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Abstract 

Chaos is an exceptional phenomenon occurring in non-linear dynamic systems. Our lives are 

full of non-linear dynamic systems, such as the Solar System, the weather, the stock market, 

the human body, plant and animal populations, cancer growth, spread of pandemics, chemical 

reactions, the electrical power grid, the Internet, etc. the behaviour of which can be best 

modelled as chaotic system.    

 More and more chaotic systems are being invented in an effort to simplify their algebraic 

representation but with high degree of complexity in output. With the development of non-liner 

dynamics and chaos theory, the hardware realization of chaotic systems has become a useful 

way to use them in real world applications for reliable and portable communication devices. In 

this direction, this thesis is primarily concerned with the hardware optimized design of chaotic 

systems. The idea is to design a circuit with minimum possible number of active and passive 

components which obeys the governing equations of a chaotic system. 

In chaotic systems, a single or more non-linear terms are always present in the 

governing equations which is responsible for output’s complexity. Quadratic, exponential, 

hyperbolic are some of the representative nonlinearities present in chaotic systems. Generally, 

implementation of the governing equations of a chaotic system requires the addition, 

subtraction, scaling operations besides the non-linearity. The Operational Amplifier (OpAmp) 

is commonly used active block in hardware implementation of chaotic systems. Current mode 

active block, such as Current Feedback Operational Amplifier (CFOA), has capabilities of 

handling both current and voltage signals which culminates in compact realizations in 

comparison to the existing OpAmp counterparts. In addition to CFOAs, suitable active and 

passive components are used to realize the non-linearity(ies) present in the governing equations 

and any scaling required therein.  

The design of Rӧssler chaotic system having single quadratic non-linear term, is 

addressed first by presenting CFOA based realization. It also uses an analog multiplier (AM) 

namely AD633.  The presented design is a compact realization in comparison to existing 

OpAmp based counterparts. A complete circuitry for adaptive control synchronization between 

two Rӧssler chaotic systems is also put forward. 

A chaotic system based on two quadratic non-linearities namely Pehlivan–Uyarŏglu 

Chaotic System (PUCS), is focused next. Four variants of PUCS are introduced which appear 
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to be distinct in the sense that there is no obvious transformation of one into another. Non-

linear dynamic properties of these variants are investigated and expatiated through bifurcation 

diagrams, Lyapunov exponents, Kaplan Yorke Dimension, nature of fixed points through 

eigenvalues and chaotic phase space diagrams. A  CFOA based realization is put forward that 

can realize the existing PUCS and its proposed variants, by simply adjusting component values. 

In AD633, there is a possibility of realizing algebraic functions including single 

multiplication, subtraction of two multiplication terms, and accumulation. The versatility of 

AD633 is gainfully exploited in presenting generalized circuit topology to implement chaotic 

systems with quadratic type non-linearities.   

The use of AM is inevitable in hardware realization of chaotic systems with quadratic 

nonlinearity, leading to increased active block count. A new chaotic system with exponential 

non-linearity has been put forward. It is realized using CFOAs and diodes, thus reducing the 

count of active building blocks. This new chaotic system has been verified for different 

properties, including Lyapunov Exponents, Kaplan Yorke Dimension and dissipativity.  

With the increase in demand of higher complexity for security, the dimension of the chaotic 

system can be extended beyond three. Such higher dimensional systems, also known as 

hyperchaotic systems, can be useful in those applications. One such four dimensional 

hyperchaotic system with two quadratic type non-linearities has been proposed and tested for 

different properties, including Lyapunov Exponents, Kaplan Yorke Dimension and 

dissipativity. The circuit implementation using CFOAs and AMs is also presented. 

All the above designs are verified either through LTspice simulations or combination 

of LTspice simulations and experimental evaluations. 

An attempt has also been made to realize chaotic systems on digital platform namely 

Field Programmable Gate Arrays (FPGAs). Ten different chaotic systems have been compared 

based on hardware utilization and delay on the target FPGA device Artix 7. Besides numerical 

simulations in python for confirmation of the correctness of the implemented systems via 

observations, the functional verification of the synthesized designs has been done using inbuilt 

simulator of Xilinx Vivado design suite.  
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system 

Fig. 8.9 Numerical simulation and Xilinx Vivado simulation results of MACM chaotic 

system 

Fig. 8.10 Numerical simulation and Xilinx Vivado simulation results of chaotic 

system  



xiii 
 

Fig. 8.11 Numerical simulation and Xilinx Vivado simulation results of Rabinovich 

chaotic system 

Fig. 8.12 Numerical simulation and Xilinx Vivado simulation results of chaotic system 

 

 

 

 

 



xiv 
 

LIST OF TABLES 

Table 3.1: Table 3.1 Comparison of the proposed design with the existing circuit designs 

of Rӧssler chaotic system 

Table 3.2: Percentage error in adaptive synchronization with respect to parameter ‘c’ 

Table 4.1: Summary of range of parameters ‘a’ and ‘b’ for PUCS and its proposed 

variants 

Table 4.2: Summary of Lyapunov Exponents and Kaplan York Dimensions for PUCS 

Table 4.3: Parameters of PUCS and its chaotic variants 

Table 4.4: Features of the proposed variants 

Table 4.5: Normalized element values of the proposed PUCS circuit 

Table 5.1: Chaotic systems mapped on proposed topology 

Table 6.1: Components’ values for the CFOA based design of the proposed system 

Table 6.2: Components’ values for the CFOA based design of the proposed adaptive  

synchronization scheme 

Table 7.1: Component Values of the circuit realization of the proposed systems 

Table 7.2: Comparison table of the existing designs with the proposed design 

Table 8.1: Summary of the hardware and delay requirements for FPGA based 

implementation of chaotic systems  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

 

LIST OF ABBREVIATIONS 

 

LCS  Lorenz Chaotic System 

PUCS  Pehlivan Uyarŏglu Chaotic System 

MACM Méndez-Arellano-Cruz-Martínez 

HCS  Hyper Chaotic System 

OpAmp Operational Amplifier 

CFOA  Current Feedback Operational Amplifier 

OTRA  Operational Transresistance Amplifier 

VDBA  Voltage Differencing Buffered Amplifier 

CC  Current Conveyor 

VDTA  Voltage Differencing Transconductance Amplifier 

DVCCTA Differential Voltage Current Conveyor Transconductance Amplifier 

AM  Analog Multiplier 

IC  Integrated Circuit 

ASIC  Application Specific Integrated Circuit 

FPGA  Field Programmable Gate Array 

RK  Runge Kutta 

HDL  Hardware Description Language 

KCL  Kirchoff’s Current Law 

MC  Monte Carlo 

RCS  Rabinovich Chaotic System 

KVL  Kirchoff’s Voltage Law 

YCCS  Yang Chen Chaotic System 

 

 

 

 

 



Chapter 1 

Introduction 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1.1 Background 

Chaos is an inherently unpredictable phenomenon of non-linear deterministic dynamic 

systems, but with an underlying structure in three-dimensional space. The chaotic systems have 

been a hot spot in research since Lorenz Chaotic System (LCS) was discovered in 1963 [1], 

which was followed by Rössler chaotic system proposed in 1976 [2], the Chua’s circuit realized 

in 1983 [3], and a series of other chaotic systems thereafter. These chaotic systems were 

developed while the scientists were trying to model a natural phenomenon. For instance, 

Lorenz developed the chaotic system while trying to make weather predictions. 

Chaotic systems find wide range of applications in secure communication [4-7], speech 

encryption [8], image encryption [9,10], text encryption [11,12], weather prediction [13] and 

solar irradiance forecasting [14] due to their high sensitivity on initial conditions, nonlinearity, 

and non-repeatability of trajectory. For a system to behave chaotically, it should have minimum 

three number of state variables. However, with the increase in the demand of high security of 

data, the systems with more than three number of state variables, with an increased degree of 

complexity have also been developed. Hyperchaotic systems belong to this class of chaotic 

systems with more than three state variables. The analog circuits using off the shelf components 

which can mimic the behaviour of chaotic systems can be very useful, especially in the field of 

communication. Besides, digital design of chaotic systems has their own advantages in terms 

of reconfigurability, parallelism, etc.  

Also, the applications of chaotic systems in describing the different phenomena, the 

synchronization between two chaotic systems is equally important. A complete hardware 

circuitry of a synchronized system can be very beneficial in the portable devices. 

This work revolves around the development of new chaotic and hyperchaotic systems, their 

hardware efficient realizations in  analog and digital domains, and their synchronization. 

 

1.2  Available literature  

This section reviews the major developments in the field of design and analysis of chaotic 

systems and circuits. The analog and digital implementation of chaotic systems, development 

of new chaotic and hyperchaotic systems, synchronization between chaotic systems, etc. are 

some of the key points that are covered in this section based on the survey done. 

 

 

 

 



2 
 

1.2.1 Chaotic systems  

 

A chaotic system is  mathematically represented by set of governing equations. It requires 

minimum three state variables for supporting sustained aperiodic oscillations. Also, there must 

be at least one non-linear term in the set of governing equations for the system to behave 

chaotically. Further, any three- dimensional set of non-linear differential equations can be said 

to have chaos if it has a positive largest Lyapunov exponent, a fractional Kaplan Yorke 

dimension and a period-doubling route to chaos. The phase space trajectories of a system are 

visual evidence of its chaoticity, and are known as strange attractors. 

The available chaotic systems can be classified based on type of non-linearity used. Quadratic 

non-linearity [1,2,15-38] cubic non-linearity [39,40], quartic non-linearity [41], absolute non-

linearity [42], sine hyperbolic non-linearity [43], exponential non-linearity [42,44], quadratic 

exponential non-linearity [45-47] etc. are some of the representatives of the respective class. 

The chaotic systems with quadratic non-linearity can further be grouped in terms of the number 

of non-linear terms.  Rӧssler chaotic system [2], chaotic system in [22] and Sprott case F-S 

(out of the sixteen different chaotic systems ‘A-S’ proposed by J.C. Sprott) [16] use single 

nonlinear term, while Lorenz [1], Pehlivan Uyarŏglu chaotic system (PUCS) [15], Sprott case 

A-E [16], and many other chaotic systems [17-36] employ two nonlinear terms, and [37,38] 

has three non-linear terms. The chaotic systems with similar nonlinearity may use different 

number of terms to describe the system’s dynamics. For instance, Sprott case A-E use five 

terms [16], Sprott case F-S [16], Lu chaotic system [33], T chaotic system [35] and PUCS [15] 

with six terms, seven terms in Lorenz [1], Li [32], Chen [34] and Méndez-Arellano-Cruz-

Martínez (MACM) chaotic system [36]; and eight in Rabinovich chaotic system [37,38]. 

Another view of the chaotic systems can be from the point of type of fixed point. A fixed point, 

sometimes called an equilibrium point or singular point, is the state variables’ values where the 

corresponding time derivative has zero values. The existing chaotic systems can be categorized 

as those having single hyperbolic type fixed point, such as Sprott case I,J,L,N,R [16] and others 

in [48-50], finite number of hyperbolic fixed points [1,2,15,26], infinite number of fixed 

points[28], no fixed point [22, 28], non-hyperbolic type fixed point [29], etc. 

Also, the type of attractors being generated by these systems can be single scroll, as in Rӧssler 

[2], double scroll in Lorenz [2], PUCS [15], Chen [34], and 4-scroll in [51].  

In order to increase the degree of complexity, the dimensions of the chaotic systems can be 

extended beyond three and such systems are referred as Hyperchaotic Systems (HCSs). The 
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available HCSs are either expansion of existing chaotic systems [52-61] by adopting feedback 

laws, or altogether new systems are developed [62-70]. For instance, HCSs have been derived 

from Lü chaotic system [52], T chaotic system [53], Chen chaotic system [54,55], Lorenz 

chaotic system [56,57], Rabinovich chaotic system [58], MACM chaotic system [59], Liu 

chaotic system [60,61] and many more. The new HCSs use different types of non-linearities 

such as quadratic [62-67], sine hyperbolic [68], hyperbolictan [69], etc. These systems can also 

be categorized as ones with one hyperbolic type fixed point [62,69], finite number of 

hyperbolic fixed points [63-65], infinite number of hyperbolic fixed points [68], no fixed point 

[67], non-hyperbolic type fixed points [66], etc. Also, the type of attractors being produced by 

these HCSs can be two scroll [62, 65, 68], four scroll [70], irregular [64,67,69] in shape.  

 

1.2.2 Analog circuit realization of chaotic systems 

The development of chaotic systems was confined to mathematical abstraction and computer 

simulations till 1983. The actual physical implementation of a chaotic system started with the 

design of Chua’s circuit [3] in 1983. It uses two capacitors, one inductor, one passive resistor 

and one non-linear negative resistor, also known by name Chua’s diode. Thereafter, a variety 

of both voltage and current mode active blocks have been used to implement Chua’s diode over 

the years, including Operational Amplifiers (OpAmps) [71,72], Current Feedback Operational 

Amplifier (CFOA) [73], Operational Transresistance Amplifier (OTRA) [74], Voltage 

Differencing Buffered Amplifier (VDBA) [75], Current Conveyor- II (CC-II) [76], Voltage 

Differencing Transconductance Amplifier (VDTA) [77], and Differential Voltage Current 

Conveyor Transconductance Amplifier (DVCCTA) [78].  

The hardware realization of other chaotic systems is obtained by implementing constituent 

governing equations. In general, the hardware realization of a chaotic system requires three 

energy storing elements that correspond to three state variables.  Here, analog blocks, such as 

OpAmps [15,32,36,79,80] and CFOAs [81],  are used for performing addition/ subtraction and 

scaling. Further, an Analog Multiplier (AM) is used to realize quadratic non-linearity. It is 

pertinent to mention that CFOAs and AMs are available commercially in the form of Integrated 

Circuit (IC) AD844 and AD633 respectively. The versatility of AD633 in performing 

operations, such as, addition, subtraction, scaling and generating quadratic nonlinear terms has 

been exploited in [82]. Here, for implementation of VB2 chaotic system, a methodology has 

been proposed wherein minor modifications are suggested in governing equations for their 

simplification and OpAmp is used if AD633 is overloaded. 
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It may be noted that chaotic systems with quadratic non-linearity use analog multiplier in 

addition to other active blocks. In order to reduce overall footprint and power consumption, 

chaotic system with exponential non-linearity is presented in [44-47] which use diodes for 

realizing non-linear terms. 

1.2.3 Synchronization in chaotic systems 

 

The dynamical nature of the chaotic systems has an extreme dependence on the initial 

conditions and system parameters. This dependency does not allow even the identical chaotic 

systems to have similar trajectories at a given point of time. Synchronizing two chaotic systems 

is a process by which they proceed to behave in unison with time, even for different initial 

conditions and parameters. 

In order to utilize chaotic signals in private communications, the receiver’s chaotic signals must 

match with that of transmitter. Chaos synchronization, thus refers to development of control 

laws using the known information so that the controlled receiver (slave) is synchronized with 

transmitter (master) and their dynamic behaviors are identical with respect to time.  Carroll and 

Pecora were the first ones to introduce synchronization among chaotic systems by linking them 

through a common signal [83]. Different synchronization schemes have been developed since 

then to synchronize receiver with the transmitter. If the system parameters are precisely known, 

non- adaptive controls such as unidirectional, bidirectional, sliding mode control [84] methods 

can be used. In the presence of uncertainties in parameter values, adaptive control methods can 

achieve the synchronization. Adaptive control synchronization is popularly used for 

synchronizing two identical chaotic/ hyperchaotic systems even with an uncertainty in their 

parameter values [17,85-95]. However, the circuit implementation of synchronization schemes 

has not been explored. 

 

1.2.4 Digital design of chaotic systems 

 

An alternative practical platform for chaotic systems to become real time applications friendly 

is the digital platform. Digital design of chaotic systems can be done based on Application 

Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs). ASICs 

are capable of providing better performance than its counterparts, however, the prototype 

productions of ASIC based applications are time and cost intensive than the alternate solutions. 

Also, in order to bring down the cost, ASIC based applications stand in need of mass production 

which is intolerant to even minute errors. FPGAs provide enough resources at low cost and 
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desired flexibility for the implementation of chaotic systems. Thus, in early design phases, 

FPGAs are best fit for rapid prototyping and low-cost design. 

Moreover, due to the high potential in parallel computing, faster speed, extensive available 

resources and reconfigurability, FPGAs have been popularly used for the implementation of 

chaotic systems in literature [96-103].  

The governing equations of chaotic system are converted in discrete form for implementation 

in digital platform using numerical methods, such as Heun [96,97], Euler [103] and fourth order 

Runge Kutta (RK4) method [97]. These discrete equations are coded in Hardware Description 

Languages (HDLs) for further implementation in FPGAs. In HDLs, while Verilog has been 

chosen in [98, 101, 102], VHDL is used in [96, 97, 99, 100,103]. 

An extensive literature survey suggests that different combinations of numerical methods, HDLs  

and FPGA families have been used to design chaotic systems. For instance, in [96-98,103], 

Virtex FPGA family has been used to map chaotic systems while Artix, Zynq, Kintex and Altera 

Cyclone are employed in  [99], [100], [101] and [102] respectively. Though Artix has lesser 

resources than Kintex and Virtex in 7 series, but all of these have sufficient resources to 

implement a chaotic system. Thus, the choice of family does not affect the performance unless 

the resources are depleted here. 

1.3 Research Gaps 

Based on the comprehensive literature survey, the research gaps have been identified as 

follows: 

• Most of the existing designs of chaotic systems use voltage mode active block namely 

OpAmps. On the other hand, the current mode active blocks have capabilities of 

providing compact realizations. There is a lean presence of realization of chaotic 

circuits using current mode active blocks. 

• A generalized circuit topology to implement  chaotic systems has not been widely 

explored in literature. 

• There is limited literature available on hyperchaotic systems, their circuit design, and 

applications. 

• There is lean presence of hardware realization of adaptive control synchronization 

scheme in chaotic and hyperchaotic systems. 

• The digital design of chaotic systems based on FPGAs has not been widely explored in 

the literature. Also, the comparison of implementation of different chaotic systems on 
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same FPGA platform has not been reported yet. 

 

1.4  Research objectives 

 
The identified research gaps have promoted to set up the following research objectives: 

 

1. To implement chaotic circuits with reduced active block/ component count. 

  

2. To develop new designs for chaotic systems with more than three number of variables. 

 

3. To design complete circuit topologies of synchronization schemes for chaotic systems.  

 

4. To explore the digital design of chaotic circuits. 
 

1.5  Organization of thesis 

 
In this study, some investigations on the design of chaotic systems with reduced hardware, 

development of new chaotic systems, formulation and analog circuit design of their 

applications in synchronization and digital design of chaotic systems, have been carried out. 

The work has been described in nine chapters. 

 

Chapter 1 is devoted to the study of chaotic systems with an aim to bring most of the published 

information related to chaotic systems’ implementations. A review of existing work on 

adaptive control synchronization of chaotic systems and digital design as well has been 

presented thereafter. This is followed by identification of research gaps and setting up of the 

research objectives. 

 

Chapter 2 presents the basic terminology related to the thesis, which includes the definitions 

of the dynamic properties of chaotic systems. The port relationships and characterization of the 

active blocks, namely CFOA and AM, used in the circuit designing are briefly described. The 

numerical methods for digitization of differential equations and the summary of the available 

resources on target FPGA device have also been highlighted in this chapter. 

 

Chapter 3 presents realization of a chaotic system with one quadratic non-linearity, namely 

Rӧssler chaotic system, using CFOA and AM and the functionality of the circuit is tested 

through LTspice simulations and experimentation. It includes simulation results for time 

domain, frequency domain and phase space trajectories in various planes. The robustness of 

the circuit is inspected against variation in component values through Monte Carlo analysis. 
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The adaptive control synchronization scheme between two Rӧssler chaotic systems is 

formulated first followed by the complete circuit realization of the scheme using CFOAs and 

Analog Multipliers (AMs).  

 

In Chapter 4, four variants of PUCS with two non-linear terms have been proposed, and the 

properties are studied through numerical simulations. The stability of the fixed points of PUCS 

and its proposed variants is examined using Jacobi stability analysis. The properties of the 

proposed PUCSs are examined through numerical simulations and the parameter values are 

obtained by observing bifurcation diagrams for state variables. Further, the convergence/ 

divergence of nearby orbits is investigated by noticing the evolution of Lyapunov exponents 

with time. A CFOA based circuit is put forward that can realize the existing PUCS and its 

proposed variants, by simply adjusting component values. The behaviour of the proposed 

variants in time domain, frequency domain and phase space have been examined through 

simulations in LTspice design environment. Furthermore, the feasibility of the proposed 

variants is also discussed through presenting the electronic circuit implementation of two of 

the variants on breadboard and the results are found to be well aligned with the LTspice 

simulations. Monte Carlo (MC) simulations are also included to show the robustness of the 

proposed circuit against parameter variations. 

 

Chapter 5 presents a generic structure to realize chaotic systems, with quadratic type non-

linearities, employing only one type of active block, namely AD633, which is a commercially 

available IC of analog multiplier and few off the shelf passive components, namely resistors 

and capacitors. The simulations have been performed in LTspice design environment, and the 

results in the form of phase space diagrams have been presented, the shape of which confirms 

the feasibility of the presented approach. 

 

In Chapter 6, a new three-dimensional chaotic system with two exponential non-linearities is 

presented. The parameter values are obtained by observing the bifurcation diagrams. The 

properties of the proposed chaotic system, including Lyapunov exponents, Kaplan Yorke 

dimension and dissipativity are investigated using numerical simulations. The hardware 

feasibility of the proposed system is illustrated through CFOA based circuit implementation. 

To confirm the chaotic nature of the proposed circuit, LTspice simulations are done to obtain 

phase portraits which are found to be strange attractors and are topologically different from the 

shape of the existing attractors. Further, the synchronization of the proposed chaotic system is 
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formulated mathematically using adaptive control synchronization scheme and proposed CFOA 

based complete circuit for adaptively synchronized system is also designed using CFOAs, 

diodes, resistors and capacitors. 

 

Chapter 7 is a record of a new four-dimensional hyperchaotic system with quadratic type 

nonlinearities. The chaotic dynamical behaviors of the proposed system and its dynamic 

properties have been examined through numerical simulations. To explore the proposed 

systems’ applications in communication world, adaptive control synchronization scheme for 

proposed HCS is also examined. The electronic realizability of the proposed system and the 

complete adaptive control synchronization scheme is examined through CFOA and AM based 

circuit designs and simulations in LTspice design environment. 

 

Chapter 8 puts forward a systematic approach to implement chaotic systems with quadratic 

non-linearities on digital platform using Runge Kutta 4 (RK4) numerical method. FPGAs have 

been used for the implementation using Verilog Hardware Description Language (HDL) and 

the state machine control. The synthesis results based on Xilinx Artix device 7a200tffv1156-1, 

and simulation results using inbuilt simulator of Vivado design suite have been presented. The 

implemented chaotic systems have been evaluated on the basis of hardware utilization and time 

delay. The simulations results have been validated by python based numerical simulations as 

well.  

 

The work is concluded on the roadmap outlined above in Chapter 9. 

 



Chapter 2 

Basic Terminology 
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2.1 Introduction 

There has been continuous development of chaotic systems due to the ease with which these 

explain complex nature of dynamical systems. A chaotic system is characterized by three state 

variables, whose dynamics follow certain rules, which are represented by non-linear 

differential equations showing the relation between state variables and certain tunable constant 

parameters. The properties of the chaotic systems are examined through numerical simulations 

and the parameter values are obtained by observing bifurcation diagrams. The convergence/ 

divergence of nearby orbits is investigated by noticing the evolution of Lyapunov exponents 

with time. The complexity of chaotic systems is numerically defined by Kaplan Yorke 

dimension. The stability of chaotic systems is examined using Jacobi stability analysis. This 

chapter presents the terminology and parameters pertaining to chaotic systems for easy 

readability. 

Besides, CFOA and AM, the analog building blocks which have been utilized to design chaotic 

circuits have been described briefly in this chapter.  

 

2.2 Estimation of parameters and properties of a chaotic system 

For a three-dimensional set of non-linear differential equations to behave chaotically, their 

mathematical representation should have atleast three phase space variables and minimum five 

terms including one non-linearity. They are then analyzed for other dynamic properties and 

parameter values to qualify for being chaotic.  Consider a three-dimensional chaotic system 

with two quadratic non-linearities, two parameters, and total six terms, popularly known as 

Pehlivan Uyarǒglu Chaotic System (PUCS). In order to estimate these parameters for which 

PUCS will behave chaotically, bifurcation plots are required, which depict the variation in the 

values of state variables with respect to a given parameter. So, this section presents the 

bifurcation plots and properties of chaotic systems explained taking the example of PUCS. 

The representative governing equations of this chaotic system are given in (2.1). 

                           �̇� = 𝑦 − 𝑥                          (2.1a) 

                                            �̇� = 𝑎𝑦 − 𝑥𝑧                                          (2.1b) 

                           �̇� = 𝑥𝑦 − 𝑏                                        (2.1c) 

Here, the dots above the state variables x, y and z represent their time derivatives. 
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2.2.1 Bifurcation diagrams 

The effect of parameter variation on the behaviour of a non-linear dynamic system can be 

studied using bifurcation diagrams, which are plotted between the values of any one state 

variable and a parameter while keeping other parameters fixed. Out of the two parameters in 

(2.1), let us plot the bifurcation diagram, keeping parameter ‘b’ fixed to value 0.5 and varying 

parameter ‘a .’ The bifurcation plot is presented in Fig. 2.1, where the maximum value of state 

variable x is plotted against the variation in parameter ‘a.’ The similar procedure can be 

repeated for y and z phase space variables as well. It is evident from the Fig. 2.1 that in the 

system of equations in (2.1),  the route to chaos with period doubling is from right to left, i.e. 

with the decreasing values of parameter ‘a.’ It behaves chaotically for a ϵ [0,0.665]. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Bifurcation plot of PUCS with respect to parameter a 

 

Once the valid ranges of parameters are determined for the system to behave chaotically, the 

evolution of Lyapunov exponents with time is observed for a particular value of parameters in 

order to demonstrate the system dynamics in more detail. 

2.2.2 Lyapunov Exponents 

The property of chaotic systems having a heavy dependence on initial conditions is quantified 

as Lyapunov exponents. It gives a quantitative measure of the exponential rate of convergence 

or divergence of nearby trajectories of phase space diagrams plotted among the state variables. 

Mathematically, the Lyapunov exponent is computed as the average logarithmic rate of 

separation between two closely spaced trajectories. MATLAB simulations may be used to 

determine the Lyapunov exponents for a chaotic system. For instance, the Lyapunov exponents 

for PUCS in (2.1) are 0.3, 0, -0.8. Atleast one positive Lyapunov exponent indicates chaos. 
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2.2.3 Kaplan Yorke Dimension ( DKY) “_” 

The Kaplan Yorke dimension (DKY), is an additional parameter that may be used to compare 

the complexity of the attractors [104]. It is defined in terms of fractional geometrical dimension 

where a collection of initial conditions will neither contract nor expand as it advances in time.   

It is calculated as: 

𝐷𝐾𝑌 = 𝑗 +
1

|𝐿𝑗+1|
∑ 𝐿𝑖

𝑗
𝑖=1         (2.2) 

Where Li is the ith Lyapunov exponent and j is the number of Lyapunov exponents whose 

summation is positive. Chaotic flows always have DKY > 2. 

For example, calculating DKY of PUCS, 

𝐷𝐾𝑌 = 2 +
1

|−0.8|
(0.3 + 0) 

 

𝐷𝐾𝑌 = 2.38 

2.2.4 Dissipativity 

The dynamic systems can be dissipative, conservative, and explosive depending on the sign of 

the gradient of the phase space volume being negative, zero and positive respectively. The 

chaotic systems can be dissipative with shrinking phase-space volume or conservative with 

constant phase space volume but not explosive with expanding phase-space volume because of 

the unbounded dynamics. 

The divergence of a system f(x, y, z) = “ {

𝑓1(𝑥, 𝑦, 𝑧)

𝑓2(𝑥, 𝑦, 𝑧)
𝑓3(𝑥, 𝑦, 𝑧)

  is given by 

𝛻. 𝑓 =  
𝜕𝑓1

𝜕𝑥
+

𝜕𝑓2

𝜕𝑦
+

𝜕𝑓3

𝜕𝑧
     (2.3) 

where 

f1, f2 and f3 are the functions representing the dynamics of state variables x, y and z respectively. 

Dissipative dynamical systems [22] satisfy the property (2.4). 

𝛻. 𝑓 <  0                                                                            (2.4) 

Where, ∇. f is the gradient of the phase space volume. 
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The divergence of PUCS is  

𝛻. 𝑓 =  
𝜕(𝑦−𝑥)

𝜕𝑥
+

𝜕(𝑎𝑦−𝑥𝑧)

𝜕𝑦
+

𝜕(𝑥𝑦−𝑏)

𝜕𝑧
    (2.5) 

𝛻. 𝑓 = −1 + 𝑎      (2.6) 

From the bifurcation plot in Fig. 2.1, it is evident that the system is chaotic for a< 0.665. So, 

the function in (2.6) will always be a negative value, thus PUCS is dissipative. 

2.3 Analysis of Fixed Points 

In mathematics, points at which the dynamics of a function is zero are referred as fixed points, 

i.e. the given function is neither increasing nor decreasing with time.  

The stability of the fixed points is examined using Jacobi stability analysis method outlined in 

[105]. The description of the step-by-step process is given below:   

• Step 1 : Equate the governing equations of a chaotic system to zero for calculating fixed 

(equilibrium) points, i.e. the time differentiation of state variable may be equated to zero 

to determine fixed points. 

• Step 2 : Form Jacobian matrix J corresponding to fixed points obtained in step (1) for 

determining the stability. The three rows of this Jacobian matrix are obtained by 

differentiating corresponding governing equations with respect to x in row 1, y in row 2 

and z in row 3. 

• Step 3 : Find out eigenvalues corresponding to fixed points  by solving the characteristic 

equations |J - λI|=0, where I being the identity matrix, λs are the eigenvalues and | | 

represents the determinant of matrix [J-λI]. These values will give an indication of the 

deviation of the neighboring trajectories from the fixed points. 

The above procedure is illustrated below for PUCS: 

In step 1, the fixed points of PUCS  are found by setting �̇� = 0, �̇� = 0 and �̇� = 0 in (2.1). 

“_” {

𝑦 − 𝑥 =     0
𝑎𝑦 − 𝑥𝑧 = 0
𝑥𝑦 − 𝑏 =   0

                      (2.7) 

It may be noted that for y = 0, fixed points do not exist because it will not satisfy equation xy-

b = 0, where b is a positive constant. Considering y≠ 0 and solving (2.7) gives the following 

fixed points: 

p1 = (√𝑏, √𝑏, 𝑎) and p2 = (−√𝑏, −√𝑏, 𝑎). 
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The Jacobian matrix for PUCS consists of three rows. The values in 1st , 2nd and 3rd rows are 

found by differentiating the three governing equations with respect to x, y and z respectively. 

J =  [
−1 1 0
−𝑧 𝑎 −𝑥
𝑦 𝑥 0

]                                    (2.8) 

The Jacobian matrices Jp1 and Jp2 corresponding to fixed points p1 and p2 are given by (2.9) and 

(2.10) respectively. 

 

     Jp1 = [

−1 1 0

−𝑎 𝑎 −√𝑏

√𝑏 √𝑏 0

]                    (2.9) 

and 

         Jp2 = [

−1 1 0

−𝑎 𝑎 √𝑏

−√𝑏 −√𝑏 0

]                          (2.10) 

respectively. 

In step 3, the eigenvalues are computed by equating |𝐽𝑝𝑖 −  𝜆𝐼| with 0. This results in 

characteristic equation of (2.11) for both p1 and p2.   

𝜆3 + (1 − 𝑎)𝜆2 + (𝑏 − 𝑎)𝜆 + 2𝑏 = 0    (2.11) 

 

Considering a = b = 0.5 in (2.11) the eigenvalues are computed as  

  λ1 = -1; λ2 = 0.25+0.9682i and λ3 = 0.25-0.9682i. 

The fixed points can be hyperbolic or non-hyperbolic in nature [106]. The hyperbolic fixed 

points have all the eigenvalues with non-zero real part, while non-hyperbolic fixed points have 

one or more eigenvalues with zero real part. The hyperbolic fixed points can further be 

classified in eight different categories depending on the sign of the real part of their 

eigenvalues, where index refers to the dimension of unstable manifold i.e. the number of eigen 

values with positive real part. The eight categories have been summarized in Table 2.1 below: 
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Table 2.1 Types of hyperbolic fixed points in three dimensional chaotic systems 

Category Nature of eigenvalues Three-dimensional representation 

index- 0 All the eigenvalues are real 

negative. The fixed point is a stable 

node. The trajectories move inward 

linearly in all three directions , i.e. 

x, y and z. 

 

index-1 

saddle 

The dimension of unstable 

manifold is 1 and all the 

eigenvalues are real. The 

trajectories move inward linearly 

along two directions and outward 

linearly in third direction. 

 

index-2 

saddle 

Two of the three real eigenvalues 

are positive. The trajectories move 

outward linearly along two 

directions and inward linearly 

along third direction. 

 

index-3  All the three real eigenvalues are 

positive. The fixed point is an 

unstable node. All the trajectories 

are moving outwards linearly. 

 

 

index-0 

spiral 

One real negative eigenvalue and 

two complex conjugates with 

negative real part. This indicates an 

inward spiral and a stable linear 

manifold. 
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index-1 

spiral saddle 

One eigenvalue is real positive and 

two are complex conjugates with 

negative real part. This indicates an 

inward spiral and an unstable linear 

manifold. 

 

index-2 

spiral saddle 

One eigenvalue is real negative and 

two are complex conjugates with 

positive real part. This indicates an 

outward moving spiral and a stable 

linear manifold. 

 

index-3 

spiral 

One eigenvalue is real positive and 

two are complex conjugates with 

positive real part. This indicates an 

outward moving spiral and an 

unstable linear manifold. 

 

 

The shape of the attractors stems from the stretching and folding operations corresponding to 

the unstable and stable manifolds. So, the eigenvalues obtained from (2.11) indicates that the 

fixed points are index-2 saddle type.   λ1 = -1 indicates a linear stable manifold, while λ2 and λ3 

are an indication of unstable spiral manifold because of the positive real part. Here, the unstable 

spiral manifold stretches the attractor outwards while the stable linear manifold folds it back 

inside. 

2.4 Analog Building Blocks 

In this work, CFOA and AM active building blocks are used to implement chaotic systems. 

This section provides a brief overview of these two analog building blocks. 

2.4.1 Current Feedback Operational Amplifier (CFOA) 

The block diagram of CFOA is depicted in Fig. 2.2. An input voltage applied to the ‘Y’ terminal 

is buffered by voltage buffer VF, which in turn, produces a current IX returning through ‘X’ 

terminal. The input port ‘Y’ has high input impedance, while input port ‘X’ has low input 

impedance. The input current is mirrored at ‘Z’ terminal. The output of the transimpedance 

source is connected to unity gain buffer VF, which leads to the output port Vo.  
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Fig. 2.2 The block diagram of CFOA [107] 

The constituent port relations of CFOA are given as: 

 Vx = Vy; Iy = 0; Iz = Ix ; Vo = Vz. 

The CFOA is available commercially in the form of Integrated Circuit (IC) AD844. It is an 

eight pin IC, whose pin diagram is presented in Fig. 2.3. 

 

Fig. 2.3 Pin diagram of AD 844 

The pins  -in, + in, TZ and Vw pins refer to ‘X’, ‘Y’, ‘Z’ and ‘O’ ports in Fig. 2.2 respectively. 

The operation range of voltage supply for AD844 is ±4.5V to ±18V.  

2.4.1.1 CFOA Characterization 

The port relation between Vy and Vx is verified through dc simulations. The input voltage at Y 

port (Vy) is varied from -5V to +5V and the voltage is observed at port X (Vx). The simulation 

results are depicted in Fig. 2.4(a) which verifies the relation Vx = Vy. 

To verify the current relation between X and Z ports, a dc current is applied at X terminal and 

is varied from -5mA to +5mA. The current through Z terminal (Iz) is observed and is plotted in 

Fig. 2.4(b). It may be observed that Iz follows Ix closely and thus verified relation Iz = Ix. 

To verify the port relationship between ports W and Z, the voltage Vw is plotted against 

variation Vz. The relationship Vw = Vz is verified by observation in Fig. 2.4(c). 
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(a) 

 

          (b)      (c) 

Fig. 2.4 DC characteristics of AD844 between (a) Voltages at X and Y terminal; (b) Current 

in Z and X terminal; (c) Voltages at W and Z terminal 

 

2.4.1.2 Basic Circuit Applications 

This sub-section describes the basic circuit applications of CFOA which have been used in this 

thesis. 

2.4.1.2.1 Subtractor / Summer 

A CFOA based summer is shown in Fig. 2.5 (a). The circuit makes use of a single CFOA. The 

current flowing out of X terminal is 

𝐼𝑥 =
𝑉𝑦−𝑉𝑖𝑛

𝑅1
     (2.12) 

The current through ‘Z’ terminal is same as Ix, and the voltage Vw is same as the voltage at ‘Z’ 

terminal. Thus, 

𝑉𝑤 =
𝑉𝑦−𝑉𝑖𝑛

𝑅1
. 𝑅2    (2.13) 



18 
 

If the values of resistors R1 and R2 are equal, the voltage Vw is given by 

𝑉𝑤 = 𝑉𝑦 − 𝑉𝑖𝑛     (2.14 a) 

Thus, it behaves as a subtractor. 

Using voltage inverter circuitry as shown in Fig. 2.5(b), the voltage Vw is given by 

𝑉𝑤 = 𝑉𝑦 + 𝑉𝑖𝑛    (2.14b) 

Thus, it behaves as a summer. 

 

Fig. 2.5 (a) CFOA based summer; (b) CFOA based inverter 

2.4.1.2.2 Integrator 

The circuit in Fig. 2.6 represents an integrator implemented using a single CFOA.  

 

Fig. 2.6 CFOA based integrator 

The current through z terminal Iz is given by (2.15). 

𝐼𝑧 = 𝐶.
𝑑𝑉𝑧

𝑑𝑡
    (2.15) 

where, 

Vz is the voltage at ‘Z’ terminal. 

Equating (2.15) with the current through ‘X’ terminal, 

𝑉𝑦

𝑅1
=  𝐶.

𝑑𝑉𝑧

𝑑𝑡
    (2.16) 
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(2.16) can be rewritten as 

𝑉𝑧 = 𝑉𝑤 =
1

𝑅1.𝐶
∫ 𝑉𝑦    (2.17) 

 

2.4.2 Analog Multiplier (AM) 

Analog Multiplier (AM), the main building block to implement quadratic non-linearity in 

chaotic circuits, is available in the form of IC AD633 commercially. For the purpose of the 

simulations in LTspice, the SPICE model from Analog Devices is used. The pin diagram and 

internal details of AD633 are given in Fig. 2.7. 

 

 

Fig. 2.7 Pin diagram and internal schematic of AD633 [108] 

It uses two voltage subtractors for calculating difference between two inputs (Vx1-Vx2, Vy1-

Vy2). The multiplier provides the relation  (
(𝑉𝑥1−𝑉𝑥2)(𝑉𝑦1−𝑉𝑦2)

10
), where the numerator is divided 

by 10V. One adder is also a part of AD633 to give ((𝑉𝑥1 − 𝑉𝑥2)(𝑉𝑦1 − 𝑉𝑦2)/10) + 𝑉𝑧 and one 

voltage buffer that provides multiplier output at low impedance. The port relation of AD633 is 

described by (2.18). 

 

𝑉𝑤 =
(𝑉𝑥1−𝑉𝑥2)(𝑉𝑦1−𝑉𝑦2)

10
+ 𝑉𝑧     (2.18) 

By appropriate selection of Vx1, Vx2, Vy1, Vy2 and Vz, AD633 may provide the following 

outputs: 

(a) Single multiplication (or quadratic) term if Vx2, Vy2 and Vz are grounded. 

𝑉𝑤 =
𝑉𝑥1𝑉𝑦1

10
      (2.19) 

(b) Single linear term if Vx2, Vy2 and Vz are grounded and Vy1 is set to 1. 
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𝑉𝑤 =
𝑉𝑥1

10
                        (2.20) 

(c) Subtraction of two multiplicative terms if Vx2 and Vz are grounded. 

𝑉𝑤 =
(𝑉𝑥1.𝑉𝑦1−𝑉𝑥1.𝑉𝑦2)

10
    (2.21) 

(d) Multiplication and accumulation (MAC) term if Vx2 and Vy2 are grounded. 

𝑉𝑤 =
𝑉𝑥1.𝑉𝑦1

10
+ 𝑉𝑧     (2.22) 

 

2.4.2.1 AD633 Characterization 

The AD633 is characterized through LTspice simulations. The supply voltage is taken as ± 

12V. The voltage at Z port is taken as a fixed value of +1V. Vy1, Vx2 and Vy2 are set to 1V, 0V 

and 0V respectively. The voltage at port X1 is varied from 1V to 12 V. The DC voltage 

characteristics of AD633 in Fig. 2.8 verifies the relation 𝑉𝑤 =
(𝑉𝑥1−𝑉𝑥2)(𝑉𝑦1−𝑉𝑦2)

10
+ 𝑉𝑧  . 

 

Fig. 2.8 Output voltage of AD633 with respect to variations in input voltages 

 

 

 

2.5 Concluding Remarks 

The terminologies which are being repetitively used in this thesis have been described in this 

chapter. These include the properties of chaotic systems, such as Lyapunov exponents, Kaplan 

Yorke dimension and dissipativity. These properties have been elaborated with the help of an 

example of PUCS. Besides, the study on the nature of fixed points using Jacobi stability 
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analysis has been done and all possible cases for hyperbolic fixed point have been highlighted 

in this chapter. 

Furthermore, the analog building blocks, CFOA and AM, which have been used in the 

subsequent chapters for the analog circuit design of chaotic systems, are described in this 

chapter along with their characteristics. 



Chapter 3 

Chaotic systems with single quadratic non-linearity 

 

 

The content and results of the following paper have been reported in this chapter. 

 

K. Suneja, N. Pandey and R. Pandey, “ Systematic Realization of CFOA Based 

Rössler Chaotic System and Its Applications,” Arabian Journal for Science and 

Engineering, 10.1007/s13369-021-06379-9. 
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3.1 Introduction 

The mathematical representation of a chaotic system consists of three governing equations 

corresponding to three state variables. The presence of the non-linear term in the governing 

equations of a chaotic system is responsible for unpredictability in the output, and the 

complexity in hardware. Chaotic systems find wide range of applications in secure 

communication. Synchronization of two chaotic systems may be required in such applications 

for encoding and decoding of information. Synchronization means that one chaotic system, 

known as slave, follows the other, known by name master, with time. 

This chapter deals with the systematic realization of a chaotic system with one quadratic non-

linearity, namely Rössler chaotic system. It has been implemented using popular voltage mode 

building block namely OpAmp [80, 109]. The circuit reported in [80] uses four OpAmps, one 

Analog Multiplier (AM), ten resistors and three capacitors while [109] employs six OpAmps, 

two Analog Multipliers (AMs), thirteen resistors and three capacitors. A variant of Rӧssler 

chaotic system is presented in [44, 110] wherein the governing equations are modified while 

keeping the nature of attractors intact. Both realizations employ five OpAmps, one diode, ten 

resistors and three capacitors. Current mode building block based realization of Rӧssler chaotic 

system is not available in open literature to the best of candidates’ exposure in the field. To fill 

this gap, a CFOA based Rössler chaotic system is presented in this chapter.  

The governing equations of Rössler chaotic system are realized with CFOA, considering its 

advantages in processing both voltage and current signals which results in design flexibility 

leading to component saving and an Analog Multiplier (AM). The functionality of the design 

is examined through LTspice simulations and observing the chaotic outputs, their frequency 

spectrum and phase space trajectories in different planes. The robustness of the proposed circuit 

is examined against component variation through Monte Carlo analysis. The usability of the 

chaotic system is illustrated through adaptive control synchronization between two Rössler 

chaotic systems.  

 

3.2 Mathematical model of Rӧssler chaotic system 
 

The Rӧssler chaotic system [2], described by governing equations in (3.1) is a chaotic system 

with single quadratic non-linearity. 
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�̇� =  −(𝑦 + 𝑧)     (3.1a) 

�̇� = 𝑥 + 𝑎𝑦      (3.1b) 

�̇� = 𝑏 + 𝑧(𝑥 − 𝑐)                                          (3.1c) 

 

The a, b and c are positive constants whose values for the system to behave chaotically, as 

studied by Rössler for the first time, are 0.2, 0.2 and 5.7 respectively. 

3.3 Circuit Realization 

In this section, a hardware realization of Rӧssler chaotic system is presented using CFOAs and 

Analog Multiplier (AM). The proposed implementation is shown in Fig. 3.1 and corresponding 

Kirchoff’s Current Law (KCL) equations derived through nodal analysis are presented as (3.2). 

 

 

Fig. 3.1 Proposed CFOA based Rössler system 

 

 

𝑑𝑉𝑥

𝑑𝑡
=  

−𝑉𝑦

𝑅1𝐶𝑥 
−  

𝑉𝑧

𝑅2𝐶𝑥
       (3.2a) 

 

𝑑𝑉𝑦

𝑑𝑡
=  

𝑉𝑦

𝑅4𝐶𝑦
 +

𝑉𝑥

𝑅3𝐶𝑦 
         (3.2b) 

 

𝑑𝑉𝑧

𝑑𝑡
=

𝑉𝑥𝑉𝑧

10 𝑅5𝐶𝑧
− 

𝑉𝑧𝑉𝑐

10 𝑅5𝐶𝑧
−

𝑉𝑏

𝑅7𝐶𝑧
    (3.2c) 

 

Comparing (3.1) and (3.2), the set of equations obtained are put in (3.3). 

 
1

 𝑅1𝐶𝑥
= 1, 

1

 𝑅2𝐶𝑥
= 1, 

1

𝑅3 𝐶𝑦
= 1, 

1

𝑅4𝐶𝑦
= 0.2, 

𝑉𝑏

𝑅7𝐶𝑧
= −0.2,  

1

10𝑅5𝐶𝑧
= 1and Vc =5.7        (3.3)

                                             

Comparing the proposed implementation with the existing implementations, it is observed that 

the proposed realization utilizes four CFOAs, one Analog multiplier (AM), seven resistors, and 
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three grounded capacitors. Thus, overall component count is minimum in comparison to its 

OpAmp based counterparts [44, 80, 109, 110]. 

 

3.3.1 Simulation Results 

The following simulation steps are used to verify the proposition:  

Step 1: Using scaling factor of 1000 in (3.3), component values are found as R1= R2= R3= R5 

= R6 =10 kΩ, R4= 50 kΩ, R7 = 1kΩ and Cx = Cy = Cz = 100nF. 

Step 2: The complete circuit was simulated in LTspice design environment using macro models 

of AD844 and AD633 from Analog Devices [107, 108]. The power supplies are chosen 

as ±15V. 

Step 3: The simulation results are obtained in the form of time series, phase space trajectories 

and frequency spectrums. 

 

The simulated chaotic outputs in time domain for Vx, Vy and Vz are shown in Fig. 3.2 and 

corresponding fourier transforms are depicted in Fig. 3.3. It may be noticed that all the time 

series waveforms are aperiodic with different shapes. Further, the observed spectrums for state 

variables x, y and z are noise like in frequency ranges of (50Hz to 10kHz), (50Hz to 10kHz) 

and (50Hz to 80kHz) respectively. Thus, the proposed circuit can be used for audio 

applications. The phase space trajectories, also known as strange attractors, in Vx – Vy, Vy – 

Vz and Vx – Vz planes are depicted in Fig. 3.4. The nature of all the phase space trajectories is 

single scroll. 

 

 

(a)       (b) 
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(c)

Fig. 3.2 Simulated chaotic outputs at (a) Vx (b) Vy (c) Vz 

 

 

                                        (a)      (b) 

 
(c)

Fig. 3.3 Frequency spectrum of (a) Vx (b) Vy (c) Vz
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(a)   

 

   (b)

 

(c) 
 

Fig. 3.4 Simulated phase trajectories in (a) Vx –Vy, (b) Vy –Vz and (c) Vx –Vz planes 

 

Further, Monte Carlo (MC) analysis is performed by considering 10% tolerance in the passive 

component values. The simulated phase trajectories in Vx –Vy, Vy –Vz and Vx –Vz plane are 

shown in Fig. 3.5, which confirms the robustness of circuit against 10% tolerance in component 

values.  

 

     
   (a)            (b) 
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(c) 

Fig. 3.5 Simulated phase trajectories in (a) Vx –Vy, (b) Vy –Vz and (c) Vx –Vz planes 

with MC analysis 

 

The proposed realization is compared with the existing ones [44, 80, 109, 110] through 

simulations. The component values for existing circuits [44, 80, 109, 110] are taken from the 

respective references and the power supplies are kept same as used in the proposed circuit 

(±15V) for fair comparison. The comparison in terms of hardware and simulated power 

consumption has been placed in Table 3.1. It is evident from the comparison table that the 

proposed circuit consumes the least number of passive components and power under same 

supply voltage conditions. 

Table 3.1 Comparison of the proposed design with the existing circuit designs of Rӧssler 

chaotic system 

Reference Type of active 

building block 

Number of 

active building 

blocks 

Number of 

passive 

elements 

Power 

consumption (in 

Watts) 

[44] OpAmps  5 14 2.13 

[80] OpAmps and Analog 

Multiplier 

5 13 1.87 

[109] OpAmps and Analog 

Multiplier 

8 16 2.78 

[110] OpAmps 5 14 2.13 

Proposed 

circuit 

CFOA and Analog 

Multiplier 

5 10 1.1 

 



28 
 

Experimental verification of the proposed circuit is also done by bread boarding it using 

commercially available ICs AD844 and AD633, as shown in Fig. 3.6. The supply voltages and 

component values are kept same as those used in simulative investigations. The experimental 

time domain outputs for state variables (Vx Vy), (Vy Vz) and (Vx,Vz) are shown in Figs. (3.7a) 

– (3.7c) respectively and corresponding phase trajectories are shown in Figs. (3.7d) – (3.7f). It 

may be noted that the experimental results are in compliance with the LTspice simulations. 

 

(a) 

 

 

(b) 

Fig. 3.6 (a) Experimental setup; (b) Breadboard circuit for implementation of Rӧssler chaotic 

system 
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(a) (b) (c) 

 
(d) (e) 

 
(f) 

Fig. 3.7 Experimental time domain outputs for state variables (c) Vx ,Vy (d) Vy ,Vz (e) Vx ,Vz 

and phase trajectories in (f) Vx –Vy, (g) Vy – Vz and (h) Vx –Vz plane 

 

3.4 Synchronization between Rössler chaotic systems 

 

In order to utilize chaotic signals in private communications, the receiver’s chaotic signals must 

match with that of transmitter’s. In other words, synchronization is required between 

transmitter and receiver. Adaptive control synchronization is a method to produce adaptive 

control laws which help one chaotic system (slave) to follow the other chaotic system (master) 

even in the presence of uncertainties in the value of their parameters. In this method, adaptive 

control functions are added to the slave system. In order to maintain the error between the 

respective state variables of master and slave zero, these functions are determined with the help 

of Lyapunov stability theory. The Lyapunov stability theory states that if a continuously 

differentiable function V satisfies the conditions: V(0) = 0; V(X) > 0 and V̇(X) < 0, then the 

autonomous system �̇� = 𝑓(𝑥) is stable. Thus, in this section, step by step process of adaptive 

control synchronization of two Rӧssler systems is presented using the methodology suggested 

in [86]. 

3.4.1 Master and slave representations 

Let master and slave Rössler systems are characterized by state variables (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 

𝑦2, 𝑧2) respectively, and their corresponding governing equations are given by (3.4) and (3.5). 
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 𝑥1̇ =  −(𝑦1 + 𝑧1)      (3.4a) 

                                      𝑦1̇ = 𝑥1 + 𝑎𝑦1                         (3.4b) 

                       𝑧1̇ = 𝑏 + 𝑧1(𝑥1 − 𝑐)                      (3.4c) 

 

                         𝑥2̇ =  −(𝑦2 + 𝑧2) + 𝑢1                   (3.5a) 

           𝑦2̇ = 𝑥2 + 𝑎𝑦2 + 𝑢2                                              (3.5b) 

           𝑧2̇ = 𝑏 + 𝑧2(𝑥2 − 𝑐) + 𝑢3    (3.5c) 

 

where, 

 𝑢1, 𝑢2 and 𝑢3 are adaptive functions controlling the synchronization between master and slave. 

The slave system is designed based on these adaptive functions so that it can follow the master. 

3.4.2 Error dynamics 

The errors in synchronization between master and slave are given in (3.6), and the 

corresponding CFOA based circuit is shown in Fig. 3.8. 

 

𝑒𝑥 =  𝑥2 −  𝑥1 

             𝑒𝑦 =  𝑦2 −  𝑦1                (3.6) 

𝑒𝑧 =  𝑧2 −  𝑧1 

         

 

Fig. 3.8 Error functions of adaptive control synchronization 

Differentiating (3.6) with respect to time and putting the values of time differentiated state 

variables from (3.4) and (3.5), the error dynamics is obtained as: 

�̇�𝑥 =  −𝑒𝑦 − 𝑒𝑧 + 𝑢1 

           �̇�𝑦 = 𝑒𝑥 + 𝑎𝑒𝑦 + 𝑢2               (3.7) 

           �̇�𝑧 = 𝑐𝑒𝑧 + 𝑥2𝑧2 − 𝑥1𝑧1 + 𝑢3 
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3.4.3 Adaptive Controller 

From (3.7), the adaptive functions controlling the synchronization between master and slave 

are computed as: 

 𝑢1 =  −𝑘1𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 

                                                  𝑢2 =  −𝑘2𝑒𝑦 − 𝑒𝑥 −  �̂�𝑒𝑦                                     (3.8) 

                         𝑢3 =  −𝑘3𝑒𝑧 + �̂�𝑒𝑧 − 𝑥2𝑧2 + 𝑥1𝑧1  

where,  

�̂� and �̂� are the estimates of parameter 𝑎 and 𝑐 respectively; and k1, k2 and k3 are positive 

constants. 

3.4.4 Error in parameters’ estimation 

 

The parameter estimation error, 𝑒𝑎and 𝑒𝑐 are defined by 

 

          𝑒𝑎 = 𝑎 − �̂�,                      (3.9a) 

             𝑒𝑐 = 𝑐 − �̂�,                                  (3.9b) 

and their dynamics is given as  

                           𝑒�̇� = −�̇̂�                                 (3.10a) 

                        𝑒�̇� = −�̇̂�                                                              (3.10b) 

Putting 𝑢1, 𝑢2 and 𝑢3 from (3.8) in (3.7), we obtain: 

                                                                           �̇�𝑥 =  −𝑘1𝑒𝑥 

                    �̇�𝑦 = (𝑎 − �̂�)𝑒𝑦 − 𝑘2𝑒𝑦                                     (3.11) 

                 �̇�𝑧 = (𝑐 − �̂�)𝑒𝑧 − 𝑘3𝑒𝑧 

 

3.4.5 Lyapunov stability 

In order to maintain the stability of the synchronized system, the  parameters are updated using 

Lyapunov function (also known as quadratic scalar function) of (3.12), whose derivative is 

negative for the system to be stable according to Lyapunov stability theorem [111]. 

𝑉(𝑒𝑥, 𝑒𝑦, 𝑒𝑧 , 𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) =
1

2
(𝑒𝑥

2 + 𝑒𝑦
2 + 𝑒𝑧

2 + 𝑒𝑎
2 + 𝑒𝑏

2 + 𝑒𝑐
2)             (3.12) 

where,  

Differentiating (3.12) with respect to time to determine the stability of the system, we obtain: 

�̇� = −𝑘1𝑒𝑥
2 − 𝑘2𝑒𝑦

2 − 𝑘3𝑒𝑧
2 + 𝑒𝑎  (𝑒𝑦

2 − �̂�)̇ − 𝑒𝑏 (�̇̂�) − 𝑒𝑐(𝑒𝑧
2 + �̇̂�)     (3.13) 
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3.4.6 Adaptive Laws 

For the system to be stable, �̇� has to be negative. The first three terms of (3.13) are negative. 

If the last three terms are equated to zero, the estimated parameters are updated by the following 

law: 

         �̇̂� =  𝑒𝑦
2                                                                                             

         �̇̂� = 0                                              (3.14) 

      �̇̂� =  −𝑒𝑧
2                                                                 

The circuit design of (3.14) using CFOAs and AD633 is shown in Fig. 3.9. 

 

         

      Fig. 3.9  Estimated parameters a and c 

 

The complete set of equations for adaptively synchronized slave system is given by (3.15). 

     𝑥2̇ =  −(𝑦2 + 𝑧2) − 𝑘1𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 

                                         𝑦2̇ = 𝑥2 + 𝑎𝑦2 − 𝑘2𝑒𝑦 − 𝑒𝑥 −  �̂�𝑒𝑦   (3.15) 

                        𝑧2̇ = 𝑏 + 𝑧2(𝑥2 − 𝑐) − 𝑘3𝑒𝑧 + �̂�𝑒𝑧 − 𝑥2𝑧2 + 𝑥1𝑧1 

 

and its complete hardware realization is given in Fig. 3.10. The ei’s (i = x, y and z), �̂� and �̂� are 

obtained from circuit of Figs. 3.8 and 3.9.  
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Fig. 3.10  Proposed CFOA based slave circuit 

 

 

The component values for slave are computed so that the governing equations are satisfied. A 

scale of 1000 provides the following values of components R16 – R26 = R32 = R28 = 10 kΩ; R27 

= R29 =R31=1kΩ, R30 = 1.695kΩ, R8 – R13 = 10kΩ, R14 = R15 = 1kΩ  and Ci (i=4,5…,8) = 100 nF. 

The functionality of complete synchronized design is verified using LTspice software. The 

time domain response for state variables (x1, x2), (y1, y2) and (z1, z2) are plotted and the graphs 

for corresponding master and slave state variables are extracted to measure the degree of 

closeness between the respective state variables, as shown in Fig. 3.11. It is observed that x 

and y waveforms of master and slave have linear relationship supporting their synchronization. 

The z waveforms also have linear relationship but with 2.18% error in amplitude which may 

be attributed to the mismatch in the value of parameter ‘c’ in master (5.7) and slave (5.9) circuit.  

To confirm the assertion that the error is due to mismatch in value of parameter ‘c,’ the 

adaptively controlled synchronized system, extensive simulations have been carried out to 

obtain synchronization error between the master and slave system for ‘a’ = ‘b’ = 0.2 and ‘c’ = 

5, 5.7 5.9 and 6 as Rössler system behaves chaotically for these values [112]. The percentage 

error with respect to parameter ‘c’ is listed in Table 3.2. It may be noted from Table 3.2 that 

the percentage error when both master and slave are designed with same value of parameter ‘c’ 

is within 1% which is negligibly small to make difference in synchronization. An increasing 
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trend in percentage error is observed for larger deviations in the values of parameter ‘c’ of 

master and slave. 

Table 3.2 Percentage error in adaptive synchronization with respect to parameter ‘c’ 

            Receiver (‘c’)→ 

 

 

Transmitter (‘c’) ↓  

Error (%) 

5 5.7 5.9 6 

5  0.96 6.19 6.39 6.67 

5.7 6.27 0.98 2.18 3.59 

5.9 6.84 2.72 0.96 2.17 

6 7.48 3.51 1.65 0.93 

 

The simulation results of the designed circuit show a minor synchronization error in state 

variable z at receiver end. This may be due to the dependence of z2 on more number of variables 

in (3.15). 

 

 

  

(a) 

 

 

   (b) 

 

(c) 

Fig. 3.11  Simulated plots between chaotic signals of master and slave in adaptive 

synchronization: (a) Vx1 versus Vx2, (b) Vy1 versus Vy2, (c) Vz1 versus Vz 
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3.5 Concluding Remarks 
 

Rössler chaotic system has been systematically designed in this chapter using CFOAs and 

Analog Multiplier (AM). The proposed design uses four CFOAs, one Analog Multiplier (AM), 

seven resistors, and three capacitors. The passive component count in proposed circuit is 

considerably low as compared to existing Rössler chaotic system. The feasibility of the 

proposed circuit design is examined through LTspice simulations and experimentally using 

AD844 and AD633 ICs. The observed outputs for state variables are aperiodic and having 

strange attractors for phase trajectories in different planes, thereby confirming the correctness 

of the proposed design. The power consumption of the proposed circuit is 1.1 W, at power 

supplies of±15 V. An application, namely adaptive control synchronization between two 

Rössler chaotic systems is also put forward to illustrate the usability of the proposed circuit.  

 

 



Chapter 4 

Chaotic systems with two quadratic non-linearities 

 

 

 

 

The content and results of the following paper have been reported in this chapter. 

 

K. Suneja, N. Pandey and R. Pandey, “Novel Pehlivan–Uyarŏglu Chaotic System Variants 

and their CFOA Based Realization,” Journal of Circuits, Systems and Computers. 

10.1142/S0218126622501717. 
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4.1 Introduction 

Having presented study of chaotic system with single quadratic non-linearity and its systematic 

hardware implementation in chapter 3, in this chapter we deal with chaotic system with two 

quadratic non-linearities namely Pehlivan Uyarŏglu Chaotic System (PUCS) [15]. In this 

chapter, four variants of PUCS are proposed, characterised and implemented. 

The parameter values are obtained by observing bifurcation diagrams for state variables and  

properties of the proposed PUCS variants, including Lyapunov exponents, Kaplan Yorke 

dimension and dissipativity, are examined through numerical simulations. The stability of 

PUCS and its proposed variants is examined using Jacobi stability analysis. Further, a  CFOA 

based circuit is presented that can realize PUCS and its proposed variants by simply changing 

resistor values, without changing its topology.  

The behaviour of the proposed variants in time domain, frequency domain and phase space is 

examined through simulations in LTspice design environment. Furthermore, the feasibility of 

the proposed variants is also discussed through presenting an electronic circuit implementation 

of two of the variants and the results obtained are in good agreement with the LTspice 

simulations. Monte Carlo (MC) simulations are also included to show the robustness of the 

proposed circuit against parameter variations. 

 

4.2 The Pehlivan Uyarǒglu Chaotic System (PUCS) 

The governing equations of PUCS are described by (4.1) [15]. 

                             �̇� = 𝑦 − 𝑥                          (4.1a) 

                                            �̇� = 𝑎𝑦 − 𝑥𝑧                                          (4.1b) 

                           �̇� = 𝑥𝑦 − 𝑏                                        (4.1c) 

where 

x, y and z represent the state variables and ‘a’ and ‘b’ are positive constants whose values for 

the system to behave chaotically, are 0.5 and 0.5 respectively as reported in [15]. 
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4.2.1 Proposed Variants of PUCS 

In this subsection, four variants of PUCS are put forward. These variants have same number 

of terms, non-linearities and parameters. The governing equations of proposed variants are 

given below: 

4.2.1.1 First proposed variant of PUCS (PUCS I) 

The first proposed variant of PUCS, as described by governing equations of (4.2) is obtained 

by multiplying the cross-product term xy in (4.1c) by the parameter ‘b,’ while keeping other 

two governing equations same as (4.1a) and (4.1b). 

�̇� = 𝑦 − 𝑥                                               (4.2a) 

�̇� = 𝑎𝑦 − 𝑥𝑧     (4.2b) 

�̇� = 𝑏𝑥𝑦 − 𝑏      (4.2c) 

 

4.2.1.2 Second proposed variant of PUCS (PUCS II) 

In this variant, the cross-product terms xz and xy, present in Eq.(4.1b) and Eq. (4.1c), are 

multiplied by parameters ‘a’ and ‘b’ respectively, as given in Eq.(4.3). The governing 

equations of PUCS II are given in (4.3). 

�̇� = 𝑦 − 𝑥     (4.3a) 

�̇� = 𝑎𝑦 − 𝑎𝑥𝑧     (4.3b) 

�̇� = 𝑏𝑥𝑦 − 𝑏      (4.3c) 

 

4.2.1.3 Third proposed variant of PUCS (PUCS III) 

Here, the dynamics of state variables x and z are described by (4.4a) and (4.4c) respectively. 

In the dynamics of state variable y, the cross-product term xz is multiplied by parameter ‘a.’ 

The governing equations of PUCS III are given by (4.4). 

 

�̇� = 𝑦 − 𝑥     (4.4a) 

�̇� = 𝑎𝑦 − 𝑎𝑥𝑧     (4.4b) 

�̇� = 𝑥𝑦 − 𝑏      (4.4c) 

 



38 
 

4.2.1.4 Fourth proposed variant of PUCS (PUCS IV) 

For this variant, the dynamics of state variable z is kept same as (4.1c). The dynamics of state 

variables x and y of PUCS are modified to (4.5a) and (4.5b) respectively. The governing 

equations of PUCS IV are given by (4.5). 

�̇� = 𝑎(𝑦 − 𝑥)     (4.5a) 

�̇� = 𝑦 − 𝑥𝑧     (4.5b) 

�̇� = 𝑥𝑦 − 𝑏      (4.5c) 

4.3 Estimation of parameters and properties of the PUCS and its 

proposed variants 

In this section, the bifurcation diagrams for PUCS and its four variants are examined using 

MATLAB simulations. To obtain the bifurcation diagrams, value of one of the parameters 

(either ‘a’ or ‘b’) is fixed and then the dynamics of the maximum value of one of the state 

variables (x/y/z) is observed for few hundred iterations with the variation in the other parameter 

[15]. Bifurcation diagrams for maximum value of state variable x with respect to variations in 

a (keeping b fixed) and b (keeping a fixed) respectively are obtained for PUCS and its four 

proposed variants as depicted in Figs. 4.1(a)- 4.1(e). As evident from Fig. 4.1 (a, b, c and d), 

the route to chaos with period doubling is from right to left, i.e. with the decreasing values of 

parameters ‘a’ and ‘b’, while for Fig. 4.1 (e), it is from left to right with the variation in 

parameter ‘a’ and right to left for parameter ‘b’. Thus, Figs. 4.1(a) to (4.1d) display a 

continuous chaotic region followed by a reverse period-doubling bifurcation to period-1-

oscillations, while the case is reverse for Fig. 4.1(e). In other words, it may be inferred that the 

increasing values of parameters ‘a’ and ‘b’ can effectively reduce the complexity in the 

behaviour of the PUCS, PUCS I, PUCS II and PUCS III, while the increasing value of 

parameter ‘a’ increases the chaoticity in PUCS IV. The ranges of parameters ‘a’ and ‘b’ for 

chaotic behaviour of PUCS and its proposed variants are summarized in Table 4.1. 
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(a) 

(b) 

(c) 

(d) 
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Fig. 4.1 Bifurcation diagrams for (a) PUCS (b) PUCS I (c) PUCS II (d) PUCS III (e) PUCS 

IV 

 

Table 4.1  Summary of range of parameters ‘a’ and ‘b’ for PUCS and its 
proposed variants 

System  Bifurcation 

Diagram (BD) 

Range of ‘a’ obtained 

from BD, keeping ‘b’ 

fixed 

Range of ‘b’ obtained 

from BD, keeping ‘a’ 

fixed 

  Fixed 

value of 

‘b’ 

Range of ‘a’ Fixed 

value 

of ‘a’ 

Range of ‘b’ 

PUCS Fig. 4.1(a) 0.5 [0,0.665] 0.5 [0.1, 1.25] 

PUCS I Fig. 4.1(b) 0.5 [0, 0.65] 0.5 [0.1, 1.25] 

PUCS II Fig. 4.1(c) 0.5 [0.35, 0.7] 0.5 [0.1, 2.25] 

PUCS III Fig. 4.1(d) 0.5 [0.35, 0.7] 0.5 [0.1, 2.25] 

PUCS IV Fig. 4.1(e) 2 [0.1,4.5] 2 [0.1, 4.5] 

 

Once the valid ranges of parameters ‘a’ and ‘b’ are determined, the evolution of Lyapunov 

exponents with time is observed for a particular value of parameters ‘a’ and ‘b’ in order to 

investigate the system dynamics in more detail. The dynamics of the Lyapunov exponents 

corresponding to PUCS and its four variants for the values of parameters ‘a’ and ‘b’ taken as 

0.5 for PUCS, PUCS I, PUCS II and PUCS III; and 2 for PUCS IV as listed in Table 4.2, and 

is shown in Fig. 4.2. In all the cases, three Lyapunov exponents are obtained which are 

negative, zero and positive respectively, therefore all the systems satisfy one more property of 

chaoticity. The observed values of LEk (k = 1,2,3) for PUCS and its proposed variants from Fig. 

4.2 are summarized in Table 4.2. It may be noted that LE2 = 0 and LE1 < |LE3| for all PUCSs, 

so DKY for PUCS is given by Eq. (4.6). 

𝐷𝐾𝑌 = 2 +
|𝐿𝐸1|

|𝐿𝐸3|
    (4.6) 

(e) 
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Here, ‘2’ represents the maximum number of Lyapunov exponents whose summation is 

positive. The value of DKY is computed for PUCS  and its variants using (4.6) and the results 

are placed in Table 4.2. It may be noted that the order of complexity is (PUCS= PUCS I) > 

PUCS IV > (PUCS II = PUCS III). 

 

Table 4.2  Summary of Lyapunov Exponents and Kaplan York Dimensions for PUCS 

System Values of Parameter 

(a, b) 

Lyapunov Exponents  

(LE1, LE2, LE3) 

DKY 

PUCS [17] (0.5.0.5) 0.3, 0, -0.8 2.38 

PUCS I (0.5.0.5) 0.3, 0, -0.8 2.38 

PUCS II (0.5.0.5)  0.2, 0, -0.7 2.29 

PUCS III (0.5.0.5) 0.2, 0, -0.7 2.29 

PUCS IV (2, 2) 0.5, 0, -1.5 2.33 

 

 

 

 

 

 

 

 

              (a) 

                                   (b)                                      
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   (d)   

 

Fig. 4.2 Dynamics of Lyapunov exponents for (a) PUCS, (b) PUCS I, (c) PUCS II, (d) PUCS 

III, (e) PUCS IV 

The divergence, also known as trace, has been calculated for PUCS and its proposed variants. 

It may be observed that the value is ‘a-1’ for PUCS and its first three variants i.e. every volume 

consisting of these systems’ trajectory approaches zero as t → ∞ at an exponential rate of (a-

1). Thus, PUCS, PUCS I, PUCS II and PUCS III are always dissipative in nature for the range 

of parameter ‘a’ given in Table 4.1, provided b = 0.5 for PUCS, PUCS I, PUCS II and PUCS 

III. The PUCS IV has trace value of ‘-a+1’ so it is conditionally dissipative depending upon 

the value of ‘a’ being more or less than 1 and b = 2. 

4.4 Analysis of fixed points 

The stability of PUCS and its proposed variants is examined using Jacobi stability analysis 

method described in chapter 2, and is detailed below for PUCS I.  

(1) The fixed points of PUCS I are found by setting �̇� = �̇� = �̇� = 0 in (4.2). 

{

𝑦 − 𝑥 =     0
𝑎𝑦 − 𝑥𝑧 = 0
𝑏𝑥𝑦 − 𝑏 = 0

                      (4.7) 

It may be noted that for y = 0, fixed points do not exist. Considering y≠ 0 and solving (4.7) 

gives the following fixed points: 

p1 = (1,1, 𝑎) and p2 = (−1, −1, 𝑎). 
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 (2) The Jacobian matrix for PUCS I consists of three columns. The values in 1st , 2nd and 3rd 

column are found by differentiating governing equations with respect to x, y and z respectively. 

J =  [
−1 1 0
−𝑧 𝑎 −𝑥
𝑏𝑦 𝑏𝑥 0

]                                    (4.8) 

The Jacobian matrices Jp1 and Jp2 corresponding to fixed points p1 and p2 are given by (4.9) and 

(4.10) respectively. 

 

     Jp1 = [
−1 1 0
−𝑎 𝑎 −1
𝑏 𝑏 0

]                    (4.9) 

and 

       Jp2 = [
−1 1 0
−𝑎 𝑎 1
−𝑏 −𝑏 0

]                        (4.10) 

respectively. 

 

(3) The eigenvalues are computed by equating |𝐽𝑝𝑖 −  𝜆𝐼| with 0. This results in characteristic 

equation of (4.11) for both p1 and p2.   

𝜆3 + (1 − 𝑎)𝜆2 + 𝑏𝜆 + 2𝑏 = 0    (4.11) 

Considering a = b = 0.5 in Eq. (4.11) the eigenvalues are computed as  

  λ1 = -1; λ2 = 0.25+0.9682i and λ3 = 0.25-0.9682i. 

The same process is used to compute the equilibrium points, Jacobian matrices, eigenvalues 

(λ1, λ2, λ3) corresponding to equilibrium points for PUCS II and PUCS III by taking parameters 

(a, b) as (0.5,0.5) while (2,2) is considered for PUCS IV. The findings are enlisted in Table 4.3. 

It may be noted that the eigenvalues corresponding to PUCS and all its proposed variants have 

negative value of λ1 and positive real part in the complex conjugates for λ2 and λ3, thus inferring 

the existence of a stable linear manifold and an unstable spiral manifold, as discussed in 

Chapter 2. The presence of these manifolds is responsible for the strange attractors of all PUCS 

systems.  
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Table 4.3  Parameters of PUCS and its chaotic variants 
 

System Equilibrium 

Points; Value of 

parameter (a, b) 

Jacobian Matrix Eigen Values 

 

PUCS 

[19] 
(√𝑏, √𝑏, 𝑎);  

(0.5.0.5) [

−1 1 0

−𝑎 𝑎 −√𝑏

√𝑏 √𝑏 0

] 

λ1=-1; λ2,3= 

0.25±0.9682i 

(−√𝑏, −√𝑏, 𝑎); 
(0.5.0.5) [

−1 1 0

−𝑎 𝑎 −√𝑏

−√𝑏 −√𝑏 0

] 

λ1=-1; λ2,3= 

0.25±0.9682i 

PUCS I (1, 1, a); 

 (0.5.0.5) [
−1 1 0
−𝑎 𝑎 −1
𝑏 𝑏 0

] 
λ1=-1; λ2,3= 

0.25±0.9682i 

(-1, -1, a); 

 (0.5.0.5) [
−1 1 0
−𝑎 𝑎 1
−𝑏 −𝑥 0

] 
λ1=-1; λ2,3= 

0.25±0.9682i 

PUCS II (1, 1, 1); 

 (0.5.0.5) [
−1 1 0
−𝑎 𝑎 −𝑎
𝑏 𝑏 0

] 
λ1=-0.8715; λ2,3= 

0.1857±0.7343i 

 

(-1, -1, 1); 

(0.5.0.5) [
−1 1 0
−𝑎 𝑎 𝑎
−𝑏 −𝑏 0

] 
λ1=-1.339; λ2,3= 

0.4195±0.4443i 

 

PUCS III (√𝑏, √𝑏, 1); 

(0.5.0.5) [

−1 1 0

−𝑎 𝑎 −𝑎√𝑏

√𝑏 √𝑏 0

] 

λ1=-0.8715; λ2,3= 

0.1857±0.7343i 

 

(−√𝑏, −√𝑏, 1); 

(0.5.0.5) [

−1 1 0

−𝑎 𝑎 𝑎√𝑏

−√𝑏 −√𝑏 0

] 

λ1=-0.8715; λ2,3= 

0.1857±0.7343i 

 

PUCS IV (√𝑏, √𝑏, 1); 

(2,2) 

 

[

−𝑎 𝑎 0

−1 1 −√𝑏

√𝑏 √𝑏 0

] 

λ1=-2; λ2,3= 

0.5±1.9365i 

 

(−√𝑏, −√𝑏, 1); 

(2,2) [

−𝑎 𝑎 0

−1 1 √𝑏

−√𝑏 −√𝑏 0

] 

λ1=-2; λ2,3= 

0.5±1.9365i 

 

 

4.5 The circuit realization 

The dynamics of the governing equations of PUCS and its proposed variants are realized by 

CFOA and Analog Multipliers (AMs) in this section where the state variables x, y and z are 

represented by voltages Vx, Vy and Vz across capacitors Cx, Cy and Cz respectively. The 

dynamics of state variables i.e. left-hand side of (4.1) – (4.5) may be obtained by observing 

current through capacitors as it is proportional to time differentiation of voltage.  

The dynamics of state variable x i.e. the right-hand side of (4.1a - 4.5a) requires subtraction of 

two voltages and passing the resulting current through a capacitor. The desired output may be 
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obtained by CFOA based arrangement depicted in Fig. 4.3. Here, the current through Cx may 

be written as:  

 

𝐶𝑥
𝑑𝑉𝑥

𝑑𝑡
=

𝑉𝑦−𝑉𝑥

𝑅1
     (4.12) 

 

 

 

Fig. 4.3 Design for state variable x 

 

Equation (4.12) may be rewritten as  

𝑑𝑉𝑥

𝑑𝑡
=

𝑉𝑦−𝑉𝑥

𝑅1𝐶𝑥
                                                    (4.13) 

 

The value of R1Cx for PUCS and its proposed variants may be found by comparison of (4.13) 

with (4.1a) – (4.5a). It is observed that (4.13) maps to (4.1a, 4.2a 4.3a, 4.4a) for 𝑅1𝐶𝑥 = 1 and 

(4.5a) for 𝑅1𝐶𝑥 =
1

𝑎
.  

The implementation of (4.1b) and (4.2b) requires a cross-product term VxVz, scaling of Vy and 

subtraction of these two, while implementation of (4.3b), (4.4b) and (4.5b) requires scaling of 

cross-product term as well. An Analog Multiplier (AM) AD633 and a voltage divider circuit 

may be used respectively to provide the product term and scaling operation. The subtraction 

may be obtained by CFOA.  The complete arrangement is depicted in Fig. 4.4, the current 

through Cy may be written as:  

 

𝐶𝑦
𝑑𝑉𝑦

𝑑𝑡
=

𝑉𝑚−0.1𝑉𝑥𝑉𝑧

𝑅4
                           (4.14) 

where, 

 𝑉𝑚 =
𝑅3

𝑅2+𝑅3
𝑉𝑦     (4.15) 
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Fig. 4.4 Design for state variable y 

 

Equation (4.14) may be rewritten as 

 

𝑑𝑉𝑦

𝑑𝑡
=

𝑉𝑚−0.1𝑉𝑥𝑉𝑧

𝑅4𝐶𝑦
    (4.15) 

 

Equation (4.15) maps to (4.1b, 4.2b) for  𝑅4𝐶𝑦 = 0.1 and 
𝑅3

(𝑅2+𝑅3)𝑅4𝐶𝑦
= 𝑎,whereas (4.3b, 4.4b) 

require 𝑅4𝐶𝑦 =
1

10𝑎
 and 

𝑅3

(𝑅2+𝑅3)𝑅4𝐶𝑦
= 𝑎 and (4.5b) needs 𝑅4𝐶𝑦 = 0.1 and 

𝑅3

(𝑅2+𝑅3)𝑅4𝐶𝑦
= 1. 

Equations (4.1c, 4.4c, 4.5c) have a cross-product term and a constant ‘b’ being subtracted from 

it, while equations (4.2c, 4.3c) have a scaling factor ‘b’ of cross-product term as well. Thus, 

the realization requires an Analog Multiplier (AM) AD633 and CFOA based subtractor. Fig. 

4.5 gives the hardware implementation of (4.1c-4.5c). The current through Cz may be expressed 

as  

 

𝐶𝑧
𝑑𝑉𝑧

𝑑𝑡
=

0.1𝑉𝑥𝑉𝑦−𝑉𝑏

𝑅5
                        (4.16) 

Or 

 
𝑑𝑉𝑧

𝑑𝑡
=

0.1𝑉𝑥𝑉𝑦−𝑉𝑏

𝑅5𝐶𝑧
    (4.17) 

 

Equation (4.17) maps to (4.1c, 4.4c, 4.5c) for 𝑅5𝐶𝑧 = 0.1 and 
𝑉𝑏

𝑅5𝐶𝑧
= 𝑏 while (4.2c, 4.3c) 

require 𝑅5𝐶𝑧 =
1

10𝑏
 and 

𝑉𝑏

𝑅5𝐶𝑧
= 𝑏. 
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Fig. 4.5 Design for state variable z 

 

The component count of Fig. 4.3, Fig. 4.4 and Fig. 4.5 together are less than that of [15], which 

uses four voltage mode active building blocks, two AMs and eleven passive components. So, 

using CFOAs in designing PUCS has assisted us in saving both active blocks and passive 

components. Also, the same circuit can be used to implement both PUCS and its proposed 

variants. It may be noted from Table 4.1 that range of parameters ‘a’ and ‘b’ are wider in PUCS 

IV. Further as the values of ‘a’ and ‘b’ depend on resistor R1 and voltage source Vb, so a wide 

range of R1 and Vb is available.  The features of the proposed variants are enlisted in Table 4.4. 

It may be noted that all the variants use same number of hardware components. The difference, 

however, lies in the chaoticity as evident from Kaplan Yorke Dimension DKY, tuning range as 

derived from the range of parameters ‘a’ and ‘b’ and accessibility of dc voltage supply required 

depending on the value of Vb.  

Table 4.4  Features of the proposed variants 
System Chaoticity Tuning range Accessibility of dc 

voltage supply required 

    

PUCS I High Moderate Easy 

PUCS II Low Low Easy 

PUCS III Low Low Difficult 

PUCS IV Moderate Highest Easy 

 

4.6 Simulation Results 

The proposed circuit of PUCS and its variants are simulated in LTspice design environment. 

The values of parameters ‘a’ and ‘b’ for PUCSs are taken as specified in Table 4.2. Considering 

scaling factor of 1000, the normalized values of the passive components for the proposed circuit 
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are listed in Table 4.5. All the capacitors are taken as 100nF. The supply voltages are taken as 

±15V.  

Table 4.5  Normalized element values of the proposed PUCS circuit 

Component R1 R2 R3 R4 R5 Vb 

Equation 

Number 

(2a-5a); 

(6a) 

(2b, 3b);  

(4b,5b,6b)       

(2b-

6b) 

(2b,3b,6b); 

(4b,5b) 

(2c,5c,6c); 

(3c,4c) 

(2c,5c); 

(3c,4c); (6c) 

Value 10kΩ; 

5kΩ 

19kΩ; 

 9kΩ 

1kΩ 1kΩ;  

2kΩ 

1kΩ;  

2kΩ 

0.05V; 

0.1V;0.2V 

 

The time domain responses of Vx, Vy and Vz of PUCS and its variants are shown in Fig. 4.6, 

which are clearly aperiodic in nature. Figure. 4.7 shows the projections of phase space 

trajectories of all the systems onto the Vx-Vy, Vz-Vy and Vz-Vx planes respectively. These 

attractors, being the visual characteristics of chaotic systems, show the relationship of the 

variants with the original PUCS system and confirm the correctness of simulation results. The 

frequency spectrum of PUCS and its variants is also examined to determine the range of 

frequencies in which these systems can be used. Figure. 4.8 shows the frequency spectrum of 

Vx, Vy and Vz for PUCS I. The frequency spectrums for state variables Vx, Vy and Vz are noise 

like in frequency range 50Hz to 1.5kHz with no dominant peaks again verifies the chaoticity 

in the circuit. Also, the frequency spectrum shows that the significant portion of the signals x, 

y and z falls in audio frequency range, thus the chaos can be used in audio applications, such 

as encryption of audio data before transmission in secure communication. Similar results were 

obtained for other variants also, which have not been included for the sake of brevity. 

 

 

 

 

 

 

(a) 
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                       (b)     

(d) 

 

Fig. 4.6 Time domain response of state variables (a) PUCS, (b) PUCS I, (c) PUCS II, (d) 

PUCS III, (e) PUCS IV 
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Fig. 4.7 Simulated phase space trajectory yx, yz and xz for (a) PUCS, (b) PUCS I, (c) PUCS 

II, (d) PUCS III, (e) PUCS IV 

 

     

     

     

     

     

     

     

     

     

     

Fig. 4.8 Frequency spectrum plots of state variables (a) Vx, (b) Vy , (c) Vz 
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The chaotic spectrum of the proposed design for PUCS I is examined with Monte Carlo (MC) 

simulations for all the resistors and capacitors having 10% tolerance in which uniform Gaussian 

distribution is used. The MC analysis results for PUCS I are shown in Fig. 4.9. It can be stated 

from MC analysis that the circuit is robust to elements’ values with 10% tolerance. Similar 

results are obtained with MC analysis for other proposed PUCS variants. 

 

 

  

     

     

     

    

Fig. 4.9 Monte Carlo Analysis of phase trajectories of state variables: (a) x-y, (b) z-y, (c) z-x 

 

4.7 Experimental Verification 

In this section, the experimental verification of the PUCS I and PUCS IV variants is carried 

out by bread boarding the complete schematic of Fig. 4.3-4.5 using commercially available ICs 

AD844 and AD633. The supply voltages and component values are kept same as those used in 

simulative investigations. The experimental setup and breadboarded circuits for PUCS I and 

PUCS IV are shown in Fig. 4.10 and Fig. 4.11 respectively. The phase trajectory outputs, on 

Digital Storage Oscilloscope (DSO) screen, for state variables (Vx, Vy), (Vy, Vz) and (Vx,Vz) 

are shown in Figs. 4.12(a-c) and Figs. 4.12(d-f) for PUCS I  and PUCS IV respectively. It may 

be noted that the experimental results are well inclined with the LTspice simulation results 

presented in Figs. 4.7(b) and 4.7(e). 

 

(a) (b) 
(c) 
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                                Fig. 4.10 Experimental setup to implement PUCS I 

           

 

       Fig. 4.11 Experimental setup to implement PUCS IV 

 

 

 

  

       

       

  

 

 

   (a)    (b)    (c) 
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Fig. 4.12  Experimentally obtained phase space trajectories of PUCS I (a) yx, (b) yz, (c) xz 

and PUCS IV (d) yx, (e) yz, (f) xz 

 

4.8 Concluding Remarks 

In this chapter, the candidate has reported and analysed four new variants of a recent chaotic 

system introduced by Pehlivan and Uyarŏglu PUCS. Non-linear dynamic properties of these 

systems were investigated and expatiated through bifurcation diagrams, Lyapunov exponents, 

Kaplan Yorke Dimension, dissipativity, nature of equilibrium points through eigenvalues and 

chaotic attractors. The simulation results in MATLAB show that the range of parameter ‘a’ and 

‘b’ is highest for PUCS IV, i.e., from 0.1 to 4.5, allowing a wide range of resistors. However, 

the value of DKY is maximum for PUCS and PUCS I, i.e. 2.38, indicating the maximal 

chaoticity compared to the other three variants. Finally, an analog circuit design has been 

presented using current mode active building blocks, which can implement PUCS and all its 

proposed variants. Simulations are done for time series, frequency responses, phase portraits 

and Monte Carlo analysis. The frequency spectrums for state variables x, y and z are noise like 

in frequency range 50 Hz to 1.5 kHz which falls in the audio signal frequency range of 20 Hz 

to 20 kHz. Thus, these signals generated from the proposed designs can be used in encryption 

of audio data before transmission in secure communication. Compared with the existing 

OpAmp based design of PUCS [15], this design is superior in that it uses lesser number of 

components. It has used three current mode active building blocks, two Analog Multipliers 

(AMs) and eight passive elements out of which four are grounded. In [15], four voltage mode 

active building blocks, two Analog Multipliers (AMs) and eleven passive components were 

used, all were floating. Moreover, we have reported the experimental verification of two of the 

proposed variants, PUCS I and PUCS IV, by breadboarding the circuit using off the shelf 

components, and the oscilloscope results show the feasibility of the proposed design. 

 

   (d)    (e)    (f) 



Chapter 5 

Generalized  hardware efficient topology of chaotic systems with 

quadratic non-linearity 

 

 

 

The content and results of the following paper have been reported in this chapter. 

 

K. Suneja, N. Pandey and R. Pandey, "Circuit realization of chaotic systems with quadratic 

nonlinearity using AD633 based generic topology," 2022 International Conference on 

Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2022, 

pp. 284-289, doi: 10.1109/ICCCIS56430.2022.10037747. 
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5.1 Introduction 

In chapters 3 and 4, the circuit realization of Rӧssler and PUCS with its proposed variants 

respectively were presented using CFOAs (AD844) and AMs (AD633). In these circuits, the 

CFOA count depends upon the number of addition and subtraction operations in governing 

equations of chaotic system, while the number of quadratic non-linearities decides AM count, 

thus the overall realization requires two types of analog building blocks. 

In this chapter, a generic circuit is presented for implementation of chaotic systems employing 

quadratic non-linearity. It uses only AD633 as active building block and exploits the inherent 

features of addition/ subtraction and multiplication of AD633. Therefore, the overall 

component count reduces significantly. The customization of the proposed topology is 

elucidated in detail for Rabinovich chaotic system (RCS). Seven other chaotic systems have 

also been worked upon and findings are comprehended in this chapter. 

 

5.2 The generic circuit topology 

The AD633 [108] is a versatile active block that has capability of performing addition, 

subtraction, scaling and generating quadratic nonlinear terms. In chapter 2, it has been 

presented as voltage mode block. In [82], a minor modification was suggested to convert 

voltage output to current output as shown in Fig. 5.1(a). Further, various combinations of 

resistors and capacitors can be placed at the current output to implement the governing 

equations of a chaotic system with quadratic type non-linearity(ies).  

The proposed generic circuit topology is presented in this section and shown in Fig. 5.1(b) that 

may be customized to realize governing equations of chaotic systems having quadratic 

nonlinearity(ies).  

The complete schematic of the proposed AD633 based topology is shown in Fig. 5.1(c). It can 

implement differential equations having linear/ non-linear terms and constants. Applying 

Kirchoff’s Voltage Law (KVL) and Kirchoff’s Current Law (KCL) in Fig. 5.1(c) gives 

𝑉𝑙𝑖
̇ =  

(𝑉𝑥1𝑖−𝑉𝑥2𝑖)(𝑉𝑦1𝑖−𝑉𝑦2𝑖)

10𝑅1𝑖𝐶𝑙𝑖
−

𝑉𝑙𝑖

𝑅2𝑖𝐶𝑙𝑖
−

𝑉𝑙𝑖−𝑉𝑚𝑖

𝑅3𝑖𝐶𝑙𝑖
                            (5.1)   

Here subscript i = 1,2,3 and refer to three governing equations of a chaotic system. The values 

of the input voltages (Vx1i, Vx2i, Vy1i, Vy2i,Vmi), resistors (R1i, R2i and R3i) and capacitor Cli may 

be set according to  the requirements. 
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     (a)     (b) 

 

Fig. 5.1 (a) AD633 in  current mode; (b) Proposed generalized topology to implement 

chaotic systems; (c) Complete schematic 

The distinctive features of the proposed work are as follows: 

1. The total number of AD633s are equal to number of the state variables, i.e. three. 

2. It does not require the need of introducing extra terms or any modification in the 

characteristic equations for the simplification, as reported in [82].  

5.3 Customization of proposed generic topology for Rabinovich chaotic 

system (RCS) 

The governing equations of Rabinovich chaotic system are given by 

�̇� = ℎ𝑦 − 𝑎𝑥 + 𝑦𝑧                                                                 (5.2a) 
�̇� = ℎ𝑥 − 𝑏𝑦 − 𝑥𝑧                                                             (5.2b) 

   �̇� = −𝑑𝑧 + 𝑥𝑦                                                                          (5.2c) 

 

where x, y and z are the three state variables, whose time differentiations are being represented 

by ẋ, ẏ and ż respectively. As a chaotic system is represented by three state variables, the 

complete design will require three instances of proposed generic topology.  

In circuit representation, the voltage across capacitor is considered as state variable. Let 

capacitor voltages Vl1, Vl2 and Vl3 represent state variables x, y and z respectively.  

Setting Vx2i and Vmi to ground and R3i to open circuit, (5.1) reduces to 
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𝐶𝑙1. 𝑉𝑙1
̇ =  

(𝑉𝑥11)(𝑉𝑦11−𝑉𝑦21)

10𝑅11
−

𝑉𝑙1

𝑅21
                                  (5.3) 

 

By setting 10R11Cl1 =1, R21Cl1 = a-1 and Vy21 = -h, (5.3) reduces to 

𝑉𝑙1
̇ = (𝑉𝑥11)(𝑉𝑦11 + 𝑉ℎ)  − 𝑎𝑉𝑙1                                     (5.4) 

 

The correspondence between (5.4) and (5.2a) is established by simply connecting Vx1i, Vy1i and 

Vli to Vl2, Vl3 and Vl1 respectively. The final equation is given by (5.5). 

�̇�𝑙1 = 𝑉𝑙2(𝑉𝑙3 + 𝑉ℎ) − 𝑎𝑉𝑙1                                              (5.5) 

Again, setting Vx2i and Vmi to ground and R3i to open circuit, (5.1) reduces to 

𝐶𝑙2. 𝑉𝑙2
̇ =  

(𝑉𝑥1)(𝑉𝑦1−𝑉𝑦2)

10𝑅12
−

𝑉𝑙2

𝑅22
                                               (5.6) 

Now, by setting 10R12Cl2 =1, R22Cl2 = b-1 and Vy12 = h, and connecting Vx1i, Vy2i and Vli to Vl1, 

Vl3 and Vl2 respectively, (5.6) reduces to 

�̇�𝑙2 = 𝑉𝑙1(𝑉ℎ − 𝑉𝑙3) − 𝑏𝑉𝑙2                                     (5.7) 

The same procedure is repeated for (5.2c), where Vx2i, Vy2i and Vmi were set to ground, making 

(5.1) look like (5.8). 

       𝐶𝑙3. 𝑉𝑙3
̇ =  

(𝑉𝑥1)(𝑉𝑦1)

10𝑅13
−

𝑉𝑙3

𝑅23
                                                     (5.8)    

Putting 10R13Cl3 =1, R23Cl3 = d-1, and connecting Vx1i, Vy1i and Vli to Vl1, Vl2 and Vl3 

respectively, (5.8) reduces to 

   �̇�𝑙3 = 𝑉𝑙1. 𝑉𝑙2 − 𝑑𝑉𝑙2                                                  (5.9) 

The complete circuit design to implement (5.2) is presented in Fig. 5.2. 
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Fig. 5.2 AD633 based complete circuit design of Rabinovich chaotic system 

 

Further, the usefulness of proposed generic topology is examined for seven more chaotic 

systems. The state variables x, y and z are represented by Vl1, Vl2 and Vl3 for circuit 

implementation for all chaotic systems and all capacitors are considered as 1 unit and R1i is 

taken as 0.1 unit. The input voltages to AD633, the conditions on values of R2i and R3i are 

summarized in Table 5.1. 
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Table 5.1 Chaotic systems mapped on proposed topology 

Ref Chaotic system and its 

Governing equations 

Vli Vx1i Vx2i Vy1i Vy2i Vmi R2i R3i 

[1] �̇� =  𝜎(𝑦 − 𝑥) 

 �̇� =  𝜌𝑥 − 𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑟𝑧 

 

Vl1 σ gnd Vl2 Vl1 0 ꝏ ꝏ 

Vl2 Vl1 gnd ρ’***

* 

Vl3 0 1 ꝏ 

Vl3 Vl1 gnd Vl2 gnd 0 1/r ꝏ 

[29,

113] 
�̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑐𝑥 − 𝑥𝑧 

�̇� = −𝑏𝑧 + 𝑥𝑦 

 

Vl1 a gnd Vl2 Vl1 0 ꝏ ꝏ 

Vl2 Vl1 gnd c Vl3 0 ꝏ ꝏ 

Vl3 Vl1 gnd Vl2 gnd 0 1/b ꝏ 

[27] �̇� = 𝑎(𝑦 − 𝑥) + 𝑦𝑧 

�̇� = 𝑐𝑥 − 𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏𝑧 

 

Vl1 Vl2 gnd Vl3 -a 0 1/a ꝏ 

Vl2 Vl1 gnd c Vl3 0 1 ꝏ 

Vl3 Vl1 gnd Vl2 gnd 0 1/b ꝏ 

[26] �̇� = −𝑎𝑥 + 𝑏𝑦 − 𝑦𝑧 

�̇� = 𝑥 + 𝑥𝑧 

�̇� = −𝑐𝑧 + 𝑦2 

 

Vl1 Vl2 gnd b Vl3 0 1/a ꝏ 

Vl2 Vl1 gnd Vl3 -1V 0 ꝏ ꝏ 

Vl3 Vl2 gnd Vl2 gnd 0 1/c ꝏ 

[32] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑥𝑧 − 𝑦 

�̇� = 𝑏 − 𝑥𝑦 − 𝑐𝑧 

 

Vl1 a gnd Vl2 Vl1 0 ꝏ ꝏ 

Vl2 Vl1 gnd Vl3 gnd 0 1 ꝏ 

Vl3 Vl1 gnd gnd Vl2 b 1/c 1 

[35] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = (𝑐 − 𝑎)𝑥 − 𝑎𝑥𝑧 

�̇� = −𝑏𝑧 + 𝑥𝑦 

Vl1 a gnd Vl2 Vl1 0 ꝏ ꝏ 

Vl2 Vl1 gnd k** R4/(R4+R2). Vl3* 0 ꝏ ꝏ 

Vl3 Vl1 gnd Vl2 gnd 0 ꝏ ꝏ 

[36] �̇� = −𝑎𝑥 − 𝑏𝑦𝑧 

�̇� = −𝑥 + 𝑐𝑦 

�̇� = 𝑑 − 𝑦2 − 𝑧 

 

Vl1 gnd Vl2 Vl3 gnd 0 1/a ꝏ 

Vl2 Vl2 Vl1 c’*** gnd 0 1 ꝏ 

Vl3 Vl2 gnd gnd Vl2 d 1 1 

 

*  a voltage divider circuit to implement ‘az’ 

** k is a constant voltage equal to (c-a) 

*** c’= (𝑐 +
1

𝑅22
) . (0.1𝑅12) 

**** ρ’= 
𝜌.𝑅22

0.1
 

 

5.4 Simulation Results 

This section deals with functional verification of proposed AD633 based chaotic systems 

realization in LTspice design environment. The simulations have been carried out using Analog 

Devices macromodel of AD633 [108]. The power supply voltage for all the systems is ± 18V. 

These systems, tabulated in Table 5.1, have been simulated, and three representative examples 

of chaotic systems RCS, Lorenz chaotic system (LCS) and Yang Chen chaotic system (YCCS) 

have been shown as follows: 
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5.4.1 Rabinovich chaotic system (RCS) [37, 38] 

The values of resistors R1i, R2i and R3i are computed corresponding to parameters a = 4, b =1, 

d = 1 and h = 6.75. The Vmi is not required for all governing equations and same is true for R3i. 

The value of resistors R1i (i=1,2,3) is kept at 1kΩ while R21, R22 and R23 at 4kΩ, 10kΩ and 10kΩ 

respectively. Fig. 5.3 (a) shows simulated phase plots in x-y, x-z and y-z planes which confirm 

to the functionality of RCS.   

5.4.2 Lorenz chaotic system (LCS) [1] 

Similar to RCS, LCS also does not require R3i and Vmi (i=1,2,3). Using the parameters σ = 10, r 

=28 and ρ = 8/3, the values of resistors R11, R12, R13, R22, R23 are computed as 1kΩ, 100Ω, 

1kΩ, 10kΩ and 3.75kΩ respectively. It is to be noted that in order to scale the value of ρ = 28V 

to 2.8 V, Rl2 has been reduced to 100Ω. The phase space plots in x-y, x-z and y-z planes are 

depicted in Fig. 5.3 (b), where all of them are two scroll in nature. 

5.4.3 Yang Chen chaotic system (YCCS) [29,113] 

For YCCS, using the parameters a = 1, b = 0.05 and c = 15, the values of resistors R11, R12, R13, 

R23 are computed as  100Ω, 100Ω, 100Ω and 20kΩ respectively. The phase space plots in x-y, 

x-z and y-z planes are depicted in Fig. 5.3 (c), where all of them are two scroll in nature. 

   

 

         (a) 
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       (b) 

   

 

(c) 

Fig. 5.3 Phase space plots of (a) RCS and (b) LCS and (c) YCCS in x-y, x-z and y-z planes  
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5.5 Concluding Remarks 

An optimized circuit design of chaotic systems with quadratic type non-linearities has been 

proposed. It utilizes AD633s equal to the dimension of the chaotic system, along with passive 

linear components, such as resistors and capacitors. This prevents the need for two different 

types of active building blocks, thus reducing the hardware count significantly. LTspice 

simulations are in agreement with the numerical simulations existing in literature. Circuit 

simplification by reducing hardware complexity plays a vital role in the generation of chaotic 

attractors for various real time applications. This also makes the circuit highly accurate because 

of the reduced number of components, thus their inherent errors. Thus, it will be beneficial for 

chaos applications to engineering problems. 

 

 

 

    



Chapter 6 

New chaotic system with exponential non-linearity 

 

 

The content and results of the following paper have been reported in this chapter. 

 

K. Suneja, N. Pandey and R. Pandey, “A novel chaotic system with exponential non-linearity 

and its adaptive self-synchronization: From numerical simulations to circuit 

implementation,” Journal of Circuits, Systems and Computers. 

https://doi.org/10.1142/S0218126623502961. 
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6.1 Introduction 

The chaotic systems based on quadratic non-linearities have been presented in preceding 

chapters. Besides the number of non-linear terms, the type of non-linearity also affects the 

behaviour of the chaotic system, both numerically and in circuit design. The chaotic systems 

may also be realized with inherent exponential non-linearity of diode. There is limited work 

on such systems [44-47]. In [44], Rӧssler chaotic system has been modified to incorporate 

exponential non-linearity instead of quadratic non-linearity, while [45-47] use quadratic 

exponential type non-linearities. 

This work presents a new chaotic system, with exponential non-linearities with a goal to reduce 

the count of active building blocks used for realization.  The fixed points of the proposed system 

are analysed; and the dynamics of the proposed system is examined through numerical 

simulations and observing bifurcation diagrams, maximum Lyapunov exponents, Kaplan Yorke 

dimension and dissipativity. As far as electronic design of chaotic system is concerned, the 

designs incorporating quadratic non-linearity require AMs, while, in this work, we have 

proposed a chaotic system which is free of quadratic non-linearity. It employs two diodes to 

introduce exponential non-linearities in the system, which is an easily available low-cost 

component. Further, an adaptive controller with parameter update laws based on Lyapunov 

stability theorem to self-synchronize the proposed chaotic system is also put forward. The 

numerical simulations are carried out to confirm the feasibility and efficacy of the proposed 

adaptive controller design. CFOA based realization of the proposed controller is also put 

forward for illustrating the possibility of hardware design. 

 

6.2 Proposed chaotic system and its numerical analysis 

The proposed chaotic system uses three state variables (x, y, z), two exponential non-linearities 

and two parameters ‘a’ and ‘b.’ The governing equations of the proposed system relate state 

variables (x, y, z) with their time differentiation and are given in (6.1). 

�̇� =  𝑦 − 𝑥                                                                    (6.1a) 

 �̇� = 𝑎𝑦 − 𝑥 − 𝑧                                                           (6.1b) 

   �̇� = 𝑒𝑥 + 𝑒𝑦 − 𝑏                                                          (6.1c) 
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6.3 Properties and behaviors of the novel chaotic system 

To obtain parameter range in which a system behaves chaotically, bifurcation plots are obtained 

by varying one parameter while keeping others fixed. Figures 6.1(a) represent two plots  (shown 

in blue and red colour) corresponding to two different initial conditions (1,1,1) and (-1, -1, -1). 

Figure 6.1(a) shows the bifurcation plot of the proposed system by varying parameter ‘a’ (0.1≤ 

a ≤ 1) while keeping ‘b’ fixed at ‘b’ = 0.5. It may be noted that the proposed system in (6.1) 

exhibits periodic nature for ‘a’ ϵ [0.1: 0.75] and chaotic behaviors for ‘a’ ϵ [0.8: 0.85], [0.91, 

0.94]. The bifurcation plot for the proposed system with ‘b’ (0≤ b ≤ 8) and keeping ‘a’ = 0.91 

is shown in Fig. 6.1(b). The proposed system is found to be chaotic when b ϵ [0.5: 2.7], [3.75: 

5.1], [5.75: 6.3].  

 

    (a) 

 

            (b) 

Fig. 6.1 Bifurcation diagrams with change in parameter (a) ‘a,’ (b) ‘b’ 
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The chaotic systems are characterized by some properties, such as Lyapunov exponents, Kaplan 

Yorke dimension, dissipativity, whose values determine their nature. These properties for the 

proposed chaotic system have been studied based on numerical simulations in this section. 

The chaotic systems have a heavy dependence on initial conditions, this property is quantified 

by Lyapunov exponents. For the chosen parameter values, a= 0.91 and b= 0.5, the Lyapunov 

exponents are obtained as: 

L1 = 0.011475, L2 = 0.001919, L3 = -0.103394                          (6.2) 

The plot of Lyapunov exponents with time is shown in Fig. 6.2. Since L1 is positive, L2 is very 

close to zero and L3 is negative in Fig. 6.2, it follows that (6.1) is chaotic for ‘a’=0.91 and 

‘b’=0.5. 

 

Fig. 6.2 Dynamics of Lyapunov exponents with respect to time 

The Kaplan Yorke dimension, an estimate of the dimension of the volume which neither grows 

nor decays, is calculated as: 

 DKY = 2 + 
𝐿1+𝐿2

|𝐿3|
 = 2.1295                         (6.3) 

This value of DKY for proposed chaotic system is higher than many existing chaotic systems 

[17, 20, 22, 24]. This signifies the higher complexity in the proposed system, making it a 

suitable candidate for applications in encryption and secure communication. 

In case of proposed system, ∇. V = −1 + 𝑎 < 0, therefore dissipativity condition holds for this 

system, which implies that the phase space volume of the attractor of (6.1) at any point of time 

t is given by (6.4). 
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       𝑉(𝑡) = 𝑉𝑜𝑒(𝑎−1)𝑡                                                         (6.4) 

Where Vo is the initial volume at t=0. 

6.4 Analysis of fixed points 

In this section, the fixed points for the proposed system have been determined, followed by the 

analysis of the corresponding eigenvalues to study the nature of the attractors being produced 

by these points. 

In mathematics, time differentiation of state variable may be equated to zero to determine fixed 

points. Applying this to (6.1) gives 

𝑦 = 𝑥 

𝑎𝑦 = 𝑥 + 𝑧                                                              (6.5a) 

     𝑒𝑥 + 𝑒𝑦 = 𝑏 
 

Solving (6.5a) provides the fixed point values as  

     𝑥 = 𝑦 =  ln (
𝑏

2
) ; 𝑧 = (𝑎 − 1) ln (

𝑏

2
)             (6.5b)            

      

Hence, the proposed system has only one fixed point ‘p’ at (ln (
𝑏

2
) , ln (

𝑏

2
) , (𝑎 − 1) ln (

𝑏

2
)). 

Further, the eigen values corresponding to fixed points may be found by linearizing (6.1). The 

resulting Jacobian matrix for proposed chaotic system is computed as: 

 

 𝐽 = [
−1 1 0
−1 𝑎 −1
𝑒𝑥 𝑒𝑦 0

]                                          (6.6) 

 

The characteristic equation obtained by |J-λI|= 0, where I is an identity matrix, is 

 

𝜆3 − 𝜆2(𝑎 − 1) − 𝜆(𝑎 −
𝑏

2
− 1)+b=0                          (6.7) 

 

Solving (6.7) for a= 0.91 and b= 0.5 gives three eigenvalues at p: 

𝜆1 = -0.677; 𝜆2 = 0.294 + 𝑖0.807; 𝜆3 = 0.294 − 𝑖0.807 

Since the three eigen values have non-zero real part, the fixed point is hyperbolic. The proposed 

chaotic system has one real negative eigenvalue, λ1 and two complex conjugates with non-zero 
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positive real part, λ2 and λ3. Negative eigenvalues show the existence of the stable manifolds in 

a small neighbourhood of a fixed point, while positive ones reveal the unstable manifolds.  Thus, 

p belongs to the category of index-2 spiral saddle type fixed point. The attractor for this chaotic 

system will be sinking towards the fixed point in one direction, while expanding spirally in two-

dimensions. 

6.5  Circuit design of the proposed chaotic system 
  
This section presents implementation of proposed chaotic system using CFOA. The exponential 

non-linearity is realized using diodes which is characterized by by I= Io (𝑒
𝑉𝑑

𝜂𝑉𝑇 − 1), where Io 

is the reverse saturation current, η is the emission coefficient, which is 1 for germanium devices 

and 2 for silicon devices and VT is the voltage equivalent of temperature.     

Let voltage across capacitors Cx, Cy and Cz correspond to the state variables x, y and z. The 

realization of (6.1) is given in Fig. 6.3 and the governing equations of circuit are given in (6.8). 

It is to be noted that to obtain ‘-Vx’ and ‘’-Vy’ in Fig. 6.3, two extra CFOAs and four resistors 

are required. 

 

     𝐶𝑥
𝑑𝑉𝑥

𝑑𝑡
=

𝑉𝑦−𝑉𝑥

𝑅1
                                                   (6.8a) 

                  𝐶𝑦
𝑑𝑉𝑦

𝑑𝑡
 =   

𝑉𝑚−𝑉𝑥

𝑅4
+

𝑉𝑚−𝑉𝑧

𝑅5
                             (6.8b) 

𝐶𝑧
𝑑𝑉𝑧

𝑑𝑡
=

𝐼𝑜(𝑒

𝑉𝑥
𝜂𝑉𝑇+𝑒

𝑉𝑦
𝜂𝑉𝑇  −2).𝑅6−𝑉𝑏

𝑅7
                           (6.8c) 

where, 

𝑉𝑚 =
𝑅3

𝑅2 + 𝑅3
𝑉𝑦 
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Fig. 6.3 Schematic of CFOA based novel chaotic system 

 

Equating (6.8) with (6.1) will give the desired values of the passive components for the 

realization of the proposed system. With the following values of parameters, a= 0.91 and b=0.5, 

for which the theoretical model of (6.1) exhibits chaotic behaviour, the values of circuit 

components are enlisted in Table 6.1. 

Table 6.1 Components’ values for the CFOA based design of the proposed system 

R1 R2 R3 R4 R5 R6 R7 Cx Cy Cz Vb 

10kΩ 12kΩ 10kΩ 10kΩ 10kΩ 67kΩ 100kΩ 100nF 100nF 100nF -0.0015V 

 

The operation of the proposed circuit is verified in LTspice design environment. The 

macromodel for AD844 is imported from Analog Devices and MUR460 diode’s model is taken 

from LTspice design suite. The supply voltages are chosen as ±9V. The simulated phase space 

plots for the proposed circuit in y-x, y-z and x-z planes are shown in Fig. 6.4. It may be observed 

that the shape of Vy-Vx phase space plot is oval shaped, whereas Vy-Vz and Vx+- Vz phase space 

plots are in the shape of a tent. The occurrence of chaotic attractors in Fig. 6.4 confirms the 

validity of the proposed circuit. 
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         (a)           (b) 

 

               (c) 

Fig. 6.4 Phase space plots of the designed circuit in (a) y-x plane, (b) y-z plane, (c) x-z 

plane 

 

 

6.6. Adaptive control synchronization of the proposed chaotic system 

 
Synchronization mechanism plays a critical role for constructing secure communication 

schemes. Let the master state variables being (x1, y1, z1) and slave state variables being (x2, y2, 

z2). The step-by-step process of adaptive control synchronization is as follows: 

6.6.1 Master and slave representation 

The drive (master) chaotic system is being represented by (6.9) as 

                                            �̇�1 = 𝑦1 − 𝑥1                                           (6.9a) 

  �̇�1 = 𝑎𝑦1 − 𝑥1 − 𝑧1                              (6.9b) 

  �̇�1 = 𝑒𝑥1 + 𝑒𝑦1 − 𝑏                               (6.9c) 

 

The response (slave) chaotic system is expressed as 

𝑥2̇ =  𝑦2 − 𝑥2 + 𝑢1                                                   (6.10a) 

𝑦2̇ = 𝑎𝑦2 − 𝑥2 − 𝑧2 + 𝑢2                                        (6.10b)   
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𝑧2̇ = 𝑒𝑥2 + 𝑒𝑦2 − 𝑏 + 𝑢3                                         (6.10c) 

 

Where, ui, (i=1 to 3) are the non-linear adaptive controllers.  

6.6.2 Error dynamics 

The complete synchronization of the two systems is characterized by the equality of the 

respective state variables, or the error functions, represented by (6.11), being reduced to zero. 

𝑒𝑥 = 𝑥2 − 𝑥1; 𝑒𝑦 = 𝑦2 − 𝑦1; 𝑒𝑧 = 𝑧2 − 𝑧1                                         (6.11) 

                                    

The corresponding error dynamics is defined by (6.12). 

 

�̇�𝑥 = 𝑥2̇ − �̇�1; �̇�𝑦 = 𝑦2̇ − �̇�1; �̇�𝑧 = 𝑧2̇ − �̇�1                                       (6.12)                                                                                                                  

 

Using (6.9) and (6.10) and using expressions of (6.11), (6.12) can be rewritten as: 

 

                  �̇�𝑥 = 𝑒𝑦 − 𝑒𝑥 + 𝑢1 

    �̇�𝑦 = 𝑎𝑒𝑦 − 𝑒𝑥 − 𝑒𝑧 + 𝑢2                                           (6.13)                                                                                                                  

                                      �̇�𝑧 = 𝑒𝑥2 − 𝑒𝑥1 + 𝑒𝑦2 − 𝑒𝑦1 + 𝑢3 

 

6.6.3 Adaptive Controller 

The control functions ui, (i =1,2,3) can be obtained from (6.13) as: 

 

             𝑢1 = −𝑘1𝑒𝑥 − 𝑒𝑦 + 𝑒𝑥                            

                𝑢2 = −𝑘2𝑒𝑦 − �̂�𝑒𝑦 + 𝑒𝑥 + 𝑒𝑧                          (6.14) 

                                                𝑢3 = −𝑘3𝑒𝑧 − 𝑒𝑥2 − 𝑒𝑦2 + 𝑒𝑥1 + 𝑒𝑦1               
 

Where, â is the estimated value of unknown parameter a; and k1, k2 and k3 are positive gain 

constants. 

 

6.6.4 Error in parameters’ estimation 

 

The parameter estimation error, 𝑒𝑎, is defined by 

 

          𝑒𝑎 = 𝑎 − �̂�,                         (6.15) 

and its dynamics is given as  

𝑒�̇� = −�̇̂�                                   (6.16) 

 

Using (6.14), the dynamics of the slave system and error can be simplified as (6.17) and 

(6.18) respectively  

 

        𝑥2̇ = 𝑦2 − 𝑥2 − 𝑘1𝑒𝑥 − 𝑒𝑦 + 𝑒𝑥    

𝑦2̇ = 𝑎𝑦2 − 𝑥2 − 𝑧2 − 𝑘2𝑒𝑦 − �̂�𝑒𝑦 + 𝑒𝑥 + 𝑒𝑧        (6.17) 

 𝑧2̇ = 𝑒𝑥1 + 𝑒𝑦1 − 𝑏 − 𝑘3𝑒𝑧                                                                                             
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Also, substituting (6.14) in (6.13), we obtain: 

 

    𝑒�̇� = −𝑘1𝑒𝑥; 𝑒�̇� = 𝑒𝑎. 𝑒𝑦 − 𝑘2𝑒𝑦; 𝑒�̇� = −𝑘3𝑒𝑧                  (6.18) 

                      

 

Adaptive control theory is used to derive an update law for â. 

 

6.6.5 Lyapunov stability 

 

Consider a candidate Lyapunov function 

 

𝑉 =
1

2
 (𝑒𝑥

2 + 𝑒𝑦
2 + 𝑒𝑧

2 + 𝑒𝑎
2)                            (6.19) 

 

Differentiating V provides, 

 

     �̇� = 𝑒𝑥�̇�𝑥 + 𝑒𝑦�̇�𝑦 + 𝑒𝑧�̇�𝑧 + 𝑒𝑎�̇�𝑎                                     (6.20) 

Putting the values from (6.16) and (6.18) in (6.20) gives: 

 

�̇� = −𝑘1𝑒𝑥
2 − 𝑘2𝑒𝑦

2 + 𝑒𝑎𝑒𝑦
2 − 𝑘3𝑒𝑧

2 − �̇̂�𝑒𝑎   (6.21) 

For the complete system to be stable, �̇� should be negative. Since all other terms in (6.21) are 

negative except 𝑒𝑎(𝑒𝑦
2 − �̇̂�), so this can be equated to zero. 

 

6.6.6 Adaptive Laws 

According to Lyapunov stability theory [111], the parameter update law derived from (6.21) 

is 

 

�̇̂� = 𝑒𝑦
2       (6.22) 

 

The error dynamics (6.15) under the parameter adaptive rule (6.22) and the adaptive controller 

(6.14) can be stabilized in finite time asymptotically, i.e., the slave chaotic system (6.10) with 

different parameters’ values will trace the master system asymptotically and the unified chaotic 

system will be called synchronized. 

For the initial values of master system (x10, y10, z10) = (1, 1, 1) and slave system (x20, y20, z20) = 

(50, 25, 15) and â = 10 chosen arbitrarily, the synchronization process obtained from numerical 

simulations is depicted in Fig. 6.5. 
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Fig. 6.5 Time variation of state variables x, y and z with different initial states for 

master and slave 

 

The proposed adaptive control synchronization process of estimated parameter â of slave 

system towards the parameter a of master system is shown in Fig. 6.6, while the error functions 

ex, ey and ez are shown in Fig. 6.7. It is evident that response system synchronizes with the drive 

system in finite time and the error functions reduce to zero. However, the error in variable ‘y’ 

takes longer to reduce to zero. This may be due to the dependence of y on more number of 

variables (x, y and z) in (6.1b). 

 

Fig. 6.6  Trace of slave’s parameter in synchronization with master system 
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Fig. 6.7 Trajectories of error functions of state variables with time 
 

The circuit implementation of the whole scheme of adaptive control synchronization has been 

proposed in this work as shown in Fig. 6.8. The component values are calculated to satisfy the 

respective governing equations and tabulated in Table 6.2. The complete circuit is simulated in 

LTspice design environment. The synchronization of the master and slave circuit is evident 

from Fig. 6.9, thus proving the reliability and feasibility of the design. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 6.8  Circuit design of adaptive synchronization of the proposed system: (a) 

Master circuit, (b) Error functions, (c) Updation law of slave’s parameter, (d) 

Complete slave circuit 
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    (a)            (b) 

 

           (c) 

Fig. 6.9 LTspice plot between respective variables of master and slave circuit: (a) 

x1x2, (b) y1y2, (c) z1z2 

 

Table 6.2 Components’ values for the CFOA based design of the proposed adaptive 

synchronization scheme 

R8 

(Ω) 

R9 

(Ω) 

R10 

(Ω) 

R11 

(Ω) 

R12 

(Ω) 

R13 

(Ω) 

R14 

(Ω) 

R15 

(Ω) 

R16 

(Ω) 

R17 

(Ω) 

R18 

(Ω) 

R19 

(Ω) 

10k 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k 

R20 

(Ω) 

R21 

(Ω) 

R22 

(Ω) 

R23 

(Ω) 

R24 

(Ω) 

R25 

(Ω) 

R26 

(Ω) 

R27 

(Ω) 

R28 

(Ω) 

R29 

(Ω) 

R30 

(Ω) 

R31 

(Ω) 

67k 100k 10k 10k 9.1k 10k 10k 10k 10k 10k 10k 1k 

 

6.7 Concluding Remarks 

In this work, a new chaotic system with two exponential non-linearities has been proposed, 

analysed for various dynamic properties and designed systematically using CFOAs and diodes. 

The proposed design uses six CFOAs, two diodes, eleven resistors and three capacitors. This 

circuit is useful for practical chaos-based applications. Besides, the power supply requirement 

for the proposed design is ±9V, which is considerably less in comparison to the designs 

incorporating analog multipliers. This will, in turn, result in lesser power consumption. The 

feasibility of the proposed design is investigated through simulations in LTspice design 
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environment with CFOA IC AD844 and diode MUR460. The observed behavior of the circuit 

confirms the aperiodicity in state variables and strangeness in the phase space trajectories. 

Besides, the adaptive control synchronization scheme has been designed for the 

synchronization of two identical proposed chaotic systems, which has been verified both 

numerically and through circuit implementation in LTspice. This research extends our 

knowledge of the circuit designs of chaotic systems. However, further studies regarding the role 

of number of parameters in the complexity of the chaotic system is worthwhile. 
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7.1 Introduction 

There has been continuous development of chaotic systems due to the ease with which these 

explain complex nature of dynamical systems. The work presented so far concerns with the 

three-dimensional chaotic systems. With the need to enhance the complexity of the system for 

more secure applications, the dimensions may be increased beyond three. Such systems, if 

having more than one positive Lyapunov exponents, are known as hyperchaotic systems 

(HCSs). The literature suggests that there are HCSs existing with quadratic non-linearities [62-

67]. To add to the pool of existing HCSs, in this work, a four-dimensional HCS with two 

quadratic nonlinearities, has been proposed. The dynamical behaviour of the proposed system 

and its dynamic properties such as Lyapunov exponents, Kaplan Yorke dimension and 

dissipativity have been examined. To explore the proposed systems’ applications in 

communication world, adaptive control synchronization scheme has also been put forward with 

its complete circuit design using CFOAs, Analog Multipliers (AMs) and passive components. 

7.2 Proposed hyperchaotic system (HCS) 

The mathematical model of the proposed HCS is presented . The properties such as Lyapunov 

exponents, Kaplan Yorke dimension and dissipativity are studied to confirm hyperchaotic 

behaviors and nature of the proposed system. Following this, the eigen values are analyzed to 

examine the stability of fixed points. A quick comparison with the existing HCSs is also 

included to show the difference.  

The proposed system uses four state variables namely x, y, z and w, the time derivatives of 

which, are represented by the following mathematical model:  

�̇� = 𝑦 − 𝑥           (7.1a) 

�̇� = 𝑎𝑦 − 𝑥𝑧 + 𝑤                              (7.1b) 

�̇� = 𝑥𝑤 − 𝑏      (7.1c) 

�̇� = 𝑐𝑥 − 𝑤      (7.1d) 
 

where a, b and c are the parameters whose values determine the nature of the phase space plots 

generated by running (7.1) in simulated programs. It is to be noted here that (7.1) has quadratic 

form of nonlinear terms. Choosing a = 0.5, b = 2, c = 0.8, the chaos appears in this system. 
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7.3 Properties of the proposed HCS 

The Lyapunov exponents, which determine if the given nonlinear dynamic system is periodic, 

chaotic or hyperchaotic, have been determined through numerical simulations for the proposed 

system as follows: 

  L1 = 0.28116; L2 = 0.00155; L3 = -0.60507; L4 = -0.09398  

The two positive Lyapunov exponents L1 and L2 confirm the hyperchaotic nature of the 

proposed system. Also, the biggest expansion degree is being indicated by L1 here, while the 

degree of contraction by L3. Clearly, since |L3| > |L1|, so contraction is the dominating nature of 

the proposed system.  

The Kaplan- Yorke dimension, DKY, is computed as 

𝐷𝐾𝑌 = 3 +
1

|−0.60507|
(0.28116 + 0.00155 − 0.09398)                                             (7.2) 

𝐷𝐾𝑌   = 3.31                         (7.3) 

The Kaplan Yorke dimension, an indicator of the complexity of a system, is 3.31, which is 

considerably higher than those of the existing systems [53, 58-60, 62, 64,114]. 

The divergence of the proposed system is computed as (-2+a) which is a negative value as ‘a’ < 

1. Thus, the proposed system is dissipative in nature, i.e., the hypervolume V(t) tends to zero as 

time t tends to infinity. 

7.4 Analysis of fixed points 

 Solving (7.1) gives the following two fixed points p1 and p2, which are given by: 

   𝑝1 = {√
𝑏

𝑐
, √

𝑏

𝑐
, 𝑎 + 𝑐, √𝑏𝑐 };                                                                                                                                                                            

𝑝2 = {−√
𝑏

𝑐
, −√

𝑏

𝑐
, 𝑎 + 𝑐, −√𝑏𝑐 }                                                (7.4)                                                                      

To study the nature of these fixed points, local linearization process has been used and the eigen 

values have been determined from the Jacobian matrix in (7.5). 

𝐽 = [

−1 1 0 0
−𝑧 𝑎 −𝑥 1
𝑤 0 0 𝑥
𝑐 0 0 −1

]             (7.5) 

The eigenvalues of proposed HCS are obtained by solving characteristic equation of (7.6) which 

obtained by equating |J- λI| to 0. Here I is 4×4 identity matrix and λ represents the eigenvalues. 
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                                       𝜆4 + (2 − 𝑎)𝜆3 + (1 − 𝑎 + 𝑐)𝜆2 + 𝑏𝜆 + 2𝑏 = 0                        (7.6) 

Choosing a = 0.5, b = 2, c = 0.8, the chaos appears in system and the eigenvalues corresponding 

to both p1 and p2 are given by (0.53± 1.2i) and (-1.2± 0.8i). The eigenvalues corresponding to 

both fixed points are complex conjugates with positive and negative real parts respectively. 

Since the eigenvalues have non-zero real parts, the fixed points are hyperbolic in nature. The 

presence of positive real part is the indication of the unstability, thus the dynamics of the 

proposed system orbits around two unstable fixed points.  

 

7.5 Circuit design of the proposed HCS 

This section presents the circuit realization of the proposed HCS represented by (7.1). The 

circuit realization is shown in Fig. 7.1, wherein the capacitor voltages represent the state 

variables and current through capacitors represent the time differentiation of state variables. 

Addition and subtraction operations are implemented through CFOAs, whereas quadratic non-

linearities are introduced through AMs. The governing equations obtained through circuit 

realization are presented in (7.7). 

𝑑𝑉𝑥

𝑑𝑡
=

1

𝑅1𝐶𝑥
(𝑉𝑦 − 𝑉𝑥)     (7.7a) 

𝑑𝑉𝑦

𝑑𝑡
=

1

𝐶𝑦
(
𝑉𝑚+𝑉𝑤

𝑅5
+

𝑉𝑚−0.1𝑉𝑥𝑉𝑧

𝑅4
)            (7.7b) 

                                    
𝑑𝑉𝑧

𝑑𝑡
=

0.1𝑉𝑥.𝑉𝑤−0.2

𝑅6.𝐶𝑧
                                                   (7.7c) 

                                      
𝑑𝑉𝑤

𝑑𝑡
=

𝑉𝑚
′ −𝑉𝑤

𝑅7.𝐶𝑤
                                                          (7.7d) 

where 

𝑉𝑚 = 
𝑅2

𝑅2+𝑅3
. 𝑉𝑦, 𝑉𝑚

′ =
𝑅9

𝑅9+𝑅8
. 𝑉𝑥 

Equating (7.7) with (7.1) and scaling the product of resistance and capacitance (RC) by 1000 

gives the desired values of the circuit components, as tabulated in Table 7.1. The feasibility of 

electronic realization of Fig. 7.1 is examined through LTspice simulations. The macro models 

of AD844 and AD633 are taken from Analog Devices [107, 108].  
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    (a)    (b) 

 

    (c)    (d) 

Fig. 7.1 Circuit representation of the proposed HCS 

 

Table 7.1 Component Values of the circuit realization of the proposed systems 

Circuit 

Component 

R1, R5, R7 R2, R4, R6, R8 R3 R9 Cx, Cy, Cz, Cw 

Component 

Value 
10kΩ 1kΩ 21kΩ 4kΩ 100nF 

 

Figure 7.2 shows simulated results for state variables Vx, Vy, Vz and Vw. It may be noted that 

the time series waveforms are aperiodic in nature. The frequency spectrum plots are displayed 

in Fig. 7.3. The observed spectrums are noise like upto 10kHz for all the four state variables. 

Figure 7.4 shows simulated results in the form of phase space diagrams which clearly depict 

existence of two- scroll and four- scroll type hyperchaotic attractors in two dimensions. The 

attractors in Fig. 7.4, are non-repeating, continuous, confined, regular, abundant and dense in 

nature, giving an indication of rich chaotic dynamical behavior of the proposed system. 

 

   (a)      (b) 
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        (c)          (d) 

Fig. 7.2 Simulated time series waveforms for (a) Vx, (b) Vy, (c) Vz and (d) Vw 

 

    (a)     (b) 

 

    (c)     (d) 

Fig. 7.3 Frequency spectrum plots of state variables (a) Vx, (b) Vy, (c) Vz and (d) Vw 
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Fig. 7.4 Circuit simulations for the proposed HCS  

 

For the physical realizable systems, the one with lesser hardware requirement for 

implementation is better. Table 7.2 compares the hardware used for electronic realization of 

existing and proposed HCS.  A close observation of Table 7.2 shows that 

- The results have been compared with the existing counterparts in Table 7.2, and the 

proposed designs clearly outperforms in terms of hardware required from [52, 53, 58-60, 

62, 67, 69, 114]. 

- All HCSs use four energy storing elements. The realizations [68, 115]  use inductor, 

which in turn requires more number of active blocks for implementation, thereby 

enhancing the active block count. 

- OpAmp based realizations [52, 53, 58-60, 62, 67, 114] use extra active blocks in 

comparison to others. 

- Refs. [68, 115] use diodes to provide nonlinear terms whereas others make use of AMs. 

- Though the proposed realization makes use of more active blocks than those proposed in 

[68, 115], it employs all grounded energy storing elements and does not make use of 

inductor. 

Table 7.2   Comparison table of the existing designs with the proposed design 

 

Ref. Active Blocks 

used 

Number 

of active 

blocks 

Number 

of 

Resistors 

Number of 

Capacitors 

Number 

of 

Inductors 

Number 

of 

Diodes 

[52] OpAmp, AM 13 23 4 0 0 

[53] OpAmp, AM 9 15 4 0 0 

[58] OpAmp, AM 9 16 4 0 0 
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In view of the above, the hardware realization would be compact than available HCSs that 

employ AMs for nonlinear terms’ realization. 

7.6 Adaptive control synchronization scheme 

In this section, the adaptive control laws for synchronizing two identical proposed HCSs are 

elucidated. 

The adaptive control synchronization scheme incorporates a master and a slave system. The 

governing equations of master and slave systems are given by (7.11) and (7.12) respectively. 

7.6.1 Master and slave representation 

𝑥1̇ = 𝑦1 − 𝑥1                             (7.11a) 

𝑦1̇ = 𝑎𝑦1 − 𝑥1𝑧1 + 𝑤1    (7.11b) 

�̇�1 = 𝑥1𝑤1 − 𝑏     (7.11c) 

�̇�1 = 𝑐𝑥1 − 𝑤1     (7.11d) 

 

𝑥2̇ = 𝑦2 − 𝑥2 + 𝑢1     (7.12a) 

𝑦2̇ = 𝑎𝑦2 − 𝑥2𝑧2 + 𝑤2 + 𝑢2    (7.12b) 

�̇�2 = 𝑥2𝑤2 − 𝑏 + 𝑢3     (7.12c) 

�̇�2 = 𝑐𝑥2 − 𝑤2 + 𝑢4     (7.12d) 

[59] OpAmp, AM 9 16 4 0 0 

[60] OpAmp, AM 10 18 4 0 0 

[62] OpAmp, AM 10 21 4 0 0 

[67] OpAmp, AM 13 17 4 0 0 

[68] CFOA, inverting 

buffer 

2 1 3 1 2 

[69] CCII+, AM 24 24 4 0 0 

[114] OpAmp, AM 9 13 4 0 0 

[115] OTRA 1 2 3 1 2 

Propo

sed 

Desig

n 

CFOA, AM 6 9 4 0 0 
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where 𝑢i (i=1,2,3,4) correspond to adaptive control functions. 

7.6.2 Error dynamics 

The errors 𝑒𝑥, 𝑒𝑦, 𝑒𝑧 and 𝑒𝑤 between the state variables x, y, z and w of master and slave are  

given by (7.13). 

𝑒𝑥 = 𝑥2 − 𝑥1      (7.13a) 

𝑒𝑦 = 𝑦2 − 𝑦1      (7.13b) 

𝑒𝑧 = 𝑧2 − 𝑧1      (7.13c) 

𝑒𝑤 = 𝑤2 − 𝑤1      (7.13d) 

 

The error dynamics is obtained by time differentiation of (7.13). Putting the values of time 

differentiation of state variables of master and slave systems, the following set of equations for 

error dynamics are obtained: 

                        �̇�𝑥 =  𝑒𝑦 − 𝑒𝑥 + 𝑢1                              (7.14a) 

              �̇�𝑦 = 𝑎𝑒𝑦 + 𝑥1𝑧1 − 𝑥2𝑧2 + 𝑒𝑤 + 𝑢2                   (7.14b) 

                   �̇�𝑧 = 𝑥2𝑤2 − 𝑥1𝑤1 + 𝑢3           (7.14c) 

�̇�𝑤 = 𝑐𝑒𝑥 − 𝑒𝑤 + 𝑢4     (7.14d) 

7.6.3 Adaptive controller 

From (7.14), the adaptive control functions 𝑢i’s (i =1,2,3,4) can be defined as: 

𝑢1 = −𝑘1𝑒𝑥 − 𝑒𝑦 + 𝑒𝑥                                   (7.15a) 

𝑢2 = −𝑘2𝑒𝑦 − �̂�𝑒𝑦 + 𝑥2𝑧2 − 𝑥1𝑧1 − 𝑒𝑤              (7.15b) 

𝑢3 = −𝑘3𝑒𝑧 + 𝑥1𝑤1 − 𝑥2𝑤2                 (7.15c) 

𝑢4 = −𝑘4𝑒𝑤 − �̂�𝑒𝑥 + 𝑒𝑤                  (7.15d) 

 

where k1, k2, k3 and k4 are positive constants.  

7.6.4 Error in parameters’ estimation 

 

The parameter estimation error terms 𝑒𝑎, 𝑒𝑏 and 𝑒𝑐 are defined by 

 

      𝑒𝑎 = 𝑎 − �̂�                                  (7.16a) 

𝑒𝑏 = 𝑏 − �̂�                                                (7.16b) 

             𝑒𝑐 = 𝑐 − �̂�                                      (7.16c) 

and their dynamics are described by  
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          𝑒�̇� = −�̇̂�                                   (7.17a) 

𝑒�̇� = −�̇̂�                                            (7.17b) 

     𝑒�̇� = −�̇̂�                                                              (7.17c) 

 

Using (7.15), the governing equations of slave system and the error dynamics equations may be 

rewritten as: 

�̇�2 = 𝑦2 − 𝑥2 − 𝑘1𝑒𝑥 − 𝑒𝑦 + 𝑒𝑥                          (7.18a) 

            �̇�2 = 𝑎𝑦2 + 𝑤2 − 𝑘2𝑒𝑦 − �̂�𝑒𝑦 − 𝑥1𝑧1 − 𝑒𝑤          (7.18b) 

            �̇�2 = 𝑥1𝑤1 − 𝑏 − 𝑘3𝑒𝑧                   (7.18c) 

�̇�2 = 𝑐𝑥2 − 𝑤2 − 𝑘4𝑒𝑤 − �̂�𝑒𝑥 + 𝑒𝑤                             (7.18d) 

and 

�̇�𝑥 = −𝑘1𝑒𝑥      (7.19a) 

�̇�𝑦 = 𝑒𝑎𝑒𝑦 − 𝑘2𝑒𝑦     (7.19b) 

�̇�𝑧 = −𝑘3𝑒𝑧      (7.19c) 

�̇�𝑤 = 𝑒𝑐𝑒𝑥 − 𝑘4𝑒𝑤     (7.19d) 

 

respectively. Here �̂� and �̂� are the estimated system parameters of slave. 

7.6.5 Lyapunov stability 

Using Lyapunov stability theory, let the Lyapunov function (V) be given by (7.20). If the time 

differentiation of V is negative, value of V is decreasing along the solutions and the whole 

system is globally stable. 

𝑉 =
1

2
(𝑒𝑥

2 + 𝑒𝑦
2 + 𝑒𝑧

2 + 𝑒𝑤
2 + 𝑒𝑎

2 + 𝑒𝑏
2 + 𝑒𝑐

2)    (7.20) 

Differentiation of (7.20) gives 

�̇� = 𝑒𝑥�̇�𝑥 + 𝑒𝑦�̇�𝑦 + 𝑒𝑧�̇�𝑧 + 𝑒𝑤�̇�𝑤 + 𝑒𝑎�̇�𝑎 + 𝑒𝑏�̇�𝑏 + 𝑒𝑐�̇�𝑐   (7.21) 

Equation (7.21) can be simplified as  

�̇� = −(𝑘1𝑒𝑥
2 + 𝑘2𝑒𝑦

2 + 𝑘3𝑒𝑧
2 + 𝑘4𝑒𝑤

2 ) + 𝑒𝑎(𝑒𝑦
2 − �̇̂�) − 𝑒𝑏 �̇̂� + 𝑒𝑐(−�̇̂� +  𝑒𝑥𝑒𝑤)          (7.22) 
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7.6.6 Adaptive Laws 

For the unified system comprising master and slave to be stable, V̇ should be less than zero. This 

implies: 

�̇̂� = 𝑒𝑦
2,  �̇̂� = 0, �̇̂� = 𝑒𝑥𝑒𝑤                 (7.23)

       

The adaptively controlled system has been simulated for different initial conditions: 

(x0,y0,z0,w0) = (1,1,1,1) for master and (50,25,15,15) for slave respectively and the simulation 

results have been shown in Fig. 7.5. It may be noted that slave system synchronizes well with 

master.  

 

Fig. 7.5 Adaptively synchronized state variables x, y, z and w with different initial 

conditions for the proposed system  

Also, the variation in parameters have been simulated and Fig. 7.6 shows the convergence of 

the slave parameters (a, b, c) = (0.75, 2.1, 0.25) towards the original parameters of the system, 

i.e. (0.5, 2, 0.8). The error analysis between the respective state variables of master and slave is 

depicted in Fig. 7.7 which shows that the proposed HCS gets stabilized eventually. However, 

the time of stabilization is not same for all state variables. Though x, z and w get stabilized 

before 500 time units, y takes significantly longer time (more than 2000 time units) to get 

stabilized. This is because of the dependence of y on more number of variables (x, y, z and w) 

as evident from (7.1). 
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Fig. 7.6 Study of parameter variation in adaptively controlled master-slave system for the 

proposed system  

Circuit implementation of the whole scheme of adaptive control synchronization has also been 

presented in this work as shown in Fig. 7.8. The component values are calculated to satisfy the 

respective governing equations. 
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Fig. 7.7  Error analysis of the adaptively controlled master-slave for the proposed system 

 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 7.8  Circuit design of adaptive control synchronization of the proposed 

hyperchaotic system: (a) Master circuit, (b) Error functions, (c) Updation law of 

slave’s parameter, (d) Complete slave circuit 
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The values for components in Fig. 7.8 (a) are imported from Table 7.1. The component values 

for circuits in Fig. 7.8 (b-d) are computed so that the governing equations are satisfied. A scale 

of 1000 provides the following values of components R10 – R27 = R20 – R24 = R26 – R29 = R31 = 

R34 = R36- R38 = 10 kΩ; R18 = R19 =R30= R32 = R33 = R39 =1kΩ, R25 = 20kΩ, R35 = 8kΩ, and Ci 

(i=x2, y2, z2, w2, acap, ccap) = 100 nF. The simulation results have been put forward in the form of 

graphs between the corresponding state variables of master and slave, as shown in Fig. 7.9.  

 

 

 

Fig. 7.9  Simulated plots between hyperchaotic signals of master and slave in adaptive control 

synchronization 

The synchronization of the master and slave circuit is evident from Fig. 7.9, thus proving the 

reliability and feasibility of the design. 

7.7 Concluding Remarks 

A new four-dimensional HCS with quadratic non linearity has been presented, which can 

generate two and four scroll chaotic attractors with two fixed points. Numerical validation of 

the dynamical properties of the proposed HCS are presented by means of  Lyapunov exponents, 

Kaplan- Yorke dimension, and dissipativity. The functionality of the proposed HCS is verified 

through LTspice simulations for which the electronic circuit is designed using CFOAs, Analog 



90 
 

Multipliers (AMs) and passive elements like capacitors and resistors. Also, the effectiveness of 

the proposed design in terms of hardware requirements has been highlighted based on 

comparison with the existing ones. Then, adaptive control synchronization scheme is applied to 

achieve chaos synchronization using master- slave configuration for the proposed system. The 

results have been presented for different initial conditions, different values of system parameters 

and the errors between the respective state variables. The circuit design has been simulated, and 

the simulation results are in good agreement with computer simulations.  
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Digital design of chaotic systems 

 

 

 

 

 

The content and results of the following paper have been reported in this chapter. 
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8.1 Introduction 

In the fast-growing world, digital domain plays an important role besides analog domain. The 

availability of easily configurable digital resources makes them a favourite choice of circuit 

designers in the initial phases of design. The work presented so far in this thesis is concerned 

with analog circuit design of chaotic systems. 

In this chapter, a systematic approach to implement chaotic systems with quadratic non-

linearities on digital platform using Runge Kutta 4 (RK4) numerical method has been 

presented. Owing to their flexibility, reconfigurability and parallelism, the Field Programmable 

Gate Arrays (FPGAs) have been used for the implementation using Verilog Hardware 

Description Language (HDL) and the state machine control. The implemented chaotic systems 

have been evaluated based on hardware utilization and time delay using synthesis results on 

Xilinx Artix device 7a200tffv1156-1. The simulation results using inbuilt simulator of Vivado 

design suite have been presented. The simulations results have been validated by python based 

numerical simulations as well.  

 

8.2 Design Methodology 

The governing equations of chaotic system are discretized for FPGA implementation. The 

numerical methods such as Euler method, improved Euler method, fourth order Runge Kutta 

(RK4) method, etc. [103, 116] may be used for discretization. Here, RK4 method has been 

chosen because of its higher degree of accuracy in providing solutions [117]. It uses four 

intermediate points K1, K2, K3 and K4 to determine the solution using previous sample. The K1 

corresponds to the beginning, K2 and K3 are near middle and K4 corresponds to the end of the 

interval. The three chaotic differential equations, corresponding to the state variables x, y and z 

are thus discretized using RK4 method and are as represented by (8.1) to (8.6). 

𝑥(𝑛 + 1) = 𝑥(𝑛) +
ℎ

6
[𝐾𝑥1 + 2𝐾𝑥2 + 2𝐾𝑥3 + 𝐾𝑥4]                      (8.1) 

𝑦(𝑛 + 1) = 𝑦(𝑛) +
ℎ

6
[𝐾𝑦1 + 2𝐾𝑦2 + 2𝐾𝑦3 + 𝐾𝑦4]                      (8.2) 

𝑧(𝑛 + 1) = 𝑧(𝑛) +
ℎ

6
[𝐾𝑧1 + 2𝐾𝑧2 + 2𝐾𝑧3 + 𝐾𝑧4]                      (8.3) 

Where 

𝐾𝑥1 = 𝑓𝑥[𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)]                                         (8.4a) 
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𝐾𝑥2 = 𝑓𝑥[𝑥(𝑛) + ℎ
𝐾𝑥1

2
, 𝑦(𝑛) + ℎ

𝐾𝑦1

2
, 𝑧(𝑛) + ℎ

𝐾𝑧1

2
]                (8.4b) 

𝐾𝑥3 = 𝑓𝑥[𝑥(𝑛) + ℎ
𝐾𝑥2

2
, 𝑦(𝑛) + ℎ

𝐾𝑦2

2
, 𝑧(𝑛) + ℎ

𝐾𝑧2

2
]                 (8.4c) 

           𝐾𝑥4 = 𝑓𝑥[𝑥(𝑛) + ℎ𝐾𝑥3, 𝑦(𝑛) + 𝐾𝑦3, 𝑧(𝑛) + 𝐾𝑧3]                      (8.4d) 

 𝐾𝑦1 = 𝑓𝑦[𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)]                                (8.5a) 

                         𝐾𝑦2 = 𝑓𝑦[𝑥(𝑛) + ℎ
𝐾𝑥1

2
, 𝑦(𝑛) + ℎ

𝐾𝑦1

2
, 𝑧(𝑛) + ℎ

𝐾𝑧1

2
]                  (8.5b) 

 𝐾𝑦3 = 𝑓𝑦[𝑥(𝑛) + ℎ
𝐾𝑥2

2
, 𝑦(𝑛) + ℎ

𝐾𝑦2

2
, 𝑧(𝑛) + ℎ

𝐾𝑧2

2
]                   (8.5c) 

 𝐾𝑦4 = 𝑓𝑦[𝑥(𝑛) + ℎ𝐾𝑥3, 𝑦(𝑛) + ℎ𝐾𝑦3, 𝑧(𝑛) + ℎ𝐾𝑧3]                   (8.5d) 

  𝐾𝑧1 = 𝑓𝑧[𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛)]                                  (8.6a) 

 𝐾𝑧2 = 𝑓𝑧[𝑥(𝑛) + ℎ
𝐾𝑥1

2
, 𝑦(𝑛) + ℎ

𝐾𝑦1

2
, 𝑧(𝑛) + ℎ

𝐾𝑧1

2
]                   (8.6b) 

 𝐾𝑧3 = 𝑓𝑧[𝑥(𝑛) + ℎ
𝐾𝑥2

2
, 𝑦(𝑛) + ℎ

𝐾𝑦2

2
, 𝑧(𝑛) + ℎ

𝐾𝑧2

2
]                    (8.6c) 

 𝐾𝑧4 = 𝑓𝑧[𝑥(𝑛) + ℎ𝐾𝑥3, 𝑦(𝑛) + ℎ𝐾𝑦3, 𝑧(𝑛) + ℎ𝐾𝑧3                    (8.6d) 

Where Kxi, Kyi and Kzi, i=1to4 represent the intermediate slopes of state variables x, y and z 

respectively, fx, fy and fz represent the differential equations corresponding to a given chaotic 

system and h is the step size or the interval between consecutive samples. 

The set of equations represented by (8.1) to (8.6) are implemented as follows: 

The digital design of the chaotic system here has been divided into two parts: the control path 

to control the flow of the operations and data path implementing all the algebraic operations. 

The control path consists of one initial state, also known as default state to initialize the state 

variables and one final state or idle state which waits for the next set of instructions. These two 

states are represented by S0 and S6 respectively. Besides, implementation requires five more 

states to evaluate (8.1)-(8.6).Thus, the control path requires seven states S0 to S6 and the 

Algorithmic State Machine (ASM) chart of the same is depicted in Fig. 8.1. F_val stands for 

function to evaluate the functions in (8.1) to (8.6). Three state variables are required to represent 

these states: S0 (000), S1 (001), S2 (010), S3 (011), S4 (100), S5 (101) and S6 (110). 

The function of the seven states in control path S0 to S6 [118] are: 
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S0: It is the initial and default state in which the state variables are initialized with the initial 

conditions’ values. The process then passes to the next state S1 unconditionally. 

S1: In this state, the Kx1, Ky1 and Kz1 increments based on the slopes at the beginning of the 

interval are calculated using (8.4a), (8.5a) and (8.6a). The process then passes to the next state 

S2 unconditionally. 

S2: The increments based on the slopes near midpoint of the interval, Kx2, Ky2 and Kz2 using 

Kx1, Ky1 and Kz1 are calculated in this state using (8.4b), (8.5b) and (8.6b), followed by 

unconditional transition to the next state S3. 

S3: The increments based on the slopes again near midpoint, but different than that of previous 

point, Kx3, Ky3 and Kz3 using Kx2, Ky2 and Kz2 are calculated in this state from (8.4c), (8.5c) 

and (8.6c), followed by an unconditional transition to next state S4. 

S4: The increments based on the slopes at the end of the interval, Kx4, Ky4 and Kz4 using Kx3, 

Ky3 and Kz3 are calculated in this state from (8.4d), (8.5d) and (8.6d), followed by an 

unconditional transition to next state S5. 

S5: In this state, the next chaotic samples x, y and z are generated using (8.1) to (8.3). At the 

next clock cycle, if the counter value Cp is less than the user defined integer N, which 

represents the number of required samples, the process jumps to S1 for calculating the next 

solution, else it jumps to S6 where it stays waiting. 
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Fig. 8.1 ASM chart of the control path of chaotic system 

The data path includes the calculation of algebraic operations in (8.1) to (8.6) within the 

respective states. 

8.3 Results 

Ten chaotic systems [1,2,15,27,29,32-34,36-38,113], including some popularly known chaotic 

systems, such as Rӧssler [2] and Lorenz [1] have been designed using the methodology 
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described in Section 8.2 on a common FPGA platform for fair comparison and choose the best 

fit for digital applications. To synthesize these systems, both control and data path codes have 

been inserted in Xilinx tool using Verilog HDL, the top module for which is shown in Fig. 8.2. 

It consists of three output signals xn, yn and zn for chaotic system, each of 32 bits. Clock signal 

‘clk’ and the step size ‘h’ have been taken as input signals. The value of h has been chosen as 

‘2-7’. It is to be noted that it has been taken as a power of two because division and 

multiplication processes using power of two in binary logic can simply be implemented using 

right and left shift operations respectively. A counter parameter ‘Cp’ has been defined which 

will increment by ‘1’ every time the samples’ values are calculated till it reaches the parameter 

N = 50,000. The ‘N’ is variable depending upon the number of samples required in an 

application. Two tasks were declared: product for multiplication operation in datapath and 

F_det to find the values of time derivatives of state variables for certain inputs. All intermediate 

slopes Kis will be evaluated using case statement and product and F_det tasks will be used in 

datapath. It is pertinent to mention that the user has to just modify the part of the code defining 

F_det task to evaluate time derivatives of state variables in accordance with the governing 

equations of the different chaotic systems. Rest of the code remains same. Thus, prototyping 

of a chaotic system on FPGA will be very fast. 

 

 

Fig. 8.2 Top module of RK4 method in Verilog 

 

8.3.1 Synthesis Results 

The methodology suggested above is used to implement ten chaotic systems having quadratic 

non-linearity(ies). All chaotic systems are implemented on Xilinx’s Artix 7 FPGA family’s 

7a200tffv1156-1, on which 134600 slice LUTs and 740 DSP blocks are available. Table 8.1 

enlists the governing equations of the chaotic systems, parameter values, total number of 

arithmetic operations, percentage utilization of hardware resources and delay. A close 
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observation of Table 8.1 reveals that hardware requirements increase with the number of 

operations in governing equations of a chaotic system. Further, it may be noted that number of 

product terms are minimum in Rӧssler chaotic system [2], which explains the minimum delay 

and least use of DSP blocks. Moreover, Pehlivan chaotic system has least number of terms, 

resulting in lesser requirement of slice LUTs. Overall delay varies from system to system 

depending upon logical operations and net delay. It may also be observed that all chaotic systems 

use limited resources from the available ones, therefore hyperchaotic systems may also be 

implemented as per the user requirements.  

Table 8.1 Summary of the hardware and delay requirements for FPGA based implementation 

of chaotic systems  

S. 

No 

Chaotic  

System 

[Rererence] 

Characteristic equations No. of 

operations 

(No. of 

product 

terms) 

% utilization of 

resources 

Total 

Delay 

(nSec) 

Slice 

LUTs 

DSP 

blocks 

1 Rӧssler [2] �̇� = −𝑦 − 𝑧 
�̇� = 𝑥 + 𝑎𝑦 

�̇� = 𝑏 + 𝑧(𝑥 − 𝑐) 

a=0.2, b=0.2, c=5.7 

7(2) 4.08 8.65 30.745 

2 Lorenz [1] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑐𝑥 − 𝑥𝑧 − 𝑦 

�̇� = 𝑥𝑦 − 𝑏𝑧 

a=10, b=8/3, c=28 

9(5) 4.33 12.97 40.117 

3 Pehlivan[15] �̇� = 𝑦 − 𝑥 

�̇� = 𝑎𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏 

a=b=0.5 

6(3) 3.63 10.81 40.310 

4 Li [32] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑥𝑧 − 𝑦 

�̇� = 𝑏 − 𝑥𝑦 − 𝑐𝑧 

a=5, b=16, c=1 

8(4) 4.10 11.89 41.637 

5 [27] �̇� = 𝑎(𝑦 − 𝑥) + 𝑦𝑧 11(6) 4.81 16.22 41.391 
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�̇� = 𝑐𝑥 − 𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏𝑧 

a=35, b=8/3, c=25 

 

6 MACM[36] �̇� = −𝑎𝑥 − 𝑏𝑦𝑧 

�̇� = −𝑥 + 𝑐𝑦 

�̇� = 𝑑 − 𝑦2 − 𝑧 

a=2, b=2, c=0.5, d=4 

11(5) 3.78 10.81 47.978 

7 [29, 113] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑐𝑥 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏𝑧 

a=35, b=3, c=35 

9(5) 4.29 14.05 42.242 

8 Rabino- 

vich[37, 38] 

�̇� = ℎ𝑦 − 𝑎𝑥 + 𝑦𝑧 

�̇� = ℎ𝑥 − 𝑏𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑑𝑧 

a=4, b=1, d=1, h=6.75 

14(8) 4.61 12.97 45.204 

9 Chen[34] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = (𝑐 − 𝑎)𝑥 + 𝑐𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏𝑧 

a= 35, b=3, c=28 

11(6) 4.50 15.14 39.717 

10 Lü [33] �̇� = 𝑎(𝑦 − 𝑥) 

�̇� = 𝑐𝑦 − 𝑥𝑧 

�̇� = 𝑥𝑦 − 𝑏𝑧 

a=36, b=3, c=20 

9(5) 4.29 14.05 40.431 

 

8.3.2 Simulation Results 

In the flow of FPGA based system design of a chaotic system, the functional verification of the 

implemented system done using simulation results is a necessary step to validate the design. In 

order to validate the FPGA based results of the design, all the ten chaotic systems have also 

been implemented in python using RK4 numerical method, and the simulation results of these 
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systems have been put with the Xilinx simulation results in Figs. 8.3 to 8.12 for observational 

confirmation of the correctness of FPGA based results. The simulation results from Xilinx 

Vivado are in line with the simulation results from python, thus promising the feasibility of 

implementation of these chaotic systems on FPGA. 

 

 

Fig. 8.3  Numerical simulation and Xilinx Vivado simulation results of Chen chaotic system 

[34] 
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Fig. 8.4  Numerical simulation and Xilinx Vivado simulation results of Lorenz chaotic 

system [1] 
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Fig. 8.5  Numerical simulation and Xilinx Vivado simulation results of Rӧssler chaotic 

system [2] 
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Fig. 8.6  Numerical simulation and Xilinx Vivado simulation results of Pehlivan chaotic 

system [15] 

 

 

 

Fig. 8.7  Numerical simulation and Xilinx Vivado simulation results of Li chaotic system [32] 
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Fig. 8.8 Numerical simulation and Xilinx Vivado simulation results of Lü chaotic system 

[33] 
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Fig. 8.9  Numerical simulation and Xilinx Vivado simulation results of MACM chaotic 

system [36] 
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Fig. 8.10  Numerical simulation and Xilinx Vivado simulation results of chaotic system [27] 

 

 

Fig. 8.11  Numerical simulation and Xilinx Vivado simulation results of Rabinovich chaotic 

system [37,38] 
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Fig. 8.12  Numerical simulation and Xilinx Vivado simulation results of chaotic system [29, 

113] 

8.4 Concluding Remarks 

FPGA based realization of ten chaotic systems using RK4 numerical method in Verilog 

hardware description language has been presented, and each step of the iterative operation is 

realized in the designed state machine. The advantage of the proposed methodology is its field 

programmability and easy implementation of a new chaotic system in comparison to that of their 

analog counterparts. All considered chaotic systems have been synthesized and compared in 

terms of percentage utilization of hardware resources on target FPGA device Artix 7 and the 

total time delay. Rӧssler chaotic system is best fit for lesser delay and hardware (Slice LUTs 

and DSP blocks) requirements. The simulations results have also been validated by python 

based numerical simulations. Based on this design methodology, these chaotic systems can be 

further used for digital applications. 



Chapter 9 

Conclusion and Future Scope 
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Chaos is an inherently complex phenomenon, but with an underlying order. The chaotic 

systems have found many practical applications, especially in secure communication. 

Mathematically, for a system of non-linear differential equations to behave chaotically, they 

should have a minimum dimension of three. Extreme sensitivity to initial conditions, a 

signature property of chaotic systems is quantified as Lyapunov exponents. A three- 

dimensional chaotic system has one positive Lyapunov exponent. The higher dimensional non- 

linear differential systems with more than one positive Lyapunov exponents are known as 

hyperchaotic systems. 

This thesis presents study and design of the chaotic systems from their circuit design point of 

view, both in analog and digital domain. In this work, few new chaotic and hyperchaotic 

systems have been proposed along with their electronic circuit realizations. Further, hardware 

optimized circuit design of chaotic systems available in literature have been proposed. An 

application of these chaotic systems in communication using analog circuitry of adaptive 

control synchronization has been explored. Lastly, implementation of various existing chaotic 

systems on FPGA based digital platforms is also presented.  

This chapter presents the significant conclusions of the work reported in various chapters of 

the thesis. 

 

9.1 Summary of work presented in this thesis 

 
The introductory chapter describes evolution of chaotic systems, their applications, and a brief 

review of various analog and digital domain circuit designs of chaotic systems. A review of 

earlier work on adaptive control synchronization of chaotic systems has also been presented in 

this chapter.  

 

Chapter 2 presents the fundamental concepts of the chaotic systems, including Lyapunov 

exponents, Kaplan Yorke Dimension and dissipativity. Analysis of fixed points in a chaotic 

system using Jacobi stability analysis is also reported in this chapter. The complete 

characterization of analog building blocks, namely CFOA and AM, which have been used in 

this thesis for circuit realization and their basic applications are also put forward in this chapter.  

 

Chapter 3 presents a systematic design of Rössler chaotic system, a chaotic system with single 

quadratic non-linearity, using CFOAs and AM. The proposed design uses four CFOAs, one 

analog multiplier, seven resistors, and three capacitors. The passive component count in 
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proposed circuit is considerably low as compared to existing Rössler chaotic system’s design. 

An application, namely adaptive control synchronization between two Rössler chaotic systems 

is also put forward to illustrate the usability of the proposed circuit. The workability of the 

proposed design and its synchronization is examined through LTspice simulations and 

experimentally using AD844 and AD633 ICs, the commercially available CFOA and AM 

respectively. 

 

Chapter 4 presents four new variants of an existing chaotic system, namely PUCS with two 

quadratic non-linearities. The properties of these variants, including Lyapunov exponents, 

Kaplan Yorke Dimension, nature of equilibrium points through eigenvalues and chaotic 

attractors, have been evaluated. Finally, an analog circuit design is proposed using current 

mode active building blocks, which can implement PUCS and all its proposed variants. 

Simulations are carried out for time series, frequency responses, phase portraits. Monte Carlo 

analysis is also done to check the robustness of the system. The proposed design is lesser 

component extensive as compared to the existing OpAmp based electronic design presented in 

[15]. It uses three current mode active building blocks, two analog multipliers and eight passive 

elements out of which four are grounded. In [15], four voltage mode active building blocks, 

two analog multipliers and eleven passive components were used, all were floating. Further, 

experimental verification of two of the proposed variants, PUCS I and PUCS IV, by 

breadboarding the circuit using off the shelf components is also done. The experimental results 

are conforming with the simulation results. 

Circuit simplification by reducing hardware complexity plays a vital role in the generation of 

chaotic attractors for various real time applications. Chaotic systems with quadratic non-

linearities are realized with AD633 in chapter 5. The realized chaotic systems have used AD633 

blocks equal to the number of governing equations in the respective chaotic systems. This also 

makes the circuit highly accurate because of the reduced number of components, thus their 

inherent errors.  LTspice simulations are in agreement with the numerical simulations existing 

in literature.  

 

Chapter 6 presents a new chaotic system with exponential type non-linearity. All the properties 

of the chaotic systems, including Lyapunov exponents, Kaplan Yorke dimension and 

dissipativity, mentioned in Chapter 2 are studied for this system with its circuit realization 

using CFOAs and diodes. Besides, the adaptive control synchronization scheme has been 
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designed for the synchronization of two identical proposed chaotic systems, which has been 

verified both numerically and through circuit implementation in LTspice. 

 

Chapter 7 presents a new hyperchaotic system with quadratic type non-linearities. Properties, 

such as Lyapunov exponents, Kaplan- Yorke dimension, and dissipativity have been studied 

for the proposed HCS. It’s feasibility is validated by designing its analog electronic circuit 

using CFOA and AM active building blocks in LTspice software. Then, adaptive control 

synchronization scheme is applied to achieve chaos synchronization for the proposed system. 

The results have been presented for different initial conditions, different values of system 

parameters and the errors between the respective state variables. The circuit design has been 

simulated, and the simulation results are in agreement with numerical simulations.  

 

In chapter 8, various existing quadratic non-linearity based chaotic systems have been 

implemented in digital domain. The governing equations of the chaotic systems are represented 

using RK4 numerical method and coded in Verilog HDL. All the systems are synthesized using 

target FPGA device Artix 7 and compared in terms of percentage utilization of hardware 

resources and the total time delay. The Verilog simulation results for all realized chaotic systems 

are found in agreement with numerical simulations. 

The advantage of the proposed methodology is its field programmability and ease of 

implementation. Thus, the chaotic systems designed using this methodology can be used for 

digital applications. 

9.2 Author’s ending note 
 

Chaotic systems are an integral part of our daily lives in the form of stock market, weather, 

pandemics, human body, etc. Exploring these systems and their applications in encryption, 

secure communication, and modelling may serve the society better. 

To make these systems part of portable devices, their circuit models with minimal components 

is a preferred choice. The existing designs of chaotic systems with one quadratic non-linearity 

and two quadratic non-linearities have been studied and found that they have been implemented 

using OpAmps and AMs. This study presents their circuit design using CFOAs and AMs, and 

a significant reduction in the use of active blocks is evident from the comparison. Besides, this 

study explored new models of chaotic and hyperchaotic systems, and their applications in 

adaptive control synchronization. Finally, the digital design of chaotic systems with quadratic 
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type non-linearities is also presented and a comparison is made based on hardware utilization 

and delay to choose the best fit for FPGA implementation. 

It is expected that this study would serve as a ready reckoner of available information on chaotic 

circuits designed using minimal number of active blocks. 

 

9.3 Future Scope 

 
The future work in this field includes modelling the observational data of physical chaotic 

systems, such as weather phenomena, pandemics, human heart activities, etc., mathematically 

to study their nature, and to control the chaotic behaviour of these systems. Study of the noise 

induced transitions in chaotic systems can be useful from climate to engineering applications. 

Another application area of chaotic systems to be explored is where variants of the existing 

pieces are required, such as music, DNA sequences, art work, etc. 
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