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Abstract

Fractional calculus is the branch of mathematics concerning differentiations and

integrations of non-integer orders. The inherent ability of fractional calculus to

provide more accurate descriptions of real-world phenomena compared to classical

integer methods is making it a preferred choice among system designers. Fractional-order

systems are found in diverse scientific disciplines including thermodynamics, electrical

engineering, control systems, biomedical science, mechanics, electronics, communication,

and image encryption. As a result, there is significant potential for multidisciplinary

research and exploration in the field of fractional-order systems.

Electronic filters are essential components of modern electronic systems. The order

of a filter is characterized by the slope it offers in transition band. Fractional-order

filters (FOF) are more general case of classical integer-order filters, with order of

the filter (n+ α), where n is the integer and α is the fractional part (0 < α < 1).

FOF offers more precise control over the transitional slope between pass band and

stop band, as the slope is given by −20(n+α) dB/decade, while for classical filters

it is 20 dB/decade. Fractional order provides an extra degree of freedom, which

increase flexibility of the design.

In many applications, such as telecommunication, biomedical signal processing

etc., the cascading of voltage-mode and current-mode filters necessitates the use

of a voltage-to-current (V-I) converter. The total efficacy of the filter can be

increased if signal processing can be combined with V-I converter interfacing. A

transadmittance-mode filter is suitable for such applications. As OTA exhibits

high impedance at both input and output terminals, it is an ideal choice for

implementing trans-admittance mode (TAM) signal processing applications. Thus,

a resistor-less, α-order TAM FOF utilizing two OTAs and one fractional-order

capacitor is presented to improve the cascadibility between voltage-mode and

current-mode filters. The electronic tuning of the proposed TAM FOF’s parameters

is achieved through transconductance gain of OTA.

There are two main methods to achieve the electronic tuning of filter’s parameter.
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xii Abstract

The first method involves adjusting the transconductance/current/voltage gain of

the constituent active elements. The second method utilizes controlling the gain of

the external amplifier introduced in the feedback loop of the core filter. The later

approach is known as the shadow concept, and filters employing this method are

referred to as shadow filters. The theory of shadow filters, originally developed for

integer-order filters, is generalized to fractional domain. Mathematical formulas

are drafted for pole frequency and pole quality factor of the fractional-order shadow

filters. The proposed theory is validated through OTA-based two active filters.

Sinusoidal oscillators are extensively used in the field of communication, control

systems, testing and measurements. Fractional-order oscillators (FOOs) offer the

advantage of achieving higher oscillation frequencies compared to their integer-order

counterparts, while still maintaining the same values of passive components. FOOs

also offer arbitrary phase shifts between their output signals, providing added

flexibility. OTA based three new sinusoidal FOOs and one fractional-order

multivibrator are presented. The first two circuits of the sinusoidal FOO are

designed using the trans-admittance mode FAPF with a trans-impedance mode

integrator/differentiator topology. The third circuit of the sinusoidal FOO features

a unique design that enables independent control of the phase difference between its

two output voltages. Further, an electronically tunable fractional-order multivibrator

based on OTA has been generalized to fractional domain. The mathematical

formula for the time period has been derived using Reimann-Liouville fractional

integral.

As all the circuits of FOFs and FOOs, proposed in this thesis employs fractional-order

elements (FOEs), specifically fractional-order capacitor (FOC), thus a compact

design to approximate the behaviour of FOC based on active inductor is proposed.

The circuit is modular in nature and allows for the higher order approximations

through parallel connection or impedance multiplication to realize FOC. Furthermore,

a circuit is presented that implements a floating version of the higher order FOE

(1 < α < 2) using OTA based IIMC.

The functionality of all the proposed structures has been verified through SPICE

simulations with 180 nm CMOS technology parameters. Mathematical formulation

for sensitivity of the proposed FOFs and FOOs is included. The robustness of the

proposed FOFs and FOOs is also investigated through corner and Monte-Carlo

analysis.
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1.1 Introduction

The concept of fractional-order calculus, addresses integrals and derivatives of

fractional order(i.e., non-integer orders), is well known to the mathematical/scientific

world. Fractional derivatives and integrals provide a remarkable representation of

natural phenomena, making them an effective tool for understanding and

communicating with the natural world. Fractional-order calculus, although originating

at the same time as classical integer-order calculus [1], has only recently gained

significant attention in various fields of applied science such as: biomedical [6]–[8],

thermodynamics [2], control system [4], [5], electrical engineering [2], [3], electronics

engineering [9]–[11], communication engineering [12], [13] and image encryption

and decryption [14]. Therefore, there is a vast opportunity for interdisciplinary

research in fractional-order systems.

The definition of fractional derivative for fractional order α (0 < α < 1) that is

widely accepted and based on the Riemann-Liouville definition [15] is provided in

(1.1). The Laplace transform is a valuable instrument employed for the purpose

of designing and analyzing electronic circuits. The main purpose of Laplace

transform is the transformation of circuits from the time domain to the frequency

domain, which facilitates analyzing the circuit algebraically rather than working

with differential equations. It is pertinent to mention that Laplace transform is

applicable to fractional derivatives also. Applying the Laplace transform to (1.1)

with zero initial conditions gives (1.2):

dα

dtα
f(t) ≡ Dα

t f(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α f (τ) dτ (1.1)
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L {Dα
t f(t)} = sαF (s) (1.2)

The sα denotes fractional-order Laplacian operator of α order, facilitates the design

and analysis of electronic systems using fractional calculus principles, thereby

avoiding the need to solve complex time-domain representations.

On the circuit theory and design front, a fractional order element (FOE) has an

generalized impedance expressed as [16]:

Z (s) = ksα = k(ω)αej(
απ
2
) = k (ω)α

(
cos

(απ
2

)
+ jsin

(απ
2

) )
= |z|∠ϕ (1.3)

Here α and ϕ denote the order and phase of the FOE respectively. The phase

(ϕ) of FOE is computed as απ/2, which does not depend on frequency and for

a particular value of α remains constant; hence, a FOE can also be referred

to as a constant phase element (CPE) and the phase can be referred to as the

constant phase angle (CPA). The FOE exhibits fractional-order capacitor (FOC)

behavior for values of α within the range of −1 < α < 0, and it behaves as a

fractional-order inductor (FOI) for values of α within the range of 0 < α < 1.

For the specific values of α being −1, 0, and 1, the FOE behaves as a pure

capacitor, resistor and inductor, respectively. However, when α equals −2, the

FOE exhibits the quality of frequency-dependent negative resistance (FDNR) [17].

The representative diagram, which categorizes these elements based on CPA, is

depicted in Fig. 1.1 [18].

Signal processing and signal generating circuits are the most vital elements of

analog circuit design. In view of advantages offered by fractional-order calculus,

researchers in the field of analog circuit design have proposed a wide range of
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Figure 1.1: Categorization of fractional order elements [18]

fractional-order circuits, including but not limited to: fractional-order active and

passive filters [17], [57]–[93], fractional-order controllers [5], [19], [20] fractional-order

sinusoidal

oscillators [94]–[111], and fractional-order multivibrators [112]–[115] etc.

1.2 Related Literature

Regardless the fact, the fractional-order calculus is about three century old subject

[1], the circuit design in this area has freshly captured noteworthy research interest.

Thus, there are tremendous possibilities in the design and synthesis of fractional-order

circuits. The candidate has concentrated on fractional-order signal processing and

signal generating circuits along with the FOE. The available literature in these
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areas has been discussed below.

1.2.1 Fractional-Order Element (FOE)

Literature survey suggests that numerous efforts have been made to realize/design

a FOE. At present there are two techniques to realize a FOE: single-component

realization (i.e., fabrication) [20]–[31] and multi-component realization (i.e., emulation)

[19], [32]–[56].

The major inspiration behind the development of single-component FOE is to make

it commercially available, just like a conventional capacitor. The fabrication of

FOE is based on various methods such that: the rough surface of metal electrodes

coated with lithium ions [20], development of fractal structures on silicon surface

[21], polymer coated probe capacitive in nature is dipped in a polarized medium

[22], electrolytic process [23]–[26], replacing the dielectric of a conventional capacitor

by a polymer composite, percolated with reduced graphene oxide [27], ferroelectric

polymer based [28], dipping CNT-polymer nanocomposite coated probes in ionic

gel [29] and carbon black based [30], [31]. Despite these efforts, these are still

in the early stages and require much effort before meeting the criteria of circuit

designers.

Meanwhile, noteworthy research efforts have been made for the development of

structures which emulate behavior of FOE. The emulation process finds a suitable

mathematical approximation for the fractional-order Laplacian operator s±α that

remains valid within the desired frequency range and also determines the corresponding

passive or active circuit with integer-order elements. Some commonly used
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approximations for emulating the fractional-order Laplacian operator include: Continued

Fraction Expansion (CFE) [32], Carlson approximation [32], Matsuda approximation

[32], Oustaloup Recursive approximation [32], Valsa approximation [116] and Modified

Oustaloup [33]. After obtaining an approximated impedance function using FOE

approximation methods, it is possible to synthesize it using R-C networks [19],

[34], [35]. The values of the components in the R-C network used for emulating

the FOE depend on the desired magnitude and order of the FOE, so these do not

provide electronic tuning of magnitude and fractional order (α).

Numerous research papers are accessible that demonstrate the utilization of active

building blocks (ABBs) for realizing FOE, making them flexible and compatible

with integrated circuits (ICs) [36]–[55]. Operational transconductance amplifier

(OTA) based emulators use functional block diagram approach [36]–[40], cascading

of bilinear immittances [41]–[44] and replacing the resistors by OTA in R-C ladder

network [45]. In MOS based emulators the active inductor [46] and low/high

pass filter sections [47] are utilized to achieve the desired FOE characteristics.

Current mirror-based integrator/differentiator emulators utilizes MOS capacitors

in [48]–[50]. Further, immittance simulators are also proposed using generalized

impedance converter (GIC) [51], [52], inverted impedance multiplier circuit (IIMC)

[53], frequency dependent negative resistance (FDNR) [54] and mutator [55] which

are later used for fractional-order filter (FOF) implementation. By proper selection

of bias currents of OTA, fractional order α of FOE [38]–[40], [48], [50], and

magnitude of FOE [37]–[42], [48], [50], [53], [56], can be electronically tuned.

Further, magnitude scaling can also be achieved by connecting FOE in parallel,

series or combination of both [36]. However, there exists a trade-off between the
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desired operating frequency range and the number of circuit elements required in

FOE design. This limitation restricts the use of passive or active emulators in

many applications.

1.2.2 Fractional-Order Filters (FOF)

Filters are the circuits that process signals in a frequency-dependent manner.

Filters are designed to pass certain frequencies and stop other frequencies. The

frequency range between passband and stopband frequencies is called the transition

band. The order of a filter is typically characterized by the slope it provides in

the transition band. The FOFs are more generalized form of classical integer-order

filters. The filter order of FOFs is denoted by (n+α), where n represents the integer

part and α represents the fractional part (0 < α < 1). FOFs provide enhanced

control over the slope of the transition band in comparison to classical integer-order

filters. −20(n+α) dB/decade is the slope of the transition band for FOFs, whereas

classical integer-order filters have a fixed slope of −20 dB/decade. This allows

for greater flexibility in designing filters with non-integer orders, providing more

precise control over the filter characteristics. [17], [57].

There are two primary design approaches for developing FOFs. In the first design

approach a FOE with impedance Z(s)= ksα (FOI for α > 0 and FOC for α < 0)

is realized using any one of the approximation methods listed in section 1.2.1.

The FOE structure replaces the corresponding integer-order passive element in

existing integer-order filter circuits [17], [57]–[75]. In the second design approach,

the fractional-order Laplacian operator sα with 0 < α < 1 is approximated using
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an integer order approximation with order m. This approximation transforms the

(1 + α)-order FOF into an integer-order (1 +m)-order FOF. Subsequently, the

final transfer function of FOF, derived from this approximation is implemented

using active blocks and integrators [76]–[93]. These components are utilized to

create a circuit that realizes the desired filter response and emulates the behavior

of the FOF.

1.2.2.1 FOFs using first approach:

Some of the widespread second order filter circuits [58]–[65] explored in the fractional

domain are Tow-Thomas (TT) biquad [58], [59], [63], [65], Kerwin-Huelsman-Newcomb

(KHN) biquad [60]–[62], Sallen-Key biquad filter [62], [64], and RLC filter [64].

Researchers have also applied this approach to derive FOFs from first-order filters

[66], [67], second-order filters [68]–[71] and even third-order filters [72]. In respective

references, the FOFs with Chebyshev

characteristics [65], Inverse Chebyshev characteristics [73] and Butterworth characteristics

[59], [69] are reported. Other than these, IIMC [53], mutator [55] and GIC

[64] based immittance simulators are also proposed, which are subsequently used

for FOF realizations. The FOFs designed using this approach utilize different

ABBs such as: OTA [53], [67], [68], [71], operational amplifier (Opamp) [58]–[60],

[62]–[65], [73], differential voltage current conveyor (DVCC) [66], [69], MOS [70],

current differencing buffered amplifier (CDBA) [72] and second-generation current

conveyor (CCII) [55], [61], [74], [75].
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1.2.2.2 FOFs using second approach:

As in the second approach, the (1 + α)-order FOF’s transfer function modifies

to (1 +m)-order integer order transfer function. A 2nd-order approximation for

FOC converts (1 + α) order transfer function to 3rd-order integer order transfer

function which is realized by cascading of 1st and 2nd-order filters [76]. Functional

block diagram of follow the leader feedback topology [77]–[86], inverse follow the

leader feedback topology [87]–[91], and signal flow graph [92] are used in respective

references. The FOFs implemented using this approach employs various ABBs

such as: OTA [77], [78], [84], [87], [88], [90], [91], current-feedback operational

amplifier (CFOA) [80], [86], current mirror [85], differential difference current

conveyor (DDCC) [89], adjustable current amplifier (ACA) [77], [78], [81]–[84],

[87], [88], [90], CDBA [92] and Opamp [76], [93],.

1.2.3 Fractional-Order Oscillators (FOO)

Oscillators are one of the most frequently used electronic devices in communication

systems. Hence, electronic oscillator is an enthralling topic among researchers.

The utilization of fractional-order calculus has transformed the design procedure of

oscillator circuits. There are two primary types of oscillators: sinusoidal oscillators

and relaxation oscillators (multivibrators), both of which leverage the advantages

of fractional-order α in perfecting their performance. The presence of the fractional

order α in the FOO design provides more degree of freedom. This additional

parameter can be used to alter frequency of oscillation and condition of oscillation,
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without disturbing the other circuit parameters (i.e., resistances and capacitances).

Literature survey for sinusoidal FOOs and fractional-order multivibrators have

been given below:

1.2.3.1 Sinusoidal FOO

In [94], the concept of FOO was first substantiated using popular Wein oscillator.

In [95] and [96], the Barkhausen criterion for FOO was derived and confirmed

through Colpitts oscillator, Wien oscillator, LC tank resonator and phase-shift

oscillator. Reference [97] studies the integration of two-port network concept in

oscillator with fractional calculus. In [98], a comprehensive design procedure was

proposed specifically for third-order oscillators in the fractional domain. This

design procedure outlines a systematic approach to achieve oscillations with a

desired phase and frequency. In [99], authors discuss all the possible topologies of

Wein-bridge oscillator in fractional domain.

Multiphase FOO was introduced in [100], the authors proposed multiphase FOO

based upon fractiona-order all pass filter (FAPF) and APF connected in a feedback

loop with an amplifier. In [101] authors utilized the multiple node structure for

FOO with multiple FOE and hence multiple phase difference could be implemented.

In [102] and [103], multiple phase FOO was realized using double integrator topology

and current mirrors respectively.

Different FOOs were introduced in literature [104]–[109] based on various ABBs

such as operational transresistance amplifier (OTRA), current-controlled current

follower transconductance amplifiers (CCCFTA), DVCC, MOS-RC, DDCC and
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OTA. Stability analysis of various oscillatory circuits was presented in [110], [111].

1.2.3.2 Fractional-order multivibrator (fractional-order relaxation oscillator)

Compared to the sinusoidal FOO, fractional-order multivibrator is less commonly

discussed in the literature. The reference [112] investigated the impact of incorporating

a FOC in the widely used single opamp multivibrator circuit. The potential

application of a commercial super-capacitor in the construction of a very low

frequency oscillator was explored in [113]. A general design methodology was

suggested for two types of fractional-order relaxation oscillators that utilize OTRA

in [114]. The proposed methodology involves solving the FOC’s charging and

discharging equations using the Mittag-Leffler function. In [115], a fractional-order

multivibrator was introduced that utilizes a multi-output current follower

transconductance amplifier (MO-CFTA) and relies on the saturation current of

the transconductance amplifier (TA) block for the charging and discharging of the

FOC.

1.3 Research Gaps

After conducting a literature survey, several research gaps have been identified,

including the following:

In numerous applications, there is a requirement to cascade voltage-mode and

current-mode filters, necessitating the use of a voltage-to-current converter (V-I)

interface. It is observed from the literature survey that filters topologies to improve



12 Chapter 1 - Introduction

cascadibility in fractional domain are need to be explored.

Further, limited literature is available for electronic tuning of filter parameters

such as pole frequency and pole quality factor in fractional domain. To investigate

electronic tuning of filter parameters, with the help of external amplifier without

affecting filter’s core structure, the shadow concept can be generalized in fractional

domain.

The signal generating circuits, such as: sinusoidal oscillators and multivibrators,

are less explored in fractional domain. These circuits need to be generalized

in terms of frequency of oscillation in the fractional domain. Moreover, limited

literature is available for independent tuning of phase difference between the two

outputs of a sinusoidal FOO.

The main components of fractional-order systems are FOEs. Thus, the realization

of FOE using simpler techniques with lesser number of components is always in

the scope. Further, it is clear from literature survey that limited work has been

done to realize higher order FOEs.

1.4 Research Objectives

Based on a thorough review of the literature and identified research gaps, the

following objectives have been established:

1. To explore FOF topologies with better cascadibility features.

2. To develop electronically tunable FOFs, where tuning is done using the
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external parameter.

3. To develop new designs for FOO with electronic tunability.

4. To implement FOE using simpler techniques with reduced active block/component

count.

5. To develop higher order FOE topologies.

1.5 Organization of the Thesis

The primary focus of this research is on fractional-order circuits for signal processing

and signal generation. The organization of the research work is presented in a

chapter-wise format in this thesis, as follows:

Chapter 1

The purpose of this chapter is to provide an overview of the background and

motivation that underlies the research conducted in the thesis. A comprehensive

literature survey of existing analog fractional-order circuits (i.e. FOE, FOF and

FOO) is put up. Based on this survey, the research gaps are identified, which serve

as the foundation for establishing the objectives of the work. After establishing

the objectives, a brief overview of the thesis layout is provided.

Chapter 2

In this chapter, a concise overview of the realization of FOE using CFE approximation

and Valsa’s algorithm is provided. Further, it includes the procedure to analyse

the stability of fractional-order circuits. It also contains a preliminary analysis of
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the active block used in this work. Furthermore, the functionality of the circuits

introduced in this chapter is confirmed through the use of SPICE simulations.

Chapter 3

This chapter presents a new α-order multifunction transadmittance mode (TAM)

FOF based upon OTA. The proposed structure provides fractional-order high-pass

filter (FHPF), fractional-order low-pass filter (FLPF), and fractional-order all-pass

filter (FAPF). The functionality of the proposed TAM FOF is confirmed using

both SPICE simulations and experimental testing. The sensitivities of the transfer

functions with the changes in various circuit parameters are analyzed using MATLAB.

The robustness of the proposed TAM FOF is studied using PVT and Monte-Carlo

analysis.

Chapter 4

The objective of this chapter is to extend the design principles of shadow filters to

the fractional domain. Mathematical equations have been drafted to determine the

pole frequency and pole quality factor of the shadow FOF when different types of

feedback signals, such as low-pass, high-pass, band-pass, or band-stop are applied

to the external amplifier in the feedback loop and demonstrated using MATLAB

simulations. To validate the proposed theory, SPICE simulations are conducted

using two active FOFs and it is observed that the obtained results closely align

with the theoretical predictions, indicating the effectiveness of the proposed theory.

The parameters of shadow FOF such as pole frequency and pole quality factor,

are adjusted with the help of external amplifier’s gain, without altering the active

or passive components of the basic FOF. For both of the shadow FOF circuits the

THD is calculated. Further, corner and Monte-Carlo analysis have been performed
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to verify the robustness of the shadow FOF circuits.

Chapter 5

This chapter is devoted to fractional-order signal generating circuits. The first two

circuits of the sinusoidal FOO are designed using the trans-admittance mode FAPF

with a trans-impedance mode integrator/differentiator topology. Additionally,

the third circuit of the sinusoidal FOO features a unique design that enables

independent control of the phase difference between its two output voltages. The

proposed circuits are analyzed for stability, sensitivity of the frequency of oscillation

to changes in various circuit parameters, and robustness.

Further, a multivibrator circuit based on three OTAs is generalized in the fractional

domain. The time period of the proposed fractional-order multivibrator has been

derived mathematically and confirmed via SPICE simulations. The robustness of

the circuit is scrutinized through Monte-Carlo and corner analyses. The chapter

also explores the potential application of the fractional-order multivibrator as a

versatile modulator. This includes exploring its use as an amplitude modulator

(AM), frequency modulator (FM), delta modulator (DM), and sigma-delta modulator

(SDM).

Chapter 6

This chapter proposes a new active inductor-based realization to approximate the

behavior of FOC is proposed. Proposed structure enables higher order approximation

of FOC either by parallel connection or by impedance multiplication. Further,

an application of the proposed FOC to realize a FOO is shown. Moreover, the

realization of floating FOE based upon OTA based IIMC is presented. Higher

order (n−1+α), floating FOI and floating FOC are realized and electronic tuning
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of the magnitude of FOE using external bias currents to OTA is verified.

Chapter 7

This chapter presents a summary of the research work presented in the thesis and

offers suggestions for the future work.
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2.1 Introduction

As discussed in Chapter 1, FOEs are crucial components of fractional-order circuits.

Among FOEs, FOCs hold particular significance. This thesis employs two methods,

namely CFE approximation [34] and Valsa’s algorithm [116], to emulate the FOC

behavior, both of which are explained in detail in this chapter. Furthermore, a

concise guide to conducting stability analysis for fractional-order systems [117] is

provided. Finally, characterization of OTA [118] is presented, which is utilized for

the verification of all the propositions put forth in this work.

2.2 Approximation of Fractional-Order Capacitor

The impedance of a FOC is described by the following equation:

Z(s) =
1

sαCα

(2.1)

The variable α (0 < α < 1) (2.1) is the order of the FOC, while Cα is capacitance

expressed in ℧secα. The magnitude of FOC depends on frequency and the value

of α. Its value varies with −20α decibels per decade of frequency. The phase of

the FOC is equal to −απ/2.

In this section, two methods to approximate the behaviour of FOC are discuused,

first method is CFE based approximation [34] while second is based on Valsa’s

algorithm [116].
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2.2.1 Approximated FOC Based on CFE

The series expansion of (1 + x)α by using CFE [119] is given by (2.2).

1

1− αx

1+ (1+α)x

2+
(1−α)x

3+
(2+α)x

2+ 5
(2−α)x

(2.2)

alternatively, (2.2) can also be written as

(1 + x)α =
1

1−
αx

1+

(1 + α)x

2+

(1− α)x

3+

(2 + α)x

2+

(2− α)x

5 + ...
(2.3)

The expansion of fractional-order Laplacian operator sα can be achieved by substituting

x=(s−1). As it is an infinite series, the required accuracy depends upon the finite

number of terms to represent sα. The highest power of s in the final expression

of the approximation determines the order of the CFE approximation for sα,

i.e., if n is the highest power of s in the final expression then it is a nth order

approximation. Performing routine algebraic analysis, 1st, 2nd, 3rd, 4th and 5th

order CFE approximation for sα may be obtained and are given in Table 2.1 [120].

An impedance function is depicted by a nth-order CFE approximation function

and it can be approximated with the help of partial fraction by R-C network, shown

in Fig. 2.1 [121]. The expression of the impedance Z(s) of the R-C network shown
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in Fig. 2.1 is given in (2.4).

Z (s) = R0 +
i=n∑
i=1

1
Ci

s+ 1
RiCi

(2.4)

In general form (2.4) may be expressed as

Z (s) = c+
i=n∑
i=1

ri
s+ pi

(2.5)

Where c and ri are the constants and pi represent impedance function’s poles. The

values of components in Fig. 2.1 may be find out by using (2.6).

R0 = c, Ci = 1/ri, Ri = 1/(Ci|pi|) (i = 1, 2...n) (2.6)

Figure 2.1: nth order R-C network to emulate FOC’s behaviour based on CFE
approximation

The final value of the magnitude (Cα in ℧secα) of FOC and the center frequency

(ωc) around which the FOC’s behaviour is valid may not matched with the desired

values. Thus to obtain the FOC with desired value of magnitude Cα and ωc, scaling

operation, with the help of magnitude scaling factor (km) and frequency scaling

factor (kf ), is performed on the components of R-C network.

km =
1

Cαωα
c

, kf = ωc (2.7)
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The relationship between scaled values (Rs, Cs) and unscaled values (R, C) of

components is given as

Rs = kmR, Cs =
C

kfkm
(2.8)

2.2.2 Simulation Results for FOCs Based on CFE Approximation

To verify the behaviour of FOC based on CFE approximation, SPICE simulations

have been carried out. A 5th-order CFE based FOC is emulated using series

connection of 5 sections of parallel connected resistance and capacitance as shown

in Fig. 2.2. The passive components’ values to realize approximated FOCs of

magnitude 1 µ℧secα with α=0.2, 0.5 and 0.8 and center frequency as 1 kHz are

given in Table 2.2.

Table 2.2: Passive component’s values used to realize 5th-order CFE
approximated FOC shown in Fig. 2.2

α R0

Rs1

Cs1

Rs2

Cs2

Rs3

Cs3

Rs4

Cs4

Rs5

Cs5

0.2 69.33 kΩ
44.69 kΩ
224.17 pF

34.26 kΩ
1.59 nF

37.96 kΩ
4.70 nF

59.69 kΩ
10.21 nF

190.40 kΩ
22.69 nF

0.5 1.15 kΩ
2.49 kΩ
5.51 nF

3.24 kΩ
20.28 nF

5.35 kΩ
39.63 nF

13.29 kΩ
57.41 nF

113.25 kΩ
67.98 nF

0.8 12.18 Ω
57.54 Ω

312.67 nF
119.18 Ω
660.43 nF

293.14 Ω
863.53 nF

1.23 kΩ
800.65 nF

67.04 kΩ
324.31 nF

Figure 2.3 illustrates the corresponding theoretical and simulated responses. In the

frequency range of 100 Hz to 10 kHz, the errors between the simulated magnitude
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Figure 2.2: 5th order R-C network to emulate FOC’s behaviour based on CFE
approximation

of FOC from the desired magnitude (i.e., 1 µ℧secα) are found to be within 0.3%,

0.6% and 0.5% for α=0.2, 0.5 and 0.8 respectively, as shown in Fig. 2.3 (a). From

Fig. 2.3 (b) it is noticed that the simulated phase of FOC diverges from theoretical

phase by approximately 0.3%, 2.1% and 0.8% for α=0.2, 0.5 and 0.8 respectively,

in the frequency range of 100 Hz to 10 kHz. From Fig. 2.3 (c), the deviation of

0.09%, 0.5% and 0.25% is noticed between the theoretical and simulated slopes of

magnitude response of orders 0.2, 0.5 and 0.8 respectively. The valid frequency

range of the FOC response improves with increase in the number of R-C sections.

2.2.3 Approximated FOC Based on Valsa’s Algorithm

In this section, Valsa’s algorithm [116] to emulate the behaviour of FOC is discussed.

It generates a network of Rs and Cs, equivalent to the behaviour of the FOC with

required fractional-order α. The emulated FOC’s behaviour is valid over a certain

frequency range [ωl, ωu] Thus, first the lower end of frequency range (ωl) is set

to the desired value. The upper end of frequency range (ωu) depends upon many

other factors such as: number of R-C sections (m), ωl and desired value of allowable

phase ripple (∆ϕ) (phase of the FOC oscillates around its average value ϕ with an
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(a)

(b)

(c)

Figure 2.3: Frequency response for FOC, based on 5th-order CFE approximation
(a) Magnitute in ℧secα (b) phase response in degrees (c) Magnitude in dBs
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amplitude of ±∆ϕ).

ωu =
ωl

(ab)m
, ab ≈ 0.24

(1 + ∆ϕ)

Here a and b depend upon allowable phase ripple ∆ϕ and lie in the range of (0, 1).

The individual values of a and b can be obtained as

a = 10αlog(ab), b =
0.24

(1 + ∆ϕ)a

By using the value of ωl, the values of R1 and C1 can be chosen. The values of the

components of the R-C network shown in Fig. 2.4 depend on R1 and C1 and can

be calculated as follows:

R1C1 =
1

ωl

Rp =
R1(1− a)

a
, Cp =

C1b
m

(1− b)

Rsk = R1a
k−1, Csk = C1b

k−1, k = 1, 2, ....m

The resultant magnitude D of this R-C network is given as below.

D = Zav(ω
−(ϕ/90)
av )

here, Zav = 1/|Yav| and ωav =
1

[R1C1(ab)h−1]

√
a, h = int(m/2)

Yav =
1
Rp

+ jωavCp +
∑m

k=1
jωavCk

1+jωavRkCk

Typically, the value of D obtained may not match the desired magnitude of FOC.

To address this, it is necessary to use a scaling factor Sd = Dp/D, where Dp is the

desired magnitude of the FOC. Multiply all resistances in sections (Rs and Rp)

by Sd, and divide all capacitances (Cs and Cp) by the same scaling factor. This
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Figure 2.4: mth order R-C network to emulate FOC’s behaviour based on Valsa’s
algorithm

adjustment will not affect the lower and upper limits of the frequency range.

2.2.4 Simulation Results for FOCs Based on Valsa’s Algorithm

To verify the behaviour of FOC based on Valsa’s algorithm, SPICE simulations

have been carried out. The FOCs are realized with fractional orders 0.2, 0.5 and 0.8

using parallel connected 7 sections of series R-C network shown in Fig. 2.5.

First, ωl is set as 100 rad/sec and ∆ϕ as 0.5◦. By using the value of ωl the initial

values of R1 and C1 are selected as 400 kΩ and 25 nF , respectively. The passive

components’ values to emulate FOCs of magnitude 1 µ℧secα with fractional orders

0.2, 0.5 and 0.8 are given in Table 2.3.

Figure 2.6 illustrates the corresponding theoretical and simulated responses.

In the frequency range of 10 Hz to 10 MHz, the errors between the simulated

Figure 2.5: 7th order R-C network to emulate FOC’s behaviour based on Valsa’a
algorithm
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Table 2.3: Passive component’s values used to realize 7th-order Valsa’s algorithm
based approximated FOC shown in Fig. 2.5

α

Rp

Cp

Rs1

Cs1

Rs2

Cs2

Rs3

Cs3

Rs4

Cs4

Rs5

Cs5

Rs6

Cs6

Rs7

Cs7

0.2
122.00 kΩ
68.40 nF

36.60 kΩ
272.30 nF

8.50 kΩ
189.22 nF

1.95 kΩ
131.20 nF

450.50 Ω
90.90 nF

103.99 Ω
63.00 nF

24.00 Ω
43.71 nF

5.54 Ω
30.28 nF

0.5
257.09 kΩ
159.32 pF

171.39 kΩ
58.35 nF

68.56 kΩ
23.34 nF

27.42 kΩ
9.35 nF

10.97 kΩ
3.73 nF

4.39 kΩ
1.49 nF

1.76 kΩ
597.47 pF

702.02 Ω
238.99 pF

0.8
244.10 kΩ
34.20 nF

73.26 kΩ
136.51 nF

16.91 kΩ
94.62 nF

3.90 kΩ
65.59 nF

901.00 Ω
45.46 nF

207.98 Ω
31.51 nF

48.00 Ω
21.84 nF

11.08 Ω
15.14 nF

magnitude of FOC from the desired magnitude of FOC (i.e., 1 µ℧secα) is 2.2%,

4.8% and 2.7% for α=0.2, 0.5 and 0.8 respectively, as shown in Fig. 2.6 (a).

In the frequency ranges of (66 Hz − 0.54 MHz), (39 Hz − 0.41 MHz) and

(9.3 Hz − 0.28 MHz), the simulated phase deviates from theoretical phase by

±0.50◦ for FOCs with α=0.2, 0.5 and 0.8, respectively, as observed from Fig. 2.6

(b). From Fig. 2.6 (c), the deviation of 1.3%, 3.6% and 3.3% is noticed between

the simulated slope and theoretical slope of magnitude response of FOCs with

α=0.2, 0.5 and 0.8 respectively. The valid frequency range of the FOC response

improves with increase in the number of R-C sections.

2.3 Stability Analysis

By mapping of s-plane into W-plane, the stability of any fractional-order system

with fractional order α = p
q
is investiated, here p and q are positive integers and

q ̸= 0 [117]. Lets define W = s
1
q , the ±jω axes (i.e., |θs| = π

2
) in the s-plane are

mapped onto the lines |θW | = π
2q

and the negative axis (i.e., θs = π) of s-plane

onto the line |θW | = π
q
, as shown in Fig. 2.7. The unstable region (i.e., |θs|<π

2
)
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(a)

(b)

(c)

Figure 2.6: Frequency response for FOC, based on 7th-order Valsa’s algorithm (a)
Magnitute in ℧secα (b) phase response in degrees (c) Magnitude in dBs
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and stable regions (i.e., π
2
<|θs|<π) in the s-plane transform into |θW |< π

2q
and

π
2q
<|θW |<π

q
respectively. Therefore, the system is considered stable when all the

roots lie in the region |θW |> π
2q
. Additionally, if at least one root lies on the lines

|θW | = π
2q

while all other roots remain in the stable region, the system will exhibit

oscillatory behavior.

In this work, the stability analysis has been performed by plotting the roots of the

fractional-order system’s characteristic equation in the W-plane, using forlocus

function of MATLAB [122]. By examining the location of roots, one can assess

the system’s stability. If all the roots are located in the stable region, the system

is considered stable.

(a) (b)

Figure 2.7: Stability region in complex plane (a) s-plane (b) W-plane

2.4 Active Block OTA

The OTA processes differential voltage at its two input ports and delivers output

current. The block diagram of OTA and its CMOS schematic are illustrated
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(a)

(b)

Figure 2.8: OTA’s (a) Block diagram (b) CMOS schematic

in Figs. 2.8 (a) and (b) respectively. The relationship between input and output

ports of the OTA is given by (2.9).

IO± = ±gm(V+ − V−) (2.9)

Here gm is the transconductance gain of OTA and its relationship with the bias

current (Ib) is given as

gm =

√
µnCox

W

L
Ib (2.10)

The electron mobility and gate oxide capacitance per unit area are denoted by
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symbols µn and Cox respectively, while W/L is the aspect ratio of differential

pair (M3 and M4). The relationship between the transconductance (gm) and bias

current can be utilized to introduce electronic tunability into the design parameters

of the circuit.

2.4.1 Simulation Results for the verification of OTA

The OTA of Fig. 2.8 (b) has been simulated using 180 nm CMOSmodel parameters

with supply voltages as ±1.8 V . The aspect ratios assigned to the transistors M3,4

are as 5.76 µm/0.72 µm, while the aspect ratios of the transistors M1,2,5,7,9,11

are set as 2.16 µm/0.72 µm and M6,8,10,12 are set as 1.44 µm/0.72 µm. The

DC response is shown in Fig. 2.9 (a) for a bias current of 15 µA and the

transconductance gain (gm) is measured as 162.7 µA/V . Figure 2.9 (b) depicts

the electronic tuning of transconductance gain (gm) in relation to the bias current

(Ib). The reduction in transconductance occurs when the bias currents exceed

approximately 450 µA. This decrease can be attributed to the transistors M3

and M4 transitioning from the saturation region to the linear region of operation.

The maximum transconductance gain of the OTA is about 798 µA/V . Figure 2.9

(c) presents the frequency response for the same bias current as used for plotting

the DC response, i.e., 15 µA. The measured half-power frequency of the OTA is

243.2 MHz. Further, the simulations reveal that the parasitic capacitance at the

output port of the OTA is observed to be approximately 65.3 pF .
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(a)

(b)

(c)

Figure 2.9: OTA’s (a) DC response (b) Variation of transconductance gain with
bias current Ib (c) AC response
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2.5 Conclusion

In this chapter, approximated FOC realization using CFE approximation and

Valsa’s algorithm have been reviewed. The discussion also covers the circuit

implementation for emulating FOC with α values of 0.2, 0.5, and 0.8 using 5th

order CFE approximation and 7th order Valsa’s algorithm. The stability analysis

of fractional-order systems is also discussed and a preliminary analysis of the active

block used in this work i.e., OTA, is included. Furthermore, the functionality of

the circuits presented in this chapter is confirmed through SPICE simulations.



34 Chapter 2 - Preliminaries of Fractional-Order Circuits



Chapter 3

FOF with Better Cascadibility

Feature

This chapter presents the results and content of the following paper:

[1]”G. Varshney, N. Pandey and R. Pandey, “Electronically Tunable Multifunction

Transadmittance-Mode Fractional-Order Filter,” in Arab Journal of Science and

Engineering, vol. 46, pp. 1067–1078, 2021, doi: 10.1007/s13369-020-04841-8.

(SCIE indexing, 2.807 IF)”
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3.1 Introduction

Electronic filters are essential components in modern electronic systems, used to

manipulate and process analog signals. Filters can be classified based on their

frequency response as high-pass filters (HPF), low-pass filters (LPF), band-pass

filters (BPF), all-pass filters (APF) and band-stop filters (BSF). Fractional-order

filters (FOFs) are a superclass of integer-order filters, which are characterized

by transfer functions of non-integer order, such as fractional-order high-pass filters

(FHPF), fractional-order low-pass filters (FLPF), fractional-order band-pass filters

(FBPF), fractional-order all-pass filters (FAPF) and fractional-order band-stop

filters (BSF).

On the other hand, filters can also be classified based on their input and output

signals. Voltage mode (VM) filters operate on voltage signals, while current mode

(CM) filters operate on current signals. Trans-admittance mode (TAM) filters use

a voltage signal at the input and provide a current signal at the output, while

trans-impedance mode (TIM) filters use a current signal at the input and provide

a voltage signal at the output.

In numerous applications, there is a requirement to cascade voltage-mode and

current-mode filters, necessitating the use of a voltage-to-current converter (V-I)

interface. Combining signal processing with voltage-to-current converter interfacing

can enhance the overall effectiveness of electronic filters. In this regard, the

utilization of a TAM filter proves to be beneficial. One notable application of

TAM filters is in the receiver baseband blocks of modern radio systems [123].

Numerous integer-order TAM filters have been documented in [124], [125] and
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references cited therein, but there are no reports of a TAM FOF in the existing

literature.

This chapter presents OTA-based α-order multifunction TAM FOF. As the OTA

exhibits high impedance at both input and output terminals, it is an ideal choice

for implementing TAM signal processing applications. The proposed TAM FOF

is capable of generating FLPF, FHPF, and FAPF responses. The proposed TAM

FOF employs two OTAs and one grounded FOC, the proposed structure is resistor-less.

The electronic tunability of the parameters of the FOF is achieved by using

transconductance gain of OTA. To validate the the functionality of the proposed

TAM FOF SPICE simulations and experimental testing have been conducted.

3.2 Generalization of First-Order Filters

The expression of generalized transfer function of α-order FOF, with α ranging

between 0 and 1, as mentioned in [17], is given as:

Tα(s) =
bsα + c

asα + 1
(3.1)

Where the coefficients a, b, c are the constant terms. By appropriately selecting

values for a, b, and c, it is possible to realize various filter responses such as FHPF,

FLPF or FAPF. The conditions for selecting these coefficients are summed up in

Table 3.1.

The Magnitude response and phase response of FOFs, represented in (3.1) are
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Table 3.1: Conditions for coefficient a, b, c along with the corresponding FOFs

Condition on a, b, c FOF response

b=0 FLPF
c=0 FHPF

b=−ac FAPF

given below:

|Tα(s)| =

√
b2ω2α + c2 + 2bcωαcos(απ

2
)

ω2α + a2 + 2aωαcos(απ
2
)

(3.2)

∠Tα(s) = tan−1

[
bωα sin(απ

2
)

bωα cos(απ
2
) + c

]
− tan−1

[
ωα cos(απ

2
) + a

ωα sin(απ
2
)

]
(3.3)

The critical frequencies for FOF, as mentioned in [17], are defined as follows:

ωm : The frequency of maxima/minima, corresponds to the frequency where the

magnitude response of the FOF is maximum or minimum.

ωrp : The right-phase frequency, corresponds to the frequency where the phase

response of the FOF is ±90◦.

ωh : The half-power frequency, corresponds to the frequency where the magnitude

of the FOF is 1/
√
2 times of its maximum value.

3.3 Proposed α-Order Trans-Admittance Mode

FOF

The proposed α-order multifunction TAM FOF is illustrated in Fig. 3.1. The

proposed circuit is resistor-less, employing two OTAs with one grounded FOC and

capable of generating FLPF, FHPF and FAPF responses. The output current of
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the proposed TAM FOF is given as

Io = gm2

[
−gm1Vin1 + sαCαVin2

gm2 + sαCα

]
(3.4)

Figure 3.1: Proposed α-order TAM FOF

Table 3.2: Various inputs to the proposed TAM FOF and the related outputs

Vin1 and Vin2 Transfer Function of FOF Type of FOF

Vin1=Vin; Vin2=0 Tα(s)FLPF=-gm1[
1

1+sα(Cα/gm2)
]

FLPF
(a=Cα/gm2,b=0,c=− gm1)

Vin2=Vin; Vin1=0 Tα(s)FHPF=gm2[
sα(Cα/gm2)

1+sα(Cα/gm2)
]

FHPF
(a=Cα/gm2,b=Cα,c=0)

Vin1=Vin2; gm1=gm2=gm Tα(s)FAPF=gm[
sα(Cα/gm2)−1
sα(Cα/gm2)+1

]
FAPF

(a=Cα/gm,b=Cα,c=− gm)

For various conditions on inputs (Vin1 and Vin2), different outputs may be obtained,

as mentioned in Table 3.2. The critical frequencies of FLPF, FHPF and FAPF are

computed and given in (3.5)–(3.7) respectively.

ωm(FLPF ) = ω0(FLPF )

[
−cos(

απ

2
)
] 1

α

ωrp(FLPF ) = ω0(FLPF )

[
−1

cos(απ
2
)

] 1
α

ωh(FLPF ) = ω0(FLPF )

[√
1 + cos2(

απ

2
)− cos(

απ

2
)

] 1
α

(3.5)
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ωm(FHPF ) = ω0(FHPF )

[
−1

cos(απ
2
)

] 1
α

ωrp(FHPF ) = ω0(FHPF )

[
−cos(

απ

2
)
] 1

α

ωh(FHPF ) = ω0(FHPF )

[√
1 + cos2(

απ

2
) + cos(

απ

2
)

] 1
α

(3.6)

ωm(FAPF ) = ωrp(FAPF ) = ω0(FAPF )

ωh(FAPF ) = ω0(FAPF )

[
2cos(

απ

2
) +

√
4cos2(

απ

2
)− 1

] 1
α

(3.7)

Here ω0(FLPF )=ω0(FHPF )=ω0(FAPF )=ω0=(gm2/Cα)
1/α and ω0 is the pole frequency

of the proposed TAM FOF.

3.3.1 Functional Verification

To validate the functionality of the proposed TAM FOF, SPICE simulations are

performed using the 180 nm CMOS model parameters with supply voltages taken

as ±1.8 V . Section 2.4 provides the details of the transistors used to construct

OTA, and its corresponding CMOS schematic is illustrated in Fig. 2.8 (b). By

changing the bias current of OTA, gm is adjusted, and provides electronic tunability

to the pole frequency of the proposed TAM FOF.

The FOC utilized in the proposed TAM FOF is implemented using a 12th order

R-C ladder network based on CFE approximation [35]. The schematic of the R-C

ladder network is depicted in Fig. 3.2. The values for R0, Ri and Ci (i=1, 2, ...11)

to emulate FOC with α=0.5 and Cα=3.75 µ℧secα are given below:

R0=18.2 Ω, R1=330 kΩ, R2=82 kΩ, R3=33 kΩ, R4=12 kΩ, R5=4.7 kΩ, R6=2 kΩ,

R7=736 Ω, R8=270 Ω, R9=120 Ω, R10=47 Ω, R11=8.2 Ω, C1=4.7 µF , C2=3.1 µF ,
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C3=1 µF , C4=470 nF , C5=168 nF , C6=68 nF , C7=27 nF , C8=10 nF , C9=4.7 nF ,

C10=1 nF , C11=2.2 nF .

Simulations are performed for Cα=3.75 µ℧secα and α=0.5. The values of gm1 and

Figure 3.2: 12th order R-C ladder network to realize FOC (based on CFE
approximation)

gm2 are taken as same and the value is set to 162.3 µA/V . Magnitude and phase

response for FLPF and FHPF are shown in Figs. 3.3 and 3.4 respectively. The

half-power frequencies from the responses are found to be 88.43 Hz and 999 Hz

for FLPF and FHPF respectively, while the theoretical values for the same are

83.7 Hz and 1.11 kHz respectively.

The magnitude of FAPF at ω0=ωrp exhibits a minimum value if α < 1, a maximum

value if α > 1 and remains flat if α=1 (integer-order case) [17]. As the value of

α has been chosen as 0.5 that is lesser than 1, a minima will show up at ωrp and

the value of ωrp is same as ω0. From Fig. 3.5, the frequency of minima for FAPF

is observed as 271.46 Hz and its theoretical value is calculated as 298.12 Hz.

The above observations show that both simulated and theoretical values of the

half-power frequency of the proposed TAM FOF are in close approximation.

The effect of α on FLPF response has been shown in Fig. 3.6 for three values

of α (0.4, 0.5 and 0.6). Increasing the value of α leads to an increased slope of the

transition band in the magnitude response of FOF as the transition band slope

for α-order FOF is −20α dB/decade. The similar study has been done for other

responses also, and the variation in slope of the transition band shows the same
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Figure 3.3: Magnitude response and phase response of proposed TAM FLPF

Figure 3.4: Magnitude response and phase response of proposed TAM FHPF
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Figure 3.5: Magnitude response and phase response of proposed TAM FAPF

trend.

Time domain behavior for proposed FAPF is also observed for the sinusoidal input

signal of 1 mV , 271.46 Hz and α=0.5 in Fig. 3.7 (a), corresponding Lissajous

pattern is also depicted in Fig. 3.7 (b). As the frequency of the input sinusoid is

equal to ω0 of the FAPF, which is also the ωrp, the Lissajous pattern shows a 90◦

phase shift between input and output. To ensure electronic tunability, Magnitude

response and phase response of FAPF for Ib=5 µA, 15 µA and 25 µA are plotted

in Fig. 3.8, the corresponding pole frequencies are 45.8 Hz, 298 Hz and 646.2 Hz

respectively. The phase plot undergoes a shift along the frequency axis while

preserving its shape, by adjusting the pole frequency, the same is evident from

Fig. 3.8.
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Figure 3.6: Magnitude response and phase response of proposed TAM FLPF for
different values of α

(a) (b)

Figure 3.7: Time domain behaviour of proposed TAM FAPF (a) Transient
response with 1 mV, 271.46 Hz input sinusoid signal (b) Corresponding Lissajous

pattern
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3.3.2 Stability Analysis

The stability of the proposed TAM FOF has been verified using root locus method

for the linear fractional-order system outlined in section 2.3 [117]. Pole plot for

the characteristic equation of the proposed TAM FOF is acquired through forlocus

function of MATLAB [122] for p=1 and q=2 (as α=p
q
=0.5) and is shown in Fig.

3.9. The boundaries for the stable and unstable regions are separated by ± π
2q

and

shown as dotted dash lines. As it may be witnessed from Fig. 3.9 that, both the

roots lie outside ± π
2q

region, the proposed TAM FOF is stable.

Figure 3.8: Magnitude response and phase response for FAPF for Ib=5 µA
(45.8 Hz), 15 µA (298 Hz) and 25 µA (646.2 Hz), ensuring electronic tunability
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3.3.3 Sensitivity Analysis

Transfer function of the proposed TAM FOF may change with the variations in

component’s value. The sensitivity analysis shows the relative variation in output

responses of the circuit with respect to changes in its components values. The

sensitivity of parameter (U) with respect to change in the value of parameter (V )

is defined as [126]:

SU
V =

V

U

δU

δV
(3.8)

The sensitivities of the transfer functions of the proposed FLPF, FHPF and FAPF

with respect to various circuit components (i.e., α, Cα, gm1 and gm2) have been

derived mathematically and presented in (3.9), (3.10) and (3.11) respectively.

STα(s)FLPF
α =− αsαln(s)

(sα + gm2/Cα)

S
Tα(s)FLPF

Cα
=SFLPF

gm2
=

sα

(sα + gm1/Cα)

STα(s)FLPF
gm1

=1

(3.9)

Figure 3.9: Pole plot in W-plane for proposed TAM FOF for α=0.5
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STα(s)FHPF
α =

gm2

Cα
αln(s)

(sα + gm2/Cα)

S
Tα(s)FHPF

Cα
=SFHPF

gm2
=

gm2

Cα

(sα + gm2/Cα)

STα(s)FHPF
gm1

=0

(3.10)

STα(s)FAPF
α =

2gm
Cα

αsαln(s)

(s2α − g2m2/C
2
α)

S
Tα(s)FAPF

Cα
=

2gm
Cα

sα

(s2α − g2m2/C
2
α)

STα(s)FAPF
gm =

(s2α − 2gm
Cα

sα − g2m
C2

α
)

(s2α − g2m2/C
2
α)

(3.11)

The sensitivities for the proposed FLPF, FHPF and FAPF given in (3.9), (3.10)

and (3.11) respectively, are plotted using MATLAB and shown in Fig. 3.10. To

plot the sensitivity with respect to Cα, three different values of Cα are taken such

as 1 µ℧secα, 3.75 µ℧secα and 5 µ℧secα while keeping α and gm (gm1=gm2) as

constant at 0.5 and 162.3 µA/V respectively. The corresponding simulated plots

for FLPF, FHPF and FAPF are shown in Figs. 3.10 (a), (d) and (g) respectively.

Sensitivity curves against gm (for three different values of gm such as: 63.6 µA/V ,

162.3 µA/V and 238.9 µA/V ) while α is chosen as 0.5 and Cα as 3.75 µ℧secα are

presented in Figs. 3.10 (b), (e) and (h) for FLPF, FHPF and FAPF respectively.

The sensitivity curves with respect to α are plotted in Figs. 3.10 (c), (f) and

(i) for FLPF, FHPF and FAPF respectively, keeping Cα as 3.75 µ℧secα and gm

(gm1=gm2) as 162.3 µA/V . The three different values of α are taken as 0.3, 0.5

and 0.8.

It is witnessed that sensitivity with respect to Cα is lowest in pass-band and

highest in stop-band for both FLPF and FHPF and within unity which is desirable

feature, same trend is followed by the sensitivity with respect to gm for both FLPF
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and FHPF. FAPF sensitivity with respect to Cα is highest at the pole frequency

(slightly higher than unity), while sensitivity with respect to gm is slightly higher

than unity for lower frequencies and eventually for higher frequency it approaches

to unity. As FLPF, FHPF and FAPF all are quite sensitive to α, the value of

α must be selected very accurately. From (3.9), (3.10) and (3.11) the sensitivity

with respect to α can be depicted as high due to the natural log of frequency term

in the numerator.

3.3.4 Robustness

Process-Voltage-Temperature (PVT) and Monte-Carlo analyses have been conducted

to examine the robustness of the proposed TAM FOF, and the results are discusse

below.

3.3.4.1 PVT analysis

In order to assess the robustness of the proposed TAM FOF, the circuit structure

is subjected to simulations under various conditions, including different process

corners, variations in supply voltage, and temperature changes.

Process corners are named using two-letter identifiers, where the first letter represents

the NMOS corner and the second letter represents the PMOS corner. The three

main corners are typical, fast, and slow. The fast corner has higher carrier

mobilities, oxide thickness, and doping concentration compared to the typical

corner, while the slow corner has lower values. Therefore, there are five possible
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Figure 3.10: Sensitivity of the proposed TAM FOF: (a) |SFLPF
Cα

|(b) |SFLPF
gm2

|(c)
|SFLPF

α |(d) |SFHPF
Cα

|(e) |SFHPF
gm2

|(f) |SFHPF
α |(g) |SFAPF

Cα
|(h) |SFAPF

gm |(i) |SFAPF
α |
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Table 3.3: Half-power frequency/frequency of minima of the proposed TAM FOF
for all five process corners for α=0.5

Process
corner

FLPF
half-power frequency

(% error from TT corner)

FHPF
half-power frequency

(% error from TT corner)

FAPF
frequency of minima

(% error from TT corner)

FF
84.45
(4.5%)

950.05
(4.9%)

258.39
(4.8%)

FS
84.899
(4%)

961.04
(3.8%)

261.11
(3.8%)

TT
88.43
-

999
-

271.42
-

SF
85.07
(3.8%)

958.04
(4.1%)

260.02
(4.2%)

SS
84.01
(5%)

249.55
(4.95%)

257.85
(5%)

corners: fast-fast (FF), fast-slow (FS), typical-typical (TT), slow-fast (SF), and

slow-slow (SS) corners.

The values of half-power frequencies of FLPF and FHPF, and frequency of minima

for FAPF with the percentage error from TT corner point for all the remaining

four corner points are listed in Table 3.3. Further Tables 3.4 and 3.5 comprise the

values of half-power frequencies of FLPF and FHPF, and frequency of minima for

FAPF in presence of supply voltage variations (1.8 V, 1.8 V±2.5% and 1.8 V±5%)

and temperature variations (0◦C, 27◦C and 70◦C) respectively for the proposed

TAM FOF.

It is clear from Tables 3.3, 3.4 and 3.5 that the percentage error from the base

parameter (i.e., TT corner for corner analysis, 1.8 V for power supply variations

and 27◦C for temperature variations) lie within 6% , which verifies the robustness

of the proposed circuit for PVT variations.
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Table 3.4: Half-power frequency/frequency of minima of the proposed TAM FOF
for power supply variation for α = 0.5

Power
supply

FLPF
half-power frequency
(% error from 1.8 V)

FHPF
half-power frequency
(% error from 1.8 V)

FAPF
frequency of minima
(% error from 1.8 V)

1.8 V
88.43
-

999
-

271.42
-

1.8 V±2.5%
89.1

(0.76%)
1000.25
(0.13%)

271.01
(0.15%)

1.8 V±5%
86.89

(1.74%)
995.1

(0.39%)
272.3

(0.38%)

Table 3.5: Half-power frequency/frequency of minima of the proposed TAM FOF
for for temparature variation for α=0.5

Temp.

FLPF
half-power frequency
(% error from 27◦C)

FHPF
half-power frequency
(% error from 27◦C)

FAPF
frequency of minima
(% error from 27◦C)

0◦C
92.85
(5.9%)

1048.95
(5%)

287.47
(5.9%)

27◦C
88.43
-

999
-

271.42
-

70◦C
84.89
(3.8%)

939.06
(6%)

257.85
(5%)

3.3.4.2 Monte-Carlo analysis

To gain a deeper understanding of the sensitivity of the proposed TAM FOF with

respect to random variations in FOC i.e., Cα, Monte-Carlo simulation is done on

100 random samples. The values of passive components, used for FOC realization,

are randomly varied in uniform Gaussian distribution with a tolerance of ±5%.

Magnitude response and phase response for the proposed TAM FOF are shown in

Fig. 3.11. For FLPF, the maximum spread for magnitude (phase) in pass-band,

stop-band and at half-power frequency is observed to be 0.088 dB (0.5◦), 1.55 dB

(9.2◦) and 0.74 dB (3.7◦). Similar observations for FHPF are obtained and it is
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clear that maximum spread for magnitude (phase) in pass-band, stop-band and at

half-power frequency is 0.092 dB (0.56◦), 1.32 dB (6.2◦) and 0.58 dB (3.7◦). For

FAPF, the spread for magnitude (phase) is calculated at the frequency of minima

and the range for the same is within 2.08 dB (14.6◦). It is observed from the above

analysis that the spread in magnitude and phase is within a small range, which

confirms the smaller component sensitivity of the proposed TAM FOF.

The observations from the sensitivity analysis and Monte-Carlo analysis for FLPF,

FHPF and FAPF responses with respect to Cα are summed up in Table 3.6. It is

noteworthy that sensitivity has a direct bearing on spread in Monte-Carlo analysis.

A higher sensitivity leads to higher spread in the magnitude response, whereas

lower sensitivity results in lower spread.

Table 3.6: Summary of Sensitivity and Monte-Carlo Analysis of the proposed
TAM FOF

Filter
Response Sensitivity from Sensitivity analysis Spread region in Monte-Carlo analysis

Maximum Minimum Maximum Minimum

FLPF Stop band Pass band Stop band Pass band

FHPF Stop band Pass band Stop band Pass band

FAPF
Near pole
frequency

Lower and higher
frequencies

Near pole
frequency

Lower and higher
frequencies

3.3.5 Experimental Results

The proposed TAM FOF is verified experimentally also using commercially available

OTA IC LM13700N with supply voltage of ±10 V . The FOC is realized using the

R-C ladder network of Fig. 3.2 with component values as specified in section



3.3 Proposed α-Order Trans-Admittance Mode FOF 53

(a) (b)

(c)

Figure 3.11: Magnitude response and phase responses under Monte-Carlo
analysis for the proposed TAM FOF (a) FLPF (b) FHPF (c) FAPF
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3.3.1. Figure 3.12 shows the experimental setup for the proposed TAM FOF. The

transconductance gains of both the OTAs are set as gm1=gm2=0.46 mA/V . The

frequency response, transient response and Lissajous pattern for FLPF, FHPF

and FAPF are shown in Figs. 3.13, 3.14 and 3.15 respectively. The input signal

frequencies for obtaining transient responses for FLPF and FHPF are so chosen

that they fall in their respective pass-bands i.e., 100 Hz and 100 kHz, respectively

for FLPF and FHPF, whereas for FAPF, the input signal frequency is selected at

which the minima in the magnitude response is obtained i.e., 4.6 kHz. It may

Figure 3.12: Hardware Setup

be observed from the results shown in Figs. 3.13 –3.15 that the experimental

frequency responses for all the filter types are in close approximation to the

theoretical responses. The transient response for FLPF demonstrates a phase

difference of 177◦ as against the theoretical value of 174.6◦. For the FHPF phase

difference is recorded as 4.41◦ against the calculated value of 7.52◦. For FAPF,

phase at minima is observed to be 76.5◦ in contrast to the theoretical value of
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(a) (b) (c)

Figure 3.13: Experimental results for the proposed TAM FOF (FLPF) (a)
Frequency Response (b) Transient Response (c) Lissajous pattern

(a) (b) (c)

Figure 3.14: Experimental results for the proposed TAM FOF (FHPF) (a)
Frequency Response (b) Transient Response (c) Lissajous pattern

(a) (b) (c)

Figure 3.15: Experimental results for the proposed TAM FOF (FAPF) (a)
Frequency Response (b) Transient Response (c) Lissajous pattern
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90◦. Minor deviations may be attributed to the components’ tolerances used for

realizing the FOC.

3.4 Conclusion

In this chapter an α-order multifunction TAM FOF is proposed for the very first

time. The proposed TAM FOF offers FLPF, FHPF, and FAPF filter responses.

The proposed structure’s effectiveness has been verified through both SPICE simulations

and experimental testing, and found that results fit in the theoretical predictions

very well. Additionally, the electronic tunability of the pole frequency has been

confirmed through SPICE simulations. The sensitivity of the proposed TAM FOF

is analyzed using MATLAB, and the structure’s robustness is verified through

PVT and Monte-Carlo analysis. These findings suggest that the proposed TAM

FOF can be a promising candidate for various applications in signal processing

and communication systems.



Chapter 4

FOFs with Externally Tunable

Design Parameters

This chapter presents the results and content of the following papers:

[1]”G. Varshney, N. Pandey and R. Pandey, “Generalization of shadow filters in

fractional domain,” in International Journal of Circuit Theory and Applications,

vol. 49, no. 10, pp. 3248-3265, 2021, doi: 10.1002/cta.3054. (SCIE indexing,

2.378 IF)”

[2]”G. Varshney, N. Pandey and R. Pandey, ”Multi-Functional Fractional-Order

Shadow Filter using OTA,” in 2021 Innovations in Power and Advanced Computing

Technologies (i-PACT), 2021, pp. 1-5, doi: 10.1109/i-PACT52855.2021.9696856.”

57
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4.1 Introduction

As outlined in the preceding chapter, filters are essential components of analog

signal processing. Generally, filter parameters such as pole frequency (ω0) and

pole quality factor (Q) require tuning for various applications like audio equalizers,

medical equipments, instrumentation, etc. [126]. This can be achieved by changing

the passive components or through electronic tuning by varying transconductance

/current/voltage gain of constituent active elements. In [127], Lakys and Fabre

have introduced a new way of electronically tune the integer-order filter parameters.

This method involves including an external amplifier within the feedback loop

of the basic filter. By adjusting the gain of this external amplifier, the filter’s

parameters (ω0 and Q) can be modified without affecting the active and passive

components of the filter. These filters are called as shadow filters [127]. Various

integer-order shadow filters are accessible in open literature, e.g. [128]–[132], and

the sources cited therein.

In this chapter, the theory of integer-order shadow filters is generalized to fractional

domain. The counterpart of integer-order shadow filters in fractional domain are

called as shadow FOFs. Mathematical equations have been drafted to determine

ω0 and Q when different types of feedback signals, such as low-pass, high-pass,

band-pass, or band-stop, are applied to the external amplifier in the feedback

loop. The proposed theory has been demonstrated using MATLAB simulations.

To verify the proposed theory, two active shadow FOFs are presented using a

basic FOF and an externel amplifier with gain A in the feedback loop. Both the

shadow FOFs are built around OTA. SPICE simulations are carried out to verify
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the functionality of the proposed shadow FOFs using 180 nm CMOS technology

model parameters.

4.2 Generalization of Second-Order Filters

This section reproduces the concept of generic 2α-order FOF described in [57].

The transfer function of a second-order filter in the integer domain is generally

expressed as:

T (s) =
Fs2 + Es+G

s2 + 2ps+ q
(4.1)

Here coefficients p, q, F , E and G are constant terms. By selecting suitable

values of F , E and G various filter responses such as low-pass (F=0, E=0, G ̸= 0),

high-pass (F ̸= 0, E=0, G=0), band-pass (F=0, E ̸= 0, G=0) or band-stop (F ̸=

0, E=0, G ̸= 0) may be realized.

The fractional domain generalization of (4.1), where integer-order capacitors are

replaced with two FOCs of distinct fractional orders α and β respectively, the

resulting FOF is of fractional order (α + β) and given as (4.2) [57].

Tα+β(s) =
Fsα+β + Esα +G

sα+β + 2psα + q
(4.2)

By selecting suitable values of F , E and G, various FOF responses such as FLPF,

FHPF, FBPF and FBSF may be realized, the conditions are summarized in

Table 4.1. Assuming that α is equal to β, the (α + β)-order FOF is modified
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to 2α-order FOF and given by (4.3).

T 2α(s) =
Fs2α + Esα +G

s2α + 2psα + q
(4.3)

Table 4.1: Conditions for the values of F , E, G and the corresponding FOFs

Values of F , E, G Type of FOF

F=0, E=0, G̸=0 FLPF

F=0, E ̸=0, G=0 FBPF

F ̸=0, E=0, G=0 FHPF

F ̸=0, E=0, G̸=0 FBSF

Lets denote the denominator of (4.3) as D(s) which is also the characteristic

equation of (4.3), the magnitude of D(s) can be derived as

|D(s)| =
√
ω4α + 4pω3α cos (απ/2) + (4p2 + 2q cosαπ)ω2α + 4pqωα cos (απ/2) + q2

(4.4)

The stability of 2α-order FOF is determined by parameters p and q, Table 4.2

provides a summary of four possible cases of stability based on these parameters.

The pole frequency (ω0) and the pole quality factor (Q) of basic 2α-order FOF are

also listed in Table 4.2 for each case of the stability [117].
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Table 4.2: Stability conditions, pole frequency (ω0) and pole quality factor (Q)
for 2α-order FOF [117]

Stability Case Relationship Stability conditions and roots ωO, Q

Case-1
p2 ≥ q &

p>0 & q>0
α<2

r1,2=− p±
√

p2 − q=g1,2e
jπ

ω01,2=g
1
α
1,2

Q= −1
2 cos π

α

Case-2
p2<q &

p>0 & q>0

α<2δ
π
, δ=cos−1 −p√

q
>π

2

r1,2=
√
qe±jδ

ω0=
√
q

1
α

Q= −1
2 cos δ

α

Case-3
p2<q &

p<0 & q>0

α<2δ
π
, δ=cos−1 −p√

q
<π

2

r1,2=
√
qe±jδ

ω0 =
√
q

1
α

Q= −1
2 cos δ

α

Case-4
p2 ≥ q & p<0

or q<0 always unstable
-
-

4.3 FOF with External Amplifier of Gain A

(Shadowing Concept in Fractional Domain)

A shadow FOF employs a basic 2α-order FOF and an external amplifier with gain

A in the feedback loop. Consider a basic 2α-order single-input multi-output FOF,

where the two output responses are represented by T (s) and T1(s) as shown in Fig.

4.1 (a). A shadow FOF may be designed by using any one or combinations of the

outputs of the basic 2α-order FOF to drive the external amplifier in the feedback

loop. The block diagram of the shadow FOF is depicted in Fig. 4.1 (b) in which

output T1(s) is used to drive the external amplifier in the feedback loop. This

arrangement modifies the transfer function from T (s)=V0/Vi to T
′(s)=V0/Vin, here

Vi and Vin are the inputs to the filter before and after putting the external amplifier

in the feedback loop, respectively. Now the modified transfer function T ′(s) holds

the same filter response as T (s) but with different characteristic equation.

Lets T (s) is represented by (4.3) and T1(s) is given by (4.5). T1(s) may lead to
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(a) (b)

Figure 4.1: Block diagram of (a) Basic 2α-order cell with two outputs (b) Basic
cell with external amplifier of gain A to constitute the shadow FOF

various filter responses through appropriate selection of coefficients H, B and L

of the numerator polynomial (such as: FLPF, FHPF, FBPF and FBSF etc). Any

of these responses may be used to drive the external amplifier. Then by routine

network analysis of Fig. 4.1 (b) the modified transfer function T ′(s) is obtained

and given in (4.6).

T1(s) =
Hs2α +Bsα + L

s2α + 2psα + q
(4.5)

T ′(s) =
T (s)

1− AT1(s)
(4.6)

Combining (4.3), (4.5) and (4.6) gives T ′(s) that is expressed by (4.7). By examining

equation (4.8), it is observed that the coefficients (X and Y ) in the characteristic

equation of T ′(s) involve the term A, representing the gain of the external amplifier.

As a result, the pole frequency (ω′
0) and the pole quality factor (Q′) of the shadow

FOF can be adjusted through the gain A of the external amplifier. This electronic

tuning capability allows for the modification of the shadow FOF parameters without

affecting its core components.

T ′(s) =
N ′(s)

D′(s)
=

(F ′s2α + E ′sα +G′)

s2α + 2Xsα + Y
(4.7)
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Here:

(F ′, E ′, G′) =
(F,E,G)

(1− AH)
(4.8a)

X =
2p− AB

2(1− AH)
(4.8b)

Y =
q − AL

1− AH
(4.8c)

4.4 Various Cases of Feedback Signals

The transfer function T ′(s) of shadow FOF represented by (4.7) is generic in nature,

may result into four different instances depending upon the type of feedback

signal T1(s), as T1(s) could be FLPF, FHPF, FBPF or FBSF. In the following

subsections, the first three cases of stability are discussed (as the fourth case is

always unstable, refer Table 4.2) related to the characteristic equation of T ′(s) for

different instances based on the type of feedback signal T1(s).

For a shadow FOF, the pole frequency (ω′
0) can be computed from the roots of the

characteristic equation and the pole quality factor (Q′) may be given as − 1
2 cos δ/α

where δ is the angle of roots from the real axis [57]. For the FOF to be feasible

the value of α must be less than 2δ/π [57].
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4.4.1 FLPF as Feedback Signal

For the case of FLPF feedback signal (H=0, B=0, L ̸= 0), the characteristic

equation of shadow FOF is given by:

s2α + 2psα + (q − AL) = 0 (4.9)

The constraint on A to make the shadow FOF feasible is A < q
L
for all the three

cases. The three cases of stability for FLPF feedback signal are discussed below:

Case-1: p2 ≥ (q − AL) & p>0 & q>AL

By finding the roots of the characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[
−p±

√
p2 − (q − AL)

]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ must be equal to π, and α must be less than 2. Thus, for a particular

value of α the Q′ is constant.

Case-2: p2<(q − AL) & p>0 & q>AL

The roots of characteristic equation give ω′
0, and can be expressed as:

ω′
01,2 =

[√
q − AL

]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability

the value of δ=cos−1

[
−p√

(q−AL)

]
>π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Case-3: p2<(q − AL) & p<0 & q>AL

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[√
q − AL

]1/α
.
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(a)

(b) (c)

Figure 4.2: Variation of ω′
0/ω0 for case-1 and ω′

0/ω0 & Q′/Q for case-2 and case-3
as a function of gain A for FLPF as feedback signal (a) Case-1 (b) Case-2 (c)

Case-3

The ω′
0 varies with the external amplifier’s gain A. For this case of stability

the value of δ=cos−1

[
−p√

(q−AL)

]
<π

2
, which leads to variable Q′ with external

amplifier’s gain A.
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Figure 4.2 (a) shows variation of ω′
0/ω0 as a function of external amplifier’s

gain A for three values of α for case-1 of stability with p, q and L are taken as 7,

25 and 2 respectively.

In Figs. 4.2 (b) and (c), the variation of ω′
0/ω0 and Q′/Q with respect to external

amplifier’s gain A for case-2 and case-3 of stabilty are presented respectively. The

respective values of q and L are taken as 25 and 2 with p=1.3 for case-2 and -1.3

for case-3. For these particular values of p, q and L, α<1.12 for case-2 of stabilty

and α<0.6 for case-3 of stabilty to make shadow FOF stable.

For all the three cases of stability, the ω′
0 is lower than ω0 (pole frequency of basic

2α FOF) for positive values of A, while it will be greater than ω0 for negative

values of A.

The variation of Q′ is different for various cases of stability. For case-1: Q′ is fixed

for a particular value of α. For case-2: for lower values of α, Q′ is greater than

Q for positive values of A, while the variation in Q′ is very negligible for negative

values A. As α approaches the maximum value for the stability of shadow FOF,

the Q′ becomes lower than Q for positive values of A and greater than Q for

negative values of A. Further for case-3: for lower values of α, Q′ is lower than

Q for positive values of A, while it is greater than Q for negative values A. As α

approaches the maximum value for the stability of shadow FOF, Q′ is greater than

Q for positive A, while the variation in Q′ is very negligible for negative values A.
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4.4.2 FHPF as Feedback Signal

In the case of a high-pass feedback signal (H ̸= 0, B=0, L=0), the characteristic

equation of T ′(s) is given by:

s2α +
2p

1− AH
sα +

q

1− AH
= 0 (4.10)

The constraint on A to make the shadow FOF feasible is A< 1
H

for all the three

cases. The three cases of stability for FHPF feedback signal are discussed below:

Case-1: p2 ≥ q(1− AH) & p>0 & q>0

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[
1

(1−AH)

(
−p±

√
p2 − q(1− AH)

)]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ must be equal to π, and α must be less than 2. Thus, for a particular

value of α the Q′ is constant.

Case-2: p2<q(1− AH) & p>0 & q>0

The roots of characteristic equation give ω′
0, and can be expressed as:

ω′
01,2 =

[√
q

1−AH

]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability

the value of δ=cos−1

[
−p√

q(1−AH)

]
>π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Case-3: 4p2<q(1− AH) & p<0 & q>0

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[√
q

1−AH

]1/α
.
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(a)

(b) (c)

Figure 4.3: Variation of ω′
0/ω0 for case-1 and ω′

0/ω0 & Q′/Q for case-2 and case-3
as a function of gain A for FHPF as feedback signal (a) Case-1 (b) Case-2 (c)

Case-3

The ω′
0 varies with the external amplifier’s gain A. For this case of stability

the value of δ=cos−1

[
−p√

q(1−AH)

]
<π

2
, which leads to variable Q′ with external

amplifier’s gain A.
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Figure 4.3 (a) shows variation of ω′
0/ω0 as a function of external amplifier’s

gain A for case-1 of stability for three values of α. Values of p, q and H are taken

as 2, 2 and 0.1 respectively.

In Figs. 4.3 (b) and (c), the variation of ω′
0/ω0 and Q′/Q with respect to external

amplifier’s gain A for case-2 and case-3 of stabilty are presented, respectively. The

respective values of q andH are taken as 2 and 0.1 with p=0.4 for case-2 of stability

and -0.4 for case-3 of stability. For these particular values of p, q and H, to make

shadow FOF stable, α<1.13 for case-2 of stabilty and α<0.29 for case-3 of stabilty.

For all the three cases of stability, the ω′
0 is lower than ω0 for negative values of

A, while it will be greater than ω0 for positive values of A.

The variation of Q′ is different for various cases of stability. For case-1: Q′ is fixed

for a particular value of α. For case-2: for lower values of α, the value of Q′ is close

to Q for negative values A, while Q′ is greater than Q for positive values of A. As

α approaches the maximum value for the stability of shadow FOF, the Q′ becomes

lower than Q for positive values of A and greater than Q for negative values of

A. Further for case-3: As α approaches the minimum value for the stability of

shadow FOF, the Q′ becomes greater than Q for positive values of A and lower

than Q for negative values of A, while for higher values of α, the variation of Q′

is reversed i.e., Q′ becomes lower than Q for positive values of A and greater than

Q for negative values of A.
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4.4.3 FBPF as Feedback Signal

In the case of a band-pass feedback signal (H=0, B ̸= 0, L=0), the characteristic

equation of T ′(s) is given by:

s2α + (2p− AB)sα + q = 0 (4.11)

The three cases of stability for FBPF feedback signal are discussed below:

Case-1: (2p− AB)2 ≥ 4q & p>AB
2

& q>0

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[(
2p−AB

2

) (
−1±

√
1− 4q

(2p−AB)2

)]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ must be equal to π, and α must be less than 2. Thus, for a particular

value of α the Q′ is constant.

Case-2: (2p− AB)2<4q & p>AB
2

& q>0

The roots of characteristic equation give ω′
0, and can be expressed as:

ω′
01,2 =

(√
q
)1/α

.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability

the value of δ=arccos
[
−(2p−AB)

2
√
q

]
>π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Case-3: (2p− AB)2<4q & p<AB
2

& q>0

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

(√
q
)1/α

.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability
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(a)

(b) (c)

Figure 4.4: Variation of ω′
0/ω0 for case-1 and Q′/Q for case-2 and case-3 as a

function of gain A for FBPF as feedback signal (a) Case-1 (b) Case-2 (c) Case-3

the value of δ=arccos
[
−(2p−AB)

2
√
q

]
<π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Figure 4.4 (a) shows variation of ω′
0/ω0 as a function of external amplifier’s

gain A for case-1 of stability for three values of α. Values of p, q and B are taken
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as 3, 3 and 0.2 respectively.

In Figs. 4.4 (b) and (c), the variation of ω′
0/ω0 with respect to external amplifier’s

gain A for case-2 and case-3 of stabilty are presented, respectively. The respective

values of q and B are taken as 20 and 0.2 with p=2 for case-2 of stability and -2

for case-3 of stability. For these particular values of p, q and B, to make shadow

FOF stable, α<1.29 for case-2 of stabilty and α<0.53 for case-3 of stabilty.

For cases-1 of stability, ω′
0 is lower than ω0 for negative values of A, while it will

be greater than ω0 for positive values of A. For case-2 and case-3 of stability, the

ω′
0 is fixed for a particular value of α.

The variation of Q′ is different for various cases of stability. For case-1: Q′ is fixed

for a particular value of α. While for case-2 and case-3 of stability, for lower values

of α the value of Q′ is lower than Q for positive values of A and it is greater than

Q for negative values of A, as the maximum value of α is approached this trend is

reversed, now Q′ is greater than Q for positive values of A and it is lower than Q

for negative values of A.

4.4.4 FBSF as Feedback Signal

In the case of a band-stop feedback signal (H ̸= 0, B=0, L ̸= 0), the characteristic

equation of T ′(s) is given by:

s2α +
2p

1− AH
sα +

q − AL

1− AH
= 0 (4.12)
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The three cases of stability for FBSF feedback signal are discussed below:

Case-1: p2 ≥ (q − AL)(1− AH) & p>0 & q>AL

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[
1

(1−AH)

(
−p±

√
p2 − (q − AL)(1− AH)

)]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ must be equal to π, and α must be less than 2. Thus, for a particular

value of α the Q′ is constant.

Case-2: p2<(q − AL)(1− AH) & p>0 & q>AL

The roots of characteristic equation give ω′
0, and can be expressed as:

ω′
01,2 =

[√
q−AL
1−AH

]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ=arccos

[
−p√

(q−AL)(1−AH)

]
>π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Case-3: p2<(q − AL)(1− AH) & p<0 & q>AL

By finding the roots of characteristic equation, ω′
0 can be given as:

ω′
01,2 =

[√
q−AL
1−AH

]1/α
.

The ω′
0 varies with the external amplifier’s gain A. For this case of stability the

value of δ=arccos

[
−p√

(q−AL)(1−AH)

]
<π

2
, which leads to variable Q′ with external

amplifier’s gain A.

Figure 4.5 (a) shows variation of ω′
0/ω0 as a function of external amplifier’s

gain A for case-1 of stability for three values of α. Values of p, q, L and H are

taken as 20, 20, 2 and 0.1 respectively.

In Figs. 4.5 (b) and (c), the variation of ω′
0/ω0 and Q′/Q with respect to external



74 Chapter 4 - FOFs with Externally Tunable Design Parameters

(a)

(b) (c)

Figure 4.5: Variation of ω′
0/ω0 for case-1 and ω′

0/ω0 & Q′/Q for case-2 and case-3
as a function of gain A for FBSF as feedback signal (a) Case-1 (b) Case-2 (c)

Case-3

amplifier’s gain A for case-2 and case-3 of stabilty are presented, respectively. The

respective values of q, L and H are taken as 25, 2 and 0.1 with p=0.5 for case-2 of

stability and -0.5 for case-3 of stability. For these particular values of p, q, L and
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H, to make shadow FOF stable, α<1 for case-2 of stabilty and α<0.49 for case-3

of stabilty.

For case-1 of stabillity, ω′
0 is lower than ω0 for positive values of A and it is greater

than ω0 for negative values of A. Although for case-2 and case-3 of stability the

variation in ω′
0 is reversed, i.e., it is greater than ω0 for positive values of A and it

is lower than ω0 for negative values of A.

The variation of Q′ is different for various cases of stability. For case-1: Q′ is

fixed for a particular value of α. For case-2 and case-3 of stability: for lower

values of α with positive values of A the variation is more but as α approaches

its maximum value for the stability of shadow FOF, the variation in Q′ is very

negligible. Further, for negative values of A, the variation in Q′ is very negligible

for all values of α.

The various cases of stability are summarized in Table 4.3 based on each case

of feedback signal. Table 4.3 also enlistes the gain (E ′, F ′ or G′), pole frequency

ω′
0 and pole quality factor

[
Q′ = − 1

2 cos δ/α

]
.

4.5 Verification of Proposed Theory

The proposed theory of shadow filters in fractional domain has been verified using

two active 2α-order FOFs. Both circuits are discussed in the following subsections.
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4.5.1 Proposed Shadow FOF Circuit I

The proposed shadow FOF circuit I consists of OTA1 − OTA4 (basic 2α-order

FOF) and OTA5 − OTA7 (external amplifier with gain A) is shown in Fig. 4.6.

The basic 2α-order FOF contains three outputs, such as: FHPF, FLPF and FBPF.

The transfer function of the basic 2α-order FOF is given by (4.13).

V (s)HP

Vi(s)
=

s2α

s2α + sα gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.13a)

V (s)LP
Vi(s)

=

−gm1gm2

Cα1Cα2

s2α + sα gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.13b)

V (s)BP

Vi(s)
=

sα gm1

Cα1

s2α + sα gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.13c)

Any of the available outputs can drive the external amplifier. As per the type of

feedback signal given to the external amplifier (i.e., FHPF, FLPF or FBPF), there

will be three types of output responses of shadow FOF. The FHPF, FLPF and

FBPF output responses of shadow FOF for FHPF, FLPF and FBPF feedback

signals are given in (4.14), (4.15) and (4.16) respectively, here A is the gain of

the external amplifier. When the feedback signal is given at the ′p′ terminal of

the OTA5, the gain A is equal to gmb

gma
; to achieve negative polarity of gain A the

feedback signal must be given at the ′n′ terminal of the OTA5.

T (s)HP HP =
V (s)HP HP

Vin(s)
=

s2α

s2α + sα gm1

(1−A)Cα1
+ gm1gm2

(1−A)Cα1Cα2

(4.14a)
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T (s)LP HP =
V (s)LP HP

Vin(s)
=

−gm1gm2

Cα1Cα2

s2α + sα gm1

(1−A)Cα1
+ gm1gm2

(1−A)Cα1Cα2

(4.14b)

T (s)BP HP =
V (s)BP HP

Vin(s)
=

sα gm1

Cα1

s2α + sα gm1

(1−A)Cα1
+ gm1gm2

(1−A)Cα1Cα2

(4.14c)

T (s)HP LP =
V (s)HP LP

Vin(s)
=

s2α

s2α + sα gm1

Cα1
+ (1−A)gm1gm2

Cα1Cα2

(4.15a)

T (s)LP LP =
V (s)LP LP

Vin(s)
=

−gm1gm2

Cα1Cα2

s2α + sα gm1

Cα1
+ (1−A)gm1gm2

Cα1Cα2

(4.15b)

T (s)BP LP =
V (s)BP LP

Vin(s)
=

sα gm1

Cα1

s2α + sα gm1

Cα1
+ (1−A)gm1gm2

Cα1Cα2

(4.15c)

T (s)HP BP =
V (s)HP BP

Vin(s)
=

s2α

s2α + sα (1−A)gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.16a)

T (s)LP BP =
V (s)LP BP

Vin(s)
=

−gm1gm2

Cα1Cα2

s2α + sα (1−A)gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.16b)

T (s)BP BP =
V (s)BP BP

Vin(s)
=

sα gm1

Cα1

s2α + sα (1−A)gm1

Cα1
+ gm1gm2

Cα1Cα2

(4.16c)

There can be total nine possible combinations for different feedback signals and

the cases of stability, such as case-1, 2 and 3 of stability for FHPF feedback signal;

case-1, 2 and 3 of stability for FLPF feedback signal and case-1, 2 and 3 of stability

for FBPF feedback signal. Three cases are chosen to present here; case-1 for FHPF

feedback signal (Variable ω′
0, fixed Q′), case-2 for FLPF feedback signal (Variable

ω′
0, variable Q′) and case-3 for FBPF feedback (Fixed ω′

0, variable Q′). By using

the method outlined for stability constraints for various feedback signals in Sect.

4.4, the values of gm1, gm2 and A are calculated. The constraint on gms and A,
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Figure 4.6: Circuit diagram of proposed shadow FOF circuit I

and the effect on ω′
0 and Q′ for various cases are given in Table 4.4.

Table 4.4: Constraints on gm & A and effect on ω′
0 & Q′ for different cases of

stability

Feedback
signal

Stability
case

Constraint
on gm

Constraint
on A

Effect on
ω′
0 and Q′

FHPF Case-1 gm1 ≥ 4(1− A)gm2 A < 1 Variable ω′
0, fixed Q′

FLPF Case-2 gm1 < 4(1− A)gm2 A < 1 Variable ω′
0, variable Q′

FBPF Case-3 (1− A)2gm1 < 4gm2 A > 1 Fixed ω′
0, variable Q′

4.5.1.1 Simulation results

To illustrate the functionality of the proposed shadow FOF circuit I, SPICE

simulations have been performed with 180 nm CMOS technology model parameters.

Section 2.4 provides the details of the transistors used in OTA, and its corresponding

CMOS schematic is illustrated in Fig. 2.8 (b). The proposed shadow FOF circuit

I uses FOC, which is approximated via 12th order R-C ladder network based on
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CFE approximation [35]. The schematic of the R-C ladder network is depicted in

Fig. 4.7. The values of Cα1 and Cα2, for all the three cases, are taken same and

equal to 3.75 µ℧secα with α=0.5. The values of R0, Ri and Ci (i=1, 2, ...11) to

emulate FOC with α=0.5 and Cα=3.75 µ℧secα can be referred from Sect. 3.3.1.

The FBPF output response of proposed shadow FOF circuit I has been considered

to verify the effect of each feedback signal on ω′
0 and Q′.

Figure 4.7: 12th order R-C ladder network (based on CFE approximation)
realizing FOC

To realize case-1 for FHPF feedback signal, the values of gm1 and gm2 are taken as

534 µA/V and 55 µA/V respectively, while the values of gm3 and gm4 are taken

same and equal to 272 µA/V . The gain A of the external amplifier is set as −0.64,

−1, and −1.62 by adjusting the values of gma and gmb. The magnitude response

of T (s)BP HP is shown in Fig. 4.8 (a) and it is observed that the value of Q′ is

fixed at 0.085 for all the three values of A while the ω′
0 is variable with A.

Further, to realize case-2 of FLPF feedback signal and case-3 of FBPF feedback

signal, the values of gm1 and gm2 are as 376.50 µA/V and the values of gm3 and

gm4 are taken as 272 µA/V . The gain A of the external amplifier is set as −1.16,

−2, −3.76, and −6.21 for the case-2 of FLPF feedback signal, while for case-3 of

FBPF feedback signal, it is set as 1.62, 2, 2.12, and 2.45. The magnitude responses

of T (s)BP LP and T (s)BP BP are shown in Figs. 4.8 (b) and (c) respectively. It is

observed from the figures that for case-2 of FLPF feedback signal, ω′
0 and Q′ both
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are variable with A, while for case-3 of FBPF feedback signal the ω′
0 is constant

at 1.50 kHz for all the four values of A while Q′ is variable with A.

Table 4.5 consists of the values of pole frequency in Hertz (f ′
0=ω′

0/2π) and Q′ with

respect to the external amplifier’s gain A, for each case of feedback signal. It is

observed from the Table 4.5 and above discussion that for case-1 of FHPF feedback

signal the ω′
0 is variable with fixed Q′ while for case-2 of FLPF feedback signal the

ω′
0 and Q′ both are variable. For case-3 of FBPF feedback signal the ω′

0 is fixed

with variable Q′ which corroborates with the theory proposed in Sect. 4.3.

Table 4.5: Summarized simulation results for proposed shadow FOF circuit I

FHPF feedback signal
(case-1)

FLPF feedback signal
(case-2)

FBPF feedback signal
(case-3)

A Q′ f ′
0 A Q′ f ′

0 A Q′ f ′
0

−0.64 0.085 116.4 Hz −1.16 0.22 2.75 kHz 1.62 0.36 1.50 kHz
−1.00 0.085 89.1 Hz −2.00 0.23 3.45 kHz 2.00 0.69 1.50 kHz
−1.62 0.085 71.3 Hz −3.76 0.25 5.45 kHz 2.12 1.39 1.50 kHz

- - - −6.21 0.29 8.80 kHz 2.45 2.18 1.50 kHz

In addition, to analyse the linearity of proposed shadow FOF circuit I, total

harmonic distortion (THD) has been simulated for A=− 1.62 for FHPF feedback

signal (case-1), A= − 2 for FLPF feedback signal (case-2) and A=2 for FBPF

feedback signal (case-3) using same simulation settings. The variation in THD

(in %) as a function of input signal amplitude is plotted in Fig. 4.9. For this a

sinusoidal signal Vin with varying magnitude is applied at the input of the proposed

shadow FOF circuit I for all the three cases. It is observed that for input signal

< 60mV the maximum THD remains under 3.5% for FHPF feedback case while

it remains under 2% for FLPF and FBPF feedback cases.
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(a)

(b)

(c)

Figure 4.8: Proposed shadow FOF circuit I; FBPF Magnitude response for
various A and feedback signal as (a) FHPF (case-1) (b) FLPF (case-2) (c) FBPF

(case-3)
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(a) (b)

(c)

Figure 4.9: THD vs Vin for shadow FOF for proposed Shadow FOF circuit I; for
feedback signals as (a) FHPF (case-1, A=− 1.62) (b) FLPF (case-2, A=− 2) (c)

FBPF (case-3, A=2)

4.5.1.2 Robustness

To examine the robustness of the proposed shadow FOF circuit I, corner analysis

and Monte-Carlo analysis are done. The results of these analyses are discussed

below.

Corner analysis

The outputs of the circuit may fluctuate due to random variations in process

variables around their nominal values during the fabrication process. To evaluate

the sensitivity of the output of the proposed shadow FOF circuit I to the random



84 Chapter 4 - FOFs with Externally Tunable Design Parameters

variations that may occur during fabrication, the proposed circuit is examined at

the five process corners i.e. FF, FS, TT, SF and SS for A= − 1.62 for FHPF

feedback signal (case-1), A= − 2 for FLPF feedback signal (case-2) and A=2 for

FBPF feedback signal (case-3)using same simulation settings. The magnitude

response of FBPF is shown in Figs. 4.10 (a), (b) and (c) for FHPF feedback

case-1 (A= − 1.62), FLPF feedback case-2 (A= − 2) and FBPF feedback case-3

(A=2) respectively for all the five corners. The absence of any sudden changes

in the response confirms the reliability and stability of the proposed shadow FOF

circuit I.

Monte-Carlo analysis

To get additional perception on the sensitivity of the proposed shadow FOF

circuit I with respect to Cα, Monte-Carlo analysis is performed with uniform

Gaussian distribution of passive components used to realize Cα with±5% resistance

and capacitance tolerances, on 500 random samples. The same simulation settings

are taken with A= − 1.62 for FHPF feedback signal (case-1), A= − 2 for FLPF

feedback signal (case-2) andA=2 for FBPF feedback signal (case-3). The distribution

of ω′
0 of FBPF response for 500 samples is shown in Figs. 4.11 (a), (b) and (c) for

FHPF feedback case-1 (A= − 1.62), FLPF feedback case-2 (A= − 2) and FBPF

feedback case-3 (A=2) respectively. The ω′
0 for all the samples lies within a small

range and the mean for all the three cases matched with the corresponding ω′
0

within 3% error, this shows the validity of proposed shadow FOF’s for the random

variation in C ′
αs value.
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(a) (b)

(c)

Figure 4.10: Corner analysis for proposed shadow FOF circuit I; FBPF response,
for feedback signal as (a) FHPF (case-1, A=− 1.62) (b) FLPF (case-2, A=− 2)

(c) FBPF (case-3, A=2)

4.5.2 Proposed Shadow FOF Circuit II

The proposed shadow FOF circuit II consists of OTA1 − OTA3 (basic 2α-order

FOF) and OTA4 − OTA6 (external amplifier with gain A) is shown in Fig. 4.12.

The basic 2α-order FOF contains two outputs, such as: FBPF and FLPF. The

transfer function of the basic 2α-order FOF is given by (4.17).

V (s)LP
Vi(s)

=

−gm1gm3

Cα1Cα2

s2α + sα gm2

Cα1
+ gm2gm3

Cα1Cα2

(4.17a)
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(a) (b)

(c)

Figure 4.11: Monte Carlo Analysis for proposed shadow FOF circuit I for the
random variations in Cα; for feedback signal as (a) FHPF (case-1, A=− 1.62) (b)

FLPF (case-2, A=− 2) (c) FBPF (case-3, A=2)

V (s)BP

Vi(s)
=

sα gm1

Cα1

s2α + sα gm2

Cα1
+ gm2gm3

Cα1Cα2

(4.17b)

Any of the available outputs can drive the external amplifier. As per the type of

feedback signal (i.e. FLPF or FBPF), there will be two types of output responses

of shadow FOF. The FLPF and FBPF output responses of the proposed shadow

FOF circuit II for FLPF and FBPF feedback signals are given in (4.18) and (4.19),

respectively, here A is the gain of the external amplifier. When the feedback signal

is given at the ′p′ terminal of the OTA5, the gain A is equal to gmb

gma
; to achieve

negative polarity of gain A the feedback signal must be given at the ′n′ terminal
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of the OTA5.

T (s)LP LP =
V (s)LP LP

Vin(s)
=

−gm1gm3

Cα1Cα2

s2α + sα. gm2

Cα1
+ gm3

Cα1Cα2
(gm2 − A.gm1)

(4.18a)

T (s)BP LP =
V (s)BP LP

Vin(s)
=

sα. gm1

Cα1

s2α + sα. gm2

Cα1
+ gm3

Cα1Cα2
(gm2 − A.gm1)

(4.18b)

T (s)(LP ) BP =
V (s)(LP ) BP

Vin(s)
=

−gm1gm3

Cα1Cα2

s2α + sα.gm2−A.gm1

Cα1
+ gm2gm3

Cα1Cα2

(4.19a)

T (s)(BP ) BP =
V (s)(BP ) BP

Vin(s)
=

sα. gm1

Cα1

s2α + sα.gm2−A.gm1

Cα1
+ gm2gm3

Cα1Cα2

(4.19b)

Figure 4.12: Circuit diagram of proposed shadow FOF circuit II

There can be total six combinations for different feedback signals and the cases of

stability, such as case-1, 2 and 3 of stability for FLPF feedback signal and case-1,

2 and 3 of stability for FBPF feedback signal. Two cases are chosen to present

here; case-2 for FLPF feedback signal (Variable ω′
0, variable Q′) and case-2 for
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FBPF feedback (Fixed ω′
0, variable Q

′). By using the method outlined for stability

constraints for various feedback signals in Sect. 4.4, the values of gm1, gm2 and A

are calculated. The constraint on A & gms and the effect on ω′
0 and Q′ for both

the cases are given in Table 4.6.

Table 4.6: Constraints on gm & A and effect on ω′
0 & Q′ for both the cases

Feedback
signal

Stability
case

Constraint
on gm

(Cα1=Cα2)
Constraint

on A
Effect on
ω′
0 and Q′

FLPF Case-2 g2m2 < 4gm3(gm2 − Agm1) A < 1 Variable ω′
0, variable Q′

FBPF Case-2 (gm2 − Agm1)
2 < 4gm2gm3 A < 1 Fixed ω′

0, variable Q′

4.5.2.1 Simulation results

To verify the functionality of the proposed shadow FOF circuit II, SPICE simulations

have been carried out with 180 nm CMOS technology model parameters. Section

2.4 provides the detais of the transistors used in OTA, and its corresponding

CMOS schematic is illustrated in Fig. 2.8 (b). The proposed shadow FOF uses

FOC, which is approximated via 12th-order R-C ladder network based on CFE

approximation [35]. The schematic of the R-C ladder network is depicted in Fig.

4.7. The values of Cα1 and Cα2, for all the three cases, are taken same and equal

to 3.75 µ℧secα with α=0.5. The values for R0, Ri and Ci (i=1, 2, ...11) to emulate

FOC with α=0.5 and Cα=3.75 µ℧secα can be referred from Sect. 3.3.1. The

FBPF output response of the proposed shadow FOF circuit II has been considered

to verify the effect of each feedback signal on ω′
0 and Q′.

To realize case-2 of FLPF feedback signal, the values of gm2 and gm3 are taken

same and equal to 534 µA/V and gm1 is set as 377 µA/V . The external amplifier’s
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gain A is realized as −1, −2, −3.76 and −10 by adjusting the values of gma and

gmb.

The magnitude response of T (s)BP LP (case-2) is shown in Fig. 4.13 (a). It is

clear that ω′
0 and Q′ both are variable with respect to external amplifier’s gain A,

but the dependency of Q′ on gain A is negligible for negative values of A, which

corroborates with the theory proposed in Sect. 4.3.

Further, case-2 of FBPF feedback signal is realized and the value of gm1 is taken

as 55 µA/V while gm2 and gm3 are taken same and equal to 534 µA/V . The

magnitude response of T (s)BP LP (case-2) is shown in Fig. 4.13 (b). It is observed

from the figure that for a fixed ω′
0, Q

′ is variable with respect to external amplifier’s

gain A, same has been derived in theory as well.

Table 4.7 consists of the values of pole frequency in Hertz (f ′
0=ω′

0/2π) and Q′ with

respect to the external amplifier’s gain A, for each case of feedback signal. It is

clear from the Table 4.7, as the external amplifier’s gain A becomes more negative,

f ′
0 increases for case-2 of FLPF feedback signal, while it remains constant for FBPF

feedback signal case-2. The Q′ for both the cases is variable, which corroborates

with theoretical predictions. Further, to analyse the linearity of shadow FOF

circuit II, total harmonic distortion (THD) has been simulated for A= − 2 for

Table 4.7: Summaized simulation results for proposed shadow FOF circuit II

A
FLPF feedback signal (case-2) FBPF feedback signal (case-2)

Q′ f ′
0 Q′ f ′

0

−1 0.20 3.44 kHz 0.15 2.22 kHz
−2 0.23 5.16 kHz 0.12 2.22 kHz
−3.76 0.26 7.71 kHz 0.08 2.22 kHz
−10 0.28 13.77 kHz 0.04 2.22 kHz
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(a)

(b)

Figure 4.13: Proposed Shadow FOF circuit II; FBPF Magnitude response for
various A and feedback signal as (a) FLPF (case-2) (b) FBPF (case-2)

FLPF feedback signal (case-2) and A= − 2 for FBPF feedback signal (case-2)

using the same simulation settings. For this a sinusoidal signal Vin with varying

magnitude is applied at the input of the proposed shadow FOF circuit II for both

the cases. The measured THD is shown in Figs. 4.14 (a) and (b) for FLPF

feedback case-2 (A= − 2) and FBPF feedback case-2 (A= − 2) respectively. It is

found that for input signal < 60mV the maximum THD remains under 3% for

both the cases.
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(a) (b)

Figure 4.14: THD vs Vin for proposed Shadow FOF circuit II; for feedback signal
as (a) FLPF (case-2, A=− 2) (b) FBPF (case-2, A=− 2)

4.5.2.2 Robustness

The robustness of the proposed Shadow FOF Circuit II was evaluated through two

types of analyses: corner analysis and Monte-Carlo analysis. The results of these

analyses are discussed below.

Corner analysis

To evaluate the sensitivity of the output of the proposed shadow FOF circuit II

to the random variations that may occur during fabrication, the proposed circuit

is examined at the five process corners i.e. FF, FS, TT, SF and SS for the same

simulation settings with A=− 10 for FLPF feedback signal (case-2) and A=− 10

for FBPF feedback signal (case-2). The magnitude responses of FBPF for both the

cases i.e., FLPF feedback (case-2, A=−10) and FBPF feedback (case-2, A=−10)

are shown in Figs. 4.15 (a) and (b), respectively for all the five corners FF, FS,

TT, SF and SS. The absence of any sudden changes in the response confirms the

reliability and stability of the proposed shadow FOF circuit II.
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(a) (b)

Figure 4.15: Corner analysis for proposed shadow FOF circuit II; FBPF
response, for feedback signal as (a) FLPF (Case-2, A=− 10) (b) FBPF as

feedback signal (Case-2, A=− 10)

Monte-Carlo analysis

To get further insight on sensitivity of the proposed shadow FOF circuit II with

respect to random variations in Cα, Monte Carlo analysis is performed on 500

random samples. The samples were generated using a uniform Gaussian distribution

with a ±5% tolerance for the passive components that were used to realize Cα. The

distribution of the ω′
0 of FBPF for FLPF feedback case-2 signal and FBPF feedback

signal case-2 with A=− 2 is illustrated in Figs. 4.16 (a) and (b) respectively. The

ω′
0 for all the samples lies within a small range and the mean for both the cases

matched with the corresponding ω′
0 within 1% error, this shows the validity of

proposed shadow FOF’s for the random variation in C ′
αs value.

4.6 Conclusion

In this chapter, the theory of integer-order shadow filters is generalized to fractional

domain. Mathematical equations have been drafted to determine the pole frequency
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(a) (b)

Figure 4.16: Monte Carlo Analysis for proposed shadow FOF circuit II for the
variations in Cα; for feedback signal as (a) FLPF (Case-2, A=− 2) (b) FBPF

(Case-2. A=− 2)

and pole quality factor when different types of feedback signals, such as low-pass,

high-pass, band-pass, or band-stop, are applied to the external amplifier in the

feedback loop and demonstrated using MATLAB simulations. The proposed theory

is verified through SPICE simulations using two active FOFs and found that results

fit in the theoretical predictions very well. The shadow FOF’s parameters such as

ω′
0 and Q′ are tuned with the help of external amplifier’s gain, without changing

the active or passive components of the basic FOF. For both of the shadow FOF

circuits the THD is found to be below 4%. Further, corner and Monte-Carlo

analysis have been performed to verify the robustness of the shadow FOF circuits.
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5.1 Introduction

Oscillators are extensively employed for signal generation in a wide range of applications

such as waveform generation, signal transmission, reception, and jamming [133].

There are two broad categories in which oscillators can be classified: sinusoidal

oscillators and relaxation oscillators (multivibrator). Recently, there has been

growing interest in the design of fractional-order oscillators (FOOs), which incorporate

the fractional-order concepts in oscillator designing.

The FOOs are generalized version of integer-order oscillators that offer a broader

range of frequency of oscillation and allow for controlled phase shift through α.

This feature of FOOs make them suitable for a wide range of applications. For

instance, the ability to generate very low frequencies makes them ideal for use in

biomedical applications, while the capability to generate very high frequencies

makes them well-suited for communication systems. Further, oscillators with

controlled phase shift have a wide range of applications, including PSKmodulation-demodulation

schemes, Alzheimer’s disease diagnosis, and music synthesizing, etc., [134], [135].

This chapter presents three new sinusoidal FOOs and one fractional-order multivibrator

based on OTA. The first two circuits of the sinusoidal FOO are designed using the

trans-admittance mode FAPF with a trans-impedance mode integrator/differentiator

topology. Additionally, the third circuit of the sinusoidal FOO features a unique

design that enables independent control of the phase difference between its two

output voltages. Further, an electronically tunable fractional-order multivibrator

based on OTA has been generalized to fractional domain. The mathematical

formula for the time period has been derived using Reimann-Liouville fractional
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integral.

5.2 Proposed Sinusoidal FOO Circuit I & Circuit II

Two circuits to construct sinusoidal FOO are presented in this section. The circuit

I consists of a trans-admittance mode FAPF connected with a trans-impedance

mode integrator, whereas the circuit II contains a trans-admittance mode FAPF

connected with a trans-impedance mode differentiator. Both circuits are discussed

in the following subsections.

5.2.1 Proposed Sinusoidal FOO Circuit I

The proposed FOO circuit I consists of a trans-admittance mode FAPF comprised

of two OTAs (OTA1 and OTA2) along with a FOC (Cα), and a trans-impedance

mode integrator comprised of a FOC (Cβ), is shown in Fig. 5.1. It provides one

output VO1. By performing routine network analysis, characteristic equation of

the proposed FOO circuit I is obtained and given below:

sα+β − gm2

Cβ

sα +
gm2

Cα

sβ +
gm1gm2

CαCβ

= 0 (5.1)

The Barkhausen criterion is necessary but not sufficient condition for the sustained

oscillations in a fractional-order oscillatory system [136]. In order to ensure the

presence of imaginary conjugate poles at±jω axis, it is assumed that the imaginary

conjugate poles are already on ±jω axis. It is also necessary for these poles



5.2 Proposed Sinusoidal FOO Circuit I & Circuit II 99

Figure 5.1: Proposed sinusoidal FOO circuit I (FAPF followed by integrator)

to satisfy the characteristic equation of the oscillator for a specific oscillation

frequency (ω0). Hence putting +jω0 and −jω0 in the characteristic equation of

the proposed FOO circuit I gives (5.2).

ωα+β
0 cos

(α + β)π

2
− ω0

α gm2

Cβ

cos
απ

2
+ ω0

β gm2

Cα

cos
βπ

2
+

gm1gm2

CαCβ

= 0 (5.2a)

ωβ
0 sin

(α + β)π

2
+ ω0

β−α gm2

Cα

sin
βπ

2
− gm2

Cβ

sin
απ

2
= 0 (5.2b)

By solving (5.2a) and (5.2b), the frequency of oscillation (FO) and condition of

oscillation (CO) are determined. For various cases of α and β, FO and CO are

given in Table 5.1.

To design the proposed FOO circuit I, first of all, the FO is set to the desired

value. By using FO’s equation for a particular case of α and β (given in Table 5.1)

the values of Cα, Cβ and gm2 are chosen. Now using CO equation the remaining

parameter i.e., gm1 is calculated.



100 Chapter 5 - Electronically Tunable Fractional-Order Oscillators

5.2.2 Proposed Sinusoidal FOO Circuit II

The proposed FOO circuit II consists of a trans-admittance mode FAPF comprised

of two OTAs (OTA1 and OTA2) along with a FOC (Cα), and a trans-impedance

mode integrator comprised of another two OTAs (OTA3 and OTA4) along with

a FOC (Cβ), is shown in Fig. 5.2. It provides one output VO1. By performing

routine network analysis, the characteristic equation of the proposed FOO circuit

II is obtained and given below:

sα+β +
gm3gm4

gm2Cβ

sα − gm1

Cα

sβ +
gm3gm4

CαCβ

= 0 (5.3)

Figure 5.2: Proposed sinusoidal FOO circuit II (FAPF followed by differentiator)

By using the method outlined in Sect. 5.2.1 to calculate FO and CO; lets consider

the poles of characteristic equation of proposed FOOO circuit II are ±jω0. Hence

putting +jω0 and−jω0 in the characteristic equation of the proposed FOO circuit II
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gives (5.4).

ωα+β
0 cos

(α + β)π

2
+ ω0

α gm3gm4

gm2Cβ

cos
απ

2
− ω0

β gm1

Cα

cos
βπ

2
+

gm3gm4

CαCβ

= 0 (5.4a)

ωβ
0 sin

(α + β)π

2
− ω0

β−α gm1

Cα

sin
βπ

2
+

gm3gm4

gm2Cβ

sin
απ

2
= 0 (5.4b)

On solving (5.4), the expression for FO and CO are obtained. For various cases

of α and β, FO and CO are given in Table 5.1.

To design the proposed FOO circuit II, first of all, the FO is set to the desired

value. By using FO’s equation for a particular case of α and β (given in Table

5.1) the values of Cα, Cβ, gm2, gm3 and gm4 for (α = β ̸= 1) and (α ̸= 1, β = 1)

case are chosen and Cα, Cβ, gm1, gm3 and gm4 for (α = 1, β ̸= 1) case are chosen.

Now using CO equation the remaining parameter i.e., gm1 for (α = β ̸= 1) and

(α ̸= 1, β = 1) case, and gm2 for (α = 1, β ̸= 1) case is calculated.

5.2.3 Functional Verification

To demonstrate the functionality of proposed FOO circuit I and circuit II, SPICE

simulations have been carried out with 180 nm CMOS technology model parameters.

The supply voltages are taken as ±1.5 V . Section 2.4 provides the details of the

transistors used in OTA, and its corresponding CMOS schematic is illustrated in

Fig. 2.8 (b). The FOC utilized in the proposed FOO structures is realized using

the R-C ladder network based on 7th order Valsa’s algorithm [116] shown in Fig.

5.12. The passive components’ values to emulate FOCs of magnitude 1 µ℧secα
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and 2 µ℧secα with fractional-orders 0.5 are given in Table 5.2.

Table 5.2: Specifications for passive components used to construct approximated
FOC based on Valsa’s algorithm

Cα

(α)

Rp

Cp

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5

R6

C6

R7

C7

1 µ℧secα
(0.5)

259.5 kΩ
157.84 pF

173.01 kΩ
57.8 nF

69.5 kΩ
23.12 nF

27.68 kΩ
9.248 nF

11.07 kΩ
3.69 nF

4.34 kΩ
1.48 nF

1.77 kΩ
592 pF

708.63 Ω
236.8 pF

2 µ℧secα
(0.5)

129.75 kΩ
315.68 pF

86.51 kΩ
115.6 nF

34.75 kΩ
46.24 nF

13.84 kΩ
18.496 nF

5.535 kΩ
7.38 nF

2.17 kΩ
2.96 nF

0.885 kΩ
1.184 nF

354.315 Ω
473.6 pF

The transient response and frequency spectrum for the proposed FOO circuit I is

shown in Fig. 5.3 and for the proposed FOO circuit II, it is shown in Fig. 5.4,

for different cases of α and β. The simulation settings for the perticular case of α

and β are given in Table 5.3. Table 5.3 provides a summary of the theoretical and

simulated frequencies of oscillations in Hertz for all the mentioned cases. The error

between simulated and theoretical values of frequency of oscillation lies within 9%

for both the topologies which corroborates with the theoretical predictions.

Moreover, to show the electronic tuning of frequency of oscillation for the

proposed circuits of FOO, graphs between f0 (f0=ω0/2π), gm1 and gm2 are plotted

and shown in Fig. 5.5, taking the values of Cα, Cβ, gm3 and gm4 from Table 5.3

for α=β=0.5 case. By analyzing the information presented in Fig. 5.5, it can be

concluded that the frequency of oscillation can be modified through the electronic

adjustment of gm1 and/or gm2.

The study is extended to investigate the usability of proposed FOO circuit
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I for generating very low frequencies. The proposed FOO circuit I is designed

to generate a sinusoidal waveform of 5 Hz. The values of Cα and Cβ are kept

constant at 2 µ℧secα and 1 µ℧secβ respectively, with α=β=0.5. To achieve the

desired frequency of 5Hz, gm1 and gm2 are chosen as 3.96 µA/V and 15.85 µA/V ,

respectively. However, the generated waveform had a frequency of 4.9 Hz, slightly

lower than the designed value with a percentage error of 1%. The transient

(a)

(b)

Figure 5.3: Transient response and frequency spectrum of proposed FOO
circuit I (a) α=β=0.5 (b) α=1 & β=0.5
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(a)

(b)

Figure 5.4: Transient response and frequency spectrum of proposed FOO
circuit II (a) α=β=0.5 (b) α=0.5 & β=1

response and frequency spectrum are illustrated in Fig. 5.6.

5.2.4 Stability Analysis

The stability of the proposed FOO circuits I and circuit II has been verified using

root locus method for linear fractional-order system outlined in section 2.3 [117].
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(a)

(b)

Figure 5.5: Electronic tuning of f0 with gm1 and gm2 (a) FOO circuit I (b) FOO
circuit II

The pole plots for the characteristic equation of the proposed FOO circuit I and

circuit II are acquired through forlocus function of MATLAB [122] for α=β=0.5

case (p=1 and q=2; as α=p
q
=0.5) with the same simulation settings specified in
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Figure 5.6: Transient response and frequency spectrum of the proposed FOO
circuit I in VLF mode

Table 5.3 for the specified case and shown in Figs. 5.7 (a) and (b) respectively.

The boundaries for stable and unstable regions are separated by ± π
2q

(i.e., ±π
4
)

and shown as dotted dash lines. As it may be witnessed from Figs. 5.7 (a) and

(b) that both the roots lie on the line ±π
4
, hence proposed structures oscillate and

none of the roots are in unstable region so the proposed FOO circuits I and circuit

II do not show unstable behaviour.

5.2.5 Sensitivity Analysis

The sensitivity analysis is one of the most important analysis to study the performance

of a circuit. Thus, the sensitivity analysis for the frequency of oscillation of the

proposed FOO circuits I and circuit II with respect to various circuit components

(i.e., Cα, Cβ, gm1, gm2, gm3 and gm4) has been derived mathematically and given

in Table 5.4. Based on the information presented in Table 5.4, it can be observed
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(a)

(b)

Figure 5.7: Pole plots for α=β=0.5 for (a) proposed FOO circuit I (b) proposed
FOO circuit II

that the frequency of oscillation of the proposed FOOs is more sensitive to lower

values of the fractional-order α. As the value of fractional-order α approaches

unity the sensitivity reduces.

Table 5.4: Sensitivity with respect to various parameters for Proposed FOO
circuit I and circuit II

|Sω0
Y | Proposed FOO circuit I Proposed FOO circuit II

|Sω0
gm1

| 0 1
α

[
1− gm3gm4Cα

gm1gm2Cβ

]
|Sω0

gm2
| 1

α
1
α

[
1− gm1gm2Cβ

gm3gm4Cα

]
|Sω0

gm3
| - |Sω0

gm2
|

|Sω0
gm4

| - |Sω0
gm2

|
|Sω0

Cα
| Cβ

α(Cα−Cβ)
|Sω0

gm1
|

|Sω0
Cβ
| Cα

α(Cα−Cβ)
|Sω0

gm2
|
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5.2.6 Robustness

To verify the robustness of the proposed sinusoidal FOO circuits, PVT and Monte-Carlo

analysis are performed. The results of these analyses for α=β=0.5 case are

discussed below.

5.2.6.1 PVT analysis

The PVT analysis of the proposed FOOs has been carried out to examine the

robustness. Both of the proposed FOO circuits are simulated at different process

corners, supply voltage variations and temperature variations.

The proposed FOO circuit I and circuit II are examined at five process corners i.e.

FF, FS, TT, SF and SS for α=β=0.5 case with simulation settings specified in Sect.

5.3.1 for this case. The values of frequency of oscillation in Hetrz (f0 = ω0/2π)

and percentage error from TT corner point for all the remaining four corner points

(i.e., FF, FS, SF, SS) are observed and enlisted in Table 5.5. It is clear from

the results that the percentage error in frequency of oscillation lies within 5% for

various corners.

Figures 5.8 and 5.9 depict the transient response in presence of supply voltage

variations (1.5 V and 1.5 V±3%) and temperature variations (0◦, 27◦ and 70◦)

respectively, for both of the proposed FOO circuits. No abrupt changes have been

observed in the transient response of the proposed FOO circuits in the presence of

supply voltage and temperature variations. The results of PVT analysis suggest

that both of the FOO circuits are able to perform consistently under a wide range
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(a)

(b)

Figure 5.8: Transient response for supply voltage variations for proposed FOO
(a) circuit I (b) circuit II

of operating conditions.

5.2.6.2 Monte-Carlo analysis

To draw further attention on sensitivity of the proposed FOO circuits I and

circuit II with respect to random variations in FOC i.e. Cα and Cβ, Monte-Carlo

simulation is done on 250 random samples. The values of passive components, used

for FOC realization, are randomly varied in uniform Gaussian distribution with a

tolerance of ±5%. The distribution of the frequency of oscillation for the proposed

FOO circuit I and circuit II is shown in Fig. 5.10 (a) and (b) respectively, for

α=β=0.5 case. The simulation settings are specified in Table 5.3. The frequency
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(a)

(b)

Figure 5.9: Transient response for temperature variations for proposed FOO (a)
circuit I (b) circuit II

Table 5.5: Oscillation frequency of Proposed FOO circuit I and circuit II for all
five process corners for α = β = 0.5

Process
corner

Oscillation
Frequency (Hz)

% error
from TT corner Circuit

FF 188.93 4.50%
FS 183.75 1.63%
TT 180.93 - Proposed FOO
SF 183.13 1.29% Circuit I
SS 172.88 4.38%

FF 1.38k 2.29%
FS 1.36k 3.82%
TT 1.41k - Proposed FOO
SF 1.36k 3.82% Circuit II
SS 1.35k 4.58%



5.2 Proposed Sinusoidal FOO Circuit I & Circuit II 113

of oscillation for all the samples lies within a small range and the mean for both the

cases matched with the corresponding frequency of oscillation within ±0.5% error,

this shows the validity of proposed FOO circuit I and circuit II for the random

variation in Cα’s value.

(a)

(b)

Figure 5.10: Monte Carlo analysis for random variations in Cα of (a) proposed
FOO circuit I (b) proposed FOO circuit II
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5.3 Proposed Sinusoidal FOO Circuit III

The proposed FOO circuit III, employs two OTAs (OTA1 and OTA2) and two

FOCs (Cα and Cβ) with fractional-order α and β respectively, is shown in Fig. 5.11.

The circuit provides two outputs as VO1 and VO2. Using routine network analysis,

the characteristic equation of the proposed FOO circuit III is given by as:

sα+β − sβ
gm1

Cα

+
gm1gm2

CαCβ

= 0 (5.5)

The method to obtain FO and CO of the FOO has already been disccussed in

Figure 5.11: Proposed sinusoidal FOO circuit III

Sect. 5.2.1. By using the same method, lets consider the poles of the characteristic

equation of the proposed FOO circuit III are ±jω0. Hence putting +jω0 and −jω0

in (5.5) and by separating its real and imaginary parts (5.6) is obtained.

ωα+β
0 cos

(α + β)π

2
− gm1

Cα

ωβ
0 cos

βπ

2
+

gm1gm2

CαCβ

= 0 (5.6a)

ωα+β
0 sin

(α + β)π

2
− gm1

Cα

ωβ
0 sin

βπ

2
= 0 (5.6b)
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By solving (5.6b), the FO is calculated as:

FO : ω0 =

[
gm1 sinβπ

2

Cα sin (α+β)π
2

] 1
α

(5.7)

The CO may be obtained by putting the value of ω0 from (5.7) into (5.6a) and

given as below:

CO : gm1 =

[
Cα sin (α+β)π

2

sinβπ
2

] gm2

Cβ

(
cosβπ

2
− sinβπ

2

tanα+βπ
2

)


α
β

(5.8)

Further, the output terminals’ voltage (VO1 and VO2) of the proposed FOO circuit III

are linked as VO1

VO2
=

sβCβ

gm2
, which suggests that the phase difference between two

voltages (∆ϕ=∠VO1-∠VO2) is equal to
βπ
2
, i.e. ∆ϕ depends only upon the FOC’s

order and can be controlled independently.

5.3.1 Functional Verification

To demonstrate the functionality of the proposed FOO circuit III, SPICE simulations

with 180 nm CMOS technology model parameters have been conducted. The

supply voltages are used as ±1.5 V . Section 2.4 provides the details of the

transistors used in OTA, and its corresponding CMOS schematic is illustrated

in Fig. 2.8 (b). The FOC utilized in the proposed FOO circuit III is realized using

the R-C ladder network based on 7th order Valsa’s algorithm [116] shown in Fig.

5.12. The passive components’ values to emulate FOCs of magnitude 1 µ℧secα and

2 µ℧secα with fractional-orders 0.5 are given in Table 5.2 and FOCs of magnitude
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1 µ℧secα with fractional-order 0.8 is given in Table 5.6.

Figure 5.12: 7th order R-C network to emulate FOC’s behaviour based on Valsa’a
algorithm

Table 5.6: Specifications for passive components used to construct approximated
FOC based on Valsa’s algorithm

Cα

(α)

Rp

Cp

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5

R6

C6

R7

C7

1 µ℧secα
(0.8)

254.43 kΩ
34 nF

73.66 kΩ
135.77 nF

17 kΩ
94.11 nF

3.92 kΩ
65.23 nF

906 Ω
45.21 nF

209 Ω
31.34 nF

48.27 Ω
21.72 nF

11.14 Ω
15.06 nF

First of all, β is chosen as per the required phase difference (∆ϕ) between VO1

and VO2, here β is chosen as 0.5 to make ∆ϕ = 45◦ and 0.8 to make ∆ϕ = 72◦. For

α=β=0.5, by choosing Cα=1 µ℧secα, Cβ=2 µ℧secβ and gm2=100 µA/V, to satisfy

CO the value of gm1 is calculated as 100 µA/V. While for α=β=0.8, choosing

Cα=Cβ=1 µ℧secα and gm2=406.42 µA/V gives the value of gm1 is obtained as

155.26 µA/V, to satisfy condition of oscillations.

The transient response and frequency spectrum for both the cases i.e., α=β=0.5

and α=β=0.8 of the proposed FOO circuit III are shown in Figs. 5.13 (a) and (b)

respectively. The simulated and theoretical frequency of oscillation are 727.08 Hz

and 795.7 Hz respectively for α=β=0.5 whereas the same are 154.4 Hz and 159.15 Hz

respectively for α=β=0.8. The error between simulated and theoretical values of
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frequency of oscillation lies within 9%. The transient response of VO1 and VO2 is

shown in Fig. 5.14, which verifies the phase difference between the two voltages

is 46◦ for α=β=0.5 and 71.2◦ for α=β=0.8 with an error of 2.22% and 1.15%

respectively from the theoretical phase difference.

(a)

(b)

Figure 5.13: Transient response and frequency spectrum of the proposed FOO
circuit III for (a) α=β=0.5 (b) α=β=0.8
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(a)

(b)

Figure 5.14: Transient response of VO1 and VO2 (a) α=β=0.5 (b) α=β=0.8

5.3.2 Stability Analysis

The stability of the proposed FOO circuit III has been verified using root locus

method for linear fractional-order system outlined in section 2.3 [117]. The pole

plot is obtained through forlocus function of MATLAB [122] for α=β=0.5 case

(p=1 and q=2; as α=p
q
=0.5) with simulation settings specified in Sect. 5.3.1 and

shown in Fig. 5.15. The boundaries for stable and unstable regions are separated

by ± π
2q

(i.e., ±π
4
) and shown as dotted dash lines. As it is observed from Fig. 5.15,

the roots lie on the line ±π
4
and none of the roots are in unstable region, so the

proposed FOO circuit III does not show unstable behavior.
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Figure 5.15: Proposed FOO circuit III’s pole plot for α = β = 0.5

5.3.3 Sensitivity Analysis

To examine the sensitivity of the frequency of oscillation of proposed FOO circuit III

with respect to various circuit components (i.e. Cα, Cβ, gm1 and gm2), the mathematical

formulas have been derived and given below:

|Sω0
gm1

| = |Sω0
Cα
| = 1

α
(5.9a)

|Sω0
gm2

| = |Sω0
Cβ
| = 0 (5.9b)

From the above equations of sensitivities, it is clear that the frequency of oscillation

of the proposed FOO circuit III is more sensitive for gm1 and Cα variations and

the sensitivity is higher for lower values of the fractional-order α. As the value

of fractional-order α approaches unity the sensitivity also becomes one. Further,

the frequency of oscillation of the proposed FOO circuit III does not show any

variations towards gm2 and Cβ.
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5.3.4 Robustness

To examine the robustness of the proposed FOO circuit III, corner analysis and

Monte-Carlo analysis are done. The results of these analyses are discussed below.

5.3.4.1 Corner analysis

The proposed FOO circuit III is examined at five process corners i.e. FF, FS, TT,

SF and SS for α=β=0.5 case with same simulation settings specified in Sect. 5.3.1

for this case. Table 5.7 contains frequency of oscillation in Hertz (f0 = ω0/2π) and

% error for all five corner points from TT corner point and it appears that the %

error lies within 5%, which corroborates robustness of the proposed FOO circuit

III for given corners.

Table 5.7: Oscillation frequency of Proposed FOO circuit III for all five process
corners for α = β = 0.5

FF FS TT SF SS

f0 [Hz] 760.33 717.29 727.08 721.18 698.25

% error
from TT corner 4.60% 1.35% − 0.81% 3.96%

5.3.4.2 Monte-Carlo analysis

To get further impression on the sensitivity of the proposed FOO circuit III with

respect to random variations in FOC i.e. Cα and Cβ, Monte-Carlo analysis is

carried out on 250 random samples. The values of passive components used for

FOC realization are randomly varied in uniform Gaussian distribution with a
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tolerance of ±5%. The distribution of frequency of oscillation in Hertz (f0=ω0/2π)

is shown in Fig. 5.16 for α=β=0.5 case with same simulation settings specified in

Sect. 5.3.1. The entire data range lies in a small range and the mean is matched

with the corresponding f0 within 0.5% error, this shows the robustness of proposed

FOO circuit III for the random variations in FOC’s value.

Figure 5.16: Monte Carlo analysis of proposed FOO circuit III for random
variations in Cα

5.4 Fractional-Order Multivibrator

In sections 5.2 and 5.3, three sinusoidal FOOs are presented. In this section, a

multivibrator, built around three OTAs [137], is generalized in fractional domain,

this generalized multivibrator is called fractional-order multivibrator. The mathematical

formula for the time period of the proposed fractional-order multivibrator is derived.

The proposed fractional-order multivibrator employs a Schmitt Trigger and a

fractional-order integrator. The Schmitt Trigger, comprises of two voltage amplifiers
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interconnected in regenerative feedback manner, the first amplifier utilizes OTA1

andR1, while the other amplifier is formed usingOTA2 andR2. The fractional-order

integrator, composed of OTA3 and FOC (Cα), is incorporated into the regenerative

feedback path, as depicted in Fig. 5.17 (a) [137].

The saturation levels (L±) at the output node VO1 of the proposed fractional-order

multivibrator depend upon bias current of OTA1 (Ib1), the values are given as

(L± = ±Ib1R1), while the lower threshold voltage (VTL) and higher threshold

voltage (VTH) depend upon bias current of OTA2 (Ib2), as they are decided by the

comparison voltage VO2, the values are given as (VTL = −Ib2R2) and (VTH = Ib2R2)

respectively. The time constant of the integrator is directly proportional to the

bias current of OTA3 (Ib3).

Assume, initially the output VO1 of the proposed fractional-order multivibrator

be at one of its two possible levels, say L+ (i.e., positive saturation level), which

makes OTA3 saturate. Thus, a bias current Ib3 starts to flow through the Cα

and Cα starts charging towards this level. As soon as the voltage at Cα (VO3)

reaches a level called higher threshold voltage (VTH), equal to the voltage at the

positive terminal of OTA1, the output VO1 switches its state to negative saturation

voltage L−. Now the negative saturation voltage at VO1 reverses the direction of

the output current of OTA3, leads to discharging of Cα, which will continue untill

the lower threshold voltage (VTL) is reached. At this point, OTA1 again changes

its state and output VO1 becomes L+ and the direction of output current of OTA3

is reversed, hence, voltage on Cα (i.e., VO3) starts to increase again, and the new

cycle of oscillation starts. This procedure is shown in Fig. 5.17 (b), with the

dotted line as the voltage across Cα and the solid line as voltage at the output
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node VO1.

(a)

(b)

Figure 5.17: Fractional-order multivibrator (a) Circuit diagram (b) waveforms,
dotted line is voltage across Cα, solid line is square wave output at node VO1

5.4.1 Oscillation Frequency

From the above discussion of proposed fractional-order multivibrator, it is clear

that the time period is defined as the total time taken to charge and discharge the

Cα via bias current Ib3. Equation (5.10) represents voltage across Cα (VO3), which
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is equal to fractional integral of order α of IB3

Cα
and is given as below:

VO3 = t1I
α
t2

[
Ib3
Cα

]
(5.10)

Where t1I
α
t2
[f(t)] is the fractional integral of order α of function f(t) within the

time limits of t1 and t2, it can also be denoted as t1D
−α
t2 [f(t)] [15].

The Riemann-Liouville fractional integral of a constant may be calculated by using

(6) of [15] and is given below:

t1I
α
t2

[
Kt0

]
=

K(t2 − t1)
α

Γ(1 + α)
(5.11)

Here Γ(.) is the Gamma function.

For the charging duration TH (i.e., [t2− t1] = TH) in Fig. 5.17 (b), by using (5.11),

(5.10) can be solved as:

VTH − VTL =
Tα
H

Γ(1 + α)

Ib3
Cα

(5.12)

Substituting the values of VTH and VTL as Ib2R2 and −Ib2R2 respectively in (5.12),

TH is obtaine as:

TH =

[
2Ib2R2CαΓ(1 + α)

Ib3

] 1
α

(5.13)

Similarly, for the discharging duration TL, the current Ib3 is reversed and by

referring to Fig. 5.17 (b), (5.10) can be solved as:

VTL − VTH =
Tα
L

Γ(1 + α)

−Ib3
Cα

(5.14)
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Substituting the values of VTH and VTL as Ib2R2 and −Ib2R2 respectively in (5.14),

TL is obtained as:

TL =

[
2Ib2R2CαΓ(1 + α)

Ib3

] 1
α

(5.15)

Total time period of oscillation (Tα) can be obtained by adding TH and TL. The

frequency of oscillation (fα) is the reciprocal of (Tα).

Tα = TH + TL = 2

[
2Ib2R2CαΓ(1 + α)

Ib3

] 1
α

, fα =
1

Tα

(5.16)

Due to the fact that the magnitude of charging and discharging currents are same,

the duty cycle of the generated waveforms is 50%. The amplitude of the square

wave at the output node VO1 is L± and equals to ±Ib1R1, can be controlled

electronically with the help of bias current of OTA1 (Ib1). Further, Tα can be

electronically controlled using the bias current of OTA3 (Ib3), thus one can say

that the amplitude of the square wave and Tα can be tuned independently. From

(5.16), it is clear that Tα can also be controlled using fractional-order α. Hence α

provides an extra degree of freedom.

For the case of integer-order capacitor, 1 is placed as the value of α in (5.16)

and the time period and frequency of oscillation of integer-order multivibrator is

obtained as below:

T =
4Ib2R2C

Ib3
, f =

1

T
(5.17)
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5.4.2 Functional Verification

To prove the concept of the proposed fractional-order multivibrator, SPICE simulations

have been carried out with 180 nm CMOS technology model parameters. The

supply voltages are taken as ±1.8 V . The values of R1 and R2 are taken the same

and equal to 50 kΩ. Section 2.4 provides the details of the transistors used in

OTA, and its corresponding CMOS schematic is illustrated in Fig. 2.8 (b). The

FOC utilized in the proposed fractional-order multivibrator is realized using the

R-C ladder network based on 7th order Valsa’s algorithm and shown in Fig. 2.5

[116]. The values of passive components to realize FOC with α = 0.5, 0.8 and

Cα = 1 µ℧secα are given in Table 2.3.

Figure 5.18 shows the waveforms at the output terminals VO1 and VO3 for two

different values of α (i.e., 0.5 and 0.8). The bias currents Ib1, Ib2 and Ib3 are taken

as 25 µA, 25 µA and 100 µA respectively, while Cα is taken as 1 µ℧secα for both

the values of α.

Simulation results for the time period of the proposed fractional-order multivibrator

for α=0.5, 0.8 and 1 with Ib3 swept from 20 µA to 120 µA are listed in Table

5.8. The values of Ib1 and Ib2 are taken same and equal to 25 µA. It can be

interpreted from Table 5.8 that the proposed fractional-order multivibrator has

lower time period and hence higher frequency than integer-order multivibrator for

the same value of Ib3. For example, for Ib3 = 120 µA, the frequency of the proposed

fractional-order multivibrator is about 125 times higher than that of integer-order

multivibrator. The graph between time period and Ib3 for α = 0.5 and 0.8 is shown

in Fig. 5.19. It may be observed from (5.16), as α increases, the term (1/α) in the
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Figure 5.18: The time domain responses for Ib1=Ib2=25 µA and Ib3=100 µA (a)
α=0.5 (b) α=0.8

Figure 5.19: Time period with respect to bias current Ib3 with Ib1=Ib2=25 µA

exponent decreases, which causes the curve to approach its asymptotic limit more

quickly.

Further, to examine electronic tuning of Tα of the proposed fractional-order

multivibrator, the output VO1 are shown in Fig. 5.20 for four different values of
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Table 5.8: Variation of simulated time period with bias current Ib3

Bias current
Ib3(µA)

Time period (ms)

α=0.5 α=0.8

α=1
Integer-order
capacitor

20 9.42 95.17 228.60
30 5.20 58.81 154.29
40 2.40 41.44 116.87
50 1.60 31.62 94.27
60 1.13 25.44 79.05
70 0.84 21.22 68.18
80 0.65 18.16 60.00
90 0.53 15.85 53.63
100 0.47 14.04 48.51
110 0.37 12.59 44.38
120 0.33 11.40 40.88

Ib3 i.e., 40 µA, 60 µA, 80 µA and 100 µA. The values of Ib1 and Ib2 are taken

same and equal to 25 µA with α=0.5 and Cα=1 µ℧secα. The Tα decreases as Ib3

increases but the amplitude of the square wave remains unchanged.

To test independent electronic control over the amplitude of square wave VO1, Ib1

is swept form 8 µA to 26 µA and the bias currents Ib2 and Ib3 are taken as 25 µA

and 100 µA respectively. The graph between amplitude of VO1 and Ib1 is shown

in Fig. 5.21 for α=0.5 and 0.8. It is clear from the graph that the amplitude of

square wave is directly proportional to Ib1 and does not depend upon the value of

α.

The Tα of the proposed fractional-order multivibrator can also be controlled

using R2 while R1 determines the amplitude of the waveform. Figure 5.22 shows

the waveform at output VO1 for three different values of R1 and R2 (i.e., (a)

R1=R2=5 kΩ (b) R1=R2=15 kΩ (c) R1=R2=25 kΩ). It is clear from Fig. 5.22,

amplitude of the square waveform shows an upward trend with increasing R1 and
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Figure 5.20: The time domain responses for Ib1=Ib2=25 µA and α=0.5 (a)
Ib3=40 µA (b) Ib3=60 µA (c) Ib3=80 µA (d) Ib3=100 µA

Figure 5.21: Square wave amplitude (VO1) against bias current Ib1 with
Ib2=25 µA, Ib3=100 µA

time period also rises with increase in R2.

The simulation has also been carried out to find out minimum and maximum

frequencies of the proposed fractional-order multivibrator. To determine the minimum

frequency of the proposed fractional-order multivibrator (i.e., maximum time period),
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Figure 5.22: The time domain responses for Ib1=Ib2=50 µA, Ib3=100 µA and
α=0.5 (a) R1=R2=5 kΩ (b) R1=R2=15 kΩ (c) R1=R2=25 kΩ

the charging current of Cα (i.e., Ib3) must be minimized but should be large enough

to saturate OTA1. Whereas the comparison voltage VO2 must be maximize so that

the time taken by Cα to charge the node VO3 upto voltage VO2 will be high.

In the same way, to determine the maximum frequency of the oscillator (i.e.,

minimum time period), Cα should be charged fast i.e., Ib3 must be increased

(considering the maximum current sourcing/sinking capability of OTA) and to

minimize the time taken by Cα to charge, comparison voltage VO2 must be minimum

but large enough to saturate OTA1. The simulation settings to calculate the same

are listed down in Table 5.9. The minimum and maximum frequencies of the

proposed fractional-order multivibrator are found to be approximately 10 Hz and

750 kHz respectively.
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Table 5.9: Simulation settings for calculating minimum and maximum frequencies

IB1, R1 IB2, R2 IB3 Cα,α

Minimum Frequency 25 µA, 20 kΩ 90 µA, 20 kΩ 8 µA 1 µF , 0.5

Maximum Frequency 25 µA, 20 kΩ 10 µA, 10 kΩ 200 µA 1 µF , 0.5

5.4.3 Robustness

To examine the robustness of the proposed fractional-order multivibrator, corner

analysis and Monte-Carlo analysis are done, the same are discussed below.

5.4.3.1 Corner analysis

The performance of the proposed fractional-order multivibrator is analysed at all

process corners (i.e.,FF, FS, TT, SF and SS) for Ib1=Ib2=25 µA, Ib3=100 µA,

α=0.5 and Cα=1 µ℧secα. The values of time periods and percentage error from

TT corner point, for the remaining four corner points are listed in Table 5.10. It

is clear from the Table 5.10 that the percentage error lies within 0.15%, which

verifies the robustness of the circuit against various corners.

Table 5.10: Time period of square wave at node (VO1) and % error from TT
corner for all five process corners

FF FS TT SF SS

Time period
(µs) 469.25 468.06 468.67 469.34 468.74

% error
from TT corner 0.123% 0.131% − 0.142% 0.015%
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5.4.3.2 Monte-Carlo analysis

To get an insight on sensitivity of the proposed fractional-order multivibrator with

respect to Cα, uniform Gaussian distribution and ±5% tolerance in resistances and

capacitances values used for Cα realization is considered and Monte-Carlo analysis

is performed on 500 random samples. The distribution of time period of VO1 for

all the samples is shown in Fig. 5.23. The mean and standard deviation is found

to be 0.466 ms and 0.0426 ms respectively. It is observed from the above analysis

that the spread in time period of oscillation is within a small range and the mean

is matched with the corresponding time period of oscillation (i.e. 0.4687 ms)

within 0.6% error, which verify the smaller component sensitivity of the proposed

fractional-order multivibrator.

Figure 5.23: Monte Carlo Analysis of proposed fractional-order multivibrator for
random variations in Cα
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5.4.4 Applications

As discussed in Section 5.4.2, that the proposed fractional-order multivibrator may

be a good choice over integer-order multivibrator for high frequency oscillation

requirement. In modulation process, a high frequency carrier signal is required to

modulate the message signal. Therefore, the proposed fractional-order multivibrator

can play a crucial role in generating high-frequency oscillation signals for modulation

purposes. Hence, this subsection explores the application of the proposed fractional-order

multivibrator to implement various modulation circuits such as amplitude modulators

(AM), frequency modulators (FM), delta modulators (DM), and sigma-delta modulators

(SDM), as presented in [138]. Additionally, the electronic tuning feature of the

proposed fractional-order multivibrator is also examined to adjust the modulation

index of analog modulators, such as amplitude modulator and frequency modulator.

5.4.4.1 Amplitude modulator

In amplitude modulation, the information signal is encoded in a carrier wave by

varying its instantaneous amplitude. From Section 5.4.2, it is observed that the

amplitude of output VO1 of the proposed fractional-order multivibrator can be

electronically controlled by bias current of OTA1 (Ib1). If the information signal

(Im(t)) is applied as Ib1, superimposed on a DC offset current (Ioffset) such that

(Ioffset) ≥ |(Im(t))|min, then the proposed fractional-order multivibrator works as

amplitude modulator.

To verify the working of the proposed fractional-order multivibrator as an amplitude
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Figure 5.24: Square wave amplitude modulation with Ib2=25 µA, Ib3=50 µA and
α=0.5 (a) Information signal (b) AM signal

modulator, a sinusoidal information signal, peak to peak amplitude of 10 µA and

frequency of 4 Hz, with a DC offset current equals to 20 µA is applied as the

bias current of OTA1 (Ib1). The values of Ib2, Ib3, Cα and α are taken as 25 µA,

50 µA, 1 µ℧secα and 0.5 respectively. The information signal Ib1 and amplitude

modulated signal VO1 are shown in Fig. 5.24 and it is observed that the amplitude

of modulated signal is varying according to the amplitude of information signal.

For a special case of single-frequency sinusoidal information signal Im(t) = Imcos(ωmt),

the relative proportion of information signal’s magnitude (|Im(t)|) and carrier signal’s

magnitude (|Ioffset|) is defined as modulation index (m) of AM waveform. The

modulation index can be tuned to a desired value by setting Ioffset. The variation

of AM modulation index m with respect to Ioffset for |Im(t)| = 5 µA, Cα=1 µ℧secα

and α=0.5 is shown in Fig. 5.25.
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Figure 5.25: AM modulation index (m) Vs Ioffset for |Im(t)|=5 µA

5.4.4.2 Frequency modulator

In frequency modulation, the information signal is encoded in a carrier wave by

varying its instantaneous frequency. As derived in Section 5.4.2, the frequency

of oscillation of the proposed fractional-order multivibrator can be electronically

controlled by using Ib2 and/or Ib3. If the sinusoidal information signal (Im(t))

superimposed on a DC offset signal (Ioffset) is applied as the bias current of OTA3,

then the proposed fractional-order multivibrator works as frequency modulator.

The instantaneous frequency of frequency modulator circuit is given as:

fα(t) =
1

2

[
Im(t)

2Ib2R2CαΓ(1 + α)

] 1
α

(5.18)

The changing ratio of the output frequency to the information signal is defined as

the modulation sensitivity (kf ) and given by (5.19).

kf =
∆f

∆Im(t)

=
1

2α

[
(2fα)

(1−α)

2Ib2R2CαΓ(1 + α)

]
(5.19)
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For a special case of single-frequency sinusoidal information signal Im(t) = Imcos(ωmt),

the modulation index β of frequency modulator is defined as:

β = (kfIm)/fm (5.20)

Where fm is the frequency of the information signal in Hertz (fm = ωm/2π). In

order to get frequency modulated signal, a sinusoidal information signal of peak

to peak amplitude 20 µA, superimposed on a DC offset of 50 µA is applied as the

bias current of OTA3 (Ib3). The values of Ib1 and Ib2 are taken as same and equal

to 25 µA while the value of α is taken as 0.5. Figure 5.26 shows the information

signal Ib3 and frequency modulated signal VO1. It is clear from Fig. 5.26 that as

the amplitude of information signal is increased the frequency of modulated signal

is increased and for minimum amplitude of information signal the frequency of

modulated signal is also minimum.

It is clear from (5.19), that kf depends on Ib2 and α, and modulation index β is

directly proportional to kf . The variation of FM modulation index β with respect

to Ib2 and α is shown in Fig. 5.27 (a) and (b) respectively for |Im(t)|=20 µA and

Cα=1 µ℧secα.

5.4.4.3 Delta modulator

Pulse code modulation (PCM) is the fundamental technique for digital modulation,

but data redundancy in encoding digital signal is the key shortcoming of PCM.
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Figure 5.26: Square wave frequency modulation with Ib1=Ib2=25 µA and α=0.5
(a) Information signal (b) FM signal

(a) (b)

Figure 5.27: FM modulation index (β) for |Im(t)|=20 µA (a) with respect to Ib2
(α=0.5) (b) with respect to α

To recover this problem, the difference between current sample and its predicted

value is encoded rather than the absolute value. This technique is acknowledged as

differential pulse code modulation (DPCM). Delta modulation (DM) is a special

case of DPCM that produces a one-bit encoded output. Its block diagram is

illustrated in Fig. 5.28.

To achieve delta modulator functionality from the proposed fractional-order multivibrator,

the terminal of resistance R2 should not be grounded, rather than an information
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signal is fed to this terminal. Now, the OTA3 and Cα construct the integrator and

the information signal is compared with the output voltage of integrator (VO2). The

rest of the circuit constructs limiter (OTA1 and R1) and sampler (OTA2) blocks.

In order to get delta modulated signal, a sinusoidal signal with 4 frequency and

peak to peak amplitude of 1V is applied as the information signal. The values of

Ib1 and Ib2 are taken same and equal to 25 µA while the value of Ib2 and α is taken

as 50 µA and 0.5 respectively. The information signal and delta modulated signal

VO1 are shown in Fig. 5.29.

Figure 5.28: Delta modulator block diagram

Figure 5.29: Square wave delta modulation with Ib1 = Ib2=25 µA, Ib3=50 µA and
α=0.5 (a) Information signal (b) DM signal
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5.4.4.4 Sigma-delta modulator

The delta modulator requires integrator for demodulation process because the

output is the differentiated version of the input. To avoid the integrator in

demodulator, the information signal must be integrated before modulation. This

modified version of delta modulator is known as sigma-delta modulator (SDM).

The block diagram of sigma-delta modulator is shown in Fig. 5.30.

To achieve sigma-delta modulator functionality from the proposed fractional-order

multivibrator, the negative terminal of OTA3 should not be grounded, rather than

an information signal is applied at this terminal. Now, the difference of information

signal and the output signal VO1 is fed to the integrator. The rest of the circuit

remains same as delta modulator.

In order to get sigma-delta modulated signal, a sinusoidal signal of 4 Hz frequency

and 0.085 V peak to peak amplitude is applied as the information signal. The

values of Ib1, Ib2 and Ib3 are taken as 10 µA, 30 µA and 100 µA respectively with

α=0.5. The information signal and sigma-delta modulated signal VO1 are shown

in Fig. 5.31.

Figure 5.30: Sigma-delta modulator block diagram
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Figure 5.31: Square wave sigma delta modulation with Ib1=10 µA, Ib2=30 µA
and Ib3=100 µA and α=0.5 (a) Information signal (b) SDM signal

5.5 Conclusion

In this chapter OTA-based three sinusoidal FOOs and one fractional-order multivibrator

are proposed. The first two circuits of the sinusoidal FOO are designed using the

trans-admittance mode FAPF with a trans-impedance mode integrator/differentiator.

Additionally, the third circuit of the sinusoidal FOO features a unique design

that enables independent control of the phase difference between its two output

voltages. All the three circuits of sinusoidal FOO are verified through SPICE

simulations using 180 nm CMOS technology node. The stability is verified using

pole plots with the help of forlocus function of MATLAB. The mathematical

equations for sensitivity of the oscillation frequency with respect to various circuit

parameters has been derived and found that the proposed circuits are lesser sensitive

towards higher values of fractional-order α. The robustness of the proposed FOO

circuits has also been examined via PVT and Monte-Carlo analyses and no abrupt

changes have been found in the transient responses of the proposed circuits. The
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sinusoidal FOO circuit I, has also been verified to work in VLF mode.

Further, an electronically tunable fractional-order multivibrator based on OTA

has been generalized in fractional domain. The mathematical formula for time

period of the proposed fractional-order multivibrator has been derived and verified

through SPICE simulations. The oscillation period and the amplitude of the

output square wave are electronically tunable and can be controlled independently

without affecting the other parameter. The robustness of the circuit is scrutinized

through corner and Monte-Carlo analyses. The use of the FOC facilitated the

proposed fractional-order multivibrator to have very high frequency of oscillation

using standard values of circuit components. The capability of generating high

frequency oscillations make the proposed fractional-order multivibrator a superior

choice over integer-order multivibrator for the applications such as various modulation

techniques. Thus, AM, FM, DM and SDM have been explored and verified as

application of the proposed fractional-order multivibrator. The adjustment of the

modulation index of analog modulators (AM and FM) has also been examined.
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Chapter 6

Realization of Simpler and Higher

order FOEs

This chapter presents the results and content of the following papers:

[1]”G. Varshney, N. Pandey and R. Pandey, “Realization of IIMC based Higher-Order

Floating Fractional-Order Element,” in First International Conference on Emerging

Trends in Industry 4.0 (2021 ETI 4.0). Under publication in IEEE proceedings.”[]

[2]”G. Varshney, N. Pandey and R. Pandey, “Fractional-order Capacitor Realization

Based upon Active Inductor,” in 9th International Conference on Signal Processing

and Integrated Networks (SPIN 2022). Under publication in “Advanced IoT

Sensors, Networks and Systems” part of the book series “Lecture Notes in Electrical

Engineering (LNEE, volume 1027)”.”[]
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6.1 Introduction

As discussed in the previous chapters, FOE is a fundamental component for

designing the fractional-order analog circuits. To design fractional-order systems

with higher-order, FOE with fractional order α greater than 1 is utilized. The

method to realize FOE with fractional order α (0<α<1) based on R-C ladder

network has already been discussed in Chapter 2.

This chapter is devoted to implement a simpler scheme for the realization of FOC

and a floating version of the higher order FOE (1<α<2). First, a simple circuit

of active inductor is proposed to approximate the behavior of FOC. The circuit

is modular in nature, thus allows for the higher order approximations through

parallel connection or impedance multiplication to realize FOC. Further, a circuit

is presented to implement a floating version of the higher order FOE (1<α<2)

using OTA-based IIMC [53].

6.2 Simpler Design of FOC Using Active Inductor

Circuit

In Fig. 6.1, an active inductor circuit is presented, which employs one NMOS

transistor (M1), two resistors (R1 and R2), and a grounded capacitor (C1). This

circuit is the modified version of the one introduced in [46], where a PMOS

transistor is used with two resistors and a floating capacitor. However, the proposed

circuit is better than the one in [46] because it employs an NMOS transistor,



6.2 Simpler Design of FOC Using Active Inductor Circuit 145

Figure 6.1: Proposed active inductor circuit

which offers advantages in terms of mobility and fabrication process. Moreover,

the proposed circuit uses a grounded capacitor, which has simpler fabrication steps

than the floating capacitor. Using routine network analysis, the input impedance

of the proposed active inductor is obtained and given in (6.1).

ZAI =
R2(1 + sC1R1)

1 + gm1R2 + sC1(R1 +R2)
(6.1)

Here gm1 is the small signal transconductance of transistor M1. Equation (6.1)

can be rewritten as:

ZAI =
R1R2

R1 +R2

.

[
s+ 1

C1R1

s+ (1+gm1R2)
C1(R1+R2)

]
= K.

[
s+ ωz

s+ ωp

]
(6.2)

The zero and pole frequency of the proposed active inductor are defined as ωz =

1
C1R1

and ωp =
(1+gm1R2)
C1(R1+R2)

respectively.

The input impedance of proposed active inductor, can be utilized to synthesis

FOC by appropriately interconnecting multiple such sections, due to its ability to

set zero and pole frequencies with certain spacing, allowing for the creation of an

unlimited series of alternating roots on the real axis in the complex plane [41].
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6.2.1 Higher Order Approximations to Realize FOC

As discussed above that the proposed active inductor can be utilized for the

higher order approximations to synthesis FOC. The proposed active inductor

can be inteconnected through parallel connection or impedance multiplication to

approximate a FOC. According to [116], at least a second-order transfer function

is required to approximate a FOC, which is suitable for realizing narrowband

applications, such as FOOs [139]. The location of the pole and zero of the

proposed active inductor can be adjusted by selecting appropriate values of passive

components and transconductance gain of transistor M1. However, it is important

to maintain the pole-zero interlacing, i.e., ωp1 < ωz1 < ωp2 < ωz2 [116]. There are

two general methods for higher-order approximations to realize FOC, which are

discussed below:

6.2.1.1 Parallel connection of impedances

First method to achieve higher-order approximations to realize a FOC involves

parallel connection of n stages of the proposed active inductor, as illustrated in

Fig. 6.2 (a). Each stage contributes a pair of pole and zero, and at least two poles

and two zeros are required to approximate a FOC. These poles and zeros should

be placed alternatively. The total input admittance of this scheme is given as:

Yin = Σn
i=1

1

ZAIi

, i = 1, 2...n (6.3)
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(a)

(b)

Figure 6.2: Higher order approximation of FOC (a) Parallel connection of
impedances (b) Impedance multiplication

ZAI is given in (6.2).

6.2.1.2 Impedance multiplication

Another method involves multiplying n stages of the proposed active inductor

using a generic circuit of impedance multiplier shown in Fig. 6.2 (b). This

impedance multiplier circuit is based on OTA and is inspired by [53]. It has

several advantages over Opamp based GICs, such as all impedances are grounded,

and it can multiply n numbers of impedances. The total input impedance of this

scheme is given as:

Zin =
1

gm0Πn
i=1gmiZAIi

, i = 1, 2...n (6.4)
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ZAI is given in (6.2).

The order of approximation required to realize the FOC can be set by setting

the value of n; e.g. for a second order approximation of FOC, n is set as 2. To

calculate the values of poles and zeros of the approximated FOC of the required

magnitude and phase, the Valsa’s algorithm [116] is used (refer chapter 2).

6.2.2 Functional Verification

To validate the performance of the approximated FOC based on proposed active

inductor, SPICE simulations are conducted using 180 nm CMOS technology parameters.

Figures 6.3 (a) and (b) show the magnitude and phase responses of a second-order

approximation of FOC using the first method, which involves parallel connection

of two active inductors (n=2 in Fig. 6.2 (a)), for phase angles (ϕ)= − 30◦ and

−45◦, respectively. The values of various components used to realize the FOCs

with ϕ= −30◦ and −45◦ are provided in Table 6.1. The theoretical slopes of the

magnitude response iare -6.66 dB/decade and -10 dB/decade for ϕ=−30◦ and−45◦

respectively, while the simulated slopes are -7.1 dB/decade and -9.6 dB/decade,

for ϕ= − 30◦ and −45◦, respectively. The percentage error in the slope is within

6% and the error in the phase response is within 5% for both the cases, indicating

good agreement between the simulated and theoretical results.

Further, second-order approximation of FOC using the second method to realize

higher order approximation (i.e., impedance multiplier) has been implemented,
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(a)

(b)

Figure 6.3: Simulation results for second order approximation of FOC based upon
two stage parallel connection of active inductor for (a) ϕ=− 30◦ (b) ϕ=− 45◦
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Table 6.1: Simulation settings for two stage parallel connection of active inductor
to realize FOC

# Stage Component ϕ=− 30◦ (α=1/3) ϕ=− 45◦ (α=1/2)

- (W/L)1,2 10 10

ZAI1

C 17.5 nF 7 nF
R1 40 kΩ 15 kΩ
R2 140 kΩ 130 kΩ

ZAI2

C 5 nF 1.9 nF
R1 13 kΩ 3 kΩ
R2 70 kΩ 65 kΩ

again the value of n is taken as 2 in Fig. 6.2 (b). Section 2.4 provides the aspect

ratios of the transistors used in OTA, and its corresponding CMOS schematic is

depicted in Fig. 2.8 (b). The transconductance values of all three OTAs are set

to be the same, with a value of 61 µA/V . The component settings to realize the

FOC with ϕ= − 30◦ and −45◦ are given in Table 6.2. The magnitude and phase

responses are shown in Figs. 6.4 (a) and (b) for phase angle ϕ= − 30◦ and −45◦

respectively. The theoretical slopes of the magnitude response are -6.66 dB/decade

and -10 dB/decade for ϕ=− 30◦ and −45◦ respectively, while the simulated slopes

are -7 dB/decade and -9.3 dB/decade for ϕ= − 30◦ and −45◦ respectively. The

percentage error in the slope is within 6%. The error in the phase response is

within 7% for both the cases.

6.2.3 Application as in FOO

The proposed FOC (two stage parallel connection of active inductor with ϕ=−45◦)

has been tested for the functionality, by using it in an OTA-based FOO application

(proposed in section 5.3), as shown in Fig. 6.5 for quick reference. The phase
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(a)

(b)

Figure 6.4: Simulation results for second order approximation of FOC based upon
impedance multiplication of two active inductor for (a) ϕ=− 30◦ (b) ϕ=− 45◦

difference between two output voltages (VO1 and VO2) is equal to
βπ
2
. The FOO’s

frequency of oscillation (FO) and condition of oscillation (CO) are given below:

FO: ω0 =

[
gm1 sinβπ

2

Cα sin
(α+β)π

2

] 1
α

(6.5)
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Table 6.2: Simulation settings for two stage impedance multiplier circuit of
realize FOC

# Stage Component ϕ=− 30◦ (α=1/3) ϕ=− 45◦ (α=1/2)

- (W/L)1,2 10 10

ZAI1

C 49 nF 33 nF
R1 7 kΩ 2.4 kΩ
R2 18 kΩ 10 kΩ

ZAI2

C 220 nF 480 nF
R1 10 kΩ 4.8 kΩ
R2 27 kΩ 25 kΩ

CO: gm1 =

[
Cα sin (α+β)π

2

sinβπ
2

] gm2

Cβ

(
cosβπ

2
− sinβπ

2

tanα+βπ
2

)


α
β

(6.6)

Figure 6.5: Circuit diagram of fractional-order oscillator (FOC used is two stage
parallel connection of active inductor with ϕ=− 45◦)

The FOO is designed for FO=1 kHz and a phase difference of 45◦ between VO1

and VO2. The values of Cα and Cβ are set to be same and equal to 1.65 µ℧secα with

α=β=0.5. The value of gm1 is set as 185 µA/V and the value of gm2 required to

satisfy the CO is calculated as 92.5 µA/V. The transient response and frequency

spectrum of the FOO are shown in Fig. 6.6. The simulated FO is observed as

1069 Hz. The error between the simulated and designed value of FO is within 7%.

The transient response of VO1 and VO2 is shown in Fig. 6.7, which verifies that the

phase difference between the two voltages is 44◦. The error between the simulated
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and theoretical value of phase difference is 2.22%.
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Figure 6.6: FOO’s transient response and frequency spectrum for α=β=0.5
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Figure 6.7: Transient response of VO1 and VO2 for α=β=0.5

6.3 Floating Higher-Order FOEs Using IIMC Structure

In this section, a floating higher-order FOE using the inverted impedance multiplier

circuit (IIMC) is presented. The grounded IIMC structure [53] is modified to

realize a floating IIMC structure, which is shown in Fig. 6.8. By taking into

account the port relationships of the OTA and performing routine network analysis,
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Figure 6.8: Generalized floating IIMC

the input impedance between its input terminal (i.e., terminals 1 and 2) is given

as:

Zin(1−2) =
1

gm0(gm1gm2...gmn)(Z1Z2...Zn)
(6.7)

Where gm0, gm1, gm2...gmn are the transconductance gains of respective OTAs.

When Z1 is replaced with FOC (C1α) and other impedances are replaced with

integer-order capacitances, the input impedance given by (6.7) is modified. The

modified input impedance is given as:

Zin(1−2) =
sn−1+αC1αC2...Cn

gm0(gm1gm2...gmn)
(6.8)

Equation (6.8) represents the input impedance of a FOI with fractional order

(n − 1 + α). By taking n=2, FOI with fractional order (1 + α) can be realized,

which is shown in Fig. 6.9 (a). To realize FOC with fractional order (1 + α),

the impedance inverter circuit of Fig. 6.9 (b) is used, where ZL is replaced with

the FOI of the same fractional order. Equations (6.9) and (6.10) provide the

magnitudes of the input impedance for the FOI and FOC shown in Figs. 6.9 (a)
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and (b), respectively.

L1+α(1−2) =
C1αC2

gm0gm1gm2

(6.9)

C1+α(1−2) =
gm3gm4C1αC2

gm0gm1gm2

(6.10)

6.3.1 Functional Verification

To verify the functionality of the proposed circuits of floating FOC and FOI with

fractional order (1 + α), SPICE simulations have been carried out with 180 nm

CMOS technology model parameters. The supply voltages are taken as ±1.8 V .

Section 2.4 provides the aspect ratios of the transistors used in OTA, and its

corresponding CMOS schematic is depicted in Fig. 2.8 (b). The FOC (C1α)

with fractional order α, used in the proposed circuits of Fig. 6.9, is realized

using the R-C ladder network based on 12th order CFE approximation [35] shown

in Fig. 6.10. The values of R0, Ri and Ci (i=1, 2, ...11) to emulate FOC with

Cα=3.75 µ℧secα and α=0.5 can be referred from Sect. 3.3.1.

(a) (b)

Figure 6.9: Proposed IIMC based floating FOEs of order (1+α) (a) IIMC circuit
realizing FOI (b) Impedance inverter circuit realizing FOC, with ZL as FOI
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Figure 6.10: 12th order R-C ladder network (based upon CFE approximation)
realizing FOC

Bias currents for all the OTAs are taken same and equal to 8.32 µA correspond to

the transconductance gain (gm) of 100 µA/V . The value of integer-order capacitor

C2 is taken as 10 nF . Figures 6.11 (a) and (b) show simulated and theoretical

frequency response of (1+α) order FOI and FOC respectively. The theoretical

magnitudes of FOI and FOC of fractional order 1.5 are calculated as 37.5 mΩsec1.5

and 0.375 n℧sec1.5 respectively, while the magnitudes through simulations have

been measured as 36.8 mΩsec1.5 and 0.371 n℧sec1.5 respectively. The errors

between theoretical and simulated magnitudes lie within 2%. Table 6.3 presents

the frequency range of operation for FOI and FOC, taking into account a maximum

deviation of ±5dB and ±5◦ in impedance magnitude and phase, respectively.

Table 6.3: Frequency range of operation for proposed floating FOEs

Impedance response
Valid frequency range for

FOI
Valid frequency range for

FOC

Magnitude 10 Hz - 7.7 kHz 10 Hz - 10 kHz

Phase 84 Hz - 1.4 kHz 11 Hz - 2.9 kHz
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(a)

(b)

Figure 6.11: Magnitude and phase response for floating FOEs of order 1.5 (a)
FOI (b) FOC

6.4 Conclusion

In the present chapter, a simpler scheme based upon active inductor to approximate

the behaviour of FOC has been proposed. Proposed structure enables higher

order approximation through parallel connection or impedance multiplication to

realize FOC. The behaviour of the proposed FOC has been verified through SPICE
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simulations with 180 nm CMOS technology model parameters and the errors

are found within 6% for slope of the magnitude. Moreover, a FOO has been

demonstrated as an application of the proposed FOC.

Further, a circuit to realize higher order floating FOE based on IIMC circuit is

proposed. The proposed circuit can be used to realize floating FOI and floating

FOC of fractional order α greater than 1. The magnitude of the proposed FOI

and FOC can be controlled electronically by using external bias currents of OTAs.

Workability of the proposed FOI and FOC of fractional order (1 + α) is verified

using SPICE simulations with 180 nm CMOS technology model parameters and

found that the errors between theoretical and simulated magnitudes of FOI and

FOC with fractional order 1.5 lie within 2%.



Chapter 7

Conclusions and Suggestions for

Future Work

159
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The use of fractional calculus in modeling physical systems and processes has

become increasingly popular due to its ability to provide an additional degree of

freedom for modeling control mechanisms of physical phenomena. This approach

allows for more precise modeling of real-world objects and natural processes.

The main focus of this thesis is to design a range of signal processing and signal

generating circuits using fractional-order design equations that are based on generalized

versions of integer-order design principles. This chapter provides a comprehensive

summary of the significant findings and contributions presented throughout the

various chapters of the thesis.

7.1 Summary of Work done

The introduction chapter of the thesis provided a literature survey on fractional

order elements and fractional-order signal processing and signal generating circuits.

This review helped to identify significant research gaps in the field and led to the

identification of areas where further research could be conducted. The organization

of thesis was also presented in this chapter.

Chapter 2 presented review of the approximated FOC realization techniques,

specifically focusing on the use of the CFE approximation and Valsa’s algorithm.

The discussion also covered the circuit implementation for emulating FOC with

different values of α, specifically 0.2, 0.5, and 0.8, using 5th-order CFE approximation

and 7th-order Valsa’s algorithm. Additionally, the chapter presented stability

analysis of fractional-order systems and included preliminary analysis of the active
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block used in this work, that is OTA. The functionality of the circuits presented

in this chapter was also verified through SPICE simulations.

In chapter 3 an α-order multifunction TAM FOF was proposed for the very first

time. The proposed TAM FOF offered FLPF, FHPF, and FAPF filter functions.

The proposed structure’s effectiveness was verified through both SPICE simulations

and experimental testing, and found that results fit in the theoretical predictions

very well. Additionally, the electronic tunability of the pole frequency has been

confirmed through SPICE simulations. The sensitivity of the proposed TAM FOF

was analyzed using MATLAB, and the structure’s robustness was verified through

PVT and Monte Carlo analysis.

Chapter 4 generalized the theory of integer-order shadow filters to fractional

domain. Mathematical equations were drafted to determine the pole frequency and

pole quality factor of shadow FOF for different types of feedback signals applied

to the external amplifier in the feedback loop and demonstrated using MATLAB

simulations. The proposed theory was verified utilizing two active shadow FOF

circuits through SPICE simulations using 180 nm CMOS technology node. It was

found that results fit in the theoretical predictions very well. The shadow FOF’s

parameters such as pole frequency and pole quality factor were tuned with the help

of external amplifier’s gain, without changing the active or passive components of

the basic FOF. For both of the shadow FOF circuits the THD was found to be

below 4%. Further, corner and Monte-Carlo analysis were performed to verify the

robustness of the shadow FOF circuits.
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In chapter 5 OTA-based three sinusoidal FOOs and one fractional-order multivibrator

were proposed. The first two circuits of the sinusoidal FOO were designed using the

trans-admittance mode FAPF with a trans-impedance mode integrator/differentiator.

Additionally, the third circuit of the sinusoidal FOO featured a unique design

that enables independent control of the phase difference between its two output

voltages. All the three circuits of sinusoidal FOO were verified through SPICE

simulations using 180 nm CMOS technology node. The stability was verified

using pole plots with the help of forlocus function of MATLAB. The mathematical

equations for sensitivity of the oscillation frequency with respect to various circuit

parameters had been derived and found that the proposed circuits were lesser

sensitive towards higher values of fractional-order α. The robustness of the proposed

FOO circuits had also been examined via PVT and Monte-Carlo analyses and no

abrupt changes were found in the transient responses of the proposed circuits. The

sinusoidal FOO circuit I, had also been verified to work in VLF mode.

Further, an electronically tunable fractional-order multivibrator based on OTA was

generalized in fractional domain. The mathematical formula for time period of the

proposed fractional-order multivibrator was derived and verified through SPICE

simulations. The robustness of the circuit was scrutinized through Monte-Carlo

and corner analyses. The use of the FOC facilitated the proposed fractional-order

multivibrator to have very high frequency of oscillation using standard circuit

components’ values. The capability of generating high frequency oscillation makes

the proposed fractional-order multivibrator a superior choice over integer-order

multivibrator for the applications such as various modulation techniques. So, AM,

FM, DM and SDM had been explored and verified as application of the proposed
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fractional-order multivibrator in this chapter. The adjustment of the modulation

index of analog modulators (AM and FM) were also examined.

In chapter 6, a simpler scheme based upon active inductor to approximate

the behaviour of FOC was proposed. Proposed structure enables higher order

approximation of FOC either by parallel connection or by impedance multiplication

method. The behaviour of the proposed FOC was verified through SPICE simulations

with 180 nm CMOS technology model parameters and the errors were found

within 6% for slope of the magnitude. Moreover, a FOO was demonstrated as

an application of the proposed FOC.

Further, a circuit to realize higher order floating FOE based on IIMC circuit

was also proposed. The proposed circuit had been used to realize floating FOI

and floating FOC of fractional order α (1 < α < 2). The magnitude of the

proposed FOI and FOC can be adjusted electronically by using external bias

currents of OTAs. Workability of the proposed FOI and FOC of fractional order

(1 + α) was verified using SPICE simulations with 180 nm CMOS technology

model parameters and found that results fit in the theoretical predictions with

a maximum deviation of ±5 dB and ±5◦ in impedance magnitude and phase

respectively.

7.2 Suggestions for Future Work

The fractional domain is a highly interdisciplinary field with numerous research

opportunities for exploration. Throughout this thesis, the candidate delved into
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topics such as the development of electronically tunable FOFs and FOOs based

on OTA as well as simpler and higher order designs of FOE. However, there are

several potential directions in which the research can be expanded upon.

Firstly, it would be valuable to assess the performance of the developed FOFs and

FOOs across diverse operating conditions and environments. This analysis will

provide a comprehensive understanding of their behaviour and potential limitations

in different scenarios. Another avenue to explore is the utilization of more efficient

building blocks in the design of FOFs and FOOs. By considering different building

block options, novel circuit configurations can be developed to enhance performance

and expand the design possibilities.

In addition, the thesis has discussed a compact structure for realizing FOCs using

active inductors. However, further investigations can be conducted to explore the

tuning of magnitude and order in the structure. Lastly, the potential applications

of FOFs and FOOs in various feilds such as biomedical signal processing, speech

recognition, and image processing may be explored.

Overall, the field of fractional-order signal processing and signal generation is a

promising area for future research, with potential applications in a wide range of

fields and technologies.
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