
PARTICLE SWARM OPTIMIZATION

A DISSERTATION

Submitted in Partial Fulfillment of Requirements

For the award of the degree

of

Master of Science
In

Applied Mathematics

Submitted by:

Hansraj

Roll No. 2K21/MSCMAT/19

and

Bijesh Yadav

Roll No. 2K21/MSCMAT/09

Under the supervision of

Prof. Anjana Gupta

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY,2023

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Hansraj (2K21/MSCMAT/19) and Bijesh Yadav (2K21/MSCMAT/09)
students of M.Sc in Applied Mathematics at Delhi Technological University, hereby de-
clare that the submitted Dissertation titled “Particle Swarm Optimization” is original
and has not been copied from any sources without proper citation. This work has not
been used to obtain any other degree, diploma, associateship, fellowship, or recognition
previously.

Place: Delhi
Date:

HANSRAJ
2K21/MSCMAT/19

BIJESH YADAV
2K21/MSCMAT/09

Prof. Anjana Gupta

SUPERVISOR

Department of Applied Mathematics
Delhi Technological University
Bawana Road, Delhi-110042

i

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I certify that the Project Dissertation titled “Particle Swarm Optimization” submit-
ted by Hansraj (2K21/MSCMAT/19) and Bijesh Yadav (2K21/MSCMAT/09) in partial
fulfillment of the requirement for the award of the degree of Master of Science from the
Department of Applied Mathematics at Delhi Technological University, Delhi, is a record
of the project work carried out by the students under my supervision. To the best of my
knowledge, this work has not been submitted in part or full for any degree or diploma at
this university or elsewhere.

Place: Delhi
Date:

Prof. Anjana Gupta

SUPERVISOR

Department of Applied Mathematics
Delhi Technological University

Bawana Road, Delhi-110042

ii

ACKNOWLEDGEMENT

I would to express my sincere thanks and appreciation to my guide, Prof. Anjana
Gupta, for his patient guidance, constant encouragement, endless support during my
study.

I would be like to thank the Department of Applied Mathematics of Delhi Techno-
logical University (Formerly Delhi College of Engineering) for providing a productive
scientific environment.

HANSRAJ
2K21/MSCMAT/19

BIJESH YADAV
2K21/MSCMAT/09

iii

ABSTRACT

An optimisation algorithm based on the behaviors of social organisms is known as
particle swarm optimizatio (PSO).It represents a set of potential answers to an optimi-
sation issue as a swarm of moving particles in the parameter space. The performance of
the particles is guided by their own performance and the performance of their neighbors,
leading to an optimized solution. This thesis presents a study of the impact of boundary
conditions on the performance of Particle Swarm Optimization (PSO) through the use
of the invisible wall technique. The convergence behaviors of PSO are analyzed and its
application to discrete-valued problems and multi-objective optimization problems are
discussed. Additionally, practical applications of PSO are explored. We are solved linear
programming problems, transportation problem using Particle Swarm Optimization and
applying on a Data Set.

Keywords: Particle Swarm Optimization (PSO), Swarm Intelligence, Current Posi-
tion, Current Velocity, individual perfect or (Pbest), Global Best (Gbest), Multi-objective.

iv

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

Abbreviations ix

1 Preliminaries 1
1.1 Introduction . 1
1.2 Swarm Intelligence . 2

2 Background 3
2.1 Optimization . 3

2.1.1 Constrained Optimization . 3
2.1.2 Unconstrained Optimization . 4
2.1.3 Dynamic Optimization . 4

2.2 Global Optimization . 5
2.3 Local Optimization . 5

2.3.1 Example . 5
2.4 Uniform Distribution . 6

3 Particle Swarm Optimization 7
3.1 PSO Algorithm . 8

3.1.1 Steps of Algorithm . 9
3.2 Flowchart . 10
3.3 Acceleration Constant C1 and C2 . 11
3.4 Inertial Weight Factor . 11
3.5 Linear Programming Problem . 12

3.5.1 Computational Result: . 18

4 Transportation Problem 19
4.1 Example . 19

v

4.1.1 MATLAB Result: . 28

5 Breast Cancer Diagnostic Data Set 29
5.1 Result: . 32

6 Applications of PSO 40
6.1 Advantages and Disadvantages of PSO 41

6.1.1 Benefits of PSO Method: . 41
6.1.2 Drawbacks of PSO Method: . 42

7 Conclusion 43

Bibliography 44

vi

List of Figures

2.1 Explanation of local minimum and global minimum 5

3.1 Implemanting the PSO . 9
3.2 Flowchart of PSO [7] . 10
3.3 Convergence Characterstics [11] . 18

4.1 PSO Convergence Characterstics [11] . 28

5.1 Plot of breast cancer diagnostic data set 31
5.2 DataSet Plot with Particles . 32
5.3 Best Regressor fitness value . 34
5.4 Prediction . 35
5.5 Prediction with population best value found 36
5.6 Data Set Plot . 37
5.7 Data Set Plot . 39

vii

List of Tables

3.1 Inertia weight dynamic adjustment methods 11
3.2 Initial Position . 13
3.3 Updated Velocity . 14
3.4 Updated Position . 14
3.5 Updated Velocity . 15
3.6 Updated Position . 15
3.7 Updated Velocity . 16
3.8 Updated Position . 16
3.9 Pbest . 16
3.10 Updated Velocity . 17
3.11 Updated Position . 17

4.1 Initial Position . 20
4.2 Initial velocity . 20
4.3 Updated velocity . 21
4.4 Updated Position . 21
4.5 Updated velocity . 22
4.6 Updated Position . 23
4.7 Pbest . 23
4.8 Updated velocity . 24
4.9 Updated Position . 24
4.10 Pbest . 24
4.11 Updated velocity . 25
4.12 Updated Position . 26
4.13 Pbest . 26
4.14 Updated velocity . 27
4.15 Updated Position . 27

5.1 Data Set . 29
5.2 Function Value with inertia 1 . 33
5.3 Function Value with inertia 0.4 . 38

viii

Abbreviations

� Z : A component that is being maximised or minimised. A scalar number is output
after receiving a vector as input.

� V k
i,j : The velocity vector of particle i in dimension j at time k.

� Xk
i,j : The position vector of particle i in dimension j at time k.

� Pbestki,j : The personal best position of particle i in dimension j obtained from
initialization through time k.

� Gbestki,j : The global best position of particle i in dimension j obtained from
initialization through time k.

� c1 , c2 : Positive acceleration constants which are used to level the contribution of
the cognitive and social components respectively.

� r1 , r2 : Random numbers from uniform distribution U(0, 1) at time t.

� ω(t) : Inertia Weight.

� n : The swarm size or number of particles.

� D : The maximum number of dimensions.

� N : Total number of iterations.

ix

Chapter 1

Preliminaries

1.1 Introduction

Dr. Kennedy and Dr. Eberhart. first proposed the based on populations
probabilistic search approach known as Particle Swarm Optimization (PSO) in 1995 [1].
PSO’s fundamental concept was influenced by how creatures interact with one another,
such as when flocks of birds or schools of fish, and it provides an alternative approach to
solving non-linear optimization problems. PSO depends on a group interaction method
observed in animals such as birds and insects when they search for food or migrate. The
algorithm simulates the sharing of individual information among group members to iden-
tify the positive direction in a search space. If one member of the group finds a positive
direction, the others will quickly follow, reflecting the behavior seen in natural social
systems [2].

The PSO algorithm uses the concept of a swarm and particles to solve optimization
problems by simulating the behavior of animals. Every particle in the population repre-
sents a potential solution and traverses the search space, starting from a random location
and moving in random directions. The particles remember their best past locations and
those of their neighbors, and constantly modified their location and velocity based on the
best locations found by the entire population. The particles communicate and transmit
favorable positions to each other. The search process continues until the swarm converges
towards the maximum of the fitness function g : Rn → R.

The PSO algorithm is growing in popularity due to its ease of implementation and
ability to converge quickly on a practical solution to optimization problems. In compar-
ison to other optimization techniques, it is quicker, less expensive, and more effective.
Additionally, PSO only has a few parameters that may be changed. PSO is a great
tool for solving optimization problems because of this. Non-convex, continuous, discrete,
integer variable problems are a good fit for PSO [2].

1

1.2 Swarm Intelligence

Swarm Intelligence (SI) is a paradigm for problem solving inspired by the collective
behavior of decentralized, self-organized systems, both in nature and artificial systems.
Ant communities, fish schooling, bird flocking, and bee swarming are a few examples of
natural SI. Multi-robot systems and data analysis and optimisation software are examples
of artificial SI systems. Two of the most effective swarm intelligence methods are PSO
and Ant Colony Optimization (ACO). In PSO, each particle, which represents a potential
solution, moves through the multidimensional search space and modifies its position in
response to its own and its peers’ experiences, ultimately leading the entire swarm to
converge towards an optimal solution [3].

2

Chapter 2

Background

2.1 Optimization

Optimization is the technique of finding the perfect answer for a question, considering
given constraints and objectives. It can involve either minimization or maximization of
a specific metric, as the two tasks are mathematically equivalent by taking the additive
inverse of the function. Optimization plays a critical role in various industries and pro-
fessions, as decision-makers are often required to make choices that minimize effort or
maximize benefits. It is a crucial aspect of problem-solving and decision-making in many
fields i.e, management, engineering, finance and more.

Based on the characteristics of the objective function, optimization problems can be
divided into two major groups: linear optimization problems and non-linear optimization
problems. Linear optimization problems involve linear relationships between variables
and constraints, making them easier to solve compared to non-linear optimization prob-
lems. Non-linear optimization problems, on the other hand, are generally more complex
and difficult to solve due to the non-linear relationships between variables and constraints.
Optimization difficulties are divided into the following categories based on the character-
istics of the problem:

2.1.1 Constrained Optimization

Constrained optimization is a type of mathematical optimization problem where the ob-
jective function is subject to a set of constraints. The goal of constrained optimization is
to obtained the optimal value of the objective function, subject to the constraints.

The constraints can be of different types, such as equality constraints, inequality con-
straints, or a combination of both. Equality constraints are conditions that must be
satisfied exactly, while inequality constraints impose limits on the values that the deci-
sion variables can take.

3

A constrained maximisation problem’s standard type [4] is described as follows:

Maximize
z

k(z)

subject to li(z) = ci, i = 1, . . . n.

mj(x) ≥ dj, j = 1, . . .m.

(2.1)

where z is vector of decision’s variable, k(z) is objective function that needs to be im-
proved.

2.1.2 Unconstrained Optimization

Unconstrained optimisation refers to a class of mathematical optimisation problems where
there are no restrictions on the values of the decision factors and where the objective func-
tion must be optimised. Finding the ideal values for the decision factors that maximise
or minimise the objective function is the aim of unconstrained optimisation.

The decision variables are the variables that are being optimized, and the objective
function is the function that is being optimized. In unconstrained optimization [4], the
objective function can be of any form, including linear, quadratic, nonlinear, or even dis-
continuous functions.Many fields of study, including physics, engineering, machine learn-
ing, and finance, face unconstrained optimisation problems. Examples of unconstrained
optimization problems include parameter estimation, function fitting, and model selec-
tion.

Minimize
z

g(z) , z ∈ Rn
(2.2)

where n is dimension of z.

2.1.3 Dynamic Optimization

Dynamic optimization is a type of optimization problem where the decision variables
are determined over time. In dynamic optimization [4], the objective is to optimize a
function that changes over time, subject to constraints that also vary with time. This
type of optimization is used to solve problems where the decision-making process evolves
over time, such as in financial planning, environmental management, or control systems.

Minimize
x

g(y, ω(t)), y = (y1, y2,yn) , ω(t) = (ω1(t), ω2(t),ωn(t))

subject to km(y) ≤ 0, m = 1, . . . n.

hm(y) = 0, m = 1, . . . n.

(2.3)

where y(t) is the optimal value determined at step t and ω(t) is a vector of time-dependent
objective function control parameters.

4

2.2 Global Optimization

A global minimum is defined as z∗ such that

g (z∗) ≤ g (z) ∀ z ∈ S (2.4)

where S is the search space and S = Rn.

2.3 Local Optimization

A local minimum is defined as z∗L of the region L such that

g (z∗L) ≤ g (z) ∀ z ∈ L (2.5)

where L ⊆ Rn.

2.3.1 Example

Consider a function f (x) = x4 − 12x3 + 47x2 − 75x+ 10

Figure 2.1: Explanation of local minimum and global minimum

5

2.4 Uniform Distribution

The uniform distribution is a probability distribution that is defined on a finite interval
and assigns equal probability density to each point within that interval. In other words,
the probability of any point in the interval is the same. U (a, b), where a and b ar the
distribution’s lowest and greatest values, respectively, defines it.

The probability density function (PDF) of a continuous uniform distribution on the in-
terval [a, b] is :

f (x) =


0 for x < a
1

b−a
for a ≤ x ≤ b

0 for x > b

(2.6)

and the cummulative distribution function (CDF) are:

F (x) =


0 for x < a
x−a
b−a

for a ≤ x ≤ b

0 for x > b

(2.7)

The term standard uniform distribution refers to U (0, 1).

6

Chapter 3

Particle Swarm Optimization

The algorithm of finding the most suitable option from a group of alternatives according
to one or more user-specified factors is known as optimisation [5]. This is typically done
mathematically by representing the objective as a parameterized function f that depends
on D parameters. The problem with optimization’s is finding at the parameter values
that maximize the objective function g. The objective function is also known as the
“fitness function” and the optimization process involves finding the values that lead to
the maximum of the fitness function. The focus will be on maximizing the function in
the following:

Given g : RD → R
Find zopt|g (xopt) ≥ g(z) ∀z ∈ RD

(3.1)

The search (or parameter) space is the D-dimensional domain of the function RD and
each of its points, denoted by the vector of coordinates z represents possible solutions to
the problems, with zopt being the best option i.e, the one that maximizes g [6].
In context of optimization, the social behaviour of fish groups and bird flocks served
as the basis for Particle Swarm Optimization (PSO). According to its own velocity and
input from other particles in the swarm, each particle in PSO is treated as a point in
an N-dimensional space and has its position adjusted. The following details are used to
change the particle’s position [5, 6]:

� The particle’s present location

� The particle’s speed at the moment

� The difference between a particle’s present location and its most well-known location
(Pbest)

� The distance between the present location and the swarm’s overall best-known
position (Gbest).

7

3.1 PSO Algorithm

In PSO, Consider a population (swarm) size of N with position vector Xi
k =

[x1, x2, x3,, xn]
T where T is transpose, and velocity vector Vi

k = [v1, v2, v3,, vn]
T

each of the i particles that make up it at k iterations. The following equation states how
the number j affects these vectors:

Xk+1
i,j = Xk

i,j +Vk+1
i,j (3.2)

where k and k+1 indicate two additional iterations of the algorithms and vi is the vector
containing the velocity components of the i-th particle. The three terms that make up
the velocity vectors, which control how the following particles travel through the search
space: the first term, defined as inertia or momentum, maintains track of the previous
flow direction to prevent a quick direction change by the particle; the second term,known
as the cognitive component, which explains why particles have a tendency to revert to
previously determined optimal locations; the last term, known as the social component,
indicates a particle’s tendency to migrate to the optimal location for the entire swarm
(depending on whether a global or partial PSO is used, or of a small area around the
particle) [6]. These factors lead to the following definition of the i-th particle’s velocity:

V k+1
i,j = V k

i,j + c1.r
k
1

(
pbestki,j −Xk

i,j

)
+ c2.r

k
2

(
gbestkj −Xk

i,j

)
(3.3)

The terms “personal best” (pbest) and “global best” (gbest) are used to denote the
best position a particle has attained thus far and the best position attained by the
complete swarm respectively in particle swarm optimisation (PSO). The size of the steps
the particle takes towards its individual and collective best places is determined by two
constants the “cognitive coefficient” (c1) and “social coefficient” (c2) The optimisation
process uses the random matrices R1 and R2 to create a stochastic effect on the velocity
update [6]. The velocity of a particle, which dictates its subsequent movement in the
search space, is updated using these coefficients and matrices.

8

Figure 3.1: Implemanting the PSO

Let’s assume k = t in above figure:

The following equation can be used to mathematically describe how the particle’s velocity
changes:

V k+1
i,j = ω.V k

i,j + c1.r
k
1

(
pbestki,j −Xk

i,j

)
+ c2.r

k
2

(
gbestkj −Xk

i,j

)
(3.4)

3.1.1 Steps of Algorithm

1. Initialization

(a) For each particle i in a swarm population size P.

i. Initialize Xi randomly.

ii. Initialize Vi randomly.

iii. Evaluate fitness value g (Xi).

iv. Initialize pbesti with the help of Xi.

(b) Initialize gbest with the help of Xi with the best fitness

2. Repeat untill the stopping criteria satisfied.

(a) For each particle i:

i. Update Xk
i and V k

i according to (3.2) and (3.4)

ii. Evaluate fitness g
(
Xk

i

)
.

iii. pbesti ← Xk
i if g (pbesti) < g

(
Xk

i

)
iv. gbesti ← Xk

i if g (gbesti) < g
(
Xk

i

)
9

3.2 Flowchart

Figure 3.2: Flowchart of PSO [7]

10

3.3 Acceleration Constant C1 and C2

As from Eq 3.3, The amounts by which the particles move in the same way as the
individual and global best particle are determined by the acceleration constants c1 and
c2, adjusting the relative contributions of the social and cognitive aspects [8] or [9]. A
number of authors have examined how these coefficients affect the trajectory of the
particles and the algorithm’s convergence properties, and their findings demonstrate that
as the higher acceleration constants, the frequency of the particle’s oscillation around
the optimum increases while smaller values produce sinusoidal patterns. It has been
demonstrated that the following situations:

c1 = c2 = 2

3.4 Inertial Weight Factor

Some authors advise using a combination of ωmax = 0.9 and ωmin = 0.4 for the best
performance. Implementations of linearly reduced inertial weight have demonstrated
that it provides very excellent results in many real-world applications. Overall, Bansal et
al.’s [10] comparison of a set of common optimisation functions demonstrates that chaotic
reduced inertia weights are the best fit (resulting in the lowest error mean in a set of 30
repeated simulations) while stochastic inertial weights are better if faster convergence is
desired. However, the methods that result in the lowest error are linear and constant
decreasing inertial weighting.

Table 3.1: Inertia weight dynamic adjustment methods

Strategy Inertia weight

Constant weight
of inertia

ω(t) = ω = const

Random weight of
inertia

ω(t) = 0.5 + r
2

r ∼ (0, 1)

Reducing inertia
weight linearly

ω(t) = ωmax − ωmax−ωmin

tmax
t

Chaotic random
inertia weight

ω(t) = 0.5r1 + 0.5z

z = 4r2(1− r2)withr1, r2 ∼ U(0, 1)

11

3.5 Linear Programming Problem

Maximize
x

Z = X1 + X2

subject to X1 +X2 ≤ 8

2X1 +X2 ≤ 10

X1, X2 ≥ 0

Parameter are set to be

� Population size = 3

� c1 and c2 = 2

� dimension of problem = 2

� The random numbers r1 and r2 range from 0 to 1.

The movement of particles are

V k+1
i,j = ω.V k

i,j + c1.r
k
1

(
pbestki,j −Xk

i,j

)
+ c2.r

k
2

(
gbestkj −Xk

i,j

)
Xk+1

i,j = Xk
i,j + V k+1

i,j

Calculate initial position

x = l + r (u− l)

LB = [0 0]
UB = [5 8]

X1 = 0 + 0.12(5− 0) = 0.6

= 0 + 0.1(5− 0) = 0.5

= 0 + 0.2(5− 0) = 1

X2 = 0 + 0.80(8− 0) = 6.4

= 0 + 0.9(8− 0) = 7.2

= 0 + 0.7(8− 0) = 5.6

12

Table 3.2: Initial Position

X1 X2 Max Z = X1 + 2X2

1 0.6 6.4 13.4
2 0.5 7.2 14.9
3 1 5.6 12.2

Gbest = [0.5 7.2]

let initial velocity Vi = 0

Iteration 1: Calculate new velocity and position from eqn (3.2) and (3.4)

V11 = 0.9× 0 + 2× 0.1(0.6− 0.6) + 2× 0.4(0.5− 0.6)

= 0 + 0 + (−0.08)
= −0.08

V12 = 0.9× 0 + 2× 0.1(6.4− 6.4) + 2× 0.4(7.2− 6.4)

= 0 + 0 + 0.64

= 0.64

V21 = 0.9× 0 + 2× 0.1(0.5− 0.5) + 2× 0.4(0.5− 0.5)

= 0 + 0 + 0

= 0

V22 = 0.9× 0 + 2× 0.1(7.2− 7.2) + 2× 0.4(7.2− 7.2)

= 0 + 0 + 0

= 0

V31 = 0.90× 0 + 2× 0.1(1.0− 1.0) + 2× 0.4(0.5− 1.0)

= 0 + 0 + (−0.4)
= −0.4

V32 = 0.90× 0 + 2× 0.1(5.6− 5.6) + 2× 0.4(7.2− 5.6)

= 0 + 0 + 1.28

= 1.28

13

Updated velocity

Table 3.3: Updated Velocity

V1 V2

1 -0.08 0.64
2 0 0
3 -0.4 1.28

Now, update position = updated velocity + previous position
Pbest =

Table 3.4: Updated Position

X1 X2 Max Z = X1 + 2X2

1 0.52 7.04 14.6
2 0.5 7.2 14.9
3 0.6 6.88 14.36

Now fitness value same 14.9 then, Gbest remain same

Gbest = [0.5 7.2]

Iteration 2: Again, calculate new velocity and position

V11 = 0.9× (−0.08) + 2× 0.1(0.52− 0.52) + 2× 0.4(0.5− 0.52)

= −0.072 + 0 + (−0.016)
= −0.088

V12 = 0.90× 0.64 + 2× 0.10(7.04− 7.04) + 2× 0.4(7.20− 7.04)

= 0.576 + 0 + 0.128

= 0.704

V21 = 0.9× 0 + 2× 0.1(0.5− 0.5) + 2× 0.4(0.5− 0.5)

= 0 + 0 + 0

= 0

V22 = 0.9× 0 + 2× 0.1(7.2− 7.2) + 2× 0.4(7.2− 7.2)

= 0 + 0 + 0

= 0

V31 = 0.9× (−0.04) + 2× 0.1(0.6− 0.6) + 2× 0.4(0.5− 0.6)

= −0.36 + 0 + (−0.08)
= −0.44

V32 = 0.9× 1.28 + 2× 0.1(6.88− 6.88) + 2× 0.4(7.2− 6.88)

= 1.152 + 0 + 0.256

= 1.408

14

Updated velocity

Table 3.5: Updated Velocity

V1 V2

1 -0.088 0.704
2 0 0
3 -0.44 1.408

Now, update position = updated velocity + previous position

1.1408 + 6.88 = 8.288 /∈ (0,8) then 8
Pbest =

Table 3.6: Updated Position

X1 X2 Max Z = X1 + 2X2

1 0.432 7.74 15.91
2 0.5 7.2 14.9
3 0.16 8 16.16

Now fitness value 16.16 > 14.9 then update Gbest

Gbest = [0.16 8]

Iteration 3: Calculate new velocity and position

V11 = 0.9× (−0.088) + 2× 0.1(0.432− 0.432) + 2× 0.4(0.16− 0.432)

= −0.072 + 0− 0.2176

= −0.2968
V12 = 0.9× 0.704 + 2× 0.1(7.74− 7.74) + 2× 0.4(8− 7.74)

= 0.633 + 0 + 0.208

= 0.841

V21 = 0.9× 0 + 2× 0.1(0.5− 0.5) + 2× 0.4(0.16− 0.5)

= 0 + 0− 0.272

= −0.272
V22 = 0.9× 0 + 2× 0.1(7.2− 7.2) + 2× 0.4(8− 7.2)

= 0 + 0 + 0.64

= 0.64

15

V31 = 0.9× (−0.44) + 2× 0.1(0.16− 0.16) + 2× 0.4(0.16− 0.16)

= −0.396 + 0 + 0

= −0.396
V32 = 0.9× 1.408 + 2× 0.1(8− 8) + 2× 0.4(8− 8)

= 1.2672 + 0 + 0

= 1.2672

Updated velocity

Table 3.7: Updated Velocity

V1 V2

1 -0.296 0.841
2 -0.272 0.64
3 -0.396 1.267

Now, update position = updated velocity + previous position

0.16 + (-0.396) = -0.236 /∈ (0,5) then 0

7.74 + 0.841 = 8.581 /∈ (0,8) then 8

Table 3.8: Updated Position

X1 X2 Max Z = X1 + 2X2

1 0.136 8 16.136
2 0.228 7.8 15.82
3 0 8 16

Pbest =

Table 3.9: Pbest

X1 X2 Max Z = X1 + 2X2

1 0.136 8 16.136
2 0.228 7.8 15.82
3 0.16 8 16.16

then update Gbest
Gbest = [0.136 8]

16

Iteration 4: Calculate new velocity and position

V11 = 0.9× (−0.296) + 2× 0.1(0.136− 0.136) + 2× 0.4(0.136− 0.136)

= −0.2664 + 0 + 0

= −0.2664
V12 = 0.9× 0.841 + 2× 0.1(8− 8) + 2× 0.4(8− 8)

= 0.7569 + 0 + 0

= 0.7569

V21 = 0.9× (−0.272) + 2× 0.1(0.228− 0.228) + 2× 0.4(0.136− 0.228)

= −0.3184
V22 = 0.9× 0.64 + 2× 0.1(7.8− 7.8) + 2× 0.4(8− 7.5)

= 0.736

V31 = 0.9× (−0.396) + 2× 0.1(0− 0.16) + 2× 0.4(0.136− 0.16)

= −0.2476
V32 = 0.9× 1.267 + 2× 0.1(8− 8) + 2× 0.4(8− 8)

= 1.1403 + 0 + 0

= 1.1403

Updated velocity

Table 3.10: Updated Velocity

V1 V2

1 -0.266 0.7569
2 -0.318 0.73
3 -0.247 1.140

Table 3.11: Updated Position

X1 X2 Max Z = X1 + 2X2

1 0 8 16
2 0 8 16
3 0 8 16

then,
|f(x)prev − f(x)| = 0

|16.13− 16| = 0

0.13 ≥ 0

then by particle swarm optimization

X1 = 0 , X2 = 8 , Z = 16

17

3.5.1 Computational Result:

Figure 3.3: Convergence Characterstics [11]

18

Chapter 4

Transportation Problem

ai
1 1 4
2 1 6

bj 5 5∑
ai =

∑
bj = 10

4.1 Example

Maximize profit

Max Z = C11X11 + C12X12 + C21X21 + C22X22

Subject to
X11 +X12 = 4

X21 +X22 = 6

X11 +X21 = 5

X12 +X22 = 5

then
Max Z = X1 +X2 + 2X3 +X4

Subject to

X1 +X2 = 4

X3 +X4 = 6

X1 +X3 = 5

X2 +X4 = 5

X1, X2, X3, X4 ≥ 0

19

Parameter are set to be

� Population size = 3

� c1 and c2 = 2

� dimension of problem = 4

� The random numbers r1 and r2 range from 0 to 1.

The movement of particles are

V k+1
i,j = ω.V k

i,j + c1.r
k
1

(
pbestki,j −Xk

i,j

)
+ c2.r

k
2

(
gbestkj −Xk

i,j

)
Xk+1

i,j = Xk
i,j + V k+1

i,j

Calculate initial position

x = l + r (u− l)

Table 4.1: Initial Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 1.2 3.6 4 0.92 13.72
2 0.75 3.2 4.5 0.8 13.75
3 1.6 3.4 3.5 0.7 9.2

Gbest = [0.75 3.2 4.5 0.8]

initial velocity = 0.1 × initial position

Table 4.2: Initial velocity

V1 V2 V3 V4

1 0.12 0.36 0.4 0.092
2 0.075 0.32 0.45 0.08
3 0.16 0.34 0.35 0.07

20

Iteration 1: Calculate new velocity and position from eqn (3.2) and (3.4)

V11 = 0.9× 0.12 + 2× rand()(1.2− 1.2) + 2× rand()(0.75− 1.2)

= −0.5984
V12 = 0.9× 0.36 + 2× rand()(3.6− 3.6) + 2× rand()(3.2− 3.6)

= 0.244

V13 = 0.9× 0.4 + 2× rand()(4− 4) + 2× rand()(4.5− 4)

= 1.1740

V14 = 0.9× 0.092 + 2× rand()(0.92− 0.92) + 2× rand()(0.8− 0.92)

= 0.0588

V21 = 0.9× 0.075 + 2× rand()(0.75− 0.75) + 2× rand()(0.75− 0.75)

= 0.0675

V22 = 0.9× 0.32 = 0.288

V23 = 0.9× 0.45 = 0.405

V24 = 0.9× 0.092 = 0.072

V31 = 0.9× 0.16 + 2× rand()(1.6− 1.6) + 2× rand()(0.75− 1.6)

= −0.8703
V32 = 0.9× 0.34 + 2× rand()(3.4− 3.4) + 2× rand()(3.2− 3.4)

= 0.0252

V33 = 0.9× 0.35 + 2× rand()(3.5− 3.5) + 2× rand()(4.5− 3.5)

= 1.1789

V34 = 0.9× 0.07 + 2× rand()(0.7− 0.7) + 2× rand()(0.8− 0.7)

= 0.1716

Table 4.3: Updated velocity

V1 V2 V3 V4

1 -0.5984 0.244 1.1740 0.0588
2 0.0675 0.288 0.405 0.072
3 -0.8703 0.0252 1.1789 0.1716

Updated Position

Table 4.4: Updated Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 0.601 3.844 5 0.978 15.42
2 0.817 3.488 4.905 0.872 14.98
3 0.729 3.425 5 0.871 15.02

21

Gbest = [0.601 3.844 5 0.978]

Iteration 2: Similarly, we update new velocity and position

V11 = 0.7× (−0.5984) = −0.4188
V12 = 0.7× 0.244 = 0.1708

V13 = 0.7× 1.1740 = 0.821

V14 = 0.7× 0.0588 = 0.0411

V21 = 0.7× 0.0675 + 2× rand()(0.817− 0.817) + 2× rand()(0.601− 0.817)

= −0.1687
V22 = 0.7× 0.288 + 2× rand()(3.488− 3.488) + 2× rand()(3.844− 3.488)

= 0.3312

V23 = 0.7× 0.405 + 2× rand()(4.905− 4.905) + 2× rand()(5− 4.905)

= 0.3716

V24 = 0.7× 0.072 + 2× rand()(0.872− 0.872) + 2× rand()(0.978− 0.872)

= 0.2444

V31 = 0.7× (−0.8703) + 2× rand()(0.729− 0.729) + 2× rand()(0.601− 0.729)

= −0.6096
V32 = 0.7× 0.02552 + 2× rand()(3.42− 3.425) + 2× rand()(3.844− 3.425)

= 0.1923

V33 = 0.7× 1.7849 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 1.249

V34 = 0.7× 0.1716 + 2× rand()(0.871− 0.871) + 2× rand()(0.978− 0.871)

= 0.1474

Table 4.5: Updated velocity

V1 V2 V3 V4

1 -0.4188 0.1708 0.821 0.0411
2 -0.1687 0.3312 0.3716 0.244
3 -0.6096 0.1923 1.249 0.1474

22

Updated Position

Table 4.6: Updated Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 0.183 4 5 1 15.183
2 0.649 3.819 5 1 15.46
3 0.12 3.617 5 1 14.73

Gbest = [0.649 3.819 5 1]

Pbest =

Table 4.7: Pbest

X1 X2 X3 X4

1 0.601 3.844 5 0.978
2 0.649 3.819 5 1
3 0.729 3.425 5 0.871

Iteration 3: Similarly, we update new velocity and position

then, ω = 0.9− 0.3 = 0.6

V11 = 0.6× (−0.4188) + 2× rand()(0.601− 0.183) + 2× rand()(0.649− 0.183)

= −0.2316
V12 = 0.6× 0.1708 + 2× rand()(3.844− 4) + 2× rand()(3.819− 4)

= −0.2905
V13 = 0.6× 0.821 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 0.492

V14 = 0.6× 0.0411 + 2× rand()(0.9708− 1) + 2× rand()(1− 1)

= 0.02407

V21 = 0.6× (−0.1687) = −0.1012
V22 = 0.6× 0.3312 = 0.1986

V23 = 0.6× 0.3716 = 0.2226

V24 = 0.6× 0.244 = 0.1464

23

V31 = 0.6× (−0.6096) + 2× rand()(0.729− 0.12) + 2× rand()(0.649− 0.12)

= −0.2333
V32 = 0.6× 0.1923 + 2× rand()(3.425− 3.617) + 2× rand()(3.819− 3.617)

= 0.3204

V33 = 0.6× 1.249 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 0.749

V34 = 0.6× 0.1474 + 2× rand()(0.871− 1) + 2× rand()(1− 1)

= 0.0262

Table 4.8: Updated velocity

V1 V2 V3 V4

1 -0.2316 -0.2905 0.492 0.0247
2 -0.1012 0.1986 0.2226 0.1464
3 -0.2333 0.3204 0.749 0.0262

Updated Position

Table 4.9: Updated Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 0 3.709 5 1 14.709
2 0.548 4 5 1 15.54
3 0.496 3.745 5 1 15.24

Gbest = [0.548 4 5 1]

Pbest =

Table 4.10: Pbest

X1 X2 X3 X4

1 0.183 4 5 1
2 0.548 4 5 1
3 0.496 3.745 5 1

24

Iteration 4: We update new velocity and position

then, ω = 0.9− 0.4 = 0.5

V11 = 0.5× (−0.2316) + 2× rand()(0.183− 0) + 2× rand()(0.548− 0)

= −0.11082
V12 = 0.5× (−0.2905) + 2× rand()(4− 3.709) + 2× rand()(4− 3.709)

= 0.2675

V13 = 0.5× 0.492 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 0.492

V14 = 0.5× 0.02407 + 2× rand()(1− 1) + 2× rand()(1− 1)

= 0.012

V21 = 0.5× (−0.1012) = −0.0506
V22 = 0.5× 0.1986 = 0.0993

V23 = 0.5× 0.2226 = 0.1112

V24 = 0.5× 0.1464 = 0.0732

V31 = 0.5× (−0.2333) + 2× rand()(0.496− 0.496) + 2× rand()(0.548− 0.496)

= −0.0607
V32 = 0.5× 0.3204 + 2× rand()(3.745− 3.745) + 2× rand()(4− 3.745)

= 0.3375

V33 = 0.5× 0.749 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 0.3745

V34 = 0.5× 0.0262 + 2× rand()(1− 1) + 2× rand()(1− 1)

= 0.0131

Table 4.11: Updated velocity

V1 V2 V3 V4

1 -0.1108 0.295 0.246 0.012
2 -0.0506 0.0993 0.1113 0.0732
3 -0.0607 0.3375 0.3745 0.0131

25

Updated Position

Table 4.12: Updated Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 0 4 5 1 15
2 0.497 4 5 1 15.49
3 0.435 4 5 1 15.43

Gbest = [0.548 4 5 1]

Pbest =

Table 4.13: Pbest

X1 X2 X3 X4

1 0 4 5 1
2 0.548 4 5 1
3 0.435 4 5 1

Iteration 5: We update new velocity and position

then, ω = 0.9− 0.5 = 0.4

V11 = 0.4× (−0.11082) + 2× rand()(0− 0) + 2× rand()(0.548− 0)

= −0.0363
V12 = 0.4× 0.295 + 2× rand()(4− 4) + 2× rand()(4− 4)

= 0.118

V13 = 0.4× 0.246 + 2× rand()(5− 5) + 2× rand()(5− 5)

= 0.0984

V14 = 0.4× 0.012 = 0.0048

V21 = 0.4× (−0.0506) + 2× rand()(0.548− 0.497) + 2× (0.548− 0.497)

= −0.0179
V22 = 0.4× (0.0993) + 2× rand()(4− 4) + 2× (4− 4)

= 0.0397

V23 = 0.4× (0.1113) + 2× rand()(5− 5) + 2× (5− 5)

= 0.0445

V24 = 0.4× 0.0732 = 0.029

26

V31 = 0.4× (−0.0607) + 2× rand()(0.435− 0.435) + 2× rand()(0.548− 0.435)

= −0.0213
V32 = 0.4× 0.3745 = 0.1498

V33 = 0.4× 0.3375 = 0.135

V34 = 0.4× 0.0131 = 0.0052

Table 4.14: Updated velocity

V1 V2 V3 V4

1 -0.0363 0.118 0.0984 0.0048
2 -0.0179 0.0397 0.0445 0.029
3 -0.0213 0.1498 0.135 0.0052

Updated Position

Table 4.15: Updated Position

X1 X2 X3 X4 Max Z = X1 +X2 + 2X3 +X4

1 0 4 5 1 15
2 0.530 4 5 1 15.53
3 0.413 4 5 1 15.41

Gbest = [0.53 4 5 1]

then,
|f(x)prev − f(x)| = 0

|15.54− 15.53| = 0

0.01 ≥ 0

then by particle swarm optimization

X1 = 0.53 , X2 = 4 , X3 = 5 , X4 = 1 , Z = 15.53

27

4.1.1 MATLAB Result:

Figure 4.1: PSO Convergence Characterstics [11]

28

Chapter 5

Breast Cancer Diagnostic Data Set

Table 5.1: Data Set

id radius mean texture mean perimeter mean area mean smthnes mean
0 842302 17.99 10.38 122.80 1001.0 0.11840
1 842517 20.57 17.77 132.90 1326.0 0.08474
2 84300903 19.69 21.25 130.00 1203.0 0.10960
3 84348301 11.42 20.38 77.58 386.1 0.14250
4 84358402 20.29 14.34 135.10 1297.0 0.10030
...
564 926424 21.56 22.39 142.00 1479.0 0.11100
565 926682 20.13 28.25 131.20 1261.0 0.09780
566 926954 16.60 28.08 108.30 858.1 0.08455
567 927241 20.60 29.33 140.10 1265.0 0.11780
568 92751 7.76 24.54 47.92 181.0 0.05263

id compactness mean concavity mean concave pt mn symtry mean ...
0 842302 0.27760 0.30010 0.14710 0.2419 ...
1 842517 0.07864 0.08690 0.07017 0.1812 ...
2 84300903 0.15990 0.19740 0.12790 0.2069 ...
3 84348301 0.28390 0.24140 0.10520 0.2597 ...
4 84358402 0.13280 0.19800 0.10430 0.1809 ...
...
564 926424 0.11590 0.24390 0.13890 0.1726 ...
565 926682 0.10340 0.14400 0.09791 0.1752 ...
566 926954 0.10230 0.09251 0.05302 0.1590 ...
567 927241 0.27700 0.35140 0.15200 0.2397 ...
568 92751 0.04362 0.00000 0.00000 0.1587 ...

29

rds worst text worst prmtr worst area worst ... concty worst .. frctl dim wrt
0 25.380 17.33 184.60 2019.0 ... 0.7119 .. 0.11890
1 24.990 23.41 158.80 1956.0 ... 0.2416 .. 0.08902
2 23.570 25.53 152.50 1709.0 ... 0.4504 .. 0.08758
3 14.910 26.50 98.87 567.7 ... 0.6869 .. 0.17300
4 22.540 16.67 152.20 1575.0 ... 0.4000 .. 0.07678
...
564 25.450 26.40 166.10 2027.0 ... 0.4107 .. 0.07115
565 23.690 38.25 155.00 1731.0 ... 0.3215 .. 0.06637
566 18.980 34.12 126.70 1124.0 ... 0.3403 .. 0.07820
567 25.740 39.42 184.60 1821.0 ... 0.9387 .. 0.12400
568 9.456 30.37 59.16 268.6 ... 0.0000 .. 0.07039

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is a collection of medical
data on breast cancer patients. It includes measurements from fine needle aspiration
(FNA) tests of breast masses, such as the radius, texture, perimeter, area, smoothness,
compactness, concavity, symmetry, and fractal dimension. These measurements are used
to determine whether a tumor is benign (non-cancerous) or malignant (cancerous).

The dataset also includes information on the patient’s age and menopausal status. This
dataset has been widely used in research to develop machine learning models to predict
whether a tumor is benign or malignant based on these measurements [12].

The attributes of the digital picture of a fine needle aspirate (FNA) of a breast mass
include the

� ID Number

� Diagnosis, which is either Malignant (M) or Benign (B)

The picture also has ten real-valued features which describe the characteristics of the
visible cell nuclei. These features include the

� radius

� texture

� perimeter

� area

� smoothness

� compactness

� concavity

30

� concave points

� symmetry

� fractal dimension

� Length of Data set = 569

These features can help in the diagnosis of the breast mass by providing information
about the characteristics of the cell nuclei in the picture.

Figure 5.1: Plot of breast cancer diagnostic data set

31

Figure 5.2: DataSet Plot with Particles

5.1 Result:

� Group best configuration found: [33.44793 0.0355742 0.001]

� Regressor: C = 33.44793 ϵ = 0.0355742 γ = 0.001

32

Table 5.2: Function Value with inertia 1

Iteration Function Value Iteration Function Value Iter Funct Value

0 0.026010 33 0.025310 66 0.025310

1 0.026010 34 0.025310 67 0.025310

2 0.026010 35 0.025310 68 0.025310

3 0.025740 36 0.025310 69 0.025310

4 0.025702 37 0.025310 70 0.025310

5 0.025702 38 0.025310 71 0.025310

6 0.025702 39 0.025310 72 0.025310

7 0.025582 40 0.025310 73 0.025310

8 0.025582 41 0.025310 74 0.025310

9 0.025582 42 0.025310 75 0.025310

10 0.025582 43 0.025310 76 0.025310

11 0.025389 44 0.025310 77 0.025310

12 0.025373 45 0.025310 78 0.025310

13 0.025357 46 0.025310 79 0.025310

14 0.025333 47 0.025310 80 0.025310

15 0.025333 48 0.025310 81 0.025310

16 0.025333 49 0.025310 82 0.025310

17 0.025333 50 0.025310 83 0.025310

18 0.025333 51 0.025310 84 0.025310

19 0.025333 52 0.025310 85 0.025308

20 0.025327 53 0.025310 86 0.025308

21 0.025327 54 0.025310 87 0.025308

22 0.025316 55 0.025310 88 0.025308

23 0.025316 56 0.025310 90 0.025308

24 0.025316 57 0.025310 91 0.025308

25 0.025316 58 0.025310 92 0.025308

26 0.025316 59 0.025310 93 0.025308

27 0.025316 60 0.025310 94 0.025308

28 0.025316 61 0.025310 95 0.025308

29 0.025310 62 0.025310 96 0.025308

30 0.025310 63 0.025310 97 0.025308

31 0.025310 64 0.025310 98 0.025308

32 0.025310 65 0.025310 99 0.025308

33

Figure 5.3: Best Regressor fitness value

34

Figure 5.4: Prediction

35

Figure 5.5: Prediction with population best value found

� Mean Squared error for the test set: 0.033581

� Predictions Average: 0.037820

� Predictions Median: 0.034948

36

Figure 5.6: Data Set Plot

37

Table 5.3: Function Value with inertia 0.4

Iteration Function Value Iteration Function Value Iter Funct Value

0 0.026010 33 0.025982 66 0.025982

1 0.026010 34 0.025982 67 0.025982

2 0.026010 35 0.025982 68 0.025982

3 0.026004 36 0.025982 69 0.025982

4 0.026004 37 0.025982 70 0.025982

5 0.026004 38 0.025982 71 0.025982

6 0.026004 39 0.025982 72 0.025982

7 0.026004 40 0.025982 73 0.025982

8 0.026004 41 0.025982 74 0.025982

9 0.026004 42 0.025982 75 0.025982

10 0.026003 43 0.025982 76 0.025982

11 0.026003 44 0.025982 77 0.025982

12 0.026003 45 0.025982 78 0.025982

13 0.026003 46 0.025982 79 0.025982

14 0.026003 47 0.025982 80 0.025982

15 0.025984 48 0.025982 81 0.025982

16 0.025984 49 0.025982 82 0.025982

17 0.025984 50 0.025982 83 0.025982

18 0.025983 51 0.025982 84 0.025982

19 0.025983 52 0.025982 85 0.025982

20 0.025982 53 0.025982 86 0.025982

21 0.025982 54 0.025982 87 0.025982

22 0.025982 55 0.025982 88 0.025982

23 0.025982 56 0.025982 90 0.025982

24 0.025982 57 0.025982 91 0.025982

25 0.025982 58 0.025982 92 0.025982

26 0.025982 59 0.025982 93 0.025982

27 0.025982 60 0.025982 94 0.025982

28 0.025982 61 0.025982 95 0.025982

29 0.025982 62 0.025982 96 0.025982

30 0.025982 63 0.025982 97 0.025982

31 0.025982 64 0.025982 98 0.025982

32 0.025982 65 0.025982 99 0.025982

38

Figure 5.7: Data Set Plot

� Group best configuration found: [7656.83658 0.0157675 0.43472]

� Regressor: C = 7656.836 ϵ = 0.0157675 γ = 0.43472

39

Chapter 6

Applications of PSO

Different application fields exist for the Particle Swarm Optimization technique.

The first application of particle swarm optimisation in the actual world was made by
Kennedy and Eberhart in 1995. It concerned with neural network training and was dis-
closed along with the method. PSO has been successfully used in a wide range of appli-
cations, including those in telecommunications, system management, data mining, power
systems, design, combinatorial optimization, signal processing, network training, and
many more. PSO algorithms have since been developed to solve constrained problems,
multi-objective optimisation problems, problems with dynamically changing landscapes,
and problems that call for multiple solutions, whereas the original PSO algorithm was
primarily used to solve unconstrained, single-objective optimisation problems. Here are
a few PSO applications [13]:

� Engineering design optimization: PSO can be apply to develop the design
parameters of complex systems, such as mechanical, electrical, or chemical systems.
The aim is to determine the optimal values of the design parameters that increase
or decrease a certain objective function, such as cost, performance, or reliability.

� Image and signal processing: PSO can be apply to develop the parameters of
image and signal processing algorithms, such as picture segmentation, edge detec-
tion, and denoising. The aim is to determine the optimal values of the algorithm
parameters that produce the best quality of the processed image or signal.

� Machine learning: PSO can be apply to develop the parameters of machine
learning algorithms, such as neural networks, support vector machines, and decision
trees. The aim is to determine the optimal values of the algorithm parameters that
maximize the accuracy or minimize the error of the trained model.

� Robotics: PSO can be apply to develop the control parameters of robotic systems,
such as trajectory planning, motion control, and obstacle avoidance. The aim is to
determine the optimal values of the control parameters that minimize the energy
consumption, reduce the collision risk, or increase the performance of the robot.

40

� Financial modeling: PSO can be used to optimize the portfolio allocation in
financial modeling, such as stock trading and risk management. The aim is to
determine the optimal allocation of the investment among different assets that
maximizes the return or minimizes the risk.

� Function optimization: PSO can be apply to develop the optimal solution to
mathematical functions with multiple variables. The aim is to determine the input
variables that produce the lowest or highest value of the function.

6.1 Advantages and Disadvantages of PSO

Despite having some drawbacks, it is claimed that the PSO algorithm is one of the
most effective ways to solve non-smooth global optimization issues. The following is a
discussion of PSO’s benefits and drawbacks:

6.1.1 Benefits of PSO Method:

1. Particle Swarm Optimization (PSO) is a derivative free method.

2. It is simple to execute, making it appropriate for use in both engineering and
scientific study.

3. Compared to other optimization methods, it has fewer factors and their influence
on the solutions is minimum.

4. The PSO algorithm’s computation is very smooth.

5. There are some methods that guarantee convergence and make it simple and quick
to compute the problem’s optimal value.

6. Compared to other optimisation techniques, PSO is less depending on a set of initial
points.

7. PSO can reach the ideal conclusion fast, especially for high-dimensional problems,
as it is based on the collective behavior of a swarm of particles. This makes it a
suitable choice for real-time applications where quick solutions are required.

8. PSO can be used to solve a wide range of optimization problems, including contin-
uous, discrete, and multimodal problems.

41

6.1.2 Drawbacks of PSO Method:

While Particle Swarm Optimization (PSO) has several advantages, it also has some lim-
itations and disadvantages that should be considered when using it for optimization
problems. Here are some of the main drawbacks of PSO:

1. The partial optimism of the PSO method impairs the control of its speed and
trajectory.

2. PSO may converge to a local optimum, especially if the swarm size is small or the
search space is complex. This can result in suboptimal solutions and prevent the
algorithm from finding the global optimum.

3. PSO has several parameters that need to be set, i.e, the weight of inertia , accel-
eration coefficients, and maximum velocity. The selection of these parameters can
affect PSO effectiveness, and selecting the best values can be difficult.

4. Due to the fact that the computational complexity rises with the number of particles
and dimensions, PSO can become computationally costly for large-scale issues. Due
to this, it may not be feasible for issues involving numerous factors or constraints.

42

Chapter 7

Conclusion

The fundamental Particle Swarm Optimization algorithm, the geometrical and mathe-
matical justification of PSO, the movement and velocity update of the particles in the
search space, the acceleration factors, and the neighbourhood topologies of the particles
were all covered in Chapter 3 of this thesis.

In chapter 3 we are also discussed linear programming problem using partcle swarm
optimization,i.e, inertia weight, velocity, position and convergence characterstics of LPP.
In chapter 4 we discussed about Transportation problem using PSO and determine its
convergence characterstics using MATLAB(Matrix Laboratory).

In chapter 5 we consider a datset of breast cancer diagnosis and applying particle swarm
optimization by SVM(Support Vector Machine) to get a convergence rate. In last we
have some application of particle swarm optimization.

43

Bibliography

[1] Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. Pro-
ceedings of ICNN’95 - International Conference on Neural Networks.
https://doi.org/10.1109/icnn.1995.488968

[2] Talukder, S. (2011). Mathematical Modelling and Appli-
cations of Particle Swarm Optimization https://www.diva-
portal.org/smash/get/diva2:829959/FULLTEXT01.pdf

[3] M. Dorigo and M. Birattar, 2007 ”Swarm intelligence,” in Scholarpedia

[4] Rao, S. S. (1996). Engineering optimization : theory and practice. Wiley.

[5] Fletcher, R. (2013). Practical Methods of Optimization. In Google Books. John
Wiley Sons.

[6] Marini, F., Walczak, B. (2015). Particle swarm optimization (PSO).
A tutorial. Chemometrics and Intelligent Laboratory Systems,
https://doi.org/10.1016/j.chemolab.2015.08.020

[7] Albin, R. (n.d.). Particle Swarm Optimization: Algorithm and its Codes in MAT-
LAB. Www.academia.edu. https://www.academia.edu/25008607/Particle Swarm
Optimization Algorithm and its Codes in MATLAB

[8] E. Ozcan and C.K. Mohan C.H. Dagli, M. Akay, A.L. Buczak, O. Ersoy, B.R. Bernan-
dez (Eds.) 1998, Intelligent Engineering Systems Through Artificial Neural Networks,
Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE
98), vol. 8, American Society of Mechanical Engineering (ASME).

[9] Eberhart, R. C., Shi, Y., Kennedy, J. (2001). Swarm Intelligence. In Google Books.
Elsevier.

[10] Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., Abra-
ham, A. (2011). Inertia Weight strategies in Particle Swarm Optimization.
2011 Third World Congress on Nature and Biologically Inspired Computing.
https://doi.org/10.1109/nabic.2011.6089659

44

[11] Cuevas, E. and Rodŕıguez, A. (2020) “Particle Swarm Optimization (PSO) algo-
rithm,” Metaheuristic Computation with MATLAB®, pp. 159–181. Available at:
https://doi.org/10.1201/9781003006312-6.

[12] Learning, U.C.I.M. (2016) Breast cancer wisconsin (diagnostic) data set, Kag-
gle. Available at: https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-
data

[13] Riccardo Poli,(2008) ”Review Article-Analysis of the Publications on the Applica-
tions of Particle Swarm Optimisation,” Journal of Artificial Evolution and Applica-
tions.

45

