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ABSTRACT 

Cancer is a complex and multifaceted disease that continues to pose a significant challenge to 

global health. As the second leading cause of death worldwide. Early detection and noninvasive 

techniques of detecting cancer are necessary to improve treatment outcomes, save lives and 

improve the quality of life. Biopsies of tumors are often expensive and invasive and raise the 

risk of serious complications like infection, excessive bleeding, and puncture damage to nearby 

tissues and organs. Early detection biomarkers are often variably expressed in different patients 

and may even be below the detection level at an early stage. Hence PBMC that shows alteration 

in gene profile as a result of interaction with tumor antigens may serve as a better early 

detection biomarker. Also, such alterations in immune gene profile in PBMCs are more 

detectable in a wide variety of cancer patients despite their variability in different cancer 

mutants. Tumor cell biomarkers lack specificity, and tumor heterogeneity complicates accurate 

diagnosis and treatment. Changing biomarker expression affects treatment responses, and 

technical challenges impact utility. Synthetic drugs targeting tumor cells often trigger tumour 

cells to acquire resistance against them. Tumor progression is an outcome of tumor growth 

regulation in conjunction with tumor evasion by immune modulation. Therefore, understanding 

of immunological biomarkers is equally important. Hence, designing a prudent 

chemotherapeutic combination requires a detailed understanding of gene regulation altering 

cancer prognosis and its impact on immune regulation . Immunotherapy also has its side effects 

and does not provide an adequate response in all patients, and its inherent variability in patient 

response often makes them prohibitive. Hence, a concomitant targeting of tumour cells and 

modulation of immune cell function may be a particularly beneficial mechanism for cancer 

treatment.  

Machine learning tools are crucial for early cancer detection and immune modulation due to 

their ability to analyze complex data and identify patterns that may not be apparent through 
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traditional methods. Potential diagnostic biomarkers were predicted for breast cancer using 

eXplainable Artificial Intelligence (XAI) on XGBoost machine learning (ML) models trained 

on a binary classification dataset containing the expression data of PBMCs from 252 breast 

cancer patients and 194 healthy women. After effectively adding SHAP values further into the 

XGBoost model, ten important genes related to breast cancer development were discovered to 

be effective potential biomarkers. It was discovered that SVIP, BEND3, MDGA2, LEF1-AS1, 

PRM1, TEX14, MZB1, TMIGD2, KIT, and FKBP7 are key genes that impact model 

prediction. These genes may serve as early, non-invasive diagnostic and prognostic biomarkers 

for breast cancer patients. The impact of concomitant intervention cancer progression and 

immune regulation therefore necessitated identification of such biomarkers that have dual 

impact. Gene expression data of HNSC tumor samples and PBMCs of tumor patient datasets 

were analysed for the identification of differentially expressed genes. 110 DEGs were found to 

be common in both datasets. Further, it was identified that these 110 DEGs were involved in 

biological processes related to tumor regulation. Potential Immunological biomarkers were 

identified for HNSC cancer. The Genes that play a role in both tumour growth and immune 

suppression were identified by enrichment analysis followed by gene expression analysis. 10 

such genes were shortlisted, Foxp3, CD274, IDO1, IL-10, SOCS1, PRKDC, AXL, CDK6, 

TGFB1, FADD. CD274 and IDO1 were found to have the highest degree of interaction based 

on their network of interactions. 

Synthetic drugs including many of FDA approved drugs might cause significant side effects, 

leading to adverse impacts on patients' quality of life. Additionally, some cancer cells may 

develop resistance to synthetic drugs over time, reducing treatment efficacy. Moreover, 

targeted therapies may only be effective in cancers with specific molecular characteristics, 

limiting their broad applicability. To address these limitations, ongoing research focuses on 

developing more targeted and personalized therapies, combining synthetic drugs with other 



ix | P a g e  
 

treatment modalities, and exploring alternative natural compounds with multi-target effects. 

Multi-target natural compounds offer the advantage of targeting multiple pathways involved in 

cancer progression without significant side effects. These compounds, derived from plants and 

other natural sources, hold promise in cancer treatment due to their diverse mechanisms of 

action and potential for reduced toxicity. Natural compounds that help in tumour suppression 

as well as functional immune modulation were identified for their dual roles. Np care and GEO 

databases were used for retravel of natural compounds. 102 potential anti-cancer natural 

compounds treatment gene expression data was analysed and key differentially regulated genes 

by them were identified. These 102 natural compounds were analysed for their ability to alter 

the expression of 110 commonly differentially expressed (identified in first objective). 

Salidroside was altering maximum number of 66 gene from them.  Gallic acid and Shikonin 

were found to be the natural compounds that target CD274 and IDO1 respectively. Galic acid 

is extracted from leaves of bearberry, in pomegranate root bark, gallnuts, witch hazel, both in 

free-state and as part of the tannin molecule, whereas Shikonin is found in the extracts of dried 

root of the plant Lithospermum erythrorhizon. Studies have demonstrated that both Shikonin 

and Gallica acid exhibits anti-cancer properties.  

Single drug treatment can lead to the development of drug resistance, where cancer cells 

become less responsive to the treatment over time. Some cancers may be inherently resistant 

to certain drugs, restricting their effectiveness. Moreover, high doses of a single drug can cause 

severe side effects, impacting patients' quality of life. Additionally, single-drug therapy may 

not be effective due to the heterogeneity of cancer cells, allowing potential tumor recurrence. 

Combination therapy targets cancer cells through multiple pathways, reduces drug resistance, 

and enhances efficacy of treatment outcomes. Synergistic interactions can improve efficacy 

while minimizing side effects, advancing personalized cancer care for better patient outcomes. 

A combination of Salidroside, Ginsenoside Rd, Oridonin, Britanin, and Scutellarein was 
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chosen such that they could alter the expression of 108 genes out of the selected 110 genes. 

The combination was further analyzed for regulating pathways and biological processes that 

were affected. Expression data analysis of HNSC cancer exhibited 1745 differentially 

expressed genes. Gallic acid treatment results in the downregulation of 120 genes and 

upregulation of 35 genes while Shikonin results in the downregulation of 660 genes and 

upregulation of 38 genes. Pathway analysis of these genes that were modulated by Gallic acid 

and Shikonin showed them to be crucially involved in pathways that were essential for cancer 

prognosis. Further Gallic acid and shikonin treatment impact on cancer cell line was analysed 

individually as well as in combination with the help of in vitro experiments. Gallic acid showed 

IC50 value of 46.87, 59.37, and 93.75 at 12h, 24h, and 48h treatment, respectively. Shikonin showed 

IC50 value of 13.86, 11.95, and 10.89 at 12h, 24h, and 48h treatment, respectively. Lowest percentage 

of cell viability was observed for combination of 80 µl Gallic acid and 16 µl of Shikonin. So, this 

combination of gallic acid and shikonin could be effective for the HNSC cancer treatment.  Our 

studies showed a multifaceted, multi-dimensional tumor regression by altering autophagy, 

apoptosis, inhibiting cell proliferation, angiogenesis, metastasis and inflammatory cytokines 

production. Thus, the study has helped develop a unique combination of natural compounds 

that will markedly reduce the propensity of development of drug resistance in tumors and 

immune evasion by the tumors. This study is crucial to developing a combinatorial natural 

therapeutic cocktail with accentuated immunotherapeutic potential.  
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CHAPTER I: INTRODUCTION  
 

1.1.OVERVIEW 

Cancer is a complex and multifactorial disease. Which is initiated by the uncontrolled growth 

of abnormal cells and their spread in the different body parts. Cancer has a history as ancient 

as human civilization itself without any sustainable cure. According to WHO, the death rate 

increases continuously from cancer and that reaches 9.9 million in 2020. Cancer, a term 

encompassing a vast array of diseases, arises from uncontrolled growth and division of 

abnormal cells in the body. It can affect any organ or tissue and has the potential to spread to 

other parts of the body, leading to life-threatening consequences. Despite significant advances 

in cancer research and treatment, it remains a major global health concern. 

Cancer arises from a complex interplay of genetic, environmental, and lifestyle factors. 

Mutations in key genes, such as oncogenes and tumor suppressor genes, play a crucial role in 

initiating and promoting the development of cancer. Additionally, factors such as tobacco use, 

unhealthy diet, physical inactivity, exposure to carcinogens, infections, and genetic 

predisposition contribute to the risk of developing cancer. 

Cancer cells possess distinct hallmarks that differentiate them from normal cells. These 

hallmarks include sustained proliferation, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, 

and evading immune destruction. Furthermore, tumor heterogeneity, the presence of cancer 

stem cells, and the tumor microenvironment significantly influence cancer progression and 

response to treatment. The genetic variability across different cancer types has impeded the 

identification of therapeutic targets and the drug design and development against tumors[1]. 

The most commonly used cancer therapies include surgery, radiation, and chemotherapy, 

which can be used in isolation or different combinations [2]. However, these techniques have 
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been associated with a high morbidity rate and a significant decline in quality of life [3]. 

Additionally, despite monotherapy's specificity and efficiency, cancer cells' molecular 

flexibility renders ideal lethal effects challenging [4]. HNSC has a poor prognosis due to many 

patients' high likelihood of recurrence or metastasis following radiation or chemotherapy [5]. 

This high metastatic rate of HNSC is because of the tumor cell's interactions with the 

surrounding tissues and immune cells that will form the tumor microenvironment (TME) [6]. 

Host immune cells can recognize and eliminate the tumor cells, but an evasion of 

immunosurveillance generates an environment that accommodates the progression and 

survival of tumor cells [7]. Cancer-associated stromal fibroblasts, T cells, B cells, neutrophils, 

macrophages, myeloid-derived suppressor cells (MDSC), natural killer (NK) cells, and mast 

cells are all part of the TME [8]. These numerous cell subsets penetrate tumors and interact 

with cells and one another through multiple networks [9]. Tumors progress if they can evade 

and/or suppress antitumor immune responses [10]. Tumors frequently elude the immune 

system of their hosts by inhibiting cytotoxic T-cell activity or activating and increasing 

immunosuppressive cell populations [11]. 

Early detection plays a crucial role in improving cancer outcomes. Diagnostic techniques 

include imaging methods (e.g., X-ray, ultrasound, magnetic resonance imaging), laboratory 

tests (e.g., blood tests, tumor markers), and histopathological examination of tissue samples. 

Cancer screening programs for specific types of cancer have been implemented to identify pre-

cancerous lesions or early-stage cancer in asymptomatic individuals. Due to the limitations of 

chemotherapy and radiation therapy, there is a critical need for early detection and prevention 

of high-risk premalignant lesions. Still, due to the complex nature of cancer, a unilateral 

therapeutic strategy often is insufficient and redundant. 

Even though tumor sampling is frequently used to identify biomarkers, collecting tissue is 

difficult because of restricted accessibility, many lesions and heterogeneity of the biopsy site, 
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and patient conditions [12]. Biopsies of tumors are often expensive, invasive, and time-

consuming, and they raise the risk of serious complications [13]. Most screening systems 

cannot detect and identify cancers until they have reached a particular stage of development 

[14]. Breast cancer, for example, may have been present for many years before it is discovered 

through palpation or mammography, and it has the potential to spread to other organs [15]. 

There is a pressing need to identify cancer at its earliest stages, particularly before the onset of 

clinical signs and symptoms. Early breast cancer detection is essential since it provides a more 

significant number of treatment choices, higher survival, and enhanced quality of life. While 

there is no fool proof way to avoid breast cancer, early diagnosis gives the most significant 

opportunity for successful treatment. Early detection and modern treatment are key to avoiding 

breast cancer fatalities. Early-stage breast cancer is simpler to treat. Regular screenings are the 

best method to detect breast cancer early [16]. 

Studies of biomarkers from blood, nipple aspirate fluid, perspiration, urine, tears, or breath may 

diagnose breast cancer early and in a non-invasive manner [17]. A simple blood or breath test 

may soon be able to identify breast cancer early[18]. Recent studies imply peripheral blood 

analyses might provide prognosis and treatment responsiveness [19]. Cancer detection using 

peripheral blood is more straightforward and less invasive [20]. As a result, generating 

clinically useful biomarkers requires the study of readily available peripheral blood [21]. The 

immune system relies on these PMBCs to combat infection and adapts to new threats. 

Oncogenic cells interact with normal stromal cells and the host immunological defense system 

to form tumors and prevent apoptosis [22]. The tumor's ability to evade the immune system 

also plays a significant role. Immune suppression in the tumor microenvironment by CD4+, 

CD25+, and FoxP3+ cells, regulatory T cells (Tregs), and other inhibitory peripheral blood 

mononuclear cells is the primary mechanism of tumor immune evasion [23]. Because of this, 

gene expression profiling of peripheral blood cells has the potential to identify early cancers 



5 | P a g e  

 

[24]. Michael E. Burczynski et al demonstrated that circulating monocytes of peripheral blood 

may be utilized as a surrogate monitor for difficult-to-biopsy tissues and/or as an extremely 

sensitive monitor to check for changes in the physiological condition of the organism [23]. 

Sharma et al. showed that PBMCs might be utilized to build gene expression assays for early 

diagnosis of breast cancer based on the properties of these cells [25]. The process by which 

malignant development induces distinctive alterations in the blood biochemical environment 

justifies the use of the PBMC transcriptome gene as a monitor for malignant solid tumors [26]. 

Tumor cells interact with immune cells and change their expression profiling of genes and can 

escape the immune system of the host easily [27]. The transcriptome gene expression of 

PBMCs may be used as a tumor screening marker since it is conveniently retrieved. Clinical 

pharmacogenomics might benefit from the use of PBMCs as predictive biomarkers because of 

the ease with which they can be obtained [28]. 

Cancer treatment approaches are diverse and depend on various factors such as cancer type, 

stage, and patient characteristics. Common treatment modalities include surgery, 

chemotherapy, radiation therapy, immunotherapy, targeted therapy, hormone therapy, and stem 

cell transplantation. Advances in precision medicine and personalized therapies hold great 

promise for improving treatment efficacy and reducing side effects. 

Thousands of drugs have been used to treat cancer, but it is still the most abundant cause of 

fatality in the world. There are different types of therapy used for cancer treatment, such as 

radiation, surgery, chemotherapy, immunotherapy. However, many chemotherapeutic 

measures often result in the development of drug resistance in patients. Immune response in 

every individual is a complex array of immune functionality that are interrelated and regulated 

in a complex cascade of mechanisms that vary significantly in different individuals, hence 

patients often have variable tumor immunity and tumor prognosis. Therefore the same 

immunotherapy may have functional variability for every patient and even exhibit variable side 
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effects [29].  

Drug resistance to cancer is a very complicated process and may depend on different factors, 

such as mutation at the drug's target site [30], any alteration in drug metabolism [31], resistance 

may be due to downregulation of pro-apoptotic signals and upregulation of anti-apoptotic 

signals [32], may lead to an increase in impaired DNA repair [33], and may result in a decrease 

in drug uptake or increase in drug efflux [34][35]. Moreover, in the vicinity of the tumor, there 

are not only uncontrollably proliferating cells, but over time there is an immense accumulation 

of divergent cells that modulate the surrounding environment that is known as the tumor 

microenvironment. It contains immune cells, extracellular matrix, blood vessels, fibroblasts 

and signaling molecules [36]. The immune system plays an important role in the development, 

establishment, and progression of HNSC. Better treatment for HNSC can be achieved by 

understanding the dysregulation and evasion of immune system. HNSC cells evade the host 

immune system through manipulation of their immunogenicity, production of 

immunosuppressive mediators, promotion of immunomodulatory cell types [37]. 

Tumor cells and their microenvironment are closely related and continuously interacting. 

Initially, immune cells try to eliminate tumor cells, but as the tumor grows, tumor cells over-

express certain ligands that bind to immune cells and suppress the immune response. For 

example, PD-L1 present on tumor cells binds to T cell PD-1 so that the T cell response is 

suppressed [38][39]. Galetin-9 present on tumor cells binds to TIM-3 present on T cells to alter 

T cell function [40]. TIGIT and CD96 present on T cell bind to CD155 and CD112 present on 

tumor cells [41]. When these immune cells interact with other immune cells and also try to 

suppress the immune response. CTLA4, another receptor present on T cells that binds to CD80 

and CD86 present on APCs and suppress T cell function  [42]. MHC-II present on APCs binds 

to LAG3 present on T cell and block T cell recognition of tumor antigens [43]. There are many 

antibodies against these immune checkpoints, but they don't result in the same response in 
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every individual, and in some cases may result in severe side effects. Other immune 

checkpoints help in tumor suppression like DNAM-1 present on T cell [44] and NK cell binds 

to CD155 and CD112 present on tumor cell [45], ICOS present on T cell binds to ICOS-L 

present on APC [46], GITR present on T cell binds to GITR-L present on APC [47]. 

Further, to assess the efficacy of these chemo-preventive medicines, new biomarkers with 

predictive value for clinical disease and risk stratification can be employed for more disease 

specific strategy. From our literature survey, we shortlisted some drugs that show anti-cancer 

properties also work in immune modulation, such as mTOR inhibitor (rapamycin) reduces the 

expression of PD-L1 in HNSC cancer [48]. Drugs such as Statin, Metformin, and 

Antheracyclines can also enhance the immune system and cause tumor cells to kill more 

effectively [49][50][51]. Thalidomide and its derivative drugs, such as lenalidomide, were first 

used as a direct anti-cancer drug due to its cell-cycle arrest properties but later recognized for 

their role as immunomodulatory drugs due to their ability to stimulate T cells to secrete IL-2 

and interferon-gamma [52].  

Cancer research is a dynamic field, with ongoing efforts to deepen our understanding of cancer 

biology, identify novel therapeutic targets, and develop innovative treatment approaches. 

Advancements in genomics, proteomics, and artificial intelligence are revolutionizing cancer 

research and opening new avenues for precision medicine and personalized cancer care. 

Here we try to explore those genes, whose expressions are functionally associated with HNSC 

disease and are involved in immune suppression. We used an unbiased approach for targeting 

these genes because of their upregulation associated with both immune suppression and tumor 

progression. Further, we have explored natural compounds that can inhibit these gene functions 

because natural compounds are cost effective and have fewer side effects as compared to 

synthetic compounds. These natural compounds have properties that interfere with initiation, 

development and progression of tumors through various mechanisms including apoptosis, 
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angiogenesis, metastasis, cell proliferation and cell differentiation [53]. So combinatorial use 

of natural compounds that interfere with multiple pathways, thus resulting in better therapeutic 

strategies, can also address the problem of drug resistance and hence may serve as a better 

therapeutic strategy [54]. 

Efforts to increase the efficacy of cancer treatment have primarily failed in recent decades, 

underlining the need for novel techniques such as complementary and alternative medicine 

[55]. Numerous natural herbal substances have caught the interest of academics and physicians 

due to their potential to prevent or improve the treatment of chronic diseases, including 

cancer[56]. Natural chemicals and combinations thereof may be a potential source of 

synergistic cancer treatments since they can interact with multiple biological targets involved 

in tumor growth, drug resistance, and metastasis [57]. Through their multitargeting action, 

natural chemicals may enhance the efficacy of already available cancer treatments or diminish 

treatment resistance [58]. Cancer treatment tries to eliminate or destroy tumor cells while 

sparing normal ones. The majority of natural substances are less poisonous, less expensive, 

have fewer side effects, and have been carefully researched for their carcinogenic potential 

[59]. Due to the adverse effects and drug resistance associated with conventional therapy, it 

was evident that natural substances can act as anticancer agents or adjuvants in chemotherapy 

[60]. 

Cancer chemoprevention reverses, suppresses, or prevents cancer initiation, propagation, or 

advancement using natural or synthetic medications [61]. To be effective in  people, a 

chemopreventive medicine must have an acceptable safety profile and be efficacious at a low 

enough dose to avoid severe side effects [62]. Natural dietary interventions such as fruits and 

vegetables show tremendous promise for chemopreventive research due to their potential to 

prevent and reduce cancer [63]. The chemical diversity of natural chemicals suggests a range 

of cancer chemoprevention techniques. Chemoprevention appears to be a rational and 
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appealing strategy, as indicated by the success of several recent clinical trials aimed at cancer 

prevention in high-risk populations [61]. 

Combination therapy combines two or more therapeutic drugs and is a crucial component of 

cancer treatment [64]. In comparison to monotherapy, the combination of anticancer drugs is 

more effective because it targets important pathways in a synergistic or additive [65]. This 

method might reduce drug resistance while providing therapeutic anticancer benefits, such as 

inhibiting mitotically active cells, reducing cancer stem cell populations, and triggering death 

[66]. Most metastatic tumors still have poor 5-year survival rates, and creating a new anticancer 

medicine is expensive and time-consuming [67]. As a result, new techniques are being 

investigated that target survival pathways and give efficient and effective results at a low cost 

[68]. In TME, the expression of many genes is regulated, affecting cancer prognosis. Thus, 

designing combinatorial therapy required evidence to reverse those gene regulations and be 

free of side effects due to concomitant undesirable gene regulation. In this study, the different 

combinations of natural compounds have been studied for the treatment of HNSC through 

various computational approaches. 

1.2.MOTIVATION OF RESEARCH 

➢ Targeting tumor cell biomarkers for tumor diagnosis and treatment has limitations because 

of difficulty in heterogeneity of tumor, drug resistance and their immune modulation.  

➢ Traditional FDA approved drugs showed drug resistance, side effects and are not much 

effective in cancer patients. Use of high dose of single drug showed toxicity.  

➢ However, traditional cancer drugs have limitations, such as specificity and selectivity. 

Similarly, current therapeutic biomarkers failed to show effective treatment or diagnosis. 

➢ Thus, there is a growing need to identify novel immune system mediated biomarkers and 

their therapeutic target needs to be identified. 
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➢ In addition, multi-target natural compounds cocktail might be designed for targeting 

tumors. Combinations of ligand targeting tumor microenvironment will provide less toxic 

therapeutic approach in immune therapeutics. 

1.3.AIM AND OBJECTIVES 

1.3.1. AIM:  

➢ Designing a combinatorial therapy targeting tumor progression biomarkers in conjunction 

with immune modulatory markers for more effective tumor immunotherapy 

1.3.2. OBJECTIVES: 

➢ Identification of Immunologically regulated biomarkers as indirect therapeutic targets for 

combinatorial therapy. 

➢ Mitigation of side effects of chemotherapeutic drugs using Natural compounds. 

➢ Exploring combinatorial potential of natural compounds and their validation via in vitro 

experiments. 
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CHAPTER II 

 

 

 

 

 

 

 

 

Objective 1 
 

➢ Identification of immunologically regulated biomarkers as indirect therapeutic targets for 

combinatorial therapy 

 

 

 

 

 

 

 

 

 

 

 

 



12 | P a g e  

 

CHAPTER II: OBJECTIVE 1 
 

2.1 RATIONALE OF THE STUDY 

Numerous FDA approved drugs for HNSC and Breast cancer have been extensively studied 

for improving their efficacy and decreasing their side effects. However, their effectiveness is 

highly variable in different patients. FDA approved drugs for breast cancer (82 Drugs) and 

Head and Neck cancer (13 Drugs) were retrieved from NCI website and their molecular were 

identified from the drug bank as shown in Table 2.1.  

Drug 
Molecular 
Targets 

Drug Molecular Target Drug Molecular Target 

Abemaciclib CDK4 and CDK6 Exemestane Aromatase Pembrolizumab PD-1 receptor 

Abraxane Microtubules Fluorouracil Injection Thymidylate synthase Pertuzumab HER2 receptor 

Ado-
Trastuzumab 

Emtansine 
HER2 

Fam-Trastuzumab 
Deruxtecan-nxki 

HER2-targeted 
antibody-drug 

conjugate 

Pertuzumab, 
Trastuzumab, and 

Hyaluronidase-zzxf 
HER2 receptor 

Afinitor mTOR Fareston estrogen receptor Piqray (Alpelisib) PI3K 

Afinitor Disperz mTOR Faslodex estrogen receptor Ribociclib CDK4 and CDK6 

Alpelisib PI3K Femara Aromatase 
Sacituzumab 

Govitecan-hziy 
Trop-2 protein 

Anastrozole Aromatase Fulvestrant estrogen receptor Soltamox 
Estrogen receptor 

modulator 

Aredia Bisphosphonate 
Gemcitabine 

Hydrochloride 
DNA synthesis Talazoparib Tosylate PARP 

Arimidex Aromatase Goserelin Acetate GnRH receptor Talzenna PARP 

Aromasin Aromatase Lapatinib Ditosylate 
Dual EGFR and HER2 

receptor inhibitor 
Tamoxifen Citrate estrogen receptors 

Capecitabine 
Thymidylate 

synthase, DNA 
polymerase 

Lapatinib Ditosylate EGFR, HER2 Taxotere 
microtubule 

function 

Cyclophospham
ide 

DNA crosslinking, 
DNA synthesis 

Letrozole Aromatase Tecentriq PD-L1 

Docetaxel Microtubules Margetuximab-cmkb HER2 Tepadina 
Alkylating agent 
that crosslinks 
DNA strands 

Doxorubicin 
Hydrochloride 

Topoisomerase II, 
DNA intercalation 

Megestrol Acetate Progesterone receptor Thiotepa 
Alkylating agent 
that crosslinks 
DNA strands 

Elacestrant 
Dihydrochloride 

Estrogen receptor Methotrexate Sodium 
Dihydrofolate 

reductase inhibitor 
Toremifene estrogen receptors 

Ellence Topoisomerase II Neratinib Maleate HER2, EGFR Trastuzumab HER2 receptors 

Enhertu 
HER2-targeted 
antibody-drug 

conjugate 
Olaparib PARP 

Trastuzumab and 
Hyaluronidase-oysk 

HER2 receptors 

Table 2.1: List of FDA approved drugs with their molecular targets. 

Their polymorphism analysis was conducted by COSMIC database. It was found that most of 

these genes are polymorphic in cancer patients as shown in Figure 2.1(A, B), and it was 

observed that the polymorphism increases upon treatment with drugs. This heterogeneity can 
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be attributed to variability of frequency of target gene products in different patients. Also, the 

approach of many of these drugs leads to a progressive development of resistance. For example, 

As shown in Figure 2.1(C, D) mutation rate in EGFR is 9.6% which increases to 65.51 % after 

inducing EGFR targeting drug.  

 

Figure 2.1: Following figure demonstrate the mutated sample distribution and their percentage variability 
of different targets in cancer patients in figure A and B. Polymorphism even increases after treatment with 
their inhibitor shown in figure C and D. 

So, indirect targeting of cancer cell though immune system might be beneficial for tumor 

regression. So, targeting those genes which help cancer cells to escape immune response might 

be a better approach. Our novel approach of targeting immunological regulated biomarkers can 

prove the way for more widespread therapeutics that would be effective in wider cross section 

of cancer patients and instrumented in decreasing progression of cancer in all patients. 

2.1.1 BENEFITS OF IMMUNOLOGICALLY REGULATED BIOMARKERS  

Immunologically regulated biomarkers play a crucial role in cancer research and treatment due 

to the complex interactions between the immune system and cancer cells. Understanding and 
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monitoring these biomarkers can provide valuable insights into the tumor microenvironment, 

the effectiveness of immune responses against cancer, and the potential for immunotherapy 

interventions. Here are some key factors for using immunologically regulated biomarkers in 

cancer: 

Immune Response Assessment: The immune system plays a critical role in recognizing and 

eliminating cancer cells. Immunologically regulated biomarkers, such as immune cell 

populations, cytokines, and chemokines, can provide information about the immune response 

within the tumor microenvironment. Assessing these biomarkers helps determine the presence 

and activity of immune cells, their infiltration into tumors, and the overall immune status. This 

knowledge is essential for understanding how the immune system is interacting with the tumor 

and can guide treatment decisions. 

Predicting Treatment Response: Immunologically regulated biomarkers can help predict 

which patients are more likely to respond to specific immunotherapies. For example, the 

expression of programmed death-ligand 1 (PD-L1) on cancer cells has been used as a 

biomarker to select patients for immune checkpoint inhibitor therapies. Additionally, the 

presence of tumor-infiltrating lymphocytes (TILs) has been associated with better response 

rates to immunotherapy in some cancers. By identifying biomarkers associated with treatment 

response, healthcare providers can personalize treatment plans and optimize patient outcomes. 

Monitoring Treatment Efficacy: Immunologically regulated biomarkers can be used to 

monitor the effectiveness of immunotherapy during the course of treatment. Changes in 

biomarker levels, such as tumor-specific antigens, immune cell populations, or cytokine 

profiles, can indicate the activation or suppression of immune responses against cancer cells. 

Monitoring these biomarkers over time allows clinicians to assess treatment efficacy, make 

adjustments if necessary, and determine the duration of therapy. 

Prognostic Indicators: Certain immunologically regulated biomarkers have prognostic value 
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and can provide insights into the overall outcome and prognosis for cancer patients. For 

example, the presence of tumor-infiltrating lymphocytes (TILs) has been associated with better 

overall survival in various cancers. These biomarkers help stratify patients into different risk 

groups and guide treatment decisions accordingly. They also aid in estimating the likelihood 

of disease recurrence and identifying patients who may benefit from additional therapies. 

In summary, immunologically regulated biomarkers in cancer provide valuable information 

about the interaction between the immune system and tumors. They enable the assessment of 

immune responses, prediction of treatment response, monitoring of treatment efficacy, 

prognostic evaluation, and development of novel therapeutic strategies. Incorporating these 

biomarkers into clinical practice improves patient selection for immunotherapies, enhances 

treatment outcomes, and advances the field of precision oncology. 

2.2 METHODOLOGY AND MATERIALS REQUIRED 

2.2.1 DEVELOPMENT OF EFFICIENT MACHINE LEARNING ALGORITHM 

FOR IDENTIFICATION OF PBMC BASED BIOMARKERS 

2.2.1.1 DATA RETRIEVAL 

The datasets for peripheral blood cells from breast tumor patients and normal samples were 

obtained from NCBI-GEO Database. Two datasets were identified with suitable numbers of 

samples and matching queries. GSE27562 contains 162 samples. Of them, 31 are from normal 

women, 57 are from malignant BC patients, 37 are from benign BC patients, and 37 are from 

patients of other cancers termed ectopic samples. GSE47862 contains 321 samples. Out of 

them, 52 are from BC patients who had no family history of BC, 43 are from normal women 

who had no family history either, 106 are from breast cancer patients with a family history, and 

120 are from normal women who had a family history of BC. 

2.2.1.2 DATA PRE-PROCESSING 

GSE27562 and GSE47862 GEO datasets were integrated to construct the final dataset. The 
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quality of the dataset must be verified, so for this purpose, batch normalization of the dataset 

has been done, which was achieved by the gene standardization method, a location-scale 

method. Gene-wise standardization modifies the values of all genes such that their means equal 

zero and standard deviations (SDs) equal one. This is performed by removing the mean from 

each gene's sample data and dividing the resulting value by its standard deviation. Batch 

normalized expression data was further quantile normalized to remove additional biases from 

the obtained expression data. Quantile normalization substitutes each attribute (row) in the data 

with the mean of all attributes across all samples in the same order. The following procedure 

was employed to normalize a raw high-throughput data collection including multiple samples: 

Sort the attribute values included inside each sample. (2) Calculate the mean of each attribute's 

rows. Replace the raw characteristic with its average value. (4) Rearrange all altered values 

such that they are in the same order as before they were updated. 

2.2.1.3 MACHINE LEARNING MODELS IMPLEMENTATION  

The training and testing sets were made from the dataset randomly in a ratio of 80 to 20. ML 

techniques such as SVMs, KNNs, etc., have recently gained more popularity in healthcare 

fields such as gene expression analysis, drug discovery, omics data analysis, imaging, etc., it 

was tempting to apply such ML techniques to our dataset and observe the intriguing outcomes. 

Because of its huge popularity, we have used the XGBoost ML classifier on our training 

datasets to generate prediction models, and the testing sets were then used to evaluate the 

performance of the prediction models. All the XGBoost ML models were validated based on 

their confusion matrix and the accuracy generated using the testing dataset. The XGBoost is a 

machine learning classifier that is based on decision trees known to boost the performance of 

the ML model and has been frequently reported to have beaten other ML algorithms, including 

random forest, decision trees, regression, etc. Despite having compatibility with several 

computer languages, XGBoost frameworks are most popular for Python and the associated 
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scikit-learn framework. 

2.2.1.4 EXPLAIN THE ABILITY OF THE TRAINED MODEL 

The trained XGBoost model was analyzed by the Explainable artificial intelligence (XAI) 

analysis with the help of the SHAP library. As XAI is concerned with the decision-making 

process, it helps in the identification of the features significantly impacting the model's 

prediction. The implementation of XAI analysis will help in identifying the significant genes, 

and thereafter further identification/classification of the phenotype/condition, such as test or 

control, will be done by trained models. A local summary plot was formed to exhibit the values 

indicating the features contributing to the decision confidence with the help of SHAP values. 

SHAP stands for Shapley Additive exPlanations. The global feature relevance from training 

data was shown by the SHAP summary plot, and the top 10 genes (top ranked average SHAP 

value) features were used to train new XGBoost models again, and the significance of 10 

selected genes was validated by comparing new XGBoost models to those previously trained 

on 16,000 genes. 

2.2.2 IDENTIFICATION OF COMMON DIFFERENCIALLY EXPRESSED GENES 

IN TUMOR PATIENT SAMPLES AND PBMC SAMPLES 

2.2.2.1 DATA COLLECTION 

Gene expression data of HNSC samples and PBMCs of HNSC Patients were collected from 

Gene Expression Omnibus (GEO) NCBI[71] with accession no. GSE83519 and GSE39400 

[72], respectively. In GSE83519, 22 HNSC tumors and 22 paired normal samples were studied 

from the same patients. In GSE39400, there are 28 samples of peripheral blood cells of HNSC 

patients who underwent surgery by means of expression profiling with a controlled group of 

11 patients who underwent surgery in the head and neck region for non-HNSC reasons. RNA 

was extracted from PBMCs using RNA-bee (Campro Scientific bv., Veenendaal, Netherlands). 

Microarrays Agilent Low RNA Input Fluorescent Linear Amplification Kit and 4x44K Whole 
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Human Genome Arrays were used for microarray hybridization (Agilent Technologies, 

Amstelveen, The Netherlands).  

GSE85871 [73] contains gene expression profiles of MCF7 cells cultured in MEM/EBSS 

(Hyclone),10% fetal bovine serum, 1 mmol/L sodium pyruvate, and 100 mg/mL streptomycin 

in an incubator containing 5% CO2 at 37 °C with 102 different molecules in TCM (Traditional 

Chinese Medicines), vehicle control (DMSO). Concentration and duration of compound 

administration may influence the gene expression patterns. According to the CMAP database, 

the concentration of natural compounds was set to a single dosage of 10 µM for 12 hours, an 

internationally accepted concentration for high-throughput screening [74]. Two biological 

replicates for each group and the data set includes profiles for 212 samples. RNA was isolated 

from MCF7 cells using TRIzol after pre-treatment (Life Technologies, Carlsbad, CA, US) and 

analyzed with Affymetrix Human Genome U133A 2.0 (Santa Clara, California, US) for gene 

expression patterns. 

2.2.2.2 DIFFERENTIAL GENE EXPRESSION ANALYSIS 

Differential gene expression analysis of geo datasets of GSE83519 and GSE39400 were 

achieved by the GEO2R tool. Users can compare two or more sets of Samples in a GEO Series 

to find genes differentially expressed across experimental settings using GEO2R [75]. 

Annotated gene tables and graphs are provided to help normalize the data, remove the data 

error, and visualize differentially expressed genes (DEGs). GEO2R is an online microarray 

data analysis tool that helps compare the raw data files with the processes data files to give 

DEGs using Bioconductor and limma packages. Bioconductor is an R-based tool that provides 

different high-throughput genetic data analysis packages. GEO query parses GEO data into R 

data structures that other R tools can use. Linear Models for Microarray Analysis (limma) is a 

popular R tool for detecting differentially expressed genes. It can handle various experimental 

designs and data sources, fixing P-values for multiple testing. Users can execute R statistical 
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analysis without command-line experience by providing a simple interface. Unlike GEO's other 

Dataset analysis tools, GEO2R uses the original Series Matrix data file to analyze, enabling 

faster GEO data analysis. It is vital to understand that this tool can access and analyze 

practically any GEO Series, regardless of data type or quality. 

2.2.2.3 COMMON DIFFERENTIAL GENE ANALYSIS 

Common upregulated and downregulated differential genes were selected from the HNSC 

patient's tumor samples and PBMCs of HNSC patients by comparing their list of differentially 

expressed genes in Microsoft excel. Microsoft Excel is a platform for computation tools, 

graphing tools, pivot tables, and Visual Basic for Applications, a macro programming language 

(VBA). The set of differential genes from datasets GSE83519 and GSE39400 were compared 

in Microsoft excel and by using conditional formatting > Highlight cells rule > Duplicate 

Values.  

2.2.2.4 ENRICHMENT ANALYSIS 

Enrichment analysis of selected upregulated and downregulated genes were achieved by the 

FunRich tool [76], a standalone tool used for the functional enrichment analysis of genes. 

Results can be depicted in various forms like Doughnut, Venn, pie, Bar etc., and it can handle 

irrespective of the organism's verity of gene/protein datasets. Users can search either against 

the default background database or customized database for functional enrichment analysis in 

biological processes, pathways, etc. 

2.2.3 SELECTION OF DUAL ROLE BIOMARKERS FOR TUMOR SUPPRESSION 

AND IMMUNE MODULATION 

2.2.3.1 DATA COLLECTION 

500 genes associated with HNSC were collected from string disease query database [69]. Gene 

expression data for HNSC was retrieved from NCBI’s GEO. Natural compounds data was 

collected from np_care database [70] and literature. Gene expression data for the natural 
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compounds were retried from NCBI’s GEO. 

2.2.3.2 FUNCTIONAL ENRICHMENT ANALYSIS 

Five hundred genes associated with HNSC cancer were imported in Cytoscape from disease 

query database and functional enrichment analysis with GO Process. Gene ontology (GO) such 

as biological process, molecular functions, cellular processes, and protein domain analysis 

associated with these genes were identified. Biological processes involved in immune system 

were selected and further filtered for those processes involved in immune suppression. 

Cytoscape is a web tool containing a collection of applications for visualizing molecular 

biological interactions. and biological pathways and with added annotations like gene 

expression profiles, enrichment analysis and other state of data. Cytoscape core distribution 

provides a basic set of features for data integration, analysis, and visualization work can be 

achieved by the core distribution of cytoscape. Adj. P-value ≤ 0.05 was considered as the 

significantly enriched biological processes. 

2.2.3.3 GENE EXPRESSION ANALYSIS AND LITERATURE EXPLORATION 

Gene expression analysis was achieved by the GEO2R, which is a tool that allows users to 

compare two or more groups of samples to identify genes that are differentially expressed 

across experimental conditions. Differentially expressed genes are presented as a table ordered 

by p-value and adjusted P-value significance, and with graphic plots to assess data set quality 

and visualize differentially expressed genes with their P-value and logFC value. GEOquery 

and limma R packages from the Bioconductor project are used for comparisons on original 

submitter-supplied processed data tables. Differential genes were selected based on p-

value≤0.05, and |logFC value|≥ 1. 

 Gene expression data were checked for these 53 genes which were associated with immune 

system processes in enrichment analysis so that we could select up-regulated genes only. 21 

genes were found up-regulated. Literature was explored for these 21 genes for evidence as 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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tumor promoter and immune suppressor. Out of these 21 genes against 10 genes had enough 

evidence found for both immune suppressor as well as tumor promotor.  

2.2.3.4 NETWORK ANALYSIS OF SELECTED GENES 

Selected genes are input as a list in STRING which is a database of known and predicted 

protein-protein interactions. Physical and functional associations are both included in these 

interactions, they are curated from interactions aggregated from other (primary) databases, 

from computational prediction, from knowledge transfer between organisms. Genes with the 

highest degree of interaction were selected from these ten genes.  

2.3 RESULTS AND DISCUSSION 

2.3.1 DEVELOPMENT OF EFFICIENT MACHINE LEARNING ALGORITHM 

FOR IDENTIFICATION OF PBMC BASED BIOMARKERS 

2.3.1.1 DATA CLASSIFICATION 

The array data for PBMCs of breast cancer (BC) patients obtained from the GEO database was 

retrieved in normalized and calibrated form, which can be found in Table 2.2. Search terms 

like Breast Cancer and PBMCs were used to obtain the datasets. After retrieval, the datasets 

were merged based on the attribute "common gene symbols," About sixteen thousand such 

common genes were incorporated along with their values as features. 

 

Table 2.2: The table demonstrates the Microarray dataset obtained from the GEO database along with the 
familial description and the classification of samples that have further been used for ML analysis. 

GEO Accession 
Number 

Total 
Sample 

Sample class in the dataset Sample Size 
Classification of 
samples for ML 

GSE27562 162 

Malignant 57(test) 

Test – 252 
Benign 37(test) 

Ectopic 37(eliminated) 

Normal 31(control) 

GSE47862 321 

Breast cancer without a family 
history 

52(test) 

Control- 194 
Normal without a family history 43(control) 

Breast Cancer with a family history 106(test) 

Normal with family history 120(control) 
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2.3.1.2 DATA PRE-PROCESSING 

GSE27562 and GSE47862 GEO datasets were integrated to construct the final dataset and 

finally, 16,000 common genes were identified in both datasets Their expression profiles were 

merged and the batch was normalized using the gene standardization method, a location-scale 

method for batch normalization of data integrated from different datasets. Both datasets are 

already log-transformed; therefore, quantile normalization was applied to the batch-normalized 

data to remove further biases from the obtained expression data. Different samples were 

classified into a binary classification problem: test vs control. The test was the samples of BC 

patients, and the control was the samples from healthy women. 

The normalized expression density plot was created with the help of quantile normalization, 

shown in Figure 2.2. 

 

Figure 2.2: The figure demonstrates Batch normalized expression data distribution curves followed by 
quantile normalized expression data curves. 

2.3.1.3 XGBOOST IMPLEMENTATION RESULTS 

The dataset was randomly divided into a training set (80%) and a test set (20%) to apply 

machine learning. With the help of the scikit-learning library, the XGBoost algorithm was 

applied. The training dataset trained XGBoost Model for further classification on our test vs 

control dataset. The performance of the model was then checked using the testing sets. The 

confusion matrix was implemented to check the model's accuracy using the training sets, and 
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the model's accuracy was obtained using the test set thereafter. There were 28 true positive 

events, 2 false positive events, 1 false negative event, and 59 true negative events found in the 

confusion matrix. The accuracy here implies a prediction of the model's performance, which 

stands for the percentage of correct predictions the model has made. For binary classification, 

the accuracy was calculated in the form of positives and negatives. as described by the 

following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

A predictive accuracy of 96.67 % for the test vs control dataset was obtained using the 

XGBoost ML classifier, which implies that the model did well in distinguishing the features of 

the test and control.  

2.3.1.4 XGBOOST MODELS EXAMINATION WITH XAI 

 
With the help of python's SHAP package, the XAI analysis was implemented on the XGBoost 

trained model, which is all about the model's decision-making & identifies the features that 

influence the model's prediction confidence to a great extent, and this analysis helped in finding 

out the valuable genes from which trained model can separate the corresponding dataset into 

test (PBMCs of Cancer Patients) and control (PBMCs of Healthy Women). The corresponding 

SHAP values representing the respective share of a particular attribute to the accuracy of the 

model's decision were displayed with the help of a local summary plot. 

The global significance for every gene was found as the average absolute value of that 

particular over all of the given samples, with the help of a global feature importance plot that 

was obtained by the bar plot function where SHAP values were passed as an array. The 

inference obtained from this global feature importance plot points out the most significant 

genes in descending order, suggesting the more contribution of genes on the top towards the 

model's prediction. The bar plot sorts out the most important genes placed on the top. The gene 

of utmost significance in our machine learning model was STIV, exhibiting a high predictive 
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value. 

With the implementation of SHAP values on the trained models, genes of the highest 

significance were obtained from the bar plot. The most significant genes in immune cells 

involved in the progression of Breast Cancer were identified by SHAP listed in Table 2.3. 

Datasets Significant Genes 

Breast cancer 

patient's PBMCs 

vs. Healthy 

person PBMCs 

SVIP, BEND3, MDGA2, LEF1-AS1, PRM1, TEX14, MZB1, TMIGD2, KIT, FKBP7, 

ZNF563, TC2N, LYZ, MAP3K19, GYPE, DSP, ID2, POLR2K, GFPT1, STAM, IRF8, 

MRPL57, CRYM, SERPIND1, DSG3, APCS, CDH16, HOXD10, TM4SF1, PMEL, 

COL4A6, MEGF6, HMGB3P1, LRRC20, ZNF668, CLIC3, LRP1B, STK32B, 

SLC16A10, TSHZ2, PDZRN4, UIMC1, SLC26A6, PIPOX, TMA7,  POMGNT2, 

C19ORF44, CYYR1, DPP10-AS1 

Table 2.3: The table shows a list of genes contributing to the model prediction obtained from the merged 
datasets. 

2.3.1.5 EXAMINATION OF XAI OUTPUT 

The authenticity of results was checked by applying ML classifier XGBoost on selected genes 

on the bases of their significance in model prediction. The top ten genes selected by their 

corresponding significant SHAP values were used to examine the reliability of the results by 

the ML classifier, namely XGBoost, highlighted in Table 2.2. The model's accuracy was 

94.44% when trained with the top ten significant genes. Table 2.4 depicts the accuracy of both 

the gene sets, i.e., before and after implementing XAI on binary datasets, showing the 

prediction model's performance in terms of accuracy. The confusion matrix of the model shows 

that there were 37 true positive events, 48 true negative events, 3 false positive, and 2 false 

negative events in the model's prediction. The confusion matrix of datasets with 16000 genes 

and the top 10 genes are shown in Figure 2.3. 
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Datasets Breast cancer patient's PBMCs vs Healthy person PBMCs 

Number of genes in 

dataset 

16000 genes 10 genes 

Percentage 

Accuracy 

96.67% 94.44% 

Table 2.4: The table shows a comparison of accuracy between the prediction model for the 16000 genes 
set and 10 selected gene sets. 

 

Figure 2.3: The figure shows a comparison of the confusion matrix for PBMCs obtained from Breast cancer 
patients vs the Healthy person dataset for all 16,000 genes and the top 10 genes. True positive, False 
positive, False negative, and True negative instances are indicated by a grey box, Black box, Black box, 
and white box respectively. 

The SHAP plot of the top 10 significant genes, shown in Figure 2.4, indicates the contribution 

of the gene to the model's prediction in descending order, which shows SVIP had the highest 

impact, followed by BEND3, MDGA2, LEF1-AS1, PRM1, TEX14, MZB1, TMIGD2, KIT, 

FKBP7 respectively. 
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Figure 2.4: SHAP Bar plot illustrates the most significant genes and their SHAP values. The x-axis 
represents the average/mean absolute value for each gene across all the available data, while the y-axis 
represents the top 10 genes. 

Furthermore, to visualize the predictor's positive & negative associations with the respective 

genes, the SHAP summary plot was also made, as shown in Figure 2.5. The inferences 

obtained from the SHAP summary plots are as follows: -The ranking of genes (vertically) in 

descending order signifies their attribute importance. The horizontal line depicts the association 

of the effect of an attribute on the extent of prediction. The color signifies the impact of a 

particular gene, maximum significance (in red color) or minimum significance (in blue color). 

The strong positive impact of SVIP on the SHAP Summary plot indicates the correlativity of 

the individual gene, where the X-axis signifies the positive impact, and the red color signifies 

the level (high in this case). Similarly, the inverse connection of BEND3 to the target variable 

can be ruled out. 
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Figure 2.5: The figure illustrates the SHAP Summary diagram, which shows the highly significant genes 
and their influence on the dataset. On the y-axis, selected genes are sorted in descending order, based on 
the significance of their characteristic. On the other hand, the x-axis shows the influence of genes on the 
prediction, illustrating the gene's impact on the model output. The color indicates the influence of a 
particular gene on a prediction, whether it is statistically significant (in red) or low significance values (in 
blue). 

2.3.1.6 SHORTLISTED GENES STATISTICAL SIGNIFICANCE 

The iDEP tool was used to identify key genes differentially expressed in PBMCs during Breast 

cancer development. P-value ≤0.05 was the criteria for identification as statistically significant 

SVIP, MDGA2, TMIGD2, LEF1-AS1 and TEX14 were found to be downregulated while 

BEND3, FKBP7, MZB1, PRM1, and KIT were found to be upregulated in PBMCs of Breast 

cancer patients as shown in Table 2.5. 
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Genes P-value logFC 

Dataset: Breast cancer patient's PBMCs vs Healthy person PBMCs 

SVIP 4.82E-14 -1.28E-01 

BEND3 1.56E-02 8.31E-01 

MDGA2 1.56E-04 -1.29E-01 

FKBP7 3.25E-02 7.02E-02 

TMIGD2 1.23E-04 -7.31E-02 

LEF1-AS1 1.08E-04 -2.14E-01 

MZB1 1.27E-03 1.77E-01 

TEX14 4.12E-02 -6.66E-01 

PRM1 5.63E-03 4.49E-01 

KIT 3.67E-04 1.21E-01 

Table 2.5: The table demonstrates the P-value and log FC value of the top 10 genes. 

Despite the fact that tissue-specific biomarkers, such as aberrant cells, alterations in tumor gene 

expression, and other malignant abnormalities, may be accurate cancer biomarkers, they have 

several limitations [131]. It is challenging to employ tissue-specific biomarkers to assess 

therapy response in real-time due to the invasive nature of biopsy collection [132].TILs may 

be a valuable prognostic sign for identifying individuals who are most likely to respond to 

therapy. Biopsies and mammography, which are presently used to identify breast cancer, are 

painful, costly, and only effective in situations of advanced disease [133]. Mammography may 

not identify breast cancer immediately since its sensitivity is dependent on tumor size, ranging 

from 26% at 5 mm to 91% at 10 mm [134]. Breasts with thicker tissue hinder mammography's 

ability to detect breast cancer [135]. A high level of sensitivity and specificity is required for 

early cancer detection to increase patient survival rates. 

When searching for symptoms of cancer, intrusive tissue collection may be dangerous and may 

not be the best method for old or delicate individuals [136]. Less invasive and more universally 

accessible techniques of acquiring biological samples, such as blood collection, may be more 

acceptable to patients, which might result in a quicker diagnosis [137]. A high level of 

sensitivity and specificity is required for early cancer detection to increase patient survival 

rates. 

PBMCs mediate the immunological response of the host to tumor cells; hence, peripheral blood 
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profiling may be used to assess the host's reaction to cancer and offers the possibility of 

minimally invasive early cancer detection (even before the beginning of clinical symptoms). It 

can anticipate the prognosis and developmental trajectory of tumors and the clinical outcome. 

Multiple studies have attempted to identify alterations in PBMC gene expression within breast 

cancer to categorize subtypes. In individuals with breast cancer, the PBMC transcriptomes 

correlate poorly with conventional subtypes and are diverse. Using RNA sequencing, Ming et 

al. determined that ER, PR, and HER2 were not associated with transcriptome-wide PBMC 

gene expression patterns. The expression of PBMC genes indicates that blood mononuclear 

cells are immunologically reactive to tumor cells. Therefore, this is not entirely surprising. 

Similar results were seen for lung cancer patients, who showed high diversity in peripheral 

blood leucocyte transcriptomes regardless of histological type, with no discernible impact on 

the peripheral immune system. Therefore, we included PBMC samples from different types of 

breast cancer patients in our study concerning the stage of cancer, the patient’s history of 

cancer, and different subtypes of breast cancer. 252 breast cancer samples were included in this 

study. Of them, 37 were associated with benign stage of cancer, 57 were associated with 

malignant stage of cancer, 106 were from the patient with a family history of breast cancer, 

and 52 were from patients with no breast cancer history. 194 normal PBMC samples were 

included in this study for comparison with the tumor PBMC samples. Healthy individuals with 

a family history and without a family history were also included in the healthy control category. 

Machine learning algorithm XGBoost was applied to the binary classified dataset for 

classification, which is followed by the XAI to identify significant genes based on their 

contribution to the model's prediction. Ten genes were identified in PBMCs of BC patients, 

which contribute the highest to the models' prediction. These genes were further analyzed for 

their biological significance and their involvement in different biological processes and their 

regulation. 



30 | P a g e  

 

2.3.1.7 BIOLOGICAL SIGNIFICANCE OF THE GENES 

Each of the top 10 genes was further analyzed for their involvement in biological processes 

and their regulation to ascertain their impact on cancer progression.  

SVIP has tumor suppressor properties, and its restoration is linked to enhanced ER stress and 

growth inhibition [138]. According to proteomic and metabolomic studies, mitochondria 

enzymes and oxidative respiration activity are diminished in tumor cells with SVIP epigenetic 

deletion [139]. 

BEND3+ T cells generated more significant quantities of IL-6 and IL-8 than BEND3- T cells. 

Multiple inflammatory cells, including neutrophils, basophils, and T lymphocytes, are attracted 

by IL-8. Activation of BEND3+ T cells, which may produce IL-6 and IL-8 in response to 

TCR/CD3 stimulation, may be essential for the significant and rapid initiation and development 

of inflammatory responses at the onset of inflammation. BEND3+ T cell dysregulation may 

result in chronic inflammation [140]. BEND3 attaches to the promoters of differentiation-

associated factors and important cell cycle regulators, such as CDKN1A, which encodes p21 

and represses differentiation-associated gene expression by increasing H3K27me3 expression 

[141]. 

MDGA2 plays the role of tumor suppressor in many cancers. Hypermethylation of MDGA2  is 

a prognostic marker in gastric cancer [142]. MDGA2 knockdown enhances cell viability, 

boosts colony formation, and advances the cell cycle but reduces apoptosis. MDGA2-encoded 

proteins form a new subfamily of the Ig superfamily and have a distinct structural organization 

consisting of six immunoglobulin chains [143].  

Dysregulation of PRM1 was absorbed in different tumor tissues and peripheral blood of cancer 

patients [144][145][146]. An abnormal expression of the CTA family gene PRM1 results in a 

particular humoral immune response [147]. It regulates the invasion, migration, and 

proliferation of cancer cells [146]. 
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TEX14 upregulation was associated with the abundance of tumor suppressor protein REST in 

different cancer so it could be a potential therapeutic target [148]. It is essential for kinetochore-

microtubule attachment and helps in metaphase to anaphase transition [149]. 

KIT auto phosphorylates on numerous Y residues that serve as docking sites for downstream 

effectors once activated. Several downstream mechanisms regulate cell survival and 

proliferation [150]. SFKs, PI3K p85, phospholipase C-gamma, and adaptors that activate MAP 

kinase pathways attach to phospho-Y residues on the receptor. KIT mutations are also 

associated with different types of cancers [151]. KIT plays an important part in the activation 

of different immune cells like Mast cells, dendritic cells, eosinophils, etc. [152]. 

TMIGD2, also known as CD28H (CD28 homolog), expressed in Homo sapiens and monkeys, 

while not in mice, enhanced angiogenesis when overexpressed in different cancers. It's a naïve 

T cell expressed stimulatory receptor. TMIGD2 is a member of the Ig superfamily and has an 

IgV-like domain, transmembrane region, and cytoplasmic tail. TMIGD2 has various functions 

depending on cell types and signaling pathways. It is a receptor of HHLA2 and hence could be 

a therapeutic target for various anti-cancer therapies [153]. 

LEF1-AS1 (long noncoding RNA) overexpression is associated with the malignant growth of 

various tumors, and its knockdown inhibits the progression of many cancers. LEF1-AS1 

mainly regulates ERK, Akt/mTOR signaling, Wnt/β-Catenin, and Hippo signaling pathways 

hence playing diverse roles in tumor progression and immune regulation. 

FKBP7 could be the therapeutic target for various cancer, especially in case of drug resistance, 

like the taxane-resistance mTOR pathway can be controlled by targeting FKBP family proteins 

[154][155]. 

MZB1 expression is associated with the progression of different cancers and patients' disease-

free survival [156][157]. MZB1 is essential for plasma cell differentiation and humoral immune 

response independent of T-cells by plasma cells [158] and enhances the secretion of interferon 
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α by dendritic cells [159]. 

2.3.1.8 BIOLOGICAL PROCESSES REGULATED BY GENES 

Enrichment analysis of the top ten selected genes was achieved by the Funrich tool [160]. 

Biological processes which are statistically significantly regulated by these genes were 

identified based on their P-value, which should be less than 0.05. It was found that these genes 

were mainly involved in Apoptosis, Signal transduction, regulation of nucleobase, nucleoside, 

nucleotide and nucleic acid metabolism, and Cell communication as shown in Figure 2.6. 

 

Figure 2.6: The figure demonstrates the percentage of the top 10 genes that are involved in different 
biological processes or their regulation (bar graphs) and the p-value for their statistical significance in 
each case is represented by line plots.  

2.3.1.9 BIOLOGICAL PATHWAYS REGULATED BY GENES 

Biological pathways regulated by these 10 genes were analyzed by the Funrich tool[160] and 

it was found that KIT signaling, GM-CSF signaling, NOTCH, TGFBR, interleukins signaling, 
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wnt signaling, cytokine signaling in the immune system, CDC42 signaling and EGF receptor 

signaling were the main pathways regulated by them. The significance of these pathways was 

analyzed statistically based on their P-value which should be less than 0.05 as shown in Figure 

2.7. 

 

Figure 2.7: The figure demonstrates the percentage of the top 10 genes that are involved in different 
biological pathways or their regulation (bar graphs) and the p-value for their statistical significance in each 
case is represented by line plots. 

The significance of these 10 genes was noticed to play a significant role in the regulation of 

cancer progression and regulation of the immune system that is actively involved in cancer 

mitigation. They were found to be related to biological processes and pathways that are very 

much involved in the regulation of cancer metastatic progression. Significant evidence was 

found in the literature proving their immunological role and contribution to cancer progression. 

Therefore, these genes could be the potential PBMC biomarkers of breast cancer which can 

help in early detection and could be the non-invasive alternative to breast cancer detection. 

2.3.2 SELECTION OF DUAL ROLE BIOMARKERS FOR TUMOR SUPPRESSION 

AND IMMUNE MODULATION 

2.3.2.1 DIFFERENTIAL GENE EXPRESSION ANALYSIS 

Data Normalization and Differential gene expression analysis of the GSE83519 dataset was 
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achieved by the GEO2R tool, and a cut-off of adj. P-value ≤0.05, logFC Value≥1 for 

differentially upregulated genes and logFC Value≤-1 for differentially downregulated genes. 

This dataset's Normalization plot and volcano plot are shown in the Figure 2.8.  

 

Figure 2.8: Above figure demonstrate the normalization plot and volcano plot for GEO83519 dataset 
between HNSC tumor vs Normal samples and GEO39400 dataset between tumor PBMC vs normal PBMC 
with an adjusted Pvalue <0.05 and blue dots shows upregulated genes and red dots shows downregulated 

genes there. 
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1094 genes were found to be differentially upregulated, these genes had high expression in the 

HNSC tumor sample as compared to the respective normal sample of the same patient, and 889 

genes were found to be differentially downregulated; these genes had low expression in the 

HNSC tumor as compared to the respective normal sample. GSE83519 dataset contains the 

tumor microenvironment samples, which include not only tumor cells but also other cell 

mediators like immune cells, fibroblast, blood vessels etc., so when immune cell comes in 

contact with this tumor microenvironment, they may alter their gene expression profile; 

therefore the expression data of PBMCs need to be analyses individually so we can identify 

the differentially expressed genes in PBMCs because it is beneficial to target immune cell for 

the tumor regression along with only targeting tumor cells. Differential gene expression 

analysis of the GSE39400 dataset was also achieved by GEO2R Tool with a cut-off adj. P-

value ≤0.05, logFC Value>0 for upregulated genes and logFC Value<0 for downregulated 

genes. The volcano plot of this dataset is shown in the Figure 2.8.  

737 genes were found to be upregulated, these genes had high expression in the PBMCs which 

were retrieved from HNSC patients after surgery as compared to the PBMCs retrieved from 

patients who got head and neck surgery for a non-HNSC reason, and 1954 genes were 

downregulated in PBMCs of tumor patients after surgery when compared with patients who 

got head and neck surgery for a non-HNSC reason as shown in Figure 2.9. PBMCs include 

dendritic cells, lymphocytes (NK cells, B cells, T cells), and monocytes. Therefore, these DEGs 

are mainly present in dendritic cells, lymphocytes, and monocytes. They might alter these 

immune cells' function and help tumor cells escape the immune system. These genes can be 

further analyzed to screen immunological biomarkers for HNSC.  
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Figure 2.9: Following figure demonstrate the data processing and filtering. HNSC Dataset GSE83519: there 
are 1094 upregulated genes and 889 downregulated genes and PBMC dataset GSE39400: There are 737 
upregulated genes and 1954 downregulated genes. Ven diagram showing that there is 46 common 
upregulated genes and 64 common downregulated genes in HNSC cancer tissue sample and PBMC of 
HNSC cancer patients. 
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2.3.2.2 SCREENING OF COMMON DIFFERENTIALLY EXPRESSED GENES 

Such DEGs derived from immune regulators and those differentially expressed in the tumor 

microenvironment also need to be identified. DEGs of HNSC tumors were compared with the 

DEGs of PBMCs so that common DEGs could be screened. Therefore, 1094 upregulated DEGs 

of HNSC were compared with 737 upregulated DEGs of PBMCs and found 46 common genes. 

These 46 DEGs were upregulated in HNSC tumor samples and PBMCs of HNSC patients. As 

shown in Venn diagram in Figure 2.9. PBMCs may infiltrate the tumor and affect tumor 

progression. The influence of the tumor microenvironment alters the expression of these genes 

in the tumor-infiltrating lymphocytes. These genes might be involved in the alteration of gene 

regulation in the subset of the immune cells in the vicinity of the tumor in HNSC patients due 

to the complex interplay of cells in the tumor microenvironment. The list of common 

upregulated genes with their Adj. P-value and logFC in HNSC tumor samples and PBMCs of 

HNSC patients are shown in Table 2.6. 

Gene 
Symbol 

HNSC PBMC 

logFC Adj. Pvalue logFC Adj. Pvalue 

MITF 2.4516 2.65E-11 0.1022 0.0333 

HFE 1.6367 7.44E-09 0.3233 0.0095 

TRPM6 1.1952 2.03E-08 0.2776 0.0173 

DOCK4 1.2461 7.59E-06 0.1514 0.0265 

RABEP1 2.0842 2.45E-10 0.1074 0.0273 

SLC44A1 2.8497 4.33E-12 0.089 0.0312 

GK 3.9583 2.49E-10 0.0854 0.0108 

NSUN7 1.7051 6.94E-04 0.1985 0.0433 

VEGFA 1.0078 2.59E-05 0.1314 0.0185 

RRAGD 2.3623 1.53E-14 0.081 0.0447 

PCMT1 3.3705 5.23E-08 0.1044 0.0079 

FCER1G 1.4801 6.60E-11 0.0648 0.0428 

LATS1 1.1526 2.78E-10 0.2295 0.0455 

S100A9 1.1011 1.32E-06 0.1056 0.001 

LAT2 4.7458 1.79E-14 0.0338 0.0423 

MAP2K6 1.6879 4.57E-05 0.3708 0.0128 

MAPK14 1.9209 1.54E-03 0.0705 0.0165 

PPM1A 1.8701 2.81E-06 0.0659 0.0406 

IL18 1.7222 1.63E-05 0.1321 0.0452 

ACTB 1.6093 3.43E-07 0.0454 0.033 

TLR5 1.1144 5.67E-05 0.1595 0.0135 

PANK3 3.2487 7.05E-21 0.1055 0.0135 

AHR 1.4695 4.56E-07 0.0692 0.0498 

LAP3 1.5307 4.07E-04 0.0877 0.0187 

CYP1A2 2.8793 1.59E-05 0.1617 0.0334 

SMPDL3A 1.2163 4.34E-06 0.1037 0.0197 

RNASE1 1.8432 2.29E-04 0.1378 0.0327 
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WAC 1.004 4.78E-09 0.0464 0.0135 

SERPINB2 2.0987 1.21E-07 0.4873 0.0242 

RBM47 1.3479 7.22E-08 0.0566 0.0359 

GPR15 3.2539 8.28E-12 0.2827 0.0444 

CCDC88A 1.0265 1.35E-04 0.125 0.0171 

PRNP 1.0994 4.91E-10 0.0544 0.0286 

ACPP 2.6565 3.18E-09 0.1566 0.0493 

ST3GAL6 2.7894 6.49E-11 0.0902 0.0188 

UBOX5 2.5519 2.37E-05 0.0558 0.0207 

GRM2 1.8173 5.71E-07 0.2123 0.0442 

ROCK2 1.3506 7.94E-05 0.1742 0.0096 

ZEB2 2.9773 2.25E-07 0.1066 0.0111 

MFSD1 1.0859 3.21E-10 0.0341 0.0499 

CORO1B 1.1436 1.13E-03 0.1089 0.0187 

PPARG 1.1479 1.10E-10 0.2847 0.037 

IPO7 1.2914 5.18E-07 0.216 0.0217 

PAX9 1.9269 4.35E-12 0.4035 0.0215 

ERN1 1.2908 8.75E-10 0.2779 0.0454 

CLDN9 1.2167 1.29E-07 0.2484 0.0213 

Table 2.6: logFC and adj. Pvalue of the 46 common differentially upregulated genes in HNSC tumor samples 
vs normal samples and PBMCs of HNSC cancer patient’s vs PBMCs of normal person. Different tones of 
colors (light to dark) in the given table demonstrate the level of expression of upregulated genes. 

Similarly, 889 downregulated DEGs of HNSC tumor samples were compared with 1954 

downregulated DEGs of PBMCs of HNSC patients, and 64 genes were common in both. The 

list of common downregulated genes with their Adj. P-value and logFC in HNSC tumor 

samples and PBMCs of HNSC patients are shown in Table 2.7. As shown in Figure 2.9, there 

were 110 common DEGs in HNSC samples and PBMCs, out of which 46 common upregulated 

genes as shown in the first Venn diagram and 64 common downregulated genes as shown in 

the second Venn diagram. 

Gene Symbol 
HSNC PBMC 

logFC Adj. Pvalue logFC Adj. Pvalue 

ZAP70 -2.201727 1.41E-06 -0.129217 0.016018 

RPL27A -1.290623 2.47E-12 -0.044947 0.006435 

POM121 -1.176432 4.38E-03 -0.204749 0.029512 

PPP1R13B -1.705423 1.32E-05 -0.225206 0.025134 

CD6 -1.026282 7.84E-05 -0.100521 0.020264 

ZNF764 -1.262351 5.95E-07 -0.080366 0.022201 

ARHGEF5 -1.215285 1.23E-08 -0.16608 0.010322 

TRAM2 -2.03586 9.60E-03 -0.108028 0.024255 

RIC3 -1.504849 2.89E-04 -0.372801 0.00283 

TBRG4 -2.395657 2.21E-09 -0.08776 0.01264 

KAT6B -1.269801 4.11E-09 -0.266388 0.034823 

DNAJA4 -1.983303 1.91E-04 -0.086775 0.023274 

SHMT2 -2.164514 9.19E-14 -0.071538 0.02023 

CYP2U1 -1.410565 1.20E-10 -0.101269 0.013115 

MCF2L -1.081094 9.52E-08 -0.300434 0.017142 

MLF1 -1.010867 4.47E-08 -0.266692 0.035152 

SOD1 -1.302701 2.45E-03 -0.077911 0.004778 
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ACSF2 -1.409186 7.85E-07 -0.113655 0.027057 

WDR74 -1.168891 5.26E-07 -0.092598 0.004078 

PDE9A -1.383244 1.02E-09 -0.285779 0.014934 

WDHD1 -1.299895 5.06E-13 -0.135075 0.016697 

MRPL58 -1.147314 5.17E-03 -0.065359 0.026208 

SAFB2 -1.554142 3.05E-04 -0.071198 0.010002 

CACNA2D2 -1.891351 6.07E-08 -0.194732 0.011568 

GPD1L -1.769583 2.66E-05 -0.093498 0.003471 

ZNF318 -1.600488 7.17E-12 -0.194653 0.015039 

SMARCC2 -2.490448 7.71E-11 -0.055608 0.017597 

KDM8 -1.6758 7.66E-10 -0.255286 0.026751 

BCR -2.256436 1.17E-10 -0.071938 0.013975 

SRSF8 -1.439907 1.12E-06 -0.08949 0.032799 

SNRNP40 -1.285771 2.58E-04 -0.090312 0.038549 

SLC4A10 -1.323454 4.61E-06 -0.415896 0.029181 

DHX30 -1.057061 6.04E-05 -0.082518 0.008847 

PCNX2 -1.664282 1.61E-04 -0.209404 0.012008 

RPAIN -1.555945 1.14E-04 -0.061706 0.048962 

TRADD -1.501988 8.72E-06 -0.048286 0.034225 

PTGDR -1.063566 1.51E-05 -0.123149 0.040107 

ZBTB20 -1.348264 5.41E-09 -0.115621 0.00839 

PIP4K2B -1.329684 5.76E-10 -0.052544 0.042676 

PPARD -1.157839 1.10E-03 -0.051296 0.023755 

NHP2 -1.237519 2.75E-04 -0.055893 0.04521 

ACACA -1.138407 6.28E-06 -0.109746 0.014158 

AMMECR1 -2.10191 1.09E-08 -0.141336 0.027549 

FANCI -1.100655 1.35E-07 -0.105654 0.01507 

CSNK1E -1.008658 4.98E-03 -0.058505 0.012541 

CKS1B -1.360469 2.10E-14 -0.063722 0.030507 

NF2 -1.232306 4.07E-03 -0.165997 0.017791 

ZNF205-AS1 -1.667942 1.77E-04 -0.26602 0.019041 

CD22 -2.681652 5.46E-12 -0.195684 0.01068 

PTCD2 -1.199056 3.69E-03 -0.111281 0.013654 

DOLPP1 -1.282885 1.51E-12 -0.063006 0.022189 

SERGEF -1.053468 3.30E-07 -0.107393 0.003703 

RFC4 -2.605413 6.72E-11 -0.086207 0.010768 

MMP11 -1.187203 1.98E-06 -0.333011 0.003549 

GPX7 -1.874631 1.61E-05 -0.100866 0.021288 

PROCR -1.335837 4.47E-10 -0.16094 0.020739 

UBFD1 -1.017601 8.20E-03 -0.071952 0.027642 

RPS17 -1.140295 4.07E-08 -0.053202 0.004057 

FEZ1 -1.945739 2.64E-06 -0.200686 0.018734 

GPALPP1 -2.010168 1.67E-08 -0.083729 0.045393 

NCR3 -1.262607 3.52E-07 -0.188793 0.00238 

SKI -1.105797 7.90E-08 -0.22183 0.0472 

RARRES3 -1.54742 1.83E-10 -0.068442 0.021288 

DENND2D -1.056931 1.03E-04 -0.14677 0.047475 

Table 2.7: logFC and adj. Pvalue of the 46 common differentially downregulated genes in HNSC tumor 
samples vs normal samples and PBMCs of HNSC cancer patient’s vs PBMCs of normal person. Different 
tones of colors (light to dark) in the given table demonstrate the level of expression of downregulated 

genes. 

Enrichment analysis of these 110 DEGs was achieved and found that 46 common upregulated 

genes were mainly involved in biological processes like signal transduction, cell migration, 

RNA metabolism, Anti-apoptosis, regulation of cell cycle, regulation of gene expression, cell 
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communication, energy pathways, transport, protein metabolism, immune response, cell 

growth and/or maintenance. These biological processes might help in tumor progression 

because processes like suppression of apoptosis, cell migration, cell cycle regulation, cell 

growth and/or maintenance directly support tumor growth. Biological processes like immune 

response, signal transduction, cell communication, etc., could play an essential role in the 

tumor microenvironment for tumor progression. Therefore, the overexpression of these genes 

enhances these biological processes in the tumor microenvironment, which could help in tumor 

progression. 64 common downregulated genes were mainly involved in biological processes 

like CGMP-mediated signaling, ribosome biogenesis and assembly, immune response, 

regulation of signal transduction, RNA metabolism, Transcription, DNA repair, signal 

transduction, cell communication, transport, protein metabolism, energy pathways, 

metabolism, apoptosis. These biological processes are also linked with tumor progression or 

regression; therefore, downregulation of these genes could help tumor progression. So those 

drugs should be screened, which alter the expression of these genes to restore normal 

expression levels such that normal biological processes are restored. Enrichment analysis of 46 

upregulated and 64 downregulated genes are shown separately in Figure 2.10. 
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Figure 2.10: Following figure demonstrate the enrichment analysis of 46 common upregulated genes and 

64 common downregulated genes with respect to biological processes. 

2.3.3 IDENTIFICATION OF COMMON DIFFERENCIALLY EXPRESSED GENES 

IN TUMOR PATIENT SAMPLES AND PBMC SAMPLES 

2.3.3.1 ENRICHMENT ANALYSIS 

An enrichment analysis of 500 genes that are known through experimental validation to be 

ones that are most explicitly associated with HNSC cancer, were conducted and immune-

associated genes were selected. 256 genes related to the immune system were found out of 

which 53 genes were found to be associated with the negative regulation of immune system 

associated processes, such as negative regulation of T cell activation, negative regulation of B 

cell activation, negative regulation of B cell proliferation etc. as shown in Figure 2.11. 
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Figure 2.11: The following figure demonstrate enrichment analysis data by GO Process involved in immune 
system related processes which shows number of genes from the HNSC associated involved in different 
immune system related processes by enrichment analysis GO Process. 

2.3.3.2 GENE EXPRESSION ANALYSIS  

Gene expression data was analyzed for the 53 genes associated with the negative regulation of 

the immune system, out of which 21 genes were identified as having a LogFc value greater 

than or equal to 1. These genes could be associated with both immune suppression as well as 

tumor progression. Complete gene expression data is provided in the supplementary table1.  

 These 21 genes were functionally validated by annotation from literature for their association 

with tumor progression related process like cell proliferation, metastasis etc. and immune 

suppression related process like T cell inactivation, development of tumor-associated 

macrophage etc.  

It was found that 10 genes were associated with both the above-mentioned processes and 7 

genes were associated with immune suppression only and 2 genes were associated with tumor 

progression only and remaining 2 genes were associated with HNSC cancer due to alteration 

of their function by mutations as shown in Table 2.8. 
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S.No. Genes Tumor Progression Role Immunosuppression Role 
Targeting Drugs (FDA 

approved / in Clinical Trials) 

1 TGFB1 

Epithelial-Mesenchymal 
Transition [77][78] 

Inhibits CD8+ T-cell and NK-cell 
mediated anti-tumor immune 
responses. 
Inhibits activation of neutrophils [79]. 

lerdelimumab and 
metelimumab (in clinical trial) 

Metastasis initiation [80] 

2 IRF1 
Upregulate PD-L1 in the 
tumor cell [81]. 

    

3 TWSG1 

Enhancing tumor growth 
and malignant cell behavior 
and stimulating tumor-
associated angiogenesis 
[82]. 

    

4 CDK6 

Regulates the progression 
of the cell cycle. CDK6 inhibition triggers antitumor 

immunity [83]. 
Palbociclib (FDA approved) 

Transcriptional role in 
tumor angiogenesis [84]. 

5 AXL 

Tumor proliferation, 
survival, metastasis, and 
resistance to cancer 
therapy [85]. 

Small-Molecule Inhibition of Axl Targets 
Tumor Immune Suppression [86]. 

  

6 FADD 
Cell cycle progression and 
cell proliferation [87]. 

A negative regulator of T-cell receptor–
mediated necroptosis [88]. 

  

7 HAVCR2 

Induce epithelial-
mesenchymal transition by 
JAK-STAT3 signaling 
pathway [89]. 

Over expression of HAVCR2 observed 
in tumor-infiltrating lymphocytes which 
is associated with adaptive resistance 
to immunotherapy[90]. 

BMS-986258(in clinical trial) 

8 PRKDC 
Promotes tumor cell growth 
via p38 MAPK signalling 
[91]. 

PRKDC is not only a predictive 
biomarker but also a drug target for 
immune checkpoint inhibitors [92]. 

NU7026 (FDA Approved) 

9 IL10 

An association exists 
between IL-10 expression 
and tumor-related markers 
such as Bcl-2 [93]. 

Inhibited T-cell proliferation and function 
[94]. 

GIT 27 (in clinical trials) It seems that TAMs cause drug 
resistance via the IL- 10/Stat3/Bcl-
1/BCL2 signaling pathway [93][95]. 

10 SOCS1 

SOCS1 downregulation 
inhibits cell proliferation via 
cell cycle progression, 
resulting in accumulation of 
G0/G1 phase and 
reduction of S phase [96]. 

SOCS1 involved in inactivation of CD8+ 
T cells against tumor cells [97]. 

  

11 MICA   

Anti-MICA antibodies can promote the 
anti-tumor immunity through the 
induction of direct anti-tumor effects 
(antibody-dependent cell-mediated 
cytotoxicity, ADCC) [98]. 

  

12 TIGIT   
It suppresses the Function of NK cells 
and CD8+ T Cells [99] [100]. 

  

13 IDO1 

IDO1 expression 
associated with the 
progression of tumor [101] 
by drug resistance 
mechanism against 
response of different drugs 
[102]. 

IDO overexpression associated with 
escape from anti-tumor immunity by 
suppression of mTOR in T cells [103] 
[104]. 

Indoximod (in clinical trials) 

14 CDKN2A Mutated Mutated   

15 LAG3   
Inactivates the CD4+ T cells. 
Reduces the effector function of CD8+ 

BI 754111(in Clinical Trials) 

https://www.biocompare.com/11119-Chemicals-and-Reagents/12676733-NU7026/?pda=19394|12676733_0_0||1|PRKDC
https://www.biocompare.com/11119-Chemicals-and-Reagents/13019226-GIT-27-Biochemical/?pda=19394|13019226_0_0||1|IL-10
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T cells. 
Promotes the suppressor activity of 
Tregs [105]. 

16 CTLA4   
Inhibits the activation and proliferation 
of T cell [106]. 

Ipilimumab (FDA Approved) 

17 CD274 

Promotes tumor cell 
growth, migration and 
invasion via WIP and β-
catenin signalling [107]. 

CD274 overexpression negatively 
regulate the T-cell mediated immune 
response in peripheral tissues[39]. 

Nivolumab (FDA Approved) 

18 HLA-A Highly polymorphic Highly polymorphic   

19 PDCD1LG2   
PDCD1LG2 overexpression suppressed 
the tumor antigen specific CD8+ T cells 
[108]. 

Atezolizumab (FDA approved) 

20 FOXP3 

FOXP3 overexpression 
promotes cell proliferation, 
migration, and invasion  
[109]. 

FoxP3 plays a key role in the 
development of Treg cells [110]. 

RPG (FDA approved) 

21 PDCD1   
PDCD1 overexpression suppress the 
immune response against tumor [111]. 

Avelumab (FDA approved) 

Table 2.8: List of genes with their tumor progression and immunosuppression roles 
 

The specific immunomodulatory roles of these genes in tumor progression and immune 

suppression were explored such that single natural inhibitor could impact multiple immune 

cells and would therefore be crucial in augmenting a concerted immune response in tumor 

microenvironment. 

TGFB1 induced an epithelial-mesenchymal transition (EMT) to increase the invasion of cancer 

cells. It induces genes that help in metastatic colonization at secondary organ sites, so that 

TGFB1 works as a promoter of metastases [112]. TGFB1 also functions as an immune 

suppressor by influencing the development, differentiation, tolerance and homeostasis of 

immune cells [113]. TGFB1 may promote the development of Treg cells by inducing Foxp3 

expression [114]. Other studies have shown that the deletion of TGFB1 in T cells alone, not in 

tumor cells, has suppressed tumor development in different tumor models [115]. So TGFB1 

signaling is crucial for tumor progression as well as immune suppression. Hence, TGFB1 

Downregulation is an effective therapeutic strategy. 

CDK6 overexpression associated with many cancer progression, it is involved in cell cycle 

progression, up-regulation of CDK6 also result in increased tumor angiogenesiss [116] it also 

shows its role in immune suppression as shown in our gene enrichment analysis we also get 
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evidence from literature such that CDK6 inhibition enhance immunity against cancer by 

activating T cell, reductio n in immunosuppressive regulatory T cells, increase in antigen 

presentation [117]. 

In tumor cell AXL promote proliferation, EMT, metastasis, and resistance to apoptosis [118]. 

AXL involved in immune regulation by inhibition of T cell activation by NK cells and dendritic 

cell, TLR signaling, specific tumor killing by NK cells [119]. 

Overexpression of HAVCR2 helps in tumor progression as well as immune suppression. It 

might induces EMT hence helps in metastasis [89]. HAVCR2 is over-expressed on tumor 

infiltrating dendritic cells and can compete with nucleic acid binding to HGMB1, therefore 

inhibiting anti-tumor immunity [120]. HAVCR2 can form a heterodimer with ceacam-1 which 

acts as a negative regulator of t cytotoxic cell response [90]. 

Overexpression of PRKDC promote tumor cell growth and proliferation via p38 MAPK 

signaling [91]. 

IL-10 overexpression associated with tumor aggressiveness through CIP2A over-expression 

via PI3K signaling pathway [121]. IL-10 overexpression inhibited proliferation, cytokine 

production and migration capacities of effector T cells [122]. Expression of IL-10 on dendritic 

cells generates Treg, which were produced IL-10 too [123]. IL-10 expression also influence 

the expression of Foxp3[94], TGF-beta [124] and TGFBR2 [125]. Inhibition reduce the cell 

proliferation by inhibiting cell cycle progression, resulting in accumulation of G0/G1 phase 

and reduction of S phage [96]. Overexpression of SOCS1 also involved in the reduction of 

CD8+ T cells activity against tumor cells [97]. 

IDO1 expression associated with the progression of tumor [126] by drug resistance mechanism 

against response of different drugs [127]. IDO1 expression in tumor cell mediate the catabolism 

of tryptophan is a critical factor of immune escape by suppression of anti-tumor 

immunity[128]. IDO1 overexpression increases the proliferation of Tregs [129]. 
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CD274 regulates tumor growth, proliferation, migration and invasion by targeting WIP and 

beta-catenin signaling [107]. CD274 is a well know immune checkpoint. It helps in tumor cell 

survival by PD-1/PD-L1 interaction which inhibit T cell activation [130]. 

Foxp3 regulates cell proliferation, migration and invasion of tumor cells [109]. Foxp3 regulates 

the development and proliferation of immunosuppressor Treg cells [110]. 

2.3.3.3 NETWORK ANALYSIS OF SELECTED GENES 

10 genes were selected which play a crucial role in immune suppression as well as tumor 

progression. These are Foxp3, CD274, IDO1, IL-10, SOCS1, PRKDC, AXL, CDK6, TGFB1, 

FADD. Network analysis in string revealed that CD274 has seven degrees of interaction, IDO1 

has five degrees of interactions as shown in Figure 2.12.  Hence these two genes can serve as 

the preferred target for modulating immune regulation and will impact multiple immune cells 

and determine tumor prognosis.  CD274 gene encodes protein PD-L1 which is an immune 

suppressor ligand. It is expressed in different tissues but is mainly expressed in activated T 

cells and B cells, monocytes, dendritic cells and different tumor cells. The interaction of this 

ligand with PD1 results in immune escape by the tumor cells, by inhibiting T-cell activation 

and cytokine production. High expression of this gene is a prognostic marker in many cancers. 

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme that catalyzes the first and rate 

limiting step in the catabolism of tryptophan which changes the behavior of T-cells. This 

enzyme plays a role in a variety of pathophysiological processes such as antioxidant activity, 

antimicrobial defense, neuropathology, immunoregulation, antitumor defense. Overexpression 

of IDO1 is found in different cancers, which is associated with poor prognosis. IDO1 can be 

inhibited by the cancer-suppression gene bridging integrator 1 (Bin1) and up-regulated by some 

immune checkpoint molecules and cytokines such as IFN-γ, pathogen-associated molecular 

patterns (PAMPs, such as Toll-like receptor (TLR) 3, TLR4, TLR7, TLR8, and TLR9), IL-6, 

prostaglandin E2 (PGE2), damage-associated molecular patterns (DAMPs), immune 
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checkpoint (including PD-1, glucocorticoid-induced TNF receptor-related protein (GITRL), 

CTLA-4), and TNF-α, TGF-β to establish an immunosuppressive environment. 

 

Figure 2.12: Interaction network of ten genes which are immune suppressor as well as tumor progressor 
for checking degree of interaction. As we can see here CD274 have highest degree of interaction 7 and 
IDO1 have second highest degree of interaction 5. 
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Objective 2 
 

➢ Mitigation of side effects of chemotherapeutic drugs using natural compounds. 
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CHAPTER III: OBJECTIVE 2 

3.1. RATIONALE OF THE STUDY 

Toxicity of chemotherapeutic agents to normal cells is often due to additional binding of therapeutic 

drug to off target receptors leading to unpleasant side effects. Hence the efficacy of chemotherapy lies 

in the fact that chemotherapeutic agent has a significant selectivity for cancer cells over normal host 

cells. Side effect of FDA approved chemotherapeutic drug were analyzed by intside database 

(https://intside.irbbarcelona.org). It was found that most of chemotherapeutic drug have their own 

specific side effects as shown in Table 3.1.  For example: 

Doxorubicin (Adriamycin): Hair loss, nausea and vomiting, fatigue, increased risk of infections, 

anemia, mouth sores, heart damage (rare but serious), darkening of the nails. 

Cyclophosphamide (Cytoxan): Nausea and vomiting, hair loss, increased risk of infections, anemia, 

bladder irritation, increased risk of secondary cancers. 

Paclitaxel (Taxol): Hair loss, joint and muscle pain, peripheral neuropathy, low blood cell counts, 

nausea and vomiting, allergic reactions, changes in nail color, fluid retention. 

Cisplatin: Nausea and vomiting, kidney damage, hearing loss, peripheral neuropathy, low blood cell 

counts, electrolyte imbalances, allergic reactions. 

Methotrexate: Nausea and vomiting, mouth sores, low blood cell counts, liver toxicity, skin reactions, 

increased risk of infections, kidney damage. 

Fluorouracil (5-FU): Nausea and vomiting, diarrhea, mouth sores, low blood cell counts, hand-foot 

syndrome (redness, pain, and peeling of the hands and feet), increased sensitivity to sunlight. 

Vincristine: Peripheral neuropathy, constipation, hair loss, jaw pain, difficulty walking, low blood cell 

counts, nerve damage, increased risk of infections. 

Bleomycin: Lung toxicity (causing cough, shortness of breath), skin reactions, mouth sores, low blood 

cell counts, increased risk of infections. 

Etoposide: Nausea and vomiting, low blood cell counts, hair loss, mouth sores, increased risk of 

infections, allergic reactions. 

Vinblastine: Hair loss, constipation, low blood cell counts, peripheral neuropathy, mouth sores, 
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increased risk of infections. 

Drug Side Effects Drug Side Effects Drug Side Effects 

Abemaciclib 

Nausea, fatigue, 
diarrhea, 

decreased 
appetite 

Everolimus 
Mouth sores, 

diarrhea, nausea, 
fatigue 

Palbociclib 
Nausea, vomiting, 
hair loss, fatigue, 

anemia 

Abraxane 

Bone marrow 
suppression, 

hair loss, 
neuropathy 

Exemestane 
Hot flashes, fatigue, 

joint pain 
Pembrolizumab 

Fatigue, rash, joint 
pain, diarrhea, 

decreased appetite 

Ado-Trastuzumab 
Emtansine 

Nausea, fatigue, 
decreased 

appetite 

Fluorouracil 
Injection 

Nausea, vomiting, 
diarrhea, fatigue 

Pertuzumab 
Diarrhea, nausea, 
vomiting, fatigue, 

fever 

Afinitor 
Fatigue, nausea, 

diarrhea, 
hyperglycemia 

Fam-
Trastuzumab 

Deruxtecan-nxki 

Nausea, vomiting, 
fatigue, hair loss, 

anemia 

Pertuzumab, 
Trastuzumab, 

and 
Hyaluronidase-

zzxf 

Diarrhea, nausea, 
vomiting, fatigue, 

fever 

Afinitor Disperz 
Fatigue, nausea, 

diarrhea, 
hyperglycemia 

Fareston 
Hot flashes, vaginal 
discharge, fatigue 

Piqray (Alpelisib) 
Nausea, vomiting, 

diarrhea, rash, 
hyperglycemia 

Alpelisib 
Hyperglycemia, 
nausea, fatigue 

Faslodex 
Injection site 
reactions, hot 

flashes, fatigue 
Ribociclib 

Nausea, vomiting, 
hair loss, fatigue, 

anemia 

Anastrozole 
Hot flashes, joint 

pain, vaginal 
dryness 

Femara 
Hot flashes, fatigue, 

joint pain 
Sacituzumab 

Govitecan-hziy 

Nausea, vomiting, 
diarrhea, fatigue, 

anemia 

Aredia 
Flu-like 

symptoms, bone 
pain 

Fulvestrant 
Injection site 
reactions, hot 

flashes, fatigue 
Soltamox 

Hot flashes, vaginal 
discharge, mood 

changes 

Arimidex 
Hot flashes, joint 

pain, vaginal 
dryness 

Gemcitabine 
Hydrochloride 

Bone marrow 
suppression, fatigue, 

nausea, vomiting, 
rash, fever, cough, 

peripheral 
neuropathy 

Talazoparib 
Tosylate 

Fatigue, nausea, 
anemia, 

myelosuppression 

Aromasin 
Hot flashes, joint 

pain, vaginal 
dryness 

Goserelin 
Acetate 

Hot flashes, vaginal 
dryness, loss of 

libido, decreased 
bone density 

Talzenna 

Fatigue, anemia, 
nausea, vomiting, 
myelodysplastic 

syndrome 

Capecitabine 
Hand-foot 
syndrome, 

nausea, diarrhea 

Lapatinib 
Ditosylate 

Diarrhea, nausea, 
rash, hand-foot 

syndrome, fatigue, 
decreased left 
ventricular e 

Tamoxifen 
Citrate 

Hot flashes, vaginal 
discharge, irregular 

menstruation 

Cyclophosphamide 

Nausea, hair 
loss, bone 

marrow 
suppression 

Lapatinib 
Ditosylate 

Diarrhea, rash, 
nausea, fatigue, 
hepatotoxicity 

Taxotere 

Hair loss, nausea, 
vomiting, anemia, 
fatigue, peripheral 

neuropathy 

Docetaxel 

Bone marrow 
suppression, 

hair loss, 
neuropathy 

Letrozole 
Hot flashes, 

headache, dizziness, 
fatigue, nausea 

Tecentriq 
Fatigue, decreased 

appetite, cough, 
fever 

Doxorubicin 
Hydrochloride 

Cardiotoxicity, 
hair loss, 
nausea 

Margetuximab-
cmkb 

Fatigue, nausea, 
vomiting, diarrhea, 

headache 
Tepadina 

Nausea, vomiting, 
hair loss, decreased 

white blood cell 
count 

Elacestrant 
Dihydrochloride 

Fatigue, nausea, 
decreased 

appetite 

Megestrol 
Acetate 

Weight gain, hot 
flashes, fluid 

retention 
Thiotepa 

Nausea, vomiting, 
hair loss, decreased 

white blood cell 
count 

Ellence 
Nausea, 

vomiting, hair 
loss, fatigue, 

Methotrexate 
Sodium 

Nausea, vomiting, 
diarrhea, 

myelosuppression 
Toremifene 

Hot flashes, vaginal 
discharge, irregular 

menstruation 
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anemia 

Enhertu 

Nausea, 
vomiting, 

fatigue, hair 
loss, anemia 

Neratinib 
Maleate 

Diarrhea, nausea, 
vomiting, fatigue, 

hepatotoxicity 
Trastuzumab 

Fatigue, nausea, 
vomiting, headache, 

fever 

Epirubicin 
Hydrochloride 

Nausea, 
vomiting, hair 
loss, fatigue, 

anemia 

Olaparib 
Nausea, vomiting, 
diarrhea, fatigue, 
myelosuppression 

Trastuzumab 
and 

Hyaluronidase-
oysk 

Fatigue, nausea, 
vomiting, headache, 

fever 

Eribulin Mesylate 
Fatigue, hair 
loss, nausea, 
constipation 

Paclitaxel 
Nausea, vomiting, 

hair loss, 
muscle/joint pain 

Trexall 
(Methotrexate 

Sodium) 

Nausea, vomiting, 
fatigue, hair loss, 

liver damage 

Tucatinib 

Diarrhea, 
nausea, 
vomiting, 

fatigue, liver 
damage 

Paclitaxel 
Albumin-
stabilized 

Nanoparticle 
Formulation 

Nausea, vomiting, 
hair loss, 

muscle/joint pain 

Trodelvy 
(Sacituzumab 

Govitecan-hziy) 

Nausea, vomiting, 
diarrhea, fatigue, 

hair loss 

Table 3.1: List of FDA approved drugs with their side effects. 

 

Therefore, alternative compounds need to be identified to mitigate these side effects. As we know 

Natural compounds are less toxic as compared to synthetic drugs often due to the fact that they are multi 

targeting. Natural compounds are often perceived to be less toxic than synthetic chemotherapy drugs 

due to several reasons: 

Evolutionary Compatibility: Natural compounds have been present in the environment for thousands 

of years and have evolved alongside living organisms. As a result, many organisms have developed 

mechanisms to interact with and metabolize these compounds. This evolutionary compatibility often 

leads to a reduced toxicity in comparison to synthetic drugs, which may be entirely new to biological 

systems and lack specific metabolic pathways for their efficient breakdown. 

Complexity and Diversity: Natural compounds found in plants, fungi, and other organisms often possess 

complex structures and are composed of multiple components. This complexity can make it difficult 

for these compounds to interact with specific targets in the body, reducing the likelihood of causing 

toxic effects. In contrast, synthetic drugs are designed to have specific molecular interactions with 

targets in the body, which can lead to more potent and targeted effects, but also potentially higher 

toxicity. 

Co-Evolved Mechanisms: Natural compounds frequently have evolved in plants and other organisms 

to serve specific biological functions, such as defense against predators or pathogens. These compounds 

often have mechanisms in place that mitigate their potential toxicity to the host organism or ensure that 

their effects are localized. On the other hand, synthetic chemotherapy drugs are primarily designed to 
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target cancer cells or disrupt cancer-related processes, which may not have the same level of specificity 

or built-in safety mechanisms. 

Regulatory Factors: Natural compounds are often subject to regulatory mechanisms within living 

organisms that help maintain homeostasis and prevent excessive toxicity. For example, enzymes and 

transporters in the body may contribute to the metabolism and elimination of natural compounds, 

reducing their potential toxic effects. Synthetic drugs, especially those used in chemotherapy, are 

typically designed to be more resistant to degradation and elimination, allowing them to persist in the 

body for longer periods and potentially increasing their toxicity. 

Phytochemicals, which are natural compounds found in plants, have been studied for their potential to 

mitigate the side effects of chemotherapeutic drugs. These compounds possess various biological 

activities and can offer supportive effects during cancer treatment. Here are some examples of 

phytochemicals that have shown promise in mitigating the side effects of chemotherapeutic drugs: 

Quercetin: Quercetin is a flavonoid found in various fruits, vegetables, and herbs. It exhibits 

antioxidant, anti-inflammatory, and anticancer properties. Quercetin has been studied for its potential 

to reduce chemotherapy-induced oxidative stress, inflammation, and DNA damage.  

Resveratrol: Resveratrol is a polyphenol found in grapes, berries, and peanuts. It has antioxidant and 

anti-inflammatory properties and has been shown to protect against chemotherapy-induced organ 

toxicity, such as heart and kidney damage.  

Epigallocatechin Gallate (EGCG): EGCG is a catechin found in green tea. It possesses antioxidant, 

anti-inflammatory, and anticancer effects. EGCG has been investigated for its potential to mitigate the 

side effects of chemotherapy, including cardiotoxicity and gastrointestinal toxicity. 

Curcumin: Curcumin is the active component of turmeric and has been extensively studied for its health 

benefits. It has antioxidant, anti-inflammatory, and anticancer properties. Curcumin has shown potential 

in reducing chemotherapy-induced side effects such as nausea, vomiting, and inflammation. 

Sulforaphane: Sulforaphane is a compound found in cruciferous vegetables like broccoli, cabbage, and 

Brussels sprouts. It has antioxidant and anti-inflammatory effects and may help protect against 

chemotherapy-induced toxicity and enhance the efficacy of certain chemotherapeutic drugs. 

Gingerols: Gingerols are bioactive compounds found in ginger. They possess anti-inflammatory and 
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antioxidant properties. Gingerols have been studied for their ability to alleviate chemotherapy-induced 

nausea and vomiting. 

Lycopene: Lycopene is a carotenoid pigment found in tomatoes, watermelon, and other red fruits and 

vegetables. It has antioxidant properties and has been investigated for its potential to protect against 

chemotherapy-induced toxicity, particularly in the context of prostate cancer treatment. 

3.2. METHODOLOGY AND MATERIALS REQUIRED 

3.2.1. GENE EXPRESSION DATA OF CANCER CELL LINES AFTER TREATMENT 

WITH NATURAL COMPOUNDS 

GSE85871, GSE24743, GSE158788 datasets were retrieved from GEO Database. GSE85871 contain 

the gene expression data of cancer cell lines after treatment with 102 natural compounds individually. 

Two replicates for each compound were considered a test set and compared with the vehicle control set 

in which only DMSO was present one by one, and the differential expression profile for all genes was 

collected. GSE24743, GSE158788 datasets contain the gene expression data of cancer cell line after 

treatment with Shikonin and Gallic acid respectively. 

3.2.2. IDENTIFICATION OF NATURAL COMPOUNDS TARGETING SELECTED GENES 

Np care database [70] and IMPACT databases were explored for the selection of natural compounds 

targeting these selected genes. We further explored the literature for those genes which are not found 

in the Np care database. 

3.2.3. GENE EXPRESSION ANALYSIS OF NATURAL COMPOUNDS TREATMENT 

EFFECTS 

Selected datasets were analysed by GEO2R and iDEP (integrated Differential Expression and Pathway 

analysis) Tool for the identification of differentially expressed genes. iDEP is a user-friendly interface 

for bioinformatic analysis of gene-level data for differential expression analysis and pathway analysis.  

User can generate reports to analyse RNA-seq datasets from NCBI’s GEO which contains differential 

expression and enrichment analyses etc. 
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3.2.4. IDENTIFICATION OF NUMBER OF GENES REGULATED BY EACH NATURAL 

COMPOUND FROM THE SELECTED GENES 

The expression of common upregulated genes was matched with the expression profile of natural 

compounds in Microsoft excel and selected compounds that alter the maximum number of gene 

expressions. Similarly, it was achieved for common downregulated genes. 

3.3. RESULTS AND DISCUSSION 

3.3.1. NATURAL COMPOUNDS SELECTION FOR TARGETING CD274 AND IDO1 

We selected natural compound against the two selected genes (Table 3.2). Gallic Acid (3,4,5-

trihydroxybenzoic acid) was inhitory against CD274 while three compounds, dihydrotanshinone I, 

shikonin, 9-O-demethyltrigonostemone were inhibitory against IDO1. Gallic acid is a phenolic acid 

which is found in sumac, gallnuts, tea leaves, oak bark, witch hazel and other plants. Dihydrotanshinone 

I (DI) is a natural compound found in the salvia miltiorrhiza which is a Chinese medicinal plant. It has 

been reported to have cytotoxicity to a variety of tumors. Shikonin is a naphthoquinone compound 

which is found in the roots of shikonin plant (Lithospermum erythrorhizon) and it is used as a traditional 

Chinese medicine. 9-O-demethyltrigonostemone is a natural compound found in the roots of 

Strophioblachia fimbricalyx which shows cytotoxic activity in different tumors. 

Gene Natural Compounds Plant Origin 

CD274 

Cosmosiin Teucrium gnaphalodes 

Fisetin Strawberries, apples, persimmons, onions and cucumbers 

Gallic Acid 
Banana, walnut, hazelnut, green tea, avocado, guava, mango, 

mulberry 

Kaempferol Kale, beans, tea, spinach, and broccoli 

IDO1 

Dihydrotanshinone I Salvia miltiorrhiza 

Shikonin 
Lithospermum erythrorhizon, Alkanna, Arnebia, Onosma, 

Onosma sericeum Willd 

9-O-

demethyltrigonostemone 
Strophioblachia fmbricalyx 

Table 3.2: Following table demonstrate the natural compounds targeting CD274, IDO1 and their natural 
sources. 

We searched NCBI’s GEO for the selected four compounds and found experimental data corroborating 

functional inhibitory characteristics of the two compounds which are Gallic Acid and shikonin. Dataset 

accession number for Gallic Acid is GSE158788. Gene Expression Profile Analysis of Gallic Acid-

induced Cell Death Process using Hela cells treated with gallic acid (50 µg/ml) for 0 hour (GA0hr), 2 
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hours (GA2hr), 4 hours (GA4hr), 6 hours (GA6hr), and 9 hours (GA9hr) were studied. Dataset 

accession number for shikonin is GSE24743 and its effect on the gene expression of human lymphoma 

U937 cells was studied[161]. In this dataset U937 cells were treated with 100 Nm shikonin and followed 

by incubation for 3h at 37°C. The cells treated with dimethyl sulfoxide served as control. The 

microarray dataset was analyed with Geo2R tool and their volcano plot and heat map showed there are 

numerous genes whose expression altered by treatment as shown in Figure 3.1 and significantly 

differentially expressed genes were identified. 

 

Figure 3.1: Shows the volcano plot of GEO dataset: GSE24743 Effects of Shikonin on the gene expression, 
red dots denote the genes which are differentially up-regulated and blue dots denotes the genes which are 
differentially down-regulated with an adjusted P-value less than 0.05 (in left). Right shows the Heatmap 

heat map of different genes in different control and test samples. 

We analysed GSE158788 data with iDEP tool for differential gene expression and results are shown in 

the Figure 3.2. Their volcano plot and heat map showed there are numerous genes whose expression 

altered by treatment and significantly differentially expressed genes were identified. 
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Figure 3.2: The volcano plot of GEO dataset: Effects of Gallic acid on the gene expression, blue dots denote 
the genes which are differentially up-regulated and red dots denotes the genes which are differentially 
down-regulated with an adjusted P-value less than 0.05. Right side shows the heatmap of different genes 
in different control and test samples. 

3.3.2. IDENTIFICATION OF NUMBER OF GENES REGULATED BY EACH NATURAL 

COMPOUND FROM THE SELECTED GENES 

The expression profiles of 102 natural compounds already known for their antitumor activity were 

analyzed with GEO2R, and Differentially expressed genes were studied. These differentially expressed 

genes were those whose expression was altered after the treatment with a particular natural compound. 

So, the list of differential genes was made of all the 102 Natural compounds with their logFC Values. 

Those natural compounds that could downregulate the maximum number of genes from the 46 common 

upregulated genes and upregulate the maximum number of genes from the 64 common downregulated 

genes in cancer patients were further identified. The list of 110 common DEGs (46 upregulated genes 

+ 64 downregulated genes) was compared with the natural compounds' DEGs. The natural compounds 

were sorted based on their ability to reverse the expression of the maximum number of genes. The list 

of natural compounds with respective number of genes whose expression was reversed by that natural 

compound is shown in Table 3.3. Natural compounds are multitargeting; therefore, they can target 

multiple pathways for tumor suppression. Tumor cells change their gene morphology very fast when 

exposed to single target drugs to find a way to escape the drug effect. So, the problem of drug resistance 

can be minimized by using a combination of natural compounds because they target multiple pathways, 
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and tumor progression can be effectively reversed. 

Natural 

Compound 
Genes Natural Compound Genes Natural Compound Genes 

Salidroside 66 Phillyrin 57 Nitidine chloride 52 

Schisantherin A 65 Resibufogenin 57 Bruceine 51 

Oxymatrine 64 Alantolactone 56 Ginsenoside Rb3 51 

Silybin 64 Ginkgolide B 56 Macrozamin 51 

Daidzin 63 Hyodeoxycholic acid 56 Tanshinone IIA 51 

Scutellarein 62 Matrine 56 Bufalin 50 

Gastrodin 60 Osthole 56 Cinnamic acid 50 

Ginseooside Rd 60 
stachydrine 

hydrochloride 
56 Honokiol 50 

Glycyrrhizic acid 

(2) 
60 Ursodeoxycholic acid 56 Hyperoside 50 

Schizandrin 60 ethyl caffeate 55 Puerarin 50 

Astragaloside IV 59 Ferulic acid 55 Saikosaponin A 50 

Benzoylaconitine 59 Isoalantolactone 55 Sanguinarine 50 

Ginsenoside Rc 59 Tetrahydropalmatine 55 Sennoside A 50 

Imperatorin 59 
1bita- 

hydroxyalantolactone 
54 Acteoside 49 

L-scopolamine 59 Benzyl benzoate 54 Hesperidin 49 

Saikosaponin D 59 Gallic acid 54 
Hydroxysafflor 

yellow 
49 

Aconitin 58 Ginsenoside Rb1 54 Magnolol 49 

Arenobufagin 58 Isoborneol 54 Resveratrol 49 

Chlorogenic acid 58 Protocatechuic aldehyde 54 6-gingerol 48 

Cinnamaldehyde 58 Salvianic acid A sodium 54 Andrographolide 48 

Cinobufotain 58 Bacopaside l 53 Cholic acid 48 

Deoxycholic acid 58 Benzoylhypaconitine 53 Ginsenoside Re 48 

Gamabufatalin 58 bita-ecdysterone 53 Japonicone A 48 

Uridonin 58 Chenodeoxycholic acid 53 Narciclasine 48 

Anhydroicaritin 57 Ginsenoside Rb2 53 Notoginsenoside R1 48 

Borneol 57 Muscone 53 Hypaconitine 47 

Chelerythrine 57 Paeoniflorin 53 Liquiritin 47 

Curcullgoside 57 Salvianolic acid B 53 
Berberine 

hydrochloride 
46 

Dioscin 57 Telocinobufagin 53 Bufotaline 46 

Emodin 57 Bilobalide 52 Ainsliadimer A 45 

Gentiopicroside 57 Britanin 52 Geniposide 45 

Ginsenoside Rg1 57 Cinobufogenin 52 Santonin 44 

Lobetyolin 57 Ephedrine hydrochloride 52 Strychnine 44 

Oleanic acid 57 Glycyrrhizic acid 52 Artemisinin 36 

Table 3.3: Following table demonstrate the list of natural compounds with the number of genes regulated. 
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➢ Combinatorial potential of natural compounds and their validation via in vitro experiments 
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CHAPTER IV: OBJECTIVE 3 

4.1. RATIONALE OF THE STUDY 

There are several drawbacks associated with using a single drug in tumor treatment. Here are 

some key limitations: 

Development of Resistance: Tumors can develop resistance to a single drug over time, 

rendering it less effective or completely ineffective. This resistance can occur due to various 

mechanisms, including genetic mutations or alterations in the tumor cells. When resistance 

develops, the tumor can continue to grow and spread despite treatment. 

Incomplete Tumor Targeting: Tumors are often heterogeneous, meaning they consist of 

different cell populations with varying characteristics. A single drug may only target a specific 

subset of tumor cells, leaving other cells unaffected. This can result in incomplete tumor 

eradication and potential regrowth of the tumor. 

Limited Efficacy: Tumors can have multiple pathways or molecular targets involved in their 

growth and survival. A single drug may only target one specific pathway or target, limiting its 

overall efficacy.  

Side Effects and Toxicity: Some drugs used in tumor treatment can have significant side effects 

or toxicity, especially at higher doses required for optimal efficacy. Using a single drug may 

necessitate higher doses, increasing the risk and severity of adverse effects. Combining 

multiple drugs can allow for the use of lower doses of each drug, potentially reducing side 

effects while still achieving therapeutic benefits. 

Lack of Personalized Treatment: Tumors can have diverse characteristics and response 

patterns among different patients. Using a single drug may not adequately address the 

individual characteristics of a patient's tumor. Personalized treatment approaches, including the 

use of combination therapy, can help target specific tumor characteristics and optimize 

treatment outcomes. 
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4.1.1. BENEFITS OF COMBINATORIAL THERAPY   

It refers to the use of multiple drugs in the treatment of a particular condition. Here are some 

reasons why combination therapy may be preferred:  

Increased Efficacy: Combining drugs with different mechanisms of action can target multiple 

pathways or targets involved in the disease process. This approach can lead to synergistic 

effects, where the combined action of the drugs is more effective than each drug alone. 

Combination therapy is commonly used in the treatment of complex diseases like cancer, HIV, 

tuberculosis, and hepatitis. 

Reduced Drug Resistance: The use of a single drug over time can lead to the development of 

drug resistance in certain pathogens or tumors. Combining multiple drugs with different 

mechanisms of action can help prevent or delay the development of resistance by attacking the 

disease from different angles. 

Improved Tolerability: Some drugs may have side effects or toxicity at higher doses required 

for optimal efficacy. Combination therapy allows for the use of lower doses of each drug, 

reducing the risk and severity of side effects while still achieving the desired therapeutic effect. 

Targeting Different Disease Stages: Certain diseases have multiple stages or phases, and each 

stage may require a different treatment approach. Combination therapy can be used to target 

different stages of the disease, maximizing the effectiveness of treatment throughout the course 

of the illness. 

Individualized Treatment: Combination therapy can be tailored to individual patients based on 

their specific characteristics, such as disease severity, genetic factors, and response to 

treatment. By combining drugs with different modes of action, physicians can customize 

treatment regimens to better meet the unique needs of each patient. 
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4.2. METHODOLOGY AND MATERIALS REQUIRED 

4.2.1. SCREENING OF NATURAL COMPOUNDS 

Natural compounds were screened on the bases of their regulation of common DEGs. The 

compound which regulates the maximum number of genes from common DEGs was selected 

first. Then the second compound was selected based on who can alter the expression of the 

maximum number of genes from the remaining ones (which remain unaltered by the first 

compound). Similarly, the remaining compounds were screened. 

4.2.2. ANALYSIS OF SELECTED COMBINATION OF NATURAL COMPOUNDS 

The selected combination of natural compounds was analyzed with the help of a Venn diagram 

of genes regulated by selected compounds and Enrichment analysis of the shared genes by the 

FunRich tool. Different biological processes and pathways regulated by these compounds were 

also analyzed from the literature. 

4.2.3. COMPARISON OF GENE EXPRESSION DATA OF TUMOR AND NATURAL 

COMPOUND TREATED SAMPLE 

Differentially expressed gene (DEGs) of HNSC cancer dataset was compared with the 

Differential gene expression data of both the selected compounds for conforming that these 

compounds reverse the expression of differentially expressed genes. This conformation was 

achieved in the Microsoft-excel by comparing their logFC values in different samples. 

4.2.4. BIOLOGICAL PATHWAY ANALYSIS OF THE INVOLVED GENES 

Pathway analysis of the genes whose expression was altered by gallic acid and shikonin was 

achieved by Funrich tool. We devided genes into four categories for pathway analysis these 

are HNSC upregulated genes down regulated by Gallic acid, HNSC upregulated genes down 

regulated by shikonin, HNSC downregulated genes upregulated by Gallic acid, HNSC 

downregulated genes upregulated by shikonin. Then gene involved in these respective 

categories are analyzed for the pathways in which they are involved in Funrich tool 

individually. Funrich is a standalone tool used for enrichment analysis which gives enrichment 
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analysis on the basis of biological pathways, biological processes, functional, transcription 

factors etc. 

4.2.5. MATERIAL AND METHODOLOGY FOR IN-VITRO EXPEREMENTS 

4.2.5.1.MATERIALS 

MDA-MB-231 cell lines were obtained from the National Centre for Cell Sciences (NCCS) in 

Pune, India. Gallic acid and Shikonin, the natural compounds of interest, were procured in 

powdered form from Sigma-Aldrich and stored at 4 degrees Celsius until utilized. For cell 

culturing, RPMI medium was employed, purchased from Sigma-Aldrich, and supplemented 

with antibiotics Penicillin and streptomycin along with Fetal Bovine Serum (FBS) obtained 

from Gibco, Thermo Fischer, along with antibiotics. The Trypsin-EDTA solution 1X, essential 

for cell detachment, was purchased from HIMEDIA. For the MTT assay, the MTT reagent 

came from BioAssay Systems, and it was supplied within the MTT assay kit alongside a 

solubilizer to process the assay. Dimethyl sulfoxide (DMSO) from Merck was utilized as the 

vehicle control in the experiments. 

4.2.5.2.METHODOLOGY 

The cells were cultured in RPMI at 37 degrees celsius and 5% CO2 till they reached >90% 

confluency, following standard cell culture protocols and there was enough number of cells for 

performing the cell viability assay. The cells were passaged and centrifuged followed by 

counting using Hemocytometer (Neubarr’s chamber) and trypan blue dye. The cells were 

suspended in RPMI so that the final concentration is 625000 cells/mL (approximately). Cells 

were seeded in the 96-well tissue culture plate at the density 5000 cells per well in 80 µl culture 

media. The natural compounds were dissolved in DMSO and drug solutions of different 

concentration were prepared with desired volume of culture media. After the cells adhered to 

the surface of wells (22 hours) the medium in each well was replaced with DMSO solution that 

contained the natural compounds gallic acid and shikonin at different concentrations, as well 
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as their mixture. DMSO without the natural compounds was added in 3 wells and these were 

considered as the control wells. The cells were incubated with the drugs for 48 hours at 37 

degrees Celsius. Then media was removed carefully and different concentration of 100 µl 

media solution of Gallic acid and Shikonin were added in different wells (Three replicates for 

each dose) in different concentration. After 12, 24, 48 hours of incubation 15 µl of the MTT 

reagent was added to each well followed by 4 hours of incubation for the formation of formazan 

crystals by viable cells. 100 µl of solublizer was added to each well and mixed on orbital shaker 

for 1 hours on CO2 incubator. After treating the cells with the different natural compound 

combination, and the control (DMSO), the absorbance of each sample was measured using a 

microplate reader. Absorbance was calculated using the Microplate reader with absorbance 

measurement capability at 570 nm because maximum observance of formazan dye lies between 

560 nm and 590 nm. The absorbance data obtained from each sample was used to calculate the 

percentage cell viability. This calculation involves comparing the absorbance values of the 

treated samples to that of the control (DMSO). The formula for percentage viability is typically: 

Percentage Viability = (Absorbance of treated sample- Absorbance of blank / 

Absorbance of DMSO control- Absorbance of blank) x 100 

To understand the dose-dependent effect of the drugs, the percentage viability data was plotted 

against the dose of each drug. Dose-response curve allows to observe how cell viability changes 

as the drug concentration varies. Bar plot was used to analyse the percentage viability of cells 

after treatment with different dose combination of Shikonin and Gallic acid. 

4.3.RESULTS AND DISCUSSION 

4.3.1. COMBINATION OF NATURAL COMPOUNDS 

A combination of natural compounds is selected that alter the expression of the maximum 

number of genes out of 110 common DEGs. Therefore, we first selected that natural compound, 

which altered the expression of the maximum number of genes, Salidroside. Salidroside altered 
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the expression of 66 genes from 110 common DEGs. Then the remaining 44 commonly altered 

genes were studied for their susceptibility to restorative regulation by other such natural 

compounds that impacted the expression of the maximum number of the gene. Therefore, 

Ginsenoside Rd was found to regulate the expression of 20 genes. Oridonin was found to 

regulate12 genes out of the 24 common DEGs. Britanin was found to regulate 6 genes, and 

Scutellarein regulated 4 genes. Therefore, these five compounds together resulted in the 

regulation of 108 genes out of 110 common DEGs, restoring the gene expression to that in 

normal matched tissues. Two genes, GPR15 and CYP2U1, were not suitably regulated by our 

combination of natural compounds. Figure 4.1 shows the screening process of natural 

compounds for targeting 110 common DEGs. 
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Figure 4.1: Following figure demonstrate the screening process of natural compounds against 110 
common DEGs. 66 genes were regulated by salidroside therefore remaining genes were analysed for other 
targeting compounds and found that Ginsenoside Rd, Uridonin, Britanin, Scutellarein were regulated 20, 
12, 6,4 genes respectively. 
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A combination of five compounds was selected and further checked for their combined effect on these 

common 110 DEGs. Therefore, the expression of these 110 DEGs was compared with the expression 

of the individual compounds. Salidroside, Ginsenoside Rd, Oridonin, Britanin, and Scutellarein 

individually regulated 66, 60, 58, 52, 62 genes. The gene expression regulation of common upregulated 

genes by different selected natural compounds separately is listed in Table 4.1. The gene expression 

regulation of common downregulated genes by different selected natural compounds separately is listed 

in Table 4.2. 

Common 
Downregulated 
Genes 

Salidroside 
Ginsenoside 
Rd 

Uridonin Britanin Scutellarein 

ZBTB20 NA 0.112 NA 0.032402 0.010433 

CD6 0.128491 NA 0.101702 0.065331 0.011821 

SHMT2 0.011107 0.0606 0.003524 0.005039 NA 

SERGEF 0.123762 0.0756 NA 0.07678 0.060725 

ZNF205-AS1 0.022565 0.156 0.018661 NA 0.064165 

NCR3 NA 0.244 0.31222 NA NA 

SRSF8 0.002687 0.0293 NA NA 0.009713 

TRADD 0.020171 1.06 NA NA NA 

SKI 0.076444 0.109 NA NA 0.105307 

ACACA NA 0.00176 0.005808 0.040862 NA 

ZAP70 1.464565 1.03 0.85929 1.166922 1.143146 

UBFD1 NA NA 0.003933 NA NA 

CKS1B NA 0.00666 0.006938 NA NA 

D NAJA4 NA NA NA 0.007385 NA 

PIP4K2B NA NA NA NA 0.018495 

RIC3 NA 0.154 NA NA NA 

PDE9A 0.054939 0.0349 NA NA 0.018845 

GPX7 NA NA 0.204458 NA 0.08836 

RFC4 NA NA 0.015399 NA NA 

RPS17 NA 0.00944 NA 5.08E-05 NA 

PTGDR NA 0.0797 NA NA NA 

PPARD 0.004411 NA NA NA NA 

BCR 0.011611 NA 0.017969 0.002361 7.46E-05 

WDR74 0.006102 NA 0.014646 NA NA 

TBRG4 0.10012 0.11 7.75E-05 NA 0.175699 

DHX30 6.69E-05 NA 0.006934 NA NA 

MCF2L 0.040489 NA NA NA 0.004955 

ARHGEF5 0.019291 0.0202 0.006395 0.06986 0.00123 

ACSF2 0.012821 0.0474 0.002574 NA 0.046479 

MMP11 NA NA 0.027858 NA NA 

FEZ1 NA 0.00501 NA NA 0.018955 

ZNF764 0.000229 0.0423 NA NA 0.016068 
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SLC4A10 0.050089 0.225 0.154503 0.306708 0.092965 

SNRNP40 0.020221 NA NA NA 0.00371 

GPD1L 0.027114 0.0283 NA NA 0.003768 

TRAM2 0.025506 0.0292 0.00835 0.094109 0.009603 

KDM8 0.075093 NA 0.067595 NA 0.064676 

SAFB2 0.009386 0.582 0.013734 0.012861 0.002413 

GPALPP1 0.008237 NA 0.083655 NA 0.003773 

RARRES3 0.079535 NA 0.152624 NA 0.260278 

PTCD2 0.189298 NA 0.132122 0.129328 0.074555 

CD22 NA 0.159 NA NA NA 

CAC NA2D2 0.203298 0.291 NA 0.089563 0.079899 

ZNF318 NA NA 0.027326 NA 0.009677 

POM121 NA 0.0757 0.132027 0.037441 0.04488 

RPL27A 0.013419 0.0731 NA 0.143882 0.001093 

KAT6B 0.014566 NA NA 0.016648 0.007702 

DOLPP1 0.014736 0.0123 0.013935 0.093057 NA 

SOD1 NA NA 0.014987 0.026234 NA 

NHP2 0.007297 0.000815 NA NA NA 

PPP1R13B 0.019158 NA 0.025801 0.102103 0.025379 

RPAIN 0.067022 0.0942 0.025175 0.04728 0.026807 

PROCR NA NA NA NA 0.014211 

WDHD1 0.010003 NA 9.77E-06 0.006522 1.13E-05 

MLF1 0.021094 0.23 NA 0.072687 0.026039 

MRPL58 NA NA 0.011365 0.01975 NA 

NF2 NA 0.0178 0.003165 0.037192 NA 

CYP2U1 NA NA NA NA NA 

DENND2D NA NA NA 0.008037 NA 

PCNX2 0.077608 0.0228 0.07015 0.087913 0.124665 

AMMECR1 0.016596 0.00637 NA NA 0.015094 

SMARCC2 NA NA 0.019569 NA NA 

CSNK1E NA 0.08 NA NA 0.004997 

FANCI NA 0.0162 NA NA NA 

Table 4.1: Different tones of colors (light to dark) in the given table demonstrate the level of expression of 
downregulated genes altered by different compounds individually. Light tones indicate genes which are 
altered on a small level, while dark tones indicate genes which are highly altered and moderate tones 
indicating moderately altered genes by different compounds. 

Common 
Upregulated 
Genes 

Salidroside Ginsenoside 
Rd 

Uridonin Britanin Scutellarein 

PPARG -0.01246 NA NA NA NA 

CYP1A2 -0.06406 -0.0523 -0.51742 NA -0.06783 

RABEP1 -0.01659 -0.125 NA -0.13887 -0.00356 

AHR -0.03835 NA NA NA -0.0275 

MITF -0.00938 NA -0.02652 -0.14417 NA 

FCER1G -0.67839 NA -0.11665 -0.09313 -0.01787 

NSUN7 -0.20027 -0.388 -0.14311 -0.14516 NA 

ACTB -0.00096 -0.0031 NA NA -0.00317 
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MAPK14 -0.00098 -2.79 NA -0.00988 NA 

RBM47 -0.00758 NA -0.04291 NA NA 

PAX9 -0.12917 -0.0784 -0.19931 -0.26224 -0.04412 

PRNP -0.01957 NA NA -0.07356 -0.03223 

R NASE1 -1.01883 -0.000441 NA NA NA 

MAP2K6 NA NA NA NA -0.96137 

ERN1 -0.17315 -0.258 -0.06998 -0.0927 -0.05894 

WAC NA -0.00646 -0.00046 -0.04323 -0.01332 

IPO7 NA NA -0.00512 -0.02105 NA 

CLDN9 -0.01543 -0.000966 -0.03241 NA -0.01317 

PCMT1 NA -0.0169 -0.00551 -0.02151 -0.00263 

GPR15 NA NA NA NA NA 

ST3GAL6 NA NA NA -0.961 NA 

VEGFA -0.01287 -0.896 NA NA NA 

LAP3 -0.01316 NA NA NA NA 

UBOX5 -0.07102 -0.0271 -0.02715 NA -0.06819 

GK NA NA -0.08025 -0.01122 NA 

PANK3 -0.03335 NA -0.04324 NA -0.01208 

CORO1B NA -0.0291 NA -0.1771 -0.00315 

ACPP NA NA NA -0.37689 NA 

LATS1 NA NA NA NA -0.02555 

CCDC88A -0.74399 -1.6 -0.86328 NA NA 

IL18 -0.07134 -0.254 NA NA -0.01199 

LAT2 -0.1308 NA -0.16805 -0.062 -0.0292 

SMPDL3A -0.00835 -0.0179 -0.03109 -0.21941 NA 

SLC44A1 -0.20994 NA -0.38872 NA -0.09192 

S100A9 NA -0.0255 NA NA NA 

SERPINB2 -0.15888 NA NA NA NA 

PPM1A NA NA NA -0.09572 NA 

DOCK4 NA NA NA -0.1361 NA 

ZEB2 -0.54734 NA -1.72513 NA -0.15526 

TRPM6 -0.66426 -0.162 -1.29945 -1.1726 -2.06793 

TLR5 NA -0.0487 NA NA NA 

RRAGD NA NA -0.00748 -0.01268 NA 

HFE -0.0863 -0.0611 -0.01804 -0.03487 -0.04517 

ROCK2 NA -0.0406 NA -0.2765 NA 

GRM2 NA -0.259 NA -0.33371 -0.09282 

MFSD1 NA NA -0.0043 NA NA 

Table 4.2: Different tones of colors (light to dark) in the given table demonstrate the level of expression of 
upregulated genes altered by different compounds individually. Light tones indicate genes which are 
altered on a small level, while dark tones indicate genes which are highly altered individually by different 
compounds. 

This data analysis showed that many genes were regulated more efficiently in combination rather than 

isolation; therefore, these compounds might show synergistic effects. The alteration of expression of 

genes by more than one compound is also beneficial to preventing drug resistance and toxic side effects 
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due to alternative engagement of redundant pathways. The expression of different genes in PBMCs and 

regulated by the different compounds are shown in the Figure 4.2.  

 

Figure 4.2: Following figure demonstrate the change in expression of 64 upregulated genes against the 
treatment of 5 selected compounds Salidroside, Ginsenoside Rd, Uridonin, Britanin, Scutellarein and their 
expression in PBMCs. Different color indicates the effect of different compounds as mentioned in the 
figure. 
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Figure 4.3: - (A) following figure demonstrate the enrichment analysis of 11 genes which were regulated 
by all five natural compounds. (B) Venn diagram shows the gene regulation of 110 common DEGs by 
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different natural compounds 11 genes were regulated by all five compounds. 

Figure 4.3 Venn diagram shows that all the five compounds regulated 11 genes, i.e., ZAP70, HFE, 

TRPM6, RPAIN, PAX9, PCNX2, TRAM2, ARHGEF5, ERN1, SAFB2, and SLC4A10, 25 genes were 

regulated by any four compounds, 24 genes were regulated by any three compounds, 23 genes were 

regulated by any two compounds, 25 were regulated only one compound out of these five compounds.  

Enrichment analysis of these 11 compounds was achieved and found that these compounds were 

involved in biological processes like transport, immune response, signal transduction, and regulation of 

nucleic acid metabolism. These biological processes are related to cancer progression and the immune 

system. Therefore, synergistic targeting of these genes would be beneficial for efficient combating 

HNSC tumors. All the selected compounds were efficient at targeting the expression of these eleven 

genes that effected the above-mentioned biological processes. 

Natural compounds are multitargeting compounds, so targeting genes that positively impact cancer 

regression may result in undesirable side effects. Hence, to test the synergistic potential for targeting of 

the selected natural compounds, their mechanisms of action were retrieved from the literature and 

congruence analysis was done. The drug combination of natural compounds must ideally target diverse 

pathways that converge to result in effective tumor regression. Salidroside induced autophagy via 

PI3K/Akt/mTOR signaling. mTOR is highly upregulated in tumor cells, hence inhibiting autophagy. 

PI3K/Akt plays an essential role in the regulation of mTOR. Salidroside regulates the PI3K/AKT 

pathway, decreasing anti-apoptotic factors and increasing pro-apoptotic factors, thus inducing caspase-

dependent and mitochondria-mediated apoptotic cell death [163]. Salidroside inhibits proliferation, 

migration, and invasion of tumor cells by inhibiting ROS, which regulates Src, and downregulates 

HSP70 via Akt/ERK signaling [164]. Salidroside reduces the pro-inflammatory cytokine secretion via 

activating IkBα/NF-kB pathway and induces apoptosis via p53 and caspase signaling [165]. Oridonin 

inhibits angiogenesis via the HIF-1α/VEGF pathway and shows anti-migratory, anti-invasive and anti-

adhesive properties [166]. Oridonin inhibits the proliferation and migration of tumor cells via targeting 

TRPM7 through the inactivation of ERK/AKT signaling [166]. Oridonin induces phagocytosis via 

activating ERK, which activates NFĸB [167]. Ginsenoside Rd reduces metastasis via miR-18a-

mediated downregulation of SMAD2 [168]. Ginsenoside Rd increases the expression of miR-144-5p, 
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which inhibits the expression of TLR2 hence reducing the proliferation and metastasis of tumor cells 

[169]. Ginsenoside Rd inhibits VEGF-induced migration, tube formation, and proliferation and 

suppresses VEGF-induced regulation of Akt/mTOR signaling pathways, inducing apoptosis and 

inhibiting cell proliferation [170]. Ginsenoside Rd inhibits proliferation, and metastasis mainly reverses 

EMT via STAT3/JAK2 signaling and STAT3 is the direct target of Ginsenoside Rd [171]. Britanin 

inhibits NF-kB via downregulation of IKK1/1KK2, controlling tumor cell proliferation and 

angiogenesis [172]. Britanin shows an anti-inflammatory response via inhibiting NF-ĸB signaling 

[173]. Britanin downregulates cMyc and HIF1α via upstream effectors like mTOR, reducing the 

expression of specific proteins, including PD-L1, leading to the inhibition of angiogenesis and cell 

proliferation [174]. Britanin induces apoptosis and autophagy via activating AMPK signaling regulated 

by ROS [175]. Scutellarin inhibits ALS and AST hence regulating the immune system against tumor 

cells [176][177]. Scutellarin inhibits MCP1, thus inhibiting cell migration and reducing inflammation 

[178]. Scutellarin downregulates ICAM-1 and inhibits the activation of NF-ĸB hence inhibiting 

adhesion and showing an anti-inflammatory effect [179]. Scutellarin induces vasodilation via 

eNOS/NO/PKG pathways [180].  

 

Figure 4.4: Following figure demonstrate the different biological processes and genes regulated by 
different natural compounds where different signs were used for inhibition, stimulation and activation of 
genes and biological processes. 
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As shown in Figure 4.4, These drugs regulate many different pathways and can target more than one 

process. So, our drug combination offers a highly potent multifaceted antitumor and 

immunomodulatory role and helps in the regression of HNSC cancer. The biological network of the 

following compounds is shown in Figure 4.5, which shows the key genes regulated by these 

compounds. 

 

Figure 4.5: The above figure demonstrates the biological network of the selected compounds with their 
regulating genes. 

A combination of Salidroside, Ginsenoside Rd, Oridonin, Britanin, and Scutellarein was chosen such 

that they can alter the expression of 108 genes out of the selected 110 genes. Salidroside is widely found 

in Rhodiola plants. Rhodiola sacinehalnsis, Rhodiola rosea, Rhodibetic tibetica and large Rhodiola. 

Ligustrum lucidum, in the leaves of Salix triandra L. and Willow bark, Vaccinium vitisidaea L leaves 

of Oleaceae, Veroniceae of Veronica minor. Salidroside was found to induce autophagy, inducing 

caspase-dependent and mitochondria-mediated apoptotic cell death, and inhibiting proliferation, 

migration, and invasion of tumor cells via PI3K/Akt/mTOR signaling, IkBα/NF-ĸb signaling 

[163][164][165][163]. Salidroside is generally deemed safe and effective. In the experimental 
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conditions, salidroside at doses of 0.5, 0.25, and 0.125 g/kg in SD rats did not cause maternal or 

embryonic toxicity, nor did it have teratogenic consequences [181]. Genotoxicity testing is critical in 

drug risk assessment. Salidroside is not genotoxic at a clinical dose (150 mg/60 kg/day) in humans, 

according to the Ames test, reverse mutation, chromosomal abnormalities, and mice micronucleus 

studies [182]. Another study of 60 breast cancer patients found no clinical adverse effects when an 

effective dose of salidroside (600 mg/kg/day) was given throughout the therapy procedure [183]. The 

lack of negative effects in pre-clinical and clinical trials suggests salidroside is a safe common clinical 

medication. Ginsenoside Rd is mainly found in plants like P. ginseng, Panax notoginseng, P. 

quinquefolius, Panax japonicas etc. Ginsenoside Rd reduces metastasis, proliferation, migration, 

inducing apoptosis, reverses EMT via different signaling pathways like Akt/mTOR signaling, 

STAT3/JAK2 signaling, miR-18a-mediated downregulation of SMAD2 [168][169][170][171]. 

Numerous studies show that Ginsenoside Rd has no significant side effects [184][185]. Oridonin is 

primarily found in plants like Rabdosia rubescens, Isodon japonicus Hara, Isodon trichocarpus, Isodon 

enanderianus, and I. lophanthoides. Oridonin inhibits angiogenesis, migration, invasion and adhesion, 

proliferation, and phagocytosis properties via HIF-1α/VEGF, ERK/AKT, ERK/NFĸB signaling 

[166][166][167]. Oridonin reduces the side effects of various other cancer drugs when used in 

combination [186]. Oridonin shows anticancer properties with very low side effects [187]. Britanin is 

mainly found in plants like Inula lineariifolia Turcz. (Asteraceae), Inula japonica, Inula Britannica. 

Britanin induces apoptosis and autophagy and inhibits cell proliferation and angiogenesis via regulating 

different pathways like IKK1/1KK2, NF-ĸB, and AMPK signaling [172][173][175]. Britanin shows 

tolerable side effects at low dose administration in vivo [188]. Scutellarein is found primarily in plants 

like Scutellaria lateriflora, Asplenium belangeri, Mexican oregano, sweet orange, Scutellaria barbata. 

Scutellarein inhibits cell migration, adhesion, reducing inflammation, induces vasodilation via 

regulating different pathways like eNOS/NO/PKG, NF-ĸb [176][177][180]. No side effects were 

absorbed when treated with Scutellarein in various studies [189]. 

4.3.2. ANALYSIS OF IMPACT OF GALLIC ACID AND SHIKONIN ON DEG OF HNSC. 

Expression data of HNSC cancer and both the natural compounds merged in Microsoft-excel were 

studied and filtered expression of HNSC cancer with a cut of greater than one. 1016 genes were found 
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differentially over-expressed in HNSC cancer and were compared this with the expression data of Gallic 

acid and Shikonin. Gallic acid results in downregulation of 120 of these differentially over-expressed 

genes and shikonin down-regulates 660 genes from these 1016 over-expressed genes. Again, for down 

regulated gene, Expression data of HNSC cancer filtered with a cut off less than or equals to -1. 795 

genes were found differentially down expressed in the HNSC cancer and were compared with the 

expression data of Gallic acid and Shikonin. Gallic acid results in upregulation of 35 genes and Shikonin 

up-regulates 38 genes from these 795 down-regulated genes. So, this combination of gallic acid and 

shikonin could be effective for the HNSC cancer treatment. (Figure 4.6) 

 

Figure 4.6: Figure demonstrate that expression of no. of genes altered by gallic acid and Shikonin from the 
differentially expressed genes. Gallic acid and Shikonin downregulates 120 genes and 660 genes, 
respectively that are upregulated in HNSC, whereas gallic acid and Shikonin upregulates 35 and 38 genes, 
respectively that are downregulates in HNSC. 

Gallic acid shows anti-cancer activity by its selective cell death effect in various cancer cells but not in 

normal cells[161]. The molecular targets and function of gallic acid are activation of NF-B inhibition, 

ATM kinase, UDP-glucose dehydrogenase inhibition, Apoptosis induction, Ribonucleotide reductase 

inhibition, Cyclooxygenase inhibition, GSH depletion, Invasion inhibition[162]. Shikonin deregulates 
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the cellular Ca2+ and ROS levels in the mitochondria which leads to breakdown of mitochondrial 

membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of 

apoptosis. The structure and metabolism of mitochondria is very different in cancer as compared to 

normal cells, hence Shikonin is a promising candidate for next generation of chemotherapy as shown 

in Figure 4.7. 
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Figure 4.7: Following figure demonstrate the pathway analysis of differential genes involved in HNSC and 
whose expression are reverse by the action of gallic acid and Shikonin, respectively. 

Funrich tool was used for the pathway analysis of regulated genes by Gallic acid and Shikonin from the 

differentially expressed genes results show genes getting downregulated by Gallic acid involved in 

Pathways like Glutamate Binding, inflammasomes, translation synthesis by HREV1, IL6-mediated 

signalling events, association of licensing factor, The NLRP3 inflammasome, CDC6 association with 

the ORC Pathways, EPHA2 forward signalling. Genes upregulated by Gallic acid involved in pathways 

like axonal growth inhibition, DNA Replication Pre-Initiation, axonal growth stimulation, estrogen 

biosynthesis, biotin metabolism etc. Genes downregulated by Shikonin involved in pathways like ATF-

2 transcription factor, IL3-mediated signalling events, ErbB receptor signalling, endothelin, E-cadherin 

signalling, stabilization and expansion, glypican pathway, E-cadherin signalling events etc. Genes 

upregulated by Shikonin were involved in pathways like immunoregulatory interactions, glycine 

biosynthesis, validated transcriptional, circadian Clock, interferon Signalling, antigen presentation etc. 

Figure 4.8. 
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Figure 4.8: Signaling molecules regulated by two phytochemicals, namely Shikonin and Gallic acid.  



79 | P a g e  

 

For example, Shikonin Inhibits PI3K, mir19a, FAK, TrxR1, IDO1 that regulates cell proliferation, 

autophagy, and apoptosis. In addition, Shikonin upregulates the activity of Erk, Casp3, and RIP1 that 

are involved in the regulation of autophagy, apoptosis, proliferation, and necrosis. Moreover, Gallic 

acid targets MAPKs, namely Jnk, p38, and Erk, which regulates the transcriptional status of various 

signaling molecules, namely CREB, STAT1/3, LKB1, AP1, and p53. 

Hence, the genes involved in HNSC which contributed to cancer prognosis were shown to be regulated 

by the natural compounds that can potentially impact cancer progression and immunity related 

pathways. 

4.3.3. VALIDATION OF NATURAL COMPOUND COMBINATION IN IN-VITRO 

CONDITIONS 

OD observations and percentage viability of cells after treatment with Shikonin at different doses shown 

in Table 4.3. Dose response curve shown in Figure 4.9(a).  The IC50 values of Shikonin were shown 

to be 13.86, 11.95, and 10.89 at 12h, 24h, and 48h treatment, respectively. Cell viability remained 

relatively high (above 90%) at low doses (1 µl and 2 µl) across all time points, implying that these doses 

had a minor inhibitory effect on cell growth. Cell viability was progressively decreased at all time points 

as the dose was increased (4 to 20). A greater inhibitory effect on cell viability was observed with 

increased doses of Shikonin. At higher doses (10 to 20), cell viability significantly dropped, with 

percentages as low as 14.7% at 48 hours for 20µl, suggesting that higher Shikonin doses negatively 

impacted cell viability and growth, resulting in a significant reduction in viable cells. The IC50 values 

(13.86 after 12 hours, 11.95 after 24 hours, and 10.89 after 48 hours) were represented as the drug 

concentration required to inhibit 50% of cell viability. A lower IC50 value indicated that the drug was 

more effective at inhibiting cell viability at low concentrations.  

 

 

 

 

 



80 | P a g e  

 

Serial 

no. 

Dosage 

conc. 

OD at 

12h 

OD at 

24h 

OD at 

48h 

% cell 

viability 

at 12 h 

% cell 

viability at 

24 h 

% cell 

viability 

at 48 h 

1 0 0.711 0.739 0.768 100 100 100 

2 1 0.68 0.69 0.719 95.33133 92.91908 93.20388 

3 2 0.666 0.69 0.705 93.22289 92.91908 91.26214 

4 4 0.657 0.672 0.681 91.86747 90.31792 87.93343 

5 6 0.641 0.641 0.656 89.45783 85.83815 84.46602 

6 8 0.619 0.638 0.579 86.14458 85.40462 73.78641 

7 10 0.556 0.581 0.452 76.65663 77.16763 56.17198 

8 12 0.442 0.359 0.327 59.48795 45.08671 38.83495 

9 16 0.297 0.243 0.194 37.6506 28.3237 20.38835 

10 20 0.224 0.173 0.153 26.65663 18.20809 14.7018 

Table 4.3: Represents the effect of different doses of Shikonin on MDA-MB-231 cell lines for 12h, 24h, 48h 
in term of OD value and percentage viability.  

OD observations and % viability of cells after treatment with Gallic acid at different doses shown in 

Table 4.4. Dose response curve shown in Figure 4.9(b).  The IC50 values of Gallic acid were shown 

to be 46.87, 59.37, and 93.75 at 12h, 24h, and 48h treatment, respectively. Cell viability remained 

relatively high (above 90%) across all time points at low doses (10 µl and 20 µl), implying that these 

doses had a minor inhibitory effect on cell growth. Cell viability was progressively decreased at all time 

points as the dose was increased (50 µl to 100 µl). With increasing doses of Gallic acid, the inhibitory 

effect on cell growth and viability became more pronounced. At higher doses (60 µl to 100 µl), cell 

viability dropped significantly, with percentages as low as 15.10% at 48 hours for 100 µl dose.  

Serial 

no. 

Dosage 

conc. 

OD at 

12h 

OD at 

24h 

OD at 

48h 

% cell 

viability 

at 12 h 

% cell 

viability at 

24 h 

% cell 

viability 

at 48 h 

1 0 0.711 0.739 0.768 100 100 100 

2 10 0.705 0.736 0.755 99.09639 99.56647 92.1875 

3 20 0.698 0.714 0.744 98.04217 96.38728 90.75521 

4 30 0.686 0.681 0.698 96.23494 91.6185 84.76563 

5 40 0.678 0.643 0.536 95.03012 86.12717 63.67188 

6 50 0.64 0.538 0.38 89.30723 70.95376 43.35938 

7 60 0.607 0.387 0.253 84.33735 49.13295 26.82292 

8 70 0.481 0.365 0.22 65.36145 45.95376 22.52604 

9 80 0.406 0.28 0.194 54.06627 33.67052 19.14063 

10 90 0.395 0.222 0.167 52.40964 25.28902 15.625 

11 100 0.352 0.197 0.163 45.93373 21.6763 15.10417 

Table 4.4: Represents the effect of different doses of Gallic acid on MDA-MB-231 cell lines for 12h, 24h, 
48h in term of OD value and percentage viability.  
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Figure 4.9: Figure showed the percentage cell viability at different concentration of Shikonin (left) and gallic 
acid (right). 

OD observations and % viability of cells after treatment with different dose combination of Shikonin 

and Gallic acid are shown in Table 4.5. The bar plot in Figure 4.10 showed the percentage cell viability 

after treatment with combinations of shikonin and gallic acid in the ratios as mentioned in the figure 

exposed for different time periods. Cell viability percentages after 12 hours, 24 hours, and 48 hours for 

dose combination G40 µl +S12 µl were 47.59%, 38.52%, and 31.54%, respectively. Cell viability was 

further shown to decrease at all time points as the dosage concentration of both Gallic acid and Shikonin 

was increased in combination treatments. At 48 hours, the lowest cell viability percentage of 14.46% 

was achieved with the drug combination dose G80µl+S16µl. 

Serial 

no. 

Dosage 

conc. 

OD at 

12h 

OD at 

24h 

OD at 

48h 

% cell 

viability 

at 12 h 

% cell 

viability at 

24 h 

% cell 

viability 

at 48 h 

1 G40µl+S12µl 0.363 0.317 0.276 47.59036 38.51641 31.5427 

2 G40µl+S16µl 0.285 0.227 0.186 35.84337 25.6776 19.14601 

3 G40µl+S20µl 0.212 0.191 0.182 24.8494 20.54208 18.59504 

4 G60µl+S12µl 0.329 0.302 0.257 42.46988 36.3766 28.92562 

5 G60µl+S16µl 0.269 0.205 0.174 33.43373 22.53923 17.49311 

6 G60µl+S20µl 0.271 0.247 0.201 33.73494 28.53067 21.21212 

7 G80µl+S12µl 0.342 0.296 0.231 44.42771 35.52068 25.34435 

8 G80µl+S16µl 0.246 0.181 0.152 29.96988 19.11555 14.46281 

9 G80µl+S20µl 0.217 0.189 0.168 25.60241 20.25678 16.66667 

Table 4.5: Represents the effect of combination of gallic acid and shikonin on MDA-MB-231 cell lines in a 
dose dependent manner. 
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Figure 4.10: Represents the effect of combination of gallic acid and shikonin on MDA-MB-231 cell lines at 
different conc. And time interval. 

 

Figure 4.11: Comperition of percentage viability of cells after treatment with shikonin and gallic acid 
individually and their combinations. (X-axis: percentage of cell viability, Y-axis: individual effect of single 
natural compound and combination of natural compound) 

Cell viability after Shikonin and Gallic acid treatment (individually) were compared to the combination 

treatments in Figure 4.11, it was observed that the drug combination had a stronger inhibitory effect on 

cell viability. The data suggested that Gallic acid and Shikonin had a synergistic effect on MDA-MB-
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231 cell viability. The combination treatment was found to inhibit cell viability more effectively than 

the individual drugs alone. 

Therefore, it can be stated that the combination of gallic acid and shikonin could be benefcial for the 

combinatorial treatment of HNSC cancer. Many plants, including Lithospermum erythrorhizon, 

Alkanna, Arnebia, Onosma, Onosma sericeum Willd, and Echium generate shikonin and research have 

previously shown that shikonin regulates various functions in these plants, including transgene 

expression. Shikonin has been used as a red dye for centuries and is reported to possess medicinal 

properties. It was evaluated as a multi-functional antibacterial and UV protective agent on a silk fabric, 

exhibits insulin-like activities by inhibiting phosphatase and tensin homologue deleted on Chromosome 

10 (PTEN). Further, the drug has shown various properties, such as anti-viral, anti-tumor, cardiotonic 

and contraceptive properties. Similarly, gallic acid is found in many food sources like banana, walnut, 

hazelnut, green tea, avocado, guava, mango, mulberry, pomegranate, blackcurrant, cashew, red wine, 

strawberry, blueberry, apple, grape etc. 

Gallic acid is a typical antioxidant tea formulation, and thus considered as potential natural antioxidant. 

Moreover, Gallic acid in addition to its phytochemical activity is also utilised in tanning, ink colours, 

and paper manufacturing. Gallic acid, commonly known as 3,4,5-trihydroxybenzoic acid, is a phenolic 

chemical, which can be found both in its free form and as a component of tannins, specifcally 

gallotannin. Additionally, gallic acid and its derivatives can be found in almost all parts of the plant, 

including the bark, wood, leaf, fruit, root, and seed. 
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CHAPTER V: CONCLUSION 

Cancer remains a complex disease with diverse underlying causes and mechanisms. 

Addressing the burden of cancer requires a comprehensive approach involving prevention, 

early detection, and effective treatment strategies. By fostering collaboration between 

researchers, healthcare professionals, policymakers, and the public, we can strive towards 

reducing the global impact of cancer and improving the lives of affected individuals. 

Early detection of cancer using tumor-derived biomarkers for cancer has several lacunae and 

has been discussed extensively. Since PBMCs are immune cells in the blood that help the host 

immune system respond to tumor cells, peripheral blood profiling can be used for early 

detection of cancer based on immune marker profiling that alters due to the host immune 

system’s reaction to cancer. Cancer patients often exhibit a high frequency of heterogenicity in 

tumor expressed biomarkers. This heterogenicity results in the success of certain therapy in 

some patients while others do not respond. Hence there is variable efficacy of different drugs 

in different populations. However, biomarkers that are differentially expressed as result of 

immunological response to tumor show significantly lower frequency of heterogenicity. Our 

study that focuses on the immunomodulatory biomarkers would therefore be effective in 

developing therapy that would show universal responsiveness in diverse patients. It also offers 

the possibility of early cancer detection with minimally invasive methods (even before clinical 

symptoms appear). It can also be useful for predicting how a tumor will grow and how a patient 

will fair and the prognosis of clinical progression. However, since these results are based on 

computational biology, in vivo studies are necessary to validate them. This study promotes the 

application of XAI on ML models for quantifying & comprehensively examining the predicted 

findings, particularly in biology, for the development of biomarkers of predictive and 

prognostic significance. Traditional biomarkers of tumor cells showed polymorphism in 

patients therefore immunological biomarkers might be a better alternative as a therapeutic 
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target. 

Synthetic drugs even FDA approved have side effect on normal cells which is often due to 

additional binding of therapeutic drug to off target receptors leading to unpleasant side effects. Natural 

compounds are multitargeting; therefore, they can simultaneously target multiple pathways and 

many biological processes, helping in tumor regression. Combination of natural compounds 

was developed that can help in HNSC tumor regression and immune modulation with minimal 

side effects. As this combination was further analyzed, it was found that many biological 

processes were regulated by more than one compound via different pathways; therefore, it 

might not be easy for tumor cells to escape this regression mechanism. Further, tumor cells 

cannot gain drug resistance easily against them.  Immunotherapy is typically associated with 

side effects that often deter the use of such treatment strategies. Our combination of natural 

compounds holds a better immunotherapeutic potential without the commonly associated side 

effects typically seen with chemical immunomodulatory drugs. Our study has opened a new 

dimension for developing a combinatorial natural compound cocktail as a potential 

immunomodulatory drug alternative. Thus, we propose that such a combination be further 

analyzed in in vivo studies to develop better treatment for tumor patients.  
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A B S T R A C T   

The incidence and mortality rate of breast cancer increases yearly by an average of 1.44 % and 0.23 %, 
respectively. Till 2021, there were 7.8 million women who had been diagnosed with breast cancer within 5 years. 
Biopsies of tumors are often expensive and invasive and raise the risk of serious complications like infection, 
excessive bleeding, and puncture damage to nearby tissues and organs. Early detection biomarkers are often 
variably expressed in different patients and may even be below the detection level at an early stage. Hence PBMC 
that shows alteration in gene profile as a result of interaction with tumor antigens may serve as a better early 
detection biomarker. Also, such alterations in immune gene profile in PBMCs are more prone to detection despite 
variability in different breast cancer mutants.This study aimed to identify potential diagnostic biomarkers for 
breast cancer using eXplainable Artificial Intelligence (XAI) on XGBoost machine learning (ML) models trained 
on a binary classification dataset containing the expression data of PBMCs from 252 breast cancer patients and 
194 healthy women.After effectively adding SHAP values further into the XGBoost model, ten important genes 
related to breast cancer development were discovered to be effective potential biomarkers. Our studies showed 
that SVIP, BEND3, MDGA2, LEF1-AS1, PRM1, TEX14, MZB1, TMIGD2, KIT, and FKBP7 are key genes that impact 
model prediction. These genes may serve as early, non-invasive diagnostic and prognostic biomarkers for breast 
cancer patients.   

1. Introduction 

The incidence and mortality rate of breast cancer increases yearly by 
1.44 % and 0.23 %, respectively (Lima et al., 2021). It is the most 
common cancer in women worldwide (Sung et al., 2021). Breast cancer 
is a disorder in which the breast cells proliferate uncontrollably. Based 
on which breast cells become cancerous, we can classify the different 
categories of breast cancer that may be found in the breast (Feng et al., 
2018). Breast cancer affects women of all ages after puberty; however, 
the incidence percentage rises with age (Benz, 2008). Till 2021, there 
were 7.8 million women who had been diagnosed with breast cancer 
within 5 years (Siegel et al., 2022). Breast cancer is responsible for more 
DALYs (disability-adjusted life years) lost in women worldwide than any 
other kind of cancer (Kocarnik et al., 2022). 

Even though tumor sampling is frequently used to identify bio-
markers, collecting tissue is difficult because of restricted accessibility, 
many lesions and heterogeneity of the biopsy site, and patient conditions 

(Bedard et al., 2013). Biopsies of tumors are often expensive, invasive, 
and time-consuming, and they raise the risk of serious complications 
(Tadimety et al., 2018). Most screening systems cannot detect and 
identify cancers until they have reached a particular stage of develop-
ment (Yang et al., 2022). Breast cancer, for example, may have been 
present for many years before it is discovered through palpation or 
mammography, and it has the potential to spread to other organs 
(Akram et al., 2017). There is a pressing need to identify cancer at its 
earliest stages, particularly before the onset of clinical signs and symp-
toms. Early breast cancer detection is essential since it provides a more 
significant number of treatment choices, higher survival, and enhanced 
quality of life. While there is no foolproof way to avoid breast cancer, 
early diagnosis gives the most significant opportunity for successful 
treatment. Early detection and modern treatment are key to avoiding 
breast cancer fatalities. Early-stage breast cancer is simpler to treat. 
Regular screenings are the best method to detect breast cancer early 
(Jatoi and Pinsky, 2021). 
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Studies of biomarkers from blood, nipple aspirate fluid, perspiration, 
urine, tears, or breath may diagnose breast cancer early and in a non- 
invasive manner (Li et al., 2020). A simple blood or breath test may 
soon be able to identify breast cancer early (Kure et al., 2021). Recent 
studies imply peripheral blood analyses might provide prognosis and 
treatment responsiveness (Nixon et al., 2019). Cancer detection using 
peripheral blood is more straightforward and less invasive (Hou et al., 
2020). As a result, generating clinically useful biomarkers requires the 
study of readily available peripheral blood (Marrugo-Ramírez et al., 
2018). The immune system relies on these PMBCs to combat infection 
and adapts to new threats. Oncogenic cells interact with normal stromal 
cells and the host immunological defense system to form tumors and 
prevent apoptosis (Lucchetti et al., 2020). The tumor’s ability to evade 
the immune system also plays a significant role. Immune suppression in 
the tumor microenvironment by CD4+, CD25+, and FoxP3+ cells, 
regulatory T cells (Tregs), and other inhibitory peripheral blood 
mononuclear cells is the primary mechanism of tumor immune evasion 
(Mattei et al., 2020). Because of this, gene expression profiling of pe-
ripheral blood cells has the potential to identify early cancers (Wen 
et al., 2021). Michael E. Burczynski et al. demonstrated that circulating 
monocytes of peripheral blood may be utilized as a surrogate monitor 
for difficult-to-biopsy tissues and/or as an extremely sensitive monitor 
to check for changes in the physiological condition of the organism 
(Mattei et al., 2020). Sharma et al. showed that PBMCs might be utilized 
to build gene expression assays for early diagnosis of breast cancer based 
on the properties of these cells (Sharma et al., 2005). The process by 
which malignant development induces distinctive alterations in the 
blood biochemical environment justifies the use of the PBMC tran-
scriptome gene as a monitor for malignant solid tumors (Čelešnik and 
Potočnik, 2022). Tumor cells interact with immune cells and change 
their expression profiling of genes and can escape the immune system of 
the host easily (Crispen and Kusmartsev, 2020). The transcriptome gene 
expression of PBMCs may be used as a tumor screening marker since it is 
conveniently retrieved. Clinical pharmacogenomics might benefit from 
the use of PBMCs as predictive biomarkers because of the ease with 
which they can be obtained (Veal et al., 2019). 

1.1. Machine learning and XAI 

In previous studies, many biomarkers have been identified in the 
search for genes with more substantial predictive value for PBMCs of 
Breast tumors via machine learning algorithms (Kothari et al., 2020; 
Meena and Hasija, 2022). Researchers are presently using AI-based 
machine learning (ML) approaches to study the genetic diversity of 
cancers, which may be utilized to enhance diagnostic accuracy, the 
creation of valuable biomarkers, and the effectiveness of cancer thera-
peutics (Dlamini et al., 2020). AI is the capacity of a robot to imitate 
human behavior, which is advantageous when dealing with vast vol-
umes of data. Using AI, robots may learn from their mistakes and suc-
cesses without being explicitly programmed (Allen, 2022). ML models 
are learning and improving modeling techniques. These models facili-
tate the identification of critical components and their interactions 
(Bender and Cortes-Ciriano, 2021). From a mostly theoretical to an 
actual application-oriented stage, AI has progressed over the last several 
years (Bohr and Memarzadeh, 2020). With the rise of AI, there are great 
hopes for its usage in several fields, especially in cancer research, where 
ML has already been used to analyze survival and forecast models for 
pancreatic, advanced nasopharyngeal carcinomas, breast, and other 
malignancies (Shaheen, 2021). Even though AI algorithms, particularly 
ML algorithms, appear to be effective in terms of outcomes and pre-
dictions, they are afflicted by opacity, which makes it difficult to gain 
insight into their essential operating processes, which exacerbates the 
dilemma because putting critical decisions to a system that is incapable 
of self-explanation carries serious risks (von Eschenbach, 2021). In 
complex multi-factorial diseases like cancer,even the most powerful 
learning methods suffer from the fact that, on the one hand, it is difficult 

to explain the genesis of a result, and on the other hand, they lack 
robustness. Even the smallest perturbations in the input data can 
dramatically affect the output, leading to completely different results 
(Holzinger et al., 2022a). Biological datasets often suffer from high 
variances as a result of experimental limitations, thus resulting in poor 
data quality. Biological data acquisition sometimes has interdependent 
experiments that do not result in independent and identically distributed 
data sets, particularly in multi-factorial diseases like cancer. Explain-
ability and robustness promote reliability and trust in the results and 
ensure that humans remain in control (Holzinger, 2021). A paradigm 
change toward more transparent and intelligible AI is suggested by the 
eXplainable Artificial Intelligence (XAI) project. Its goal is to develop a 
set of tactics that will provide better models that can be explained while 
maintaining high performance (Barredo Arrieta et al., 2020). Legal 
complications and data protection issues, especially in health care data, 
suffer from inaccessible black box approaches duly made accessible by 
eXplainable Artificial Intelligence (XAI) tools (Holzinger et al., 2022b). 
Shap is a framework for explainable artificial intelligence built from the 
Shapley values of game theory;one of the benefits is that it allows 
modeling methods utilizing libraries such as SciKit-Learn, PySpark, 
TensorFlow, Keras, and PyTorch, among others. The fundamental issue 
with these commonly used libraries for data modeling is that model 
outputs are not readily explicable. Using SHAP, we can make the outputs 
of machine learning models more comprehensible to individuals with 
fewer machine learning skills. With this capability, we can also utilize 
SHAP to visualize data (Holzinger et al., 2022b). 

Researchers in the XAI field are attempting to enhance their algo-
rithms to make the outputs of AI systems more understandable for 
humans (Linardatos et al., 2021). There has recently been renewed in-
terest in the notion of XAI in academia and the field of applied artificial 
intelligence.Models that can justify their output are called explainable or 
explainability. To add, explainability refers to the model’s output is 
accurately and completely represented (Czerwinska, 2022). Local and 
global explainability may be categorized according to the context in 
which the model is used to make a particular choice (Lundberg et al., 
2020). Tools that help people understand the behavior of black-box 
models are becoming more critical because of their capacity to explain 
their behavior (Rai, 2020). Some XAI frameworks include SHAP, LIME, 
ELI5, AIX360, and Skaters, with the first two being the most popular and 
compatible with any deep learning or machine learning model (Linar-
datos et al., 2021). Currently,Explainable Artificial Intelligence resolves 
many problems in the diagnosis of cancers (Zhang et al., 2022). 

SHAPcanincrease the reliability of the ML model by evaluating each 
element used for prediction purposes in ML. After the publication of the 
solution paradigm for the examination in cooperative game theory by 
Lloyd Shapley in 1951, SHAP was developed (Shapley, 1953). Standard 
Shapley values for simple model examination are used in an accessible 
way by SHAP to relate optimum credit allocation with local explanations 
(Nohara et al.). It’s easy to reverse-engineer the outcomes of any pre-
diction algorithm using SHAP, which is a fantastic tool for current ML 
(Wieland et al., 2021). For more complicated models like gradient 
boosting, SHAP is often used to better comprehend the model’s decisions 
and verify that they are accurate and faithful. The Shapley values of 
game theory are the ancestors of SHAP values, which uses the word 
game to symbolize the prediction model’s result and the word players to 
indicate the model’s characteristics. A player’s performance may be 
quantified using Shapley values, which are also known as SHAP values. 
SHAP values measure each feature’s local ability to influence the pre-
diction model (Rodríguez-Pérez and Bajorath, 2020). KernelSHAP and 
TreeSHAP are two methods for estimating Shapley values. KernelSHAP 
is used for local surrogate models to explain predictions made by 
black-box machine learning models, while TreeSHAP is used to explain 
sophisticated models based on trees (Aas et al., 2021). 

In this study, we were trying to identify PBMCs derived biomarkers 
of Breast cancer based on their gene expression with the help of XAI so 
that non-invasive and early screening of breast cancer can be achieved. 
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2. Methodology 

2.1. Data retrieval 

The datasets for peripheral blood cells from breast tumor patients 
and normal samples were obtained from NCBI-GEO Database. Two 
datasets were identified with suitable numbers of samples and matching 
queries. GSE27562 contains 162 samples. Of them, 31 are from normal 
women, 57 are from malignant BC patients, 37 are from benign BC pa-
tients,and 37 are from patients of other cancers termed ectopic samples. 
GSE47862 contains 321 samples. Out of them, 52 are from BC patients 
who had no family history of BC, 43 are from normal women who had no 
family history either, 106 are from breast cancer patients with a family 
history, and 120 are from normal women who had a family history of 
BC. 

2.2. Data pre-processing 

GSE27562 and GSE47862 GEO datasets were integrated to construct 
the final dataset. The quality of the dataset must be verified, so for this 
purpose, batch normalization of the dataset has been done, which was 
achieved by the gene standardization method, a location-scale method. 
Gene-wise standardization modifies the values of all genes such that 
their means equal zero and standard deviations (SDs) equal one. This is 
performed by removing the mean from each gene’s sample data and 
dividing the resulting value by its standard deviation. Batch normalized 
expression data was further quantile normalized to remove additional 
biases from the obtained expression data.Quantile normalization sub-
stitutes each attribute (row) in the data with the mean of all attributes 
across all samples in the same order. The following procedure was 
employed to normalize a raw high-throughput data collection including 
multiple samples: Sort the attribute values included inside each sample. 
(2) Calculate the mean of each attribute’s rows. Replace the raw char-
acteristic with its average value. (4) Rearrange all altered values such 
that they are in the same order as before they were updated. 

2.3. Machine learning models implementation 

The training and testing sets were made from the dataset randomly in 
a ratio of 80–20. ML techniques such as SVMs, KNNs, etc., have recently 
gained more popularity in healthcare fields such as gene expression 
analysis, drug discovery, omics data analysis, imaging, etc., it was 
tempting to apply such ML techniques to our dataset and observe the 
intriguing outcomes.Because of its huge popularity, we have used the 
XGBoost ML classifier on our training datasets to generate prediction 
models, and the testing sets were then used to evaluate the performance 
of the prediction models. All the XGBoost ML models were validated 
based on their confusion matrix and the accuracy generated using the 
testing dataset. The XGBoost is a machine learning classifier that is based 
on decision trees known to boost the performance of the ML model and 
has been frequently reported to have beaten other ML algorithms, 
including random forest, decision trees, regression, etc. Despite having 
compatibility with several computer languages, XGBoost frameworks 
are most popular for Python and the associated scikit-learn framework. 

2.4. Explain the ability of the trained model 

The trained XGBoost model was analyzed by the Explainable artifi-
cial intelligence (XAI) analysis with the help of the SHAP library. As XAI 
is concerned with the decision-making process, it helps in the identifi-
cation of the features significantly impacting the model’s prediction.The 
implementation of XAI analysis will help in identifying the significant 
genes, and thereafter further identification/classification of the pheno-
type/condition, such as test or control, will be done by trained models. A 
local summary plot was formed to exhibit the values indicating the 
features contributing to the decision confidence with the help of SHAP 

values. SHAP stands for Shapley Additive exPlanations. The global 
feature relevance from training data was shown by the SHAP summary 
plot, and the top 10 genes (top-ranked average SHAP value) features 
were used to train new XGBoost models again, and the significance of 10 
selected genes was validated by comparing new XGBoost models to 
those previously trained on 16,000 genes. 

3. Results 

The array data for PBMCs of breast cancer (BC) patients obtained 
from the GEO database was retrieved in normalized and calibrated form, 
which can be found in Table 1. Search terms like Breast Cancer and 
PBMCs were used to obtain the datasets. After retrieval, the datasets 
were merged based on the attribute common gene symbols, About 
sixteen thousand such common genes were incorporated along with 
their values as features. 

3.1. Data pre-processing 

GSE27562 and GSE47862 GEO datasets were integrated to construct 
the final dataset and finally, 16,000 common genes were identified in 
both datasets Their expression profiles were merged and the batch was 
normalized using the gene standardization method, a location-scale 
method for batch normalization of data integrated from different data-
sets. Both datasets are already log-transformed; therefore, quantile 
normalization was applied to the batch-normalized data to remove 
further biases from the obtained expression data. Different samples were 
classified into a binary classification problem: test vs control. The test 
was the samples of BC patients, and the control was the samples from 
healthy women. 

The normalized expression density plot was created with the help of 
quantile normalization, shown in Fig. 1. 

3.2. XGBoost implementation results 

The dataset was randomly divided into a training set (80 %) and a 
test set (20 %) to apply machine learning. With the help of the scikit- 
learning library, the XGBoost algorithm was applied.The training data-
set trained XGBoost Model for further classification on our test vs control 
dataset. The performance of the model was then checked using the 
testing sets. The confusion matrix was implemented to check the 
model’s accuracy using the training sets, and the model’s accuracy was 
obtained using the test set thereafter. There were 28 true positive events, 
2 false positive events, 1 false negative event, and 59 true negative 
events found in the confusion matrix. The accuracy here implies a 

Table 1 
The table demonstrates the Microarray dataset obtained from the GEO database 
along with the familial description and the classification of samples that have 
further been used for ML analysis.  

GEO 
Accession 
Number 

Total 
Sample 

Sample class in 
the dataset 

Sample Size Classification of 
samples for ML 

GSE27562 162 Malignant 57(test) Test – 252 
Benign 37(test) 
Ectopic 37 

(eliminated) 
Normal 31(control) 

GSE47862 321 Breast cancer 
without a 
family history 

52(test) Control- 194 

Normal without 
a family history 

43(control) 

Breast Cancer 
with a family 
history 

106(test) 

Normal with 
family history 

120(control)  
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prediction of the model’s performance, which stands for the percentage 
of correct predictions the model has made. For binary classification, the 
accuracy was calculated in the form of positives and negatives. as 
described by the following equation: 

Accuracy = TP+TN
TP+TN+FP+FN 

A predictive accuracy of 96.67 % for the test vs control dataset was 
obtained using the XGBoost ML classifier, which implies that the model 
did well in distinguishing the features of the test and control. 

3.3. XGBoost models examination with XAI 

With the help of python’s SHAPpackage, the XAI analysis was 
implemented on the XGBoost trained model, which is all about the 
model’s decision-making & identifies the features that influence the 
model’s prediction confidence to a great extent, and this analysis helped 
in finding out the valuable genes from which trained model can separate 
the corresponding dataset into test (PBMCs of Cancer Patients) and 
control (PBMCs of Healthy Women). The corresponding SHAP values 
representing the respective share of a particular attribute to the accuracy 
of the model’s decision were displayed with the help of a local summary 
plot. 

The global significance for every gene was found as the average 
absolute value of that particular over all of the given samples, with the 
help of a global feature importance plot that was obtained by the bar 
plot function where SHAP values were passed as an array. The inference 
obtained from this global feature importance plot points out the most 
significant genes in descending order, suggesting the more contribution 
of genes on the top towards the model’s prediction. The bar plot sorts out 
the most important genes placed on the top. The gene of utmost sig-
nificance in our machine learning model was STIV, exhibiting a high 
predictive value. 

With the implementation of SHAP values on the trained models, 
genes of the highest significance were obtained from the bar plot.The 
most significant genes in immune cells involved in the progression of 
Breast Cancer were identified by SHAP listed in Table 2. 

The following SHAP summary plot identified that SVIP is the most 
significant gene in the data set and highly impacted the model’s 
prediction. 

3.4. Examination of XAI output 

The authenticity of results was checked by applying ML classifier 
XGBoost on selected genes on the bases of their significance in model 
prediction. The top ten genes selected by their corresponding significant 
SHAP values were used to examine the reliability of the results by the ML 

classifier, namely XGBoost, highlighted in Table 2. The model’s accu-
racy was 94.44 % when trained with the top ten significant genes.  
Table 3 depicts the accuracy of both the gene sets, i.e., before and after 
implementing XAI on binary datasets, showing the prediction model’s 
performance in terms of accuracy. The confusion matrix of the model 
shows that there were 37 true positive events, 48 true negative events,3 
false positive, and 2 false negative events in the model’s prediction. The 
confusion matrix of datasets with 16000 genes and the top 10 genes are 
shown in Fig. 2. 

The SHAP plot of the top 10 significant genes, shown in Fig. 3, in-
dicates the contribution of the gene to the model’s prediction in 
descending order, which shows SVIP had the highest impact, followed 
by BEND3,MDGA2, LEF1-AS1,PRM1,TEX14,MZB1,TMIGD2,KIT,FKBP7 
respectively. 

Furthermore, to visualize the predictor’s positive & negative asso-
ciations with the respective genes, the SHAP summary plot was also 
made,as shown in Fig. 4. The inferences obtained from the SHAP sum-
mary plots are as follows: -The ranking of genes (vertically) in 
descending order signifies their attribute importance. The horizontal 
line depicts the association of the effect of an attribute on the extent of 
prediction. The color signifies the impact of a particular gene, maximum 
significance (in red color) or minimum significance (in blue color). The 

Fig. 1. The figure demonstrates Batch normalized expression data distribution curves followed by quantile normalized expression data curves.  

Table 2 
The table shows a list of genes contributing to the model prediction obtained 
from the merged datasets.  

Datasets Significant Genes 

Breast cancer patient’s PBMCs vs. 
Healthy person PBMCs 

SVIP,BEND3,MDGA2,LEF1-AS1,PRM1, 
TEX14,MZB1,TMIGD2,KIT,FKBP7,ZNF563, 
TC2N,LYZ,MAP3K19,GYPE,DSP,ID2,POLR2K, 
GFPT1,STAM,IRF8,MRPL57,CRYM,SERPIND1, 
DSG3,APCS,CDH16,HOXD10,TM4SF1,PMEL, 
COL4A6,MEGF6,HMGB3P1,LRRC20,ZNF668, 
CLIC3,LRP1B,STK32B,SLC16A10,TSHZ2, 
PDZRN4,UIMC1,SLC26A6,PIPOX,TMA7, 
POMGNT2,C19ORF44,CYYR1,DPP10-AS1,  

Table 3 
The table shows a comparison of accuracy between the prediction model for the 
16000 genes set and 10 selected gene sets.  

Datasets Accuracy of 16000 
genes set 

Accuracy of 10 
genes set 

Breast cancer patient’s PBMCs vs 
Healthy person PBMCs 

96.67 % 94.44 %  

S. Kumar and A. Das                                                                                                                                                                                                                          



Computational Biology and Chemistry 104 (2023) 107867

5

strong positive impact of SVIP on the SHAP Summary plot indicates the 
correlativity of the individual gene, where the X-axis signifies the pos-
itive impact and the red color signifies the level (high in this case). 
Similarly, the inverse connection of BEND3 to the target variable can be 
ruled out. 

3.5. Shortlisted genes statistical significance 

The iDEP tool was used to identify key genes differentially expressed 
in PBMCs during Breast cancer development. P-value ≤ 0.05 was the 
criteria for identification as statistically significant SVIP, MDGA2, 
TMIGD2, LEF1-AS1andTEX14 were found to be downregulated while 
BEND3, FKBP7, MZB1, PRM1, and KIT were found to be upregulated in 
PBMCs of Breast cancer patients (Table 4). 

4. Discussion 

Despite the fact that tissue-specific biomarkers, such as aberrant 
cells, alterations in tumor gene expression, and other malignant ab-
normalities, may be accurate cancer biomarkers, they have several 
limitations (Czerwinska, 2022). It is challenging to employ 
tissue-specific biomarkers to assess therapy response in real-time due to 
the invasive nature of biopsy collection (Ramos-Medina et al., 2021). 
TILs may be a valuable prognostic sign for identifying individuals who 
are most likely to respond to therapy. Biopsies and mammography, 
which are presently used to identify breast cancer, are painful, costly, 
and only effective in situations of advanced disease (Mutebi et al., 
2020). Mammography may not identify breast cancer immediately since 
its sensitivity is dependent on tumor size, ranging from 26 % at 5 mm to 
91 % at 10 mm (Mann et al., 2019). Breasts with thicker tissue hinder 
mammography’s ability to detect breast cancer (Kressin et al., 2022). A 
high level of sensitivity and specificity is required for early cancer 

Fig. 2. The figure shows a comparison of the confusion matrix for PBMCs obtained from Breast cancer patients vs the Healthy person dataset for all 16,000 genes and 
the top 10 genes. True positive, False positive, False negative,and True negative instances are indicated by a grey box, Black box, Black box, and white box 
respectively. 

Fig. 3. SHAP Bar plot illustrates the most significant genes and their SHAP values. The x-axis represents the average/mean absolute value for each gene across all the 
available data, while the y-axis represents the top 10 genes. 
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detection to increase patient survival rates. 
When searching for symptoms of cancer, intrusive tissue collection 

may be dangerous and may not be the best method for old or delicate 
individuals (Srivastava et al., 2019). Less invasive and more universally 
accessible techniques of acquiring biological samples, such as blood 
collection, may be more acceptable to patients, which might result in a 
quicker diagnosis (Hu et al., 2021). A high level of sensitivity and 
specificity is required for early cancer detection to increase patient 
survival rates. 

PBMCs mediate the immunological response of the host to tumor 
cells; hence, peripheral blood profiling may be used to assess the host’s 
reaction to cancer and offers the possibility of minimally invasive early 
cancer detection (even before the beginning of clinical symptoms). It can 
anticipate the prognosis and developmental trajectory of tumors and the 
clinical outcome. Multiple studies have attempted to identify alterations 
in PBMC gene expression within breast cancer to categorize subtypes. In 
individuals with breast cancer, the PBMC transcriptomes correlate 
poorly with conventional subtypes and are diverse. Using RNA 
sequencing, Ming et al. determined that ER, PR, and HER2 were not 
associated with transcriptome-wide PBMC gene expression patterns. The 
expression of PBMC genes indicates that blood mononuclear cells are 
immunologically reactive to tumor cells. Therefore, this is not entirely 
surprising. Similar results were seen for lung cancer patients, who 
showed high diversity in peripheral blood leucocyte transcriptomes 
regardless of histological type, with no discernible impact on the pe-
ripheral immune system. Therefore, we included PBMC samples from 
different types of breast cancer patients in our study concerning the 

stage of cancer,the patient’s history of cancer, and different subtypes of 
breast cancer. 252 breast cancer samples were included in this study. Of 
them, 37 were associated with benign stage of cancer, 57 were associ-
ated with malignant stage of cancer, 106 were from the patient with a 
family history of breast cancer, and 52 were from patients with no breast 
cancer history. 194 normal PBMC samples were included in this study 
for comparison with the tumor PBMC samples. Healthy individuals with 
a family history and without a family history were also included in the 
healthy control category. 

Machine learning algorithm XGBoost was applied to the binary 
classified dataset for classification, which is followed by the XAI to 
identify significant genes based on their contribution to the model’s 
prediction. Ten genes were identified in PBMCs of BC patients, which 
contribute the highest to the models’ prediction. These genes were 
further analyzed for their biological significance and their involvement 
in different biological processes and their regulation. 

4.1. Biological significance of the genes 

Each of the top 10 genes was further analyzed for their involvement 
in biological processes and their regulation to ascertain their impact on 
cancer progression. 

SVIP has tumor suppressor properties, and its restoration is linked to 
enhanced ER stress and growth inhibition (Llinàs-Arias et al., 2019). 
According to proteomic and metabolomic studies, mitochondria en-
zymes and oxidative respiration activity are diminished in tumor cells 
with SVIP epigenetic deletion (Li, 2021). 

BEND3+ T cells generated more significant quantities of IL-6 and IL-8 
than BEND3- T cells. Multiple inflammatory cells, including neutrophils, 
basophils, and T lymphocytes, are attracted by IL-8. Activation of 
BEND3+ T cells, which may produce IL-6 and IL-8 in response to TCR/ 
CD3 stimulation, may be essential for the significant and rapid initiation 
and development of inflammatory responses at the onset of inflamma-
tion. BEND3+ T cell dysregulation may result in chronic inflammation 
(Shiheido et al., 2014). BEND3 attaches to the promoters of 
differentiation-associated factors and important cell cycle regulators, 
such as CDKN1A, which encodes p21 and represses 
differentiation-associated gene expression by increasing H3K27me3 
expression (Kurniawan et al., 2022). 

MDGA2 plays the role of tumor suppressor in many cancers. 
Hypermethylation of MDGA2 is a prognostic marker in gastric cancer 
(Wang et al., 2016). MDGA2 knockdown enhances cell viability, boosts 

Fig. 4. The figure illustrates the SHAP Summary diagram, 
which shows the highly significant genes and their influ-
ence on the dataset. On the y-axis, selected genes are sorted 
in descending order, based on the significance of their 
characteristic. On the other hand, the x-axis shows the in-
fluence of genes on the prediction, illustrating the gene’s 
impact on the model output. The color indicates the in-
fluence of a particular gene on a prediction, whether it is 
statistically significant (in red) or low significance values 
(in blue).   

Table 4 
The table demonstrates the P-value and log FC value of the top 10 genes.  

Genes P-value logFC 

Dataset: Breast cancer patient’s PBMCs vs Healthy person PBMCs 
SVIP 4.82E-14 -1.28E-01 
BEND3 1.56E-02 8.31E-01 
MDGA2 1.56E-04 -1.29E-01 
FKBP7 3.25E-02 7.02E-02 
TMIGD2 1.23E-04 -7.31E-02 
LEF1-AS1 1.08E-04 -2.14E-01 
MZB1 1.27E-03 1.77E-01 
TEX14 4.12E-02 -6.66E-01 
PRM1 5.63E-03 4.49E-01 
KIT 3.67E-04 1.21E-01  
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colony formation, and advances the cell cycle but reduces apoptosis. 
MDGA2-encoded proteins form a new subfamily of the Ig superfamily 
and have a distinct structural organization consisting of six immuno-
globulin chains (Litwack et al., 2004). 

Dysregulation of PRM1 was absorbed in different tumor tissues and 
peripheral blood of cancer patients (Ren et al., 2021a; Meklat et al., 
2009; Chen et al., 2018). An abnormal expression of the CTA family gene 
PRM1 results in a particular humoral immune response (Ren et al., 
2021b). It regulates the invasion, migration, and proliferation of cancer 
cells (Chen et al., 2018). 

TEX14 upregulation was associated with the abundance of tumor 
suppressor protein REST in different cancer so it could be a potential 
therapeutic target (Karlin et al., 2014). It is essential for 
kinetochore-microtubule attachment and helps in metaphase to 
anaphase transition (Mondal et al., 2012). 

KIT auto phosphorylates on numerous Y residues that serve as 
docking sites for downstream effectors once activated. Several down-
stream mechanisms regulate cell survival and proliferation (Rnnstrand, 
2004). SFKs, PI3K p85, phospholipase C-gamma, and adaptors that 
activate MAP kinase pathways attach to phospho-Y residues on the re-
ceptor. KIT mutations are also associated with different types of cancers 
(Ashman and Griffith, 2013). KIT plays an important part in the acti-
vation of different immune cells like Mast cells, dendritic cells, eosino-
phils, etc (Oriss et al., 2014). 

TMIGD2, also known as CD28H (CD28 homolog), expressed in Homo 
sapiensand monkeys, while not in mice, enhanced angiogenesis when 
overexpressed in different cancers. It’s a naïve T cell expressed stimu-
latory receptor. TMIGD2 is a member of the Ig superfamily and has an 
IgV-like domain, transmembrane region, and cytoplasmic tail. TMIGD2 
has various functions depending on cell types and signaling pathways. It 
is a receptor of HHLA2 and hence could be a therapeutic target for 
various anti-cancer therapies (Janakiram et al., 2015). 

LEF1-AS1 (long noncoding RNA) overexpression is associated with 
the malignant growth of various tumors, and its knockdown inhibits the 
progression of many cancers. LEF1-AS1 mainly regulates ERK, Akt/ 
mTOR signaling, Wnt/β-Catenin, and Hippo signaling pathways hence 

playing diverse roles in tumor progression and immune regulation. 
FKBP7 could be the therapeutic target for various cancer,especially 

in case of drug resistance, like the taxane-resistance mTOR pathway can 
be controlled by targeting FKBP family proteins (Kolos et al., 2018; 
Garrido et al., 2019). 

MZB1 expression is associated with the progression of different 
cancers and patients’ disease-free survival (Watanabe et al., 2020; 
Kanda et al., 2016). MZB1 is essential for plasma cell differentiation and 
humoral immune response independent of T-cells by plasma cells 
(Andreani et al.,) and enhances the secretion of interferon α by dendritic 
cells (Kapoor et al., 2020). 

4.2. Biological processes regulated by genes 

Enrichment analysis of the top ten selected genes was achieved by 
the Funrich tool (Pathan et al., 2015). Biological processes which are 
statistically significantly regulated by these genes were identified based 
on their P-value, which should be less than 0.05. It was found that these 
genes were mainly involved in Apoptosis, Signal transduction, regula-
tion of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, 
and Cell communication (Figs. 5 and 6). 

4.3. Biological pathways regulated by genes 

Biological pathways regulated by these 10 genes were analyzed by 
the Funrich tool (Pathan et al., 2015) and it was found that KIT 
signaling, GM-CSF signaling, NOTCH, TGFBR, interleukins signaling, 
wnt signaling, cytokine signaling in the immune system, CDC42 
signaling and EGF receptor signaling were the main pathways regulated 
by them. The significance of these pathways was analyzed statistically 
based ontheir P-value which should be less than 0.05. 

The significance of these 10 genes was noticed to play a significant 
role in the regulation of cancer progression and regulation of the im-
mune system that is actively involved in cancer mitigation. They were 
found to be related to biological processes and pathways that are very 
much involved in the regulation of cancer metastatic progression. 

Fig. 5. The figure demonstrates the percentage of the top 10 genes that are involved in different biological processes or their regulation (bar graphs) and the p-value 
for their statistical significance in each case is represented by line plots. 
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Significant evidence was found in the literature proving their immu-
nological role and contribution to cancer progression. Therefore, these 
genes could be the potential PBMC biomarkers of breast cancer which 
can help in early detection and could be the non-invasive alternative to 
breast cancer detection. 

5. Conclusion 

Early detection of cancer using tumor-derived biomarkers for breast 
cancer has several lacunae and has been discussed extensively in the 
present manuscript. Since PBMCs are immune cells in the blood that 
help the host’s immune system respond to tumor cells, peripheral blood 
profiling can be used for early detection of cancer based on immune 
marker profiling that alters due to the host immune system’s reaction to 
cancer. Also, it is known that Tumor cells induced modulation of the 
immune system, which is a potential early detection target as well as a 
therapeutic target. It also offers the possibility of early cancer detection 
with minimally invasive methods (even before clinical symptoms 
appear). It can also be useful for predicting how a tumor will grow and 
how a patient will fair and the prognosis of clinical progression. How-
ever, since these results are based on computational biology, in vivo 
studies are necessary to validate them. This study promotes the appli-
cation of XAI on ML models for quantifying & comprehensively exam-
ining the predicted findings, particularly in the area of biology, for the 
development of biomarkers of predictive and prognostic significance. 
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The genetic variability across different cancer types 
has impeded the identifi cation of therapeutic targets and 
the drug design and development against tumors.(1) The 
most commonly used cancer therapies include surgery, 
radiation, and chemotherapy, which can be used in 
isolation or different combinations.(2) However, these 
techniques have been associated with a high morbidity 
rate and a signifi cant decline in quality of life.(3) Head and 
neck squamous cell carcinomas (HNSC) could affect 
different head and neck areas, including the tongue, 
pharynx, larynx, nasal cavity, and salivary glands.(4) 
It is the sixth most common cancer globally, with 
over 880,000 new cases diagnosed and over 
450,000 patients dying yearly.(5) HNSC, with complex 
pathophysiology and pathogenesis, makes it diffi cult to 
determine the optimal treatment strategy.(6)

Additionally, despite monotherapy's specificity 
and efficiency, cancer cells' molecular flexibility 
renders ideal lethal effects challenging.(7) HNSC has 
a poor prognosis due to many patients' high likelihood 
of recurrence or metastasis following radiation or 
chemotherapy.(8) This high metastatic rate of HNSC 

is because of the tumor cell's interactions with the 
surrounding tissues and immune cells that will form 
the tumor microenvironment (TME).(9) Host immune 
cells can recognize and eliminate the tumor cells, 
but an evasion of immunosurveillance generates an 
environment that accommodates the progression and 
survival of tumor cells.(10) Cancer-associated stromal 
fi broblasts, T cells, B cells, neutrophils, macrophages, 
myeloid-derived suppressor cells (MDSC), natural killer 
(NK) cells, and mast cells are all part of the TME.(11) 
These numerous cell subsets penetrate tumors 
and interact with cells one another through multiple 
networks.(12) Tumors progress if they can evade 
and/or suppress antitumor immune responses.(13) 
Tumors frequently elude the immune system of their 
hosts by inhibiting cytotoxic T-cell activity or activating 
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and increasing immunosuppressive cell populations.(14)

Efforts to increase the effi cacy of cancer treatment 
have primarily failed in recent decades, underlining 
the need for novel techniques such as complementary 
and alternative medicine.(15) Numerous natural herbal 
substances have caught the interest of academics and 
physicians due to their potential to prevent or improve 
the treatment of chronic diseases, including cancer.(16) 
Natural chemicals and combinations thereof may be 
a potential source of synergistic cancer treatments 
since they can interact with multiple biological targets 
involved in tumor growth, drug resistance, and 
metastasis.(17) Through their multitargeting action, 
natural chemicals may enhance the effi cacy of already 
available cancer treatments or diminish treatment 
resistance.(18) Cancer treatment tries to eliminate or 
destroy tumor cells while sparing normal ones. The 
majority of natural substances are less poisonous, less 
expensive, have fewer side effects, and have been 
carefully researched for their carcinogenic potential.(19) 
Due to the adverse effects and drug resistance 
associated with conventional therapy, it was evident 
that natural substances can act as anticancer agents 
or adjuvants in chemotherapy.(20)

Cancer chemoprevention reverses, suppresses, or 
prevents cancer initiation, propagation, or advancement 
using natural or synthetic medications.(21) To be effective 
in people, a chemopreventive medicine must have an 
acceptable safety profile and be efficacious at a low 
enough dose to avoid severe side effects.(22) Natural 
dietary interventions such as fruits and vegetables show 
tremendous promise for chemopreventive research 
due to their potential to prevent and reduce cancer.(23) 
The chemical diversity of natural chemicals suggests 
a range of cancer chemoprevention techniques. 
Chemoprevention appears to be a rational and 
appealing strategy, as indicated by the success of 
several recent clinical trials aimed at cancer prevention 
in high-risk populations.(21)

Combination therapy combines two or more 
therapeutic drugs and is a crucial component of 
cancer treatment.(24) In comparison to monotherapy, 
the combination of anticancer drugs is more effective 
because it targets important pathways in a synergistic 
or additive.(25) This method might reduce drug 
resistance while providing therapeutic anticancer 
benefits, such as inhibiting mitotically active cells, 

reducing cancer stem cell populations, and triggering 
death.(26) Most metastatic tumors still have poor 5-year 
survival rates, and creating a new anticancer medicine 
is expensive and time-consuming.(27) As a result, new 
techniques are being investigated that target survival 
pathways and give effi cient and effective results at a 
low cost.(28) In TME, the expression of many genes is 
regulated, affecting cancer prognosis. Thus, designing 
combinatorial therapy required evidence to reverse 
those gene regulations and be free of side effects 
due to concomitant undesirable gene regulation. 
In this study, the different combinations of natural 
compounds have been studied for the treatment of 
HNSC through various computational approaches.

METHODS

Data Collection
Gene expression data of HNSC samples and 

peripheral blood mononuclear cells (PBMCs) of 
HNSC patients were collected from Gene Expression 
Omnibus (GEO)(29) with accession Nos. GSE83519 
and GSE39400,(30) respectively. In GSE83519, 22 
HNSC tumors and 22 paired normal samples were 
studied from the same patients. In GSE39400, there are 
28 samples of peripheral blood cells of HNSC patients 
who underwent surgery by means of expression profi ling, 
with a controlled group of 11 patients who underwent 
surgery in the head and neck region for non-HNSC 
reasons. RNA was extracted from PBMCs using RNA-bee 
(Campro Scientific bv., Veenendaal, Netherlands). 
Microarrays agilent low RNA input fluorescent linear 
amplification kit and 4×44K whole human genome 
arrays were used for microarray hybridization (Agilent 
Technologies, Amstelveen, Netherlands).

GSE85871(31) contains gene expression profiles 
of MCF7 cells cultured in minimum essential medium/
Earle's balanced salt solution (MEM/EBSS, Hyclone), 
10% fetal bovine serum, 1 mmol/L sodium pyruvate, 
and 100 mg/mL streptomycin in an incubator containing 
5% CO2 at 37 ℃ with 102 different molecules in 
Chinese medicines (CMs), and vehicle control (dimethyl 
sulfoxide, DMSO). Concentration and duration of 
compound administration may influence the gene 
expression patterns. According to the CMap database, 
the concentration of natural compounds was set to a 
single dosage of 10 μmol/L for 12 h, an internationally 
accepted concentration for high-throughput screening.(32) 
Two biological replicates for each group and the data 
set included profi les for 212 samples. RNA was isolated 
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from MCF7 cells using TRIzol after pre-treatment 
(Life Technologies, Carlsbad, US) and analyzed with 
Affymetrix Human Genome U133A 2.0 (Santa Clara, US) 
for gene expression patterns.

Differential Gene Expression Analysis
Differential gene expression analysis of GEO 

datasets of GSE83519 and GSE39400 were achieved by 
the GEO2R tool, an R-based tool that provides different 
high-throughput genetic data analysis packages.(33) 
Annotated gene tables and graphs were provided to help 
normalize the data, remove the data error, and visualize 
differentially expressed genes (DEGs). 

Data normalizat ion and dif ferential  gene 
expression analysis of the GSE83519 dataset was 
achieved with a cut-off of adjusted (adj.) P-value  
0.05, logFC value  1 for differentially upregulated 
genes and logFC value  –1 for di f ferential ly 
downregulated genes. Differential gene expression 
analysis of the GSE39400 dataset was also achieved 
by GEO2R with a cut-off adj. P-value  0.05, logFC 
value >0 for upregulated genes and logFC value <0 
for downregulated genes.

Enrichment Analysis
Enrichment analysis of selected upregulated 

and downregulated genes were achieved by the 
FunRich tool,(34) a standalone tool used for the 
functional enrichment analysis of genes. Results can 
be depicted in various forms like doughnut, Venn, 
pie, bar etc., and it can handle irrespective of the 
organism's verity of gene/protein datasets. Users can 
search either against the default background database 
or customized database for functional enrichment 
analysis in biological processes, pathways, etc.

Common Differential Gene Analysis
Common upregulated and downregulated 

differential genes were selected from the HNSC 
patient's tumor samples and PBMCs of HNSC patients 
by comparing their list of DEGs in Microsoft Excel. 
The set of differential genes from datasets GSE83519 
and GSE39400 were compared by using conditional 
formatting > highlight cells rule > duplicate values.

Differential  Gene Expression of Natural 
Compounds

GEO dataset GSE85871 was analyzed by 
GEO2R for 102 different natural compounds. Two 

replicates for each compound were considered a 
test set and compared with the vehicle control set 
in which only DMSO was present one by one, and 
the differential expression profile for all genes was 
collected. The expression of common upregulated 
genes was matched with the expression profile of 
natural compounds in Microsoft Excel and selected 
compounds that alter the maximum number of gene 
expressions. Similarly, it was achieved for common 
downregulated genes.

Screening of Natural Compounds
Natural compounds were screened on the bases 

of their regulation of common DEGs. The compound 
which regulates the maximum number of genes from 
common DEGs was selected first. Then the second 
compound was selected based on whether it can alter 
the expression of the maximum number of genes from 
the remaining ones (which remain unaltered by the 
fi rst compound). Similarly, the remaining compounds 
were screened.

Analysis of Selected Combination of Natural 
Compounds

The selected combination of natural compounds 
was analyzed with the help of a Venn diagram 
of genes regulated by selected compounds and 
Enrichment analysis of the shared genes by the 
FunRich tool. Different biological processes and 
pathways regulated by these compounds were also 
analyzed from the literature (retrieved from PubMed, 
Google Scholar, SCOPUS, and others).

RESULTS

Differential Gene Expression Analysis
The normalization plot and volcano plot of 

GSE83519 and GSE39400 are shown in Appendix 1. 
In dataset of GSE83519, a total of 1,094 genes were 
found to be differentially upregulated, these genes 
had high expression in the HNSC tumor sample as 
compared to the respective normal sample of the same 
patient, and 889 genes were found to be differentially 
downregulated; these genes had low expression 
in the HNSC tumor as compared to the respective 
normal sample. GSE83519 dataset contains the tumor 
microenvironment samples, which include not only 
tumor cells but also other cell mediators like immune 
cells, fibroblast, blood vessels etc., so when immune 
cell comes in contact with this tumor microenvironment, 
they may alter their gene expression profi le; therefore 
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the expression data of PBMCs need to be analyses 
individually, so we can identify the DEGs in PBMCs, 
because it is beneficial to target immune cell for the 
tumor regression along with only targeting tumor cells. 

In dataset of GSE39400, a total of 737 genes 
were found to be upregulated, these genes had high 
expression in the PBMCs which were retrieved from 
HNSC patients after surgery as compared to the PBMCs 
retrieved from patients who got head and neck surgery 
for a non-HNSC reason, while 1,954 genes were found 
to be downregulated. These DEGs are mainly present 
in PBMCs, including dendritic cells, lymphocytes, and 
monocytes. Therefore they might alter these immune 
cells' function and help tumor cells escape the immune 
system. Thus these genes can be further analyzed to 
screen immunological biomarkers for HNSC.

Screening of Common DEGs
 DEGs of HNSC tumors were compared with 

the DEGs of PBMCs so that common DEGs could 
be screened. Therefore, 1,094 upregulated DEGs of 
HNSC were compared with 737 upregulated DEGs 
of PBMCs and found 46 common genes. These 46 
DEGs were upregulated in HNSC tumor samples and 
PBMCs of HNSC patients. PBMCs may infiltrate the 
tumor and affect tumor progression. The influence 
of the tumor microenvironment alters the expression 
of these genes in the tumor-infiltrating lymphocytes. 
These genes might be involved in the alteration 
of gene regulation in the subset of the immune 
cells in the vicinity of the tumor in HNSC patients 
due to the complex interplay of cells in the tumor 
microenvironment. Similarly, 889 downregulated 
DEGs of HNSC tumor samples were compared with 
1,954 downregulated DEGs of PBMCs of HNSC 
patients, and 64 genes were common in both. The list 
of common upregulated and downregulated genes 
with their adj. P-value and logFC in HNSC tumor 
samples and PBMCs of HNSC patients are shown 
in Appendices 2 and 3. There were 110 common 
DEGs in HNSC samples and PBMCs, out of which 46 
common upregulated genes (Appendix 4).

Enrichment analysis of these 110 DEGs was 
achieved and found that 46 common upregulated genes 
were mainly involved in biological processes like signal 
transduction, cell migration, RNA metabolism, anti-
apoptosis, regulation of cell cycle, regulation of gene 
expression, cell communication, energy pathways, 

transport, protein metabolism, immune response, cell 
growth and/or maintenance. These biological processes 
might help in tumor progression because processes 
like suppression of apoptosis, cell migration, cell cycle 
regulation, cell growth and/or maintenance directly 
support tumor growth. Biological processes like immune 
response, signal transduction, cell communication, 
etc., could play an essential role in the tumor 
microenvironment for tumor progression. Therefore, 
the overexpression of these genes enhances these 
biological processes in the tumor microenvironment, 
which could help in tumor progression. Sixty-four 
common downregulated genes were mainly involved 
in biological processes like CGMP-mediated signaling, 
ribosome biogenesis and assembly, immune response, 
regulation of signal transduction, RNA metabolism, 
transcription, DNA repair, signal transduction, cell 
communication, transport, protein metabolism, energy 
pathways, metabolism, apoptosis. These biological 
processes are also linked with tumor progression or 
regression; therefore, downregulation of these genes 
could help tumor progression. So those drugs should 
be screened, which alter the expression of these genes 
to restore normal expression levels such that normal 
biological processes are restored. Enrichment analysis 
of 46 upregulated and 64 downregulated genes are 
shown in Figure 1.

Differential Expression Analysis of Natural 
Compounds

The express ion  pro f i les  o f  102 na tura l 
compounds already known for their antitumor 
activity were analyzed with GEO2R, and DEGs were 
studied. These DEGs were those whose expression 
were altered after the treatment with a particular 
natural compound. So, the list of differential genes 
was made of all the 102 natural compounds with 
their logFC values. The list of 110 common DEGs 
(46 upregulated genes and 64 downregulated genes) 
was compared with the natural compounds' DEGs. The 
natural compounds were sorted based on their ability 
to reverse the expression of the maximum number of 
genes. The list of natural compounds with respective 
No. of genes whose expression were reversed by that 
natural compound is shown in Appendix 5.

 

Combination of Natural Compounds
A combination of natural compounds was 

selected that alter the expression of the maximum 
number of genes out of 110 common DEGs. Therefore, 
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we fi rst selected that natural compound, which altered 
the expression of the maximum number of genes, 
salidroside. Salidroside altered the expression of 66 
genes from 110 common DEGs. Then the remaining 
44 commonly altered genes were studied for their 
susceptibility to restorative regulation by other such 
natural compounds that impacted the expression of the 
maximum number of the gene. Therefore, ginsenoside 
Rd was found to regulate the expression of 20 genes. 
Oridonin was found to regulate 12 genes out of the 
24 common DEGs. Britanin was found to regulate 
6 genes, and Scutellarein regulated 4 genes. Therefore, 
these 5 compounds together resulted in the regulation 
of 108 genes out of 110 common DEGs, restoring the 
gene expression to that in normal matched tissues. 
Two genes, GPR15 and CYP2U1, were not suitably 
regulated by our combination of natural compounds. 
Appendix 6 shows the screening process of natural 
compounds for targeting 110 common DEGs.

A combination of 5 compounds was selected 
and further checked for their combined effect on these 
common 110 DEGs. Therefore, the expression of 
these 110 DEGs was compared with the expression 
of the individual compounds. Salidroside, ginsenoside 
Rd, oridonin, britanin, and scutellarein individually 
regulated 66, 60, 58, 52, 62 genes. The gene 
expression regulation of common upregulated genes 
by different selected natural compounds separately 
is listed in Appendix 7. This data analysis showed 
that many genes were regulated more efficiently in 
combination rather than isolation; therefore, these 
compounds might show synergistic effects. The 

alteration of expression of genes by more than one 
compound is also beneficial to preventing drug 
resistance and toxic side effects due to alternative 
engagement of redundant pathways. The expression 
of different genes in PBMCs and regulated by the 
different compounds are shown in the Appendix 8. 
Venn diagram shows that all the 5 compounds 
regulated 11 genes, i.e., ZAP70, HFE, TRPM6, 
RPAIN, PAX9, PCNX2, TRAM2, ARHGEF5, ERN1, 
SAFB2, and SLC4A10. Twenty-five genes were 
regulated by any 4 compounds, 24 genes were 
regulated by any 3 compounds, 23 genes were 
regulated by any 2 compounds, 25 were regulated 
only 1 compound out of these 5 compounds (Figure 2).

Enrichment analysis of these 11 compounds 
was achieved and found that these compounds were 
involved in biological processes like transport, immune 
response, signal transduction, and regulation of nucleic 
acid metabolism. These biological processes are 
related to cancer progression and the immune system. 
Therefore, synergistic targeting of these genes would 
be benefi cial for effi cient combating HNSC tumors. All 
the selected compounds were effi cient at targeting the 
expression of these 11 genes that effected the above-
mentioned biological processes.

Compound Analysis from Literature
Natural compounds are multitargeting compounds, 

so targeting genes that positively impact cancer 
regression may result in undesirable side effects. 
Hence, to test the synergistic potential for targeting of 
the selected natural compounds, their mechanisms of 

Figure 1. Enrichment Analysis of 46 Common Upregulated Genes and 64 Common 
Downregulated Genes with Respect to Biological Processes
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inducible factor 1α/vascular endothelial growth factor 
(HIF-1α/VEGF) pathway and shows anti-migratory, 
anti-invasive and anti-adhesive properties.(38) Oridonin 
also inhibits the proliferation and migration of tumor cells 
via targeting transient receptor potential melastatin 7 
(TRPM7) through the inactivation of ERK/AKT 
signaling.(38) Oridonin induces phagocytosis via 
activating ERK, which activates NF-κB.(39)

Ginsenoside Rd reduces metastasis via miR-18a-
mediated downregulation of SMAD2.(40) Ginsenoside 
Rd increases the expression of  miR-144-5p, 
which inhibits the expression of Toll-like receptor 2 
(TLR2) hence reducing the proliferation and metastasis 
of tumor cells.(41) Ginsenoside Rd inhibits VEGF-
induced migration, tube formation, and proliferation and 
suppresses VEGF-induced regulation of Akt/mTOR 
signaling pathways, inducing apoptosis and inhibiting 
cell proliferation.(42) Ginsenoside Rd inhibits proliferation, 
and metastasis mainly reverses epithelial-mesenchymal 
transition (EMT) via STAT3/JAK2 signaling and STAT3 
is the direct target of ginsenoside Rd.(43)

Britanin inhibits NF-kB via downregulation of 
IKK1/1KK2, controlling tumor cell proliferation and 
angiogenesis.(44) Britanin shows an anti-inflammatory 
response via inhibiting NF-κB signaling.(45) Britanin 
downregulates cMyc and HIF1α via upstream 
effectors like mTOR, reducing the expression of specifi c 
proteins, including programmed cell death 1 ligand 1 
(PD-L1), leading to the inhibition of angiogenesis and cell 
proliferation.(46) Britanin induces apoptosis and autophagy 
via activating AMPK signaling regulated by ROS.(47)

Scutellarin inhibits glutamic-pyruvic transaminase 
(ALS) and aspartate transaminas (AST) hence 
regulating the immune system against tumor cells.(48,49) 
Scutellarin inhibits monocyte chemoattractant protein-1 
(MCP1), thus inhibiting cell migration and reducing 
infl ammation.(50) Scutellarin downregulates intercellular 
cell adhesion molecule 1 (ICAM-1) and inhibits the 
activation of NF-κB hence inhibiting adhesion and 
showing an anti-inflammatory effect.(51) Scutellarin 
induces vasodilation via eNOS/NO/PKG pathways.(52)

As shown in Figure 3, these compounds regulate 
many different pathways and can target more than one 
process. So, our drug combination offers a highly potent 
multifaceted antitumor and immunomodulatory role and 
helps in the regression of HNSC cancer. The biological 

Figure 2. Enrichment Analysis of 11 Genes (A) and  
Gene Regulation of 110 Common DEGs (B) 

Regulated by Five Identifi ed Natural Compounds
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action were retrieved from the literature and congruence 
analysis was done. The drug combination of natural 
compounds must ideally target diverse pathways that 
converge to result in effective tumor regression.

S a l i d r o s i d e  i n d u c e d  a u t o p h a g y  v i a 
phosphoinositide 3-kinase/protein kinase B/mammalian 
target of rapamycin (PI3K/Akt/mTOR) signaling. 
mTOR is highly upregulated in tumor cells, hence 
inhibiting autophagy. PI3K/Akt plays an essential role 
in the regulation of mTOR. Salidroside regulates the 
PI3K/Akt pathway, decreasing anti-apoptotic factors 
and increasing pro-apoptotic factors, thus inducing 
caspase-dependent and mitochondria-mediated 
apoptotic cell death.(35) Salidroside inhibits proliferation, 
migration, and invasion of tumor cells by inhibiting 
reactive oxygen species (ROS), which regulates Src, 
and downregulates HSP70 via Akt/ERK signaling.(36) 
Salidroside also reduces the pro-infl ammatory cytokine 
secretion via activating IkBα/NF-κB pathway and 
induces apoptosis via p53 and caspase signaling.(37) 

Oridonin inhibits angiogenesis via the hypoxic 
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of natural compounds that can help in HNSC tumor 
regression with minimal side effects. 

A combination of salidroside, ginsenoside Rd, 
oridonin, britanin, and scutellarein was chosen such 
that they can alter the expression of 108 genes out 
of the selected 110 genes. Salidroside is widely 
found in Rhodiola plants. Rhodiola sacinehalnsis, 
Rhodiola rosea, Rhodibetic tibetica and large Rhodiola. 
Ligustrum lucidum, in the leaves of Salix triandra L. and 
Willow bark, Vaccinium vitisidaea L leaves of Oleaceae, 
Veroniceae of Veronica minor. Salidroside was found 
to induce autophagy, inducing caspase-dependent 
and mitochondria-mediated apoptotic cell death, and 
inhibiting proliferation, migration, and invasion of tumor 
cells via PI3K/Akt/mTOR signaling, IkBα/NF-κB 
signaling.(35-37) Salidroside is generally deemed safe and 
effective. In the experimental conditions, salidroside at 
doses of 0.5, 0.25, and 0.125 g/kg in Sprague-Dawley 
rats did not cause maternal or embryonic toxicity, nor 
did it have teratogenic consequences.(53) Genotoxicity 
testing is critical in drug risk assessment. Salidroside 
is not genotoxic at a clinical dose of 150 mg/60 kg 
per day) in humans, according to the Ames test, reverse 
mutation, chromosomal abnormalities, and mice 
micronucleus studies.(54) Another study of 60 breast 
cancer patients found no clinical adverse effects when 
an effective dose of salidroside (600 mg/kg daily) was 
given throughout the therapy procedure.(55) The lack of 
negative effects in pre-clinical and clinical trials suggests 
salidroside is a safe common clinical medication.

Ginsenoside Rd is mainly found in plants like P. 
ginseng, Panax notoginseng, P. quinquefolius, Panax 
japonicas, etc. Ginsenoside Rd reduces metastasis, 
proliferation, migration, inducing apoptosis, reverses 
EMT via different signaling pathways like Akt/mTOR 
signaling, STAT3/JAK2 signaling, miR-18a-mediated 
downregulation of SMAD2.(40-43) Many studies show that 
ginsenoside Rd has no signifi cant side effects.(56,57)

Oridonin is primarily found in plants like Rabdosia 
rubescens, Isodon japonicus Hara, Isodon trichocarpus, 
Isodon enanderianus, and I. lophanthoides. Oridonin 
inhibits angiogenesis, migration, invasion and adhesion, 
proliferation, and phagocytosis properties via HIF-1α/
VEGF, ERK/Akt, ERK/NFκB signaling.(38,39) Oridonin 
reduces the side effects of various other cancer drugs 
when used in combination.(58) Oridonin shows anticancer 
properties with very low side effects.(59)

Figure 3. Different Biological Processes and Genes 
Regulated by Different Natural Compounds Where 

Different Signs Were Used for Inhibiting, 
Stimulating, and Activating Genes and 

Biological Processes

Figure 4. Biological Network of Selected 
Compounds with Their Regulating Genes

network of the compounds is shown in Figure 4, which 
shows the key genes regulated by these compounds.
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DISCUSSION

Tumor cells change their gene morphology 
quickly when exposed to single target drugs to fi nd 
a way to escape the drug effect. So, the problem 
of drug resistance can be minimized by using a 
combination of natural compounds because they 
target multiple pathways, and tumor progression 
can be effectively reversed. Natural compounds are 
multitargeting; therefore, they can simultaneously 
target mult iple pathways and many biological 
processes, helping in tumor regression. Natural 
compounds are more cost-effective as compared 
to synthetic compounds. As the cases of HNSC 
cancer increase in developing countries due to poor 
lifestyles, it is necessary to fi nd cost-effective drugs 
for them. So, this study aimed to fi nd a combination 
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Britanin is mainly found in plants like Inula 
lineariifolia Turcz. (Asteraceae), Inula japonica, Inula 
britannica. Britanin induces apoptosis and autophagy 
and inhibits cell proliferation and angiogenesis via 
regulating different pathways like IKK1/1KK2, NF-κB, 
and AMPK signaling.(44,45,47) Britanin shows tolerable 
side effects at low-dose administration in vivo.(60) 

Scutellarein is found primarily in plants like Scutellaria 
lateriflora, Asplenium belangeri, Mexican oregano, 
sweet orange, Scutellaria barbata.

Scutellarein inhibits cell migration, adhesion, 
reducing inflammation, induces vasodilation via 
regulating different pathways like eNOS/NO/PKG, 
NF-κB.(48,49,52) No side effects were absorbed when 
treated with scutellarein in various studies(61) as shown 
in Table 1. As this combination was further analyzed, 
it was found that many biological processes were 
regulated by more than one compound via different 
pathways; therefore, it might not be easy for tumor cells 
to escape this regression mechanism. Further, tumor 
cells cannot gain drug resistance easily against them.

Immunotherapy is typically associated with side 
effects that often deter the use of such treatment 

strategies. Our combination of natural compounds 
holds a better immunotherapeutic potential without the 
commonly associated side effects typically seen with 
chemical immunomodulatory drugs. 

In conclusion, our studies showed a multifaceted, 
multi-dimensional tumor regression by altering 
autophagy, apoptosis, inhibiting cell proliferation, 
ang iogenes is ,  metastas is  and in f lammatory 
cytokines production. It has helped develop a unique 
combination of natural compounds that will markedly 
reduce the propensity of development of drug 
resistance in tumors and immune evasion by the 
tumors. Our study has opened a new dimension for 
developing a combinatorial natural compound cocktail 
as a potential immunomodulatory drug alternative. 
Thus, we propose that such a combination could 
be further analyzed in in vitro and in vivo studies to 
develop better treatment for HNSC tumor patients.
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Table 1. Plant Sources, Biological Process Regulated, Pathways Regulated and 
Toxicity of Selected Natural Compounds

Natural compound Source of origin Biological process regulated
Biological pathways 
regulated

Side effects & 
toxicity

Salidroside Rum lucidum
Salix triandra L. 
Willow bark 
Vaccinium vitisidaea L
Ol eaceae veroniceae of 

Veronica minor

Induces autophagy
In duces caspase-dependent and 

mitochondria-mediated 
apoptotic cell death

Inhibits proliferation
Inhibits migration
Inhibits invasion of tumor cells

PI3K/Akt/mTOR signaling
IkBα/NF-κb signaling

S alidroside 
is generally 
deemed safe and 
effective(53-55)

Ginsenoside Rd Panax ginseng
Panax notoginseng
Panax quinquefolius
Panax japonicas

Reduces metastasis
Inhibits proliferation
Inhibits migration
Induces apoptosis
Reverses emt

Akt/mTOR signaling
STAT3/JAK2 signaling
m iR-18a-mediated 

downregulation of 
SMAD2

G insenoside Rd 
have no major 
side effect(56,57)

Oridonin Rabdosia rubescens
Isodon japonicus Hara
Isodon trichocarpus
Isodon enanderianus
Isodon lophanthoide

Inhibits angiogenesis
Inhibits migration
Inhibits invasion
Inhibits adhesion
Proliferation
Phagocytosis properties

HIF-1α/VEGF signaling
ERK/AKT signaling
ERK/NFκB signaling

V ery low side 
effects(59)

Britanin In ula lineariifolia Turcz. 
(asteraceae)

Inula japonica
Inula britannica. 

Induces apoptosis
Autophagy
Inhibits cell proliferation
Angiogenesis

IKK1/1KK2 signaling
NF-κB signaling
AMPK signaling

T olerable side 
effects at low dose 
administration in 
vivo(60)

Scutellarein Scutellaria laterifl ora
Asplenium belangeri
Mexican oregano
Sweet orange
Scutellaria barbata

Inhibits cell migration
Inhibits adhesion
Reduces infl ammation
Induces vasodilation

eNOS/NO/PKG signaling
NF-κB signaling

N o side effects 
were observed in 
various studies(61)
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Abstract
Head and Neck Squamous cell carcinoma is a leading cancer in males, especially in India. Progression of tumour growth in 
conjunction with immune suppression is the major cause that leads to HNSC cancer. Synthetic drugs targeting tumour cells 
often trigger tumour cells to acquire resistance against them. Immunotherapy also has its side effects and does not provide 
an adequate response in all patients, and its inherent variability in patient response often makes them prohibitive. Hence, a 
concomitant targeting of tumour cells and modulation of immune cell function may be particularly beneficial mechanism 
for cancer treatment. In the present study, we tried to identify natural compounds that could help in tumour suppression as 
well as functional immune modulation. The HNSC-associated genes that played role in both tumour growth and immune 
suppression were identified by enrichment analysis followed by gene expression analysis. 10 such genes were shortlisted, 
namely Foxp3, CD274, IDO1, IL-10, SOCS1, PRKDC, AXL, CDK6, TGFB1, FADD. CD274 and IDO1 which were found 
to have the highest degree of interaction based on their network of interactions. Gallic acid and Shikonin were found as the 
natural compounds that efficiently targeted CD274 and IDO1 respectively. Gallic acid is extracted from leaves of bearberry 
also found, in pomegranate root bark, gallnuts, witch hazel, both in free-state and as also a part of the tannin molecule, 
whereas Shikonin is found in the extracts of dried roots of the plant Lithospermum erythrorhizon. Studies have demonstrated 
that both Shikonin and Gallic acid exhibits anti-cancer properties. Expression data analysis of HNSC cancer exhibited 1745 
differentially expressed genes. Gallic acid treatment resulted in the downregulation of 120 genes and upregulation of 35 genes 
while Shikonin treatment resulted in the downregulation of 660 genes and upregulation of 38 genes that are consequential in 
a positive impact of cancer regression. Thus, combination of these two compounds could be potentially beneficial in effec-
tive combinatorial therapy for HNSC.

Keywords Head and neck squamous cell carcinoma (HNSC) · Immunomodulation · Natural compounds · Gallic acid · 
Shikonin

Introduction

Head and neck squamous cell carcinoma (HNSC) is different 
from other cancers as for the stand point of its progression. 
Most of the other cancers lead to death in the metastatic 
phage of the disease but HNSC stays locoregional for a 
long time followed by local invasion and lymphatic dis-
semination. So, the progression of HNSC cancer is highly 

determined by immunity regulation that plays a critical role 
in cancer metastasis (Tímár et al. 2005).

Thousands of drugs have been used to treat cancer, but 
it is still the most abundant cause of fatality in the world. 
There are different types of therapy used for cancer treat-
ment, such as radiation, surgery, chemotherapy, immuno-
therapy. However, many chemotherapeutic measures often 
results in the development of drug resistance in patients. 
Immune response in every individual is a complex array of 
immune functionality that are interrelated and regulated in 
a complex cascade of mechanisms that vary significantly 
in different individuals, hence patients often have variable 
tumour immunity and its prognosis. Therefore, the same 
immunotherapy may have functional variability for every 
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patient and can even exhibit variable side effects (Vasan 
et al. 2019).

Drug resistance to cancer is a very complicated process 
and depend on different factors, such as mutation at the 
drug's target site (Bozic and Nowak 2014), alterations in 
drug metabolism (Zaal and Berkers 2018), resistance due 
to downregulation of pro-apoptotic signals and upregula-
tion of anti-apoptotic signals (Chen et al. 2018). It may 
lead to an increase in impaired DNA repair (Salehan and 
Morse 2013), and may also lead to decrease in drug uptake 
or increase in drug efflux (Xue and Liang 2012; Alfarouk 
et al. 2015). Moreover, in the vicinity of the tumour, there 
are not only uncontrollably proliferating cells, but over 
the time an immense accumulation of divergent cells that 
modulate the surrounding environment which is known as 
the tumour microenvironment emerges. It contains immune 
cells, extracellular matrix, blood vessels, fibroblasts and sig-
nalling molecules (Deng et al. 2018). The immune system 
plays an important role in the development, establishment, 
and progression of HNSC. Better treatment for HNSC can be 
achieved by understanding the dysregulation and evasion of 
immune system. HNSC cells evade the host immune system 
through manipulation of their immunogenicity, production 
of immunosuppressive mediators and promotion of immu-
nomodulatory cell types (Ferris 2015).

Tumour cells and their microenvironment are closely 
related and are in continuous interaction. Initially, immune 
cells try to eliminate tumour cells, but as the tumour grows, 
they over-express certain ligands that bind to immune cells 
and suppress the immune response. For instance, PD-L1 
inhibits T cell response through its binding with PD-1, 
whereas, Galetin-9 modulate T cell function through its 
binding with TIM-3 (Keir et al. 2008; Akinleye and Rasool 
2019; Sakhnevych 2019). Moreover, interaction of immune 
cells with each other may inhibit immune response, for 
instance, CTLA4 binds to CD80 and CD86 present on 
APCs and suppress T cell function (Chikuma 2017). How-
ever, there are numerous antibodies against different immune 
checkpoints, but they exhibit different response in different 
individuals (Kearney et al. 2016; Marinelli et al. 2018; Knee 
et al. 2016). Due to the limitations of chemotherapy and 
radiation therapy, there is a critical need for early detection 
and prevention of high-risk premalignant lesions.

Natural compounds have a lot of potential for chemopre-
vention because of their minimal toxicity, and widespread 
acceptance as dietary supplements (Amin et  al. 2009). 
However, natural compounds also have several drawbacks 
like low bioavailability and standardized druggability (Gas-
ton et al. 2020). However, combinatorial therapy-based 
approaches using natural compounds with highly efficient 
target specificity and improved bioavailability along with a 
immunopotentiation role may be an answer to the limitations 
of chemotherapeutics and immunotherapeutics (George et al. 

2021). Combination of EGCG, a natural compound found in 
green tea with TK1 is found to be a novel chemoprotective 
substance against HNSCC (Masuda et al. 2011). Lithosper-
mum erythrorhizon and Onosma sericeum have demon-
strated their anti-cancer activities under in vivo and in vitro 
conditions. For instance, Lithospermum erythrorhizon with 
the help of its secreted product that is acetylshikonin inhibits 
dihydrofolate reductase and hampers autochthonous mam-
mary carcinogenesis in 16HER2 transgenic mice (Wang 
et al. 2020). Similarly, Onosma armeniacum extract exhibits 
antioxidants properties as demonstrated in HepG2, A549, 
and WiDr cell culture model (Demir et al. 2021). Recently, 
green tea polyphenols have demonstrated the potential anti-
cancerous activities, for instance green tea polyphenols 
modulate the activity of cancer related signalling molecules 
like VEGF, cyclin D1, and caspase 3 that are involved in 
the regulation of angiogenesis, cell cycle, and apoptosis 
(Miyata et al. 2018). In addition, Persea americana seeds 
exhibits anti-oxidants, anti-inflammatory, and anti-cancerous 
activities in HePG2 cell line and HCT116 cell culture model 
(Alkhalaf et al. 2019). Further, to assess the efficacy of these 
chemo-preventive medicines, new biomarkers with predic-
tive value for clinical disease and risk stratification can be 
employed for more disease-specific strategy.

From our literature survey, we shortlisted drugs of natural 
origin based on their dual role of anti-cancerous properties 
and immune modulation, such as mTOR inhibitor (rapa-
mycin) reduces the expression of PD-L1 in HNSC cancer 
(Zheng et al. 2019). Drugs such as Statin, Metformin, and 
Anthracyclines can also enhance the immune system and kill 
tumour cells more effectively (Matsushita and Kawaguchi 
2018; Desai et al. 2018; Pereira et al. 2018). Thalidomide 
and its derivative drugs, such as lenalidomide, were first 
used as direct anti-cancer drugs due to their cell-cycle arrest-
ing properties but later recognized for their role as immu-
nomodulatory drugs due to their ability to stimulate T cells 
for secretion of IL-2 and interferon-gamma (Liu et al. 2017).

Here we tried to explore those genes, whose expres-
sions are functionally associated with HNSC disease and 
are involved in immune suppression. We used an unbiased 
approach for targeting these genes because of their upregula-
tion associated with both immune suppression and tumour 
progression. Further, we have explored natural compounds 
that can inhibit these gene functions because natural com-
pounds are cost effective and have fewer side effects as com-
pared to synthetic compounds. These natural compounds 
have properties that interfere with initiation, development 
and progression of tumours through various mechanisms 
including apoptosis, angiogenesis, metastasis, cell prolifera-
tion and cell differentiation (Majolo et al. 2019). So, combi-
natorial use of natural compounds that interfere with multi-
ple pathways, which results in better therapeutic strategies, 
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can also address the problem of drug resistance and hence 
may serve as a better therapeutic strategy (Aung et al. 2017).

Methodology and materials required

Data collection

500 genes associated with HNSC were collected from 
string disease query database (Szklarczyk et al. 2017). Gene 
expression data for HNSC was retrieved from NCBI’s GEO. 
Data regarding natural compounds were collected from 
Npcare database (Choi et al. 2017) and literatures. Gene 
expression data for the natural compounds were retried from 
NCBI’s GEO.

Functional enrichment analysis

Five hundred genes associated with HNSC cancer were 
imported in Cytoscape from disease query database and 
functional enrichment analysis with GO Process. Gene 
ontology (GO) such as biological process, molecular func-
tions, cellular processes, and protein domain analysis associ-
ated with these genes were identified. Biological processes 
involved in immune system were selected and further fil-
tered for the processes involved in immune suppression. 
Cytoscape is a web tool containing a collection of applica-
tions for visualizing molecular level of biological interac-
tions and biological pathways along with added annotations 
like gene expression profiles, enrichment analysis and other 
state of data. Cytoscape core distribution provides a basic 
set of features for data integration, analysis, and visualiza-
tion achieved by the core distribution of cytoscape. Adj. 
p-value ≤ 0.05 was considered as the significantly enriched 
biological processes.

Gene expression analysis and literature exploration

Gene expression analysis was achieved by the GEO2R, 
which is a tool that allow users to compare two or more 
groups of samples to identify genes that are differentially 
expressed across various experimental conditions. Differ-
entially expressed genes are presented as a table ordered 
by p-value and adjusted p-value significance, along with 
graphic plots to assess data set quality and visualize differ-
entially expressed genes with their p-value and logFC value. 
GEOquery and limma R packages from the Bioconductor 
project are used for comparisons on original submitter-sup-
plied processed data tables. Differential genes were selected 
based on p-value ≤ 0.05, and |logFC value|≥ 1.

Gene expression data were checked for these 53 genes 
which were associated with immune system processes in 
enrichment analysis so that we could select only up-regulated 

genes. 21 genes were found up-regulated. Literatures were 
explored regarding these 21 genes for their  evidence as 
tumour promoter and immune suppressor. Out of these 21 
genes, 10 genes had enough evidence for both immune sup-
pressor as well as tumour promotor.

Network analysis of selected genes

Selected genes were subjected as a list in STRING which is 
a database of known and predicted protein–protein interac-
tions. Both physical and functional associations are include 
in these interactions, they are curated from interactions 
aggregated from other (primary) databases, from compu-
tational prediction and from knowledge transfered between 
organisms. Genes with highest degree of interaction were 
selected from these ten genes.

Natural compounds targeting selected genes

Np care database (Choi et al. 2017) was explored for the 
selection of natural compounds against these selected genes 
and their transcription factors. NPCARE, a database for Nat-
ural Products-Cancer gene Regulation, provides the level of 
gene expression and the inhibition of cancer cells in various 
cancer types by the effect of extract and natural compounds. 
We further explored the literatures for those genes which 
were not found in the Np care database.

Gene expression analysis of the selected natural 
compounds effects

Selected natural compounds were searched in the GEO 
(Gene Expression Omnibus) and their expression data was 
curated. Differential genes expression analysis was achieved 
by GEO2R and iDEP (integrated Differential Expression 
and Pathway analysis). iDEP is a user-friendly interface 
for bioinformatic analysis of gene-level data for differential 
analysis and pathway analysis. User can generate reports to 
analyse RNA-seq datasets from NCBI’s GEO which contains 
differential expression and enrichment analyses etc.

Functional analysis of natural compounds 
on differentially expressed genes in HNSC cancer

Differential gene (DGs) of HNSC cancer dataset was com-
pared with the differential gene expression data of both the 
selected compounds for conforming that these compounds 
reverse the expression of differentially expressed genes. This 
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conformation was achieved in the Microsoft-excel by com-
paring their logFC values in different samples.

Biological pathway analysis of the involved genes

Pathway analysis of the genes whose expression were altered 
by Gallic acid and Shikonin was achieved by Funrich tool. 
We divided genes into four categories for pathway analy-
sis i.e. HNSC upregulated genes down regulated by Gallic 
acid, HNSC upregulated genes down regulated by Shikonin, 
HNSC downregulated genes upregulated by Gallic acid and 
HNSC downregulated genes upregulated by Shikonin. Later 
genes involved in these respective categories were analysed 
for the pathways in which they are involved in Funrich tool 
individually. Funrich is a stand-alone tool used for perform-
ing enrichment analysis on the basis of biological pathways, 
biological processes, functional, transcription factors etc.

Results and discussion

Enrichment analysis

An enrichment analysis of 500 genes that are known 
through experimental validation to be the most explic-
itly associated with HNSC cancer, was conducted and 
immune-associated genes were selected. 256 genes related 
to the immune system were found, out of which 53 genes 
were found to be associated with the negative regulation 
of immune system associated processes, such as negative 
regulation of T cell activation, negative regulation of B 
cell activation, negative regulation of B cell proliferation 
etc. as listed in Fig. 1A.

Fig. 1  The following figure 
demonstrate enrichment analy-
sis data by GO Process involved 
in immune system related 
processes which shows number 
of genes from the HNSC 
associated involved in different 
immune system related process 
no. of gene involved in different 
immune system related process 
by enrichment analysis GO 
Process. B interaction network 
of ten genes which are immune 
suppressor as well as tumour 
progressor for checking degree 
of interaction. As we can see 
here CD274 have highest degree 
of interaction 7 and IDO1 
have second highest degree of 
interaction 5
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Gene expression analysis

Gene expression data was analysed for 53 genes associated 
with the negative regulation of the immune system, out of 
which 21 genes were identified for having a LogFc value 
greater than or equals to 1. These genes could be associated 
with both immune suppression as well as tumour progres-
sion. Complete gene expression data is provided in the sup-
plementary table 1.

These 21 genes were functionally validated by annotation 
from literatures for their association with tumour progres-
sion related process like cell proliferation, metastasis etc. 
and immune suppression related process like T cell inacti-
vation, development of tumour-associated macrophage etc.

It was found that 10 genes were associated with both of 
the above-mentioned processes where only 7 genes were 
associated with immune suppression. 2 genes were associ-
ated with tumour progression only and remaining 2 genes 
were associated with HNSC cancer due to alteration of their 
function by mutations as shown in Table 1.

Network analysis of selected genes

10 genes were selected that play a crucial role in immune 
suppression as well as tumour progression. These are Foxp3, 
CD274, IDO1, IL-10, SOCS1, PRKDC, AXL, CDK6, 
TGFB1 and FADD. Network analysis in string revealed 
that CD274 has seven degrees of interaction, IDO1 has five 
degrees of interactions as shown in the Fig. 1B hence these 
two genes can serve as the preferred target for modulating 
immune regulation and will impact multiple immune cells 
and also determine tumour prognosis. CD274 gene encodes 
protein PD-L1 which is an immune suppressor ligand. IDO1 
expression associates with the progression of tumour (Bilir 
and Sarisozen 2017). IDO1 expression in tumour cells medi-
ate the catabolism of tryptophan and is a critical factor of 
immune escape by suppression of anti-tumour immunity 
(Platten et al. 2012). IDO1 overexpression increases the 
proliferation of Tregs (Baban et al. 2009).

CD274 regulates tumour growth, proliferation, migra-
tion and invasion by targeting WIP along with beta-catenin 
signalling (Yu et al. 2020). CD274 is a well known immune 
checkpoint. It helps in tumour cell survival by PD-1/PD-L1 
interaction which inhibits T cell activation (Wu et al. 2019) 
(Fig. 2).

It is expressed in different tissues but mainly expressed 
in activated T cells and B cells, monocytes, dendritic cells 
and different tumour cells. The interaction of this ligand with 
PD1 results in immune escape by the tumour cells, by inhib-
iting T-cell activation and cytokine production. High expres-
sion of this gene is a prognostic marker in many cancers. 
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme 
that catalyzes the first and rate limiting step in the catabolism Ta
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of tryptophan which changes the behaviour of T-cells. This 
enzyme plays a role in variety of pathophysiological pro-
cesses such as antioxidant activity, antimicrobial defence, 
neuropathology, immunoregulation, antitumour defence. 
Overexpression of IDO1 is found in different cancers, which 
is associated with poor prognosis. IDO1 can be inhibited 
by the cancer-suppression gene bridging integrator 1 (Bin1) 
and up-regulated by some immune checkpoint molecules 
and cytokines such as IFN-γ, pathogen-associated molecular 
patterns (PAMPs, such as Toll-like receptor (TLR) 3, TLR4, 
TLR7, TLR8, and TLR9), IL-6, prostaglandin E2 (PGE2), 
damage-associated molecular patterns (DAMPs), immune 
checkpoint (including PD-1, glucocorticoid-induced TNF 

receptor-related protein (GITRL), CTLA-4), and TNF-α 
along with TGF-β to establish an immunosuppressive 
environment.

Natural compounds selection

We selected natural compound against two selected genes. 
Gallic Acid (3,4,5-trihydroxybenzoic acid) was inhibitory 
against CD274 while three compounds, dihydrotanshinone I, 
shikonin, and 9-O-demethyltrigonostemone were inhibitory 
against IDO1. Gallic acid is a phenolic acid which is found 
in sumac, gallnuts, tea leaves, oak bark, witch hazel and 
other plants. Dihydrotanshinone I(DI) is a natural compound 

Fig. 2  A shows the volcano plot of GEO dataset: GSE24743 Effects 
of Shikonin on the gene expression, red dots denote the genes which 
are differentially up-regulated and blue dots denotes the genes which 

are differentially down-regulated with an adjusted p-value less than 
0.05. B Shows the heatmap of different genes in different control and 
test samples

Table 2  List of CD274 and IDO1 targeting Natural Compounds and their plant origin

Gene Natural compounds Plant origin

CD274 Gallic Acid (3,4,5-trihydroxybenzoic acid) Banana, walnut, hazelnut, green tea, avocado, guava, mango, mulberry
IDO1 Dihydrotanshinone I Salvia miltiorrhiza
IDO1 Shikonin Lithospermum erythrorhizon, Alkanna, Arnebia, Onosma, Onosma 

sericeum Willd
IDO1 9-O-demethyltrigonostemone Strophioblachia fimbricalyx
CD274 Fisetin Strawberries, apples, persimmons, onions and cucumbers
CD274 Cosmosiin Teucrium gnaphalodes
CD274 Kaempferol Kale, beans, tea, spinach, and broccoli
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found in the salvia miltiorrhiza which is a Chinese medici-
nal plant. It has been reported to have cytotoxicity to vari-
ety of tumours. Shikonin is a naphthoquinone compound 
which is found in the roots of Shikonin plant (Lithospermum 

erythrorhizon) and used as a traditional Chinese medicine. 
9-O-demethyltrigonostemone is a natural compound found 

Fig. 3  The A shows the volcano plot of GEO dataset: Effects of Gal-
lic acid on the gene expression, blue dots denote the genes which are 
differentially up-regulated and red dots denotes the genes which are 

differentially down-regulated with an adjusted p-value less than 0.05. 
B Shows the heatmap of different genes in different control and test 
samples

Fig. 4  Figure demonstrate 
that expression of no. of genes 
altered by Gallic acid and 
Shikonin from the differentially 
expressed genes. Gallic acid and 
Shikonin downregulates 120 
genes and 660 genes, respec-
tively that are upregulated in 
HNSC, whereas Gallic acid and 
Shikonin upregulates 35 and 
38 genes, respectively that are 
downregulates in HNSC
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Fig. 5  The figure demonstrates the pathway analysis of differential genes involved in HNSC and give comparative account of the genes whose 
expressions are reverse by the action of Gallic acid and Shikonin, respectively
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in the roots of Strophioblachia fimbricalyx which shows 
cytotoxic activity against different tumours (Table 2).

We searched NCBI’s GEO for four selected compounds 
and found experimental data corroborating functional inhibi-
tory characteristics of two compounds which are gallic acid 
and shikonin. Dataset accession number for Gallic Acid is 
GSE158788. Gene Expression Profile Analysis of Gallic 
Acid-induced cell death process using Hela cells treated 
with gallic acid (50 µg/ml) for 0 h (GA0hr), 2 h (GA2hr), 
4 h (GA4hr), 6 h (GA6hr), and 9 h (GA9hr) were studied. 
Dataset accession number for Shikonin is GSE24743 and 
its effect on the gene expression of human lymphoma U937 
cells was studied (Gomes et al. 2003). In this dataset U937 
cells were treated with 100 Nm shikonin and followed by 
incubation for 3 h at 37 °C. The cells treated with dimethyl 
sulfoxide served as control. The microarray dataset was ana-
lysed with Geo2R tool and the results have been shown in 
the supplementary Table 2. We analysed GSE158788 data 
with Idep tool for differential gene expression and results 
are shown in Fig. 3

Expression data of HNSC cancer and both of the natural 
compounds merged in Microsoft-excel were studied and 
filtered expression of HNSC cancer with a cut of greater 
than one. 1016 genes were found differentially over-
expressed in HNSC cancer and were compared with the 
expression data of gallic acid and shikonin. Gallic acid 
results in downregulation of 120 of these differentially 
over-expressed genes and shikonin down-regulates 660 
genes from these 1016 over-expressed genes. Again, for 
down regulated gene, expression data of HNSC cancer 
filtered with a cut off less than or equals to -1 was used. 
795 genes were found differentially down expressed in the 
HNSC cancer and were compared with the expression data 
of gallic acid and shikonin. Gallic acid results in upregula-
tion of 35 genes and shikonin up-regulates 38 genes from 
these 795 down-regulated genes. So, this combination of 
gallic acid and shikonin could be effective for the HNSC 
cancer treatment (Fig. 4).

Gallic acid shows anti-cancerous activity by its selec-
tive cell death effect in various cancer cells but not in nor-
mal cells (Gomes et al. 2003). The molecular targets and 
functions of gallic acid are activation of NF-B inhibition, 
ATM kinase, UDP-glucose dehydrogenase inhibition, 
apoptosis induction, Ribonucleotide reductase inhibition, 

Cyclooxygenase inhibition, GSH depletion and invasion 
inhibition (Verma et al. 2013). Shikonin deregulates the cel-
lular  Ca2+ and ROS levels in the mitochondria which leads 
to breakdown of mitochondrial membrane potential, dys-
function of microtubules, cell-cycle arrest, and ultimately 
results in induction of apoptosis. Figure 5 shows a compara-
tive account for the effect of both Gallic acid and Shikonin 
in the multitude of pathways.

Funrich tool was used for the pathway analysis of regu-
lated genes by gallic acid and shikonin from the differentially 
expressed genes. Results show genes getting downregulated 
by gallic acid involved in pathways like glutamate binding, 
inflammasomes, translesion synthesis by HREV1, IL6-
mediated signaling events, association of licensing factor, 
the NLRP3 inflammasome, CDC6 association with the ORC 
pathways and EPHA2 forward signalling. Genes upregulated 
by gallic acid are involved in pathways like axonal growth 
inhibition, DNA replication pre-initiation, axonal growth 
stimulation, estrogen biosynthesis, biotin metabolism etc. 
Genes downregulated by shikonin are involved in pathways 
like ATF-2 transcription factor, IL3-mediated signalling 
events, ErbB receptor signalling, endothelins, E-cadherin 
signalling, stabilization and expansion, glypican pathway, 
E-cadherin signalling events etc. Genes upregulated by shi-
konin were involved in pathways like immunoregulatory 
interactions, glycine biosynthesis, validated transcriptional, 
circadian clock, interferon signalling, antigen presentation 
etc. (Fig. 6).

Hence, the genes involved in HNSC which contributed to 
cancer prognosis were shown to be regulated by the natural 
compounds that can potentially impact cancer progression 
and immunity related pathways. Therefore, it can be stated 
that the combination of gallic acid and shikonin could be 
beneficial for the combinatorial treatment of HNSC cancer.

Many plants, including Lithospermum erythrorhizon, 
Alkanna, Arnebia, Onosma, Onosma sericeum Willd, and 
Echium generate shikonin and research have previously 
shown that shikonin regulates various functions in these 
plants, including transgene expression (Yazaki 2017). 
Shikonin has been used as a red dye for centuries and is 
reported to possess medicinal properties. It was evaluated 
as a multi-functional antibacterial and UV protective agent 
on a silk fabric (Dhandapani and Sarkar 2007), exhibits 
insulin-like activities by inhibiting phosphatase and tensin 
homologue deleted on Chromosome 10 (PTEN) (Nigo-
rikawa et al. 2006). Further, the drug has shown various 
properties, such as anti-viral, anti-tumor, cardiotonic and 
contraceptive properties (Sharma et al. 2009). Similarly, 
gallic acid is found in many food sources like banana, wal-
nut, hazelnut, green tea, avocado, guava, mango, mulberry, 
pomegranate, blackcurrant, cashew, red wine, strawberry, 
blueberry, apple, grape etc. (Zeb 2021). Gallic acid, is a 
typical antioxidant tea formulation, and thus considered as 

Fig. 6  Signaling molecules regulated by two phytochemicals, namely 
Shikonin and Gallic acid. For example, Shikonin Inhibits PI3K, mir-
19a, FAK, TrxR1, IDO1 that regulates cell proliferation, autophagy, 
and apoptosis. In addition, Shikonin upregulates the activity of Erk, 
Casp3, and RIP1 that are involved in the regulation of autophagy, 
apoptosis, proliferation, and necrosis. Moreover, Gallic acid targets 
MAPKs, namely Jnk, p38, and Erk, which regulates the transcrip-
tional status of various signaling molecules, namely CREB, STAT1/3, 
LKB1, AP1, and p53

◂
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potential natural antioxidant (Xu et al. 2017). Moreover, 
Gallic acid in addition to its phytochemical activity is also 
utilised in tanning, ink colours, and paper manufacturing 
(Valanciene et al. 2020). Gallic acid, commonly known 
as 3,4,5-trihydroxybenzoic acid, is a phenolic chemical, 
which can be found both in its free form and as a compo-
nent of tannins, specifically gallotannin (Al Zahrani et al. 
2020). Additionally, gallic acid and its derivatives can be 
found in almost all parts of the plant, including the bark, 
wood, leaf, fruit, root, and seed (Daglia et al. 2014).

Conclusion

Our work explores natural compounds that have been 
shown to interact with key modulators in multiple path-
ways which may influence tumorigenesis. Our research 
aims to identify such compounds that have significant 
immunomodulatory role along with anti-tumour effects. 
So, we first identified those genes which have potential 
of tumour progression as well as immunity suppression 
followed by natural compounds capable of checking their 
expression data. Gene expression data of natural com-
pounds i.e. gallic acid and shikonin was compared with the 
differentially expressed genes in HNSC cancer. Expression 
data of these compounds showed that gallic acid downreg-
ulates 120 genes, shikonin downregulates 660 genes that 
were upregulated in HNSC cancers. Moreover, gallic acid 
upregulates 48 genes and shikonin upregulates 38 genes 
that were downregulated in HNSC Cancer. So, this com-
bination of gallic acid and shikonin could be beneficial for 
the HNSC cancer treatment. We suggest that compounds 
that can cause immunomodulation along with inhibition of 
tumour progression would be particularly effective in com-
binatorial immunotherapy. Combinatorial immunotherapy 
is a promising therapeutics strategy that would be most 
effective in cancer therapeutics.

The natural compounds studied possess role of both 
immune modulators as well as anti-tumour function. There 
are very limited number of natural compound available for 
targeting genes which are involved in both immune suppres-
sion as well as tumour progression and this necessitates our 
studies that will pave the way for novel combinatorials. So, 
these natural compounds could be used in combination with 
other therapies or with each other for effective treatment of 
HNSC cancer. Further, we have to study the compounds in 
clinical studies and in-vitro biopsy samples to ascertain the 
full ramifications of our results.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42535- 022- 00363-w.
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Abstract
Numerous drugs have been used in the past to treat HNSC cancer through tumor suppression and immune modulation 
mechanisms. However, none of them achieved complete tumor remission. Synthetic drugs targeting tumor cells have side 
effects, and the tumor often acquires resistance against them. A subfamily of tyrosine kinases called Janus Kinases (JAKs) 
is observed to be over-expressed in various solid tumors, including HNSC. JAKs directly activate a family of transcription 
factors, Signal Transducers and Activators of Transcription (STATs) and induce a signaling cascade collectively known as 
JAK/STAT pathways. STATs are responsible for the regulated production of many inflammatory cytokines and growth factors 
that are beneficial to the tumor cells, favouring them to sustain themselves in a hostile microenvironment. Hence, inhibitors 
of JAK have been explored previously and SOCS 1 has been shown to be a known direct and most potent inhibitor of JAK1 
among the family of SOCSs proteins. The study presented here proposes a mechanism to inhibit the JAK/STAT pathway by 
inhibiting the JAK1 protein using small molecules of plant origin. The study thereby proposes three inhibitors viz., withaferin 
A, silymarin, and hypericin, to have significant potential to inhibit JAK1 protein, known to be upregulated in tumors. SOCS1 
was also identified to be upregulated in an HNSC tumor samples and is known to inhibit JAK-STAT pathway. Our 3 potent 
inhibitors, withaferin A, silymarin, and hypericin had the ability to also bind to the SOCS1-JAK1complex thus stabilizing it 
thus further potentiating the inhibition of JAK-STAT pathway. The three inhibitors explored in the present study can prevent 
JAK phosphorylation and activation in preventive and therapeutic application. The study proposes a therapy that can be 
employed in combination with other cancer therapies, thus increasing the overall efficiency of the treatment.

Keywords SOCS1 · JAK1 · Ubiquitination · STAT  · HNSC · Structural-based drug discovery · Combinatorial therapy

Abbreviations
ADCC  Antibody-dependent cellular cytotoxicity
BCL2  B cell lymphoma 2
CD274/PDL-1  Programmed death ligand 1
CDK6  Cyclin-dependent kinase
CDKN2A  cyclin-dependent kinase inhibitor 2 A
CTLA4  Cytotoxic T-lymphocyte-associated anti-

gen 4
FADD  Fas-associated protein with death domain
FDA  Food and Drug Administration
FOXP3  Forkhead box P3
HAVCR2  Hepatitis A virus cellular receptor 2
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HNSC  Head and neck squamous carcinoma
IL10  Interleukin 10
IRF6  Interferon regulatory factor 6
JAK1  Janus Kinase 1
KIR  Kinase inhibitory region
LAG3  Lymphocyte activation gene 3
MICA  MHC class I polypeptide–related 

sequence A
PDCD1  Programmed cell death protein 1
PDCD1LG2  Programmed cell death 1 Ligand 2
RMSD  Root mean square deviation
RMSF  Root mean square fluctuation
SASA  Solvent accessible surface area
SOCS1  Suppressor of cytokine signalling 1
STAT1/2/3  Signal transducer and activator of tran-

scription 1/2/3
TIGIT  T cell immunoreceptor with Ig and ITIM 
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TPM  Transcripts per million.
TWSG1  Twisted gastrulation BMP signalling 

modulator 1.
TYK2  Tyrosine kinase 2
VEGF  Vascular endothelial growth factor

Introduction

Cancer is a complex and multifactorial disease. In the past 
various therapies have evolved. Still, due to the complex 
nature of cancer, a unilateral therapeutic strategy often is 
insufficient and redundant due to the development of resist-
ance. Recent advances are suggestive towards a combinato-
rial approach of these therapies to mitigate the cancer cells 
effectively. The hallmark and the deep-rooted cause for the 
occurrence of cancer are genetic and proteomic dysregula-
tion at the genetic, transcriptional, or post-transcriptional 
processing stage (Bradner et al. 2017). While the control and 
expression of proteins exhibit a high degree of tissue-spec-
ificity, it is almost safe to say that cancers have an inherent 
property to upregulate the proteins that favor their survival 
while suppressing the genes posing a threat to it (Wuputra 
et al. 2020; Sur and Taipale 2016). A plethora of proteins 
is expressed for various biological activities. Among them 
are few; they are seen as a probable target, i.e., their inhi-
bition can promote proteolytic activity and enhance tumor 
cell apoptosis. On the other hand, some proteins inherently 
have tumor-suppressive properties by default. Hence, inter-
est is to promote their activity. Ultimately, both interventions 
facilitate the elimination of tumor cells (Otto and Sicinski 
2017; Liu et al. 2015).

A non-receptor tyrosine kinase, c-Src, was the first proto-
oncogene identified, and since then, numerous other kinase 
proteins have been isolated and annotated (Stehelin et al. 
1976). Phosphorylation of a target protein is a crucial step in 
downstream signaling of various pathways, which are essen-
tial for cell survival, and the very process is exploited by the 
cancer cells for their benefit (Schwartz et al. 2018). Kinase 
receptors have immense involvement in carcinogenesis. 
Human Genome Project and availability of repositories like 
the Human cancer genome atlas have enabled the emergence 
of novel receptors and investigation towards avenues like 
precision medicine and targeted therapy (Krzyszczyk et al. 
2018; Pestell 2003; Sawyers 2002). The sequencing and 
data analysis efforts have identified kinase receptors either 
downstream or upstream to essential oncogenes and tumor-
suppressive genes, implying their relevance in the molecu-
lar pathophysiology of cancer and as an attractive target for 
drug development (Paul and Mukhopadhyay 2004).

In normal conditions, kinase receptors are generally 
involved in very crucial developmental and inflammatory 
responses. One such kinase pathway is the JAK/STAT 

pathway which regulates cytokine production, interleukin 
signaling, and growth factor stimulation (Thomas et al. 
2015). A cancer cell tends to increase in number and evolve 
and adapt relative to its proximity. Hence, upregulation of 
the JAK/STAT pathway provides cancer cells with a favora-
ble mechanism for survival and maturation in a hostile envi-
ronment. The pathway is extensively exploited to facilitate 
various molecular stages of cancer. STAT protein is essen-
tial for inducing hypoxic conditions and adaptation to the 
stressful environment (Pawlus et al. 2014). Intense energy 
requirement in the tumor cell is fulfilled by switching from 
mitochondrial respiration to glycolysis by releasing pyruvate 
dehydrogenase kinase 1, which is also mediated by STAT 
signaling (Demaria et al. 2010). Vasculature development, 
crucial for tumor survival and metastasis, is induced by vas-
cular endothelial growth factor (VEGF). Transformed cells 
often use STAT protein as a transcription factor to increase 
VEGF expression, leading to tumor invasion. Epithelial 
to mesenchymal transition, which precedes metastasis, is 
also influenced by JAK signaling through STAT3 (Cho 
et al. 2013; Huang et al. 2016). Since the ontology of JAK/
STAT suggests regulation of cytokine signaling as well as 
JAK/STAT signaling mediated expression of considerable 
quantities of interleukins and inflammatory pathways, JAK/
STAT pathway is crucial for tumor survival, epithelial to 
mesenchymal transition, and metastasis of tumor as well 
as its impact on the immune response to the tumor cells 
(Sriuranpong et al. 2003; Twyman-Saint Victor et al. 2015; 
Kortylewski et al. 2005). IRF1 is an interferon regulatory 
factor-mediated by STAT1 production, and IRF1 facilitates 
STAT1 binding to DNA, thus forming a positive feedback 
loop. Knock out of IRF1 showed reduced tumor growth 
(Shao et al. 2019), while upregulation of IRF1 was followed 
by a dramatic increase in transcription of decoy receptor 3, 
promoting migration and poor prognosis (Wei et al. 2019). 
IFN-β activates JAK1 to produce IL-10, which is infamous 
for the proliferation of cancer through immunosuppression 
(Oft 2014; Wang et al. 2011). AXL is another targetable pro-
tein that has a role in EMT, survival, anoikis resistance, and 
invasion of cancer cells, which is also mediated by STAT1 
(Wei et al. 2019; Colavito 2020; Lawrence et al. 2015).

As a safety mechanism, the cell employs SOCS1 to 
keep JAK/STAT pathway in check as prolonged exposure 
to inflammatory cytokines is detrimental to the cells (Liau 
et al. 2018). SOCS1 is the most potent SOCS family mem-
ber and actively regulates the IFNɣ production (Larkin 
et al. 2013). The protein interacts with JAK protein using 
a short KIR (kinase inhibitory region) motif inhibiting the 
tyrosine phosphorylation. SOCS1 is classified as a tumor 
suppressor and therefore is silenced in many human can-
cers (Vogelstein et al. 2013). SOCS1 is shown to be a direct 
inhibitor of JAK1, JAK2, and TYK2 (Liau et al. 2018). The 
SOCS box region of the protein also facilitates binding with 
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ElonginBC, allowing the E3 ubiquitin ligase mediated ubiq-
uitination. The two scaffolds allow a reasonable inactiva-
tion of the JAK protein (Babon et al. 2008; Kamizono et al. 
2001]. However, recent literature reveals its tumor-promot-
ing role but fails to elucidate the mechanism and survival 
(Tobelaim et al. 2015).

The present study has identified a cluster of genes that 
has an apparent function in both tumor progression and 
immune regulation in head and neck squamous cancer 
(HNSC), out of which we identified JAK1 to modulate all 
the genes (either directly or indirectly). The observation trig-
gered the interest to find a safer plant-based type II JAK1 
inhibitor to mitigate JAK-mediated tumor survival, matura-
tion, and immune regulation. The plant-derived compounds 
selected for the study were already known to have direct 
anti-tumor functions (Ullrich et al. 2019); the rationale 
behind this biased selection is that the molecules will have 
a dual role of direct anti-tumor function and the indirect 
role of enhancing the SOCS mediated JAK/STAT inhibi-
tion response. The analysis also showed SOCS1 protein to 
be upregulated in HNSC cancer. Hence, we also explore the 
association between JAK1 and SOCS1 upon ligand bind-
ing as the literature suggests that SOCS1 cannot bind with 
unphosphorylated JAK1 protein due to steric hindrances. 
However, the conformational change upon ligand binding 
facilitates the exposure of the activation domain of JAK1 for 
SOCS1 binding. The proposed ligands are shown to prevent 
the self-phosphorylation of the tyrosine residues in JAK1, 
the activation of unphosphorylated JAK1, and promote 
SOCS1 binding. Thus, by engaging the SOCS1 protein, the 
proposed compounds effectively reduce the tumor prolifera-
tive properties. The study employs a gene expression and 
computational pipeline to showcase that the JAK1-ligand 
complex is relatively more stable when in co-association 
with SOCS1 as compared to un-associated JAK1 keeping 
binding with ATP as a control measure. This higher affinity 
of the compounds studied for SOCS1 bound to JAK1 sug-
gests a role in potentiating the inherent suppression of the 
JAK/STAT pathway by SOCS1 and its anti-tumor function.

Methodology and material

Enrichment and gene expression analysis

Five hundred genes associated with HNSC cancer were 
imported in Cytoscape from the disease query database and 
did enrichment analysis with GO Process and found 256 
genes related to immune system processes. We further did 
enrichment analysis and found that 53 genes are associated 
with immune system suppressor processes.

Using the GEPIA database, multiple genes compari-
son was carried out on 23 genes isolated based on existing 

literature for their functional involvement in tumor progres-
sion and regulation of immune response for comparing their 
gene expression in HNSC cells and normal cells (Krasnov 
et al. 2019). A network analysis was build using the STRING 
database to identify the cluster of genes (Szklarczyk et al. 
2017).

Protein/macromolecule

In our study, the 3-dimensional structure of JAK1-SOCS1 
was taken. It was retrieved from RCSB’s protein data bank 
(Berman 2000) in PDB format. The PDB ID assigned to 
the structure was 6C7Y. Chain A comprises 286 residues 
and is the Kinase Domain of JAK1 bound to Adenosine-5′-
diphosphate at the active site as the native ligand for the said 
protein, while chain B is the SOCS1 protein of 117 residue 
length (Fig. 1).

Ligand

The 3-D structures of inhibitors were extracted from the 
PubChem database in .sdf format (Kim et al. 2016). In total, 
56 ligand structures were used and as a control, ATP was 
employed (Choi et al. 2016). All ligands were converted 
from .sdf format to .pdb file format using Biovia Discovery 
Studio Visualizer for docking purposes.

Molecular docking

Molecular docking was then performed in order to obtain 
each of the protein-ligand binding complexes. For molecu-
lar docking, AutoDock 4.2 was used (Morris et al. 2009). 
Before docking, the structures of the protein and ligands 
that were downloaded were further prepared. Preparing the 
optimized protein structure involved removing the water and 
natural inhibitor molecules, adding polar hydrogen bonds 
and Kollman charges. Gasteiger charges were also calcu-
lated. Then, the energy minimization of the protein was done 
using the Swiss PDB Viewer. These steps summed up the 
protein optimization process. A grid box of 54 × 68 × 46 was 
calibrated as per the active site (ATP-binding site) residues 
of the JAK1 protein with 0.375 Å spacing with the centers 
as follows: x center = 9.44, y center = 30.97, and z center = 
7.552. Docking Log Files (.dlg) were obtained in the final 
step to obtain the top 10 binding energies of the docked com-
plexes; here, the Genetic algorithm was kept as the search 
parameter, and Lamarckian GA was used to run the output. 
The conformation exhibiting the lowest binding energy was 
chosen for being converted to a 2D structure to evaluate the 
binding of the formed protein-ligand interactions.



 Vegetos

1 3

Molecular dynamics

A total of 6 dynamic simulations were carried divided into 
two sets. Set A comprises best-docked conformations of 
JAK1-SOCS1-ligand complexes, and Set B with the JAK1-
ligand complexes, i.e., SOCS1 was omitted using Schrod-
inger2021 from docked complexes. The segregation allowed 
a comparative analysis between the two states of JAK1. As 
a default setting, the Desmond Module of Schrodinger2021 
utilizes all the algorithms that support high performance 
and accurate results. After pre-processing and optimizing, 
docked complexes were submerged into a solvent environ-
ment with water molecules aligning in a TIP3P water model 
in an orthorhombic box. The water environment was neu-
tralized using sodium ions at 0.15 M concentration. After 
preparing the system around the complex, all the atoms were 
subjected to OPLS-AA 2005 force field. A 100ns simulation 
was done at 300 K and 1 bar pressure. In the pipeline, before 
simulation onset, the whole system was allowed to relax and 
minimize. A 1000 frame trajectory was obtained to analyze 
the interaction and dynamics of protein-ligand complexes 
(Bowers et al. 2006).

Estimation of biological activity

A prediction of selected compounds’ biological activity was 
carried out. The was accomplished using the PASS web 
server, which uses multilevel neighbors of atoms descriptors 

as its core principle to predict bio-activity of the ligand mol-
ecules by providing SMILES as the input. The process is 
solely based on chemical structures (Goel et al. 2011).

Results

Enrichment analysis and gene expression

Enrichment analysis of 500 of the most associated HNSC 
cancer genes was conducted to select immune-associ-
ated genes. 256 genes related to immune regulation were 
explored, out of which 53 genes were found associated with 
the suppression of immune system-associated processes, 
such as regulation of T cell and B cell activation, regulation 
of B cell proliferation, and many more. Furthermore, the 
53 genes were checked in the literature for their association 
with tumor progression-related processes like cell prolifera-
tion, metastasis, etc. It was found that 14 genes were associ-
ated with both processes while seven genes were associated 
with immune suppression only, and two genes were associ-
ated with tumor progression only. The remaining two genes 
were associated with HNSC cancer due to alteration of their 
function by mutation, as shown in Table 1.

A pan-cancer gene expression analysis of the 14 genes 
having a role in both tumor-associated functional ontology 
and immune suppression is shown by Fig. 2, which quanti-
fies the change in their expression value comparing matched 

Fig. 1  3D Structure of Kinase 
Domain of JAK1 protein in 
complex with SOCS1. ADP is 
the native ligand bound to the 
JAK1 structure, and residues 
forming the active site are 
labeled with black
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normal tissues with tumor tissues of HNSC. Upregulated 
genes had a higher  Log2 (TPM+1) in the tumor than typical 
tissue samples values matched with the TCGA database.

These 14 shortlisted genes were explored for their corre-
lation between them. Input to STRING database provided 2 
clusters; 13 genes in first and one gene in another. The clus-
ter with 13 genes became the focus of the study, and JAK1 
presented itself as a druggable target interacting with nine 
genes directly, and others involved downstream or upstream 
to JAK1 protein in multiple pathways (Fig. 3).

Molecular docking

All the selected ligands were subjected to molecular docking 
analysis with the JAK1-SOCS1 complex. Table 2 summa-
rizes the results of the docking studies with all the selected 
phytochemicals for the study. Docked complex with ATP 
was used a control for the study. Our analysis shows the best 
three ligands to have significantly lower binding energy than 
the ATP (− 6.08 kcal/mol).

Among ten different conformations of withaferin A 
obtained, − 12.34 kcal/mol was the least binding energy 
obtained. Withaferin A exhibited five different types of 
bonding with the protein, as shown in Fig. 4 A., namely—
van der Waals interaction, H-bond, carbon-hydrogen 
bond, alkyl bond, and pi-alkyl bond. ASP1003 (A chain), 
ARG1007 (A chain), and HIS54 (B chain) formed H-bond 
with withaferin A; PHE886, VAL889, ARG1007, and 
LEU1010, all residues of chain A, formed alkyl and pi-alkyl 
interactions; HIS885 and ASN1008, of chain A, formed car-
bon-hydrogen bond; rest of the residues formed weak or van 
der Waals interaction with the ligand.

Following Withaferin A, the Hypericin-JAK1-SOCS1 
complex exhibited the least binding energy of − 10.15 kcal/
mol. As shown in Fig. 4C, hypericin formed six bond types 

with the protein, namely—van der Waals, H-bond, carbon-
hydrogen bond, pi-sigma bond, alkyl, and pi-alkyl bond. 
GLU883, MET956, LEU959, GLU966, and ASP1021, all 
residues of chain A, formed conventional H-bond with the 
ligand; LEU881, and LEU1010, both of chain A, formed pi-
sigma bond; VAL889, ALA906, MET956, and ARG1007, 

Fig. 2  Multiple Gene Expression analysis between HNSC sample and a typical sample of 14 genes having dual functions. The gradient is 
directly proportional to the  Log2 (TPM+1), where TPM is Transcripts per million as the normalized value of gene count

Fig. 3  Network mesh obtained from the STRING database. A clear 
demarcated cluster comprises 13 genes, while PRKDC itself acts as 
a second cluster. JAK1 is directly associated with STAT1, STAT2, 
STAT3, IL10, AXL, SOCS1, FOXP3, CD274, and IRF1, while 
FADD, CDK6, and HAVCR2 are distantly regulated via mediators in 
the JAK1 pathway
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Table 2  Lists of various docking parameters of all the ligands considered in this study 

S. no. Ligand Binding energy Ligand efficiency Inhibition con-
stant (µM)

Intermolecular 
energy

Vdw-H bond 
desolvation 
energy

1 Carvacrol − 5.78 − 0.53 57.53 − 6.38 − 6.27
2 Eugenol − 5.47 − 0.46 98.56 − 6.66 − 6.19
3 Dihydrocarveol − 5.99 − 0.54 40.94 − 6.58 − 6.47
4 Geraniol − 5.27 − 0.48 138 − 6.76 − 6.63
5 Nerol − 4.77 − 0.43 319.93 − 6.26 − 6.11
6 Linalool − 5.15 − 0.47 167.01 − 6.64 − 6.51
7 1,8-Cineol − 5.41 − 0.49 107.87 − 5.41 − 5.42
8 3,3’-Diindolylmethane − 7.5 − 0.39 3.2 − 8.09 − 8.02
9 6-Gingerol − 5.44 − 0.26 102.79 − 9.02 − 8.87
10 6-Shogaol − 5.69 − 0.57 67.38 − 5.69 0.01
11 7,4′ Dihydroxyflavonoid − 7.53 − 0.4 3.01 − 8.43 − 7.84
12 Aconitine 71.41 1.79  N/A 68.43 68.44
13 Albumin tannate − 7.27 − 0.36 4.68 − 8.46 − 8.26
14 Apigenin − 5.32 − 0.48 126.45 − 5.62 − 5.6
15 α-Pinene − 5.93 − 0.54 45.02 − 5.93 − 5.66
16 α-Thujone − 7.86 − 0.39 1.73 − 9.05 − 8.82
17 Baicalein − 3.69 − 0.41 1.99 − 5.48 − 5.44
18 β-Carotene − 4.11 − 0.09 975.39 − 8.28 − 8.64
19 Camphene − 6.1 − 0.31 33.89 − 9.08 − 8.8
20 Chrysin − 7.56 − 0.4 2.88 − 8.45 − 8.26
21 Curcumin − 7.56 − 0.28 2.89 − 10.54 − 10.38
22 Celastrol − 7.7 − 0.23 2.28 − 8.59 − 7.75
23 Chlorogenic acid − 7.41 − 0.3 3.69 − 10.69 − 8.49
24 Caffeic acid − 6.85 − 0.53 9.59 − 8.34 − 5.51
25 Carnosol − 7.63 − 0.32 2.53 − 8.53 − 8.27
26 Capsaicin − 6.94 − 0.32 8.14 − 9.93 − 9.77
27 Ellagic acid − 7.68 − 0.35 2.34 − 8.88 − 8.4
28 Epigallocatechin-3-gallate − 8.68 − 0.26 0.43556 − 12.26 − 11.9
29 Formononetin − 6.82 − 0.34 10.04 − 7.71 − 7.3
30 Gallic acid − 6.27 − 0.52 25.53 − 7.76 − 5.8
31 Genistein − 7.26 − 0.36 4.79 − 8.45 − 8.2
32 Gossypol − 7.77 − 0.2 2.02 − 11.05 − 11.1
33 Hypericin − 10.15 − 0.27 0.03644 − 11.94 − 11.61
34 Hydroxytyrosol − 5.24 − 0.48 143.38 − 6.73 − 6.23
35 Indole-3-carbinol − 5.72 − 0.52 64.08 − 6.32 − 5.95
36 Isoliquiritigenin − 8.01 − 0.42 1.34 − 9.8 − 9
37 Jasmonic acid − 5.71 − 0.38 64.88 − 7.5 − 7.16
38 Koenimbin − 7.73 − 0.35 2.17 − 8.03 − 7.96
39 Limonene − 5.38 − 0.54 114.3 − 5.68 − 5.66
40 Medicarpin − 7.54 − 0.38 2.96 − 8.14 − 7.99
41 Parthenolide − 7.56 − 0.42 2.85 − 7.56 − 7.63
42 Piperine − 7.7 − 0.37 2.27 − 8.6 − 8.67
43 Proanthocyanidins − 7.17 − 0.17 5.54 − 11.05 − 10.61
44 Plumbagin − 5.93 − 0.42 45.3 − 6.22 − 6.11
45 Pterostilbene − 7.25 − 0.38 4.81 − 8.75 − 8.38
46 Resveratrol − 6.61 − 0.39 14.17 -8.11 -7.53
47 Retinoic acid − 8.98 − 0.41 0.26356 -10.77 -10.15
48 Sabinene − 5.36 − 0.54 117.88 − 5.66 − 5.65
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Table 2  (continued)

S. no. Ligand Binding energy Ligand efficiency Inhibition con-
stant (µM)

Intermolecular 
energy

Vdw-H bond 
desolvation 
energy

49 Shikonin − 6.52 − 0.31 16.56 − 8.31 − 7.98
50 Silymarin − 10.04 − 0.29 0.04355 − 12.73 − 12.15
51 Sulforaphane − 4.39 − 0.44 600.64 5.89 − 5.73
52 Triptolide − 8.48 − 0.33 0.60637 − 9.08 − 9.02
53 Terpineol − 5.83 − 0.53 53.6 − 6.42 − 6.31
54 Wogonin − 7.3 − 0.35 4.45 − 8.49 − 7.65
55 Withaferin A − 12.34 − 0.36 0.000895 − 13.84 − 13.3
56 Podophyllotoxin − 8.29 − 0.28 0.84385 − 9.78 − 9.26
57 ATP (Control) − 6.08 − 0.2 34.66 − 10.56 − 8.79

Fig. 4  2D Interactions obtained after molecular docking of A Withaferin A, B Hypericin, C Silymarin
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from chain A, formed alkyl and pi-alkyl bond with the 
ligand; GLY882 of chain A was involved in the formation 
of carbon-hydrogen bond; rest of the residues were involved 
in van der Waals interaction with the ligand.

The Silymarin-JAK1-SOCS1 complex had binding 
energy of − 10.04 kcal/mol. As exhibited by Fig. 4B, pro-
tein has formed seven bonds with silymarin; van der Waals, 
H-bond, carbon-hydrogen bond, pi-anion interaction, pi-
sigma bond, alkyl, and pi-alkyl bonds. It can also be seen 
that all the residues involved in bonding belong to chain 
A. GLU957, LEU959, GLU966, ASP1003, ARG1007, 
ASN1008, and ASP1021 formed conventional H-bond; 
Asp1021 was involved in pi-anion interaction with the 
ligand; GLY884 and LEU1010 forms pi-sigma bond; 
ALA906, VAL938, MET956, and LEU1010 were involved 
in alkyl and pi-alkyl bonding with the ligand; GLU957 and 
GLY962 formed carbon-hydrogen bond; remaining residues 
formed van der Waals interactions with the ligand.

Molecular dynamics simulation

In order to understand the conformational stability of the 
protein-ligand complex under clear water conditions, MD 
simulations were performed. For further studies, both Set A 
(Withaferin A-JAK1-SOCS1, Silymarin-JAK1-SOCS1, and 
Hypericin-JAK1-SOCS1) and Set B (Withaferin A-JAK1, 
Silymarin-JAK1, and Hypericin-JAK1) complexes were 
selected based on their docked binding energy and interac-
tions. The complexes were subjected to a 100ns all-atom 
MD simulation each. Table 3 lists the potential energy and 
total energies calculated for each complex.

Conformational stability and structural compactness

The structural deviation and compactness become critical 
to explore the changes in the protein moiety. Hence, upon 
subjecting the protein-ligand complex to dynamics, four 
graphical parameters, namely, root means square devia-
tion (RMSD), solvent accessible surface area (SASA), and 
root means square fluctuations (RMSF), provided us with 
insights into the stability and compactness of protein-ligand 
complex.

Comparing the RMSD plots of two sets of complexes 
with their ATP bound conformation towards the end of the 
simulation gives us an estimate of the protein and protein-
ligand stability. Both sets of complexes with silymarin show-
cased similar RMSD plots which were lower than the ATP, 
while with the other two ligands, a considerable amount of 
difference was observed. Following the removal of SOCS1 
protein, the Withaferin A-JAK1 and Hypericin-JAK1 exhib-
ited higher RMSD values, suggestive of instability of the 
protein-ligand complex (Fig. 5A). The average values in 
Fig. 5B confirm the difference in RMSD values. Overall, 
ligand binding to the JAK-SOCS1 bound protein is signifi-
cantly more stable than binding JAK1, which is not bound 
to SOCS1.

Residual fluctuations in the peptide chain were calculated 
and plotted in a root mean square fluctuation (RMSF) graph. 
As per the convention, for all the complexes, free residues, 
i.e., residues not involved in secondary structure formation, 
were seen to fluctuate the most, and residues forming alpha 
helices or beta sheets were found to show limited fluctuation 
values. Residual vibrations of the amino acid binding to the 
ligand molecule obtained the lower set of values suggest-
ing a rigid binding pocket. Figure 5C evaluates the average 
RMSF value of the complexes pre and post SOCS1 removal 
from the protein-ligand hybrid.

Solvent accessible surface area (SASA) measures the sur-
face area of a molecule in contact with the surrounding water 
molecules. The average SASA values calculated at the end of 
the 100ns simulation for pre and post SOCS1 removed pro-
tein complexes with withaferin A, silymarin, and hypericin 
were calculated (Fig. 5D). The average values suggest com-
plexes with hypericin as the most stable and shielded of the 
three with the least internal pocket residues interacting with 
the surrounding solvent molecules.

Secondary structure analysis

Computing and analyzing secondary structures can be used 
to understand the protein packing and characteristics of fold-
ing the protein with different ligands. Table 4 shows the 
percentage of secondary structures of SOCS1 protein with 
withaferin A, silymarin, and hypericin ligands.

Table 3  Energy profile of both 
sets of complexes with three 
ligands

S. no. Complex Total energy (Kcal/mol) Potential energy(Kcal/mol)

1. JAK1-SOCS1-Withaferin A − 127,296.389 − 156,435.100
2. JAK1-SOCS1-Silymarin − 127,380.998 − 165,519.864
3. JAK1-SOCS1-Hypericin − 127,343.435 − 156,485.226
4. JAK1-Withaferin A − 89,222.743 − 109,645.328
5. JAK1-Silymarin − 89,326.760 − 109,752.643
6. JAK1-Hypericin − 89,241.412 − 109,664.753
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Analysis of interaction dynamics

After the 100ns simulation of the three complexes, the his-
togram of all the interactions with their ligands was ana-
lyzed. Withaferin A-JAK1-SOCS1 complex showed the 
lowest number of H-bond interactions. However, ASP1003 
interacted with the ligand using the H-bond for most of the 

simulation time. Other interactions complementing this 
binding were water bridges involving LYS908 and GLY1020 
and hydrophobic bond formations by PHE886 and LEU1010 
(Fig. 6A).

The histogram plot of Silymarin-JAK1-SOCS1 presented 
the highest number of residues interacting with ligand 
(Fig.  6B). LEU959, ASP1003, ASP1021, and GLU957 
complemented each other for stable binding of the ligand in 
the binding pocket by forming a solid H-bond for 100% of 
the period studied. LYS965, HIS885 formed all three kinds 
of bonds, while others like GLU883 and ASN1008 formed 
conventional hydrogen bonds and water bridges during the 
simulation. Other residues are supported by forming hydro-
phobic and water bridge interactions with the ligand in a 
scattered nature.

In a Hypericin-JAK1-SOCS1 complex, seven amino acids 
formed H-bonds, out of which LEU959 and GLU956 held 
the ligand in place for the most duration of the simulation. 
Other residues contributed to the ligand-protein interaction 

Fig. 5  Post 100ns simulation comparative analysis of conformational stability and compactness in comparison with ATP. A RMSD. B Average 
RMSD. C Average RMSF. D Average SASA

Table 4  Secondary Structure analysis of all six protein-ligand com-
plexes

Complex % Helix % Strand % Total SSE

JAK1-SOCS1-Withaferin A 28.80 11.95 40.75
JAK1-SOCS1-Silymarin 28.85 11.75 40.60
JAK1-SOCS1-Hypericin 29.01 11.39 40.40
JAK1-Withaferin A 29.95 8.62 38.57
JAK1-Silymarin 30.29 8.94 39.23
JAK1-Hypericin 29.61 8.33 37.95
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by hydrophobic bonds (VAL889, ALA906), water bridges 
(SER963, PRO960), and ionic bonds like ARG879. Some 
residues like LEU881, LYS908, GLY996, and GLY1020 
exhibited dual nature of bond formation with the complex 
(Fig. 6C).

Withaferin A-JAK1 complex interacted with a total of 
34 amino acids, out of which PHE886 and HIS885 formed 
string H-bond more than 20% of the simulation time. While 
LEU881, GLY1020, LYS908, ASP1039, and other residues 
complemented the H bonds quite well anchoring, cumula-
tively anchoring the ligand at the binding site (Fig. 6D).

Bar plot of Silymarin-JAK1 complex showed an appreci-
able mixed type of interactions throughout the simulation. 
ASP1021, LEU959, HIS1003, and ASP880 acted as the 
hook to the ligand while other residues such as ARG879, 
GLU883, ARG1007, LEU1010, and other 25 residues inter-
acted with either a combination of bonds or with a single 
type, ultimately contributing towards the ligand binding at 
different instances of time (Fig. 6E).

A total of 23 residues of the JAK1 protein interacted 
with hypericin. LEU959 and GLU957 stabilized the bind-
ing using the string H-bond at least 60% of the simulation 
time. ALA1010, ALA906, VAL889, and LEU881 showed 

appreciable hydrophobic interactions while remaining other 
formed water bridges either in combination with other inter-
actions or solely. Hypericin ligand was well embedded and 
shielded in the active site by the protein residues (Fig. 6F).

Biological activity

Providing the SMILES as the input to the server-generated 
prediction for the three ligands. All three ligands have been 
found to have significant anticancer activities mediated by 
different pathways. The probability ranges from 0.797 to 
0.936 when  Pi <  Pa. Obtaining a similar biological activity 
suggests their strong candidature for the therapy (Table 5).

Discussion and conclusion

A compelling amount of evidence suggests that JAK/STAT 
pathway is generally activated in solid tumors, and the 
upregulated pathway contributes to the malignancy of can-
cer cells. Given the extensive role of the JAK/STAT pathway 
in molecular processes and its exploitation by cancer cells 
for their survival, proliferation, protection, adaptation, and 

Fig. 6  Post dynamic analysis of protein-ligand interaction A Withaferin A-JAK1-SOCS1. B Silymarin-JAK1-SOCS1. C Hypericin-JAK1-
SOCS1. D Withaferin A-JAK1. E Silymarin-JAK1. F Hypericin-JAK1
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mobility, the pathway becomes an exciting and promising 
target to develop a novel therapy to kill tumor cells, prevent 
their metastasis and potentiate the anti-tumor response of 
the body.

The JAK1 protein and related STAT proteins are shown to 
be upregulated in HNSC cancers in multiple studies. JAK1 
becomes a promising target as it is involved in tumor pro-
gression, and immune regulation. It was interesting to see 
that JAK1 was overexpressed in cancer cells, and SOCS1, 
a JAK1 inhibitor, was also highly expressed in the HNSC 
samples. In our study, plant-derived ligands were shown to 
bind to JAK1, and it could preclude the phosphorylation 
of JAK1 and thus prevent JAK/STAT pathway activation. 
Along with testing the stability of JAK1 binding with the 
plant derived ligands, binding of SOCS1-JAK1 complex 
with our ligands was extensively studied, and their stabili-
ties were compared. JAK1 mediates most of the pathways 
via STAT isoforms such as STAT1, STAT2, STAT3, STAT4, 
and cytokine production.

JAK-STAT pathway resulted in a dramatic increase in 
tumor migration and IFN-β activated IL-10 production, 
which is crucial for immunosuppression and enabling 
tumor proliferation and metastasis. The present study 
identifies three potent plant-based inhibitors, withaferin 
A, silymarin, and hypericin, from an extensive dataset of 
ligands with anti-tumor functions. The RMSD obtained, 
post-simulation, emphasized the stability of all three pro-
tein ligand complexes. The same plot also compares the 
stability of JAK1-ligand complexes in SOCS1 bound and 
unbound forms. Our studies have shown that the complex is 
relatively more stable when conjugating with SOCS1 bound 
form, as is evident by average values. Although SOCS1 has 
a high affinity to bind to JAK1 via the KIR domain, it is 
observed that SOCS1 cannot interact with the activation 
loop of JAK1 in its inactive form. Presence of any ligand 
molecule induces a conformational change in the protein, 
and the ligands proposed in the present study have been 
shown to do the same and provide the interface to SOCS1 
protein to bind to JAK1 protein, which is the probable cause 
of higher stability of JAK1-SOCS1-ligand complexes. Since, 
ATP acts as a substrate during phosphorylation, the three 
drug molecules were also compared with the ATP bound 

conformations. Silymarin clearly showcased its potentiality 
in competing for the binding site in both SOCS1 bound and 
non-bound states thus preventing the initial phosphorylation 
and the subsequent ones as well. The three drug molecules 
are predicted to have a high probability of acting as either 
anti-neoplastic or chemopreventive agents, which along with 
interaction with JAK1 has the unique property of stabilizing 
the inherent JAK inhibitor SOC1 that is present in the tumor 
microenvironment. Our studies show that the three ligands 
can act as potent inhibitors to both activated and inactivated 
JAK1 receptors, thus exhibiting both treatment and preven-
tive nature of these compounds. The SOCS1 scaffold, on the 
other hand, has two binding surfaces, the KIR domain, and 
the SOCS box. KIR domain can proficiently bind to JAK1 
even with its dephosphorylated form, preventing the phos-
phorylation of the second kinase molecule while enabling 
the degradation of bound JAK by inducing ubiquitination 
via SOCS box domain. Use of our inhibitors should act as a 
fail-proof mechanism to inhibit the JAK1 associated path-
ways and regulation by aiding the existing SOCS1 protein 
binding to JAK1 and also by directly competing with ATP 
at the ATP-binding site of JAK1 in HNSC cancers. Thus the 
ligands will prevent JAK1 phosphorylation thereby activa-
tion of the JAK/STAT pathway, also, stabilize and aid the 
SOCS1 mediated inhibition of JAK1 by bringing about a 
conformational change to the activation domain of JAK1 
protein. This method also has potential to be combined with 
other therapies such as PDL-1 based immunotherapy, AXL 
inhibitory chemotherapy, and radiotherapy. Therefore, our 
study encourages exploring withaferin A, silymarin, and 
hypericin to further evaluate their efficacy and safety in cell 
and animal models and their use in combinatorial therapies 
in various solid tumors.
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