of strategies to mitigate the 

impact of landslides. The findings highlighted the correlation between landslides and rainfall 

event parameters, particularly rainfall intensity. Additionally, a comparative analysis was 

conducted between empirical and probabilistic thresholds to assess their effectiveness in 

landslide prediction. 

 

Lari et al. (2014) [28] introduced a general framework for probabilistic landslide hazard analysis 

that provides hazard curves and maps for all types of landslides. The technique assessed the 

likelihood that a given slope site would experience a landslip within a specific time frame. Hazard 

maps were generated by selecting a fixed probability of exceedance. The approach considers 

landslide onset frequency, runout frequency (for long-runout landslides), and local landslide 

intensity. The methodology was used to analyse rockfall risk in an area damaged by the 2011 

earthquake in Christchurch, New Zealand. Hazard curves and maps were crucial for designing 

mitigation structures, land planning, and risk management policies. 

 

Glade et al. (2000) [29] highlighted that rainfall-induced landslides pose significant risks and are 

vital geomorphic processes worldwide. In this study, the authors investigated landslide 

susceptibility in three regions within New Zealand's North Island, known for their vulnerability 



75 

 

to landslides. They employed the empirical “Antecedent Daily Rainfall Model” to establish 

regional rainfall thresholds that trigger landslides. This model integrates antecedent rainfall data 

and rainfall that occurs on the day of the event. Moreover, it incorporates a decay coefficient 

derived from the physical characteristics of storm hydrograph recession. These three regions in 

New Zealand's North Island were chosen for their distinct geological and climatic factors, 

making them ideal study areas to understand landslide triggers better and develop early warning 

systems. The research not only focused on identifying rainfall thresholds but also aimed to shed 

light on the complex interplay between antecedent rainfall conditions and the specific rainfall 

patterns during an event. The decay coefficient, which derived from storm hydrograph recession 

behaviour, provided a valuable key to comprehending the dynamic processes associated with 

landslides in these regions. Statistical techniques were applied to identify thresholds that 

effectively distinguish landslide occurrence conditions. The resulting regional models provided 

a means to assess the probability of landslide events based on rainfall conditions, highlighting 

regional variations in susceptibility to landslide-triggering rainfall based on physical conditions 

and landslide databases. 

 

Wu and Song (2018) [170] evaluated landslide susceptibility in Danba County, China, a 

probability statistic model called the certain factor was employed. Landslide events in the region 

were frequent but poorly understood. The resulting susceptibility map achieved accuracies of 

0.8211 and 0.8288 in the experiment and verification areas, respectively, validated by the area 

under the prediction rate curve. Spatial clustering analysis using Moran's statistic and local 

indicator of spatial association (LISA) was conducted to identify landslide-prone areas. The high 

Moran's index of 0.959 and the consistent LISA identification with previous investigations 

confirmed the rationality and effectiveness of the proposed method in locating landslide-prone 

regions and facilitating decision-making. 

 

Rollo and Ramoello (2021) [171] employed a probabilistic approach, utilizing an updated 

database of ground motions recorded during Italian earthquakes, to assess slope seismic 

performance. The advantage lies in accounting for the aleatory variability of ground motions and 

predicting seismic-induced slope displacements. Hazard curves were presented, displaying the 

annual rate of exceeding permanent slope displacement. The approach was applied regionally, 

creating seismic landslide hazard maps for Southern Italy's Irpinia district, characterized by high 

seismic hazard. These maps could aid practitioners and government agencies in regional 



76 

 

planning, identifying and monitoring zones susceptible to earthquake-induced slope instability, 

necessitating further site-specific studies. 

 

2.4.7 Indian Standard Provisions  

The Bureau of Indian Standards (BIS) has established guidelines pertaining to the broader 

assessment of landslide hazards on a regional scale of 1:50,000, as detailed in IS 14496, Part 2 

(1998, reaffirmed in 2002) in India. The approach employed by BIS for evaluating landslide 

susceptibility zoning involves the use of a heuristic method known as Landslide Hazard 

Evaluation Factor (LHEF) rating scheme. BIS has identified six primary factors contributing to 

landslide occurrence in hazard zoning: lithology, structural characteristics, slope morphology, 

relative relief, land use and land cover, and hydrological conditions. Table 2. 5 shows landslide 

hazard evaluation factor (LHEF) presented by BIS [172]. 

 

Table 2. 5: Landslide hazard evaluation factor (LHEF) 

 

 

 

 

 

 

 

The National Disaster Management Authority (NDMA) has presented an official document titled 

“Management of Landslides and Snow Avalanches” in the year 2009. This document provides 

definitions for various terms used in the field of landslide studies. It defines Landslide Hazard 

Zonation (LHZ) mapping as a valuable tool to identify regions prone to landslides, evaluating 

the likelihood of such events occurring over a specified timeframe. The creation of an LHZ map 

involves analysing regional geology, geomorphic conditions, slope stability (both current and 

potential), and land usage data. 

The significance of scale is emphasized within the document when conducting LHZ mapping. 

Maps at scales of 1:1,00,000 or 1:50,000 are unsuitable for comprehensive regional assessments, 

Sr. No. Causative factor 
Maximum LHEF 

Rating 

1. Lithology 2 

2. Structure 2 

3. Slope morphometry 2 

4. Relative relief 1 

5. Land use and land cover 2 

6. Hydrological condition 1 
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as they offer only preliminary insights and lack sufficient detail. It is recommended to use larger 

scale maps, such as 1:10,000 or higher, for in-depth investigations at the local level. The 

document also underscores the absence of a comprehensive landslide inventory, which poses 

challenges in validating landslide hazard maps. No institution within the country possesses a 

robust database of landslide inventory. Recognizing the importance of establishing a reliable 

landslide inventory database, the Geological Survey of India (GSI) has recently launched an 

initiative to create landslide inventory maps and databases encompassing regions prone to 

landslides in the country. 

Furthermore, the document details specific case studies involving geotechnical assessments and 

monitoring of various landslide sites. Prominent examples of such investigations encompass the 

meticulous scrutiny of various landslide occurrences across different regions of India. Notable 

among these is the thorough assessment of the Kaliasaur landslide, which is situated in proximity 

to Srinagar along National Highway 58 (NH-58). Additionally, in the picturesque region of 

Nainital, the Sher Ka Danda and 9.5-mile landslides have garnered considerable attention and 

research efforts. Moving towards the eastern Himalayas, the B2 and Lanta Khola landslides in 

Sikkim have also been subjects of in-depth investigation. Further west, in the pristine landscapes 

of Kinnaur district, Himachal Pradesh, the Powari landslide at kilometer 367 on National 

Highway 21 (NH-21) has drawn scientific interest for its unique characteristics. Similarly, the 

Patalganga landslide near Pipalkoti, along National Highway 58 in Uttarakhand, has been 

thoroughly examined to understand its underlying geological and environmental factors. The 

Department of Science and Technology (DST) has taken proactive steps by initiating multiple 

research projects in response to the growing need for comprehensive research in this field. 

Noteworthy among these endeavours are those focused on NH-1A in Sonapur, Meghalaya, which 

has experienced its share of geological challenges. Additionally, the ancient and sacred Tirumala 

Hills have become a subject of scientific scrutiny to comprehend the geological dynamics in that 

region better. The DST has also undertaken research projects at eight specific sites in 

Uttarakhand, each providing valuable insights into the complexities of landslide occurrences in 

diverse terrains. These research initiatives undertaken by the Department of Science and 

Technology are part of a broader effort to enhance the understanding of landslides and the 

geophysical processes that lead to them in various parts of India, ultimately contributing to 

developing effective mitigation and preparedness strategies. 
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2.5 Research Gaps 

After a detailed and extensive literature survey in the area of rainfall-induced landslides, the 

following research gaps are identified: 

1. Previous studies have primarily relied on mathematical or numerical models to analyse 

rainfall-induced landslides. However, a research gap exists in the limited exploration of 

physical modelling methods to simulate the key parameters of parent landslides. Physical 

modelling techniques can provide valuable insights into the behaviour and mechanisms 

of landslides under different rainfall conditions, particularly in the context of the 

Himalayan terrain. 

2. Most of the existing studies have employed numerical methods for slope failure analysis 

but the effectiveness and significance of these techniques have not been adequately 

verified through physical modelling experiments. Therefore, the validation of numerical 

techniques using physical modelling is an unexplored domain of research to ensure better 

reliability and applicability of these models in assessing slope failure mechanisms in 

specific geographic contexts, particularly in the vicinity of the Indian Himalayas.  

3. There is a lack of extensive research and development of EWS that utilize strain gauges 

for stress detection prior to failure. This highlights the need for further exploration of this 

particular approach to enhance the effectiveness for various failure events. 

4. A limited number of studies have been conducted on the simultaneous utilization and 

integration of multiple sensors, such as strain gauges, soil moisture sensors, rain gauges, 

and tilt sensors to collectively assess probable initiation factors for landslides. Therefore, 

further research is much needed to explore and investigate in this context for the 

development of more accurate and reliable monitoring systems. 

5. A research gap exists in the need for low-cost monitoring systems instead of previous 

instrumentation-based EWS, which were costly and impractical to install and monitor for 

every critical slope. Additionally, the inability to recover and reuse the monitoring 

instruments after slope failure events further emphasizes the requirement for cost-

effective alternatives. This research gap highlights the necessity of exploring and 

developing low-cost monitoring systems that are affordable. Such systems would enable 

more widespread implementation and continuous monitoring of critical slopes, 

contributing to enhanced slope stability assessment and timely warning of potential 

failure events.  
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CHAPTER 3 

PHYSICAL MODELLING 

3.1 General 

Debris flows are fast-moving landslides that are dangerous to life and property because they 

move quickly, destroy objects in their paths, and often strike without warning. Debris flows are 

most common during seasons of heavy rain, and they usually begin on slopes or mountains. 

Debris flows, also known as mudslides, mudflows, or debris avalanches, are a form of landslide 

[50]. It is tough to explain the mechanism of debris flow landslide, only with a numerical or 

mathematical model because of sudden failure, complexity, and random behaviour [42]. So, the 

slope failure mechanism has been studied by adopting a physical model test as it is most effective 

and widely used method to explore the sliding mechanism of soil slices, to investigate the rainfall 

water movement through the pores, to analyse the rainfall-induced slope instability, and thereby 

helping in providing insights for early warning and control of landslides [42], [157], [186]. 

 

3.2  Material Similarity and Similar Condition 

The concepts of ‘similar theory’ are used for the indoor model experiment. The experimental 

set-up and materials are prepared by criterion based on the similar theory. Similarity ratio is 

adapted accordingly, which is the prototype ratio to model for the parameters: geometric 

similarity ratio, quality similarity ratio, loading similarity ratio, and boundary condition 

similarity ratio [42], [187], [188]. 

The scale-based physical model is mostly used models than any other mechanical model to study 

the landslide mechanism. A model test used for the study of landslides should have its similarity 

characteristics, including dead load similarity, slope material similarity, rainfall duration 

similarity, and boundary condition similarity. These factors are effective parameters in the 

physical model test used to study the landslide mechanism. 

The soil available in the laboratory (Delhi Technological University (DTU) soil) constitutes 80% 

sand, and 20% fine-grained soil, i.e., silt and clay. The soil of the study area constitutes 60% 

sand and 40% fine-grained soil. So, to meet the similarity condition, sand and clay are added to 
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the DTU soil. As in the study area, there are stones and boulders that are also present in debris 

material, so fraction of stones and boulders of different sizes are mixed to meet up with 

similarities. By material similarity theory, the similarity ratio of inner friction angle, modulus of 

elasticity, cohesion, and poisson’s ratio are taken similar to the prototype, as Cφ = CE = Cc = Cµ 

= 1.  

 

3.3 Physical Modelling Set-Up  

A physical modelling test has been set-up in the study bearing identical engineering 

properties based on the existing studies. The essential engineering properties of soil obtained 

through similar materials are tested in the laboratory and derived through the ‘dimensional 

technique’. The ‘similar conditions’ of the physical model experiment were brought in line with 

the similar theories. The start-up conditions and failure mechanism of the rainfall-induced 

landslide are studied through the physical model experimental method. Fig. 3. 1 shows the 

schematics of the experimental set-up of the physical modelling and Fig. 3. 2 shows the frame 

type box with soil slope. 

 

Fig. 3. 1: Schematic diagram of the experimental set-up 

 

The following assumption has been made while performing the physical modelling: - 

i. The engineering properties of parent soil and experimental soil are the same. 

ii. All the sides are impermeable, ensuring no seepage except the toe drain.  

iii. The impact factor of rainfall on the slope is negligible as the sprinkler used is not jet type.  

iv. Rainfall distribution on the slope is uniform.  

v. The effect of vegetation and evaporation has not been considered.  
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3.3.1 Fabrication of Frame-Type Box 

The frame type box model is designed using a transparent acrylic sheet of 15 mm 

thickness with a steel frame for experimental work. The ‘similarity ratio’ of geometry, CG is 

taken equal to ‘n’ (CG = n). In this test, the geometry scale is taken as 1 in 100 as the prototype 

is large. The experimental platform is a cuboidal tank, which measures 97 cm long, 57 cm wide, 

and 48.5 cm high. Drain holes are also provided at the toe side to flush the runoff water. 

 

 

Fig. 3. 2: Frame-type box model with soil slope 

 

3.3.2 Fabrication of Rainfall Simulator 

There are two main empirical methods based on precipitation measurement to define its 

threshold [11], [26], [189], which are: - 

i. Rainfall obtained for a particular event (intensity–duration (ID), total event precipitation 

(E), precipitation event–duration (ED), and precipitation event–intensity (EI) thresholds) 

and  

ii. Antecedent precipitation activity which is outlined as the threshold amount of rainfall 

that would cause slope failure.  

In this study, three parameters have been considered to simulate rainfall: - 

a. intensity of precipitation ‘q’,  

b. duration of precipitation ‘t’ and  

c. interval of precipitation.  

The rainfall duration and interval each vary with the time factor ‘t’. The relationship between the 

intensity of rainfall ‘q’ and the total rainfall ‘Q’ is – 
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q =  

Q

t
 

Eq. 5. 1 

 

A self-designed rainfall simulation system, as shown in Fig. 3. 3, has been employed to replicate 

varying rainfall patterns that portrays real-world conditions. The artificial rain generator has been 

fabricated using a water storage tank, submersible pump, control valve, flow sensor, and raindrop 

nozzle, all working together to generate the necessary amount of rain. The rain generation process 

utilizes multiple sprinkler nozzles incorporated into a rainfall simulator to replicate the 

precipitation. The nozzles employed have a spray design with a fixed opening, resulting in 

potential variation in droplet size based on input flow pressure.  

 

  

Fig. 3. 3: Components and circuit diagram for rainfall simulator 

The rainfall generator has been outfitted with a flow sensor that interfaces with a microcontroller, 

enabling data collection when connected to a computer. Regulating the water flow during 
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simulations is facilitated by a sluice valve affixed to the rainfall simulator, complete with 

calibrated scales. Adjustment of the water flow is achieved by manipulating a hand wheel, 

allowing for increased or decreased flow as required. Additional markings were introduced based 

on experimental requirements. 

To achieve the desired cumulative depth of rainfall, a fixed-opening sprinkler has been 

positioned 12.5 cm above the slope within the rainfall simulator. The droplet size could not be 

altered due to the sprinkler's fixed design. The negligible impact of the sprinkler's dispersion is 

assumed, given that the simulator did not employ a jet-type mechanism. This setup has been 

chosen to ensure feasibility and consistency throughout the experimentation process. 

 

3.4 Study Area 

This section discusses two study locations. The first study site is situated along NH-5 within 

Jhakri town in the Shimla district of Himachal Pradesh, India, referred to as the “Jhakri 

landslide.” The second study site is situated near Kotrupi village along the Mandi – Joginder 

Nagar – Pathankot National Highway (NH-154), known as the “Jhakri landslide.” These 

locations are selected for analysing the failure mechanism and evaluating the effectiveness of the 

developed system through physical modelling. The two slopes considered in this study possess 

distinct geometric and material characteristics, suitable for carrying comprehensive exploration 

of the landslide phenomenon, its underlying factors and failure mechanisms. 

Soil samples have been collected from the failure sites from both the study area-I and II. These 

collected samples have been brought and tested in the laboratory for the determination of the 

geotechnical parameters of interest which serves as the input parameters for the physical and 

numerical modelling. The primary soil characteristics essential for simulating the in-situ 

conditions of the slope and for assessing the slope stability used in the present study are dry unit 

weight, moisture content, permeability, cohesion and friction angle. Suitable laboratory tests 

have been conducted for the determination of aforementioned parameters as per the guidelines 

and procedure outlined by Bureau of Indian Standards. The obtained values of these parameters 

are mentioned in the result section.  

 

3.4.1 Study Area-I (Jhakri Landslide) 

The study location is on NH-5 in Jhakri town of Shimla district in Himachal Pradesh, 

India (Fig. 3. 4a). The study area is covered under the topo sheet no. 53/E11 (1973) by the 

Geological Survey of India (GSI). NH-5 is a major national highway-connecting corridor for 
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Shimla districts to other areas of Himachal Pradesh. There are two hydroelectric projects of 1500 

MW and 343 MW capacity operated by Satluj Jal Vidyut Nigam (SJVN) Ltd in this area (Singh 

et al. 2018b). The location is situated near the Sutlej River that is the rainfall catchment basin of 

the study area. Jhakri area near the NH-5 (HPSDMA Himachal Pradesh, 2011) is highly affected 

by rainfall-induced landslides.  

The study area is situated in the Himalayan region and is characterized by two major thrust zones, 

namely the 'Main Boundary Thrust (MBT)' and 'Main Central Thrust (MCT)'. In this region, 

there is the presence of moderately to highly weathered quartz-mica schist, which appears white 

to light yellow. Stratigraphically, the Shali formation is found beneath the Rampur formation, 

where the lower part consists of volcanic material and the upper part comprises Rampur 

Quartzite. Various thrust zones in the study area undergo neo-tectonism, and the Jhakri thrust 

zone serves as the boundary between the Wangtu Gneiss Complex and Quartzite present in the 

study area. The Jhakri thrust zone has been active for more than 4.5 million years [190]–[192]. 

Lithology provides information about the rock formations in the study area (Fig. 3. 4b), and the 

lithological formations were identified through the interpretation of resource maps obtained from 

Bhukosh, GSI [193]. 

 

(a) 



85 

 

 

 

(b) 

Fig. 3. 4 (a) Location map of the study area-I situated in Rampur district of Shimla, 

Himachal Pradesh, India, and (b) Lithological map of study area-I (Jhakri landslide) 

 

3.4.1.1 Description of The Slope  

The studied slope is near a tributary of river Sutlej. The digital elevation model of Rampur 

is shown in Fig. 3. 5a, while the Fig. 3. 5b shows the elevation profile of the study area. The 

slope has a height of 55.3 m, with a slope angle of 35° as observed during the study. The slope 

material contains loose aggregate deposits composing highly weathered rock particles. The soil 

material is non-uniform in grain size containing various sizes of rock and stones. Surface runoff 

has been prominent, which can be justified by the presence of erosional gullies and slope surface. 

The Jhakri area has experienced many devastating landslides in the past. The sloping section of 

the Jhakri area along NH-5 has a wide history of failure. It frequently obstructs the road because 

of the mass of the debris and rolling boulders. 
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(a) 

 

(b) 

Fig. 3. 5: (a) DEM of Rampur, Shimla and (b) Elevation profile of the study area 
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3.4.1.2 Geotechnical Investigation of Slope Material 

To determine the material properties of the failure slope, soil samples have been collected 

from different locations of the slope from the study area. By performing particle size distribution 

test in laboratory according to BIS standards [194], the obtained results shows that the material 

consists of 60% sand, 36% silt, and 4% clay. Some fractions of stones have been also available 

in a non-homogeneous way, and the gradation of slope material eventually comes as non-uniform 

due to the presence of wide range of particles. The soil is classified as silty sand in nature. 

 

3.4.1.3 Rainfall Characteristics 

The study area comes under the catchment region of Sutlej valley. Primarily the rainfall 

in this area is because of the S-W monsoon due to the orographic mechanism. The S-W monsoon 

appears during months of June-September resulting in maximum precipitation depth [195].  
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(b) 

Fig. 3. 6: (a) Monthly precipitation variation, and (b) Cumulative rainfall variation 

 

Fig. 3. 6a shows the monthly precipitation variation for the Shimla district from year 2014 to 

2020. The precipitation data for the particular area have been taken from the Shimla regional 

centre of the Indian Meteorological Department (IMD). By analysing the monthly rainfall 

variation for seven consecutive year (from 2014 to 2020) it can be observed that the maximum 

rainfall received is in between months of June and July followed by some slight rainfall every 

month which helps in development of positive pore water pressure which acts as key factor in 

initiation of landslide. It explains the reason behind increased number of landslides in monsoonal 

season and also provide an indication towards the focused study during the monsoonal season. 

Fig. 3. 6b shows the cumulative rainfall variation for seven successive years which defines the 

maximum rainfall depth for the particular year which helps in deciding the threshold rainfall 

depth for landslide.  

 

3.4.1.4 Mechanism of Landslide 

According to Indian standard code IS 14496 (Part 2) [196], slope & geometry, lithology, 

state of stress, pore pressures, structure, material properties, and boundary conditions all 

contribute to the landslide mechanism. Because of the high number of landslides that occur in 

the area during the monsoon season, this research focuses on the characteristics of rainfall that 

occur when a slope fails. The slope section under investigation has a moderate slope gradient 
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and a semi-circular failure surface. Because of the lower height, the failed section is critically 

stable in the dry state, but saturation may further reduce the stability. As rainwater infiltrates the 

soil, it activates the shallow failure in four stages [197] as shown in Fig. 3. 7. Sharma et al. (2013) 

[198] have suggested that increased water content from heavy monsoon rains could worsen slope 

conditions.  

 

Fig. 3. 7: Stages of shallow landslide failure 

 

3.4.2 Study area–II (Kotrupi Landslide) 

The study location (Fig 3.8) is in the vicinity of Kotrupi village on the Mandi – Joginder Nagar 

– Pathankot National Highway (NH-154); the Kotrupi landslide has caused extensive damage 

[199]. On either side of the slide, Padhar and Joginder Nagar tehsils of Mandi district (Himachal 

Pradesh) are approximately 4 and 21 kilometers away, respectively. The study area is covered 

by the Geological Survey of India (GSI) toposheet No. 53A/13. Geographical coordinates with 

latitude N 31º 54’ 37.60” and longitude E 76º 53’ 26.30” indicate the location of the landslide 

[199].  

 

(a) 
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(b) 

Fig. 3. 8: (a) A map showing the location of the research location, and (b) Lithological 

map of study area-II (Kotrupi landslide) 

 

Siwaliks and the Shali Group of rocks, which are mostly made up of dolomites and red brick 

shale, micaceous sandstone, purple clay, and mudstone, come together at the location where the 

MBT (Main Boundary Thrust) occurs. The hardness of these rocks is comparatively low; thus, 

they are affected by much larger deformation and failure due to the thrust activity, making the 

region particularly more vulnerable to landslides. The satellite image was used to create a map 
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of the contours. It is possible that parts of the lineaments are neo-tectonically active because of 

the deep incision of the tributaries, which are located near the main boundary push that separated 

Siwalik groups from lower Himalayan rocks. The research region contains rocks from the Shali 

Group and the Dharamshala Group. Phyllite, slate, and phyletic quartzite comprise mainly Shali 

Group rocks. The upper part of the slide is dominated by pyritic quartzite. Red shale and siltstone 

make up the Dharamshala Group, separated from the Shali Group by the Shali Thrust. Fig 3.8b 

shows the lithology of the study area, describing the thrust boundary, joints/fractures, and types 

of rock and minerals [200]. 

 

3.4.2.1 Landslide Event and Mechanism 

On Sunday, August 13th, 2017, a major landslide happened in the Mandi district of 

Himachal Pradesh in the village of Kotrupi (near the Kotrupi Bus Stop). The road connecting 

Mandi and Pathankot was affected by the landslide. According to reports [201], a section of the 

slope completely collapsed, burying two Himachal State Transport buses and a few other cars, 

and at least 47 people were killed in the tragedy. Nearly three hundred meters of the highway 

have been entirely buried by debris, shutting off contact on this vital corridor. Landslides can be 

classified into various types, such as rotational slides, falls, lateral spreads, debris flow, and 

topples [65]. There have been scars from small landslides in the Kotrupi region prior to the actual 

landslide. Debris flow slides occur when significant soil mass has flowed down a steep channel 

with debris. The Kotrupi landslide was one of the types of debris failure [201].  

 

3.4.2.2 Description of Study Slope 

The area includes part of the catchment basin of the Beas River, and several tributaries 

joining it. The Uhl river, Rana Khad, Arnodi Khad, and Luni Khad are minor tributaries of the 

Beas River. Physio-graphically, the area falls in the Lesser Himalayan Zone occupied by the 

Dhauladhar range in the north-eastern part. The topography is rugged, displaying high ridges and 

deep valleys. Fig. 3. 9 shows the satellite view of the study area, indicating landslide crown and 

runout. The slope is moderate to steeply inclined with occasional breaks in slope. The slope is 

moderate to highly dissected, as evidenced by minor streamlets on either side of the slope. The 

slope that is affected by the failure has a 45º-50º inclination. The landslide's crown is located at 

an elevation of 1620 meters. The main landslide is approximately 230 meters tall, with a 210-

meter width. The slide is 300 meters long from top to bottom. The landslide's runout distance 

was 1155 meters [201], [202]. Fig. 3. 10 shows the digital elevation model (DEM) of Joginder 
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Nagar, indicating the landslide location. The DEM is created using SRTM data with the help of 

the QGIS tool.   

 

Fig. 3. 9: Satellite view of the study area  

 

 

Fig. 3. 10: SRTM-DEM of Joginder Nagar, Mandi, Himachal Pradesh 
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3.4.2.3 Geotechnical Characteristics of The Slope Material 

Slope forming material has been collected during the field survey to find the hydro-

mechanical and geotechnical parameter. In order to minimize the differentiability of location in 

simulation of the material properties and also to stablish the better understanding towards the 

behaviour of Kotrupi landslide, materials have been collected at various locations throughout the 

landslide area. Grain size analysis, Atterberg’s limits, natural water content, specific gravity, 

compaction test, and triaxial test were carried out using the disturbed samples that were taken 

from the site in accordance with the IS code. After performing grain size analysis, the material 

is categorized by three fractions i.e., sand, silt, and clay. The material collected from the site is 

classified as a non-uniform gradation because it contains a wide variety of possible particle sizes, 

including plants, big stones and boulders. Indian standard code IS: 2720 is followed to perform 

sieve and hydrometer analyses to determine grain size [194] and from the results the values of 

coefficient of uniformity (Cu) and coefficient of curvature (Cc) have been obtained as 6.2 and 

0.67 respectively. The fineness modulus of the material lies in between 5 to 12 percent, thus, the 

soil is classified as poorly graded sand containing less amount of silt (SP-SM). Provisions of 

Indian standard code IS:2720(part 5) have been referred to perform Atterberg’s limit tests [203]. 

Atterberg's limit results are summarized in the results section of the paper. IS code: 2720(Part-

7) has been referred to perform light compaction tests to determine the dry density of the soil 

[204]. Based on the geotechnical investigation performed during the field and laboratory testing, 

the material obtained from Kotrupi landslide location mostly contain poorly graded sand (SP). 

The landslide's shear strength parameters can be calculated using either the drained or the 

undrained stresses, the total or the effective stresses [200]. In the case of a debris-type landslide, 

the unconsolidated-undrained (UU) test has been recommended for soil characterization [205]. 

Following IS: 2720, part-11, the tests are conducted at 50 kPa, 100 kPa and 200 kPa to determine 

the shear strength parameters (cu and ϕu) [206]. 

 

3.5 Results and Discussions 

3.5.1 For Study Area-I (Jhakri Landslide) 

3.5.1.1 Laboratory Test Result 

The soil taken from the DTU campus (named DTU soil) is mixed with Yamuna sand and 

clay to meet the ‘similar condition’ of parent soil. Laboratory investigation has been done to find 

the properties of soil for the analysis of slope stability. Various physical and engineering 

properties of the soil are obtained by conducting different tests according to Bureau of Indian 
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standards 2720 [203], [204], [207]–[211]. Based on the results the soil is classified as silty sand 

in nature. The natural water content of the soil is 6.7%. The values of the bulk unit weight, dry 

unit weight, and saturated unit weight of the soil are 14 kN/m3, 13.3 kN/m3, and 18.27 kN/m3, 

respectively. Permeability coefficient (k) was 0.0023 m/hr, cohesion (c) is 9.5 kPa, and friction 

angle (φ) is 32°. 

 

3.5.1.2 Physical Modelling Test Result 

As the considered slope has recurring landslide history and may undergoes failure in 

future. The study proves that the slope is unstable under heavy rainfall condition and the area 

receives high intensity rainfall during monsoonal season thus the threshold for the particular 

slope has been determined for the critical events seen during the physical model experiment for 

warning purposes.  

The rainfall intensity for the adopted slope area, which is 0.6099 m2, is fixed to 30 mm/hour 

simulating a high-intensity rainfall. The effect of rainfall on the slope with 10 mm rainfall depth 

variation is shown below to visualize the failure pattern of the slope. The images shown in Fig. 

3. 11 are clearly describing the progressive stage of a rainfall-induced landslide in the experiment 

performed. It presents the complete process of occurrence, development, and sliding of the 

landslide under rainfall. Fig. 3. 11a and b indicate for 30 mm depth of rainfall, water percolation 

occurs. Due to the high volume of runoff water generated by heavy rain, the effects of weathering 

and erosion can be seen on the slope face. With continued rainfall of 50 mm depth, the non-

uniform vertical settlements can be seen to initial marking. The formation of gullies occurred 

due to further weathering and erosion by runoff water. This pointed towards the importance of a 

drainage system to ensure the stability of the slope. The runoff is drained out by the drain hole 

provided at the toe side of the slope to ensure no ponding condition. This effect is shown in Fig. 

3. 11c. With rainfall of 80 mm, water infiltrating through the cracks and the pores leads to the 

development of positive pore pressure by accumulating water between the soil layers. The 

friction resistance on the interface gets reduced, resulting in the development of fracture along 

the sliding surface, causing in a landslide as in Fig. 3. 11d. Further number of physical modellings 

can be done to get the threshold for various landslides to generate the regional threshold for 

warning and prediction purposes.  

Existing studies have shown that the intermittent, low intensity, and shorter duration rainfall may 

help in stabilization of slope up to a certain extent by the development of negative pore pressure 
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between the soil pores [131], [212]. The threshold has been defined for the particular slope as 

the study is site specific which do not represent the threshold for all the landslides. 

 

Fig. 3. 11: Effect on the slope for (a, b) 30 mm rainfall, (c) 50 mm rainfall, (d) 80 mm 

rainfall 

 

3.5.2 For Study Area-II (Kotrupi Landslide) 

3.5.2.1 Soil Properties   

Dry and saturated unit weights of the soil have been obtained as 16.7 kN/m3, and 20.3 

kN/m3, respectively. The saturated permeability coefficient (k) is 0.00023 m/sec, cohesion (c) is 

21 kPa, and friction angle (φ) is obtained as 31°. The soil in Kotrupi has been primarily made up 

of very coarse sand as poorly graded sand (SP) in USCS classification. The presence of moisture 

from the infiltration that the slope has experienced has resulted in the development of apparent 

cohesion. As a result, the apparent cohesiveness between different soil particles is revealed by 

the cohesion value that is achieved through triaxial testing. Additionally, the presence of fine 

soil, as measured by silt content (SM), has been of assistance in the development of the cohesion 

value. The liquid limit of slope material is found to be 32%. Detailed laboratory experiments 

have been performed to find out the geotechnical characterization of the Kotrupi landslide as it 

has been seen that they vary in a wide range, although the results from this study fall in the region 

which justifies the laboratory results [199], [200], [213], [214]. 
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3.5.2.2 Monitoring Results  

The variable rainfall intensity (as shown in Fig. 3. 12) is attained by controlling the valve 

attached to the inlet of rainfall generator and the input rainfall intensity. It depicts the input 

variation of rainfall intensity along with accumulated rainfall depth with respect to time. Variable 

interval is also introduced for next successive rainfalls to make water infiltrate properly. 

 

Fig. 3. 12: Input rainfall parameter 

The purpose of the physical slope model is to analyse the impact of rainfall on slope stability and 

to assess the operational effectiveness of the newly devised landslide monitoring system. To 

examine the impact of pre-monsoonal rainfall, a simulated antecedent rainfall of 10 mm is 

enacted at an intensity of 1 mm/hr. The outcomes presented in Fig. 3. 13a indicate the occurrence 

of substantial deep percolation. This finding supports the notion that extended periods of low-

intensity rainfall can lead to deep saturation, potentially culminating in a landslide with a deep-

seated nature. This may result in compaction and consolidation of soil near the junction point of 

wet and dry soil, which in turn decreases the permeability. Fig. 3. 13b shows the generation of 

small cracks on top of the slope which is observed after one week time. Fig. 3. 13c shows the 

effect after four weeks, and wide cracks can be seen on top as well as the slope section that may 

be generated due to the occurrence of soil shrinkage after wetting and drying. The duration of 

generated cracks may differ according to the temperature and humidity of the surrounding 

environment. Further rainfall on the slope results in faster and deeper percolation of water 

through the cracks, which helps in creating the fluidization zone between the dense and loose 

soil layer during the monsoonal season. The tilt sensors have been mounted on top of a steel 
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scale. At the bottom, a soil moisture sensor is attached and placed into the soil after creating a 

borehole using a drill machine (Fig. 3. 13d).  

The rainfall has been simulated by a self-developed rainfall generator equipped with a flow 

sensor and a microcontroller to record the flow. Fig. 3. 14 shows the variation of water content 

against the input rainfall. As the water content increases or varies according to the input rainfall, 

the variation in the water content affects the slope stability; thus, the variation in the tilting angle 

can be seen in Fig. 3. 15. As the slope is much more likely to fail in the y-direction due to gravity 

action, the angle deviation is much more significant in the y-direction. There is also some 

deviation detected in the x-direction due to some rotation and settlement. 

 

Fig. 3. 13: Physical model setup (a) Percolation of water, (b) Visible small cracks, (c) 

Formation of larger cracks, and (d) Placement of sensors 
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Fig. 3. 14: Output volumetric water content 

 

 

Fig. 3. 15: Variation of angle in X- and Y- direction 
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Fig. 3. 16: A sequential schematic of landslide initiation  

The Fig. 3. 16 depicts the progression of landslide initiation in a step-by-step manner. In this 

case, the rainwater percolation results in the saturation of the interface zone, resulting in the 

development of a perched water table and the subsequent appearance of successive wetting 

fronts. Positive pore-water pressure results in a decreased shear strength and effective stress of 

the soil. An increase in rainfall causes the soil layers to penetrate deep into one another, causing 

the fluid zone to form near the surface, decreasing shear strength and resulting in landslides. 

 

In previous studies, only a few researchers studied rainfall-induced slope failure mechanisms 

using the physical modelling method. Li et al. (2016) [42]  concluded that the physical modelling 

method is very efficient to visualize the rainfall-induced landslides for a specific study area by 

performing the laboratory modelling test. It is tough to analyse it only by the mathematical or 

numerical model. Therefore, it highlights the need to perform numerical analysis along with 

physical modelling to compare the results for validation purposes. So, to study the failure 

mechanism of a slope in the Himalayan region, a self-designed experimental platform has been 

developed to perform the physical model simulating the phenomenon of rainfall-induced 

landslides. The experimental platform includes an artificial rainfall generator, a loading 

mechanism, and a frame type box for modelling slope.  The slope material has been made in the 

laboratory by ‘similar material’ theory as it was not possible to take that much material from the 

site to the laboratory. The intensity for the rainfall generator was fixed to 30 mm/hr. Each time, 

10 mm rainfall is delivered to the slope to minimize the error induced while calculating the 
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threshold for intensity duration relationship. The threshold has been determined as the total depth 

of rainfall delivered to the model to cause the failure of the slope under consideration. The 

observations of the physical model experiment using ‘semi-similar’ material revealed that it is 

notably a highly efficient technique to visualize the pore-water penetration process in a soil mass. 

The sliding mechanisms of the slope have been studied, indicating that rainfall is one of the key 

factors triggering the slope failure and the obtained results helps understand the mechanism of 

slope failure. 

Based on the observations during the physical modelling test and obtained results it has been 

noted that the rapid sliding failure occurred at 80 mm rainfall depth, making it the threshold value 

for the studied slope. However, weathering failure starts at 30 mm, which can be considered as 

the warning threshold. As heavy rainfall occurs, water infiltrates into the soil layer and creates 

fluidization zones between the slopes, increasing pore water pressure. The soil layer within the 

lower part will become fully saturated first because the thickness of the soil layer at the toe side 

is significantly less. As the hydraulic conductivity (k) of the soil is significantly less than rainfall 

intensity, most of the rainfall converts into surface runoff, which leads to the erosion of the slope's 

surface. This stage starts at 30 mm rainfall depth. Further, an increase in rainfall depth, i.e., at 50 

mm rainfall depth, soil surface erosion increases rapidly, and formation of gullies can be seen on 

the slope, considered as the initiation of slope failure, which can be regarded as extreme warning 

threshold and the restriction must be applied for any movement nearby the slope. Again, 

continuous increase in rainfall depth vigorous erosion may occur, which results in removal of the 

soil in the lower part of the slope, which provides the frictional resistance to the slope stability. 

Further, the water level between the layers keeps increasing due to the continuous rainfall and 

infiltration, i.e., the pore water pressure in the soil keeps rising. After reaching a critical stage, 

sliding failure occurs. When the pore-water pressure crosses the limiting value, a shallow 

landslide is triggered by heavy rainfall. This stage occurred at 80 mm rainfall depth, and the 

safety factor is found significantly less. 

Many researchers have worked around the globe in order to test the feasibility of tilt based 

monitoring system [52], [54], [69]. The present study validates the effective monitoring of 

rainfall induced landslide using tilt sensor. The physical modelling method is used to simulate 

the soil slope to study the effect of pre- and post- monsoonal rainfall on slope and also to test the 

monitoring sensor in realistic environment [42], [215], [216]. Fig. 3. 13 also shows that wetting 

and drying can lead to formation of cracks during pre-monsoonal rainfall which can cause the 

water to infiltrate deep and may cause the failure [44]. Uchimura et al. (2010) [53] stated that the 
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change in water content is a better representation than just the water content for slope monitoring 

and as Fig. 3. 14 depicts that the variation in the volumetric water content is vigorous, which 

may cause the slope to be unstable. Fig. 3. 15 also depicts that the sudden variation in tilt angle 

is observed when the input precipitation continues for around two hours which validates that the 

slope failure gets triggered due the heavy rainfall. It also proves the unpredictable nature of the 

landslide failure which require continuous monitoring for prediction and early warning measures. 

This study also proved the possible failure mechanism occurring in rainfall induced landslide 

(Fig. 3. 16) [216]. 

 

3.6 Summary 

In this study, an inventive and cost-effective slope monitoring system that incorporates 

MEMS-based tilt and moisture sensors were developed. A block shear test model has been set-

up to check the effectiveness and feasibility of the developed system. A physical modelling 

methodology has been adopted to study the failure mechanism.  

1. In this study, two landslide sites, Jhakri (N31º29’08”, E77º41’43”) in Shimla district and 

Kotrupi (N31º54‟37.60, E76º53”26.30) in the Mandi district of Himachal Pradesh, in 

northern India were selected to study the failure mechanism. 

2. Hydro-mechanical parameters were calculated, and a semi-similar material physical 

model test was conducted to analyse the mechanisms of sliding. In order to simulate the 

desired rainfall, a self-developed artificial rainfall generator is used. 

3. The tilt and volumetric water content sensors employed in the system provide accurate 

and precise measurements. The tilt sensor records even the slightest changes in the slope 

angle with a precision of 0.01 degree, enabling early detection of slope movement. 

Additionally, the volumetric water content sensor can detect percentage variations with 

a precision of 1 percent aiding in the identification of critical conditions that could lead 

to landslides. 
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CHAPTER 4 

NUMERICAL MODELLING 

4.1 General 

A numerical model is a mathematical simulation of a real physical process. Numerical 

modelling is purely mathematical and in this sense is very different than scaled physical 

modelling in the laboratory or full-scaled field modelling.  

Numerical analysis has revolutionized the field of geotechnical engineering by providing 

powerful tools to assess the stability of slopes, a critical aspect in infrastructure and construction 

projects. Slopes are prevalent features in natural landscapes and human-made structures, making 

their stability crucial for safety and sustainability. Traditional methods often involve simplified 

assumptions that might not capture the complexities of real-world scenarios. Numerical analysis 

addresses this limitation by employing computational techniques to model and simulate the 

intricate behaviours of slopes under various conditions. The process involves discretizing the 

slope into smaller elements or grids, employing mathematical equations to represent the 

governing physical phenomena such as soil mechanics, groundwater flow, and structural 

interactions. These equations are then solved iteratively using computers, enabling a 

comprehensive understanding of slope behaviour, failure mechanisms, and potential risks. 

 

Fig. 4. 1: Framework for numerical modelling recognized as the Burland triangle 
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Burland (2012) [217] proposed a conceptual framework for geotechnical engineering, 

comprising three core elements: the ground profile, soil behaviour, and modelling. Fig. 4. 1 

depicts these elements as the vertices of a triangle, and is recognized as the Burland triangle. The 

aspect of soil behaviour comprises a range of assessment techniques encompassing laboratory 

experiments, in-situ evaluations, and field measurements. On the other hand, the ground profile 

element predominantly revolves around site characterization, which entails the comprehensive 

delineation and depiction of the prevailing site conditions. Notably, modelling in geotechnical 

engineering can take on various forms, including conceptual, analytical, and physical 

representations. As Burland observed, these diverse modelling approaches offer valuable insights 

into the behaviour of geotechnical systems. Nevertheless, in the contemporary context, due to 

the remarkable advancements in computing capabilities and the availability of sophisticated 

software tools, the term “modelling” has predominantly come to signify numerical modelling. 

Acknowledging this shift towards numerical modelling as the primary mode of modelling, one 

can discern its pivotal role in geotechnical engineering, as exemplified by the Burland triangle. 

This triangle emphasises the utmost significance of numerical modelling in understanding and 

analysing geotechnical phenomena, highlighting its status as a cornerstone in modern 

geotechnical practices. 

 

Advantages of Numerical Modelling Over Physical Modelling: 

• Rapid Setup: Numerical models can be established quickly compared to the time-

consuming construction of physical models. While physical models may take up to 

months to create, numerical models can be formulated within minutes, hours, or days. 

• Versatility: Numerical models offer flexibility in exploring diverse scenarios, unlike 

physical models that are typically constrained to a specific set of conditions. 

• Gravity Handling: Numerical models effortlessly account for gravity, a challenge in 

physical models where gravity scaling is impossible without specialized equipment like 

centrifuges. 

• Safety: Numerical modelling eliminates the risk of physical harm, unlike physical 

modelling which involves potentially hazardous heavy equipment, necessitating 

heightened safety concerns. 
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• Location-Specific Data: Numerical modelling provides data and insights throughout the 

entire cross-section, whereas physical modelling yields visual responses and data only at 

discrete instrumented points. 

• Boundary Condition Adaptability: Numerical models can accommodate various 

boundary conditions, while physical models often face limitations in the types of 

boundary conditions they can simulate. 

In this particular numerical examination, a two-dimensional method has been employed to 

analyse the precipitation-induced landslide's triggering to validate the results. Creating an 

accurate representation of the actual topographical features of the failed slope proved to be a 

formidable challenge. Therefore, in order to arrive at a definitive and well-informed conclusion, 

a simplification has been made by assuming a linear or straight slope. This approach aligns with 

the findings of numerous prior research studies, which have also utilized this simplification to 

gain valuable insights [42], [132], [218], [219]. Several key assumptions have been considered 

to adopt a two-dimensional methodology for arriving at an unequivocal conclusion, as 

documented in the GEO-SLOPE International Ltd. report of 2012 [220]. The first underlying 

assumption suggests that slope failure occurs primarily within a single geological layer, 

attributing this behaviour to the relatively smaller size and high compaction of the soil particles 

within the slope. This assertion lays the groundwork for the analytical framework used to 

understand and evaluate the stability of such geological formations. The failure pattern is 

circular. Maximum failure depth can only be extending to the soil depth. The bottom-most layer 

underneath the soil mass is assumed to be impermeable; that is, there will be no percolation 

possible through the soil layer to bedrock. The hydrological and mechanical parameters of soil 

are the same as the failed soil for saturated and unsaturated cases and the maximum rate of water 

percolation is equal to soil permeability. 

Slope stability analysis has been widely used to deal with complex calculation, investigation, 

prototype modelling, testing, design, and stability analysis of natural, artificial rock, and soil 

slopes. The researcher and design engineer typically use the slope stability analysis to assess the 

safe design of artificial or natural slopes.  Slope stability is the resistance of the inclined surface 

between the layers of soil to failure by sliding or collapsing. The main objectives of slope 

stability analysis are finding the critical failure section, analysing potential failure mechanisms, 

and designing slopes considering safety, reliability, and economics [44], [221]. 

https://en.wikipedia.org/wiki/Slope
https://en.wikipedia.org/wiki/Slope_stability
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Landslide
https://en.wikipedia.org/wiki/Safety
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Economics
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In this study, the soil slope is analysed using GeoStudio 2020 software. First, the unsaturated 

slope is analysed for its stability using Slope/W module, which is based on the limit equilibrium 

method, and then the stability of the slope is analysed after the rainfall. The rainfall modelling 

has been done in Seep/W module based on the finite element method, and then the results 

obtained from it have been used in Slope/W module to check the stability of saturated slope after 

the rainfall using the Morgenstern and Price method [222]. 

 

4.2 Stability Analysis  

4.2.1 General  

Numerous solution approaches have evolved for the method of slices throughout time. In 

essence, they share strong resemblances. Variations among these methods arise from specific 

factors: the inclusion and fulfilment of static equations, incorporation of interslice forces, and the 

presumed connection between interslice shear and normal forces. An illustrative depiction in Fig. 

4. 2 shows a standard representation of a divided sliding mass and the potential forces exerted 

on each slice. These forces encompass both normal and shear components and are distributed 

across the slice's base and sides. 

 

Fig. 4. 2: Slice discretization and slice forces in a sliding mass 

 

Table 4. 1 provides an inventory of the techniques accessible within Slope/W module, along with 

an indication of the static equilibrium equations upheld by each method. Meanwhile, it also 

furnishes a condensed overview of the interslice forces incorporated, accompanied by the 

presumed correlations between interslice shear and normal forces. 
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Table 4. 1: Equations of statics and interslice force characteristics 

Technique Force 

Equilibrium 

Moment 

Equilibrium 

Interslice 

Normal 

(E) 

Interslice 

Shear (X) 

Fellenius/Ordinary   ✓   

Simplified Bishop  ✓ ✓  

simplified Janbu’s  ✓  ✓  

Spencer ✓ ✓ ✓ ✓ 

Morgenstern- Price ✓ ✓ ✓ ✓ 

Corps of Engineers–1 ✓  ✓ ✓ 

Corps of Engineers–2 ✓  ✓ ✓ 

Janbu Generalized ✓ ✓ ✓ ✓ 

Sarma–vertical slices ✓ ✓ ✓ ✓ 

 

4.2.2 Limit Equilibrium Method 

A general limit equilibrium (GLE) formulation was developed by Fredlund at the 

University of Saskatchewan in the 1970’s [223], [224]. This formulation encompasses the key 

elements of all the methods listed in Table 4. 1. The GLE formulation incorporates a unique 

approach founded on a pair of safety factor equations, which in turn provide flexibility in 

accommodating various interslice shear-normal force scenarios. One of these equations 

calculates the factor of safety concerning the equilibrium of moments (referred to as Fm), whereas 

the second equation pertains to the factor of safety concerning the equilibrium of horizontal 

forces (referred to as Ff). This dual-factor approach empowers the GLE formulation to 

comprehensively assess stability across a spectrum of load and geometric conditions, making it 

a versatile tool in geotechnical engineering analyses. The idea of using two factor of safety 

equations was actually first published by Spencer (1967) [225]. 
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The interslice shear forces in the GLE formulation are handled with an equation proposed by 

Morgenstern and Price (1965) [226]. The equation where, X is interslice shear force; E is the 

interslice normal force; λ is the percentage of the function used; f(x) is a function. 

 X = E λf(x) Eq. 4. 1 

The limit equilibrium method of slices is a widely employed technique in geotechnical 

engineering for assessing the stability of soil slopes. It involves the application of iterative 

methods to solve the nonlinear factor of safety equations. Specifically, in the Morgenstern-Price 

variation of this method, additional iterations are necessary to determine the slice forces that lead 

to equal values of the factor of safety (Fm) and factor of safety (Ff) for each individual slice. 

These iterative processes are essential to fulfil the following two critical conditions: 

 

• Force equilibrium for each slice: This condition ensures that the forces acting on each 

slice must maintain the force equilibrium implying that the forces must be balanced, 

preventing the slice from experiencing net translation or rotation. 

• Uniform factor of safety for each slice: This condition aims to achieve uniformity in 

the safety factor across all slices, which is of utmost concern because a variable factor of 

safety could lead to localized failure within the slope. 

 

It is crucial to note that the forces calculated through these iterations might not accurately 

represent the actual in-situ slope conditions. Instead, these are forces that satisfy the required two 

condition of each slice. This means that the interslice and forces acting along the slip surface 

may not reflect the real-world situation. Consequently, determining a realistic thrust line for the 

interslice shear-normal resultant can be challenging. In some instances, the forces calculated for 

individual slices may result in a line of thrust that lies outside the boundaries of the slice. This 

clearly indicates that the derived slice forces do not always correspond to the actual physical 

forces at play in the slope. However, there is a silver lining to this complexity. Although the local 

slice forces may not precisely represent in-situ conditions, the global safety factor remains 

realistic. This is because when all the mobilized driving forces and the base resisting shear forces 

are integrated, the local irregularities are effectively smoothened out. This results in a global 

factor of safety that accurately represents the stability of the entire sliding mass, making it an 

acceptable and reliable indicator of the slope's overall stability. 
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4.2.3 Morgenstern-Price Method 

Morgenstern and Price (1965) [226] adopted an approach akin to the Spencer method, 

but with a slight variation that set it apart - the incorporation of diverse user-defined interslice 

force functions. This innovative modification allows for a greater degree of customization and 

adaptability, empowering users to tailor their approach according to their specific requirements. 

The Morgenstern-Price method allows users to define custom interslice functions for their 

analyses. The various functions at their disposal are the constant, half-sine, clipped-sine, 

trapezoidal, and data-point specified functions. It is worth noting that the constant and half-sine 

functions stand out as the most frequently employed choices in practice. Interestingly, when a 

Morgenstern-Price analysis uses the constant function, it effectively parallels a Spencer analysis, 

emphasizing the relevance of these two approaches. By default, the Slope/W software module 

employs the half-sine function as the interslice function for the Morgenstern-Price method. The 

selection of the half-sine function is based on its characteristic of concentrating interslice shear 

forces toward the central region of the sliding mass, effectively reducing interslice shear effects 

at the crest and the toe areas. This default preference is a testament to its historical effectiveness 

in various geotechnical scenarios and is a rational choice for initial analysis configurations. The 

limit equilibrium factor of safety equation with respect to moment equilibrium is: 

 
Fm = 

∑ (c'β R + (N-u β)R tan∅')

∑ Wx - ∑ Nf ±  ∑ Dd
 

Eq. 4. 2 

The limit equilibrium factor of safety equation with respect to horizontal force equilibrium is: 

 
Ff = 

∑ (c'β cos α +(N-u β) tan ∅' cos α )

∑ N sin α - ∑ D cos ω
 

Eq. 4. 3 

Where, “c’ is effective cohesion; φ’ is effective angle of friction; u is pore-water pressure; N is 

slice base normal force; W is slice weight; D is concentrated point load; α is inclination of slice 

base; β, R, x, f, d, ω are geometric parameters.” 

 

4.2.4 Mohr-Coulomb Material Strength Theory 

Slope/W module in GeoStudio software, which uses the limit equilibrium method, has 

been used to examine the slope's stability. Several methods exist for calculating the slope's safety, 

but the Morgenstern-Price method has been used in this study. Due to its ability to maintain both 

force and moment equilibrium, this approach is frequently employed in engineering applications. 

A relationship between interslice shear (X/E) and normal force (E) is established by the interslice 
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force function [f(x)], where f(x) is the scaling factor. As it reduces interslice shear at the toe and 

crest and concentrates shear force in the middle of the sliding mass, the half-sine interslice force 

function has been used in the current study. The slope stability analysis is performed using a 

modified Mohr-coulomb soil strength method that also takes into account the variation in shear 

strength due to matric suction in the soil [227]. The governing equation for this model is given 

below. 

 τ = c'+(σn-ua)tanφ'+(ua-uw)tanφb Eq. 4. 4 

Where, “τ denotes the soil’s shear strength, c’ denoting the effective value of cohesion strength, 

(𝜎𝑛 − 𝑢𝑎) denotes the net effective value of normal stress, 𝜎𝑛 denotes the total stress; (𝑢𝑎 − 𝑢𝑤) 

denotes negative pore water pressure also known as matric suction, uw denotes the value of pore-

water pressure, 𝜑′denotes the friction angle of soil, and 𝜑𝑏 denotes angle between the rate at 

which shear strength increases in relation to the negative pressure.” 

 

4.3 Seepage Modelling  

4.3.1 General  

Flow rate is a crucial factor for measuring seepage losses from reservoirs and identifying 

potential water sources for various uses. The pressure of pore-water related to groundwater 

movement holds particular significance in geotechnical engineering. Pore-water pressure, 

regardless of whether it is positive or negative, greatly influences soil stress conditions. This, in 

turn, directly impacts shear strength and soil volume changes. In recent decades, research has 

emphasized the need of moisture flow dynamics in unsaturated surface soils, especially 

concerning soil cover design. 

Traditionally, the groundwater flow analyses cantered on saturated soil conditions, typically 

categorized as confined or unconfined scenarios. For instance, confined flow issues were relevant 

beneath structures, while unconfined flow was observed in homogeneous embankments. 

Analysing unconfined flow problems posed challenges due to determining the phreatic surface's 

location, which marks the shift from positive to negative pore-water pressures. Neglecting any 

flow above the phreatic line was common. Yet, ignoring water movement in unsaturated soils 

above this surface is no longer acceptable. Neglecting it limits the analyses results and disregards 

a vital aspect of moisture flow. 
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Considering unsaturated soil movement above the phreatic surface is pivotal. The associated 

modelling facilitates incorporation of unsaturated soil flow conditions into numerical models, 

enabling a broader range of seepage problems to be tackled. Energy differences relates to the 

total water head, including elevation and pressure head (pore-water pressure) and drive water 

flow. The term “seepage” often refers to flow primarily influenced by gravity, like reservoir 

seepage to downstream areas. In other scenarios, like consolidation, excess pore-water pressures 

from external loading are the main driving force. 

The formulation used for seepage analysis also applies to dissipating excess pore-water 

pressures. Modelling water flow in soil can be intricate due to soil's natural heterogeneity, 

changing boundary conditions, and variable permeability. When soil becomes unsaturated, 

permeability becomes a function of negative pore-water pressure, leading to nonlinear problems 

requiring iterative techniques for computation. 

These complexities make numerical analysis essential for seepage problems analysis. 

Understanding these intricacies aids in comprehending and addressing various seepage scenarios 

in geotechnical engineering. 

 

4.3.2 Geometry and Meshing 

Finite element numerical methods are structured around the idea of breaking down a 

continuous material into smaller units, characterizing the behaviour of these units, and then 

integrating their behaviour to represent the entirety. This division process is called discretization 

or meshing, with the units referred to as finite elements. 

Within the GeoStudio software, defining the model's geometry precedes the crucial discretization 

step. Notably, advancements in automatic mesh generation algorithms have reached a stage 

where they can now offer a highly functional default discretization, demanding only minimal 

input from the user. Nevertheless, exercising caution reviewing this default mesh is advisable, as 

the software allows for convenient adjustments. Users have the flexibility to make modifications 

by simply altering a single global element size, adjusting the divisions of the mesh along 

geometry lines, or specifying edge sizes for individual mesh elements. This allows users with the 

capacity to fine-tune the discretization to suit their specific modelling requirements, ultimately 

ensuring a more accurate and customized simulation experience. 
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4.3.3 Material Models and Properties 

In this segment, the diverse soil hydraulic attributes essential for solving the seepage 

partial differential equation can be elucidated. Gaining a comprehensive grasp of the significance 

and impact of these soil properties on outcome characteristics is crucial. This underscores the 

significance of distinct parameters and the consequences of insufficiently defining them. 

Accurate soil property specification plays a pivotal role in achieving a proficient solution to the 

finite element equations. 

 

4.3.3.1 Soil-Water Characteristic Curve (SWCC) Function 

In unsaturated soils, the amount of water held within voids varies with the matric suction, 

defined as the disparity between air (Ua) and water (Uw) pressures. Considering the inherent 

temporal and spatial differences, it becomes imperative to establish a comprehensive function 

that elucidates the dynamic changes in soil water content across diverse pressure conditions. This 

function should encapsulate the intricate relationships between soil moisture and the multilayered 

influences exerted by time and geographical factors. The volumetric water content function 

explains how much water the soil can hold under changing matric pressure. It specifies the 

proportion or volume of voids that remain water-saturated during drainage. The function's crucial 

attributes include the air-entry value (AEV), depicting the onset of significant drainage due to 

negative pore-water pressure, and the slope in both positive and negative pressure domains (mw), 

alongside the residual water content (Sr). 

The AEV hinges on pore size and distribution, influencing the drainage threshold. Representing 

the function's slope is pivotal for seepage analysis, accounting for water release via void drainage 

and soil compression-induced water displacement. In the positive pressure realm, mw equates to 

mv, the coefficient of volume compressibility. The negative pressure slope mirrors the rate of 

water volume change within the soil as pressure varies, spanning AEV to residual water content. 

Moreover, it is worth noting that the residual volumetric water content serves as a critical 

indicator that delineates the stage at which any additional decrease in negative pore-water 

pressure has minimal impact on the soil's water content. This pivotal point can be quantified in 

terms of saturation, calculated by dividing the residual volumetric water content by the soil's 

porosity. In other words, the degree of saturation reflects the proportion of pore space within the 

soil structure still occupied by water even after negative pore-water pressure has reached a certain 

threshold. This concept is vital in geotechnical engineering and hydrology as it provides insights 

into the water retention characteristics of soils and their behaviour under varying environmental 
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conditions. While Seep/W excludes evaporative drying, Vadose/W incorporates it through 

coupled heat, mass, and vapor flow considerations. 

Obtaining a direct measurement of volumetric water content function in a laboratory is not overly 

complex but does demand time and access to a suitable geotechnical facility. Nevertheless, 

deriving a grain-size distribution curve is a common practice and can be efficiently carried out, 

proving both cost-effective and rapid. In transient analysis, volumetric water content function is 

a vital input parameter. It makes sense to estimate this data using either a closed-form solution 

requiring user-defined curve-fitting parameters or a predictive strategy using a measured grain-

size distribution curve, given the probable challenges involved in obtaining it. Within Seep/W, 

four techniques exist for constructing a volumetric water content function, discussed in the 

forthcoming paragraphs. These encompass predictive methods grounded in grain size, employing 

pre-built software functions, and utilizing closed-form equations based on established curve fit 

parameters. 

 

5.3.3.1.1 Estimation Method-I (Grain Size-Modified Kovacs) 

Aubertin et al. (2003) [228] introduced a method for predicting the volumetric water 

content function approach with tailored modifications to suit hard-rock mine tailings and clay 

type soils. The method proposed estimates the volumetric water content function using 

fundamental material properties, serving as a valuable tool for preliminary analysis. However, it 

is important to exercise caution, particularly for clay materials, and rely on measured material 

properties for final design rather than estimates. 

The process begins by establishing a degree of saturation function, subsequently transformed 

into a volumetric water content function. This is achieved by defining two key components of 

the degree of saturation. The first component relates to water storage through capillary forces at 

relatively minor negative pore-water pressures. The second component influences volumetric 

water content at significant negative pressures, primarily influenced by adhesion. Both 

components derive from negative pore-water pressure and material properties like particle size, 

shape, and porosity. The degree of saturation, based on capillary and adhesive aspects, is as 

follows: 

 
Sr = 

θw

n
= Sc+ Sa

*
 (1- Sc) 

Eq. 4. 5 
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 Sa 
*

= (1-Sa)+1 Eq. 4. 1 

Where, “𝑆𝑟 is the degree of saturation; 𝜃𝑤 is the volumetric water content; 𝑛 is the porosity; 𝑆𝑐 

is the degree of saturation due to capillary forces, and 𝑆𝑎
∗ is the bounded degree of saturation due 

to adhesion (𝑆𝑎).” 

 

5.3.3.1.2 Estimation Method-II (Sample Functions) 

GeoStudio software offers a wide range of predefined water content functions for various 

soil types. While these sample functions facilitate rapid model setup, it is the user’s responsibility 

to define the saturated and residual water content based on the field insights. These functions 

serve to expedite testing, enable swift function adjustments, gauge result sensitivity to function 

shape, and prompt consideration of acquiring more precise data if necessary. Historically, 

genuine functions were often adopted as definitive design material properties without due 

consideration of their applicability. This approach falls short of modelling practice as shown in 

Fig. 4. 3. 

 

Fig. 4. 3: Sample functions [227] 

5.3.3.1.3 Estimation Method-III (Fredlund and Xing, 1994) 

   The approach by Fredlund and Anqing Xing (1994) [229] presents a self-contained 

solution enabling the creation of the volumetric water content function across a broad spectrum 

of negative pressures, from zero down to minus one million kPa. This is achieved by leveraging 

the user's familiarity with a set of three parameters. The underlying equation is articulated as 

follows: 
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θw =  CΨ [
θs

[ln (e+ (
Ψ
a

)
n

)]
m] 

Eq. 4. 2 

 

 
CΨ = 1- 

ln [1+ 
(ua- uw)
(ua- uw)

r

]

ln [1+ 
(10

6
)

(ua- uw)
r

]

 

Eq. 4. 3 

Where, “𝜃𝑤 is the volumetric water content; 𝐶𝛹 is the correction function and can be taken 1 

[230]; 𝜃𝑠 is the saturated volumetric water content; 𝑒 is the natural number (2.71828); 𝛹 is the 

negative pore-water pressure; and 𝑎, 𝑛, 𝑚 are the curve fitting parameters; (𝑢𝑎 − 𝑢𝑤) is matric 

suction (kPa);  (𝑢𝑎 −  𝑢𝑤)𝑟 residual matric suction corresponding to the residual water content 

(kPa);  𝑢𝑎 is pore-air pressure (kPa);  𝑢𝑤 pore-water pressure (kPa).” 

The parameter 'a' is a pivotal point in the volumetric water content function, measured in kPa. 

Typically, it slightly exceeds the AEV. The variable 'm' controls the residual water content, and 

'n' regulates how steeply the volumetric water content function slopes. 

The functionality of the Fredlund and Anqing Xing (1994) [229] approach requires prior 

knowledge of specific parameters a, n, and m. These values can typically be derived through an 

appropriate fitting algorithm applied to observed data points, a feature available in Seep/W 

module. It is crucial to note that this method is not designed for predicting volumetric water 

content functions based on grain-size curves. Instead, its purpose is to generate a continuous and 

consistent function across the entire range of negative pore-water pressure values (from 0 to 107 

kPa). 

 

5.3.3.1.4 Estimation Method-IV (Van Genuchten, 1980) 

In the year 1980, Van Genuchten  [228] introduced a four-parameter equation that serves 

as a closed-form solution for forecasting the function of volumetric water content. The 

underlying equation is outlined below: 

 
θw =  θr+ 

(θs- θr)

[1+ (
Ψ
a

)
n

]
m 

Eq. 4. 4 

Where; “𝜃𝑤 is the volumetric water content; 𝜃𝑠 is the saturated volumetric water content; 𝛹 is 

the negative pore-water pressure; and 𝑎, 𝑛, 𝑚 are the curve fitting parameters. While the 
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terminology of the a, n, and m parameters resembles that of Fredlund and Xing (1994), their 

meanings vary slightly. Notably, the “a” parameter is distinct from the air-entry value; it serves 

as a pivotal point influencing the “n” parameter's impact on the function's slope. Additionally, 

the “m” parameter governs the steepness of the curve as it transitions to the lower plateau.” 

 

4.3.3.2 Hydraulic Conductivity Function (HCF) 

The hydraulic conductivity function reflects the soil's ability to carry water in saturated 

and unsaturated circumstances. Water fills every pore between solid particles in saturated soil. 

Beyond the air-entry threshold, air infiltrates the larger pores, rendering it to non-conductive 

pathways that elongate the flow route's complexity (Fig. 4. 4). Consequently, the soil's hydraulic 

conductivity diminishes. As pore-water pressures decline, more pores contain air, further 

reducing hydraulic conductivity. This underscores that water movement through a soil profile 

hinges on its water content, represented by the volumetric water content function. It is difficult 

and expensive to measure hydraulic conductivity directly. However, various predictive 

techniques, utilizing grain-size distribution or measured volumetric water content with saturated 

hydraulic conductivity, can derive this function. Seep/W incorporates predictive methods for 

estimating hydraulic conductivity once volumetric water content and saturated permeability 

(Ksat) are defined. 

 

Fig. 4. 4: Flow paths from saturated to residual condition [231] 

In cases involving an unsaturated zone, it is imperative to establish a hydraulic conductivity 

function for all materials within the scenario. Even if this function is an approximation, 

employing it yields more realistic outcomes compared to a flat, unvaried input. Specifically, in 

unsaturated seepage analysis featuring negative surface fluxes (like evaporation), and the 

potential for extreme negative pressures, the conductivity function should encompass a pressure 
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range surpassing several hundred thousand kPa (or equivalent) of negative pressure. Neglecting 

the comprehensive coverage of this entire spectrum leads to the imposition of the minimum 

specified value as the standard for progressively more adverse pressure conditions. In simpler 

terms, failing to account for the full range of pressures underestimates the hydraulic conductivity. 

When one opts for a consistently uniform hydraulic conductivity function to represent 

unsaturated soil, implying a consistent conductivity value across different moisture levels, it 

tends to yield outcomes that lack realism. This means that assuming the same conductivity 

irrespective of the varying moisture content in the soil can produce inaccurate or misleading 

results in the context of hydraulic behaviour. This approach can misplace the phreatic surface 

and exaggerate the proportion of flow through the unsaturated zone. The issue stems from a 

horizontal conductivity function enabling water to traverse the unsaturated zone as easily as the 

saturated zone. However, real-world conditions differ, as water encounters more resistance when 

flowing through unsaturated soil due to its lower hydraulic conductivity compared to saturated 

soil. 

 

4.3.4 Rainfall Infiltration Analysis 

The Seep/W module based on the 2D finite element method has been used to obtain the 

pore water pressure generated by the rainfall of desired intensity for the defined material 

property, slope cross-section, initial and boundary conditions. It uses a numerical discretization 

technique to solve Darcy’s equation for unsaturated or saturated slope conditions and runs the 

following water flow governing equation to compute 2D seepage [44], [129], [139], [232]. 

 ∂

∂x
(kx

∂H

∂x
) +

∂

∂y
(ky

∂H

∂y
) +q = mw

2 γ
w

∂H

∂t
 

Eq. 4. 5 

Where, “kx is used to represent the horizontal x-direction infiltration coefficient, ky is used to 

represent the horizontal y-direction infiltration coefficient, H denotes total head of water, q 

denotes the applied rainfall intensity, mw denotes the slope for the SWCC (soil-water 

characteristic curve), and 𝛾𝑤 denotes the water’s unit weight.” 

 

4.4 Results and Discussions  

GeoStudio 2020 software has been used to simulate 2D rainfall in Seep/W, which is directly 

linked to Slope/W for the analysis of slope stability, in order to investigate the failure pattern of 

the physical model. Using GeoStudio 2020 Slope/W stability software, this study performs a 

Morgenstern-Price Method assessment of the soil slope's stability. The factor of safety has been 
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calculated using Morgenstern-Price [222] method from the various limit equilibrium methods. It 

is one of the most widely used methods. It allows for a special variable interslice force function 

to be used, allowing the interslice inclination to vary on every slice along the slip surface while 

also satisfying both force and moment equilibrium. The geometry and material properties 

(Cohesion, friction angle, and unit weight) of the slope have been taken according to the model 

test as mentioned in the laboratory result section. 

The assessment of slope stability is a comprehensive process that involves a detailed examination 

of existing conditions, with a primary focus on determining the stability of a slope by analyzing 

the interaction between forces favouring sliding and those resisting movement. The slope is taken 

to be satisfactorily stable when the calculated resistive forces are more significant than the sliding 

forces, resulting in a Factor of Safety (FOS) greater than 1. In instances where structural design 

is a crucial consideration, strict adherence to elevated FOS values is vital following the guidelines 

specified in IS 14243-2 (1995). Enforcing these higher FOS values becomes crucial, particularly 

in construction scenarios where critical structural elements are at play. This precautionary 

measure provides an additional margin of safety, ensuring that the structural integrity is not 

compromised. This approach effectively mitigates the risk of potential failure, thereby enhancing 

overall safety standards in construction projects. By emphasizing adherence to heightened FOS 

values, the assessment process contributes significantly to preventing slope instability-related 

issues and strengthens the robustness of construction projects. 

 

4.4.1 For Study Area-I (Jhakri Landslide) 

In this section, Jhakri slope has been analysed using the GeoStudio. Geometrical 

parameter of the slope has been drawn. The slope has a height of 36.2 m, with a slope angle of 

35° as observed during the field study. Figure 5.6a shows the geometry of the slope. 

4.4.1.1 Material Property  

The slope/W employs geotechnical parameters to assess the factor of safety. In this case, 

the soil is categorized as silty sand. The natural water content of the soil stands at 6.7%. Key 

values for the soil include bulk unit weight (14 kN/m³), dry unit weight (13.3 kN/m³), and 

saturated unit weight (18.27 kN/m³). Additionally, the permeability coefficient (k) is 0.0023 

m/hr, cohesion (c) is 9.5 kPa, and the friction angle (φ) is 32°. 

The two main input parameters for this analysis are volumetric water content function (VWCF) 

also widely known as the soil-water characteristic curve (SWCC) function and hydraulic 
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conductivity function (HCF). VWCF shows the relationship between volumetric water content 

vs. matric suction (Fig. 4. 5a), and the HCF shows the relationship between water conductivity 

and matric suction (Fig. 4. 5b).  

Matric suction expresses the water-retaining capacity of the soil. The function has been defined 

using the GeoStudio software with the help of material properties like grain size distribution and 

the material's hydraulic conductivity. For soils with identical grain-size distributions, the SWCC 

function was employed, while the HCF function was calculated from the SWCC using the criteria 

as discussed [229]. The criteria eliminate the requirement for additional prediction approaches 

to assess residual water content. The SWCC function and the HCF function were combined with 

the field measurements of saturated water content and soil permeability during the simulation. A 

limiting suction of -20 kPa was introduced in the analysis as an initial condition to avoid the 

excessively high negative pore-water pressure. The initial water table has been defined along 

with the impermeable bedrock [129], [220]. 
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(b) 

Fig. 4. 5: (a) Volumetric water content function, (b) Hydraulic conductivity function 

 

4.4.1.2 Slope/W Results Before Rainfall 

Slope stability analysis has been done to determine the factor of safety of the slope before 

the rainfall using soil parameters. Using the GeoStudio software, the factor of safety comes out 

to 1.23, which represents that the slope is very much stable on its own before the rainfall as the 

FOS of the slope is greater than 1. The critical slip failure pattern has been highlighted in Fig. 4. 

6a, which can fail under certain circumstances. It also represents the hazard zonation map 

according to the factor of safety. Fig. 4. 6b shows the relationship between friction strength, shear 

resistance, and shear mobilization. As shear resistance is comparativily more than the mobilized 

shear, which directly indicates, the slope is stable. 
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(a) 

 

(b) 

Fig. 4. 6: (a) Stability analysis of slope before rainfall, and (b) Variation of shear strength, 

mobilized shears, and shear resistance before rainfall 

 

4.4.1.3 Seep/W Results After Rainfall 

Rainfall simulation has been done in Seep/W software under steady-state to analyse the 

effect of rainfall on the slope. The analysis gives a result of pore water pressure developed under 

the effect of desired rainfall intensity for the particular slope. The rainfall intensity was fixed to 

30mm/hr according to the physical modelling experiment, and the rainfall boundary condition is 

used as a data point function in which the time duration has been fixed to 20 min to simulate the 
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10 mm rainfall depth for the 30mm/hr rainfall intensity. The bottom and left side of the geometry 

model has been set to impervious as a rock bed so that no seepage can occur. The toe boundary 

condition has been set to zero pressure boundary condition, representing the drain path for the 

seepage water. Fig. 4. 7a represents the pore water pressure distribution according to depth. Fig. 

4. 7b shows the flow vectors, which represent the direction of seepage flow. These figures also 

represent that the soil is fully saturated with the rainfall. 

 

(a) 

 

Fig. 4. 7: (a) Pore-pressure variation by rainfall, and (b) Flow vectors showing the flow 

direction of rainfall water  
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4.4.1.4 Slope/W Results After Rainfall 

Rainfall simulation done in Seep/W is later linked to Slope/W to analyse slope stability 

so that factor of safety can be determined after the rainfall, which will further help in monitoring 

and early warning. The safety factor comes out to 0.626, which represents that the slope is very 

much critical to fail after the rainfall as the FOS of the slope is less than 1. The critical slip failure 

pattern has been highlighted in Fig. 4. 8a, which failed under the action of rainfall. It also 

represents the contour profiles according to the factor of safety after the rain. Fig. 4. 8b shows 

the relationship between friction strength, shear resistance, and shear mobilized. As shear 

resistance is much lower than the mobilized shear, it indicates the slope is unstable under the 

rainfall condition. 

From the numerical modelling results, the factor of safety of the slope obtained before the rainfall 

is 1.23, and after the rainfall of the given intensity, it decreased to 0.626, which is less than 1, 

which justifies the physical modelling mechanism of failure for the rainfall simulated in the 

laboratory. 
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(b) 

Fig. 4. 8: (a) Stability analysis of slope after rainfall, and (b) Variation of shear strength, 

mobilized shears, and shear resistance after rainfall 

4.4.2 For Study Area-II (Kotrupi Landslide) 
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content vs. matric suction (Fig. 4. 9a), and the HCF shows the relationship between water 

conductivity and matric suction (Fig. 4. 9b).  

The Volumetric Water Content Function (VWCF) is established through a data point function 

utilizing soil classification samples, categorizing the soil as silty sand. The saturated water 

content is set at 45%. The Hydraulic Conductivity Function (HCF) is determined using a data 

point function based on the Van Genuchten method, incorporating the previously defined 

VWCF. The saturated conductivity (k) is specified as 0.0023 m/hr, with the residual water 

content set at 10% of the saturated water content. The applied boundary conditions include a 

rainfall intensity as illustrated in Fig. 4.12 and a zero-pressure boundary, as illustrated in Figure 

5.11. 
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(b) 

Fig. 4. 9: (a) Volumetric water content function, (b) Hydraulic conductivity function 

 

4.4.2.2 Stability Analysis Results Before Rainfall 

The geometry and material property used in physical modelling analysis is used for 

simulation. The slope before the rainfall has been analysed using Slope/W module using 

Morgenstern Price method [222] to assess the safety factor in dry natural condition. Fig. 4. 

10Error! Reference source not found. shows the variation of factor of safety and for critical 

slip surface it came out to be greater than 1 which shows that the slope was stable before rainfall. 

 

Fig. 4. 10: Variation of factor of safety prior to rainfall condition 
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4.4.2.3 Seepage Analysis Result After Rainfall 

Seep/W module is used to investigate the seepage and pore water pressure parameters of 

slope under the effect of rainfall. Fig. 4. 11 shows the variation of pore pressure with slope 

elevation. Presence of negative pore pressure can be seen on upper section which help in stable 

slope. It also depicts the flow vectors which is the path followed by seepage water and it can be 

seen that in the nearby slope area the intensity of flow vectors is very dense which might be the 

cause for the resulting failure. The seepage analysis convergence plot (Fig. 4. 12) shows that the 

analysis has reached its final solution [231]. 

 

Fig. 4. 11: Variation of pore pressure with input rainfall condition 

 

 

Fig. 4. 12: Convergence plot for seepage analysis 
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4.4.2.4 Slope/W Results After Rainfall 

The safety factor has been later investigated using the seepage analysis results in slope/W 

module, and from Fig. 4. 13Error! Reference source not found.a, it can be inferred that the 

FOS decreased below 1, supporting the theory that the slope failure has been due to seepage of 

rainwater. The failure pattern is also identified in the investigation of the physical model.  

The fluctuation in shear resistance, shear mobilised stress, and pore pressure are shown in Fig. 

4. 13b. It can be deduced that the slope failed because the mobilised shear stress is greater than 

the shear resistance available.  

 

(a) 

 

(b) 

Fig. 4. 13: (a) Variation of factor of safety after rainfall, and (b) Variation of shear 

resistance, shear mobilized and pore pressure  
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This chapter aims to provide a significant insight for numerical analysis. Many researchers 

studied and analyzed the behavior and mechanism of landslides using physical modelling 

methods under various rainfall conditions [40]–[42], [150], [157]. Since it is practically not 

feasible and not scientific to test each critical slope individually with a physical model, [216] 

validated the physical modelling with numerical modelling results. Furthermore, numerous 

studies have been conducted using numerical modelling methods, demonstrating their suitability 

and feasibility [8], [44], [45], [139]. In this study, two landslides have been considered to analyze 

the pore pressure parameter and its factor of safety variation under rainfall conditions by 

numerical modelling using GeoStudio 2020 software, and the results show that the slope was 

stable in dry conditions [136], [147], [233]. However, some studies proved that the stability 

factor increased due to light and intermittent rainfall [234]. Further, the seepage analysis has 

been done under the monsoonal rainfall, which caused an increase in pore pressure. Prolonged 

and cumulative rainfall results in the formation of rills, erosional gullies, and trenches caused by 

vigorous seepage, which in turn results in weathering, making the slope more critical to fail. As 

a result, the landslide's occurrence can largely be attributed to the rain. A slope's strength is 

determined by frictional resistance when the soil is dry; however, as water seeps into soil pores, 

negative pore pressure (also known as matric suction) increases the stability of the slope; 

however, slope failure occurs when water seeps into the soil to a point where it becomes saturated 

and loses its frictional strength [42], [89], [212]. The results of the numerical modelling very 

well demonstrated the effectiveness in determining the variation of FOS and PWP under rainfall 

conditions, and thus, can be used to identify the critical slopes against failure. 

 

4.5 Summary 

In the current investigation, numerical simulations have been conducted utilizing GeoStudio 

2020 software. Initially, an analysis of the slope has been performed under natural dry conditions, 

prior to the occurrence of rainfall. Subsequently, an assessment of seepage and stability 

parameters is carried out following the onset of rainfall. The numerical analysis is conducted to 

validate the findings of the physical modelling. 

1. For study area-I (Jhakri), the factor of safety is calculated to be 1.23, indicating that the 

slope is inherently stable prior to any rainfall, as its safety factor exceeds 1. Rainfall 

analysis was conducted using the Seep/W software in a steady-state condition to examine 

how rainfall impacts the slope. The FOS comes out to 0.626, signifying the substantial 
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susceptibility of slope failure following rainfall, given that the factor of safety for the 

slope is below 1. 

2. Similarly, for study area- II (Kotrupi) the values of factors of safety for the considered 

slope have been calculated both prior to and following the occurrence of rainfall. It has 

been observed that prior to rainfall, the Factor of Safety (FOS) value is 1.045 (exceeded 

1), signifying the stability of the slopes. However, following rainfall simulation, there has 

been a significant decrease in FOS value, reducing to 0.67 (dropping below 1), which 

indicated slope instability. 

3. The investigation also examined variations in shear resistance, shear-induced stress, and 

pore pressure within the selected slopes in both study regions-I and II. It has been 

determined that the slope failure occurred due to the fact that the mobilized shear stress 

exceeded the available shear resistance. 
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CHAPTER 5 

SYSTEM DESIGN AND IMPLEMENTATION  

5.1 General 

Monitoring focuses on systematic surveillance, regular measurements, recording of activities 

and evaluation of positional and orientational changes caused by external forces. Slope 

monitoring is vital for understanding soil parameters like erosion, water content, drainage, 

vegetation, geomorphology, and historical data. Deformation and tilt observations are essential 

for calculating rock and soil stability, deformation evaluation, prediction, and issuing warnings. 

Different monitoring systems require specific devices based on application, method, installation 

time, site accessibility, weather conditions, required accuracy, and frequency. Collaborative 

efforts from experts in geology, geophysics, hydrology, geodesy, remote sensing, and other 

academic fields are necessary for effective landslide and slope monitoring. 

Implementing an “early-warning system (EWS)” is a highly beneficial approach for mitigating 

risks and reducing the impact of disasters. By effectively alerting the public in advance, such a 

system can save lives and minimize both the economic and physical consequences of 

catastrophes. However, to ensure its success, active engagement of the public is essential. This 

involves creating awareness among the population about potential dangers, educating them on 

the precautionary measures in place, and ensuring the system is continuously prepared to respond 

promptly when needed. The involvement of the public in the early-warning system has been 

proven effective in various scenarios, yielding positive outcomes in terms of disaster 

management and overall community safety. 

Drawing a clear distinction between the terms “monitoring system” and “early-warning system 

(EWS)” is essential. The monitoring system for landslides involves the continuous gathering and 

examination of data related to slope conditions and movements. By consistently monitoring 

factors such as slope stability, weather patterns, and ground displacement, this system provides 

valuable information to assess the potential risks of landslides and ensure timely responses when 

necessary. Monitoring plays a crucial role in identifying early warning signs of instability, 
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enabling authorities to take proactive measures to mitigate hazards and protect lives and 

infrastructure in landslide-prone areas. 

The EWS for landslides is an integral part of landslide risk management. Through continuous 

data analysis and monitoring, the system identifies critical thresholds that, when surpassed, 

trigger pre-established civil safeguards. These safeguards may include issuing warnings to 

communities at risk, implementing evacuation plans, or activating protective measures to 

minimize the impact of impending landslides. By combining advanced monitoring technologies 

with quick and decisive responses, the EWS aims to reduce the potential consequences of 

landslides and enhance overall safety and resilience in vulnerable regions. 

By employing such devices, a comprehensive monitoring system provides valuable data to 

understand the behaviour and characteristics of landslides over time. On the other hand, an early-

warning system (EWS) is dedicated to detecting potential hazards and triggering timely alerts to 

mitigate the risks associated with landslides. While the monitoring system continuously gathers 

data for analysis, the early-warning system focuses on identifying critical thresholds or precursor 

signals that could indicate an imminent landslide event. By clearly defining these two concepts, 

stakeholders can implement effective strategies for both monitoring and early warning, thereby 

enhancing landslide risk management and reducing potential impacts. Fig. 5. 1 shows a 

community-centric landslide early warning system presented by Intrieri et al. (2013) [86]. 

 

 

Fig. 5. 1: A community-centric landslide early warning system [86] 
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The essential elements of a comprehensive landslide warning system can be as follows: 

1. Risk Knowledge: 

The warning system necessitates geological analyses and scenarios to identify temporal 

and spatial progression scenarios, considering physical movement size, threatened regions, and 

potential timeframes for landslides. Setting threshold values, understanding people requirements, 

and establishing effective communication protocols are essential components. 

2. Monitoring: 

Continuous data collection from devices measuring landslide warning signs, like 

extensometers, inclinometers, and geophones, is critical. Data is processed either continuously 

or at specified intervals based on predicted conditions. 

3. Analyses and Forecasting: 

Regular data validation and comparison with threshold values are conducted through 

intelligent systems or expert staff. Automated and manual warning signal issuance are both 

employed. 

4. Civilian Protection: 

Prior to a landslide, people in hazardous areas must receive instructions on potential 

dangers and how to respond in emergencies. Strategies for handling false alarms are emphasized. 

Post-warning signal, procedures are established to inform civil safeguard personnel responsible 

for safety measures. The civilian safeguarding program is constantly updated to adapt to 

changing scenarios. 

This chapter focuses on the development of a comprehensive landslide monitoring and warning 

system aimed at safeguarding lives and properties. It encompasses the design, monitoring, 

analyses, and forecasting aspects of the system. This section provides detailed coverage of the 

employed sensors and the main elements of the system used to monitor the landslide-prone zone. 

By integrating advanced technology and sensor data, the proposed early warning system aims to 

improve landslide detection and prediction, enabling timely and effective measures to protect 

communities and infrastructure in vulnerable areas. 

 

5.2 System Design and Components  

Landslides cause damage to structures like roads, buildings, and power supplies, affecting 

society significantly [173]. Detecting the movement patterns and impact requires sensitive and 

precise sensors. The velocity and power of the movement determine the sensor requirements, 
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such as measuring range, sampling rate, and sensitivity. The sensors should be weather-resistant 

and durable since landslides occur in various weather conditions. Keeping the cost of the 

monitoring system low is crucial, which necessitates the use of small, low-cost sensors for large 

area monitoring. Additionally, low-energy consumption is essential for continuous monitoring 

as landslides often have irregular activity. Ensuring reliable and steady operation of the sensors 

is vital for effective landslide monitoring in the long term. 

The design of the proposed landslide monitoring system consists of three major components: a 

sensing unit which includes the sensors and microcontroller, a data logging unit, including a 

connection and networking module for the collection and storage of data, and a threshold analysis 

unit, which can be helpful in generating the warning. Fig. 5. 2 shows the schematics of the 

proposed system for landslide monitoring. 

 

 

Fig. 5. 2: Design components of the proposed low-cost framework for landslide 

monitoring 

 

5.2.1 Sensing Unit 

The sensing unit is the first and foremost part of the proposed system for monitoring 

landslide initiation. It includes the sensors used to sense the required data for the analysis. This 

system uses Micro-Electro-Mechanical System (MEMS)-based sensors owing to their efficient 

working, durability, and cost-effective availability. This system is to be deployed in the field and 

cannot be reused if a landslide takes place, making MEMS-based sensors suitable choice for this 

purpose. The components of the sensing unit are discussed in the following sub-sections. 
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5.2.1.1 Tilt Sensor 

It is necessary to choose a module (MPU6050), which consists of an accelerometer, 

gyroscope, and temperature sensor, to record the tilt variation in the x, y, and z directions. The 

16-bit triaxial gyroscope and accelerometer are combined into the six-axis sensor as shown in 

Fig 5.3. The module is built around an MPU6050 InvenSense IMU (Inertial Measurement Unit) 

chip. In addition to this, there is a power LED that displays the current power status of the module 

(Fig 5.3a). The MPU6050 module is a Micro-Electro-Mechanical System (MEMS) that contains 

within it a three-axis accelerometer as well as a three-axis gyroscope (Fig 5.3b). This allows to 

measure the acceleration, velocity, orientation, and displacement of a system or object, in 

addition to a wide variety of other motion-related parameters. Fig 5.3c shows the circuit diagram 

of this sensor module. Fig 5.4 shows the block diagram of MPU6050 sensor module. Table 5.1 

shows the specifications of the MPU6050 sensor module. 

MEMS accelerometers are used in situations where there is a requirement to measure linear 

motion, such as movement, shock, or vibration, but there is no fixed reference point. The 

accelerometer tracks the object’s linear acceleration while being tethered to it. The mass on a 

spring principle is the principle on which all accelerometers operate. Due to inertia, the mass 

seeks to remain immobile as the item to which they are attached accelerates. As a consequence, 

the spring undergoes stretching or compression, resulting in the production of a force that can be 

measured and is related to the acceleration that has been applied. Table 5. 1 shows the 

specification of MPU6050 module.  

 

Fig. 5. 3: MPU6050 module (a) Sensor module, (b) Working axis details, and (c) Circuit 

diagram 
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Fig. 5. 4: Block diagram of MPU6050 module. 

 

Table 5. 1: Specifications of MPU6050 module 

Parameters Range 

Operating Voltage 5V (typical) 

Accelerometer Range ±2g, ±4g, ±8g, ±16g 

Gyroscope Range 
±250°/s, ±500°/s, ±1000°/s, 

±2000°/s 

Temperature Range -40 to +85°C 

Absolute Maximum Acceleration Up to 10000g 

 

The operation of a MEMS (Micro-Electro-Mechanical Systems) gyroscope is fundamentally 

rooted in the Coriolis effect, a phenomenon in physics. According to this principle, when a mass 

is in motion with a certain velocity along a particular path and is subjected to an external angular 

motion, a resultant force is generated, pushing the mass in a direction perpendicular to its original 

trajectory. It is worth noting that the magnitude of the angular motion directly influences the rate 

of displacement induced by this force. Inside the MEMS gyroscope, four proof masses are 

strategically incorporated and maintained in continuous oscillation. This continuous oscillation 
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sets the stage for the application of the Coriolis effect. As the system experiences angular motion, 

the Coriolis effect comes into play, altering the capacitance between these proof masses. Notably, 

the direction of this capacitance change depends on the direction of the applied angular motion. 

A pivotal aspect of the MEMS gyroscope's functionality is detecting this change in capacitance. 

This specific variation gives rise to a measurable reading, enabling the gyroscope to sense and 

record angular motion. In summary, the MEMS gyroscope exploits the Coriolis Effect to 

translate angular motion into changes in capacitance, thus providing a reliable and accurate 

means of detecting and quantifying angular motion. 

 

5.2.1.2 Soil Moisture Sensor 

Unquestionably, water is crucial to the chemical, physical, and mechanical characteristics 

of the soil. Understanding and analysing various processes involving soil, vegetation, and 

atmospheres, such as soil erosion, runoff, and soil water infiltration, depend on quantifying soil 

water content from the surface to greater depths. Due to the ability of aerial plant life to capture 

some of the water that falls as rain and the ability of plants to absorb moisture from the soil 

around them and release it to the atmosphere through evapotranspiration, soil vegetation alters 

the hydrological balance of the affected area. The latter mechanism could result in a decrease in 

the saturation level of the soil (an increase in suction), which would increase the soil’s shear 

strength. In other cases, water accumulation between the soil layer can cause the formation of 

the fluid zone, which may lead to a loss in shear strength causing slope failure. Thus, soil 

vegetation plays a vital role in stabilizing the slope to protect the environment. 

With the help of this sensor, it is possible to track changes in soil moisture continuously. The soil 

moisture sensor consists of two probes to measure the volumetric water content by measuring 

the resistance or capacitance value through the soil material. The change in current or voltage is 

then calibrated to measure the water content. When the soil pores have more water, the resistance 

to current flow will be less as water provides better conductivity. Similarly, when less water is 

present in the pores, the resistance offered by the medium will be very high, reducing the current 

flow due to the poor conductivity offered between pores. 

Compared to other sensors in the market which measure resistance, in this study, a capacitive 

soil moisture sensor version 2.0 is used to measure soil moisture levels through capacitive 

sensing. Version 2.0 has a better upgrade and offers a better service life than previously available 

versions, as it is corrosion-proof. The output of the capacitive moisture sensor is known to be 
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influenced by the complicated relative permittivity (ε 𝑟
∗  ) of the soil, i.e., dielectric medium [174], 

[175]. 

 ε r
∗ = ε r

′ − jε r
′′ = ε r

′ − j (ε relax
′′ +

σdc

2πfε 0
) 

Eq. 5. 1 

where, “ε 𝑟
′  and ε 𝑟

′′ are, respectively, the real and imaginary components of permittivity, 𝜎𝑑𝑐 

referred to the electrical conductivity, ε 𝑟𝑒𝑙𝑎𝑥
′′  is the contribution of molecular relaxation (dipolar 

rotation, atomic vibration, and electronic energy states), 𝑗 indicates the imaginary number (√−1), 

and 𝑓 is the frequency. The amount of energy from an external electric field that is stored in a 

material is measured by the real part of permittivity (ε 𝑟
′ ). The “loss factor,” also known as the 

imaginary part of permittivity (ε 𝑟
′′), predicts a material’s susceptibility to dissipation or loss in 

the presence of an external electric field: ε 𝑟
′′ > 0. Losses are linked to two main processes: 

electrical conductivity and molecular relaxation. The soil’s salinity, ionic composition, 

frequency, and moisture affect permittivity. 

The permittivity of a material is often represented by a complex number with a real part and an 

imaginary part. The real part of the permittivity represents the material’s ability to store electric 

charge, while the imaginary part represents the material’s ability to dissipate electric energy. 

 

Fig. 5. 5: Parallel plate capacitor setup 

Capacitive soil moisture sensors utilize the operation of a capacitor to provide an approximation 

of the amount of moisture present in the soil. The amount of charge a material can hold when 

subjected to a specific external electrical potential is referred to as its capacitance [176], [177]. 

The most common way to conceptualize capacitors is as parallel-plate setups, as shown in Fig. 

5. 5. 
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The capacitance of an object can be expressed as a ratio of its charge to its electrical potential: 

 
C =

Q

V
=

∮ εE . ds

∫ E . dl
 

Eq. 5. 2 

The charge Q is defined by the integrating relationship between the generated electric field (E) 

and the relative permittivity of the surrounding dielectric material (ε) throughout the gross 

surface area of the probes. The line integral of the electric field is used in the definition of electric 

potential, abbreviated as V. 𝛿 is the distance between plates. For the capacitor with parallel plates, 

an assumption can be made that the electric field is uniform throughout the whole surface of the 

dielectric. This leads to the resulting simplification: 

 
C =

εEA

Eδ
=

εA

δ
 

Eq. 5. 3 

This is usually believed to represent the relationship between the geometric parameters of a 

capacitor with parallel plates and the soil material having dielectric properties around the 

capacitor. The capacitance measured by a soil moisture sensor is distinct from that recorded by 

a capacitor with parallel plates, as the capacitor plates are coplanar rather than parallel. This 

indicates that the plates are not stacked on top, but are placed adjacent to one another and that 

the dielectric substance is the ground itself instead of a thin layer trapped between the plates. The 

following illustration demonstrates this point. 

 

Fig. 5. 6: Illustration concept behind working of soil moisture sensor 

Fig. 5. 6 clearly shows the arrangement of electrodes with the dielectric medium, which can be 

dry or wet soil and serves the same function similar to the plates of any capacitor. The capacitive 

soil moisture sensor works in conjunction with a timer circuit (TLC555, in the case of the selected 

sensor). The combination produces a duty cycle proportional to an analog voltage. This voltage 
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can be read off using a built-in microcontroller board. Capacitance for a flat capacitor is a 

complex function of dielectric constant and sensor shape that will not be investigated here. The 

only new component that has been added is G, a function that summarises the geometric qualities 

of the sensor. The relationship is: 

 C =  εG Eq. 5. 4 

The geometrical and dielectric medium, along with surface line integration in planer 

configuration, makes the complex function, which can be simplified for better understanding by 

assuming a constant (A), and the solution to finding the dielectric constant is mentioned in below. 

 
V =

A

C
 

Eq. 5. 5 

In essence, this indicates that a correlation between the dielectric constant and the inverse of the 

voltage received by the sensor can be anticipated. Using the above relationship, the soil moisture 

sensor is calibrated to sense the moisture in soil pores in percentage or as the volumetric water 

content. Fig. 5. 7 shows the chosen, commercially available blade-shaped capacitive soil 

moisture sensor v2.0. 

 

Fig. 5. 7: A capacitive soil moisture sensor v2.0 

 

The most recent and reliable information for the version 2.0 soil moisture sensor developed by 

DFROBOT and sold under the SKU (stock keeping unit) designation of SEN0193 in various 

advertisements [178]. 
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Fig. 5. 8: Circuit diagram of the capacitive sensors [178]  

The sensor’s datasheet suggests a suitable depth of penetration in soil, a working power supply 

between 3.3 and 5.5 volts, and an output voltage between 0 and 3.3 volts. Initially, a 

comprehensive investigation into the sensor’s electrical circuits is carried out to get familiar with 

the functioning mechanism. The circuit diagram of the soil moisture sensor is shown in Fig. 5. 

8. 

 

5.2.1.3 Development Board 

The development board is like the core of the monitoring system, as all the necessary 

parts are connected to it. The panel includes a microcontroller for reading and processing sensor 

values. The board consists of an input pin for analog and digital sensors, a power supply 

connecting headers, and a USB port to transfer the data. It can also be combined with various 

modules, like the Wi-Fi module, to transmit the data to the cloud or the memory card module to 

store it for further analysis. There are three types of boards available, namely Arduino uno board, 

Arduino nano board, and ESP8266 NodeMCU board, as shown in Fig. 5. 9(a), (b), and (c), 

respectively. There are three types of board available as shown in Fig. 5. 9. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. 9: (a) Arduino Uno board, (b) Arduino Nano board, (c) ESP8266 NodeMCU board 
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5.2.1.4 Power Supply Unit 

The power supply unit includes the power supply for all modules in the monitoring 

system. It consists of a battery with enough capacity of 10k mAh for the uninterrupted working 

of the system and a solar panel charging system for continuously charging the battery. The solar 

charging system is equipped with the overcharging protection of the battery to ensure the 

prolonged battery life. 

 

5.2.1.5 Programming 

Programming is the soul of any monitoring system. It communicates a program’s 

intended functionality to a computer through a sequence of instructions. In this system, two types 

of sensors were used to monitor the landslide mechanism. Programming for the MPU6050 sensor 

has been done to compute the tilt angle, and any deviation induced by tilting can be recorded 

with time. The system has the capability to adjust itself by restarting to allow for better 

visualization. The second sensor is installed to monitor the volumetric water content of the soil, 

and programming is done to measure the moisture content in terms of percentage with time. 

 

5.2.2 Data Logging Unit 

This unit ensures the data collection acquired by the sensor. The data logging module can 

be attached to the development board using the USB hub or the memory card module to save the 

data. A Wi-Fi or GSM module can also be connected wirelessly to collect the sensor value on 

the internet cloud for further analysis. The development board is equipped with a Wi-Fi module 

to provide internet connectivity in the developed monitoring system. A GSM-based Wi-Fi 

modem is installed so that several monitoring sensors can be connected using the single modem 

according to the slope area and location, reducing the cost of individual GSM modules and the 

connectivity charge. The data collected from the sensors is stored using the Arduino cloud for 

further analysis. 

 

5.2.3 Analysis Unit 

In this section, the data collected from the sensors are analysed for better monitoring of 

slope movement. As the critical threshold value depends upon the geometry and material of the 

slope, it varies for individual slopes. After sufficient analysis and monitoring, a warning can be 

generated for each slope to reduce the catastrophic effects of slope failure by evacuating or 

strengthening stability. 
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5.2.4 IoT Based Monitoring System 

The emergence of IoT-based monitoring systems represents a transformative 

advancement in technology and data-driven solutions. These systems utilize interconnected 

sensors, devices, and networks to gather and analyse data from various domains, including 

environmental conditions, machinery performance, healthcare metrics, and energy consumption. 

Their core objective is to offer real-time insights, improve decision-making, and enable proactive 

responses. Developing these systems requires a combination of hardware, software, and data 

analytics, often necessitating integration with existing infrastructure and communication 

networks. Moreover, the development process raises significant concerns regarding data privacy, 

security, and scalability in today’s data-centric era. 

In this section, the focus is on the process of measuring tilt angles with the MPU6050 sensor 

when paired with the NodeMCU ESP8266 board. This can be accomplished through the 

establishment of a connection between the MPU6050 6-axis Gyro/Accelerometer sensor and the 

ESP8266. The accelerometer generates X, Y, and Z acceleration data, which must be converted 

into 3D angles (X, Y, Z) to determine the sensor's 3D orientation. Subsequently, the tilt angle 

data is transmitted to the Blynk application via the Blynk cloud, facilitating remote monitoring 

via IoT. 

The gyroscope is tasked with measuring the rotational velocity or the rate of change of angular 

position over time along the X, Y, and Z axes. It utilizes MEMS technology and the Coriolis 

effect for this purpose. The gyroscope provides outputs in degrees per second, and angular 

position data is obtained through integration of the angular velocity. 

Blynk serves as a versatile application compatible with Android and iOS devices, facilitating 

control of various IoT applications via smartphones. It empowers users to create graphical user 

interfaces for IoT applications. In this context, the configuration of the Blynk application is 

outlined to enable monitoring of MPU6050 tilt angles over Wi-Fi using the NodeMCU ESP8266. 

It begins by downloading and installing the Blynk Application from the Google Play Store. For 

iOS users, the App Store offers the download option. Upon the successful installation of the 

application, users have to launch and complete the registration process using an email address 

and password. 

After completing the registration, the users have the option to display the values in various 

formats like gauges. Once the project is created successfully, one can navigate to the settings and 
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select the “Send Email” option. An authentication ID is received via email which is essential to 

retain as it is later required in the code. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5. 10: (a) ESP8266 module, (b) Connection diagram with the MPU6050 sensor, (c) 

Data transfer via IoT on a mobile device for monitoring and in-depth analysis, and (d) 4G 

GSM-based Wi-Fi router  

 

Upon uploading the code, the serial monitor gets opened to review the outputs. To detect the 

angular position along the X, Y, and Z axes, the MPU6050 Gyro/Accelerometer must be tilted 

accordingly by the user. These tilt angles can also be observed on the computer display. 

Given that the MPU6050 ESP8266 is connected to the internet, it will commence the 

transmission of data to the Blynk Application. The status can be conveniently monitored on the 

Blynk App, which will display gauges reflecting the changing X, Y, and Z angles. 
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In this system, wireless data transfer is facilitated using a WiFi module-based microcontroller 

(ESP8266). For internet connectivity, a GSM-based WiFi router is employed, capable of serving 

up to 10 devices. This allows for the interconnection of 10 sensor columns, creating an effective 

grid network for comprehensive slope monitoring at multiple points. Fig. 5. 10a and b depict the 

circuit diagram showcasing the interface between the MPU6050 Gyro/Accelerometer and the 

NodeMCU ESP8266. Meanwhile, Fig. 5. 10c illustrates the data reception on a mobile device 

through an internet connection, and Fig. 5. 10d presents the Wi-Fi module responsible for the 

internet connectivity of the module.  

Previous research utilizing MEMS sensors and IoT-based networks has demonstrated the 

effectiveness of MEMS sensors and Arduino-based monitoring devices. However, challenges 

may arise concerning internet connectivity, particularly with modules relying on GSM-based 

internet connections. In remote locations, issues such as connection loss and missing data may 

occur. Addressing these issues could involve further development by implementing a more stable 

network [52], [69], [175], [179]–[181]. 

 

5.2.5 Cost Analysis  

The developed system offers a cost-effective solution for slope monitoring, enabling 

users to easily install and oversee it. It incorporates a dedicated GSM-based Wi-Fi module 

capable of supporting up to 10 devices simultaneously, facilitating seamless data transfer for a 

grid of 10 sensor columns. This not only enhances monitoring efficiency but also reduces overall 

costs. The details of the components used and their respective unit prices are presented in Table 

5. 2. 

 

This proposed framework represents a comprehensive and budget-friendly solution, leveraging 

the existing GSM network infrastructure for communication. It is important to note that the 

framework is currently in a prototype stage, with plans for future deployment in real hillside 

landslide monitoring scenarios. The proposed cost-effective monitoring system offers a more 

budget-friendly solution compared to other currently available systems designed for landslide 

monitoring and early warning purposes [182]–[184]. 
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Table 5. 2: Expenses associated with the materials utilized in creating the IoT framework 

for monitoring landslides [185] 

Component 

Cost per unit 

(in USD) 

Quantity 

Total cost 

(in USD) 

MPU 6050 1.39 1 1.39 

Soil Moisture 

sensor 
0.75 1 0.75 

Microcontroller 

Board 
2.36 2 4.72 

Wi-Fi Modem 42.14 1 42.14 

Breadboard 

and wires 
3.6 1 3.6 

Power Supply 

with solar 

panel 

22.28 1 22.28 

Total   74.88 

 

5.3 Methodology  

In this chapter, a low-cost monitoring system that comprises a MEMS-based tilt sensor and 

soil moisture sensor developed to investigate the slope movements monitoring the tilting 

behaviour is discussed. A self-made testing platform has been designed to test the working of the 

monitoring system. A series of physical model tests have been conducted to assess the 

effectiveness of the sensor column monitoring process by evaluating the applied sensor column 

deformation behaviour with the observed tilt response. Landslide events have been modelled 

using a direct shear setup simulating first-time landslide failure experiment using a sensor 

column to analyse the performance of the developed system directly with relative deviation in 

angle; and the flow chart representing the methodology adopted for the present study is shown 

in Fig. 5. 11. 
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Fig. 5. 11: Flow chart of the development of EWS 

5.3.1 Testing Setup 

The testing method includes a predefined failure plane for simulating the slope failure to 

check the working and performance of the developed system. Fig. 5. 12 is the schematic 

representation of the physical model setup developed for studying slope failure. The setup has 

been used to analyze the displacement behavior using a tilt measurement by accelerating the top 

box relative to the bottom box. The setup includes a hydraulic jack to create a horizontal 
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movement to the upper block against the fixed wall support. The lower block is fixed to restrict 

any movement. Both blocks have holes throughout the depth where the sensor column is 

installed. An LVDT (Linear Variable Differential Transformer) sensor is also installed to 

measure the horizontal deformation induced by the external force applied by the hydraulic jack. 

 

Fig. 5. 12: The schematic diagram of physical model setup  

 

 

Fig. 5. 13: Casted POP blocks with boreholes of 4 cm 
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The blocks were made using the Plaster of Paris (POP) material, as it is easy to cast and move 

around in the lab. The casting was done using a mold of 20 cm × 20 cm × 30 cm made of acrylic 

sheet, and a hole of 4 cm diameter was made to place a PVC pipe longitudinally to create the 

borehole in the block for the placement of the sensor column. Fig. 5. 13 shows the casted POP 

block in a casing made of an acrylic sheet of thickness 18 mm and the borehole created using a 

plastic pipe of diameter 4 cm. 

Fig. 5. 14 shows the components of the self-made block shear model setup comprised of POP 

blocks, restraining block, hydraulic jack, LVDT and tilt sensors, data logger, and data collection 

unit. The sensor is installed using the steel rod through the column of soil representing the in-

situ soil of a slope. The joint made with POP blocks will act as a predefined failure plane. The 

lower blocks have been restricted to any movements, while the upper block is free to move when 

any external force has been applied. The upper block can be considered the failed soil mass, 

while the lower block is the base of the slab. This sensor has been tested by applying an external 

force with a hydraulic jack to cause a horizontal relative displacement of the top POP block with 

respect to the bottom block. The change in angle in the x and y directions is noted for further 

analysis. The experimental setup is designed in a way that various tests can be performed to 

evaluate how well the sensor functions under rapidly changing conditions. 

 

 

Fig. 5. 14: Self-developed large-scale direct shear setup 
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5.3.2 Results and Discussions 

The findings of this investigation are summarized in this section. The results of the 

laboratory tests are discussed in greater detail in this article. To better understand the failure 

mechanism under rainfall, physical slope modelling is used to simulate and investigate the start-

up mechanism of the slide. Testing and monitoring results are explained in this section. 

 

5.3.2.1 Results of The Self-Developed Test Setup 

The self-developed large-scale direct shear setup is used to test the working behavior of 

the developed sensor column for slope monitoring and failure prediction. Fig. 5. 15 shows the 

variation detected by the displacement induced using the hydraulic jack. A very small 

displacement has been induced to check if the system could detect a small deviation in angle. 

The maximum angle detected is only 0.5 degrees on the y-axis and 0.1 to 0.2 degrees on the x-

axis. The system has some noise and variation in readings, but as it is very low limited to 0.01 to 

0.05 degrees only thus can be ignored in further investigations or monitoring for better 

understanding. 

In further testing, the displacement has been increased to a large extent to check the working of 

the sensor. The displacement recorded through LVDT can be seen in Fig. 5. 16. There is a 

limitation to the LVDT sensor that it could not measure such large deformation in this phase. 

Fig. 5. 17 shows the variation of angle when further displacement is introduced to the upper 

block. It shows that there is a large deviation detected in the y-axis as the slope usually moves 

downward against the y-axis. However, there is also some movement in the x-direction which 

can help in better monitoring of the slope. 
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Fig. 5. 15: Variation of angle in X- and Y- direction 

 

 

Fig. 5. 16: Linear displacement in X- direction using LVDT 
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Fig. 5. 17: Variation of angle in X- and Y- direction 

This chapter includes the development and testing of the low-cost landslide early warning 

system. The development is based on the MEMS tilt and soil moisture sensor which connects 

through the Arduino or NodeMCU boards as per requirements. Bhandari (2006) [66] utilized tilt 

base monitoring devise for continuous monitoring of rainfall led slides. Ramesh (2014) [68] 

developed wireless geological sensor network for multi-level LEWS by studying the collected 

data on rainfall, moisture, PWP, movement and soil properties. Uchimura et al. (2015) [69] also 

used MEMS based tilt and volumetric water content sensors to study the failure mechanism and 

the study proved that the MEMS sensor has the capability to effectively monitor the slopes. 

Intrieri et al. (2018) [72] developed low cost wireless network for ground instability monitoring. 

The system's limitations include precision (up to 2-5cm with data filtering and averaging) and 

battery duration (a few weeks with hourly data acquisition, depending on air temperature). 

Dikshit et al. (2018) [73] also designed a sturdy system using MEMS tilt sensors in conjunction 

with volumetric water content sensors for the purpose of monitoring both tilting angles and 

lateral displacement on slope surfaces. Madhusudhan et al. (2018) [74] designed an Arduino-

based sensor network technology that can develop large-scale systems for real-time monitoring 

of landslide-prone areas and give warning signals. Berg et al. (2018) [75] and Dixon et al. (2018) 

[76] uses acoustic emission techniques to monitor the displacement of slopes. Purnomo et al. 
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(2019) [78] harnessed the capabilities of soil movement sensors, which effectively transformed 

spatial changes into stress measurements, and humidity sensors to record moisture levels. These 

sensors interfaced with a sophisticated 10-bit Analog to Digital Converter (ADC) embedded in 

the ATmega8535 microcontroller. Ribeiro and Lameiras (2019) [79] and Zhu et al. (2020) [82] 

also used MEMS based tilt sensor to monitor the slopes but also signifies the improved 

calibration techniques to improve the monitoring results. In this study the authors tested the 

developed system in to check its working principle which proved to be an important criterion in 

development of the respective EWS. Although the developed system has been primarily used 

only in the laboratory-controlled environment, few researchers [52], [69] also deployed the tilt-

based sensors to the field and demonstrated that the developed system effectively records the 

data for monitoring purposes. The researchers have also asserted the presence of a connectivity 

issue resulting in the loss of data. Insights and findings of these studies mandate that such issues 

and limitations must be dealt with and prioritized in future development efforts. 

 

5.4 Summary  

The development of a landslide early warning system model is the main goal of this chapter. 

The following can be stated in accordance with the objectives: 

1. The chapter includes the development of a landslide early warning system using low-cost 

MEMS sensors, such as 3-axis accelerometers and 3-axis gyroscopes, along with 

volumetric water content sensor. This approach allowed the creation of a cost-effective 

system utilizing affordable components. 

2. A self-developed direct shear model has been used to examine the effectiveness of a 

rudimentary monitoring system designed. The proposed system achieved the 

development of a monitoring system with near real-time communication, facilitating 

continuous data transfer. 

3. The monitoring system demonstrated autonomous operation for extended periods without 

significant issues. 

 

 

 

 

 



154 

 

 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS  

6.1 General 

The Himalayan region, known as ‘young fold’ and rugged mountains, experiences high 

rainfall and seismic activity, leading to a significant number of landslides in India, especially 

during the monsoon season. Factors such as over-exploitation of natural resources, deforestation, 

population growth, and climate change are expected to contribute to an increase in landslide-

related disasters in the region. Despite numerous studies on landslides in the Himalayan region, 

the problem persists due to their frequent occurrences and severe consequences. Recent studies 

in India have focused on hazard zoning and establishing rainfall thresholds but often rely on 

heuristic or statistical methods, neglecting physical parameters and underlying processes. 

To address this issue, an extensive study has been conducted to understand the root causes and 

mechanisms of landslides in the north Himalayan region through geological and geotechnical 

investigations and field instrumentation. Comprehensive data from various sources, combined 

with field and laboratory work, have been used to enhance the understanding. 

Furthermore, the study introduced an innovative and cost-effective slope monitoring system 

incorporating MEMS-based tilt and moisture sensors. This system allows real-time data 

collection on tilt deformations and moisture content and is validated through self-developed 

direct shear testing and physical slope modelling methods. 

 

6.2 Conclusions 

The conclusion of this study based on experimental and numerical studies of rainfall-induced 

landslides are: 

1. By varying the rainfall depth from 10 mm to 100 mm at 10 mm intervals, it has been 

observed that the slope of study area-I, underwent debris flow-type failure when the 

rainfall depth reached 80 mm with an intensity of 30 mm/hr. This conclusion highlights 
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the usefulness of physical model methods in determining critical thresholds and helps 

understand the failure mechanism of rainfall-induced landslides.  

2. The adopted high intensity rainfall of 30 mm/hr has caused a notable impact on the slope. 

When rainfall is more intense, a significant portion of the rainwater infiltrates the soil on 

the hillslope. As a result, the water table rises, causing a noticeable decrease in the soil's 

strength. Consequently, higher intensity rainfall contributes significantly to the 

destabilization of the slope.  

3. In the Jhakri study area, numerical modelling has been conducted on a slope with a 35° 

angle. Initially, the slope was stable, with a Factor of Safety (FOS) of 1.23. However, 

when subjected to rainfall with an intensity of 30 mm/hr, the FOS decreased to 0.626, 

signifying slope failure. Similarly, for the Kotrupi study area, where the slope angle was 

47° under dry conditions, the FOS was 1.045. After the input rainfall, the FOS dropped 

to 0.670. These modelling results align with the outcomes observed in physical 

modelling, thereby validating the findings of the physical modelling.  

4. The study proved that both gentle and steep slopes may fail to the influence of rainfall, 

confirming that rainfall is the primary triggering factor for landslides in the North 

Himalayan region, encompassing shallow and deep-seated failures across varying rainfall 

conditions. The results offer valuable insights in understanding the mechanism of rainfall-

induced failure of landmass. 

5. The tilt and volumetric water content sensors employed in the developed early warning 

and monitoring system provide accurate and precise measurements. The tilt sensor 

records even the slightest changes in the slope angle with a precision of 0.01 degree, 

enabling early detection of slope movement. Additionally, the volumetric water content 

sensor can detect percentage variations with a precision of 1 percent. aiding in the 

identification of critical conditions that could lead to landslides. 

6. The results of physical modelling of the Jhakri landslide incorporating the use of tilt and 

moisture sensors indicated that the slope failed when subjected to significant moisture 

fluctuations and abrupt tilting, with a recorded tilt of approximately 3 degrees on the y-

axis and around 2 degrees on the x-axis. This confirms the accuracy and working 

capabilities of the developed early warning and monitoring system. 
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7. The development of the IoT system, enables real-time data collection and monitoring for 

remote locations which are not easily accessible. The developed early warning and 

monitoring system facilitates real-time monitoring of slope conditions, allowing for 

prompt response and mitigation measures in the event of detected instabilities. The 

sensors of the developed IoT based landslide monitoring system transmit data wirelessly 

to a central monitoring station, enabling timely decision-making and minimizing 

potential risks associated with landslides. 

8. The developed early warning system, designed for identifying impending slope failures, 

utilized a combination of tilt angle and moisture content variations. Through continuous 

monitoring, the system observed a gradual shift in the tilt angle of the slope over a two-

hour period, displaying a variation ranging from approximately 0.5 degrees to 1.5 

degrees. This specific range can be served as a predefined warning threshold. At the 

crucial second-hour mark, coinciding with the slope failure, there was a sudden and 

notable deviation 3 degrees to 3.5 degrees in the tilt angle.  

9. The soil moisture sensor integrated into the system exhibited substantial variations of 

approximately 40% during periods of rainfall. These variations signalled a notable rise in 

soil saturation, reaching up to 95%, suggesting that elevated moisture levels may serve 

as a potential triggering factor for slope failure. 

10. The developed low-cost monitoring system is a cost-effective solution for landslide 

monitoring compared to existing methods. The utilization of tilt and volumetric water 

content sensors allows for a more targeted and efficient monitoring approach, minimizing 

unnecessary expenses associated with complex monitoring systems. 

 

6.3 Recommendations and Future Scope 

Based on the findings of the current study, some critical recommendation in the existing 

guidelines and for monitoring of slopes as apart of early warning system for landslides are 

proposed in this section. Further, certain constraints of the present study are listed with 

prospective domains for future research. 

1. In terms of the relative contributions of various causative factors to landslide hazards 

given in IS14496 part 2, the hydrological condition attribute is assigned only a 10% 

weight, alongside parameters such as lithology and land use/land cover (LULC). 

However, the significant findings of the current study sharply contrast with this 
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understanding, emphasizing that hydrological conditions, particularly rainfall, play a 

substantially more critical role in greatly amplifying vulnerability and subsequently 

leading to increased landslide occurrences, especially during the monsoonal seasons. 

2. The implemented warning system can be field-tested on a natural slope for ongoing, real-

time monitoring to evaluate its performance. Since the sensor is cost-effective, it can be 

deployed in numerous quantities across extensive slopes, enabling comprehensive spatial 

monitoring and ensuring accurate and effective surveillance to issue timely warnings and 

mitigate landslide disasters. 

3. Uniform values were used for the geotechnical input parameters and applied rainfall 

across the entire study area. However, to enhance the realism of the study, it would be 

valuable to account for the spatial variations in geotechnical and hydrological 

characteristics at a regional scale. 

4. It is possible to integrate numerous additional MEMS-based sensors, considering the 

contributing elements of landslides, in order to acquire more precise and targeted 

information. This approach enhances the comprehension of landslide mechanisms and 

strengthens the efficacy of early warning systems. 

5. A variety number of physical modeling test can be employed in conjunction with tilt 

sensors to establish more accurate tilting thresholds, thereby enhancing the effectiveness 

of landslide failure warnings. 
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