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ABSTRACT 

 

This thesis involves the design and development of deep learning techniques 

to address the class imbalance problem in the computer vision domain. The core idea 

behind this study is to examine various approaches which would help to combat the 

impact of biases towards the majority class which could leave the minority classes 

undetected, that overall might lead to misleading performance results. Very limited 

empirical study is found in this research area of deep learning while dealing with class 

imbalance. Several challenges are involved while dealing with imbalanced datasets 

due to the unequal distribution of samples corresponding to each class present in the 

dataset, including biased and lower performances in minority classes. Hence it is very 

challenging to deal with such imbalanced problems, especially in the case of the multi-

class imbalanced datasets. Different evaluation parameters also need to be considered 

for evaluating the overall performance of the model. Throughout the study, we have 

tried to bring the changes at the data level and the algorithm level by designing and 

developing novel deep learning techniques to deal with the imbalanced data to solve 

computer vision problems. For validating our approach, we have used various 

challenging binary and multi-class imbalanced datasets including Graz-02 dataset, 

TF-Flowers dataset, BreakHis dataset, Breast-Histopathological-Images dataset, 

Kaggle Diabetic Retinopathy dataset, DDR Dataset, Indian Diabetic Retinopathy 

Image (IDRiD) dataset and Intel MobileODT Cervical Cancer Screening dataset. We 

present insights into the design and implementation of deep learning models with 

imbalanced datasets of various scales. In support of the same, we have conducted a 

detailed curated set of experiments on the available benchmark datasets. A detailed 



 

 

comprehensive experimental analysis is conducted on the datasets, comparing our 

results with the state-of-the-art methods in the field. Our contributions are 

summarized below, highlighting our key findings and innovations. We have 

performed a thorough analysis of multiple state-of-the-art pre-trained networks across 

various tasks, including classification, object detection, and segmentation on varied 

size datasets (small, medium, and large). These tasks were evaluated on diverse 

applications, such as diabetic retinopathy, breast cancer, cervical cancer, and more. 

Additionally, we proposed efficient machine learning classifiers, such as Chi² SVM, 

Quasi SVM and weighted SVM, to address the challenges posed by imbalanced 

datasets. These classifiers aim to mitigate the impact of class imbalance and improve 

overall performance. A novel model using visual codebook generation obtained from 

ResNet-50 deep features along with the Chi² SVM classifier is proposed to effectively 

tackle the class imbalance problem that arises while dealing with multi-class image 

datasets. Another contribution consists of exploring the effect of data augmentation 

on the overall performance of the deep learning models. The effect of data 

augmentation approaches was seen after applying (i) Traditional affine transformation 

(shifted, zoomed in/out, rotated, flipped, distorted, cropping, rescaling or shaded with 

hue, etc.) and  (ii) Generative Adversarial Nets (GANs) to generate synthetic samples 

from the original images which makes the models more robust and also helps in 

resolving the class imbalance issue. We have proposed a novel learning framework in 

collaboration with the Deep Convolutional Generative Adversarial network 

(DCGAN). The DCGAN is used in the initial phase for data augmentation of the 

minority class only with the modified less computationally challenging VGG16 deep 

network architecture. The significance of adding batch normalization layers is 

discussed as it helps to mitigate the effect of covariance shift. Additionally, emphasis 



 

 

is given to hyperparameters, and fine-tuning also plays a crucial role in the overall 

model performance. Major contribution is the development of novel deep learning 

architecture VGGIN-NET which adapts to class imbalance in both binary and multi-

class datasets. 
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Chapter 1 

Introduction 

In this chapter we have provided an overview of our research along with the 

formulated research problems and the motivation which encouraged us to carry 

forward the research in the same direction. The scope of the study is also added to 

provide the background and enhance the aspects for conducting the research, along 

with the research gaps, contributions and research objectives. A further detailed set of 

experiments along with the results’ discussion to support the evidence of the research 

and the detailed section providing the methodology used for the creation of unique 

combinations of deep learning architecture is presented to tackle the class imbalance 

problem provided in the corresponding chapters mentioned in the thesis under each 

section. 

1.1 Overview 

Imbalanced datasets are a characteristic of most real-world applications 

(Provost 2000). The problem associated with an imbalanced dataset occurs due to the 

disproportionate number of samples present in each class. In an imbalanced dataset, 

the class distribution generates a bias towards the majority class due to the presence 

of a limited number of training samples in the minority classes. This problem of non-

uniform class distribution is generally ignored by many researchers while proposing 

the appropriate solution to their problem domain which generally leads to misleading 

model performance. There is a need for incorporating appropriate measures or 

procedures within the model and selecting the right performance evaluation criteria 
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while measuring the performance of the imbalanced dataset instead of just 

classification accuracy as the evaluation criteria. Various traditional machine learning 

techniques have been proposed for imbalanced datasets in order to counter the adverse 

effects of class imbalanced scenarios. We have focused on the challenging aspects 

which could occur while dealing with the imbalanced binary and multi-class datasets.  

Generally, methods involved while dealing with the class imbalance 

distribution are categorized into the following categories. (1) Data level techniques 

(2) Algorithmic level and (3) hybrid techniques. At the data level, we alter the 

distribution of samples by applying sort of augmentation techniques, and sampling 

techniques (oversampling and undersampling methods) (Oskouei and Bigham 2017). 

Oversampling will result in increasing the samples in the training set which might 

result in overfitting problems. While applying under-sampling will result in the loss 

of useful information which is problematic while training the model. At the algorithm 

level, cost or weight schema are adapted, including modification of the underlying 

learner or its output. In the case of hybrid systems, we can strategically combine both 

the sampling as well as algorithmic techniques to create hybrid versions. So 

throughout the study, we have tried to create several approaches by doing 

modifications at all three levels. 

Further, we have done analysis of the effects of imbalanced training data on 

different convolutional neural networks (CNNs) and their respective performance on 

image classification, object detection, and segmentation tasks from the domain of 

computer vision. Over the past decade, deep learning has been rapidly achieving 

remarkable performance in various applications such as document analysis, computer 
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vision, text processing, speech recognition, as well as many other domains due to the 

large availability of data and computational resources both in the form of hardware 

and software but limited studies were found related to deep learning dealing with 

imbalanced datasets in comparison to the traditional machine learning approaches. 

Despite these advances in the technologies and wide usage of deep learning in various 

domains due to the availability of huge data and computational resources, only a 

subset of the works was found to use proper evaluation criteria and techniques for 

addressing class imbalanced scenarios using different deep learning architectures. 

Various researchers also agree with the fact that deep learning for handling class 

imbalanced datasets is still a subject that is less studied (Minaam and Amer 2019, 

Yang, et al. 2011, Fernández, et al. 2018). Many studies conducted by various 

researchers have also inspired us to conduct the study regarding deep learning and 

imbalanced datasets (Voulodimos, et al. 2018). Krawczyk, et al. 2014 also focused on 

the fact that there will be a good impact on the model's overall performance, if both 

the groups are well represented provided, they belong to non-overlapping 

distributions. After that, we found another study conducted including the effect of 

class imbalance in various settings (Japkowicz, et al. 2002) which discusses the effect 

of class imbalance by modifying various parameters such as training size, complexity, 

and degrees of imbalance. They have conducted experiments by creating artificial 

data sets from the original datasets. Experimental analysis proves that if there will be 

an increase in the complexity of the problem then it will automatically lead to an 

increase in the sensitivity to imbalance. 

Deep learning is artificially formulated with the help of the base foundation of 

artificial neural networks which are inspired by biological neurons. Deep learning is 
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also categorized as a distinct sub-field of machine learning. In the case of deep 

learning, automatic feature extraction and classification steps, together take place as 

a single unit whereas handcrafted features are extracted separately in the case of 

machine learning and passed to the different machine learning classifiers. One of the 

basic building blocks for deep learning relies upon different layers used to construct 

convolutional neural networks (CNNs). CNN's are comprised of different functional 

layers such as convolution, pooling, batch normalization, flatten, and fully connected 

as well as activation layers like ReLU and softmax, etc. The initial layers consisting 

of convolution and pooling contribute to the feature learning stage and the dense (fully 

connected), flatten layers are used in the classification unit. Each convolutional layer 

will combine the input image with the filter which would result in convoluted features, 

which will be forwarded to the next layers of the neural network. Pooling layers are 

applied to reduce the spatial dimensions by combining similar features into smaller 

dimensions. Flatten layer will help to result in a single-dimensional vector and fully 

connected layers will connect all the neurons present in one layer with adjacent layers 

and softmax will ensure the probability of occurrence of each class. Also, CNN's can 

be categorized into two distinguished categories. The CNNs that are trained from 

scratch on other datasets and the second category of CNNs are pre-trained networks 

i.e. not trained from scratch unlike other variants of CNN which require training from 

scratch, they can transfer-learn their knowledge from one dataset to another. The pre-

trained networks are the ones that are popularly used in a lot of applications nowadays. 

There are various pre-trained networks available based upon works inspired 

by deep learning literature. Notably, LeNet was the first network introduced initially 

which was proposed by Yann LeCun (LeCun, et al. 1989) early in the year 1989 
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consisting of basic layers such as convolutional, pooling, and fully connected layers 

which laid the foundation of all modern CNNs. However, due to limited resources 

and GPU (Graphics Processing Unit) at that time it was not widely used in comparison 

to SVM and other machine learning algorithms. The AlexNet network was introduced 

in 2012 (Krizhevsky, et al. 2012) which later led to the popularity of CNN in various 

applications, especially in the computer vision domain. AlexNet as well as other 

advanced pre-trained networks are based upon the foundation of LeNet. AlexNet 

consists of an eight-layer architecture having the first five layers of the convolution 

along with a few max pooling layers in continuation. The remaining terminal layers 

correspond to three fully connected layers. In the computer vision research arena, 

AlexNet was able to trigger back the usage of CNNs widely, but it was only with the 

advent of GPUs and VGG-Nets proposed in 2014 (Simonyan and Zisserman 2014) 

that CNNs became popular to be used for different image classification tasks 

especially being recognized for its popular use in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2012. Simonyan and Zisserman modified the large 

kernel filter size (11x11) in AlexNet with multiple 3x3 kernel filter sizes and obtained 

a more efficient network consisting of 138 million parameters that were trained on 

multiple GPUs by horizontally sharding the weights of the network across different 

GPU devices. GoogLeNet (the original incarnation of the Inception architecture) and 

its subsequent variants: Inception-V2 (i.e. Inception with Batch Normalization), 

Inception-V3, etc. were proposed in 2014-16 by Christian Szegedy and others 

(Szegedy, et al. 2016). The architecture is formulated after combining various 

Inception blocks together such that each Inception block is formed by stacking 1x1, 

3x3, and 5x5 convolutions. In 2015, ResNet was invented by Kaiming He, et al., 

which is more efficient, faster, and less computationally complex (He, et al. 2016). 
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ResNet is formulated by combining various residual building blocks using skip or 

shortcut connections. Further after ResNet, various other CNN architectures were 

proposed by researchers such as DenseNet (Landola, et al. 2014), SqueezeNet 

(Landola, et al. 2016), EfficientNet (Tan, et al. 2019), etc. which address the different 

problems for effective CNN training persistent in previous versions of architectures 

and enhances image classification performance. However, artificial neural networks 

is not a new concept and it is known since ages, but with the huge accessibility of 

GPU computing, and large-scale datasets, the deep learning frameworks have 

accelerated traction for both productions as well as research purposes. Plus, with the 

advent of cloud services, training of deeper neural networks became easier and has 

resulted in increased research productivity while evolving, sparking interest in the 

research community and leading tech companies by application of deep learning in 

various domains especially computer vision with higher efficiency and deployability.  

1.2 Motivation 

We have been motivated by the fact that mostly skewed data exists in most 

real-world applications as samples are not equally distributed throughout all the 

classes. Training the machine learning or deep learning models could be challenging 

with the skewed and imbalanced dataset as this might have an adverse impact on the 

model performance. With the large availability of high-end GPUs and datasets with 

an increasingly high number of samples, it has become easier to train deep learning 

models which have brought revolutionary game-changing impact in most of the 

applications over other traditional approaches. So, we have strived to design and 

develop novel deep architectures keeping in mind the computational budget which 

will be able to deal with an imbalanced dataset with efficacy for both multi-class and 
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binary imbalanced datasets, along with analyzing the best state-of-the-art approaches 

used to deal with class imbalanced scenarios. We have focused more on the extraction 

of deep and automated features instead of hand-crafted features and exploring the role 

of data augmentation and fine-tuning throughout the study. 

1.3 Scope of Work 

Most real-world datasets have some extent of imbalanced sample distributions 

and finding a perfectly balanced dataset can be difficult. This study aims to help 

analyze and apply techniques for creating a less biased model which can be applied 

in various areas or sectors ranging from healthcare to object detection etc. 

1.4. Research Gaps 

After conducting a literature survey, the following research gaps have been 

observed are illustrated below: 

 

i. Limited work has been found in dealing with Machine Learning and Deep 

Learning techniques to solve imbalanced data problems.  

ii. Dealing with multi-class/multi-label datasets for imbalanced problems is quite 

challenging for most classification models 

iii.  Selecting the appropriate evaluation metrics while handling imbalanced datasets 

is generally ignored. 

iv.  Limited deep learning architectures have been given in the existing literature to 

tackle class imbalance. 

v. Current advancements and focus of the machine learning and deep learning 

research community are generally towards model and training techniques 
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whereas hyperparameter tuning and adept data pre-processing methods like 

synthetic augmentation techniques also play an important role in imbalanced 

situations. 

1.5. Research Objectives  

The accumulative objectives obtained from the above-mentioned research 

gaps are as follows: 

● Objective-1: To study and analyze new machine learning techniques for Bag 

of    Visual Words representation for imbalanced datasets. 

● Objective-2: Implementation of pre-trained deep neural networks for image 

classification using imbalanced datasets. 

● Objective-3: Exploring data augmentation in deep learning for imbalanced 

data. 

● Objective-4: Development of novel deep learning architectures for multi-

class imbalance problems.  

● Objective-5: Application to the class imbalance problem in object detection 

using deep learning. 

1.6 Study Area and Experimental Data 

We have used various datasets for analysis and evaluation for all of our 

proposed approaches as discussed which are enlisted and described beneath. 
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1.6.1 Graz-02 Dataset 

Graz-02 dataset (Opelt, et al. 2004) is one of the two benchmark datasets used 

for one of our experimental tasks which relates to a bag of visual words and multi-

class imbalanced classification. It consists of four classes: class 0 (Bike), class 1 (car), 

class 2 (None), and class 3 (Person) with a total of 1,476 images. Figure 1.1 shows 

various samples from the original Graz-02 database to depict the intra-class and inter-

class similarity. It depicts the class imbalance in the Graz-02 dataset. The number of 

samples in class 1 (car) is higher in comparison to other classes. The distribution of 

the number of samples present in each class of the Graz-02 dataset is presented in 

Figure 1.2. 

 
Figure 1.1. Samples from the Graz-02 dataset depicting inter and intra-class 

similarity among the images of the training dataset. 
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Figure 1.2. Distribution of the number of samples present in each class of the 

Graz-02 dataset. 

1.6.2 TF-Flowers Dataset 

The TF-Flowers dataset (Tensorflow, et al. 2019), samples of images shown 

in Figure 1.3, is another challenging imbalanced dataset that consists of images from 

five different categories of flowers. It contains high-quality images of flowers of 

different sizes and aspect ratios, which makes this dataset more challenging to tackle 

for the image classification task. All the images were collected specifically for deep 

learning workloads. The imbalanced multi-class dataset consists of different classes: 

Class 0 (daisy), Class 1 (dandelion), Class 2 (tulips), Class 3 (roses), and Class 4 

(sunflowers), with the class distributions shown in Figure 1.4. 
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Figure 1.3. Samples of the TF-Flowers dataset depicting inter and intra-class 

similarity present among images of the training dataset. 

 

 

Figure 1.4. Distribution of the number of samples present in each class of TF-

Flowers dataset.  

1.6. 3 BreakHis Dataset 

For imbalanced breast cancer classification tasks, we have primarily used the 

BreakHis dataset which comprises 7,909 histopathological images (Spanhol, et al. 

2015). The images are jointly placed into two categories: Benign and Malignant. The 
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Benign and Malignant images comprise different magnification factors: 40X, 100X, 

200X, and 400X; all the images are resized to 224 x 224 pixels using method of the 

bi-linear interpolation to make the images suitable for our image classification 

experiments. There is a disproportionate class distribution of samples in Benign and 

Malignant classes respectively.  The benign class consists of fewer samples so it is 

considered the Minority class and the Malignant consists of more samples in 

comparison to the Benign so it is termed the Majority class.  In Figure 1.5, the 

distribution of the number of samples given in each class of BeakHis Dataset is 

presented. The lower number of samples of Benign (Minority class) in comparison to 

Malignant (Majority class) indicates the class imbalance problem as illustrated in 

Figure 1.6. 

 
Figure 1.5. Distribution of the number of samples present in each class of 

BreakHis Dataset. 
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Figure 1.6. Illustration of random samples from BreakHis Dataset. 

1.6.4 Breast-Histopathological-Images Dataset  

We have also considered another breast cancer classification dataset, the 

Breast Histopathological Image dataset (Cruz-Roa, et al. 2014). The Breast 

Histopathological Images dataset comprises 277524 image samples having 

microscopic views of breast cell specimens at a 40X magnification factor. Each image 

patch extracted from whole slides is of size 50 x 50. The dataset tries to address 

growing challenges in detecting invasive ductal carcinoma (IDC), which is considered 

as a common type of breast cancer. A highly imbalanced class distribution is observed 

in this dataset with 198738 IDC –ve images and 78786 IDC +ve images. It is 

interesting to note in this particular dataset, images from the IDC -ve class are in 

majority because their count is much higher than images belonging to the IDC +ve 

class. 



Chapter 1: Introduction 

14 

1.6.5 Kaggle Diabetic Retinopathy Dataset  

It is a very large publicly available dataset that was originally published in a 

Kaggle competition. It consists of high-resolution images captured in varied 

imagining conditions, belonging to four classes: class 0 (NO DR), class 1(Mild), class 

2 (Moderate), class 3 (Severe), and class 4 (proliferative DR). An illustration of a few 

random samples taken from different diabetic retinopathy grades from the Kaggle 

DDR dataset is presented. In total 53,576 and 35,126 images are present in the test 

and train datasets, respectively (Eyepacs 2015). The Kaggle DDR dataset is 

imbalanced in nature, and the test dataset has a reasonably high number of image 

samples existing in each class. In figure 1.7, the distribution of the number of samples 

present in each class of the Kaggle Diabetic Retinopathy Dataset is displayed. Our 

experiments have a composition of samples from the original competition: Class 0 

has 31,403 samples, class 1 consists of 3042 samples, class 2 has 6282 and further 

classes 3 and 4 have 977 and 966 samples, respectively. It was observed that the 

minority class comprises 2.016% of the entire dataset. 
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 Figure 1.7. Illustration of a few random samples present in each class of 

Kaggle Diabetic Retinopathy Dataset. 

1.6.6. DDR Dataset 

We have also used the DDR dataset proposed by Tao Li et al (Li, et al. 2019) 

for diabetic retinopathy experimentation. The dataset consists of three categories of 

annotations such as bounding box, pixel, and DR grading level annotations. There are 

a huge number of sample images (13,673 fundus images) presented in the dataset, 

which was collected from 9,598 patients consisting of 6 classes. Out of 13,673 fundus 

images, 6835 and 2733 images, respectively, are used for training and validation, and 

the leftover 4105 images are taken out for testing respectively. Figure 1.8, depicts a 

few random samples taken from different diabetic retinopathy grades from the DDR 
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dataset. We found that in this dataset, the most under-represented class is around 

1.726% of the total samples. In the case of segmentation, there were a few samples 

(very minimal, around 5) with corrupted masks in the dataset which had to be removed 

before training.  

 

Figure 1.8. Illustration of a few random samples present in each class of DDR 

Dataset. 

1.6.7 Indian Diabetic Retinopathy Image (IDRiD) Dataset 

IDRiD is the first available diabetic retinopathy images database based on the 

Indian population and it consists of three parts: segmentation, disease grading 

(classification), and localization (object detection). The dataset consists of 4288×2848 

size jpg file images (Porwal, et al. 2018). In both the cases of disease grading and 

localization, a total of 516 images are present in the dataset, out of which 413 images 

are considered for training and the remaining 103 images are kept for testing. Figure 
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1.9, illustrates a few random samples taken from different diabetic retinopathy grades 

from the IDRiD dataset. The segmentation masks consisting of the true labels are used 

for the coordinates of the center of the optic disc and that of the fovea center in the 

retinopathy images. The number of samples in the minority class constitutes 

approximately 4.986% of the complete dataset, rendering it to be a typical case of 

severe class imbalance. In the case of the localization task for this dataset, the 

centroids of each of the objects to be localized i.e either lesion or fovea or optic disc, 

and we used the centroid information to generate bounding boxes of fixed sizes using 

a preset radius. 

 
Figure 1.9.  Illustration of a few random samples present in each class of Indian 

Diabetic Retinopathy Image (IDRiD) Dataset. 
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Figure 1.10. Histogram depicting number of image samples present for 

classification task for respective diabetic datasets. 

 

Figure 1.11. Histogram depicting number of segmentation pixels present in each 

class for respective diabetic datasets. 

Figure 1.10 depicts the histogram consisting of the number of image samples 

present for above mentioned diabetic datasets. (Kaggle Diabetic Retinopathy Dataset, 

Indian Diabetic Retinopathy Image (IDRiD) Dataset, and Indian Diabetic Retinopathy 

Image (IDRiD) Dataset. Figure 1.11. Illustrates Histogram depicting number of 

segmentation pixels present in each class of respective diabetic datasets. Further 
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Figure 1.12 displays the random samples generated with the help of modified 

RandAugment and after applying normalization and pre-processing operations. 

 

Figure 1.12. Random samples generated with the help of modified RandAugment 

and after applying normalization and pre-processing operations 

1.6.8 Intel MobileODT Cervical Cancer Screening Dataset 

MobileODT in collaboration with Intel Technologies proposed the cervical 

cancer screening dataset which was made publically available on Kaggle (Mobileodt, 

et al. 2017). The dataset consists of image samples of types of cervical cancer as 

shown in Figure 1.12. As observed in Figure 1.13, there are visual similarities between 

different types, rendering the problem to be a challenging task. This cervigram dataset 

consists of 3 classes (Type 1, Type 2, and Type 3). Where Type 1 refers to cervixes 

that are ectocervical entirely, and are fully visible, such that they could be either small 
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or large. Type 2 cervices have an endocervical zone but are still completely visible 

and may or may not have an ectocervical component either large or small. For Type 

3, the endocervical zone present is not entirely visible and it might have either a small 

or large ectocervical component. Figure 1.14, illustrates the samples of the cervical 

cancer dataset depicting class imbalance distribution.  

Figure 1.13. Samples of the Cervical cancer screening dataset depicting random 

images of each cervix type. 
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Figure 1.14. The distribution of the number of samples present in each class 

shows a class imbalance. 

Table 1.1 illustrates the list of all datasets used for our experiments and their 

respective Imbalance Ratios (IR) which are used to grade the type of imbalance setting 

on the basis of majority and minority class for each dataset (Susan and Kumar 2019). 

A higher imbalance ratio is representative of more imbalance as compared to lower 

values of IR. 

Table 1.1. Details of imbalanced datasets used in the experiments. 

Dataset Classes Minority 

Class 

Majority 

Class 

Minority 

Number 

of 

Samples 

Majority 

Number 

of 

Samples 

Imbala

nce 

Ratio 

Imbalanc

e Type / 

Grade 

Graz-02 

Dataset 

Bike, Cars, 

Person, 

None 

Person Cars 311 420 1.35 Low 

Imbalance

d 

TF-Flowers 

Dataset 

Daisy, 

Dandelion, 

Roses, 
Sunflowers, 

Tulips 

Daisy Dandelio

n 

633 898 1.42 Low 

Imbalance

d 

BreakHis 

Dataset 

Benign, 

Malignant 

Benign Malignant 2480 5429 2.19 Moderatel

y 

Imbalance

d 

Breast 

Histopatholo
gical Images 

Dataset 

IDC +ve, -

ve 

IDC +ve IDC -ve 78786 198738 2.52 Moderatel

y 
Imbalance

d 

Kaggle 

Diabetic 

Retinopathy 

Dataset 

Class 0, 1, 

2, 3, 4 

Class 4 Class 0 1914 65343 34.14 Extremely 

Imbalance

d 

Dataset for 

Diabetic 
Retinopathy 

(DDR) 

Class 0, 1, 

2, 3, 4, 5 

Class 3 Class 0 236 6266 26.55 Extremely 

Imbalance
d 
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Indian 

Diabetic 

Retinopathy 

Image 

(IDRiD) 

Dataset 

Class 0, 1, 

2, 3, 4 

Class 1 Class 0 25 168 6.72 Moderatel

y 

Imbalance

d 

Intel 

MobileODT 
Cervical 

Cancer 

Screening 

Dataset 

Type 1, 2, 3 Type 1 Type 2 1525 4610 3.02 Moderatel

y 
Imbalance

d 

1.7 Contribution 

Our work encompasses several contributions in the field of deep learning and 

computer vision, specifically focusing on imbalanced datasets.  

 

(i) We analyzed and evaluated state-of-the-art pre-trained networks for various 

applications such as diabetic retinopathy, breast cancer, and cervical cancer for 

various tasks, including classification, object detection, and segmentation on varied 

size datasets (small, medium, and large). 

(ii) We have also presented efficient machine learning classifiers such as Quasi SVM 

and weighted SVM, with a specific emphasis on the effectiveness of the Chi² SVM 

classifier for imbalanced datasets based upon the experimental results.  

(iii) We have further investigated deep feature extraction and codeword generation 

using histograms to improve classification performance. A novel model using visual 

codebook generation obtained from ResNet-50 deep features along with the Chi² 

SVM classifier is proposed to effectively tackle the class imbalance problem that 
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arises while dealing with multi-class image datasets. 

(iv) To address the challenges of imbalanced datasets, we explored two forms of 

minority data augmentation: Deep Convolutional Generative Adversarial Networks 

(DCGAN) and image transformations like rotation and flipping, hue, and translation. 

These augmentation techniques helped to improve model robustness and resolve class 

imbalance problems. In collaboration with Deep Convolutional Generative 

Adversarial Networks (DCGAN), we proposed a novel combination using data 

augmentation. DCGAN was employed in the initial phase to augment the minority 

class, using a modified VGG16 deep network architecture. The proposed approach 

proves to be an effective approach to mitigate the effect of the class imbalance 

problem. 

(v) Additionally, we highlighted the importance of batch normalization layers to 

mitigate the effect of covariance shift and also emphasized on the significance of 

hyperparameters and fine-tuning in achieving optimal model performance. 

(vi) A novel deep learning architecture is proposed that can handle class imbalance in 

both binary and multi-class problems. Notably, we developed a novel deep learning 

architecture called VGGIN-NET, specifically designed to handle class imbalance in 

both binary and multi-class problems. VGGIN-Net which combines the benefits of 

the naïve Inception module with appropriate layers of VGG16 along with the 

combination of flatten, batch normalization, and dense layers has proved to be a 

significant contribution to be applied on various applications of binary and multi-class 

imbalanced datasets. 
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Overall, our contributions involved evaluating pre-trained networks, 

exploring data augmentation techniques applied on minority classes, utilizing 

efficient classifiers, extracting deep features, and developing novel architectures to 

address class imbalance problems. 

1.8 Reading roadmap  

This thesis consists of six chapters corresponding to the five objectives. The 

chapters are structured as follows: chapter 2 illustrates the extensive literature review. 

The complete description with respect to each objective, with the experimental work 

done along with the major findings and contributions, are presented in Chapters 3, 4, 

and 5. The conclusion, limitations, and future scope of the work are discussed in 

Chapter 6 of the thesis. 

Chapter 1 mentions the introduction of the research consisting of an overview 

and motivation to conduct the study along with the problem formulation, 

contributions and study area, and a brief description of the experimental data. This 

chapter consists of the scope of the study along with research gaps and objectives. 

Chapter 2 has extensive background literature work related to five objectives. 

The literature review helped us to understand the research gaps and formulate the 

research objectives in a compiled way. In this chapter, we have presented a tabular 

comparative analysis of the latest work corresponding to the study area. 
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Chapter 3, 4, and 5 consists of discussions about each objective which 

includes problem statements along with some background literature, contributions, 

methodology, workflow, pictorial representation along with the implementation 

details, results, and discussion section followed by a summary of the findings and 

limitations corresponding to each chapter. 

Chapter 6 provides the final summary and conclusions derived after 

conducting the study. The same chapter also discusses the research contributions and 

future scope of the work. 
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Chapter 2 

Theoretical Background   

 In this chapter we have done relevant literature review corresponding to the 

research direction emphasized in the thesis. The findings of the work done by various 

researchers have been outlined and summarized in the fashion by highlighting the 

various research gaps and limitations corresponding to the class imbalanced datasets 

applicable in various applications. 

2.1 Literature Review 

Recent advancements in deep learning observed in various fields of computer 

vision ranging from object detection (Hou, et al. 2017), image classification (Bosch, 

et al. 2007), image segmentation (Haralick, et al. 1985), human pose detection 

(Voulodimos et al 2017) to visual tracking (Yang, et al. 2011), etc. have been 

tremendously gaining traction in the computer vision research community. It has been 

possible nowadays because of the availability of high-performance computational 

machines in comparison to the previous decades. The use of graphical processing 

units (GPU’s), advanced computing, and other hardware accelerators specifically 

designed for machine learning applications have made real-time processing possible. 

To tackle challenges associated with imbalanced datasets, various deep learning and 

machine learning approaches are proposed in the literature for imbalanced datasets in 

computer vision (Saini and Susan 2023b). The deep learning and machine learning 

based techniques have outgrown manifold times in the last few decades to analyze the 

difficult “real-world” problems characterized by imbalanced data in computer vision. 
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Machine learning allows computer programs to get the ability to automatically learn 

and improve from experience without the necessity of it being needed to be 

programmed manually (Minaam and Amer 2019). However, deep learning implies 

the automatic learning of features at many levels of abstraction that allow systems to 

learn increasingly complex functions (Bengio, et al. 2009). Despite having several 

advantages and applications, machine learning and deep learning techniques generally 

give a poor performance on minority class data because of differences in the 

distribution of data (Saini and Susan 2018). Hence, to overcome this issue, it is 

required to explore several methods to efficiently handle the imbalanced nature of 

data for binary-class and multi-class classification. Predictive accuracy itself alone 

might not be an appropriate measure when the data is imbalanced. There are various 

other performance measures available techniques (Garcia, et al. 2009) that are more 

appropriate while dealing with the classification task of imbalanced datasets along 

with the accuracy such as Receiver Operating curve (ROC) curve, Area under the 

curve (AUC) curve, Precision, Recall, Mathews’ correlation Coefficient, Cohen’s 

Kappa etc., that needs to be considered.  

According to literature work, various researchers have extracted traditional 

handcrafted features for a bag of visual word approach using image classification. 

Suh, et al. 2018 describe an approach for distinguishing between sugar beets and 

volunteer potatoes with the help of Bag-of-Visual-Words model. The low-level 

features used for constructing the visual dictionary are Scale Invariant Feature 

Transform (SIFT) and Speeded-Up Robust Feature (SURF) features with Out-of-Row 

Regional Index (ORRI). From the experiments, it was found that the highest accuracy 

was obtained for the combination of SIFT with SVM, in the case of the traditional 
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Bag-of-Visual-Words approach. Cheng, et al. 2017 proposed a novel approach for 

scene classification, defined as a bag of convolutional features (BoCF). In which the 

visual words are extracted from deep CNN features derived from convolutional neural 

networks. Feng, et al. 2017 used CNN with the BOVW approach for the classification 

of geographical scene datasets by constructing a convolutional dictionary using pre-

trained ImageNet models. SIFT features are handcrafted features that have been 

proved to be successful for various image classification tasks ranging from object and 

place recognition to face recognition (Geng and Jiang 2009). The conventional 

BOVW utilizes SIFT as the low-level feature based on which the visual codebook is 

constructed. Georgescu, et al. (2020) presented an improvisation recently, where they 

combined the handcrafted SIFT features with CNN extracted features in the BOVW 

model. They performed facial expression recognition on various datasets such as the 

Facial Expression Recognition (FER) challenge dataset, the FER+ dataset, and the 

AffectNet dataset (Georgescu, et al. 2019). However, the addition of handcrafted 

features with deep learning features increases the computational complexity of the 

classification pipeline. The traditional Bag-of-Visual-Words (BOVW) approach, as 

described in the literature, primarily relies on handcrafted features. However, when 

applied to imbalanced datasets, this approach alone often fails to yield unbiased 

results. The reason is that the outcomes tend to be biased towards the majority classes. 

The problem becomes more challenging in case of multi class imbalanced dataset. 

The work, therefore, emphasizes upon the classification of imbalanced multi-class 

image datasets in computer vision and associated challenges.  

Spanhol, et al. 2016 had conducted an experiment using CNN based on deep 

learning for the BREAKHIS cancer dataset, and they further proposed a new approach 
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using image patches with the sliding window mechanism. Litjens, et al. 2016 

presented a deep learning based tool and CNN that can effectively perform cancer 

detection using a network trained on histopathological images of prostate and breast 

tissue by applying patch extraction. Another variant of CNN, pre-trained networks are 

already trained on a larger standard dataset, and knowledge is transformed from one 

domain to another domain which makes it quite useful in various sectors. Many 

researchers have worked on pre-trained networks in the biomedical field, such as Xie, 

et al. 2019 who conducted supervised and unsupervised experiments using a transfer 

learning approach. From the supervised classification results, it was found that the 

Inception ResNet-v2 pre-trained network performs well. Deniz, et al. 2018 proposed 

concatenating the features extracted by combining the layers from AlexNet and the 

VGG16 pre-trained model. The new features were learned by support vector machines 

(SVM) for the breast cancer classification task. Garud, et al. 2017 proposed a pre-

trained GoogleNet based approach for separating Benign samples from Malignant 

using microscopic high magnification multi-view samples. From the literature survey, 

it is noted that many researchers have indeed applied CNN and pre-trained models for 

overall improvement in the performance of the model used in the diagnosis and 

detection of breast cancer. But there are still various issues that need to be carefully 

dealt with, such as the imbalanced nature of the biomedical datasets, which occurs 

because of the uneven distribution of samples related to cancerous and non-cancerous 

cells. To address the class-imbalance problem in data mining (Susan and Kumar 2019, 

Susan and Kumar 2018), various methods have been proposed such as oversampling, 

undersampling, and hybrid sampling approaches. Whereas in computer vision, the 

general method of data augmentation has been applied in several works for improving 

class distribution and the overall model performance. Various data augmentation 
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operations were applied to achieve better performance by including affine 

transformation operations on images such as rotation, scaling, translating, etc. and 

further comparative analysis is conducted by comparing various configuration 

combinations of CNN with other traditional approaches (Howard 2013). From the 

study conducted, they have also emphasized the role of data augmentation operations 

on the overall model performance. From the performance analysis, it was validated 

that the deep features extracted using CNN outperform the handcrafted features. 

Antoniou, et al. (2017), proposed the use of a generative adversarial network for 

synthetically increasing data samples. It was observed that the data augmentation 

technique was able to adapt to the training distribution and improved the performance 

of classifiers on various datasets vastly. Their approach was able to improvise the 

classification results on VGG-Face and EMNIST datasets (Antoniou, et al. 2017). 

Also, Lyu, et al. 2020 proposed a novel de-noising approach based on a generative 

adversarial network variant that made use of VGG architecture. Frid-Adar, et al. 2018 

presented a novel model in Generative Adversarial Networks (GAN) using synthetic 

data augmentation for liver lesion image dataset. The literature extensively covers 

traditional approaches such as data augmentation, training CNN networks from 

scratch, and utilizing pre-trained networks. However, some methods have 

predominantly focused on evaluating the model's performance based solely on 

accuracy metrics, disregarding the crucial aspect of ensuring sufficient representation 

of minority class sample images during model training. This oversight hinders fair 

evaluation. Furthermore, the importance of applying different data augmentation 

techniques specifically to the minority classes has been overlooked. By incorporating 

separate data augmentation approaches for minority classes, the model can effectively 

learn from both majority and minority class samples, improving its ability to handle 
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imbalanced datasets. It is important to address these issues and consider a more 

comprehensive evaluation approach that takes into account not only accuracy, which 

provides a more holistic assessment of the model's performance on imbalanced 

datasets. Additionally, giving proper attention to data augmentation strategies for 

minority classes can lead to more robust and accurate models. 

Hagos and Kant 2019 highlighted the application of the Inception-V3 pre-

trained model on a smaller subset of diabetic retinopathy detection dataset by 

considering accuracy as an evaluation measure and achieved 90.9% accuracy. For an 

imbalanced dataset, there are many other reliable evaluation metrics other than 

accuracy which should be considered as well while measuring the performance of the 

model which are missing in many works. Thota and Reddy 2020 proposed a variant 

of the VGG16 pre-trained model for performing the classification task on the Eye-

PACS dataset whose performance evaluation was done using different metrics such 

as sensitivity, specificity, and AUC along with accuracy. Lam, et al. 2018 used 

GoogleNet and AlexNet pre-trained models on the Messidor-1 diabetic retinopathy 

dataset. Various studies have been conducted where many researchers have taken the 

concatenated features from different pre-trained networks and used them as input in 

other machine learning classifiers. Kassani, et al. 2019 had shown improved 

performance by considering Xception as the pre-trained network for the purpose of 

feature extraction. The extracted features were passed to a multi-layer perceptron 

neural network, on the APTOS dataset (Kassani, et al. 2019). Wan, et al. 2018 

obtained high performance on the publicly available Kaggle DRD dataset by using 

VGGNet outperformed other pre-trained networks such as AlexNet, GoogleNet, and 

ResNet, and they also emphasized the role of fine-tuning and transfer learning. 
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Numerous works in literature have been conducted related to object detection and 

segmentation using various diabetes datasets. Zhang, et al. 2020 proposed a ConvNet 

formulated by combining a few convolutional and deconvolutional layers along with 

the Fully Connected (FC) and softmax layers to distinguish between the presence and 

absence of microaneurysms in retinal fundus images. Oliveira, et al. 2021 proposed a 

variant of Faster R-CNN, with data augmentation, for Diabetic foot Ulcer Detection. 

Porwal, et al. 2018 reported results compiled by various researchers who took part in 

the grand diabetic retinopathy segmentation and grading challenges on the Indian 

retinopathy Image dataset (IDRiD). The existing literature lacks a comprehensive 

analysis of deep learning models on imbalanced datasets of varied sizes. This includes 

datasets with varying sample sizes, ranging from very small to larger datasets, and 

covering all classification, segmentation, and object detection tasks within a single 

module on a single application domain. This limitation hampers the ability to capture 

useful insights and gain an in-depth understanding of the challenges associated with 

imbalanced datasets.  To address these limitations, it is crucial to conduct 

comprehensive research that encompasses datasets of different sizes, covering various 

classification, segmentation, and object detection tasks along with the evaluation 

metrics for an imbalanced dataset. This would contribute to the development of more 

robust and effective customized approaches for handling imbalanced datasets in deep 

learning applications which can be deployed in the real-world scenario. 

From the overall analysis, it was interpreted that the top performance 

approaches involved some form of data augmentation or ensemble models. Another 

major finding was that resolving the imbalance problem would lead to a tremendous 

improvement in the overall performance of the model. So dealing with class 
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imbalance is an important aspect, along with the overfitting problem, to generally 

enhance the performance of the network. Data Augmentation is a regularization 

method (Howard 2013) that helps to resolve the overfitting problem which generally 

occurs in deep learning models. It is equally important to select the correct set of data 

augmentation operations to overall model improvement. However, selecting the 

correct set of data augmentation operations is a tedious and manual process and also 

it is quite difficult to design the correct pipeline of operations. So, in literature, certain 

automated approaches are discussed to choose the correct set of data augmentation 

operations such as AutoAugment (Cubuk, et al. 2019) and RandAugment (Cubuk, et 

al. 2020). AutoAugment is a computationally expensive process and it is formulated 

by the Proximal Policy Optimization (PPO) algorithm with a large search space of 

different augmentation operations and their magnitudes. However, the RandAugment 

approach proposed by the same authors removed the PPO algorithm resulting in a 

much smaller search space. A simple grid search-based tuning approach reduces the 

computational complexity as well as the search space, deeming it to be one of the 

most effective automated approaches for data augmentation of CNN. The work 

presented in the literature served as inspiration for us to apply RandAugment, which 

has proven to be beneficial in improving the overall performance, particularly when 

dealing with imbalanced datasets. Table 2.1, illustrates some of the recent deep 

learning methodologies.  

Table 2.1. Survey of some recent deep learning methodologies for imbalanced problems. 

Method Data Pre-

processing 

Distinctiveness 

factor / 

Achievements 

Performance 

Evaluation 

Limitatio

ns 

Datasets Experimental 

details 

Imbalan

ced 

Classific

Feature 

Normaliza

tion 

A novel model 

based on 

Generative 

Average 

Precision, ROC 

AUC 

The 

proposed 

method is 

KEEL and 

CelebA 

datasets 

● Cycle

GAN 
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ation via 

a 

Tabular 

Translat

ion 

GAN 
(Gradste

in, et al. 

2022) 

Adversarial 

Networks is 

proposed which 

uses 

regularization 

losses to map 
majority samples 

to corresponding 

synthetic 

minority samples. 

evaluated 

on a small 

number of 

datasets, 

so it is not 

clear how 
well it 

would 

perform 

on other 

datasets. 

● Learn

ing 

rate of 

10−4 

● SELU  

● activa
tion 

● Batch 

size: 

64, 

128, 

256 

HardVis

: Visual 

Analytic

s to 

Handle 

Instance 

Hardnes
s Using 

Undersa

mpling 

and 

Oversa

mpling 

Techniq

ues 

(Chatzi

mparmp

as, et al. 
2022) 

 

Undersam

pling and 

Oversamp

ling 

HardVis, the 

system is 

designed for 

visual analytics to 

handle instance 

hardness in  

imbalanced 
classification 

settings. 

Precision, 

Recal, F1-

Score, AUC 

The 

compariso

n of the 

proposed 

system to 

other 

state-of-
the-art 

systems 

for 

handling 

instance 

hardness 

is 

missing. 

UCI ML iris 

flower 

datasets 

● kNN 

algori

thm 

● Under

sampl

ing + 

Overs
ampli

ng 

appro

ach 

Imbalan

ced 

Classific

ation via 

Explicit 

Gradient 

Learnin

g From 

Augmen

ted Data 

(Yasinni

k, et al. 
2022) 

 

Data 

Augmenta

tion, 

Feature 

Normaliza

tion 

Proposed method 

for classification 

using explicit 

gradients which 

demonstrates 

performance on 

synthetic and 

real-world 

datasets with 

various 

imbalance ratios. 

ROC AUC, 

Confusion 

Matrix, F1-

Score 

The 

proposed 

method 

may not 

be 

effective 

for 

datasets 

with a 

very high 

imbalance 

ratio and 
with a 

large 

number of 

features. 

Kohavi 

Adult dataset 

● PCA 

from 

101 to 

64 

● Learn

ing 

rate 

10−3 

●  β1 = 

0.5, 

β2 = 

0.999 
● 128 

batch 

size is 

taken 

● 200 

epoch

s 

Multi-

loss 

ensembl

e deep 

learning 

Feature 

Normaliza

tion, Data 

Augmenta

tion 

Ensemble model 

trained using 

various loss 

functions that 

exhibit superior 

Matthews 

correlation 

coefficient 

(MCC), F1 

score, 

The 

proposed 

method 

may be 

sensitive 

Montgomery 

TB CXRs 

and  

● CCE 

with 

entrop

y-

based 
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for chest 

X-ray 

classific

ation 

(Rajara

man, et 
al. 2021)  

performance on 

pediatric chest X-

ray (CXR) 

dataset. 

Confusion 

matrix 

to the 

choice of 

hyperpara

meters. 

pediatric 

pneumonia 

dataset 

regula

rizatio

n 

● data 

is 

augm
ented 

using 

rando

m 

affine 

transf

ormat

ions 

● Tenso

rflow 

Keras 
2.4 

Deep 
Metric 

Learnin

g Model 

for 

Imbalan

ced 

Fault 

Diagnos

is (Gui, 

et al. 

2021) 
 

Oversamp
ling 

Deep metric 
learning model is 

designed for  

imbalanced data 

pairs and a 

quadruplet loss 

function which 

takes into account 

the inter-class 

distance and the 

intra-class data 

distribution 
together. 

AUC, 
Precision, 

Recall, F1 

Score 

Comparis
on of the 

proposed 

method to 

other 

state-of-

the-art 

methods 

for 

imbalance

d fault 

diagnosis 
is 

missing. 

Tennessee 
East-man 

process 

dataset and 

CWRU 

bearing fault 

dataset 

 

● Quadr
uplet 

and 

softm

ax 

loss 

combi

nation 

was 

used. 

● LST

M 
featur

e 

extrac

tion 

● Featur

e 

embe

dding 

● Quadr

uplet 

Pair 

Minin
g 

Improvi
ng 

Model 

Accurac

y for 

Imbalan

ced 

Image 

Classific

ation 

Tasks by 

Adding 
a Final 

Batch 

Feature 
Normaliza

tion 

VGG19 model 
modified with  

incorporation  of 

Batch 

Normalization 

before the output 

layer to enhance 

performance on 

minority class. 

Sensitivity, 
Specificity, 

Mean class 

accuracy 

Comparis
on of the 

proposed 

method to 

other 

state-of-

the-art 

methods 

for 

imbalance

d image 

classificat
ion is not 

present. 

Wall crack 
and skin 

cancer 

datasets 

 
● Batch 

norma

lizatio

n 

layers  

● Lowe

r 

learni

ng 

rates 
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Normali

zation 

Layer: 

An 

Empiric

al Study 
(Kocam

an, et al. 

2021) 

Deep 

Syntheti

c 

Minorit

y Over-

Samplin

g 

Techniq

ue 

(Manso
urifar 

and Shi. 

2020) 

 

Feature 

Normaliza

tion 

To train the 

inputs and 

outputs  of the 

SMOTE, a deep 

neural network 

regression model 

was used. 

 

Precision, 

Recall, F1 

Score 

The 

computati

onal 

complexit

y of the 

proposed 

method is 

ignored. 

WBC,  

Pima, 

Parkinson, 

and other 

disease 

datasets 

 

● DA-

SMO

TE 

and 

GAN 

applie

d 

Generati

ve 

Adversa

rial 

Network

s for 

Failure 

Predicti

on 
(Zhen, 

et al. 

2019) 

 

Feature 

Normaliza

tion, Data 

Resamplin

g 

Algorithm 

proposed for 

failure prediction 

using  two GAN 

networks is used 

together for 

generating fake 

samples. 

AUC, 

Precision, 

Recall, 

Confusion 

Matrix 

This 

approach 

is difficult 

to be 

applied to 

smaller 

datasets. 

APS, 

CMAPSS 

dataset 

● Re-

sampl

ing 

(overs

ampli

ng/ 

under

-

sampl
ing) 

and 

cost-

sensit

ive 

learni

ng 

● Mini-

batch 

SGD 

● Weig

hted 
Loss, 

SMO

TE, 

ADA

SYN 
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2.2 Methodology 

2.2.1. Classification 

Classification is one of the most studied areas under the spectrum of 

supervised learning and in this case, the class label for the given task is well known 

in advance. It is usually regarded as a global labeling task as one single label is present 

for the complete image. The model is trained using the training dataset having 

multiple images so that if any unknown sample images from the test dataset are passed 

to the trained model, it can predict the category or class to which the test sample 

belongs. The predicted output is matched with the target output to check how well the 

model has learned. With the recent advancements in high-performance computing 

devices, deep learning is being widely used for various image classification workloads 

nowadays. 

2.2.2. Object Detection 

Object detection also comes under the periphery of supervised machine 

learning but it is regarded as a sparsely labeled task since the information available in 

the form of class labels is around selected regions containing different foreground and 

background classes. Object detection is used to determine the presence of an object 

in an image by creating the bounding box around the object. The objective of object 

detection is to not only determine the presence of objects but also to localize them 

within the image by providing the coordinates of their locations The object detection 

task can fall into either the single or multi-class category depending on presence of 

multiple objects in the image. Pathak, et al. (2018), highlighted the usage of CNN-

based deep learning approaches and discussed their utility in object detection tasks 
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across various fields, including robotics, surveillance, transportation, autonomous 

driving, and the medical domain, etc.  

2.2.3. Segmentation 

In image segmentation, the input image is divided into distinct regions or 

segments where each pixel is labeled with class labels. Each region has pixels having 

similar characteristics, allowing for the identification and delineation of objects or 

boundaries within the image. In other words, segmentation is the process used to find 

boundaries to locate objects. Labels are provided to each pixel in the images such that 

the multiple pixels having similar characteristics are assigned the same label. To 

perform segmentation we can use multiple pre-trained networks. In the basic CNN 

architectures for segmentation, the model usually has an encoder and a decoder, which 

work together to facilitate the segmentation process. However, the encoder is used for 

extracting high-level features from the input image, while the decoder further takes 

these features extracted from the encoder and provides a segmentation map that 

assigns class labels to each pixel. The combined encoder-decoder in the architecture 

helps to capture minute details from the image and hence allows for more accurate 

segmentation results. 

2.3 Evaluation Measures 

To evaluate the performance of different classification models, we considered 

multiple evaluation metrics including Accuracy, Precision, Recall, F1-score, 

Geometric Mean, Index Balanced Accuracy, Cohen’s Kappa, Matthew's Correlation 

Coefficient as well as Receiver Operating Characteristics (ROC) and it’s an area 

under the curve (ROC AUC). Accuracy determines how well the model can 
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distinguish the different samples belonging to different classes based on true label and 

predicted label (Japkowicz 2013). Precision is the degree of how close the predicted 

and real labels are to each other whereas recall is the probability of correct samples 

that can be classified from the data. F1 score combines precision and recall in a way 

such that it is able to approximately measure how close the predicted and true samples 

distribution are to each other. Mathematically, F1-score can be defined using 

harmonic mean of recall and precision.  It is suggested that accuracy alone cannot be 

the sole parameter to gauge the model's performance in tackling class imbalance 

scenarios. Hence, the F1-score must also be taken into consideration to analyze the 

model's performance while dealing with imbalanced datasets. Matthew’s correlation 

is used to find the correlation that occurs between actual and target variables for binary 

classification. Moreover, Cohen's Kappa is used to calculate the agreement that occurs 

between the real and the predicted model. The geometric mean is used to calculate the 

confidence interval between the distribution of true labels and predicted labels. Index 

Balanced Accuracy is a measure used to evaluate both multi-class and binary 

classification tasks. It combines the measure of overall accuracy with the accuracy 

corresponding to the class with the highest accuracy. This effectively describes the 

performance of a classifier trained on an imbalanced dataset. Receiver Operating 

Characteristics curves (ROC curve) along with area under the curve helps to depict 

the performance of a classification model at different thresholds based on false 

positive and true positive rate. 

In the case of segmentation, we consider Intersection over Union (IoU) and 

Dice Score as the primary evaluation metrics. Intersection over Union (IoU) is known 

as Jaccard Index which is used to obtain the measure of correctness of a segmentation 
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or even object detection model. It is expressed as the ratio of the area of overlap 

divided by area of union between the regions as provided by ground truth labels for 

segmentation compared to the class labels of the region predicted by the segmentation 

model. Dice Score (Sørensen Index) is the measure of similarity between segmented 

regions derived from known true labels and that predicted by the classifier. It is 

derived from the harmonic mean between the area of overlap along with the area of 

union (total number of pixels considering both regions). 

For object detection, we evaluate the different models based on mean average 

precision and mean average recall at fixed thresholds of intersection over the union. 

AP is formulated for each detection class and we averaged it to obtain the mAP.  The 

mean average precision or mAP score is obtained by using the mean AP over all 

classes and overall IoU thresholds, based on various detection regions of foreground 

and background. Average recall describes the area doubled under the Recall 

multiplied by the IoU curve. Similar to mAP, mAR is the mean of average recalls 

over the different number of classes within the dataset. Table 2.2 illustrates the 

mathematical equation of different evaluation criteria for image classification, object 

detection, and segmentation tasks. 

 

Table 2.2. Various performance metrics used for the evaluation. 

Evaluation Parameters 

Accuracy 
𝑇_𝑃 + 𝑇_𝑁

𝑇_𝑃 + 𝑇_𝑁 + 𝐹_𝑃 + 𝐹_𝑁
 

Precision 
𝑇_𝑃

𝑇_𝑃 + 𝑇_𝑁
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Recall 
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑁
 

F1-Score 
2 ∗  ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 )

( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 )
 

Matthew's Correlation 

Coefficient 

𝑇_𝑃 ∗ 𝑇_𝑁 − 𝐹_𝑃 ∗ 𝐹_𝑁

√(𝑇_𝑃 + 𝐹_𝑃)(𝑇_𝑃 + 𝐹_𝑁) (𝑇_𝑁 + 𝐹_𝑃)(𝑇_𝑁 + 𝐹_𝑁)
 

Cohen Kappa  
𝑝0−𝑝𝑐

 1− 𝑝0
  

Geometric Mean  

𝑇_𝑃_𝑟𝑎𝑡𝑒 =  𝑇_𝑃/(𝑇_𝑃 + 𝐹_𝑁) 

𝑇_𝑁_𝑟𝑎𝑡𝑒 = 𝑇_𝑁/(𝑇_𝑁 + 𝐹_𝑃) 

𝐺𝑚𝑒𝑎𝑛 = √𝑇_𝑃_𝑟𝑎𝑡𝑒 ∗ 𝑇_𝑁_𝑟𝑎𝑡𝑒  

Index Balanced 

Accuracy 
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 =  (𝑇_𝑃_𝑟𝑎𝑡𝑒 − 𝑇_𝑁_𝑟𝑎𝑡𝑒) 

𝐼𝐵𝐴 =  (1 +  𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒)  ∗  𝐺𝑚𝑒𝑎𝑛² 

Intersection over Union 

(IoU) 

𝐴𝑟𝑒𝑎_𝑜𝑓_𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

 𝐴𝑟𝑒𝑎_𝑜𝑓_𝑈𝑛𝑖𝑜𝑛
 

Dice Score 
2 ∗  𝐴𝑟𝑒𝑎_𝑜𝑓_𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

 𝐴𝑟𝑒𝑎_𝑜𝑓_𝑈𝑛𝑖𝑜𝑛
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Chapter 3 

Machine Learning and Deep Learning Techniques for 

Multi-class Imbalanced Dataset in Computer Vision 

From the literature review conducted we have formulated research objectives.  

The research objectives of this study aim to address the limitations identified in the 

existing literature and make significant contributions in the field of imbalanced 

dataset analysis using machine learning and deep learning models to mitigate the 

effect of class imbalance problem. In Chapter 3, a novel approach is proposed by 

combining deep features from pre-trained deep neural networks with an appropriate 

classifier using the traditional Bag of Visual Words based machine learning approach. 

Additionally, the study involves implementing various pre-trained deep neural 

networks and selecting the most suitable model to address class imbalance issues in 

classification, object detection, and segmentation. The research explores the 

significance of working with deep learning models on imbalanced datasets of varying 

sizes, ranging from small to large, within a single application domain. Various 

evaluation metrics are employed to assess the effectiveness of the models for 

classification, segmentation, and object detection tasks. All approaches are designed 

specifically to tackle the challenges associated with multi-class imbalanced datasets.  

 
:  1  The contents of this chapter are published in "Bag-of-Visual-Words codebook generation using deep features for 

effective classification of imbalanced multi-class image datasets." Multimedia Tools and Applications 80, no. 14 (2021): 

20821-20847 and "Diabetic retinopathy screening using deep learning for multi-class imbalanced datasets." Computers in 

Biology and Medicine 149 (2022): 105989. 
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This chapter is divided further into two subsections where section 3.1 consists 

of the discussion of the methodology adopted for the creation of the modified Bag-

of-visual-words representation using the extracted deep features and machine learning 

approaches, illustrated along with the experimental setup and result analysis covering 

objective 1. Section 3.2. consists of objective 2 and 5, where implementation of pre-

trained deep neural networks for image classification using imbalanced datasets and 

application to the class imbalance problem in object detection using deep learning is 

illustrated in depth. 

3.1. Objective 1: To study and analyze new Machine Learning 

technique for Bag of Visual Words Representation for 

Imbalanced datasets 

In the computer vision domain one of the most challenging tasks is to classify 

images into different categories. There are numerous challenges associated with the 

image classification task such as viewpoint, partial occlusion, clutter, illumination, 

and inter-class and intra-class visual diversity which causes difficulty for models to 

classify effectively. The Bag-of-visual words (BoVW) model gained traction in the 

research community for performing image classification tasks. Bag of Visual Words 

representation (Suh, et al. 2018) formulated from the Bag-of–words (BOW) concept, 

similar concept is used in BOVW to be applied to image classification problems by 

extracting the visual words from the trained vocabulary as features to classify images. 

Various features can be extracted such as SIFT and SURF, etc. instead of color, shape, 

and texture for classification for the BOVW approach (Saini and Susan 2021). We 

have modified the original BOVW approach by choosing the right set of features and 
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classifiers and further a combination of visual codebook generation using deep 

features along with the Chi² SVM classifier (Bellet, et al. 2013, Bellet, et al. 2015) is 

proposed in order to tackle the imbalance problem that occurs while dealing with 

various multi-class datasets. In the first stage, deep features are extracted using the 

ResNet-50 pre-trained network, and further, those extracted features are clustered 

together using the k-means algorithm. Each image is then converted into a features 

set called the Bag-of-Visual-Words (BOVW) which is derived from the histogram 

counts of visual words in the trained vocabulary. For performing these experiments 

on our proposed BoVW approach we have considered two imbalanced datasets. The 

problem becomes more challenging and complex while dealing with multi-class 

imbalanced datasets as there is difficulty in addressing the multi-class imbalance 

problem because of the random and haphazard manner in which samples are 

distributed into multiple classes. We seek to incorporate the deep features extracted 

from the latest state-of-the-art pre-trained networks into the traditional BOVW 

approach for constructing the visual codebook or dictionary (Saini and Susan 2021). 

Specifically, we focus on the features extracted from the last residual block of the fifth 

convolutional layer just preceding the global average pooling and dense layer of the 

pre-trained model ResNet-50, defined as the Res5c features (Mahmood, et al. 2017). 

The 3D features are of the form HxWxC for an input image, where H and W are the 

height and width of the 2D feature maps and C denotes the number of channels in the 

last residual block of the fifth convolutional layer that is used for feature extraction. 

In this work, we have utilized the deep features extracted from pre-trained deep 

convolutional neural networks (CNN) by transfer learning. The extracted features are 

used for codebook generation in the Bag-of-Visual-Words (BOVW) model that 

traditionally creates a visual dictionary from handcrafted features. Features extracted 
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using the transfer learning approach with pre-trained models have certain benefits 

over the handcrafted features. The pre-trained networks are already trained on the 

large-scale ImageNet dataset (Krizhevsky, et al. 2012) which overall reduces the 

training time required to train the model and also leads to the extraction of the most 

relevant low-level features for codebook generation. Furthermore, the non-linear Chi² 

SVM using the one-versus-all scheme is found to be an optimal choice of classifier, 

from our experiments, while dealing with the multi-class imbalanced datasets. There 

are the following contributions of this work: (i) Successfully applied transfer learning 

approach to extract deep features using pre-trained models, for generating the visual 

codebook in our improved Bag-of-Visual-Words model (ii) Conducted an extensive 

empirical analysis to find the optimal set of deep features for codebook generation 

and the appropriate classifier to resolve the class imbalance problem prevalent in two 

of the benchmark datasets (iii) Analyzing the role of chi-squared Kernelized SVM as 

an effective classifier for the histogram features. Additionally, we experiment with a 

set of neural networks used to approximate linear as well as kernel SVMs to 

investigate an alternative learning methodology for dealing with large-scale settings 

(Wang, et al. 2019, Rahimi and Recht 2008).  
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Figure 3.1. Proposed Bag-of-Visual Word codebook generation from deep 

features and subsequent classification using Chi²  SVM. 

 

The complete process of BOVW can be categorized into the following steps 

(Suh, et al. 2018) (1) Low-level feature extraction (2) Feature clustering and 

quantization for the generation of the visual vocabulary (3) Classification using a 

suitable classifier. Initially, from each image, 128-dimensional keypoint descriptors 

are extracted. This procedure pertains to the most commonly used feature descriptor 

for BOVW namely, the Scale-Invariant Feature Transform (SIFT) which are 

classified as handcrafted features, a genre that preceded deep learning. The keypoint 

descriptors are then clustered. The cluster centers are interpreted as visual words, and 

in this manner, a visual vocabulary is formulated. The feature vectors for 

classification are derived from the normalized frequency of occurrences of the visual 

words in an input image. It is noted that the Support Vector Machine (SVM) classifier 
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is popularly used for classifying the BOVW features. The proven success of the 

BOVW model motivated us to explore the incorporation of deep features derived from 

pre-trained networks into the existing scheme for efficient classification, with a 

special focus on improving the class-wise performance of imbalanced multi-class 

datasets. We have performed extensive experiments to find out the optimal choice of 

low-level deep features to be integrated into the BOVW approach, along with the 

optimum choice of classifier, to overcome the biasness problem that arises due to 

unequal class distribution. Our end-to-end approach is further detailed in Algorithm 

3.1 mentioned below and illustrated in Figure 3.1. 

 

Algorithm 3.1. ResNet-50 Deep Feature Extraction for Bag-of-Visual-Words codebook generation 

with Chi² SVM  Classification   

Input :  

Dataset, D (IMAGES, LABELS) 
Output: 

Performance metrics for Test set after classification by Chi² SVM classifier (CLF) 

 

Construct a model Vf using all layers from pre-trained ResNet-50 model V except final GAP and Dense layer 

Construct a new list for all deep features of all images, Xdeep 

Construct a new list for all class labels, Y 

M ← Number of classes in D 

for each (IMAGE, LABEL) in D do 

   IMG ← Preprocess IMAGE (using mean normalization) 

   FV ← Use model Vf to extract 3D feature of dimension 7 x 7 x 2048 from IMG 

   Append list Xdeep with FV 

   Append list Y with LABEL 
end for 

X ← Concatenate the feature vectors Xdeep into 2D matrix of size 49 x 2048 

Create an empty list for storing visual word features, Xbovw 

KM ← Apply k-means clustering algorithm on X using k number of clusters 

for each FEATURE in  X do 

            NC ← Determine which cluster each vector in FEATURE belong to using KM 

            Create empty array F of size k 

            for I in [1….k] do 

                    F[I] ← 0 

                    Increment F[I] with number of occurrences of I in NC 

            end for 

         Append list Xbovw with the histogram features F, and normalize the value in each feature column to 

[0,1] using MaxAbsScaler 

end for 

Instantiate a Chi² SVM classifier, CLF, and divide Xbovw into Xtrain and Xtest, and create corresponding target 

vectors Ytrain and Ytest from Y 

Xchi² ← Kchi²(Xtrain, Xtrain), according to Eq. (3) 
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Fit support vector machine CLF using (Xchi², Ytrain), according to Eq. (2) 

Create an empty list Ypred 

for each F in Xtest do 

   Cpred ← Use support vectors from trained CLF to predict class label of F 

   Append list Ypred with Cpred 

end for 

ACC ← Calculate accuracy using (Ytest, Ypred) 

Create new lists for storing precision, recall, and F1-score: P, R, F1 

for each class J in [1..M] do  

   P[J], R[J], F1[J]  ← Calculate and store F1-score, precision, recall using (Ytest, Ypred) 
end for 

3.1.1 Deep Feature extraction using Pre-trained Models 

Traditional BOVW uses handcrafted features such as scale-invariant feature 

transform (SIFT). In the last decade, deep learning became one of the most sought-

after techniques for image classification while traditional approaches like BOVW 

were almost pushed into obsolescence. Computational challenges have not deterred 

the deep convolutional networks from advancing to the state-of-the-art today in the 

form of pre-trained deep networks trained on millions of images. Then we have used 

the deep features extracted from the latest state-of-the-art pre-trained networks in the 

traditional BOVW approach for constructing the visual codebook or dictionary. 

Specifically, we focus on the features extracted from the last residual block of the fifth 

convolutional layer just preceding the global average pooling and dense layer of the 

pre-trained model ResNet-50 (He, et al. 2016), defined as the Res5c features in 

(Mahmood, et al. 2017). The 3D features are of the form H x W x C for an input 

image, where H and W are the height and width of the 2D feature maps and C denotes 

the number of channels in the last residual block of the fifth convolutional layer that 

is used for feature extraction. The set of features is converted into two-dimensional 

(H x W) feature vectors, each with the dimension of C. From the ResNet-50 

architecture, we see that H=7, W=7, and C=2048. Thus 49 deep feature vectors each 

of dimension 2048 are extracted from each input image. The total number of feature 
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vectors extracted from the training set is no. of training images x 49, with each feature 

vector having the dimension of 2048. The deep features are used for constructing the 

visual vocabulary associated with the Bag-of-Visual-Words model.  

ResNet is a fast network (faster at train time and same or improved speed at 

inference time) having residual connections or skip connections, which provides 

significant contributions to the computer vision domain. These skip connections help 

to learn the identity function well and also mitigate the effect of the vanishing gradient 

problem effectively. The introduction of the skip connections in the ResNet 

architecture leads to efficient propagation of the gradients in the network architecture 

from the output to the input. So the advantage of using residual networks would be 

the effective propagation of the gradients (moving backward). One of the most 

prevalent problems faced in the previous ConvNet architectures such as VGG16, 

AlexNet, etc. was the inability to effectively propagate gradients due to the lack of 

identity mappings and the increasing depth of the architectures. Another advantage of 

the ResNet is that it is an ensemble of different networks of varying depths which 

definitely provides an extra edge over other networks. The presence of a batch 

normalization layer inside every convolutional block in the ResNet architecture also 

improves gradient backpropagation to a greater extent. ResNet architectures are 

usually very deep, which overall achieves good performance without degrading the 

performance of the network due to their increased depth. So we can state that a very 

deep network with residual connections can achieve significantly lower training error 

than its non-residual counterparts.  
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3.1.2 Visual Codebook generation and feature engineering  

The first step in codebook generation is clustering. The 2048-dimensional 

deep features ensuing from all the images in the training set are clustered into k groups 

based on the similarity between the feature vectors. k-means is an unsupervised 

clustering algorithm (Syarif, et al. 2012) that is popularly used in the Bag-of-Visual-

Words model for grouping the low-level features into distinctive clusters. Choosing 

an appropriate value of the number of clusters k plays a crucial role in k-means 

clustering. Silhouette analysis is an approach that determines the optimal number of 

clusters (Géron 2019). We chose a local maximum value of silhouette score in the 

silhouette plot as the value of k for the two benchmark datasets used in our 

experiments. As noted from the local maxima of silhouette score plots in Figure 3.2, 

the optimum value of k is determined to be 60 for the Graz-02 dataset and 100 for the 

TF-Flowers dataset.  

For all the experiments we have used the widely adapted k-means++ algorithm 

to initialize the cluster centroids. The k-means++ is a cluster center initialization 

strategy. In comparison to the traditional approach, it leads to the smarter initialization 

of the centroids which automatically helps to enhance the clustering quality. In the k-

means++ clustering initialization strategy, firstly the random centroids are selected 

from the available data points. Then the distance of all the available data points is 

calculated from the nearest centroid. After the first iteration phase, the next set of 

centroids is selected on the basis of the calculation of the distance from the farthest 

available data point. This procedure is repeated till the k centroids have been sampled. 

The choice of this popular initialization strategy is solely in favor of improving the 
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performance and it is known to act as a robust method for a variety of scenarios to 

improve k-means convergence. After clustering, the cluster centers form the bins of a 

histogram and are defined as the visual words in the codebook generated. The next 

task is to find which of these visual words are present in each image. The histogram 

over the visual codebook is generated next for each image in the training and the test 

sets as shown in Figure. 3.3. This is achieved by considering each of the 49 x 2048 

deep feature vectors of the image, and considering which of the histogram bins it is 

closest to in terms of smallest Euclidean distance. The frequency of this bin is then 

increased by one. The histogram features are then normalized by scaling, and the 

resulting feature vectors are learned by a suitable classifier. While performing 

clustering using the k-means model, in our experiments, the number of instances is 

much larger than the dimensionality of features. 

3.1.3 Scaling of histogram features  

The resulting histogram features, which we now call BOVW features, are 

normalized using maximum absolute scaling (MaxAbsScalar) (Tax and Duin 2000), 

wherein we scale each feature column by dividing it by the maximum absolute value 

present in the respective feature column. Equation 3.1 illustrates the scaling 

technique, where X[i] denotes the ith feature and Xmax [i] denotes the maximum 

value in the ith feature column of the BOVW feature matrix. Thus, the normalized 

feature x[i] is confined to a range of [0, 1]. Chi-Square (Chi²) SVM kernel, used in 

the next phase of experiments, is a positive semi-definite kernel that expects the input 

to be in a non-negative range. 

                                       𝑥[𝑖] =
𝑋[𝑖]

𝑋𝑚𝑎𝑥[𝑖]
                                                               (3.1) 
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3.1.4. Chi² SVM Classifier for classification of multi-class imbalanced 

datasets 

We have conducted extensive experiments using various classifiers in the 

evaluation phase to find the perfect choice of the classifier for our BOVW features. 

From the empirical analysis, the results of which are presented it is found that the Chi² 

SVM classifier results in better generalization performance and works effectively for 

classifying the under-represented classes in imbalanced multi-class datasets.  

We discussed, in this section, some of the aspects of the SVM kernels that we 

investigated in our study to understand their suitability for resolving the class-

imbalance problem in multi-class datasets.SVM classification for a multi-class 

problem is solved using the one-vs-rest approach (Cortes and Vapnik 1995). Equation 

3.2 discusses the generalized function ℎ, which shows the optimization problem 

associated with a kernelized SVM by applying a kernel function 𝜙 on the original 

input data 𝑥. 

ℎ𝑤 ̂,𝑏 ̂(𝜙(𝑥(𝑛)))  = 𝑤 ̂𝑇𝜙(𝑥(𝑛)) + 𝑏 ̂ = (∑𝑖=1
𝑚𝛼 ̂(𝑖)

𝑡(𝑖)𝜙(𝑥(𝑖)))
𝑇

𝜙(𝑥(𝑛)) + 𝑏 ̂ 

= ∑𝑖=1
𝑚𝛼 ̂(𝑖)

𝑡(𝑖)(𝜙(𝑥(𝑖))𝑇𝜙(𝑥(𝑛))) + 𝑏 ̂    = ∑ 𝑖=1

𝛼̂(𝑖)
>0

𝑚𝛼 ̂(𝑖)
𝑡(𝑖)𝐾(𝑥(𝑖), 𝑥(𝑛)) + 𝑏 ̂                

(3.2) 

For our proposed methodology, we have used a Chi² kernel (Bellet, et al. 2013, 

Bellet, et al. 2015) which is known to measure similarities of data points using a 
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weighted exponential method. Equation 3.3 defines the Chi² kernel function for the 

data points 𝑥  and 𝑦  with the help of gamma term 𝛾. 

𝑘(𝑥, 𝑦) = 𝑒
−𝛾∑𝑖=0

𝑛(𝑥[𝑖]−𝑦[𝑖])2

𝑥[𝑖]+𝑦[𝑖]  

(3.3) 

For our experimental setup, the value of  𝛾 = 1 and the kernel is of the form 

𝑒−𝛾𝑑(𝑥,𝑦) as given in equation 3.3. The value of 𝑑(𝑥, 𝑦) which is calculated based on 

affinity is 0 for a pair of similar feature vectors and tends to ∞ for highly dissimilar 

feature pairs such that 𝑒−1 . 0  =  1 and 𝑒−1 .∞  =  0, respectively. Thus, the Chi² kernel 

when applied on histogram feature vectors produces a pairwise distance matrix in the 

range [0, 1]. The exponent of the exponential term in equation 3.3 is a non-linear 

squaring function that brings similar points closer and dissimilar points farther apart 

to the theoretical concept of distance metric learning (DML) which is a transformation 

of the input space (Bellet, et al. 2013, Bellet, et al. 2015). The feature transformation 

as a result of the kernel dot product, in the case of Chi² SVM, is able to capture the 

correlation between pairs of features. The weighted pairwise feature distance used in 

chi-square allows it to internally calculate the similarities between combinations of 

samples from the majority as well as minority classes. Due to which the class 

imbalance problem has been tackled to an extent such that the classifier is able to give 

almost equal results in the case of minority as well as majority classes.  

Additionally, we conducted another set of experiments to support larger-scale 

use cases. A simple fully connected neural network is used that is trained with the 
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help of hinge loss instead of logistic loss (softmax) which is generally used in most 

artificial neural networks with terminal full-connected layers for classification 

problems. These neural networks are termed as Quasi-SVMs, and the work done is 

inspired by (Rahimi, et al. 2008) (the neural network remains completely the same 

only the loss function is replaced). The choice of hinge loss for training our artificial 

neural networks used in the proposed approach is due to hinge loss being better suited 

to deal with imbalanced datasets. It was motivated by the fact that SVMs, as well as 

Quasi-SVMs, are able to deal with different datasets better than softmax classifiers 

due to their property of robustness, these classifiers are able to learn features 

distinctively and it does help the gradients to propagate well enough making it easy 

to generalize on a wider range of datasets. Apart from the Quasi-SVMs being trained 

in linear mode, we also train them in kernelized mode. In the kernelized model, we 

add another RFF (Random Fourier Features) layer, as per work done by Rahimi, et al. 

2008, which is used to provide a simple yet effective kernel transformation directly 

inside the neural network allowing us to construct a true Quasi SVM that deals with 

the kernel approximation internally and making our approach highly suitable for 

larger datasets also. This technique is basically used to kernelize the linear model 

using a non-linear transformation such that it approximates a kernel SVM with hinge 

loss providing us with the added advantage of online learning for use with our 

proposed approach which is generally not supported by generic SVMs. 

For the experiments, the proposed mechanism was implemented as described 

in Algorithm 3.1. For the purpose of our experiments, we have used various network 

architectures pre-trained on the large-scale ImageNet dataset which is constructed 

using tf.keras (TensorFlow Keras) framework (Abadi, et al. 2016). The pre-trained 
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weights are available from the keras_applications repository hosted by Francois 

Chollet. The deep feature extraction phase has been accelerated by the use of the 

NVIDIA Tesla T4 GPU. For each of the experiments used in the Bag-of-Visual-

Words based codebook generation approach the features of the different deep learning 

models were extracted and stored prior to running the k-Means clustering step. The 

initial feature extraction step involved running the deep networks like VGG, ResNet, 

Inception on GPU hardware and the stored features were reused across experiments. 

Although the computation time for the deep feature extraction step took around 20 

minutes for each dataset, the actual time would vary depending upon complexity of 

the dataset, the size of the feature vectors, the number of visual words, and the specific 

acceleration hardware being used. The remaining steps of the experiment including 

k-Means clustering and training of the different classifiers were carried out without 

usage of any GPU and directly on regular CPU hardware, and the k-Means step would 

dominate the majority time consumed which was up to 5 hours per clustering when 

the maximum value of k=150 was used. The k-means clustering and SVM 

classification that is a part of the BOVW approach have been performed using the 

Scikit-Learn package (Kramer 2016) with Python 3.6 version on, a Google Compute 

Engine VM with 16 GB RAM and quad-core Intel Xeon CPU. The imbalanced multi-

class datasets: Graz-02 and TF-Flowers are used in the experimental tasks. Each class 

is split into a 70:30 train test ratio using the stratified shuffle-split technique. The same 

is repeated over 10 folds to evaluate all the classifiers using a cross-validation-based 

approach. The observed metrics are aggregated over all folds and the reported results 

include their mean and standard deviation. For our analysis, we compare our proposed 

approach with VGG16, InceptionV3, and ResNet50 pre-trained networks. The 

VGG16 network architecture consists of 3 fully connected layers whereas the 
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InceptionV3 and the ResNet50 architectures use a single fully connected layer. For 

our experimental task, we use these network architectures primarily using pre-trained 

weights, except that all of the dense layers use weights randomly initialized from a 

Glorot uniform distribution while the biases are initially set to zeros. All the dense 

layers in the respective architectures have been trained in order to adapt the network 

to the new classification task (instead of ImageNet classification) which is the 

procedure followed in several deep learning experiments (Tajbakhsh, et al. 2016). In 

the case of the VGG16 network, we train the FC1, FC2, and a  final classification 

output layer which provides the softmax predictions of the various classes. For the 

InceptionV3 and ResNet-50, we train the last dense layer in order to adapt the network 

to the new classification task. For all of these experiments, we train the network for a 

total of 20 epochs to minimize the categorical cross-entropy loss using the Adam 

optimizer, with a learning rate of 0.01. Similar to our other experiments, we train these 

models over 10 stratified folds. Additionally, with the help of a few experiments, we 

demonstrate another variant of our proposed Bag-of-Visual-Words approach. Our 

proposed approach with minor modifications and the learned BOVW features can be 

made suitable for large-scale classification tasks as well. We make use of neural 

networks that work like Quasi SVMs with and without kernel approximation. Kernel 

approximations have been done with the help of Random Fourier Features. The 

following experimental settings have been used while conducting the experiments for 

Quasi SVM (which approximates a Linear SVM) and Kernelized Quasi SVM (which 

approximates a kernel SVM). We make use of the Adam optimizer combined with 

hinge loss. We noticed that the choice of hinge loss function significantly improved 

the convergence of our classifiers to a noticeable extent. We apply the L2 

regularization penalty of 1e-4 on all the trainable network weights and biases. 
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Initially, we set the learning rate as 5e-4 which is inverse time decayed by a factor of 

1e-5 and all the experiments are carried out till 1000 epochs. We have also analyzed 

the role of adding various hidden layers to these neural networks (which are used to 

approximate large-scale support vector machines). For the experiments, input layers 

consist of 60 or 100 nodes (based upon the number of clusters and the dataset) and 

the output layers are adjusted based on the number of classes in the target dataset. 

Further, the addition of hidden (fully connected) layers leads to the formation of 

complex neural networks but it’s important to analyze the effect in each scenario to 

observe how the addition of hidden layers affects working in large-scale settings. We 

added three hidden layers to the Quasi SVM i.e. with 64, 128, and 256 hidden units 

respectively. In the case of Kernelized Quasi-SVM, Random Fourier Features are 

used (as the kernel approximation step) with 1024 feature dimensions. Also, we 

consider adding two dense layers, one with 256 and another with 512 hidden nodes. 

In the case of a larger scale setting it is recommended to use mini-batch k-means 

(Sculley 2010) instead of the standard k-means implementation used earlier in our 

experiments. This would ensure that the clustering for codebook generation can be 

conducted easily on more samples at lesser computational complexity. 

In Table 3.1, the comparison has been done using different deep features 

extracted using pre-trained models (VGG16, Inception-V3, ResNet-50) along with 

the traditional SIFT descriptor, for the BOVW codebook generation, in combination 

with the different variants of SVM classifier (Linear, RBF, Chi² SVM using scalar 

and without using scalar approach). From the analysis, it was found that the deep 

features extracted using the ResNet-50 pre-trained model in combination with the 

Chi² SVM classifier work best for our BOVW model, since it shows high accuracies 
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for all the four classes present in the Graz-02 dataset. Another observation that was 

inferred from the result analysis is that scaling operation plays a significant role 

because avoiding scaling would have an adverse impact on the overall performance 

of the classifier as some minority classes were not detected.  The same pattern is 

observed in a few approaches such as in SIFT + BOVW and ResNet-50 + BOVW as 

shown in Table 3.1. A third observation that was inferred from the analysis is that 

Chi² SVM exhibits an overall better performance since it is able to identify all the 

classes separately and more efficiently in comparison to other variants of SVM (linear 

and RBF SVM). 

Further, experiments were conducted for the Graz-02 dataset in Table 3.3 and 

Table 3.5 to validate the proposed combination of the ResNet-50 + BOVW approach 

with the Chi² SVM classifier. The analysis drawn from Table 3.3 proves that the 

proposed combination for BOVW works well in comparison to direct deep learning 

using state-of-the-art pre-trained approaches (VGG-16, Inception-V3, and ResNet-

50). Five different supervised classifiers are evaluated and analyzed in Table 3.5 for 

our BOVW features. A comparative experimental analysis of various popularly used 

classifiers such as Logistic Regression, Linear Discriminative Analysis, K-Nearest 

Neighbors, Decision Tree, and Gaussian Naïve Bayes classifiers was conducted with 

the Chi² SVM classifier, for the proposed approach. From the classification scores in 

Table 3.5, it is noted that the other classifiers have not performed sufficiently well in 

comparison to the Chi² SVM classifier. Therefore, Chi² SVM proves to be a better 

choice of the classifier in comparison to other classifiers, for the imbalanced multi-

class dataset. 
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The experiments are done, on similar lines, in the case of the TF-Flowers 

dataset. It was also validated from the result analysis of the TF-Flowers dataset that 

the proposed Bag-of-visual-words model constructed with deep features and 

integrated with the Chi² SVM classifier works well in comparison to all other 

combinations, as shown in Table 3.2. It is noted that the deep features work well in 

comparison to the handcrafted SIFT features, for the BOVW model. Further 

observations from Table 3.2 led us to the conclusion that ResNet-50 features 

integrated with the BOVW approach prove to be the best amongst the other features 

extracted using different pre-trained networks, and the Chi² SVM classifier emerges 

as the optimal choice of the classifier in this combination. Comparisons to other 

variants of SVM such as RBF and Linear SVMs prove the efficacy of our learning 

model, as observed in Table 3.2. The comparison of the proposed combination of the 

BOVW approach with the Chi² SVM classifier and the state-of-the-art pre-trained 

networks (VGG16, Inception-V3, and ResNet-50) is shown in Table 3.4, and from 

the analysis, it was found that the proposed BOVW approach works well in 

comparison to the other state-of-the-art pre-trained networks. To validate our 

approach, we have shown a comparative analysis of various supervised machine 

learning classifiers combined with deep features for the BOVW model. Hence, we 

have also presented a comparative analysis of the performance of various machine 

learning classifiers for classifying the ResNet-50-based BOVW features. It is noted 

that the Chi² SVM classifier works well in comparison to the other five supervised 

classifiers as per the classification scores in Table 3.6.  

Macro Average ROC AUC readings for different features for the Graz-02 and 

TF-Flowers datasets are presented in Tables 3.7 and 3.8. Along with that in Tables 
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3.9 and 3.10, Macro Average ROC AUC readings for different classifiers and ResNet-

50 deep features for the Graz-02 dataset and TF-Flowers dataset are displayed 

respectively. Figure 3.4. depicts the ROC curves for different features in comparison 

with the Chi² SVM classifier in the case of the Graz-02 and TF-Flowers datasets 

respectively and the ROC curve depicting different classifiers in combination with 

ResNet−50 deep features in the case of Graz-02 and TF-Flowers datasets respectively. 

We have also applied various resampling techniques which are known to be baseline 

methods that are applied to imbalanced distributions to balance out the number of 

samples in each class (except the majority class). These strategies involve either 

oversampling or under-sampling approaches, such as ADASYN, SMOTE, random 

oversampling, and random under-sampling (Susan and Kumar 2019). The aim was to 

investigate the effect of these balancing tools, popular in data mining, in our 

classification scheme. These resampling strategies have been applied directly at the 

feature level before the first phase of our deep feature-based BOVW scheme. We did 

not observe any significant improvement in the classification results even by applying 

the well-known sampling techniques in the proposed combination, as evident from 

the scores in Tables 3.11. and 3.12. for the two datasets respectively. In the case of 

deep learning-based approaches, we popularly use affine transformations to randomly 

augment the data samples. It significantly increases the total number of samples used 

to train the deep learning network and is known to improve classification performance 

on the smaller dataset through regularization. For our proposed approach, we have 

used the ResNet-50 network to extract deep features, which are in turn pre-trained on 

the million-scale ImageNet dataset. Thus, applying random data augmentation at the 

image level before the feature extraction step would not effectively improve the 

clustering step in the Bag-of-Visual-Words model. 
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From the different results of the various experiments in Tables 3.13. and 3.14., 

it was found that both Quasi SVM and Kernelized Quasi SVM were able to achieve 

acceptable classification performance on our studied datasets. The addition of hidden 

(fully connected) layers in these combinations affected the performance of the 

classifier to some extent but their role is quite stochastic in nature. So, it is 

recommended that the use of this alternate approach (large-scale kernel machines) on 

larger datasets would require us to perform some hyperparameter tuning with respect 

to the target dataset.  

From our extensive experiments and analysis, it is summarized that the deep 

features extracted using ResNet-50 pre-trained CNN when integrated with the BOVW 

approach, with the combination of the Chi² SVM classifier, proved to be optimal for 

the image classification task when dealing with multi-class imbalanced datasets. The 

same pattern is observed for both the benchmark datasets: Graz-02 and TF-Flowers, 

as validated by the experimental results on the basis of various evaluation measures: 

ROC curve, F1-score, and accuracy. The proposed learning model is able to respond 

to and detect all the classes (Majority and Minority classes) equally and effectively. 

The application of resampling strategies had little or no effect on the learning model 

which makes it a distinctive approach. In the case of the TF-Flowers dataset, there are 

3670 images, out of which 70% images are taken for training i.e. 2569 image samples. 

From each image present in the dataset, ResNet-50 features are extracted. The 

dimension of features extracted from the training set is (2569, 7, 7, 2048) which is 

converted to the 2-dimensional matrix of size (2569 * 7 * 7, 2048) as in (125881, 

2048). The 2-dimensional matrix X was passed to the k-means algorithm. So, in this 

particular case of the TF-Flowers dataset, N is 12588 (number of instances) and D is 
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equal to 2048 (number of features) as X ∈ ℝ N x D (matrix X has N x D dimension). 

Similarly for the Graz-02 dataset, out of 1,476 images, 70% of images are taken i.e. 

the 1033 image samples for the training set. So (1, 60) features are obtained and 

subsequently passed to the SVM classifier. Therefore, it can be inferred that even after 

applying k-means for BOVW codebook generation, each image yields k number of 

features only (k=100 for TF-Flowers dataset, k=60 for Graz02 dataset). Therefore, we 

did not experience any issues related to the curse of dimensionality problem as N is 

sufficiently greater than D (N >> D) in the proposed BOVW approach. 

The experiments conducted for deep feature based BOVW classification were 

performed using 10-fold cross validation. Each fold chosen for the purpose of the 

experiment was randomly chosen yet prepared such that each fold makes use of 

stratified sampling mechanism which ensures that sampling error can be reduced to a 

good extent and the samples are representative of the distribution in the respective 

original datasets. When stratified folds and cross validation are used together, it helps 

to produce more reliable and accurate statistical inferences (Szeghalmy and Fazekas 

2023). It helps to ensure that the model is representative of the overall sample space 

which is sufficiently large in case of TF-Flowers and Graz-02 datasets, that allows the 

performance measures represented in our work to be statistically significant even for 

slight deviations. The average of the results from stratified folds and cross validation 

can be used to get a more accurate estimate of the model's performance, which is what 

we have used in our study. This is because the average of the results will be less 

affected by any one fold that may be biased, which hence indicates that slight 

differences in model performance between different approaches are representative of 

marginal change. As all results depicted are calculated using 10-fold cross validation, 
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it does reduce the variance of the results making them more reliable. Therefore, any 

minor changes or updates to the model are likely to have a significant impact on the 

overall performance as the model is being trained on a different subset of the data 

each time providing overall statistically significant inferences when averaged. 

In this work, we have done experimental analysis on imbalanced multi-class 

datasets such as Graz-02 and TF-Flowers, to validate the proposed BOVW approach 

with Chi² SVM using ResNet-50 deep features for visual codebook generation. The 

choice of ResNet-50 (ImageNet pre-trained model) deep features over traditional 

handcrafted features helps improve the overall classification performance of BOVW. 

The role of feature scaling is also highlighted which significantly improves 

classification of the histogram representation. The role of Chi² kernel transformation 

has been analyzed to be an effective similarity metric for classifying histogram-based 

features using one-vs-rest Support Vector Machines. The proposed model has been 

evaluated in comparison to various state-of-the-art techniques using various 

evaluation measures like F1-score, accuracy, ROC curve, and its AUC. All the 

experiments have been performed on a total of 10 folds (cross-validation strategy) for 

both datasets. The analysis of experimental results depicts that the presented BOVW 

approach using ResNet-50 deep features and Chi² SVM is able to surpass the baseline 

methods while dealing with imbalanced datasets. Additionally, we have shown results 

with an alternate approach suitable for large-scale settings with the help of Quasi 

SVMs constructed with the help of neural networks. This is especially useful to vouch 

for the scalability of our BOVW-based approach on data expensive scenarios as well. 

An added advantage of using this alternate approach for kernel SVM approximation 
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would be the support for online learning which could be highly desirable for many 

applications. 

Table 3.1. Performance evaluation of different low-level features for BOVW 

codebook generation and choice of classifier for Graz -02 dataset (Best 

performance highlighted by gray cells). 

   Classifier None (F1) 

Person 

(F1) Car (F1) Bike (F1) Accuracy 

SIFT + 

BOVW 

Chi² SVM 

0.530 ± 

0.0218 

0.4414 ± 

0.0270 

0.5331 

±0.0246 

0.7115 ± 

0.0174 

0.5616 

±0.0123 

Chi² SVM  

 (without 

scalar)  0.0 ±  0.0 0.0 ± 0.0 

0.4447± 

0.0012 

0.0423 ± 

0.0270 

0.2898 

±0.0035 

Linear 

SVM 

0.4403 ± 

0.0328 

0.4150 ± 

0.0328 

0.4774 ± 

0.0317 

0.6906 ± 

0.0141 

0.5076 ± 

0.0184 

RBF SVM 

0.0234 ±   

0.0185   0.0 ± 0.0 

0.4848 ± 

0.0076 

0.5432 ± 

0.0344 

0.3844 ± 

0.0110 

VGG16 + 

BOVW 

Chi² SVM 

0.8303 ± 
0.0212  

0.9187 ± 
0.0131  

0.8926 ± 
0.0146 

0.9407 ± 
0.0096 

0.8918 ± 
0.0119 

Chi² SVM  

 (without 

scalar) 

0.069 ± 

0.0085 

0.0021 ± 

0.0131  

0.4451 ± 

0.0012 

0.0423 ± 

0.0270 

0.2909 ± 

0.0037 

Linear 

SVM 

0.7959 ± 

0.0188 

0.9061 ± 

0.0187 

0.8774 ± 

0.0136 

0.9416 ± 

0.093 

0.8742 ± 

0.0118 

RBF SVM 

0.6851 ± 

0.0179 

0.8050 ± 

0.0212 

0.8234 ± 

0.0105 

0.8203  ± 

0.0249 

0.7717 ± 

0.0130 

Inception-

V3 +  

BOVW 

Chi² SVM 

0.7992 ± 

0.0208 

0.8848 ± 

0.0399 

0.8781 ± 

0.0225 

0.9360 ± 

0.0568 

0.8702 ± 

0.0138 

Chi² SVM  

 (without 

scalar) 

0.0156 ± 

0.0480 

0.03291 ± 

0.0321 

0.4693 ± 

0.0074 

0.3372 ± 

0.0568 

0.3584 ± 

0.0145 

Linear 

SVM 

0.7839 ± 

0.0181 

0.875 ± 

0.0245 

0.8692 ± 

0.0189 

0.3372 ± 

0.0568 

0.8586 ± 

0.0116 

RBF SVM 

0.6988 ±  

0.0259 

0.7324 ± 

0.0535 

0.8563 ± 

0.0171 

0.8730 ± 

0.0254 

0.7857 ± 

0.0219 

ResNet-50 

+ BOVW 

Chi² SVM 

0.8509 ± 

0.142 

0.9405 ± 

0.0141 

0.9013 ± 

0.0184 

0.9609 ± 

0.117 

0.9097 ± 

0.0106 

Chi² SVM  

 (without 

scalar) 0.0 ± 0.0 0.0 ± 0.0 

0.4461 ± 

0.0012 

0.0731 ± 

0.0268 

0.2939 ± 

0.0036 

Linear 

SVM 

0.8399 ± 

0.0184 

0.9318 ± 

0.0158 

0.8969 ± 

0.0139 

0.9592 ± 

0.108 

0.9029 ± 

0.0116 

RBF SVM 

0.7263 ± 

0.0185  

0.8347 

±0.0258 

0.8381 ± 

0.0268 

0.8935 ± 

0.2069 

0.8124 ± 

0.0155 

Table 3.2. Performance evaluation of different low-level features for BOVW 

codebook generation and choice of classifier for TF-Flowers dataset (Best 

performance highlighted by gray cells). 

    Dandelio

n (F1) 

Daisy 

(F1) 

Sunflow

ers (F1) 

Roses 

(F1) 

Tulips          

(F1) 

Accuracy 
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SIFT 

+ 

BOV

W 

Chi² 

SVM 

0.6571± 

0.0244  

04871 

±0.0375 

0.5891± 

0.0262 

0.3737± 

0.0314 

0.4841

± 

0.0239 

0.5364± 

0.0192 

Chi² 

SVM  

(without 

scalar) 

0.3930± 

0.0002 

0.0 ± 0.0 0.0075± 

0.056 

0.0 ± 0.0 0.0 ± 

0.0 

0.2450± 

0.0005 

Linear 

SVM 

0.6962± 

0.0111 

0.5092± 

0.0195 

0.6169± 

0.0195 

0.4188± 

0.0222 

0.4567

± 

0.0123 

0.5405± 

0.0082 

RBF 

SVM 

0.4625± 

0.085 

0.1615± 

0.0243 

0.4765± 

0.0271 

0.0378± 

0.0140 

0.3218

± 

0.0230   

0.3722± 

0.0108 

VGG

16 + 

BOV

W 

Chi² 

SVM 

0.8961± 
0.0115 

0.8610± 
0.02 

0.8511± 
0.00092 

0.8114± 
0.0211 

0.8211
± 

0.0117 

0.8503± 
0.0087 

Chi² 

SVM 

(without 

scalar) 

0.3931± 

0.0001 

0.0041± 

0.051 

0.0075± 

0.0056 

0.0010± 

0.031 

0.0008

± 0.002 

0.2455± 

0.0004 

Linear 

SVM 

0.8757± 

0.0185 

0.8380± 

0.0248 

0.8144± 

0.0202 

0.7786± 

0.0215 

0.7760

± 

0.0164 

0.8190± 

0.0150 

RBF 

SVM 

0.7853± 

0.0166 

0.6622± 

0.0278 

0.6202± 

0.0435 

0.2573± 

0.0823 

0.6012

± 

0.0188 

0.6292± 

0.0196 

Incep

tion-

V3 + 

BOV

W 

Chi² 

SVM 

0.8651± 

0.0122 

0.8414± 

0.0174 

0.7477± 

0.0220 

0.7162 ± 

0.0283 

0.7120

± 

0.0205 

0.7836± 

0.0124 

Chi² 

SVM 

(without 

scalar) 

0.4185± 
0.0044 

0.3135± 
0.0606 

0.1014± 
0.0247 

0.0636± 
0.0165 

0.1476
± 

0.0447 

0.3103± 
0.0121 

Linear 

SVM 

0.8585± 

0.0115 

0.8392± 

0.0146 

0.7327± 

0.0140 

0.6996± 

0.0341 

0.7246

± 

0.0212 

0.7729± 

0.0151 

RBF 

SVM 

0.7932± 

0.0209 

0.8064± 

0.0204 

0.6102± 

0.0435 

0.2141± 

0.1519 

0.6269

± 

0.0229 

0.6552± 

0.0226 

ResN

et50 + 

BOV

W 

Chi² 

SVM 

0.9162± 

0.0141 

0.9159± 

0.0136 

0.8883± 

0.0133 

0.8335±  

0.0141 

0.8492

± 

0.0147 

0.8816± 

0.0084 

Chi² 

SVM  

(without 

scalar) 

0.3931± 

0.0003 

0.004± 

0.0051 

0.0075 ± 

0.0056 

0.0041± 

0.0050 

0.8008

± 

0.0241 

0.2457± 

0.0004 

Linear 

SVM 

0.9070± 
0.0115 

0.9059± 
0.171 

0.8648± 
0.0177 

0.8054± 
0.0135 

0.8211
± 

0.0101 

0.8619± 
0.0053 

RBF 

SVM 

0.8206± 

0.0271 

0.7425± 

0.0249 

0.7934± 

0.0355 

0.4089± 

0.0901 

0.6700

± 

0.0275 

0.7127± 

0.0190 

Table 3.3. Performance evaluation of various state-of-the-art pre-trained networks 

for the Graz-02 dataset. 
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Pre-trained 

Networks 

None 

(F1) 

Person 

(F1) Car (F1) Bike(F1) Accuracy 

VGG16 

0.788 ± 

0.0313 

0.9046  ± 

0.0244 

0.8585 ± 

0.0215 0.9367 ± 0.0262 0.8693 ± 0.0167 

Inception-V3  

0.4301 ± 

0.0574 

0.8338 ± 

0.165 

0.7711 ± 

0.0301 0.8946 ± 0.0453 0.7568 ± 0.0109 

ResNet-50 

0.670  ±  

0.1136 

0.8981 ± 

0.0228 

0.8350 ± 

0.0302 0.9471 ± 0.0186 0.8460 ± 0.0302 

Table 3.4. Performance evaluation of various state-of-the-art pre-trained networks 

for TF-Flowers dataset. 

Pre-

trained 

networks 

Dandeli

on (F1) 

Daisy 

(F1) 

Sunflowe

rs (F1) 

Roses (F1) Tulips 

(F1) 

Accuracy 

VGG16  0.9108± 

0.0149 

0.8761± 

0.0236 

0.8752± 

0.0299 

0.8343± 

0.0245 

0.8395± 

0.0254 

0.8689± 

0.0196 

Inception

-V3 

0.7413± 

0.0378 

0.6331± 

0.250 

0.5199± 

0.0179 

0.6201± 

0.0629 

0.7651± 

0.0156 

0.6640±  

0.0190 

ResNet-

50 

0.8901± 

0.210 

0.8394± 

0.0369 

0.8509± 

0.0190 

0.6504± 

0.0797 

0.8031± 

0.0203 

0.8203± 

0.0176 

 

Figure 3.2. Silhouette score to find the optimum value of k (number of clusters in 

BoVW k-Means) for Graz-02 and TF-Flowers dataset. 
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Figure 3.3. Histogram representation of proposed ResNet-50 based BoVW 

features for Graz-02 and TF-Flowers dataset. 

Table 3.5. Performance evaluation of various supervised classifiers on our 

BOVW features (ResNet-50 + BOVW approach) for the Graz-02 dataset. 

 Classifiers None (F1) Person (F1) Car (F1) Bike(F1) Accuracy 

Logistic 

Regression  

0.8294 ± 

0.0177 

0.9330 ± 

0.0164 

0.8938 ± 

0.0165 

0.9532 ± 

0.0127 

0.8979 ± 

0.0133 

Linear 

Discriminative 

Analysis      

0.8245 ± 

0.0169 

0.9224 ± 

0.0196 

0.8933 ± 

0.0174 

0.9503 ± 

0.0116 

0.8925 ± 

0.0124 

K-Nearest 

Neighbors 

Classifier 

0.7803 ± 

0.0154 

0.8953 ± 

0.0160 

0.8452 ± 

0.0143 

0.9324 ± 

0.0137 

0.8580 ± 

0.0079 

Decision Tree   

0.7852 ± 

0.0213 

0.8911 ± 

0.0153 

0.8609 ± 

0.0152 

0.9167 ± 

0.0200 

0.8623 ± 

0.0079 

Gaussian Naïve 

Bayes  

0.3763 ± 

0.2451 

0.9264 ± 

0.0138 

07720 ± 

0.0630 

0.9112 ± 

0.0365 

0.7785 ± 

0.0594 

Table 3.6.  Performance evaluation of various supervised classifiers on our 

BOVW features (ResNet-50 + BOVW approach) for the TF-Flowers dataset. 

 Classifiers 

Dandelion 

(F1) 

Daisy 

(F1) 

Sunflower

s (F1) 

Roses 

(F1) 

Tulips 

(F1) 

Accurac

y 

Logistic 

Regression  

0.9052 ±  

0.0096 

0.9027 

± 

0.0160 

0.8618 ± 

0.0100 

0.8055 ± 

0.0197 

0.8288 ± 

0.0120 

0.8621 ± 

0.0044 

Linear 

Discriminative 

Analysis      

0.8603 ± 

0.082 

0.9054 

± 

0.0131 

0.8628 ± 

0.0156 

0.8171 ± 

0.0176 

0.8171 ± 

0.0129 

0.8603 ± 

0.0082 
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K-Nearest 

Neighbors 

Classifier 

0.8707 ± 

0.0190 

0.8537 

± 

0.0241 

0.8179 ± 

0.0139 

0.7714 ± 

0.0291 

0.7714 ± 

0.0217 

0.8153 ± 

0.0135 

Decision Tree   

0.8274 ± 

0.0115 

0.8208 

± 

0.0252 

0.7564 ± 

0.0162 

0.7259 ± 

0.224 

0.7522 ± 

0.0230 

0.7791 ± 

0.0082 

Gaussian 

Naïve Bayes  

0.8619 ± 

0.0277 

0.884 

± 

0.0141 

0.8105 ± 

0.0328 

0.7447 ± 

0.505 

0.7960 ± 

0.0207 

0.8214 ± 

0.0187 

Table 3.7. Macro Average ROC AUC readings for different features for 

the Graz-02 dataset and TF-Flowers dataset. 

Features Classifier 

Graz-02 

Dataset 

TF-Flowers 

Dataset 

ResNet-50 

BOVW 

Features 

Chi² SVM 0.9837 0.9824 

Logistic Regression 0.9828 0.9806 

Linear Discriminative Analysis 0.9822 0.9788 

K Nearest Neighbors Classifier 0.9549 0.9482 

Decision Tree 0.9166 0.8796 

Gaussian Naïve Bayes 0.9552 0.9517 

Table 3.8. Macro Average ROC AUC readings for different features for 

Chi² SVM classifier for Graz-02 dataset and TF-Flowers dataset. 

Features Classifier 

Macro Average ROC AUC 

Graz-02  Dataset 

TF-Flowers  

Dataset 

ResNet-50 BOVW 

Features 

Chi² SVM 

0.9837 0.9824 

Inception-V3 BOVW 

features 0.9651 0.9457 

VGG16 BOVW 

Features 0.9758 0.9705 

SIFT BOVW 

Features 0.8017 0.8275 
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Figure 3.4. (Top row left to right) ROC curves depicting different features 

in comparison with Chi² SVM classifier in the case of Graz-02 and TF-Flowers 

dataset respectively. (Bottom row left to right) ROC curve depicting different 

classifiers in combination with ResNet−50 deep features in case of Graz-02 and 

TF-Flowers dataset respectively. 

Table 3.9 Macro Average ROC AUC readings for different classifiers and 

ResNet-50 deep features for the Graz-02 dataset and TF-Flowers dataset. 

  
Features 

  
Classifier 

Macro Average ROC AUC 

Graz-02 

Dataset 

TF-Flowers 

Dataset 

ResNet-50 

BOVW Features 

Chi² SVM 0.9837 0.9824 

Logistic Regression 0.9828 0.9806 

Linear Discriminative Analysis 0.9822 0.9788 

K Nearest Neighbors Classifier 0.9549 0.9482 

Decision Tree 0.9166 0.8796 

Gaussian Naïve Bayes 0.9552 0.9517 

 

Table 3.10. Macro Average ROC AUC readings for different features for Chi² 

SVM classifier for Graz-02 dataset and TF-Flowers dataset. 

Features   Macro Average ROC AUC 



Chapter 3: Machine Learning and Deep Learning Techniques for Multi-class Imbalanced 
Dataset in Computer Vision 

70 

Classifier Graz-02  

Dataset 

TF-Flowers  

Dataset 

ResNet-50 BOVW 

Features 

Chi² SVM 

0.9837 0.9824 

Inception-V3 

BOVW features 0.9651 0.9457 

VGG16 BOVW 

Features 0.9758 0.9705 

SIFT BOVW 

Features 0.8017 

0.8275 

 

Table 3.11. Performance evaluation of our BOVW model with different sampling 

techniques applied at the feature level for the Graz-02 dataset. 

Sampling 

Technique None (F1) 

Person 

(F1) Car (F1) Bike  (F1) Accuracy 

ADASYN 

0.8478 ± 

0.0128 

0.9315  ± 

0.0157 

0.9003  ± 

0.0192 

0.9609  ± 

0.0117 

0.9069  ± 

0.0094 

SMOTE 

0.8528  ±  

0.0128 

0.9389  ± 

0.0142 

0.9020  ± 

0.0183 

0.9623  ± 

0.0106 

0.9103  ± 

0.0100 

Random Over 

sampling 

0.8508  ±  

0.0130 

0.9390  ± 

0.0129 

0.9002  ± 

0.0177 

0.9624  ± 

0.0116 

0.9094  ± 

0.0100 

Random 

Under 

sampling 

0.8495  ± 

0.0137 

0.9405  ± 

0.0141 

0.8985  ± 

0.0212 

0.9599  ± 

0.0137 

0.9081  ± 

0.0126 

None 

(proposed 

Approach) 

0.8509  ± 

0.0142 

0.9405  ± 

0.0141 

0.9013  ± 

0.0184 

0.9609  ± 

0.0117  

0.9097  ± 

0.0126 

Table 3.12. Performance evaluation of our BOVW model with different sampling 

techniques applied at the feature level for TF-Flowers datasets. 

Sampling 

Technique 

Dandelion 

(F1) 

Daisy 

(F1) 

Sunflowers 

(F1) 

Roses 

(F1) 

Tulips 

(F1) Accuracy 

ADASYN 

0.9164 ± 

0.0117 

0.9190 ± 

0.0117 

0.8900   ± 

0.0130 

0.8339 ± 

0.0151 

0.8502 
± 

0.0141  

0.8829 ± 

0.0073 

SMOTE 

0.9190 ± 

0.0127 

0.9158 ± 

0.0118 

0.8892 ± 

0.0120 

0.8363 ± 

0.0105 

0.8502 

± 

0.0125 

0.8831 ± 

0.0070 

Random Over 

sampling 

0.9165 ± 

0.0145 

0.149  ± 

0.0136 

0.8859 ± 

0.0127 

0.8363± 

0.0129 

0.8509 

± 

0.0141   

0.8800 ± 

0.0064 

Random Under 

sampling 

0.9174 

±0.0128   

0.9170 ± 

0.0137 

0.8886 ± 

0.0134 

0.8324 ± 

0.0136 

0.8405 

± 

0.0150 

0.8800 ± 

0.0064 

None (proposed 

Approach) 

0.9162 ± 

0.0141 

0.9159 ± 

0.0136 

0.8883 ± 

0.0133 

0.8335 ± 

0.0141 

0.82 ± 

0.0147 

0.8816 ± 

0.0084 

Table 3.13. Performance evaluation of ResNet-50 BOVW features combined with 

Quasi SVM and its variants for the Graz-02 dataset. 
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Classifier None (F1) Person 

(F1) 

Car (F1) Bike (F1) Accura

cy 

Quasi Linear SVM 0.8186 ± 

0.0166 

0.9234 ± 

0.0167 

0.8833 ± 

0.0144 

0.9497 ± 

0.0152 

0.8826 ± 

0.0130 

Quasi Linear SVM (w/ 1 

hidden layer) 

0.8490 ± 

0.0116 

0.9322 ± 

0.0157 

0.8958 ± 

0.0110 

0.9011 ± 

0.0080 

0.9063 ± 

0.085 

Quasi Linear SVM  (w/ 2 

hidden layers) 

0.8474 ± 

0.0164 

0.9331 ± 

0.0139 

0.8985 ± 

0.0178 

0.9617 ± 

0.0077 

0.9072 ± 

0.0105 

Quasi Linear SVM (w/ 3 

hidden layers) 

0.8506 ± 

0.0188 

0.9298 ± 

0.0178 

0.8966 ± 

0.0149 

0.96630 ± 

0.012 

0.9081 ± 

0.0125 

Quasi Kernelized SVM 0.8383 ± 

0.0148 

0.9338 ± 

0.0164 

0.8911 ± 

0.0147 

0.95966 ± 

0.085 

0.9018 ± 

0.0112 

Quasi Kernelized SVM  

(w/ 1 hidden layer) 

0.8382 ± 

0.0174 

0.9318 ± 

0.0147 

0.8903 ± 

0.0167 

0.9588 ± 

0.0080 

0.9090 ± 

0.0109 

Quasi Kernelized SVM 

(w/ 2 hidden layers) 

0.8393 ± 

0.0175 

0.9241 ± 

0.0219 

0.8905 ± 

0.0203 

0.9606 ± 

0.0096 

0.9004 ± 

0.0123 

Table 3.14. Performance evaluation of ResNet-50 BOVW features combined with 

Quasi SVM and its variants for TF-Flowers dataset. 

Classifier Dandeli

on (F1) 

Daisy 

(F1) 

Sunflow

ers (F1) 

Roses 

(F1) 

Tulips 

(F1) 

Accuracy 

Quasi Linear 

SVM 

0.8942 

± 

0.0160 

0.8880 ± 

0.0204 

0.8491  ± 

0.0205 

0.7882 ± 

0.0177 

0.8047 ± 

0.0163  

0.8459 ± 

0.0106 

Quasi Linear 

SVM (w/ 1 hidden 

layer) 

0.9075 

± 

0.0124  

0.9239 ± 

0.0122 

0.8661 ± 

0.0159  

0.8095 ± 

0.0161  

0.8251 ± 

0.0153 

0.8643 ± 

0.0051 

Quasi Linear 

SVM (w/ 2 hidden 

layers) 

0.7957 

± 

0.2022 

0.6910 ± 

0.3504  

0.6746 ±  

0.3394 

0.4555 ± 

0.3735 

0.6103 ± 

0.3089  

0.6958 ± 

0.2321 

Quasi Linear 

SVM (w/ 3 hidden 

layers) 

0.9006 

± 

0.0162 

0.9028 ± 

0.0132 

0.8678 ± 

0.0143 

0.8065 ± 

0.0223 

0.8290 ± 

0.0095  

0.8630 ± 

0.0061 

Quasi Kernelized 

SVM 

0.9022 

± 

0.0119 

0.9044 ± 

0.0135 

0.8646 ± 

0.0173 

0.8034 ± 

0.0210 

0.8206 

±0.0108  

0.8603 ± 

0.0062 

Quasi Kernelized 

SVM (w/ 1 hidden 

layer) 

0.9075 

± 

0.0124 

0.9074 ± 

0.0120 

0.8661 ± 

0.0159 

0.8095 ± 

0.0161 

0.8095 ± 

0.0161 

0.8643 ± 

0.0051 

Quasi Kernelized 

SVM (w/ 2 hidden 

layers) 

0.7957 

± 
0.2022 

0.6910 ± 

0.3504 

0.6746 ± 

0.3394 

0.4555 ± 

0.3735 

0.6103 ± 

0.3089 

0.6958 ± 

0.2321 
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3.2. Objective 2 and Objective 5: Implementation of pre-

trained deep neural networks for image classification using 

imbalanced datasets and application to the class imbalance 

problem in object detection using deep learning 

Most of the state-of-the-art techniques in the field of computer vision that are 

widely impacted by the advent of deep learning include vision tasks such as 

classification, localization, and segmentation. With the high availability of 

computational power (in the form of Graphical Processing Units (GPUs), large 

compute clusters), deep Convolutional Neural Networks (CNN) are now conveniently 

used for computer vision applications. Broadly categorizing, there are two variations 

of CNN: (a) trained from scratch and (b) pre-trained models. The CNNs are able to 

combine automatic feature extraction along with a discriminative classifier in one 

stage, which makes them different from traditional machine learning techniques. Due 

to time restraint or computational constraints, it’s not always possible to create a 

model from scratch, which is why pre-trained models can be used as a benchmark to 

either improve the existing model or to test your own model against it. The neural 

network models are trained using data and further gained knowledge and then stored 

weights of the network can be used further. These extracted weights which are saved 

can be further used to transfer knowledge to other neural networks. These pre-trained 

networks are another variant of CNN, that is trained on a larger standard dataset and 

further knowledge is transformed from one domain to another domain which makes 

it quite useful in various other sectors (Tan, et al. 2018). The extracted features using 

the pre-trained models have certain benefits over the handcrafted features as seen in 
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literature work. The pre-trained models are the ones which are trained on large-scale 

datasets such as ImageNet, PASCAL VOC, MS COCO, etc. Using a pre-trained 

model will overall reduce the training time required to train the model and also leads 

to the extraction of the relevant features efficiently. There are several popular well-

known pre-trained models such as Alex-Net, VGG16, VGG19, ResNet50, 

InceptionV3, DenseNet169, GoogLeNet, EfficientNet, InceptionResNetV2, and 

Xception, etc., which are widely available. The main limitation of convolutional 

neural network models is that it might take a few days while training on larger 

datasets. This limitation can be overcome by re-using the trained model weights from 

the existing pre-trained models that are obtained after training from the standard large-

scale benchmark datasets. The weights of the models can be downloaded and used 

further for training the new network architecture for another set of computer vision 

problems. 

In this chapter we have applied numerous pre-trained deep neural networks on 

varied size imbalanced datasets for classification, segmentation and object detection 

tasks by considering a single application in the biomedical domain which is diabetic 

retinopathy screening, and finding the best deep learning model for these datasets. As 

mostly observed in literature, experiments related to a single task are provided, instead 

of combining the mutiple tasks of classification, segmentation and object detection in 

a single framework. 

 

The experiments were conducted to do a comparative analysis with various 

standard state-of-the-art pre-trained networks by using various imbalanced datasets 

(Saini and Susan 2022b). Transfer learning is a way of transferring knowledge from 

a specific domain or either task to another task (Tan, et al. 2018). There are multiple 
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advantages of using the transfer learning approach (1) Firstly, the model is already 

trained on a large-scale dataset using the existing model along with predefined 

weights for our own classification task, which saves a lot of computational processing 

time. (2) Secondly, we can transfer the knowledge from the large-scale dataset and 

perform classification well even with a small dataset. Pre-trained networks are trained 

on a large-scale dataset such as ImageNet, which is composed of millions of high-

resolution images belonging to multiple categories or classes (approximately 1.4 

million images and 1000 classes). 

 

Three biomedical domain datasets are used to conduct experiments: (i) Kaggle 

DRD Dataset, (ii) DDR Dataset, and (iii) Indian Diabetic Retinopathy Image (IDRiD) 

Dataset. We have performed classification, object detection, and segmentation tasks 

on the above-mentioned three available diabetic retinopathy datasets as shown in 

Figure 3.5 and Table 3.15, and further emphasized the role of using a transfer learning 

approach for a biomedical dataset using pre-trained networks. A dataset of varying 

sizes was used while conducting the experiments ranging from small, medium, and 

larger image sample sizes. In this work, we have done a comparative analysis between 

different state-of-the-art pre-trained networks by using different performance 

evaluation metrics. For the classification task, various performance evaluation 

parameters are considered such as Cohen's Kappa (unweighted, linear, quadratic 

weighted), Accuracy, ROC-AUC (weighted and macro average), F1-score, Index 

Balanced Accuracy (IBA), and Geometric Mean (GMean). In the case of object 

detection, we have considered the following evaluation parameters for measuring the 

performance of the object detection models: Mean Average Precision (mAP), mAP 

@ 0.5IoU, mAP @ 0.75IoU, mAP (small, medium, large) and Average Recall (AR): 
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AR @ 1,10,100. Further, Intersection over Union (IoU) and Dice Score evaluation 

metrics are used for segmentation. We have performed image classification on three 

varied size diabetic retinopathy image datasets to detect the degree of severity of 

diabetic retinopathy for the retina image of a given patient. Various pre-trained deep 

learning CNN architectures have been applied on three diabetic retinopathy datasets:- 

Kaggle DRD, IDRiD and DDR, in order to perform classification: VGG16, VGG19, 

ResNet50, ResNet101, ResNet152, Inception-V3, ResNet50 v2, ResNet101 v2, 

ResNet152 v2, Xception, InceptionResNet v2, MobileNet v2, DenseNet169, 

DenseNet201 and EfficientNetB0 (Simonyan and Zisserman 2014, He, et al. 2016, 

Szegedy, et al. 2016, Chollet 2017, Szegedy, et al. 2017, Sandler, et al. 2018, Landola, 

et al. 2014, Tan, et al. 2019). We have applied EfficientDet-D0, ResNet50 based 

Faster RCNN, SSD using MobileNet v1 and MobileNet v2, as well as ResNet50 based 

RetinaNet pre-trained networks on two popular datasets: IDRiD Dataset for Fovea 

and optical Disc Detection along with DDR Dataset for lesion detection (Tan, et al. 

2020, Ren, et al. 2015). DeepLab v2, DeepLab v3, and PSPNet with cross-entropy 

loss and focal loss, respectively were applied to two popular datasets: DDR dataset 

for Lesion Detection and IDRiD dataset for both lesion as well as organ (fovea and 

optic disc) segmentation. 

Table 3.15. Distribution of classes across different tasks (Segmentation, Object 

Detection, and Classification) for respective diabetic retinopathy datasets. 

 

Dataset Segmentation Object Detection Classification 

Kaggle DRD 

(Eyepacs 
2015) 

- - Diabetic Retinopathy Grading 

- No DR - Class 0  
- Mild DR - Class 1  

- Moderate DR - Class 2  

- Severe DR - Class 3  

- Proliferative DR - Class 4  

IDRiD 

(Porwal, et al. 

2018) 

Lesion Segmentation 

- Hemorrhages (HA)  

- Microaneurysms 

(MA) 

- Soft Exudates (SE) 

Detection of Organ Centroids 

- Optical Disc 

- Fovea Centralis 
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- Hard Exudates 

(EX) 

Organ Segmentation 

- Optical Disc (OD) 

DDR 

(Li, et al. 

2019) 

Lesion Segmentation 

- Hemorrhages (HA)  

- Microaneurysms 

(MA) 
- Soft Exudates (SE) 

- Hard Exudates 

(EX) 

Detection of Lesion 

- Hemorrhages (HA)  

- Microaneurysms 

(MA) 
- Soft Exudates (SE) 

- Hard Exudates (EX) 

Diabetic Retinopathy Grading 

- No DR - Class 0  

- Mild DR - Class 1  

- Moderate DR - Class 2  
- Severe DR - Class 3  

- Proliferative DR - Class 4 

- Ungradable - Class 5 

 

 

Figure 3.5. Imbalanced diabetic retinopathy detection problem for classification, 

segmentation, and object detection tasks. 

For conducting all experiments related to this work, the TensorFlow v2.3 

framework was used with Python 3.8. For the classification and segmentation tasks, 
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the CNNs were trained with the help of Keras models, while for object detection with 

the TensorFlow Object Detection API (Huang, et al. 2017) was used. The experiments 

were accelerated using Google Cloud TPU hardware, access to which was available 

through the TensorFlow Research Cloud (TRC) program. In all the experiments, TPU 

v3-8 cores were used for training the deep learning models. The runtime for deep 

learning experiments related to diabetic retinopathy detection can vary depending on 

multiple factors, including the specific pre-trained network architecture, the size of 

the dataset, the complexity of the model, the TPU hardware being used, and the 

efficiency of the implementation. Approximately 2 hours is a reasonable duration for 

running such experiments on a TPU, which varies slightly based upon the pre-trained 

networks for specific tasks involving classification, segmentation and object 

detection. TPUs (Tensor Processing Units) are specifically designed to accelerate 

deep learning workloads and can provide significant speed improvements over 

traditional CPUs or GPUs for certain tasks as they excel at performing matrix 

operations and handling large-scale neural network computations. For our 

experimental setup, the batch size of 512 is considered for all the datasets. The total 

training steps taken was 12,000 (400 epochs x 30 steps per epoch) for DDR and for 

Kaggle DRD Dataset, while for IDRiD dataset it was set to 1000 (200 epochs x 5 

steps per epoch). Various data augmentation operations were applied to all the images 

present in the train datasets while conducting the classification task, such as horizontal 

shifts, vertical shifts, rotation, flip, etc., to reduce the over-fitting problem. In all the 

classification datasets, the original class distributions of samples were imbalanced in 

nature. The target distribution was achieved such that each class has an equal number 

of samples represented during the training of the pipeline in all the batches. This was 

achieved using the rejection resampling technique which is also popularly known as 
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random undersampling. Hence undersampling technique was applied on-the-fly 

during the training process at the time of selection of each mini-batch, and it was also 

ensured that the samples are shuffled and randomly picked from the original 

distribution. The training process is made to last for sufficiently large numbers of 

epochs such that all training samples are covered irrespective of the fact that sample 

rejection has been applied at the batch level. It was observed that without the 

application of this rejection resampling strategy, each classifier would face the 

adverse effects of class imbalance. However, data augmentation operations were 

applied in all the experiments corresponding to the classification and object detection 

tasks. Data augmentation is a regularization technique that helps to enhance the 

overall performance of deep learning models. Some data augmentation learning 

policies had also automated the data augmentation process. We have used the 

RandAugment technique while training the network. There are several advantages of 

using RandAugment over other augmentation techniques as it will lead to the 

reduction of the search space or removal of separate search space because more 

computational expensive resources were required while training which will help to 

achieve optimal performance. The RandAugment approach works well for numerous 

datasets as well as tasks such as object detection and classification. Due to all these 

unique properties, it results in better performance in comparison to other 

augmentation methods. The various data augmentation operations that we have 

applied are random grid shuffle, rescale, horizontal and vertical flips in horizontal and 

vertical flips, shear in x and y direction, translate in x and y direction, rotate, posterize, 

contrast, sharpness, and cutout. A cutout is like a dropout at the data level, which 

creates random black square patches in the images; it was found to be an essential 

augmentation operation. After many iterations through our experimental setup, we 
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were able to use the following hyperparameters for all of our classification 

experiments. The training process was intended at fine-tuning each of the 

classification networks using pre-trained weights in order to adapt the models for 

diabetic retinopathy tasks. A standard categorical cross-entropy loss and adaptive 

momentum optimization (Adam) variant of SGD was used while training. The choice 

of learning rate was set to lower values in order to ensure that our models continually 

learn from retinal images without completely exterminating the knowledge on the 

large-scale ImageNet. Similar to fine-tuning of CNNs in other works, we used an 

exponentially decaying learning rate with a warmup in the range 1e-5 and 2e-4. Under 

this setting, the learning rate was initially ramped up linearly to 2e-4 for the first 160 

epochs, sustained at that rate for another 80 epochs, and finally decayed exponentially 

for the remaining epochs using a decay of 0.8. Evaluation on validation was 

performed each 10 epochs to ensure models can train well for longer. Each of the 

models was trained for a net budget of 400 sweeps (epochs) and the largely set value 

of a number of warmup epochs is solely due to the random undersampling technique 

which significantly reduces samples from each epoch in order to obtain a balanced 

class distribution at train time. The warmup and sustain phase of the learning rate 

schedule is slightly longer to ensure that the complete dataset can be iterated across 

during the training phase by the models before the value of the learning rate drops 

significantly. The batch size for the experiments was set to 512 and images were 

rescaled to 224 x 224 which were found to be ideal for training on TPU v3-8 

accelerators. TPU v3-8 hardware are ASIC chips designed by Google and operated 

on the Google Cloud Platform and are specifically developed for fast machine 

learning and deep learning workloads. It can consume up to 128GB of on-chip high 

bandwidth memory (HBM) for up to 8 TPU cores which was helpful for accelerating 
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our experiments, and the higher batch sizes significantly helped consume the large 

amount of available on-chip memory for which the learning rate was scaled 

accordingly. (Ying, et al. 2018) For data augmentation along with the rejection 

resampling technique (random undersampling approach), we slightly modified the 

RandAugment technique (Cubuk, et al. 2020) to incorporate random flips, and 

random grid shuffle and rescale transforms. A few sets of randomly augmented 

samples were generated using this technique. After a series of manual tuning trials, 

RandAugment was applied with m=8 and n=2 and it was found that adding the extra 

image operations would greatly improve the classification performance for the 

diabetes datasets. In the case of lesion segmentation on the DDR and IDRiD datasets, 

we fine-tuned the segmentation models that are pre-trained on the PASCAL VOC 

2012 dataset. The training process was carried out on TPUs using focal loss with 

gamma set to 2.0 and batch size of 64. The exponentially decayed learning rate 

schedule was similar to the classification experiments and in the range 1e-5 and 5e-4 

with 80 warmup epochs. The focal loss models were able to significantly perform 

better than categorical cross-entropy loss due to the very high number of background 

pixels which causes imbalance. Random flip-based data augmentation was used 

during training on images of size 384 x 384, validation was performed every 25 

epochs and each model was trained for a total of 250 epochs. Similar to segmentation 

and classification, we then used the Adam optimizer for training the object detection 

models as well. Images of size 512 x 512 were used to train the object detectors for 

around 10000 steps for each dataset and with each step having a batch size of 32. The 

training process also involved data augmentation using random flips, random square 

crop, and random padding with different combinations of random hue, saturation, 

contrast, and brightness. Due to the stochastic nature of neural networks in all of the 
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deep learning models, we trained all classification, segmentation, as well as object 

detection models for a total of five runs with different random seeds, set each time, 

and the results are represented with the help of mean and standard deviation for each 

evaluation metric.  

 Tables 3.16, 3.17, 3.18, 3.19(a), 3.19(b), 3.19(c), 3.20(a), 3.20(b), 3.20(c), 

3.21(a), 3.21(b), 3.21(c) illustrate the comparative analysis between various pre-

trained models, for the classification task for the three diabetic retinopathy datasets: 

Kaggle DRD, DDR and IDRiD. From the analysis, it was found that DenseNet121 

proves to be an effective model in the case of all three datasets, in comparison to 

InceptionV3, MobileNetV2, Xception, ResNet50, EfficientNet-B0, VGG16, VGG19, 

ResNet152, ResNet101, ResNet152V2, ResNet101V2, DenseNet169, DenseNet201, 

ResNet50V2 and InceptionResNetV2 pre-trained networks. After DenseNet121, the 

second-most effective pre-trained network is Xception for all the three datasets with 

respect to various classification evaluation metrics: Cohen’s Kappa (unweighted, 

linear, quadratic weighted), Accuracy, ROC-AUC (weighted and macro average), and 

F1-score, Index Balanced Accuracy (IBA) and Geometric Mean (GMean) (Japkowicz 

2013). Another observation found was that Class 1, early stage diabetes is difficult to 

detect irrespective of whether that class falls under the minority category or not, in 

the case of all the three datasets. The third observation inculcated after conducting the 

experiments was that data augmentation used for training is suitable for longer 

training (around 400 epochs). The fourth observation found was that samples are 

equally distributed during training using rejection resampling which had a 

magnificent impact on the overall performance of the classification task. DenseNet 

and Xception architectures are both simple architectures amongst other prevalent 
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architectures present in the study. DenseNet works well in evading the vanishing 

gradient problem and also enables the reuse of features. DenseNet consists of various 

dense blocks, and further the layers of the dense block concatenates data from all the 

previous layers. DenseNet121 pre-trained model is the best suited for diabetic 

retinopathy image classification task is based upon empirical analysis. The model was 

trained using five repeated trials, which helps to ensure that the results are statistically 

significant. The model was compared to other pre-trained models, such as ResNet50, 

InceptionV3 etc. and it consistently outperformed them across trials. In addition to 

the empirical results, there are also theoretical reasons to believe that DenseNet121 is 

a good choice for diabetic retinopathy image classification. DenseNet121 is a deep 

convolutional neural network that has been shown to be effective for a variety of 

image classification tasks. It is also known to be relatively robust to overfitting, which 

is an important consideration for medical image classification tasks. The 

DenseNet121 model is well-suited for diabetic retinopathy image classification 

because it has a dense connectivity architecture. This means that each layer of the 

model is connected to all of the layers that come before it. This allows the model to 

learn more complex features from the images. Overall, the evidence suggests that 

DenseNet121 is the best pre-trained model for diabetic retinopathy image 

classification.We have done extensive comparative analysis between various state-of-

the-art methods on three benchmark datasets of diabetic retinopathy: Kaggle DR  

detection, IDRiD and DDR, for classification by training deep models on varied size 

datasets. Throughout our study, we have focused on the transfer learning approaches 

for improving the performance of models. After conducting the analysis, it was found 

that the DenseNet121 pre-trained model is the best suited for diabetic retinopathy 

image classification. Tables 3.22 and 3.23 depict the Detection Boxes precision (mean 
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average precision (mAP)) and Detection Boxes recall (average recall (AR)) metrics 

for object detection tasks for both DDR and IDRiD datasets. In this mAP metric, we 

also have an overlap criterion that lays down the minimum value of the intersection 

over union (IoU), which is used for correct detection. The value was taken as 0.5, 

0.75I for the IoU criterion.  The results illustrate that in the case of the DDR dataset, 

SSD (MobileNetV1) is more efficient in lesion detection in comparison to 

EfficientDet-D0, Faster RCNN (ResNet-50), RetinaNet (ResNet50), and SSD 

(MobileNetV2) pre-trained networks. However, in the case of the IDRiD dataset for 

Fovea and Optic Disc Detection, EfficientDet-D0, Faster RCNN (ResNet-50), SSD 

(MobileNetV1) works well in comparison to other pre-trained networks (RetinaNet 

(ResNet50) and SSD (MobileNetV2)) while considering mAP without IoU evaluation 

metrics. But after taking into consideration mAP with IoU value we can see that 

EfficientDet-D0 is showing better results in comparison to other pre-trained networks 

in all aspects (when considering small and large objects). Tables 3.24 (a), 3.24 (b), 

3.25 (a), and 3.25 (b) show a comparative analysis between various state-of-the-art 

pre-trained networks for segmentation in the case of DDR and IDRiD datasets, 

respectively, using Dice score and IoU (intersection over union) evaluation metrics 

between various pre-trained networks: DeepLabV2 and DeepLabV3 and PSPNet with 

cross-entropy loss and focal loss. After experimentation it was observed that PSPNet 

(with Focal Loss) is working best in comparison to other pre-trained networks taken 

into consideration, results from which are shown in Figure 3.6. Final conclusion 

which can be inferred from the experimental task was that the DenseNet121 pre-

trained model is the best suited for the diabetic retinopathy image classification task. 

Whereas, EfficientDet-D0 and SSD (MobileNetV1) are best suited based on the 

diabetic retinopathy dataset for object detection tasks. In case of segmentation PSPNet 
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(with focal loss) performs best in comparison to other pre-trained networks. It was 

also observed experimentally that in the case of Class 1, early-stage diabetics are 

difficult to detect irrespective of whether that class falls under the minority category 

in the case of all the three available diabetic retinopathy datasets. 

Table 3.16. Illustration of classification results of various pre-trained network on 

Kaggle DR Dataset using Cohen's Kappa and ROC AUC evaluation metrics. 

Models 

Cohen's Kappa 

Accuracy 

ROC AUC 

Unweighted 
Linearly 

Weighted 

Quadratic 

Weighted 

Weighted 

Average 

Macro 

Average 

VGG16 

0.4305 ± 

0.0360 

0.6516 ± 

0.0175 

0.5547 ± 

0.0281 

0.7706 ± 

0.0394 

0.8087 ± 

0.0030 

0.8251 ± 

0.0038 

VGG19 

0.4514 ± 
0.0053 

0.6638 ± 
0.0026 

0.5718 ± 
0.0034 

0.7874 ± 
0.0029 

0.8078 ± 
0.0038 

0.8284 ± 
0.0019 

InceptionV3 

0.4134 ± 

0.0042 

0.6357 ± 

0.0050 

0.5374 ± 

0.0048 

0.7814 ± 

0.0024 

0.8046 ± 

0.0020 

0.8261 ± 

0.0010 

ResNet50 

0.4336 ± 

0.0046 

0.6514 ± 

0.0048 

0.5561 ± 

0.0045 

0.7906 ± 

0.0015 

0.8101 ± 

0.0021 

0.8302 ± 

0.0016 

ResNet50V2 

0.4127 ± 

0.0028 

0.6341 ± 

0.0034 

0.5361 ± 

0.0034 

0.7782 ± 

0.0029 

0.8004 ± 

0.0020 

0.8224 ± 

0.0021 

ResNet152 

0.4316 ± 

0.0035 

0.6465 ± 

0.0014 

0.5526 ± 

0.0020 

0.7914 ± 

0.0012 

0.8103 ± 

0.0011 

0.8305 ± 

0.0005 

ResNet101 

0.4317 ± 

0.0050 

0.6488 ± 

0.0061 

0.5539 ± 

0.0057 

0.7913 ± 

0.0022 

0.8097 ± 

0.0018 

0.8306 ± 

0.0017 

ResNet152V2 

0.4266 ± 

0.0051 

0.6456 ± 

0.0042 

0.5493 ± 

0.0043 

0.7846 ± 

0.0017 

0.8069 ± 

0.0018 

0.8252 ± 

0.0012 

ResNet101V2 

0.4229 ± 

0.0028 

0.6435 ± 

0.0011 

0.5464 ± 

0.0017 

0.7827 ± 

0.0031 

0.8026 ± 

0.0015 

0.8236 ± 

0.0007 

Xception 

0.4371 ± 

0.0019 

0.6587 ± 

0.0033 

0.5618 ± 

0.0027 

0.7906 ± 

0.0014 

0.8139 ± 

0.0010 

0.8310 ± 

0.0005 

InceptionResNet

V2 

0.4324 ± 

0.0048 

0.6513 ± 

0.0049 

0.5558 ± 

0.0044 

0.7962 ± 

0.0010 

0.8140 ± 

0.0015 

0.8320 ± 

0.0009 

MobileNetV2 

0.4013 ± 

0.0050 

0.6345 ± 

0.0049 

0.5309 ± 

0.0048 

0.7608 ± 

0.0058 

0.8010 ± 

0.0011 

0.8227 ± 

0.0013 

DenseNet121 

0.4465 ± 

0.0023 

0.6678 ± 

0.0030 

0.5716 ± 

0.0027 

0.7911 ± 

0.0029 

0.8189 ± 

0.0018 

0.8340 ± 

0.0021 

DenseNet169 

0.4462 ± 

0.0045 

0.6655 ± 

0.0044 

0.5705 ± 

0.0044 

0.7963 ± 

0.0020 

0.8198 ± 

0.0020 

0.8334 ± 

0.0017 

DenseNet201 

0.4408 ± 

0.0071 

0.6567 ± 

0.0062 

0.5628 ± 

0.0065 

0.7986 ± 

0.0012 

0.8199 ± 

0.0016 

0.8344 ± 

0.0013 

EfficientNetB0 

0.4288 ± 

0.0035 

0.6579 ± 

0.0046 

0.5565 ± 

0.0042 

0.7713 ± 

0.0028 

0.8134 ± 

0.0018 

0.8317 ± 

0.0013 
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Table 3.17. Illustration of classification results of various pre-trained network on 

DDR Dataset using Cohen's Kappa and ROC AUC evaluation metrics. 

Models 

Cohen's Kappa 

Accuracy 

ROC AUC 

Unweighted 
Linearly 

Weighted 

Quadratic 

Weighted 

Weighted 

Average 

Macro 

Average 

VGG16 

0.6228 ± 

0.0099 

0.8451 ± 

0.0059 

0.7499 ± 

0.0078 

0.7589 ± 

0.0062 

0.9165 ± 

0.0029 

0.9013 ± 

0.0025 

VGG19 

0.6330 ± 

0.0067 

0.8490 ± 

0.0031 

0.7574 ± 

0.0042 

0.7646 ± 

0.0041 

0.9135 ± 

0.0036 

0.9048 ± 

0.0029 

InceptionV3 

0.5662 ± 

0.0050 

0.8205 ± 

0.0039 

0.7092 ± 

0.0045 

0.7249 ± 

0.0026 

0.8936 ± 

0.0037 

0.8840 ± 

0.0034 

ResNet50 

0.5950 ± 

0.0048 

0.8314 ± 

0.0056 

0.7287 ± 

0.0052 

0.7427 ± 

0.0030 

0.9089 ± 

0.0020 

0.8956 ± 

0.0049 

ResNet50V2 

0.5826 ± 

0.0133 

0.8261 ± 

0.0049 

0.7198 ± 

0.0091 

0.7350 ± 

0.0077 

0.8989 ± 

0.0014 

0.8894 ± 

0.0036 

ResNet152 

0.5934 ± 

0.0140 

0.8320 ± 

0.0088 

0.7282 ± 

0.0118 

0.7422 ± 

0.0081 

0.9093 ± 

0.0041 

0.8939 ± 

0.0019 

ResNet101 

0.5909 ± 

0.0081 

0.8285 ± 

0.0055 

0.7251 ± 

0.0066 

0.7408 ± 

0.0049 

0.9119 ± 

0.0026 

0.8961 ± 

0.0037 

ResNet152V2 

0.5943 ± 

0.0056 

0.8325 ± 

0.0023 

0.7292 ± 

0.0037 

0.7424 ± 

0.0037 

0.9112 ± 

0.0032 

0.8977 ± 

0.0017 

ResNet101V2 

0.5909 ± 

0.0091 

0.8307 ± 

0.0056 

0.7261 ± 

0.0072 

0.7398 ± 

0.0055 

0.9086 ± 

0.0017 

0.8965 ± 

0.0013 

Xception 

0.5856 ± 

0.0199 

0.8273 ± 

0.0082 

0.7221 ± 

0.0137 

0.7365 ± 

0.0120 

0.8981 ± 

0.0033 

0.8826 ± 

0.0013 

InceptionResNet

V2 

0.5903 ± 

0.0137 

0.8296 ± 

0.0067 

0.7256 ± 

0.0099 

0.7403 ± 

0.0082 

0.9012 ± 

0.0021 

0.8817 ± 

0.0049 

MobileNetV2 

0.5064 ± 

0.0290 

0.7965 ± 

0.0151 

0.6689 ± 

0.0215 

0.6898 ± 

0.0170 

0.8880 ± 

0.0041 

0.8694 ± 

0.0072 

DenseNet121 

0.6102 ± 

0.0061 

0.8393 ± 

0.0023 

0.7402 ± 

0.0033 

0.7514 ± 

0.0038 

0.9139 ± 

0.0027 

0.8985 ± 

0.0065 

DenseNet169 

0.6043 ± 
0.0068 

0.8376 ± 
0.0043 

0.7367 ± 
0.0051 

0.7485 ± 
0.0039 

0.9119 ± 
0.0029 

0.8969 ± 
0.0029 

DenseNet201 

0.6172 ± 

0.0045 

0.8433 ± 

0.0032 

0.7458 ± 

0.0031 

0.7568 ± 

0.0026 

0.9129 ± 

0.0021 

0.8907 ± 

0.0019 

EfficientNetB0 

0.5910 ± 

0.0059 

0.8364 ± 

0.0031 

0.7306 ± 

0.0042 

0.7374 ± 

0.0040 

0.9091 ± 

0.0042 

0.8962 ± 

0.0058 

Table 3.18. Illustration of classification results of various pre-trained network on 

IDRiD Dataset using Cohen's Kappa and ROC AUC evaluation metrics. 

Models 

Cohen's Kappa 

Accuracy 

ROC AUC 

Unweighted 
Linearly 

Weighted 

Quadratic 

Weighted 

Weighted 

Average 

Macro 

Average 

VGG16 

0.3938 ± 

0.0500 

0.5662 ± 

0.0600 

0.4914 ± 

0.0538 

0.5728 ± 

0.0357 

0.8114 ± 

0.0048 

0.7939 ± 

0.0074 
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VGG19 

0.3793 ± 

0.0303 

0.5920 ± 

0.0378 

0.4979 ± 

0.0243 

0.5592 ± 

0.0244 

0.8136 ± 

0.0032 

0.7987 ± 

0.0129 

InceptionV3 

0.4327 ± 

0.0371 

0.6007 ± 

0.0488 

0.5319 ± 

0.0341 

0.5961 ± 

0.0280 

0.7841 ± 

0.0110 

0.7245 ± 

0.0187 

ResNet50 

0.3965 ± 

0.0421 

0.6079 ± 

0.0485 

0.5227 ± 

0.0471 

0.5709 ± 

0.0278 

0.8013 ± 

0.0135 

0.7561 ± 

0.0226 

ResNet50V2 

0.3921 ± 

0.0481 

0.5616 ± 

0.0251 

0.4888 ± 

0.0298 

0.5689 ± 

0.0340 

0.7838 ± 

0.0132 

0.7335 ± 

0.0332 

ResNet152 

0.4208 ± 

0.0563 

0.5986 ± 

0.0306 

0.5212 ± 

0.0432 

0.5883 ± 

0.0404 

0.7968 ± 

0.0140 

0.7539 ± 

0.0141 

ResNet101 

0.4447 ± 

0.0472 

0.6071 ± 

0.0274 

0.5389 ± 

0.0366 

0.6058 ± 

0.0334 

0.8037 ± 

0.0123 

0.7577 ± 

0.0217 

ResNet152V2 

0.3421 ± 

0.0520 

0.5373 ± 

0.0264 

0.4530 ± 

0.0383 

0.5340 ± 

0.0370 

0.7720 ± 

0.0193 

0.7134 ± 

0.0288 

ResNet101V2 

0.4066 ± 

0.0341 

0.5916 ± 

0.0214 

0.5120 ± 

0.0131 

0.5786 ± 

0.0244 

0.7735 ± 

0.0153 

0.7125 ± 

0.0271 

Xception 

0.4182 ± 

0.0276 

0.5939 ± 

0.0189 

0.5116 ± 

0.0222 

0.5903 ± 

0.0199 

0.8006 ± 

0.0091 

0.7474 ± 

0.0138 

InceptionResNet

V2 

0.3834 ± 

0.0429 

0.5632 ± 

0.0341 

0.4867 ± 

0.0390 

0.5650 ± 

0.0310 

0.7881 ± 

0.0029 

0.7560 ± 

0.0084 

MobileNetV2 

0.3768 ± 

0.0347 

0.5608 ± 

0.0268 

0.4838 ± 

0.0275 

0.5592 ± 

0.0354 

0.7759 ± 

0.0096 

0.7396 ± 

0.0082 

DenseNet121 

0.3882 ± 

0.0243 

0.6049 ± 

0.0410 

0.5092 ± 

0.0318 

0.5612 ± 

0.0160 

0.7878 ± 

0.0099 

0.7352 ± 

0.0189 

DenseNet169 

0.4244 ± 

0.0241 

0.6206 ± 

0.0115 

0.5352 ± 

0.0127 

0.5922 ± 

0.0182 

0.8021 ± 

0.0060 

0.7489 ± 

0.0144 

DenseNet201 

0.4089 ± 

0.0285 

0.5844 ± 

0.0210 

0.5102 ± 

0.0244 

0.5806 ± 

0.0210 

0.8034 ± 

0.0065 

0.7555 ± 

0.0081 

EfficientNetB0 

0.4089 ± 

0.0057 

0.6376 ± 

0.0299 

0.5375 ± 

0.0192 

0.5767 ± 

0.0053 

0.8059 ± 

0.0096 

0.7633 ± 

0.0178 

Table 3.19 (a).  Illustration of classification results of various pre-trained 

network on Kaggle DR Dataset using F1 Score evaluation metrics. 

Models 

F1 Score 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.8781 ± 

0.0275 

0.0935 ± 

0.0384 

0.5527 ± 

0.0286 

0.3429 ± 

0.0371 

0.5364 ± 

0.0086 

0.7543 ± 

0.0208 

VGG19 

0.8905 ± 

0.0019 

0.0804 ± 

0.0129 

0.5701 ± 

0.0033 

0.3171 ± 

0.0196 

0.5337 ± 

0.0194 

0.7644 ± 

0.0014 

InceptionV3 

0.8871 ± 

0.0016 

0.0659 ± 

0.0054 

0.5171 ± 

0.0067 

0.3257 ± 

0.0133 

0.5066 ± 

0.0088 

0.7526 ± 

0.0009 

ResNet50 

0.8928 ± 

0.0010 

0.0606 ± 

0.0046 

0.5366 ± 

0.0067 

0.3446 ± 

0.0164 

0.5232 ± 

0.0148 

0.7601 ± 

0.0010 

ResNet50V2 

0.8850 ± 

0.0019 

0.0701 ± 

0.0031 

0.5150 ± 

0.0057 

0.3335 ± 

0.0254 

0.5252 ± 

0.0056 

0.7517 ± 

0.0014 
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ResNet152 

0.8927 ± 

0.0007 

0.0544 ± 

0.0028 

0.5331 ± 

0.0045 

0.3494 ± 

0.0053 

0.5357 ± 

0.0050 

0.7595 ± 

0.0005 

ResNet101 

0.8931 ± 

0.0013 

0.0470 ± 

0.0090 

0.5348 ± 

0.0046 

0.3444 ± 

0.0219 

0.5248 ± 

0.0106 

0.7591 ± 

0.0019 

ResNet152V2 

0.8891 ± 

0.0010 

0.0710 ± 

0.0108 

0.5280 ± 

0.0060 

0.3535 ± 

0.0202 

0.5280 ± 

0.0070 

0.7572 ± 

0.0009 

ResNet101V2 

0.8879 ± 

0.0020 

0.0701 ± 

0.0039 

0.5260 ± 

0.0044 

0.3408 ± 

0.0101 

0.5290 ± 

0.0045 

0.7557 ± 

0.0011 

Xception 

0.8928 ± 

0.0011 

0.0657 ± 

0.0044 

0.5421 ± 

0.0035 

0.3436 ± 

0.0127 

0.5396 ± 

0.0095 

0.7616 ± 

0.0009 

InceptionResNet

V2 

0.8960 ± 

0.0008 

0.0506 ± 

0.0076 

0.5310 ± 

0.0052 

0.3350 ± 

0.0184 

0.5315 ± 

0.0148 

0.7609 ± 

0.0012 

MobileNetV2 

0.8748 ± 

0.0032 

0.1043 ± 

0.0062 

0.5180 ± 

0.0031 

0.3421 ± 

0.0189 

0.5077 ± 

0.0251 

0.7468 ± 

0.0031 

DenseNet121 

0.8935 ± 

0.0018 

0.0745 ± 

0.0068 

0.5527 ± 

0.0025 

0.3530 ± 

0.0158 

0.5474 ± 

0.0094 

0.7647 ± 

0.0013 

DenseNet169 

0.8964 ± 

0.0010 

0.0525 ± 

0.0040 

0.5494 ± 

0.0063 

0.3488 ± 

0.0050 

0.5511 ± 

0.0064 

0.7648 ± 

0.0017 

DenseNet201 

0.8970 ± 

0.0008 

0.0541 ± 

0.0068 

0.5431 ± 

0.0077 

0.3430 ± 

0.0081 

0.5343 ± 

0.0158 

0.7639 ± 

0.0020 

EfficientNetB0 

0.8806 ± 

0.0018 

0.1043 ± 

0.0028 

0.5411 ± 

0.0042 

0.3623 ± 

0.0071 

0.5590 ± 

0.0044 

0.7562 ± 

0.0018 

Table 3.19 (b).  Illustration of classification results of various pre-trained 

network on Kaggle DR Dataset using Index Balanced Accuracy (IBA) evaluation 

metrics. 

Models 

Index Balanced Accuracy (IBA) 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.5312 ± 

0.0058 

0.0695 ± 

0.0540 

0.4990 ± 

0.0118 

0.2582 ± 

0.0776 

0.4026 ± 

0.0563 

0.5201 ± 

0.0045 

VGG19 

0.5426 ± 

0.0040 

0.0487 ± 

0.0101 

0.5182 ± 

0.0101 

0.2152 ± 

0.0241 

0.3806 ± 

0.0210 

0.5304 ± 

0.0032 

InceptionV3 

0.4914 ± 

0.0110 

0.0375 ± 

0.0035 

0.4350 ± 

0.0161 

0.2372 ± 

0.0158 

0.3632 ± 

0.0079 

0.4930 ± 

0.0068 

ResNet50 

0.5036 ± 

0.0116 

0.0332 ± 

0.0033 

0.4531 ± 

0.0161 

0.2503 ± 

0.0178 

0.3758 ± 

0.0180 

0.5041 ± 

0.0074 

ResNet50V2 

0.4975 ± 
0.0080 

0.0407 ± 
0.0028 

0.4400 ± 
0.0078 

0.2467 ± 
0.0262 

0.3812 ± 
0.0125 

0.4961 ± 
0.0047 

ResNet152 

0.4962 ± 

0.0092 

0.0291 ± 

0.0017 

0.4470 ± 

0.0113 

0.2525 ± 

0.0078 

0.3850 ± 

0.0039 

0.4997 ± 

0.0056 

ResNet101 

0.4980 ± 

0.0100 

0.0252 ± 

0.0054 

0.4494 ± 

0.0123 

0.2507 ± 

0.0256 

0.3729 ± 

0.0158 

0.5006 ± 

0.0064 

ResNet152V2 

0.5059 ± 

0.0081 

0.0405 ± 

0.0075 

0.4504 ± 

0.0154 

0.2637 ± 

0.0178 

0.3812 ± 

0.0093 

0.5038 ± 

0.0054 

ResNet101V2 

0.5045 ± 

0.0075 

0.0403 ± 

0.0027 

0.4499 ± 

0.0126 

0.2528 ± 

0.0107 

0.3789 ± 

0.0054 

0.5022 ± 

0.0044 
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Xception 

0.5092 ± 

0.0028 

0.0371 ± 

0.0029 

0.4582 ± 

0.0055 

0.2487 ± 

0.0145 

0.3964 ± 

0.0092 

0.5080 ± 

0.0019 

InceptionResNet

V2 

0.4859 ± 

0.0084 

0.0264 ± 

0.0045 

0.4319 ± 

0.0130 

0.2401 ± 

0.0195 

0.3762 ± 

0.0186 

0.4942 ± 

0.0055 

MobileNetV2 

0.5167 ± 

0.0070 

0.0758 ± 

0.0072 

0.4517 ± 

0.0095 

0.2614 ± 

0.0241 

0.3666 ± 

0.0261 

0.5045 ± 

0.0033 

DenseNet121 

0.5251 ± 

0.0044 

0.0434 ± 

0.0048 

0.4752 ± 

0.0043 

0.2613 ± 

0.0224 

0.4020 ± 

0.0138 

0.5190 ± 

0.0023 

DenseNet169 

0.5105 ± 

0.0028 

0.0283 ± 

0.0025 

0.4623 ± 

0.0068 

0.2541 ± 

0.0101 

0.4016 ± 

0.0091 

0.5106 ± 

0.0024 

DenseNet201 

0.4924 ± 

0.0118 

0.0282 ± 

0.0039 

0.4450 ± 

0.0142 

0.2421 ± 

0.0091 

0.3860 ± 

0.0185 

0.4997 ± 

0.0078 

EfficientNetB0 

0.5384 ± 

0.0018 

0.0708 ± 

0.0025 

0.4852 ± 

0.0039 

0.2804 ± 

0.0062 

0.4309 ± 

0.0053 

0.5234 ± 

0.0012 

Table 3.19 (c). Illustration of classification results of various pre-trained network 

on Kaggle DR Dataset using Geometric Mean (Gmean) evaluation metrics. 

Models 

Geometric Mean (Gmean) 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.7170 ± 

0.0078 

0.2632 ± 

0.0901 

0.7192 ± 

0.0090 

0.5228 ± 

0.0708 

0.6521 ± 

0.0416 

0.7176 ± 

0.0018 

VGG19 

0.7235 ± 

0.0028 

0.2304 ± 

0.0246 

0.7323 ± 

0.0064 

0.4820 ± 

0.0258 

0.6358 ± 

0.0171 

0.7239 ± 

0.0022 

InceptionV3 

0.6861 ± 

0.0084 

0.2034 ± 

0.0095 

0.6745 ± 

0.0115 

0.5057 ± 

0.0163 

0.6218 ± 

0.0065 

0.6966 ± 

0.0052 

ResNet50 

0.6945 ± 

0.0088 

0.1914 ± 

0.0096 

0.6879 ± 

0.0113 

0.5191 ± 

0.0180 

0.6320 ± 

0.0145 

0.7043 ± 

0.0056 

ResNet50V2 

0.6910 ± 
0.0061 

0.2117 ± 
0.0072 

0.6780 ± 
0.0056 

0.5150 ± 
0.0267 

0.6364 ± 
0.0099 

0.6991 ± 
0.0037 

ResNet152 

0.6890 ± 

0.0069 

0.1792 ± 

0.0052 

0.6836 ± 

0.0080 

0.5215 ± 

0.0078 

0.6395 ± 

0.0031 

0.7009 ± 

0.0042 

ResNet101 

0.6903 ± 

0.0075 

0.1661 ± 

0.0180 

0.6853 ± 

0.0087 

0.5192 ± 

0.0259 

0.6297 ± 

0.0128 

0.7016 ± 

0.0048 

ResNet152V2 

0.6967 ± 

0.0060 

0.2108 ± 

0.0188 

0.6857 ± 

0.0109 

0.5325 ± 

0.0175 

0.6365 ± 

0.0074 

0.7045 ± 

0.0040 

ResNet101V2 

0.6958 ± 

0.0058 

0.2107 ± 

0.0071 

0.6853 ± 

0.0088 

0.5218 ± 

0.0107 

0.6346 ± 

0.0044 

0.7034 ± 

0.0034 

Xception 

0.6987 ± 

0.0022 

0.2023 ± 

0.0079 

0.6917 ± 

0.0039 

0.5176 ± 

0.0147 

0.6485 ± 

0.0072 

0.7072 ± 

0.0015 

InceptionResNet

V2 

0.6809 ± 

0.0063 

0.1704 ± 

0.0144 

0.6729 ± 

0.0094 

0.5086 ± 

0.0207 

0.6323 ± 

0.0149 

0.6965 ± 

0.0041 

MobileNetV2 

0.7066 ± 

0.0056 

0.2878 ± 

0.0133 

0.6862 ± 

0.0065 

0.5299 ± 

0.0242 

0.6243 ± 

0.0215 

0.7066 ± 

0.0028 

DenseNet121 

0.7103 ± 

0.0034 

0.2184 ± 

0.0121 

0.7036 ± 

0.0028 

0.5299 ± 

0.0217 

0.6528 ± 

0.0107 

0.7153 ± 

0.0018 
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DenseNet169 

0.6992 ± 

0.0020 

0.1767 ± 

0.0077 

0.6948 ± 

0.0048 

0.5231 ± 

0.0100 

0.6526 ± 

0.0070 

0.7087 ± 

0.0017 

DenseNet201 

0.6856 ± 

0.0088 

0.1764 ± 

0.0119 

0.6826 ± 

0.0103 

0.5110 ± 

0.0094 

0.6402 ± 

0.0146 

0.7005 ± 

0.0058 

EfficientNetB0 

0.7219 ± 

0.0014 

0.2786 ± 

0.0048 

0.7097 ± 

0.0027 

0.5487 ± 

0.0059 

0.6749 ± 

0.0040 

0.7199 ± 

0.0008 

Table 3.20 (a).  Illustration of classification results of various pre-trained 

networks on DDR Dataset using F1 Score evaluation metrics. 

Models 

F1 Score 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 
Weighted 

Average 

VGG16 

0.8487 ± 

0.0044 

0.0610 ± 

0.0294 

0.6592 ± 

0.0097 

0.2698 ± 

0.0191 

0.7188 ± 

0.0220 

0.8606 ± 

0.0086 

0.7327 ± 

0.0069 

VGG19 

0.8588 ± 

0.0027 

0.0609 ± 

0.0153 

0.6741 ± 

0.0071 

0.2879 ± 

0.0322 

0.6971 ± 

0.0207 

0.8561 ± 

0.0080 

0.7407 ± 

0.0044 

InceptionV3 

0.8292 ± 

0.0016 

0.0360 ± 

0.0093 

0.5780 ± 

0.0098 

0.2967 ± 

0.0348 

0.6470 ± 

0.0133 

0.8671 ± 

0.0066 

0.6922 ± 

0.0044 

ResNet50 

0.8392 ± 

0.0041 

0.0316 ± 

0.0066 

0.6208 ± 

0.0104 

0.3520 ± 

0.0383 

0.6774 ± 

0.0193 

0.8636 ± 

0.0062 

0.7133 ± 

0.0037 

ResNet50V2 

0.8338 ± 

0.0062 

0.0507 ± 

0.0060 

0.5976 ± 

0.0202 

0.2816 ± 

0.0672 

0.6895 ± 

0.0122 

0.8611 ± 

0.0038 

0.7035 ± 

0.0102 

ResNet152 

0.8393 ± 

0.0064 

0.0387 ± 

0.0117 

0.6182 ± 

0.0207 

0.2760 ± 

0.0316 

0.6683 ± 

0.0106 

0.8622 ± 

0.0070 

0.7108 ± 

0.0100 

ResNet101 

0.8381 ± 

0.0028 

0.0362 ± 

0.0139 

0.6145 ± 

0.0118 

0.2750 ± 

0.0288 

0.6700 ± 

0.0078 

0.8666 ± 

0.0105 

0.7093 ± 

0.0060 

ResNet152 

V2 

0.8386 ± 

0.0037 

0.0423 ± 

0.0171 

0.6131 ± 

0.0101 

0.2682 ± 

0.0389 

0.7081 ± 

0.0155 

0.8651 ± 

0.0067 

0.7118 ± 

0.0039 

ResNet101 

V2 

0.8393 ± 
0.0067 

0.0599 ± 
0.0119 

0.6087 ± 
0.0133 

0.3112 ± 
0.0598 

0.6877 ± 
0.0241 

0.8550 ± 
0.0045 

0.7100 ± 
0.0065 

Xception 

0.8342 ± 

0.0091 

0.0263 ± 

0.0064 

0.6031 ± 

0.0295 

0.3615 ± 

0.0366 

0.6794 ± 

0.0059 

0.8643 ± 

0.0037 

0.7054 ± 

0.0146 

Inception 

ResNetV2 

0.8371 ± 

0.0062 

0.0260 ± 

0.0148 

0.6083 ± 

0.0227 

0.2460 ± 

0.0265 

0.6867 ± 

0.0115 

0.8728 ± 

0.0038 

0.7076 ± 

0.0106 

MobileNet 

V2 

0.8136 ± 

0.0131 

0.0220 ± 

0.0185 

0.5256 ± 

0.0488 

0.3024 ± 

0.0669 

0.3582 ± 

0.0788 

0.8069 ± 

0.0184 

0.6429 ± 

0.0226 

DenseNet 

121 

0.8473 ± 

0.0044 

0.0482 ± 

0.0054 

0.6322 ± 

0.0105 

0.3278 ± 

0.0314 

0.7048 ± 

0.0183 

0.8663 ± 

0.0037 

0.7231 ± 

0.0043 

DenseNet 

169 

0.8425 ± 

0.0031 

0.0431 ± 

0.0148 

0.6253 ± 

0.0069 

0.3165 ± 

0.0084 

0.7038 ± 

0.0162 

0.8679 ± 

0.0027 

0.7183 ± 

0.0049 

DenseNet 

201 

0.8489 ± 

0.0039 

0.0223 ± 

0.0123 

0.6461 ± 

0.0058 

0.3029 ± 

0.0281 

0.7010 ± 

0.0178 

0.8686 ± 

0.0055 

0.7268 ± 

0.0027 

EfficientNet 

B0 

0.8399 ± 

0.0035 

0.0830 ± 

0.0125 

0.5928 ± 

0.0068 

0.3961 ± 

0.0174 

0.7205 ± 

0.0112 

0.8668 ± 

0.0041 

0.7107 ± 

0.0035 

Table 3.20 (b). Illustration of classification results of various pre-trained networks 

on DDR Dataset using Indexed Balanced Accuracy (IBA) evaluation metrics. 
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Models 

Index Balanced Accuracy (IBA) 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 
Weighted 

Average 

VGG16 

0.7278 ± 

0.0084 

0.0342 ± 

0.0176 

0.5072 ± 

0.0118 

0.1780 ± 

0.0111 

0.6238 ± 

0.0312 

0.9103 ± 

0.0087 

0.6384 ± 

0.0081 

VGG19 

0.7494 ± 

0.0059 

0.0341 ± 

0.0085 

0.5303 ± 

0.0110 

0.1912 ± 

0.0146 

0.6148 ± 

0.0397 

0.8866 ± 

0.0092 

0.6499 ± 

0.0057 

Inception-

V3 

0.6842 ± 

0.0046 

0.0199 ± 

0.0052 

0.4181 ± 

0.0112 

0.1966 ± 

0.0302 

0.5329 ± 

0.0218 

0.9194 ± 

0.0066 

0.5908 ± 

0.0045 

ResNet50 

0.7065 ± 
0.0091 

0.0170 ± 
0.0042 

0.4654 ± 
0.0136 

0.2393 ± 
0.0360 

0.5574 ± 
0.0255 

0.9098 ± 
0.0062 

0.6142 ± 
0.0047 

ResNet50 

V2 

0.6936 ± 

0.0150 

0.0275 ± 

0.0039 

0.4373 ± 

0.0232 

0.1914 ± 

0.0514 

0.5735 ± 

0.0094 

0.9193 ± 

0.0064 

0.6035 ± 

0.0118 

ResNet152 

0.7051 ± 

0.0153 

0.0199 ± 

0.0062 

0.4612 ± 

0.0238 

0.1808 ± 

0.0321 

0.5552 ± 

0.0137 

0.9106 ± 

0.0158 

0.6127 ± 

0.0124 

ResNet101 

0.7017 ± 

0.0070 

0.0190 ± 

0.0075 

0.4554 ± 

0.0144 

0.1859 ± 

0.0239 

0.5587 ± 

0.0068 

0.9081 ± 

0.0131 

0.6104 ± 

0.0068 

ResNet152 

V2 

0.7038 ± 

0.0072 

0.0228 ± 

0.0091 

0.4544 ± 

0.0103 

0.1729 ± 

0.0302 

0.5979 ± 

0.0193 

0.9139 ± 

0.0079 

0.6129 ± 

0.0048 

ResNet101 

V2 

0.7057 ± 
0.0151 

0.0332 ± 
0.0067 

0.4501 ± 
0.0164 

0.2074 ± 
0.0502 

0.5761 ± 
0.0201 

0.9081 ± 
0.0050 

0.6112 ± 
0.0086 

Xception 

0.6953 ± 

0.0209 

0.0142 ± 

0.0034 

0.4437 ± 

0.0342 

0.2473 ± 

0.0315 

0.5651 ± 

0.0128 

0.9294 ± 

0.0074 

0.6062 ± 

0.0172 

Inception 

ResNetV2 

0.7000 ± 

0.0146 

0.0133 ± 

0.0078 

0.4498 ± 

0.0260 

0.1622 ± 

0.0237 

0.5794 ± 

0.0134 

0.9238 ± 

0.0136 

0.6094 ± 

0.0120 

MobileNet 

V2 

0.6464 ± 

0.0353 

0.0114 ± 

0.0104 

0.3680 ± 

0.0556 

0.2759 ± 

0.1484 

0.2112 ± 

0.0589 

0.9336 ± 

0.0044 

0.5470 ± 

0.0237 

DenseNet 

121 

0.7230 ± 

0.0094 

0.0265 ± 

0.0026 

0.4766 ± 

0.0142 

0.2179 ± 

0.0286 

0.5991 ± 

0.0301 

0.9220 ± 

0.0122 

0.6275 ± 

0.0059 

DenseNet 

169 

0.7115 ± 

0.0073 

0.0228 ± 

0.0085 

0.4662 ± 

0.0090 

0.2177 ± 

0.0109 

0.6017 ± 

0.0259 

0.9190 ± 

0.0096 

0.6212 ± 

0.0059 

DenseNet 

201 

0.7250 ± 

0.0091 

0.0114 ± 

0.0064 

0.4912 ± 

0.0072 

0.2045 ± 

0.0197 

0.5939 ± 

0.0291 

0.9168 ± 

0.0050 

0.6324 ± 

0.0042 

EfficientNet 

B0 

0.7079 ± 

0.0066 

0.0537 ± 

0.0086 

0.4285 ± 

0.0076 

0.3139 ± 

0.0315 

0.6233 ± 

0.0108 

0.9316 ± 

0.0072 

0.6124 ± 

0.0047 

Table 3.20 (c). Illustration of classification results of various pre-trained networks 

on DDR Dataset using Geometric Mean (Gmean) evaluation metrics. 

Models 

Geometric Mean (Gmean) 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 
Weighted 

Average 

VGG16 

0.8431 ± 
0.0051 

0.1876 ± 
0.0561 

0.7250 ± 
0.0080 

0.4397 ± 
0.0133 

0.8032 ± 
0.0191 

0.9562 ± 
0.0042 

0.8026 ± 
0.0050 

VGG19 

0.8569 ± 

0.0038 

0.1931 ± 

0.0233 

0.7398 ± 

0.0069 

0.4553 ± 

0.0169 

0.7974 ± 

0.0236 

0.9449 ± 

0.0045 

0.8099 ± 

0.0035 

Inception-

V3 

0.8153 ± 

0.0034 

0.1472 ± 

0.0200 

0.6611 ± 

0.0083 

0.4608 ± 

0.0336 

0.7458 ± 

0.0144 

0.9605 ± 

0.0032 

0.7725 ± 

0.0030 
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ResNet50 

0.8295 ± 

0.0059 

0.1366 ± 

0.0163 

0.6956 ± 

0.0094 

0.5070 ± 

0.0378 

0.7619 ± 

0.0166 

0.9560 ± 

0.0031 

0.7874 ± 

0.0030 

ResNet50 

V2 

0.8211 ± 

0.0098 

0.1741 ± 

0.0124 

0.6756 ± 

0.0170 

0.4520 ± 

0.0630 

0.7724 ± 

0.0059 

0.9604 ± 

0.0030 

0.7805 ± 

0.0077 

ResNet152 

0.8282 ± 

0.0099 

0.1468 ± 

0.0258 

0.6927 ± 

0.0170 

0.4418 ± 

0.0389 

0.7605 ± 

0.0089 

0.9563 ± 

0.0075 

0.7863 ± 

0.0080 

ResNet101 

0.8259 ± 

0.0046 

0.1425 ± 

0.0296 

0.6889 ± 

0.0101 

0.4486 ± 

0.0283 

0.7628 ± 

0.0043 

0.9553 ± 

0.0064 

0.7849 ± 

0.0043 

ResNet152 

V2 

0.8274 ± 

0.0043 

0.1557 ± 

0.0345 

0.6881 ± 

0.0075 

0.4323 ± 

0.0381 

0.7876 ± 

0.0118 

0.9580 ± 

0.0038 

0.7865 ± 

0.0030 

ResNet101 

V2 

0.8287 ± 

0.0097 

0.1908 ± 

0.0189 

0.6849 ± 

0.0118 

0.4708 ± 

0.0594 

0.7739 ± 

0.0128 

0.9550 ± 

0.0024 

0.7855 ± 

0.0056 

Xception 

0.8224 ± 

0.0135 

0.1247 ± 

0.0150 

0.6800 ± 

0.0248 

0.5156 ± 

0.0310 

0.7669 ± 

0.0081 

0.9652 ± 

0.0035 

0.7822 ± 

0.0110 

Inception 

ResNetV2 

0.8249 ± 

0.0094 

0.1170 ± 

0.0361 

0.6846 ± 

0.0188 

0.4194 ± 

0.0305 

0.7760 ± 

0.0084 

0.9627 ± 

0.0064 

0.7842 ± 

0.0077 

MobileNet 

V2 

0.7907 ± 

0.0237 

0.1042 ± 

0.0469 

0.6203 ± 

0.0434 

0.5276 ± 

0.1402 

0.4742 ± 

0.0664 

0.9656 ± 

0.0019 

0.7437 ± 

0.0161 

DenseNet 

121 

0.8396 ± 

0.0059 

0.1711 ± 

0.0085 

0.7038 ± 

0.0096 

0.4847 ± 

0.0326 

0.7881 ± 

0.0186 

0.9617 ± 

0.0057 

0.7958 ± 

0.0037 

DenseNet 

169 

0.8321 ± 

0.0047 

0.1565 ± 

0.0300 

0.6968 ± 

0.0063 

0.4852 ± 

0.0118 

0.7897 ± 

0.0159 

0.9604 ± 

0.0045 

0.7917 ± 

0.0038 

DenseNet 

201 

0.8404 ± 
0.0058 

0.1083 ± 
0.0335 

0.7142 ± 
0.0048 

0.4703 ± 
0.0220 

0.7849 ± 
0.0179 

0.9594 ± 
0.0023 

0.7987 ± 
0.0027 

EfficientNet 

B0 

0.8303 ± 

0.0039 

0.2426 ± 

0.0196 

0.6697 ± 

0.0056 

0.5790 ± 

0.0273 

0.8031 ± 

0.0065 

0.9662 ± 

0.0033 

0.7865 ± 

0.0029 

Table 3.21 (a).  Illustration of classification results of various pre-trained 

networks on IDRiD Dataset using F1 Score evaluation metrics. 

Models 

F1 Score 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.7112 ± 

0.0537 

0.0000 ± 

0.0000 

0.5901 ± 

0.0266 

0.4909 ± 

0.0176 

0.2259 ± 

0.1669 

0.5371 ± 

0.0385 

VGG19 

0.6759 ± 

0.0274 

0.0000 ± 

0.0000 

0.5764 ± 

0.0388 

0.4809 ± 

0.0758 

0.3474 ± 

0.0419 

0.5347 ± 

0.0202 

InceptionV3 

0.7322 ± 

0.0336 

0.0000 ± 

0.0000 

0.6058 ± 

0.0288 

0.5716 ± 

0.0249 

0.2500 ± 

0.0859 

0.5669 ± 

0.0283 

ResNet50 

0.7461 ± 

0.0275 

0.0000 ± 

0.0000 

0.5911 ± 

0.0306 

0.4537 ± 

0.0808 

0.1732 ± 

0.1196 

0.5355 ± 

0.0323 

ResNet50V2 

0.6768 ± 

0.0250 

0.0000 ± 

0.0000 

0.5963 ± 

0.0207 

0.5574 ± 

0.1054 

0.2089 ± 

0.1419 

0.5378 ± 

0.0379 

ResNet152 

0.7228 ± 

0.0201 

0.0000 ± 

0.0000 

0.6128 ± 

0.0587 

0.5330 ± 

0.0670 

0.2599 ± 

0.0483 

0.5601 ± 

0.0380 

ResNet101 

0.7287 ± 

0.0331 

0.0500 ± 

0.1118 

0.6263 ± 

0.0397 

0.5679 ± 

0.0602 

0.2704 ± 

0.0375 

0.5764 ± 

0.0326 
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ResNet152V2 

0.6520 ± 

0.0385 

0.0000 ± 

0.0000 

0.5840 ± 

0.0517 

0.4406 ± 

0.0693 

0.1948 ± 

0.0450 

0.5025 ± 

0.0346 

ResNet101V2 

0.6897 ± 

0.0186 

0.0000 ± 

0.0000 

0.5941 ± 

0.0362 

0.5423 ± 

0.0698 

0.3076 ± 

0.0483 

0.5511 ± 

0.0253 

Xception 

0.7218 ± 

0.0355 

0.0000 ± 

0.0000 

0.5945 ± 

0.0218 

0.5507 ± 

0.0266 

0.2732 ± 

0.0644 

0.5590 ± 

0.0172 

InceptionResNet

V2 

0.6947 ± 

0.0343 

0.0000 ± 

0.0000 

0.6088 ± 

0.0294 

0.4599 ± 

0.0629 

0.1665 ± 

0.0457 

0.5243 ± 

0.0263 

MobileNetV2 

0.7046 ± 

0.0396 

0.0421 ± 

0.0942 

0.5600 ± 

0.0335 

0.4197 ± 

0.0462 

0.2943 ± 

0.0487 

0.5232 ± 

0.0164 

DenseNet121 

0.7039 ± 

0.0300 

0.0500 ± 

0.1118 

0.5759 ± 

0.0229 

0.4787 ± 

0.0609 

0.3117 ± 

0.0923 

0.5413 ± 

0.0198 

DenseNet169 

0.7349 ± 

0.0175 

0.0000 ± 

0.0000 

0.6012 ± 

0.0200 

0.5069 ± 

0.0692 

0.3032 ± 

0.0616 

0.5611 ± 

0.0171 

DenseNet201 

0.7147 ± 

0.0309 

0.0000 ± 

0.0000 

0.6057 ± 

0.0205 

0.5272 ± 

0.0368 

0.2191 ± 

0.0531 

0.5490 ± 

0.0209 

EfficientNetB0 

0.7148 ± 

0.0179 

0.0000 ± 

0.0000 

0.5450 ± 

0.0100 

0.5358 ± 

0.0748 

0.4210 ± 

0.0347 

0.5573 ± 

0.0058 

Table 3.21 (b). Illustration of classification results of various pre-trained networks 

on IDRiD Dataset using Indexed Balanced Accuracy (IBA) evaluation metrics. 

Models 

Index Balanced Accuracy (IBA) 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.6088 ± 

0.0748 

0.0000 ± 

0.0000 

0.4857 ± 

0.0353 

0.3579 ± 

0.0206 

0.1395 ± 

0.1110 

0.4579 ± 

0.0368 

VGG19 

0.5667 ± 

0.0354 

0.0000 ± 

0.0000 

0.4711 ± 

0.0471 

0.3559 ± 

0.0739 

0.2227 ± 

0.0324 

0.4453 ± 

0.0216 

InceptionV3 

0.6451 ± 

0.0450 

0.0000 ± 

0.0000 

0.5078 ± 

0.0375 

0.4544 ± 

0.0257 

0.1520 ± 

0.0583 

0.4869 ± 

0.0276 

ResNet50 

0.6644 ± 
0.0423 

0.0000 ± 
0.0000 

0.4873 ± 
0.0374 

0.3497 ± 
0.0853 

0.1093 ± 
0.0784 

0.4623 ± 
0.0313 

ResNet50V2 

0.5779 ± 

0.0344 

0.0000 ± 

0.0000 

0.4935 ± 

0.0261 

0.4229 ± 

0.1064 

0.1370 ± 

0.0983 

0.4559 ± 

0.0339 

ResNet152 

0.6175 ± 

0.0299 

0.0000 ± 

0.0000 

0.5185 ± 

0.0765 

0.4143 ± 

0.0646 

0.1525 ± 

0.0316 

0.4784 ± 

0.0420 

ResNet101 

0.6328 ± 

0.0448 

0.0361 ± 

0.0808 

0.5360 ± 

0.0533 

0.4466 ± 

0.0733 

0.1536 ± 

0.0309 

0.4958 ± 

0.0367 

ResNet152V2 

0.5381 ± 

0.0456 

0.0000 ± 

0.0000 

0.4811 ± 

0.0640 

0.3029 ± 

0.0575 

0.1220 ± 

0.0304 

0.4206 ± 

0.0380 

ResNet101V2 

0.5895 ± 
0.0284 

0.0000 ± 
0.0000 

0.4929 ± 
0.0460 

0.4244 ± 
0.0656 

0.1939 ± 
0.0320 

0.4658 ± 
0.0252 

Xception 

0.6282 ± 

0.0510 

0.0000 ± 

0.0000 

0.4934 ± 

0.0279 

0.3957 ± 

0.0221 

0.1662 ± 

0.0399 

0.4749 ± 

0.0215 

InceptionResNet

V2 

0.5958 ± 

0.0520 

0.0000 ± 

0.0000 

0.5098 ± 

0.0362 

0.3366 ± 

0.0750 

0.0958 ± 

0.0366 

0.4512 ± 

0.0320 

MobileNetV2 

0.6228 ± 

0.0595 

0.0669 ± 

0.1495 

0.4490 ± 

0.0407 

0.2604 ± 

0.0426 

0.1803 ± 

0.0380 

0.4444 ± 

0.0271 
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DenseNet121 

0.5930 ± 

0.0354 

0.0361 ± 

0.0808 

0.4710 ± 

0.0288 

0.3701 ± 

0.0730 

0.2188 ± 

0.0897 

0.4529 ± 

0.0181 

DenseNet169 

0.6450 ± 

0.0225 

0.0000 ± 

0.0000 

0.5014 ± 

0.0264 

0.3781 ± 

0.0914 

0.1936 ± 

0.0576 

0.4804 ± 

0.0176 

DenseNet201 

0.6089 ± 

0.0429 

0.0000 ± 

0.0000 

0.5082 ± 

0.0268 

0.4118 ± 

0.0389 

0.1247 ± 

0.0314 

0.4692 ± 

0.0214 

EfficientNetB0 

0.6247 ± 

0.0266 

0.0000 ± 

0.0000 

0.4319 ± 

0.0103 

0.4296 ± 

0.0887 

0.2929 ± 

0.0559 

0.4664 ± 

0.0042 

Table 3.21 (c). Illustration of classification results of various pre-trained networks 

on IDRiD Dataset using Geometric Mean (Gmean) evaluation metrics. 

Models 

Geometric Mean (GMean) 

Class 0 Class 1 Class 2 Class 3 Class 4 
Weighted 

Average 

VGG16 

0.7834 ± 

0.0453 

0.0000 ± 

0.0000 

0.6915 ± 

0.0254 

0.6151 ± 

0.0164 

0.3376 ± 

0.2145 

0.6847 ± 

0.0270 

VGG19 

0.7565 ± 

0.0223 

0.0000 ± 

0.0000 

0.6838 ± 

0.0326 

0.6107 ± 

0.0586 

0.4892 ± 

0.0332 

0.6760 ± 

0.0157 

InceptionV3 

0.8040 ± 

0.0273 

0.0000 ± 

0.0000 

0.7122 ± 

0.0243 

0.6890 ± 

0.0185 

0.3994 ± 

0.0822 

0.7061 ± 

0.0194 

ResNet50 

0.8155 ± 

0.0240 

0.0000 ± 

0.0000 

0.6980 ± 

0.0275 

0.6033 ± 

0.0728 

0.3028 ± 

0.1835 

0.6886 ± 

0.0228 

ResNet50V2 

0.7600 ± 

0.0210 

0.0000 ± 

0.0000 

0.7035 ± 

0.0180 

0.6625 ± 

0.0797 

0.3396 ± 

0.2023 

0.6835 ± 

0.0246 

ResNet152 

0.7907 ± 

0.0176 

0.0000 ± 

0.0000 

0.7142 ± 

0.0533 

0.6577 ± 

0.0506 

0.4057 ± 

0.0389 

0.6997 ± 

0.0304 

ResNet101 

0.7983 ± 

0.0269 

0.0885 ± 

0.1979 

0.7281 ± 

0.0345 

0.6819 ± 

0.0527 

0.4075 ± 

0.0378 

0.7120 ± 

0.0253 

ResNet152V2 

0.7373 ± 
0.0307 

0.0000 ± 
0.0000 

0.6891 ± 
0.0455 

0.5661 ± 
0.0522 

0.3617 ± 
0.0498 

0.6571 ± 
0.0294 

ResNet101V2 

0.7694 ± 

0.0164 

0.0000 ± 

0.0000 

0.7016 ± 

0.0312 

0.6655 ± 

0.0477 

0.4566 ± 

0.0397 

0.6909 ± 

0.0178 

Xception 

0.7945 ± 

0.0298 

0.0000 ± 

0.0000 

0.6983 ± 

0.0189 

0.6465 ± 

0.0170 

0.4224 ± 

0.0493 

0.6971 ± 

0.0153 

InceptionResNet

V2 

0.7734 ± 

0.0302 

0.0000 ± 

0.0000 

0.7107 ± 

0.0263 

0.5938 ± 

0.0648 

0.3193 ± 

0.0596 

0.6800 ± 

0.0232 

MobileNetV2 

0.7823 ± 

0.0335 

0.1185 ± 

0.2650 

0.6734 ± 

0.0281 

0.5276 ± 

0.0434 

0.4400 ± 

0.0467 

0.6751 ± 

0.0194 

DenseNet121 

0.7755 ± 

0.0227 

0.0885 ± 

0.1979 

0.6850 ± 

0.0202 

0.6217 ± 

0.0587 

0.4769 ± 

0.0951 

0.6821 ± 

0.0133 

DenseNet169 

0.8049 ± 

0.0136 

0.0000 ± 

0.0000 

0.7058 ± 

0.0149 

0.6277 ± 

0.0729 

0.4535 ± 

0.0654 

0.7014 ± 

0.0125 

DenseNet201 

0.7850 ± 

0.0259 

0.0000 ± 

0.0000 

0.7086 ± 

0.0176 

0.6567 ± 

0.0289 

0.3660 ± 

0.0513 

0.6935 ± 

0.0152 

EfficientNetB0 

0.7909 ± 

0.0155 

0.0000 ± 

0.0000 

0.6610 ± 

0.0080 

0.6673 ± 

0.0658 

0.5573 ± 

0.0523 

0.6918 ± 

0.0030 
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Table 3.22. Illustration of lesion detection results of various pre-trained networks 

on DDR Dataset using mAP, AR evaluation metrics. 

Models 

Detection Boxes Precision Detection Boxes Recall 

mA

P 

mAP@ 

0.5IoU 

mAP@ 

0.75Io

U 

mAP 

(smal

l) 

mAP 

(medi

um) 

mA

P 

(lar

ge) 

AR 

@1 

AR 

@10 

AR 

@10

0 

AR 

@1

00 

(sm

all) 

AR 

@100 

(medi

um) 

AR 

@10

0 

(larg

e) 

Efficient

Det-D0 

0.00

65 ± 

0.01

2  

 

0.0189 ± 

0.0210 

0.0047 

± 

0.0011  

0.001

5 

±0.00

01  

0.0129 

±0.012

1  

0.02

96 

±0.0

001  

0.0

070 

±0.

001

8  

0.012

3 

±0.0

007  

0.017

5 

±0.0

017  

0.00

37 

±0.0

000  

0.040

1 ± 

0.001

4 

0.07

70 ± 

0.00

10 

Faster 

RCNN 

(ResNet-

50) 

0.00

42 ± 

0.00

23  

0.0139 ± 

0.0021  

0.0001 

± 

0.0001 

0.000

7 

±0.00

00  

0.0098 

±0.000

0  

0.04

41 

±0.0

021  

0.0

083 

± 

0.0

001  

0.015

1 

±0.0

012  

0.071

2 

±0.0

102  

0.00

16 

±0.0

007  

0.031

8 

±0.00

24  

0.11

99 

±0.0

171  

SSD 

(MobileN

etV1) 

0.02

06 ± 
0.01

01  

0.0425 ± 
0.0201  

0.0312 

±0.000
1  

0.003

5 ± 
0.000

9  

0.0482 

±0.001
3  

0.10

38 
±0.0

012  

0.0

180 

± 
0.0

023 

0.003

87 ± 
0.010

2 

0.050

1 
±0.0

012  

0.01

92 
±0.0

103  

0.120

1 
±0.00

27  

0.01

753 
±0.0

102  

RetinaNe

t 

(ResNet5

0) 

0.01

63 ± 

0.00

64  

0.0381 

±0.0016  

0.0152 

± 

0.0230 

0.001

2 ± 

0.010

2 

0.0327 

± 

0.0121 

0.13

19 ± 

0.00

14 

0.0

199 

± 

0.0

101 

0.040

2 ± 

0.007

8 

0.051

3 ± 

0.001

8 

0.01

91 ± 

0.00

12 

0.129

8 ± 

0.020

1 

0.16

45 ± 

0.00

19 

SSD 

(MobileN

etV2) 

 

0.01

92 

±0.0

209  

0.0283 ± 

0.0023 

0.0089 

± 

0.1023 

0.001

2 ± 

0.002

9 

0.0284 

± 

0.0029 

0.00

934 

± 

0.00

12  

0.0

132 

± 

0.0

012 

0.027

7 

±0.1

00  

0.035

9 

±0.0

080  

0.01

32 ± 

0.00

12 

0.079

2 ± 

0.001

0 

0.15

37 ± 

0.02

08 

Table 3.23. Illustration of fovea and optic disc detection results of various pre-

trained networks on IDRiD Dataset using mAP, AR evaluation metrics. 

Models 

Detection Boxes Precision Detection Boxes Recall 

mAP 
mAP@0.5

IoU 

mAP@0.75

IoU 

mAP 

(large) 

AR

@1 

AR

@10 

AR

@10

0 

AR@100 

(large) 

EfficientDet-D0 
0.7221 ± 

0.0076 

0.9810 ± 

0.0010 

0.9353  ± 

0.0019 

0.7419  ± 

0.121 

0.816

1 ± 

0.009

4 

0.81

21   ± 

0.01

91 

0.82

43 ± 

0.02

01 

0.8254 ± 

0.0092 

Faster RCNN 

(ResNet-50) 

0.7828 ± 

0.02319 

0.9532 ± 

0.0167 

0.9021 ± 

0.0143 

0.7292 ± 

0.0132 

0.818

1 ± 

0.012

9 

0.89

14 ± 

0.01

32 

0.85

00 ± 

0.01

03 

0.8510 ± 

0.0190 

SSD 

(MobileNetV1) 

0.7822 ± 

0.0101 

0.9790 ± 

0.0230 

0.9289 ± 

0.0012 

0.7821 ± 

0.0023 

0.824

1 ± 

0.010

2 

0.83

32 ± 

0.01

21 

0.82

12 ± 

0.01

21 

0.8190 ± 

0.0120 
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RetinaNet 

(ResNet50) 

0.6912 ± 

0.0012 

0.9690 ± 

0.0102 

0.8791 ± 

0.0561 

0.7133 ± 

0.0131 

0.712

3 ± 

0.001

2 

0.72

77 ± 

0.01

21 

0.72

78 ± 

0.01

21 

0.7245 ± 

0.0234 

SSD 

(MobileNetV2) 

 

0.7612 ± 

0.0076 

0.9756 ± 

0.0129 

0.9144 ± 

0.0075 

0.7624 ± 

0.0034 

0.801

2 ± 

0.012

1 

0.80

04 ± 

0.01

03 

0.81

90 ± 

0.00

13 

0.8037 ± 

0.0612 

Table 3.24 (a). Illustration of lesion segmentation results of various pre-trained 

networks on DDR Dataset using Dice Score evaluation metric. 

Models Segmentation - Dice score 

Dicescore 

(Background) 

Dicescore 

(EX) 

Dicescore 

(HA) 

Dicescor

e (MA) 

Dicescore 

(SE) 

mDicescore 

PSPNet (w/ 

Focal Loss) 0.9910 ± 0.0001 

0.0978 ± 

0.0098 

0.1319 ± 

0.0138 

0.0022 ± 

0.0007 

0.0324 ± 

0.0028 

0.0661 ± 

0.0058 

DeepLab v2 (w/ 

Focal Loss) 0.9901 ± 0.0002 

0.0295 ± 

0.0185 

0.0575 ± 

0.0403 

0.0000 ± 

0.0000 

0.0078 ± 

0.0123 

0.0237 ± 

0.0165 

DeepLab v3 (w/ 

Focal Loss) 0.9912 ± 0.0002 
0.1909 ± 
0.0155 

0.1569 ± 
0.0255 

0.0180 ± 
0.0053 

0.0323 ± 
0.0053 

0.0995 ± 
0.0101 

PSPNet (w/ 

Crossentropy 

Loss) 0.9908 ± 0.0003 

0.0993 ± 

0.0052 

0.1260 ± 

0.0063 

0.0015 ± 

0.0004 

0.0265 ± 

0.0032 

0.0634 ± 

0.0029 

DeepLab v2 (w/ 

Crossentropy 

Loss) 0.9898 ± 0.0002 

0.0307 ± 

0.0194 

0.0236 ± 

0.0398 

0.0000 ± 

0.0000 

0.0043 ± 

0.0047 

0.0146 ± 

0.0134 

DeepLab v3 (w/ 

Crossentropy 

Loss) 0.9912 ± 0.0001 

0.1907 ± 

0.0116 

0.1699 ± 

0.0256 

0.0142 ± 

0.0087 

0.0314 ± 

0.0070 

0.1016 ± 

0.0063 

Table 3.24 (b). Illustration of lesion segmentation results of various pre-trained 

networks on DDR Dataset using Intersection over Union (IoU) evaluation metric. 

Models Segmentation - Intersection over Union (IoU) 

IoU 

(Backgrou

nd) 

IoU (EX) IoU (HA) IoU (MA) IoU (SE) mIoU 

PSPNet (w/ 

Focal Loss) 

0.9954 ± 

0.0001 

0.1582 ± 

0.0147 

0.2096 ± 

0.0197 

0.0040 ± 

0.0014 0.0458 ± 0.0032 

0.1044 ± 

0.0084 

DeepLab v2 (w/ 

Focal Loss) 

0.9950 ± 
0.0001 

0.0502 ± 
0.0313 

0.0947 ± 
0.0654 

0.0000 ± 
0.0000 0.0117 ± 0.0176 

0.0391 ± 
0.0265 

DeepLab v3 (w/ 

Focal Loss) 

0.9955 ± 

0.0001 

0.2886 ± 

0.0203 

0.2439 ± 

0.0352 

0.0312 ± 

0.0095 0.0457 ± 0.0075 

0.1524 ± 

0.0136 

PSPNet (w/ 

Crossentropy 

Loss) 

0.9953 ± 

0.0002 

0.1599 ± 

0.0077 

0.2008 ± 

0.0085 

0.0029 ± 

0.0008 0.0390 ± 0.0038 

0.1007 ± 

0.0040 

DeepLab v2 (w/ 

Crossentropy 

Loss) 

0.9948 ± 

0.0001 

0.0530 ± 

0.0333 

0.0393 ± 

0.0650 

0.0000 ± 

0.0000 0.0071 ± 0.0078 

0.0249 ± 

0.0223 
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DeepLab v3 (w/ 

Crossentropy 

Loss) 

0.9955 ± 

0.0000 

0.2887 ± 

0.0149 

0.2630 ± 

0.0374 

0.0250 ± 

0.0147 0.0445 ± 0.0092 

0.1553 ± 

0.0082 

Table 3.25 (a). Illustration of lesion, fovea and optic disc segmentation results of 

various pre-trained networks on IDRiD Dataset using Dice Score evaluation metric. 

Models Segmentation - Dice score 

Dicescore 

(Backgro

und) 

Dicescore 

(Microan

eurysms) 

Dicescore 

(Haemorr

hages) 

Dicescore 

(Hard 

Exudates) 

Dicescore 

(Soft 

Exudates) 

Dicescore 

(Optic 

Disc) 

mDicesco

re 

PSPNet (w/ 

Focal Loss) 

0.9611 ± 

0.0002 

0.1921 ± 

0.0160 

0.3011 ± 

0.0053 

0.0038 ± 

0.0018 

0.1346 ± 

0.0137 

0.8857 ± 

0.0073 

0.3035 ± 

0.0065 

DeepLab 

v2 (w/ 

Focal Loss) 

0.9502 ± 

0.0018 

0.0031 ± 

0.0043 

0.0287 ± 

0.0406 

0.0000 ± 

0.0000 

0.0000 ± 

0.0000 

0.8158 ± 

0.0119 

0.1695 ± 

0.0049 

DeepLab 

v3 (w/ 

Focal Loss) 

0.9633 ± 

0.0005 

0.1213 ± 

0.0351 

0.3634 ± 

0.0183 

0.0298 ± 

0.0270 

0.0570 ± 

0.0233 

0.8986 ± 

0.0044 

0.2940 ± 

0.0029 

PSPNet (w/ 

Crossentro

py Loss) 

0.9616 ± 

0.0013 

0.1876 ± 

0.0029 

0.3026 ± 

0.0019 

0.0012 ± 

0.0020 

0.1154 ± 

0.0001 

0.8914 ± 

0.0041 

0.2997 ± 

0.0101 

DeepLab 

v2 (w/ 

Crossentro

py Loss) 

0.9509 ± 

0.0011 

0.0000 ± 

0.0000 

0.0898 ± 

0.0418 

0.0000 ± 

0.0000 

0.0000 ± 

0.0000 

0.8138 ± 

0.0358 

0.1807 ± 

0.0140 

DeepLab 

v3 (w/ 

Crossentro

py Loss) 

0.9631 ± 

0.0012 

0.1859 ± 

0.0657 

0.3460 ± 

0.0276 

0.0033 ± 

0.0022 

0.0595 ± 

0.0056 

0.8990 ± 

0.0055 

0.2988 ± 

0.0184 

Table 3.25 (b). Illustration of lesion, fovea, and optic disc segmentation results of 

various pre-trained networks on IDRiD Dataset using Intersection over Union 

(IoU) evaluation metric. 

Models Segmentation - Intersection over Union (IoU) 

IoU 

(Backgro

und) 

IoU 

(Microan

eurysms) 

IoU 

(Haemorr

hages) 

IoU 

 (Hard 

Exudates) 

IoU 

 (Soft 

Exudates) 

IoU 

(Optic 

Disc) 

mIoU 

PSPNet (w/ 

Focal Loss) 

0.9800 ± 

0.0001 

0.3009 ± 

0.0232 

0.4457 ± 

0.0069 

0.0075 ± 

0.0035 

0.1919 ± 

0.0152 

0.9386 ± 

0.0040 

0.3769 ± 

0.0074 

DeepLab 

v2 (w/ 

Focal Loss) 

0.9742 ± 

0.0010 

0.0057 ± 

0.0080 

0.0462 ± 

0.0654 

0.0000 ± 

0.0000 

0.0000 ± 

0.0000 

0.8957 ± 

0.0058 

0.1895 ± 

0.0103 

DeepLab 

v3 (w/ 

Focal Loss) 

0.9811 ± 

0.0002 

0.1997 ± 

0.0545 

0.5140 ± 

0.0200 

0.0551 ± 

0.0496 

0.0830 ± 

0.0381 

0.9460 ± 

0.0024 

0.3596 ± 

0.0056 

PSPNet (w/ 

Crossentro

py Loss) 

0.9803 ± 

0.0027 

0.2940 ± 

0.0017 

0.4461 ± 

0.0120 

0.0024 ± 

0.0012 

0.1696 ± 

0.0105 

0.9423 ± 

0.0011 

0.3709 ± 

0.0206 
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DeepLab 

v2 (w/ 

Crossentro

py Loss) 

0.9745 ± 
0.0006 

0.0000 ± 
0.0000 

0.1505 ± 
0.0644 

0.0000 ± 
0.0000 

0.0000 ± 
0.0000 

0.8938 ± 
0.0238 

0.2089 ± 
0.0163 

DeepLab 

v3 (w/ 

Crossentro

py Loss) 

0.9810 ± 

0.0007 

0.2908 ± 

0.0929 

0.4970 ± 

0.0289 

0.0064 ± 

0.0041 

0.0839 ± 

0.0124 

0.9459 ± 

0.0030 

0.3648 ± 

0.0240 

 

Figure 3.6. Results of segmentation model from PSPNet trained using focal loss 

for (i) DDR and (ii) IDRiD datasets. 

3.3 Limitations 

One significant limitation of BOVW is that it discards the spatial relationships 

between visual words within an image. By using BOVW, the original spatial 

arrangement of features within an image is lost during the quantization process. This 

means that important information about the relative positions and relationships 
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between visual elements is not captured. For example, the order, size, and orientation 

of objects in an image are not taken into account by BOVW.  Further proposed work 

involves conducting a comprehensive evaluation to determine the appropriate deep 

learning model for classification, object detection, and segmentation. The aim is to 

ensure fair evaluation without biases when deploying deep learning models in real-

world scenarios. The objective is to avoid failure cases and address the challenges 

encountered in practical applications considering the imbalanced dataset into account. 

However, a limitation of the proposed work is the need to extend the approach by 

considering the deployment of deep learning models in cloud-based environments for 

real-world applications. While developing a model for evaluation is valuable, it is 

equally important to address the practical implementation and usage of these models 

by doctors in real-world scenarios. Deploying deep learning models in cloud-based 

environments offers advantages such as scalability, accessibility, and ease of 

integration into existing healthcare systems. It is further necessary to create a 

customized model by incorporating the appropriate deep learning models that have 

been identified. By extending the proposed approach to include cloud-based 

deployment, doctors can take advantage of scalable infrastructure, remote 

accessibility, and seamless integration of deep learning models into their clinical 

workflow. This would enable effective utilization of the models in real-world 

applications, facilitating early detection and diagnosis of diseases like diabetic 

retinopathy, and ultimately improving patient outcomes. 
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Chapter 4 

Implementation of Data Augmentation for Imbalanced 

Datasets in Computer Vision  

This section1 highlights the significance of data augmentation techniques in 

deep learning for imbalanced datasets. The chapter delves into two forms of minority 

data augmentation: Deep Convolutional Generative Adversarial Networks (DCGAN) 

and traditional image transformations such as rotation, flipping, shear and zoom. By 

employing these augmentation techniques, the aim is to improve model robustness 

and tackle class imbalance problems. To augment the minority class, a novel 

combination of techniques is proposed. DCGAN is used in the initial phase to generate 

synthetic samples for the minority class. Additionally, a modified VGG16 deep 

network architecture is employed to mitigate the effects of the imbalanced class 

problem. Another approach presented in this chapter also involves applying data 

augmentation exclusively to the minority class. This is achieved through transfer 

learning using pre-trained networks and subsequently classifying the data using a 

Weighted Support Vector Machine (SVM). Throughout both approaches, the primary 

focus is on the application of traditional data augmentation operations and synthetic 

generated samples specifically for the minority class.  

 
: 1  The contents of this chapter are published in "Deep transfer with minority data augmentation for imbalanced breast 

cancer dataset." Applied Soft Computing 97 (2020): 106759. and "Data augmentation of minority class with transfer 

learning for classification of imbalanced breast cancer dataset using Inception-V3." In Iberian Conference on Pattern 

Recognition and Image Analysis, pp. 409-420. Springer, Cham, 2019. 
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4.1 Objective 3: Exploring Data Augmentation in deep 

learning for Imbalanced data 

In real-world, problems might occur if images are taken under some specific 

limited set of conditions but it might happen that targeted applications may exist in 

varied different conditions such as various orientations, scales, brightness, location, 

etc. In order to resolve such challenges, we can train our neural network with 

synthetically modified data. The data augmentation in other words is a technique used 

to synthetically increase the number of sample images from already existing data. 

There exist two ways for performing augmentation. The first method is offline 

augmentation which is used to perform necessary transformations in order to increase 

the samples of the dataset. This approach is well-suited for small-scale datasets and 

another alternative approach is known as augmentation on the fly which is used to 

perform a random set of transformations on each mini-batch prior to providing the 

samples to any deep learning or machine learning models. This is performed on larger 

datasets, as with this method we can’t expect there is an explosive increase in size but 

transformations are performed on mini-batches before feeding to the model. Various 

data augmentation techniques can be applied such as (1) Traditional affine 

transformations that are shifted, zoomed in /out, rotated, flipped, distorted, cropping, 

rescaling, or shaded with hue, etc. which artificially create or extend the dataset 

(Howard 2014). (2) Generative Adversarial Nets (GANs) can be applied to generate 

images of different styles in the dataset. Data Augmentation is generally used to 

reduce overfitting problems, where we can increase the amount of training data using 

the information in the training dataset (Howard 2014). Data Augmentation using CNN 

(Convolution Neural Networks) architecture is used to obtain transformed images 
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from the original images. Data augmentation techniques will help to train any machine 

learning or deep learning models to become more robust by seeing more synthetic 

created samples and also helps in resolving class imbalance issues. We emphasized 

on (a) applying the data augmentation technique to minority classes to overcome 

problems raised due to imbalanced data.  (b) Data augmentation technique when 

applied to all the classes despite considering majority or minority proves to be a good 

regularization technique. (c) We have applied both offline and online, 

or augmentation on the fly augmentation technique over various deep learning 

models.  

We have proposed a novel approach that involves a deep transfer network in 

collaboration with a Deep Convolutional Generative Adversarial network (DCGAN) 

(Radford, et al. 2015) as shown in Figure. 4.1. In the initial phase at the data level 

DCGAN technique as data augmentation is sought into the minority class to balance 

the minority class equivalent to the majority class by generating fake image samples. 

Data balanced at data level step is processed further to modified VGGIN-Net 

architecture consisting of block 4 pool layer of the VGG16 deep neural network 

combined with batch normalization, 2D convolutional (CONV2D) layer, Global 

Average Pooling 2D, dropout, and dense layers (Saini and Susan 2020). The block 

diagram for different layers is illustrated in Figure 4.2. Further in Figure. 4.3. 

Illustration of feature maps obtained by applying filters at the convolutional 

(CONV2D) layer after the VGG16 network of the proposed model is displayed. 

DCGAN network (Radford, et al. 2015) with the help of this architecture, trains quite 

well and generates a better quality of fake samples than the Generative Adversarial 

Network (GAN) which is only based upon fully connected neurons as displayed in 
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Figure 4.4. The addition of the Batch Normalization layer in the DCGAN network 

has significantly helped in training the network by normalizing the intermediate input 

values. DCGAN is applied only to the minority class to balance out the distribution 

samples of both the classes, to make the sample distribution of the minority class 

(Benign) equivalent to that of the majority class (Malignant), which will ultimately 

lead to an overall improvement in the performance of the proposed deep transfer 

network. Whereas in Figure. 4.5. activation map corresponding to the Benign and 

Malignant Images to illustrate the prominent features to detect cancer cells is shown. 

 

 
Figure 4.1. Proposed novel deep transfer network in collaboration with Deep 

Convolutional Generative Adversarial network (DCGAN). 
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Figure 4.2. VGG16 architecture upto block4_pool layer and layers added 

after block4_pool layer for proposed network architecture. 

 

Figure 4.3. Illustration of feature maps obtained by applying filters at the 

convolutional (CONV2D) layer after VGG16 of the proposed model. 
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Figure 4.4. (a) Original Image sample for Benign class from BreakHis dataset 

(b) Fake images samples generated for Benign class using DCGAN. 

  
Figure 4.5. Activation map corresponding to the Benign and Malignant Images to 

illustrate the prominent features to detect cancer cells. 

 

 

Table 4.1. Performance analysis of GAN and DCGAN based upon FID 

evaluation criteria. 

Magnification 

factor 

No of Real 

Images 

No of fake 

Images 

FID of GAN FID of DCGAN 

40X 522 718 386482.139 401.592 

100X 544 793 165530.598 480.946 

200X 523 767 122297.189 465.874 

400X 488 644 143042.212 517.281 
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Figure 4.6. Proposed network architecture with VGG16 upto block4_pool 

layer along with Batch Normalization, Convolution 2D, Global Average Pooling, 

Dropout, and Dense layer. 

The notable significance of this work is summarized as follows: (a) we have 

successfully constructed a novel deep transfer model using DCGAN as a data 

augmentation technique for cancer-related biomedical imbalanced datasets for 

various magnification factors: 40X, 100X, 200X, and 400X. (b) Mitigate the effect of 

covariant shift by using the Batch Normalization layer. (c) Proposed a novel deep 

network model using a transfer learning approach by transferring the knowledge from 

the source ImageNet object dataset to the target Breast cancer dataset effectively. (d) 

Analyzed the proposed transfer learning approach in comparison to other state-of-the-

art networks for distinguishing Benign samples from Malignant in the case of an 

Imbalanced dataset.  
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Here a novel deep transfer learning approach is presented for the classification 

of the BreakHis dataset, specifically for the biomedical datasets. Further, DCGAN 

has been used for data augmentation of the minority class to resolve the class 

imbalance problem and overall boost the performance of the classification model. In 

the proposed approach, the Visual Geometry Group (VGG16) network is modified. 

We have used the VGG16 network in the proposed approach, as VGG16 can work 

well on the images of different scales as inspired by the work given in the original 

paper on VGG16. As in our work, images of different magnification factors were 

taken from the BreakHis dataset (40X, 100X, 200X and 400X), making it a suitable 

choice for dealing with microscopic images of varying magnification factors. An 

additional important factor that has been taken into consideration with respect to the 

VGG16 network would be that it uses smaller receptive fields in comparison to 

AlexNet and previous Convnets. In the proposed work, we have used configuration 

D as given in the original paper of VGG16, where 3x3 Convolution and 16 layers are 

taken into consideration. Moreover, configuration D which has been used for the 

proposed method is computationally less expensive than the VGG19 network and yet 

is able to achieve significant accuracy on large-scale image classification tasks. As in 

the case of VGG16, different convolutional layers make use of different receptive 

field sizes allowing it to learn multi-scale (even, object level, and as well as low level) 

information easily which will ultimately be useful for edge detection (Liu, et al. 2017). 

This makes the VGG16 network more suitable to work with images of different scales 

and varying aspect ratios. Hence, when dealing with histopathological images of 

different zoom factors VGG16 network is robust and more adept in comparison to 

other networks. The previous work (Perdana, et al. 2019, Kumar, et al. 2020, Baheti, 

et al. 2018, Aravind, et al. 2019) has inspired us to modify the VGG16 network for 
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our proposed methodology. Original VGG16 network architecture consists of a large 

number of parameters which results in more memory constraints and more floating-

point operations. In this work, we have aimed to reduce certain shortcomings in the 

original VGG16 network architecture. As inspired by work done by Liu, et al. 2018, 

we have intended to minimize the number of parameters by replacing the flatten and 

three dense layers present in the original network architecture with the global average 

pooling (GAP) and one dense layer only. This replacement of layers has ultimately 

reduced the memory constraints and improved the time taken to train the network. 

The addition of one convolutional layer as used in our proposed approach is inspired 

by the concept given by Yosinshi, et al. 2014, that the top layer learns the feature 

specific to the targeted biomedical dataset. Whereas, on the other hand, the lower 

layers are intended for learning the more generic features. Further, the DCGAN 

approach has been used at the data level for generating fake images to balance the 

dataset so as to bring the minority class (having less number of samples) equivalent 

to the majority class thus, overcoming the imbalance class problem.  To elaborate the 

proposed network, we have embedded the pre-trained layers (from the initial layer up 

to block 4 pool layer), from the lower level of the hierarchy and fused them with the 

newly learnt layers targeted for the biomedical classification task. Also, the original 

VGG16 pre-trained end-to-end architecture have convolutional layers along with 

pooling layers and fully connected layers from which, only the layers till block 4 have 

been taken; instead of considering all the layers of the pre-trained network to extract 

the useful bottleneck features. After that, all the layers of the original pre-trained 

VGG16 network are replaced by new layers which were selected in order to improve 

the performance of the model.  Batch normalization (Ioffe, et al. 2015) layer has been 

added along with 2D convolution (CONV2D), Global Average Pooling 2D, dropout, 
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and dense layers as illustrated in Figure 4.6. Proposed network architecture with 

VGG16 upto block4 pool layer along with Batch Normalization, Convolution 2D, 

Global Average Pooling, Dropout, and Dense layer. Features extracted from the 

VGG16 network till block4 pool result in the features of dimensions 14 x 14, which 

will be more informative for the edge localization than the use of 7 x 7 features 

resulting from block 5 pool layer. Since we use an additional convolutional layer to 

learn the features specific to the targeted biomedical classification problem, we are 

required to choose a robust bottleneck end point from the pre-trained model. The use 

of block 4 instead of block 3 or even block 2 ensures that the number of trainable 

parameters in the added convolutional layer remains minimum, helping us reduce 

overall training time.  Hence, bottleneck features extracted till block 4 pool layer 

works well as also proved by conducting experiments. 

The batch normalization layer normalizes the data values to mitigate the 

effective covariant shift, whereas not applying the batch normalization will lead to 

biased results as observed in the results section by performing suitable experiments. 

In addition to that, a convolutional (CONV2D) layer is applied, based on the concept 

proposed by Yosinski, et al. 2014 that if both the source as well as target datasets are 

dissimilar, then features need to be extracted from the target-specific domain at the 

higher layer to improve the overall performance of the model. Here we have taken the 

source domain as the ImageNet dataset and considered the target domain as the breast 

cancer dataset. So based on the same concept, features are extracted from lower layers 

specific to the ImageNet dataset, and the features specific to the cancer domain are 

learned onto the higher layers by applying the convolutional (CONV2D) layer. After 

that Global Average Pooling 2D layers are used, instead of max pooling, because this 
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makes the model more robust to spatial translations in the data (Ioffe, et al. 2015) and 

receptive to higher intensities. A dropout layer is also added to reduce the overfitting 

problem and further, the dense layer is added towards the end of the proposed network 

to make the network along with the softmax activation function. As we have used a 

deep convolutional network (DCGAN) as a data augmentation technique to generate 

the fake images of the Minority class (Benign), DCGAN is used to generate the 

synthetic high-quality fake images from the available sample distribution of the 

training data. As DCGAN uses a stable architecture, it is able to learn good 

representation of hierarchical features more precisely, capturing higher details from 

images quickly. Also, the technique is in general more automatically adaptive in 

comparison to other traditional approaches. The DCGAN network with the help of 

this architecture trains quite well and generates a better quality of fake samples than 

the Generative Adversarial Network (GAN) which is only based upon fully connected 

neurons. Fake images generated using GAN are generally of low quality and possess 

a higher noise ratio. However, there are some GAN models that produce images that 

are of lower quality and have higher noise ratios. One of the studies presented in 

"Detecting and Simulating Artifacts in GAN Fake Images" by Zhang et al. (2019) 

shows that GAN-generated fake images can have higher noise ratios than real images. 

This means that GAN models may not be able to accurately model all of the features 

of real images, which can lead to the introduction of noise.  

 The addition of the Batch Normalization layer in the DCGAN network has 

significantly helped in training the network by normalizing the intermediate input 

values. DCGAN approach is applied only to the minority class in order to balance out 

the distribution samples of both the classes, to make the sample distribution of the 
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minority class (Benign) equivalent to that of the majority class (Malignant), which 

will ultimately lead to an overall improvement in the performance of the proposed 

deep transfer network. 

Goodfellow, et al. (2014) proposed the Generative adversarial networks 

(GAN), using two important components: generator (G) and discriminator (D) 

modules (Goodfellow, et al. 2014). While the generator generates fake images, the 

role of the discriminator is to detect whether the fake images generated are actually 

fake images or real. In GAN, the generator and discriminator are rapidly competing 

with each other by following the min-max strategy as represented below in equation 

4.1. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) =    𝛦𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 

                                                                 𝛦𝑧~ 𝑝𝑧 (𝑧)
[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]              (4.1)       

In equation (1), D is denoted as discriminator and G is represented as a 

generator; whereas p denotes the sample and z represents the noise components. 

Radford, et al. (2015), further proposed a variant of GAN known as DCGAN based 

upon the same concept of generator and discriminator by using deep convolutional 

neural networks for generator and discriminator. Using the same concept of DCGAN, 

the fake images are generated for Benign (minority class), in our work, to overcome 

the class imbalance problem.  The generator used in the experiment uses the input 

vector of 100 as random noise distribution (a normal distribution with zero mean and 
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unit variance) and the output of the generator is of size 224 x 224 x 3. The 

discriminator will take input of size 224 x 224 x 3 and the output of the discriminator 

will be a single value of either 0 or 1 (based upon whether the image is detected as 

fake or real). 

The network architecture of the generator and the discriminator used in 

DCGAN includes batch normalization layers that have been able to normalize the 

values during gradient propagation as well as a forward pass. Further, this has been 

observed to be effective in tackling the class imbalance problem and to boost the 

performance of the classification model. However, the same is lacking in the GAN 

(Radford, et al. 2015) approach. So, we have used the DCGAN technique instead of 

GAN as the data augmentation to synthetically generate the fake images with the 

proposed approach. Experiments have been conducted as illustrated in Table 5.1 using 

Fréchet Inception Distance (FID) evaluation criteria for comparing GAN and 

DCGAN. The evaluation criteria FID is defined as follows in equation 4.2: 

𝐹𝐼𝐷 = ( 𝛴 𝑟 + 𝛴 𝑔 − 2(𝛴 𝑟  𝛴 𝑔)
1/2

) 

(4.2) 

Where  𝜇𝑟   is the mean of feature vector calculated from the real images, 𝜇𝑔 

is the mean of the feature vector calculated from the fake images, Σr is the covariance 

of the feature vector calculated from the real images, Σg is the covariance of the feature 

vector calculated from the fake images. Whereas the feature vectors of 2048 

Dimensional are calculated using a pre-trained Inception-V3 network. FID is used to 

calculate the quality of images generated and lower scores indicate that the generated 
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image correlates well with the high-quality real images. Mathematically Fréchet 

distance is calculation of the measure similarity between curves on the basis of 

location and ordering of points. While calculating FID, we make use of the feature 

vector of both real and fake images. 

The original imbalanced distribution from where the images have been 

sampled to train the various classifiers to have an imbalance factor of 2.30, 2.45, 2.46, 

and 2.32 respectively in 40X, 100X, 200X, and 400X different Magnification factors. 

After augmenting image synthesis by DCGAN to the train datasets, the imbalanced 

ratio obtained is 1:1 in the case of both Malignant and Benign classes of all 

Magnification factors. As the pre-trained VGG16 network takes the use of the Keras 

v2.2.3 deep learning framework with TensorFlow v1.15.3 backend.  

Additionally, we have used a support vector classifier (SVM) from Scikit-

learn (Kramer 2016), which has also been used to gather evaluation metrics. For 

training all of the deep learning-based classifiers we make use of the standard cross 

entropy loss (log-likelihood) without any form of L2 regularization. In  the case of 

DCGAN, the ReLU activation function is applied along with the Tanh activation 

function for the generator and the LeakyReLU activation function is used for all the 

layers of the discriminator, along with that, the sigmoid activation function is there in 

the last layer of the discriminator. In training all the deep learning networks, 

Stochastic Gradient Descent (SGD) with momentum optimizer has been used to bring 

stability to the training. In the experiments related to the proposed work, we used a 

learning rate schedule with cosine decay restarts as per SGDR. Experiments with 

Stochastic gradient descent with momentum (using SGDR learning rate schedule) 
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optimizer have been performed which also seems to have overall improved the 

consistency of the learning curve for the last few sets of epochs. According to the 

input image of size 224 x 224, all the images including original and fake are presented 

to the network in the specific size of 224 x 224. 

We have conducted all our experiments on a GCP (Google Cloud Platform) 

virtual machine with 8 GB RAM, a dual-core Intel Xeon processor, and a single 

NVIDIA Tesla K80 GPU that has 12 GB DDR5 virtual memory. For all deep 

learning-related model training, Loshchilov, et al. 2016, in the case of an SGDR 

optimizer, it is recommended to start with a smaller cycle weight and increase the 

cycle steps linearly when scaling up. As SGDR performs warm restarts after cyclic 

intervals, ensuring that a higher learning rate would always be able to push the 

gradient in the direction away from the local optima. SGD approach uses cosine decay 

annealing to decay the learning rate after interval epochs and performs a warm restart 

after every iteration cycle. Hence, we performed all our deep learning experiments 

starting with a default value of T0= 1, Tmul=2, for the cosine decay learning rate 

schedule. As per the experiments performed in the SGDR paper, a learning rate of 

0.05 adapts well to the CIFAR-10 dataset. Initially, for all of the deep learning 

experiments, we used the initial learning experiments by setting the value to 0.05 

which is tuned later to further improve the performance of our approach using the grid 

search strategy.  The training times for DCGAN and modified VGG16 are within a 

range, but it varies depending on the specific setup and conditions. Training a 

DCGAN (Deep Convolutional Generative Adversarial Network) to generate synthetic 

samples would require an approximate duration of 14 hours. The DCGANs involve 

training both the generator and discriminator networks iteratively, which can require 
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numerous epochs to converge adequately. On the other hand, training a modified 

VGG16 deep neural network after applying synthetic samples at data level on 

minority class takes less time compared to generative models like DCGANs. With the 

reduced parameters it contributes to faster training times. It took approximately 1 hour 

30 minutes to train the modified VGG16. The training times can vary significantly 

based on the hardware used. Powerful GPUs or TPUs can significantly accelerate the 

training process, while using CPUs might result in longer training times. Additionally, 

factors such as the batch size, learning rate schedule, data augmentation techniques, 

and convergence criteria can also have an effect on the overall training time. All our 

models are trained with the net budget of 100 epochs with the exception of the 

ResNet-50, Inception-V3, and VGG16 models which were trained till 50 epochs as 

they couldn’t converge significantly even after 50 epochs. The choice of SGDR 

optimizer for our experiments helps us to determine a recommendation even for 

various hyperparameters without the need for a separate validation dataset as 

emphasized in the original SGDR work (Loschilov, et al. 2016). Whereas in the case 

of the state-of-the-art networks used for comparisons, the following implementation 

of the network was used while conducting the experiment. The conventional Bag of 

visual words (BOVW) (Suh, et al. 2018) is used for the comparison, SIFT (scale-

invariant feature transform) features are used along with K-Means clustering (number 

of clusters set to 10) and SVM classifier (kernel used in the classifier is ‘linear’, C is 

set as 1.0 and gamma is set as ‘1/number of features). For the conventional CNN used 

as the comparison method, a five layer architecture is used which consists of repeated 

blocks of Convolution with Batch normalization and ReLU activation and pooling 

layers along with two fully connected layers. In addition, dropout with the drop rate 

of 0.2 has been applied after the first fully connected layers. For all of our 
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experiments, we use the Image Data Generator from the Keras framework with a batch 

size set to 128. In the case of pre-trained convolutional neural networks, Inception-

V3, VGG16, and ResNet, we use fixed pre-trained features and the terminal dense 

layer (classifier) was trained. The experiments conducted related to deep features 

extracted from pre-trained networks were done in conjugation with SVM classifiers. 

Whereas in the case of the SVM classifier (Cortes and Vapnik 1995), linear and RBF 

kernels both were used while conducting the experiments.  

From experimental results, it was found that the proposed deep transfer 

learning-based network using DCGAN as a data augmentation approach, works 

significantly well in comparison to other conventional approaches in the case of 40X, 

100X, 200X, and 400X Magnification factors as illustrated in the results compiled in 

Table 4.2(i), 4.2(ii). Further compared the proposed approach with the other state-of-

the-art models: (i) Bag of visual words (BOVW) (ii) CNN network trained from 

scratch (iii) pre-trained models (ResNet-50, Inception-V3, and VGG16) (iv) deep 

feature extracted from pre-trained models and trained via machine learning models. 

Various deep features and classifier combinations tested are: Inception-V3 + SVM 

(with RBF and linear kernel); VGG16 + SVM (with RBF and linear kernel) and 

ResNet-50 +SVM (with RBF and linear kernel).The evaluation was done on the basis 

of various evaluation criteria: Accuracy, F1 score, Mathews correlation, Cohen kappa, 

and ROC with AUC. The pre-trained networks (Inception-V3, ResNet, and VGG16) 

are not working effectively in comparison to other conventional approaches, since the 

results are biased towards either the majority or minority class. Features extracted 

from the pre-trained network: Inception-V3, VGG16, and ResNet-50, when given to 

the SVM classifier (having kernel value set to ‘rbf’ and ‘linear’) have shown 
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improvement in the performance of the result in comparison to the pre-trained 

networks. The BOVW technique is also able to detect the minority class and majority 

class separately but still they are not able to show significant performance. CNN 

trained from scratch are also working well in comparison to the pre-trained networks 

but they have not shown remarkable performance in comparison to the proposed 

network in conjunction with the SVM classifier in case of 40X and 200X 

magnification factors. But in the case of 100X and 400X magnification factors, CNN 

has shown improvement over a few deep features and classifier combinations as 

shown in Table 4.2 (i) and (ii). 

For our experiments, we make use of the mean normalization technique which 

helps to rescale the intensity of each pixel and standardize them to a zero mean and 

unit variance normal distribution before it is input to the network. This preprocessing 

step was particularly useful when the CNN is trained from scratch and for it, we have 

used RGB normalization based on the BREAKHIS dataset. We have also found that 

VGG16 and ResNet50 networks make use of the same preprocessing technique with 

the exception that has mean and standard deviation from the ImageNet dataset as we 

use these networks with pre-trained weights. The Inception-style preprocessing aims 

to rescale image pixels to a range [-1, 1] without performing any standardization of 

the RGB values. As an additional step, we also tried to use the Inception-style 

preprocessing technique for CNN trained from scratch but with it, results were seen 

to reduce significantly from which we decided to move forward with the mean 

normalization step for all forms of pre-processing. Experiments reflect that for this 

imbalanced breast cancer dataset the mean normalization step is better suited than 

rescaling (Inception-style [-1, +1] feature scaling) due to improved generalization 
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with RGB mean subtraction. Our proposed approach is based on a pre-trained VGG16 

network which also uses RGB normalization based preprocessing. 

Our proposed deep transfer network developed by considering DCGAN and 

Batch normalization with VGG16 layers till block 4 pool layer along with the 

Convolutional layer, Batch normalization, Global Average Pooling 2D, dropout, and 

dense layers is working well in comparison to other approaches. Before selecting the 

appropriate combination, we performed experiments with the different combinations 

to analyze the effect of DCGAN synthetic sample generation and Batch normalization 

on the proposed transfer network. Initially, the combination of layers was tried (i) 

without batch normalization (iii) secondly without batch normalization and with the 

DCGAN samples, it was found that the results were biased towards the minority or 

majority class. But after applying batch normalization with the DCGAN samples 

leads to an overall improvement in the performance of the network as shown in Tables 

4.2 (i) and (ii). The effect of the DCGAN and the effect of covariance shift by use of 

the batch normalization layer to the proposed deep transfer network has been analyzed 

experimentally. Another set of experiments is performed to find the appropriate deep 

features for the proposed approach. An experimental study is performed to extract the 

appropriate features from VGG16 by analyzing and comparing the deep features from 

different blocks of the VGG16 network as shown in Table 4.3 (i) and (ii) for different 

magnification factors. From the analysis, it was found that extraction of layers till 

block 4 layer of VGG16 architecture is the appropriate choice to be used in the 

proposed network in comparison to other layers. The proposed deep transfer network 

incorporates initial layers till block 4 pool layer of VGG16 is deriving the relevant 

features. Further, the tuning of hyperparameters experiments is conducted on the 
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proposed approach using a grid search-based strategy in order to find the best 

hyperparameters combination by changing the initial learning rate, Tmul, and T0 value 

of the SGDR optimizer as shown in the case of 40X, 100X, 200x and 400x 

magnification factors. Whereas in Table 4.4. (i), (ii), (iii), and (iv), performance 

evaluation of the proposed approach with different tested combinations is performed 

experimentally as shown for 40X, 100X, 200X, and 400X magnification factors to 

find the best combination of hyperparameters. From the analysis, it was found that the 

proposed approach is more stable in comparison to other approaches using SGDR 

optimizer, which further leads to improved convergence. Performance evaluation of 

the proposed approach with the help of ROC (Receiver operating curve) with AUC 

depicts the comparison of the proposed approach with the other approaches. This 

proves that the proposed approach is the best choice in comparison to the other 

conventional approaches. As shown in Figure 4.7. Learning curve depicting test 

accuracy across epochs and demonstrating better anytime performance with proposed 

approach in comparison to other approaches for various magnification factors of 

BreakHis dataset and Figure 4.8. Depicts the Comparison of the proposed approach 

with other approaches using ROC (Receiver Operating Curve) for various 

magnification factors of the BreakHis dataset. 

The performance improvement of our proposed approach is primarily based 

on the use of DCGAN for synthetic Malignant sample generation. We conducted 

experiments with GAN and DCGAN initially. Based upon Fréchet Inception Distance 

(FID) evaluation criteria as illustrated in Table 4.1, the observation drawn from the 

analysis is that DCGAN produces higher quality samples in comparison to GAN. 

Fréchet Inception Distance (FID) score is the metric that has been used for the 
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performance analysis of generative modeling. FID is used to calculate the difference 

between Inception features extracted from real images and fake images generated 

using Generative Adversarial Networks and their variants. It is a useful metric 

indicator for quality in noise analysis of synthetic samples where a lower FID usually 

indicates a better generation of fake samples. It is evident from our analysis, that the 

addition of convolutional layers to generative networks improves the quality of 

synthetic sample generation as seen in the case of DCGAN over basic GAN. 

Results obtained from experiments infer that the use of transfer learned 

weights on the same architecture of previously trained available pre-trained networks 

(which are already trained on large scale ImageNet dataset) helps improve the 

classification task. The use of transfer learning is also appropriate in this use case as 

we have a comparatively much less number of samples present in the available 

biomedical image dataset. Training of CNN from scratch would require a large set of 

samples and it has to ensure that the large number of parameters of the CNN be trained 

effectively with many generalizations in order to yield good results. So we combined 

the popular pre-trained network as per architecture cited in the literature and one 

convolutional layer of basic CNN architecture. The lower layers will learn the more 

generic features as in our case the source and target dataset belong to a dissimilar 

domain. The DCGAN fake image generation approach along with modified VGG16 

network by replacing the flatten and three dense layers present in the original network 

architecture with the global average pooling (GAP) and one dense layer has been 

proposed in this work. This replacement of layers has resulted in a minimization of 

the number of parameters. It was observed that the GAN approach separately on the 

minority class to generate fake images works quite well to deal with the imbalance 
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situation. It is also experimentally observed that when the batch normalization layer 

is not included in the proposed network, the results get completely biased towards the 

majority class. The batch normalization layer scales intermediate input values of the 

VGG16 block 4 pool features resulting in effective training of the classifier. Without 

it, the classifier suffers from the exploding gradient problem and we incur NaN loss 

during training due to quite a high log-likelihood value with the imbalanced class 

setting. 

Even using the SGDR optimizer has made the proposed network and other 

comparison approaches more stable as shown experimentally. Also, it helps to 

generalize well allowing faster convergence. An experimental task has been 

performed by using the BreakHis because it consists of images of different 

magnification factors and also consists of adequate image samples and is one of the 

few available datasets related to breast cancer. Further extensive hyperparameter 

tuning has been conducted to find the optimum hyperparameters as shown in Table 

4.5. From the analysis, it was found that the choice of the exact hyperparameters plays 

a crucial role in the overall learning and performance of the model. Using our 

proposed network, the best determining hyperparameters lead to better generalization. 

The hyperparameter tuning of the proposed network has been performed using a 

simple grid search strategy and we choose test accuracy as the maximization objective 

of this search step. Due to the use of the SGDR learning rate schedule, as per 

recommendation of Loschilov, et al. 2017 an extra validation would not be required 

in this step. In this study, we have also compared and analyzed the features extracted 

from the different VGG16 blocks for our proposed network in order to find relevant 

features. Results show that the features extracted by the block4 pool prove to be quite 
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suitable. So we have used features till block 4 pool layers only in the proposed work 

instead of till block 5 as there in the original architecture of VGG16. Features 

extracted till block 4 pool layers are considered bottleneck endpoint and hence, ideal. 

So, 14 x 14 x 512 features extracted from the VGG16 network as justified 

experimentally are used in the proposed work.  

To conclude we have proposed a deep transfer learning based novel approach 

for the classification of an Imbalanced breast cancer dataset. In this work, we have 

also explored the effect of DCGAN and the effect of Batch normalization on the 

proposed transfer network architecture. The proposed network contains the VGG16 

pre-trained model layers till block 4 pool layers along with the Batch Normalization, 

convolutional (CONV2D), Global Average Pooling 2D layer, dropout, and dense 

layers. It would help in the accurate detection of cancer cells at an early stage. The 

limitation of the proposed work is that applying DCGAN at the data level is directly 

dependent on the number of samples of minority classes as we employ deep 

generative modeling for enhancing the performance of the classifier. For scenarios 

with a much less number of minority samples, the DCGAN training distribution 

would not be able to generalize well and would fail to generate high-quality samples 

resulting in suboptimal performance. Even considering the limitations also, the 

proposed methodology is able to tackle the class imbalance problem which is faced 

by many state-of-the-art deep learning networks as well as other traditional machine 

learning techniques. The proposed architecture is able to learn fine-grained features 

on top of ImageNet pre-trained deep features specific to the biomedical datasets. A 

total number of network parameters is reduced by an order of magnitude by 

introducing the global average pooling layer instead of flatten in the original VGG16 
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architecture. This also helps to reduce the number of FLOPS. The proposed approach 

is able to work well even when the microscopic images are very different at the data 

level as the BreakHis dataset consists of four different magnification factors. Our 

focus was on the combination of a pre-trained network with CNN. We have included 

the VGG16 pre-trained network because of its simplicity and as it can be considered 

a popular pre-trained network with its ability to work well with images of different 

scales and aspect ratios.  

Table 4.2. (i) Performance evaluation on 40X and 100X Magnification factors. 

Magnific

ation 

Factor 

40X 100X 

 

Acc

urac

y 

F1 score 
 

Matthe

ws 

Correla

tion 

Coeffici

ent 

 

Cohen

’s 

Kappa 

 

Accur

acy 

F1 score 
 

Matthe

ws 

Correla

tion 

Coeffici

ent 

 

Cohen

’s 

Kappa 

Approac

h 

Beni

gn 

Malign

ant 

Beni

gn 

Malign

ant 

BOVW  0.65 0.49 0.73 0.3904 0.3 0.615 0.4 0.72 0.3266 0.2299 

CNN 0.67 0.51 0.75 0.4525 0.3399 0.88 0.87 0.89 0.7655 0.76 

VGG16 0.5 0.0     0.67       0.0 0.0 0.5 0.67      0.00      0.0 0.0 

Inceptio

nV3 0.56 0.21       0.69       0.2526 0.12 0.50       0.06       0.66       0.0 0.0 

ResNet5

0     0.53 0.11       0.68       0.1758 0.06 0.51 0.06       0.67       0.02 0.0714 

VGG16 

+ Linear 

SVM 

0.85

5 0.84       0.87       0.7295 0.71 0.87 0.86       0.88       0.7473 0.74 

Inceptio

nV3 + 

Linear 

SVM 0.86 0.85       0.87       0.7319 0.72 0.815 0.80      0.83       0.6353 

0.63 

 

ResNet5

0 + 

Linear 

SVM 

0.91 

 0.91       

0.91       

 0.8226 0.82 0.91 

0.91     

 

0.91      

 0.8241 

0.82 

 

VGG16 

+ RBF 

SVM 0.85 0.83       0.87       0.7249 

0.7 

 

0.855 

 

0.84 

 

0.87       

 0.7231 

0.71 

 

Inceptio

nV3 + 

RBF 

SVM 0.82 0.79 0.84 

0.6627 

 

0.64 

 

0.795 

 0.75 

0.83 

 

0.6298 

 0.59 



Chapter 4: Implementation of Data Augmentation for Imbalanced Datasets in Computer 
Vision  

123 

ResNet5

0 + RBF 

SVM 

0.89 

 0.88 

0.90 

 

0.7901 

 

0.78 

 

0.86 

 

0.85 

 

0.87 

 

0.7319 

 

0.72 

 

Proposed 

Network 

(w/o 

Batch 

Normaliz

ation) 

0.5 

 

0.67 

 

0.0 

 

0.0 

 

0.0 

 

0.5 

 

0.67       

 

0.0 

 

0.0 

 

0.0 

 

Proposed 

Network 

(w/o 

Batch 

Normaliz

ation and 

w/ 

DCGAN 

samples) 

0.5 

 

0.67 

 

0.0 

 

0.0 

 

0.0 

 

0.5 

 

0.67 

 

0.0 

 

0.0 

 

0.0 

 

Proposed 

Network 

(w/ 

BatchNo

rmalizati

on and 

w/ 

DCGAN 

samples) 

0.93

5 

 

0.93 

 

0.94 

 0.8774 

0.87 

 

0.925 

 

0.92  

 

0.93 

 0.8551 

0.85 

 

Proposed 

Network 

(w/ 

BatchNo

rmalizati

on, w/ 

DCGAN 

samples 

and w/ 

hyper 

paramet

er 

tuning) 

0.96

5 0.96 0.97 0.9304 0.9299 0.94 0.94 0.94 0.8815 0.88 

Table 4.2. (ii) Performance evaluation on 200X and 400X Magnification factors. 

Magnifi

cation 

Factor 

200X 400X 

 

Accur

acy 

F1 score 
 

Matthe

ws 

Correla

tion 

Coeffici

ent 

 

Cohen

’s 

Kappa 

 

Accur

acy 

F1 score 
 

Matthe

ws 

Correlat

ion 

Coefficie

nt 

 

Cohen

’s 

Kappa 

Approa

ch 

Beni

gn 

Malign

ant 

Benig
n 

Malig
nant 

BOVW 0.56 0.24 0.69   0.2211 0.12 0.575 0.35 0.68 0.2072 0.15 

CNN 0.775 0.72       0.81       0.5972 0.55 0.885 0.88       0.89 0.7731 0.77 

VGG16  0.5 0.67       0.0   0.0 0.0 0.5 0.0  0.67       0.0 0.0 



Chapter 4: Implementation of Data Augmentation for Imbalanced Datasets in Computer 
Vision  

124 

Incepti

onV3 0.51 0.08       0.67       0.0586 0.02 0.5 0.0    0.67       0.0 0.0 

ResNet

50 0.5 0.0     0.67       0.0 0.0 0.5 0.0   0.67 0.0 0.0 

VGG16 

+ 

Linear 

SVM 0.835 0.82     0.85       0.6852 0.6699 0.835 

0.81     

 0.85      0.6958 0.6699 

Incepti

onV3 + 

Linear 

SVM 

0.795 

 0.77       0.81 0.6034 0.59 0.82 0.80 0.84 0.656 0.64 

ResNet

50 + 

Linear 

SVM 0.93 0.93 0.93       0.86 0.8627 0.915 0.91  0.92 0.835 0.83 

VGG16 

+ RBF 

SVM 0.84 0.81   0.86 0.7128 0.6799 0.82 0.78       0.85       0.6805 0.64 

Incepti

onV3 + 

RBF 

SVM 0.76 0.7 0.8 0.5729 0.52 0.795 0.75 0.83 0.6298 0.59 

ResNet

50 + 

RBF 

SVM 0.86 0.84  0.88 0.75 0.72 0.885 0.87 0.89 0.7813 0.77 

Propos

ed 

Networ

k (w/o 

Batch 

Normal

ization) 0.5 0.67 0.0 0.0 0.0 0.5 0.67       0.0   0.0 0.0 

Propos

ed 

Networ

k (w/o 

Batch 

Normal

ization 

and w/ 

DCGA

N 

samples

) 0.5 0.67 0.0 0.0 0.0 0.5 0.67    0.00   0.0 0.0 

Propos

ed 

Networ

k (w/ 

BatchN

ormaliz

ation 

and w/ 

DCGA

N 0.955 0.95 0.96 0.91 0.91 0.915 0.91 0.92 0.832 0.83 
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samples

) 

Propos

ed 

Networ

k (w/ 

BatchN

ormaliz

ation, 

w/ 

DCGA

N 

samples 

and w/ 

hyper 

parame

ter 

tuning) 0.955 0.95 0.96 0.9111 0.91 0.93 0.93 0.93 0.8627 0.86 

Table 4.3. (i) Performance evaluation of proposed VGGIN-Net architecture with 

different VGG16 blocks as the backbone for 40x and 100x magnification factors. 

Magnificati

on Factor 

40X 100X 

 

Accu

racy 

F1 score  

Matthew

s 

Correlati

on 

Coefficie

nt 

 

Cohen’

s 

Kappa 

 

Accura

cy 

F1 score  

Matthew

s 

Correlati

on 

Coefficie

nt 

 

Cohen’s 

Kappa Approach Ben

ign 

Malig

nant 

Benign Malignan

t 

Proposed 

Network 

(using 

block3_pool 

layer) 

0.895 0.89 0.90 0.799 0.79 0.91 0.90 0.92 0.8307 0.82 

Proposed 

Network 

(using 

block4_pool 

layer) 

0.935 

 

0.93 

 

0.94 

 

0.8774 0.87 

 

0.925 

 

0.92  

 

0.93 

 

0.8551 0.85 

 

Proposed 

Network 

(using 

block5_pool 

layer) 

0.855 0.84 

 

0.87 

 

0.7231 

 

0.71 0.87 0.86 0.88 0.7552 0.74 

Table 4.3. (ii)  Performance evaluation of proposed VGGIN-Net architecture with 

different VGG16 block as the backbone for 200x and 400x magnification factors. 

Magnificati

on Factor 

200X 400X 

 F1 score    F1 score   
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Approach Accur

acy 

Ben

ign 

Malig

nant 

Matthe

ws 

Correl

ation 

Coeffic

ient 

Cohen’s 

Kappa 

Accurac

y 

Benign Malignan

t 

Matthew

s 

Correlati

on 

Coefficie

nt 

Cohen

’s 

Kapp

a 

Proposed 

Network 

(using 

block3_poo

l layer) 

0.93 0.93 0.93 0.8643 0.86 0.935 0.93 0.94 0.8753 0.87 

Proposed 

Network 

(using 

block4_poo

l layer) 

0.955 0.95 0.96 0.91 0.91 0.915 

 

0.91 

 

0.92 0.832 

 

0.83 

 

Proposed 

Network 

(using 

block5_poo

l layer) 

0.865 0.85 0.88 0.7435 0.73 0.855 0.84 0.86 0.716 0.71 

Table 4.4. (i) Results for hyper-parameter tuning of SGDR optimizer with 

proposed CNN for 40x magnification factor of BreakHis dataset. 

40X 

Hyperparamet

ers 
Evaluation Metric SGDR (T0=1, Tmul=2) 

SGDR (T0=10, 

Tmul=2) 

SGDR (T0=50, 

Tmul=1) 

LR=0.001 

Accuracy 0.91 0.905 0.91 

Matthews Correlation 

Coefficient 
0.8281 0.8192 0.8281 

Cohen’s Kappa 0.82 0.81 0.82 

LR=0.005 

Accuracy 0.945 0.935 0.94 

Matthews Correlation 

Coefficient 
0.8921 0.8735 0.8828 

Cohen’s Kappa 0.89 0.87 0.88 

LR=0.01 

Accuracy 0.965 0.95 0.955 

Matthews Correlation 

Coefficient 
0.9304 0.9007 0.9111 

Cohen’s Kappa 0.9299 0.9 0.91 

LR=0.05 

Accuracy 0.935 0.955 0.96 

Matthews Correlation 

Coefficient 
0.8774 0.91 0.9201 

Cohen’s Kappa 0.87 0.91 0.92 

LR=0.1 Accuracy 0.96 0.95 0.96 



Chapter 4: Implementation of Data Augmentation for Imbalanced Datasets in Computer 
Vision  

127 

Matthews Correlation 

Coefficient 
0.92 0.9028 0.9201 

Cohen’s Kappa 0.92 0.9 0.92 

Table 4.4. (ii) Results for hyper-parameter tuning of SGDR optimizer with 

proposed CNN for 100x magnification factor of BreakHis dataset. 

100X 

Hyperparamet

ers 
Evaluation Metric SGDR (T0=1, Tmul=2) 

SGDR (T0=10, 

Tmul=2) 

SGDR (T0=50, 

Tmul=1) 

LR=0.001 

Accuracy 0.935 0.935 0.93 

Matthews Correlation 

Coefficient 
0.8753 0.8735 0.8643 

Cohen’s Kappa 0.87 0.87 0.86 

LR=0.005 

Accuracy 0.935 0.935 0.93 

Matthews Correlation 

Coefficient 
0.8721 0.8735 0.8627 

Cohen’s Kappa 0.87 0.87 0.86 

LR=0.01 

Accuracy 0.925 0.93 0.93 

Matthews Correlation 

Coefficient 
0.8551 0.8643 0.8627 

Cohen’s Kappa 0.85 0.86 0.86 

LR=0.05 

Accuracy 0.93 0.94 0.925 

Matthews Correlation 

Coefficient 
0.8627 0.8815 0.8534 

Cohen’s Kappa 0.86 0.88 0.85 

LR=0.1 

Accuracy 0.93 0.94 0.925 

Matthews Correlation 

Coefficient 
0.8627 0.8815 0.8534 

Cohen’s Kappa 0.86 0.88 0.85 

Table 4.4. (iii) Results for hyper-parameter tuning of SGDR optimizer with 

proposed CNN for 200x magnification factor of BreakHis dataset. 

200X 

Hyperparame

ters 
Evaluation Metric SGDR (T0=1, Tmul=2) SGDR (T0=10, Tmul=2) 

SGDR (T0=50, 

Tmul=1) 

LR=0.001 Accuracy 0.92 0.93 0.92 
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Matthews Correlation 

Coefficient 
0.8442 0.8662 0.8461 

Cohen’s Kappa 0.84  0.86 0.84 

LR=0.005 

Accuracy 0.955 0.955 0.945 

Matthews Correlation 

Coefficient 
0.9104 0.9111 0.8921 

Cohen’s Kappa  0.91  0.91  0.89 

LR=0.01 

Accuracy 0.945 0.94 0.955 

Matthews Correlation 

Coefficient 
0.8936 0.8815 0.9111 

Cohen’s Kappa  0.89  0.88  0.91 

LR=0.05 

Accuracy 0.955 0.935 0.955 

Matthews Correlation 

Coefficient 
0.91 0.8735 0.9111 

Cohen’s Kappa 0.91  0.87  0.91 

LR=0.1 

Accuracy 0.895 0.95 0.95 

Matthews Correlation 

Coefficient 
0.8046 0.9016 0.9007 

Cohen’s Kappa  0.79  0.9  0.9 

Table 4.4. (iv) Results for hyper-parameter tuning of SGDR optimizer with 

proposed CNN for 400x magnification factor of BreakHis dataset. 

400X 

Hyperp

aramet

ers 

Evaluation 

Metric 

SGDR (T0=1, 

Tmul=2) 

SGDR (T0=10, 

Tmul=2) 
SGDR (T0=50, Tmul=1) 

LR=0.0

01 

Accuracy 0.895 0.895 0.905 

Matthews 

Correlation 

Coefficient 

0.7967 0.7967 0.8169 

Cohen’s 

Kappa 
0.79 0.79 0.81 

LR=0.0

05 

Accuracy 0.925 0.925 0.92  

Matthews 

Correlation 

Coefficient 

0.8520 0.8534 0.8442 
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Cohen’s 

Kappa 
0.85 0.85 0.84 

LR=0.0

1 

Accuracy 0.925 0.93 0.925 

Matthews 

Correlation 

Coefficient 

0.8534 0.8627 0.8520 

Cohen’s 

Kappa 
0.85 0.86 0.85 

LR=0.0

5 

Accuracy 0.915 0.925 0.92  

Matthews 

Correlation 

Coefficient 

0.832 0.8534 0.8427 

Cohen’s 

Kappa 
0.83 0.85 0.84 

LR=0.1 

Accuracy 0.895 0.92 0.925 

Matthews 

Correlation 

Coefficient 

0.8046 0.8415 0.852 

Cohen’s 

Kappa 
0.79 0.84 0.85 

 

Table 4.5. Best SGDR hyper-parameters for 40x, 100x, 200x, 400x magnification factors. 

Selected 

Hyper- 

parameter 

40x 100x 200x 400x 

Initial 

Learning Rate 
0.01 0.1 0.004 0.01 

SGDR T0 1 10 10 10 

SGDR Tmul 2 2 2 2 

Accuracy 0.965 0.94 0.955 0.93 
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Figure 4.7. Learning curve depicting test accuracy across epochs and demonstrating 

better anytime performance with proposed approach in comparison to other approaches 

for various magnification factors of BreakHis dataset. 

 

 
Figure 4.8. Comparison of the proposed approach with other approaches using 

ROC (Receiver Operating Curve) for various magnification factors of the 

BreakHis dataset.  
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Further, we have also done work to gauge the effect of data augmentation 

where deep learning-based experiments are conducted to observe the effect of data 

augmentation on the minority class for the imbalanced breast cancer histopathology 

dataset (BREAKHIS). Two different pre-trained networks are fine-tuned with the 

minority-augmented dataset. The pre-trained networks were already trained on the 

well-known ImageNet dataset consisting of millions of high-resolution images 

belonging to multiple object categories. The model so trained is further subjected to 

transfer learning, to correctly classify cancerous patterns from non-cancerous 

conditions, in a supervised manner. Experiments were carried out in two phases. 

Phase-I investigates the effect of data augmentation applied on minority classes for 

the Inception-V3 and ResNet-50 pre-trained networks (Saini and Susan 2019). Results 

of phase-I are further enhanced in phase-II by the transfer learning approach in which 

features extracted from all layers of Inception-V3 are learned by the SVM and 

weighted SVM classifiers. From experimental results, it was found that the pre-trained 

Inception-V3 model with data augmentation on minority class outperforms other 

network types. Results also indicate that Inception-V3 with data augmentation of 

minority class and transfer learning with weighted SVM gives the highest 

classification accuracies. 

An investigation is conducted in our work using the breast cancer dataset, to 

effectively discriminate minority class samples from the majority class through deep 

learning-based experiments. A data augmentation-based approach using pre-trained 

networks and transfer learning is used to correctly classify cancerous patterns from 

non-cancerous conditions. The transfer learning approach is used in the experiment to 
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transfer the knowledge from one domain to another domain for performing a two-

class classification task to segregate Benign from Malignant classes.  

Following the cue from the existing work, our work induces data 

augmentation, however on the minority class only, similar to the oversampling step 

(Susan and Kumar 2019). The minority augmented dataset, which is, in essence, 

balanced, is then applied for transfer learning through pre-trained networks and 

eventually classified using Weighted Support Vector Machine (SVM). The following 

data augmentation operations were applied to the minority class for the complete 

dataset: shear with a range of 10, upper and lower zoom with the range of 20 percent, 

and horizontal flip, along with resizing and pre-processing operations.  

In Phase I: Classification Using Pre-trained Networks. The pre-trained model 

was used for performing the classification experiment. Phase II: Deep Feature 

Extraction and Transfer Learning Phase II, comprises deep feature extraction from 

the pre-trained model fine-tuned with the minority augmented dataset. The deep 

features are extracted from all the layers of the Inception-V3 pre-trained model taken 

in the right order. The classifiers used for our experiment involving transfer learning 

based on the deep feature extracted are SVM and weighted SVM. For the purpose of 

our deep learning experiments, the popular python framework Keras has been used. 

It uses a Tensorflow backend to perform all its internal computations. The model will 

be trained across 3 epochs with 29 steps in each epoch. While training the pre-trained 

network, sparse categorical cross-entropy is used as the loss function for each fold 

along with Adam optimizer (Adaptive Moment Estimation), batch size set as 32 in 

each fold, with RELU activation function in a dense layer, is used for the experiment. 
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Classification report has been generated using the scikit-learn package in python for 

analyzing the performance of the model with precision, recall, F1-score, and ROC 

curve, (Receiver Operating curve). 

In Phase I, from the experimental analysis, it was found that there is a huge 

difference between test and train accuracy. As average train accuracy in the case of 

Inception-V3 is approximately between 70 to 80% range with and without data 

augmentation. Whereas, the average test accuracy has improved from 47 to 50% as 

shown in Table 4.6. Experiments performed using Inception-V3 pre-trained networks 

with and without data augmentation are shown in Tables 4.7. From the experimental 

evaluation, it was found that Inception-V3 is unable to detect minority classes. 

According to the literature, it was found that while dealing with the imbalanced 

dataset, results are biased towards the majority class as shown in Table 4.8. Figure 

4.9 depicts the test samples tested on the Inception-V3 pre-trained network after 

applying data augmentation on minority class using one of the best folds out of the 

average (Avg) five-fold. Whereas, data augmentation applied separately on the 

minority is able to detect minority class efficiently in comparison to the Inception-V3 

pre-trained network after data augmentation is applied on both classes. Figure 4.10 

represents sample test images without applying data augmentation. A similar 

experiment was conducted with ResNet-50 architecture to measure the performance 

of data augmentation techniques as illustrated in Tables 4.9 and 4.10. From 

experiment results, it was found that Inception-V3 outperforms ResNet-50 in all the 

cases. Phase II experiments were there to evaluate the performance of Inception-V3 

under different conditions on the basis of different evaluation parameters such as 

precision, recall, F1-score, and accuracy to evaluate performance of the model. The 
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comparison was done between Inception-V3 with data augmentation applied on the 

minority class, obtained as the best result in the Phase I experiment, with the extracted 

features from the Inception-V3 pre-trained model and trained on the SVM and 

weighted SVM classifiers. From the experimental analysis, it was found that 

Inception-V3 with weighted SVM and data augmentation applied to the minority class 

outperforms other Inception-V3-based experiments. A solution for countering class 

imbalance in deep learning is proposed in this work specifically for the BREAKHIS 

breast cancer dataset. It is proved that we cannot only rely on accuracy for the 

identification of an imbalanced dataset. Various other parameters need to be 

considered such as F1-score, Precision, Recall, and ROC. We have conducted 

experiments in two phases. Phase-I investigates the effect of the data augmentation 

technique when applied to minority classes only for the pre-trained networks 

Inception-V3 and ResNet-50. Results obtained are found better with the application 

of data augmentation on the minority class in the Inception-V3 pre-trained model. In 

Phase II, features were extracted from all layers of Inception-V3 and learned by the 

SVM and weighted SVM classifiers. Results show that Inception-V3 with data 

augmentation on minority classes works best with transfer learning using weighted 

SVM as compared to other networks.  

However, it was also observed that despite having high test accuracy, if the 

model is unable to give correct predictions and the results are biased towards the 

majority class then the minority class is left undetected and the model will evaluate  
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Table 4.6. Comparison of different Performance evaluation scores using cancer 

dataset in case of Inception-V3 pre-trained network. 

Classes Inception-V3 Inception-V3 (with data 

augmentation on both class) 

Proposed Inception-V3 

(with data augmentation on 

minority class) 

Benign Malignant Benign Malignant Benign Malignant 

Avg 

precision 

(five-fold) 0.076 0.49 0.05 0.49 0.46 0.44 

Avg recall 

(five-fold) 0.006 0.48 0.002 0.99 0.56 0.35 

Avg F1-

score (five-

fold) 0.012 0.66 0.004 0.66 0.5 0.39 

Support 100 100 100 100 100 100 

Fold 1 

Accuracy 0.5 0.51 0.46 

Fold 2 

Accuracy 0.5 0.5 0.48 

Fold 3 

Accuracy 0.49 0.5 0.47 

Fold 4 

Accuracy 0.49 0.5 0.48 

Fold 5 

Accuracy 0.48 0.5 0.46 

Avg test 

accuracy 

(five fold) 0.49 0.49 0.47 

Table 4.7. Comparison of different Performance evaluation scores using 

cancer dataset in case of ResNet-50 pre-trained network. 

Classes ResNet-50 ResNet-50 (with data 

augmentation on both class) 

ResNet-50 (with data 

augmentation on 

minority class) 

Benign Malignant Benign Malignant Benign Malignant 

Avg 

precision 

(five-fold) 

0.2 1.00 0.2 0.5 0.0 0.5 
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Avg 

recall 

(five-fold) 

0.002 1.0 0.002 1.0 0.0 1.0 

Avg Fl-

score 

(five-fold) 

0.004 0.67 0.008 0.67 0.0 0.67 

Support 100 100 100 100 100 100 

Fold 1 

Accuracy 

0.5 0.5 0.51 

Fold 2 

Accuracy 

0.51 0.5 0.52 

Fold 3 

Accuracy 

0.5 0.5 0.52 

Fold 4 

Accuracy 

0.5 0.5 0.51 

Fold 5 

Accuracy 

0.51 0.5 0.5 

Avg test 

accuracy 

(five fold) 

0.5 0.5 0.51 

Table 4.8. Comparison of different Performance evaluation scores using cancer 

dataset in case of proposed Inception-V3 with SVM. 

Classes Inception-V3 Inception-V3 + 

SVM 

Proposed Inception-V3 + weighted 

SVM 

Data 

augmentation 

on minority class 

Without data 

augmentation 

Proposed method 

with data 

augmentation on 

minority class 

Benign Malig

nant 

Benign Malign

ant 

Benign Malign

ant 

Benign Malign

ant 

Avg 

precision 

(five fold) 0.49 0.48 0 0.5 0.66 0.58 0.68 0.59 

Avg recall 

(five fold) 0.56 0.41 0 1 0.44 0.77 0.46 0.78 

Avg F1-

score 

(five fold) 0.52 0.44 0 0.67 0.53 0.66 0.55 0.67 
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Support 100 100 100 100 100 100 100 100 

Fold 1 

Accuracy 0.46 0.51 0.6 0.62 

Fold 2 

Accuracy 0.48 0.51 0.61 0.63 

Fold 3 

Accuracy 0.48 0.5 0.61 0.62 

Fold 4 

Accuracy 0.47 0.5 0.6 0.62 

Fold 5 

Accuracy 0.46 0.5 0.6 0.63 

Avg test 

accuracy 

(five fold) 0.47 0.5 0.6 0.62 

 

Figure 4.9. Samples tested on Inception-V3 pre-trained network after applying 

data augmentation on minority class. 
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Figure 4.10. Samples tested on Inception-V3 pre-trained network without 

applying data augmentation. 

In case of individual augmentation techniques applied one at a time one can 

isolate its effect on the model's performance for each individual operation; however, 

this technique influences the model's ability to generalize and detect important 

features on a robust variety of conditions. In addition to shift and rotation, these 

techniques can simulate variations in object position and orientation, allowing the 

model to learn robustness to these changes. Addition of horizontal flip can introduce 

horizontal symmetry and help the model learn invariant features across orientations. 

Addition of noise can help the model become more resilient to variations in the input 

data and improve its generalization. However applying multiple augmentation 

operations together allows the model to learn the robustness of these changes similar 

to real-world settings. By combining multiple augmentation techniques, the target 

training dataset which is used in the model training pipeline does more closely 

resemble the real-world scenarios the model would encounter.  
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Figure 4.11.  Illustration of images after applying individual data augmentations 

on samples of BreakHis dataset. 

Real-world images in the wild often have a combination of various 

transformations, and training on augmented data helps the model adapt to such 

variations which helps improve model robustness to a vast extent also leading to better 

performance in handling variations during inference, and also improves the model's 

ability to generalize to unseen data.  It is similar in case of DCGAN used for artificial 

synthetic generation of samples to counter minority imbalance classes over majority 

class samples. As image samples generated by generative models apply complex sets 

of transformations through the use of convolutional and deconvolutional layers, to 

achieve the same they have much more operations involved than randomly affine 

transformations. Both of the techniques apply transformations on minority classes to 

counter the effect of class imbalance and are seen as a measure to reduce disparity in 
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the number of samples of the skewed class distribution observed in the imbalanced 

datasets used for our experiments.  

4.2 Limitations 

The limitation of the proposed work is that applying DCGAN at data level is 

directly dependent on the number of samples of minority class as we employ deep 

generative modeling for enhancing the performance of the classifier. For scenarios 

with much less number of minority samples, the DCGAN training distribution would 

not be able to generalize well and would fail to generate high quality samples resulting 

in sub-optimal performance. Despite the limitations, the proposed methodology is 

able to tackle the class-imbalance problem that adversely affects many state-of-the-

art deep learning networks as well as other traditional machine learning techniques. 

The proposed architecture is able to learn fine grained features on top of ImageNet 

pre-trained deep features, specific to the biomedical datasets. Total number of 

network parameters is reduced by introducing the Global Average Pooling layer 

instead of flatten in the original VGG16 architecture. This also helps to reduce the 

number of FLOPS. The proposed approach is able to work well even when the 

microscopic images are very different at data level as in the BreakHis dataset that 

contains images of four different magnification factors. However, the limitation is that 

application of proposed DCGAN at data level is directly dependent on the number of 

samples of minority class. 

When applying Weighted Support Vector Machine (SVM) to multi-class 

imbalanced datasets, there are specific limitations. Firstly, there is a difficulty in 
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assigning weights to the different classes. This task can be challenging, as determining 

the optimal weight values for each class becomes more complex compared to binary 

or balanced datasets. Improper weight assignment may lead to biased or suboptimal 

results, ultimately impacting the overall performance of the model. Additionally, the 

performance of Weighted SVM heavily relies on the appropriate selection of weights. 

It is crucial to determine the optimal weights for each sample or class, which can be 

challenging. If the weight assignment is not properly done, it can result in biased 

results or degraded performance of the model. It is important to consider these 

limitations and carefully select and assign weights in multi-class imbalanced datasets 

to ensure accurate and unbiased classification results. 
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Chapter 5 

VGGIN-Net: Novel Deep Learning Architecture for 

Binary and Multi-Class Imbalance Problem 

This section1 will contain the terminology, and methodology adopted for the 

creation of the novel deep learning architectures along with the detailed discussion of 

implementation steps and hyperparameters required while executing the approach 

followed by the outcome of the research. The proposed novel deep learning 

architecture, VGGIN-Net, can be employed for various binary-class and multi-class 

problems. VGGIN-Net is specifically designed to enable the transfer of domain 

knowledge from the extensive ImageNet object dataset to smaller imbalanced breast 

cancer datasets. Its design ensures effective transferability, allowing it to be applied 

to other imbalanced biomedical datasets to address class imbalance, irrespective of 

binary or multi-class scenarios. 

 

: 1 The contents of this chapter are published in "VGGIN-Net: Deep Transfer Network for Imbalanced Breast 

Cancer Dataset," in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 1, pp. 

752-762, 1 Jan.-Feb. 2023 and  "Cervical Cancer Screening on Multi-class Imbalanced Cervigram Dataset using 

Transfer Learning." In 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering 

and Informatics (CISP-BMEI), pp. 1-6. IEEE, 2022. 
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5.1 Objective 4: Development of Novel Deep learning 

architectures for Multi-class Imbalance Problem 

There exist various issues in binary class and multi-class imbalanced datasets 

which exist in most real-world applications. A Novel deep learning architecture is 

designed by combining various layers and architectural blocks based on different 

variants of convolutional neural networks and pre-trained networks to deal with 

binary and multi-class imbalance problems as illustrated below: 

5.1.1 Binary-class Classification 

A deep neural network architecture is proposed based on the transfer learning 

concept which is formulated by fusion of concatenating and freezing and all the layers 

till the block4 pool layer of the VGG16 pre-trained model along with the randomly 

initialized naïve Inception block module (Saini and Susan 2023a). Various other 

appropriate layers as displayed in Figure 5.1 were also part of the classification 

network. Dropout and data augmentation is also added as regularization techniques. 

The proposed architecture is formulated and structured in a manner that it can be 

effectively transferred and learned on other binary and multi-class imbalanced dataset. 
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Figure 5.1. Proposed deep network architecture VGGIN-Net showing the  

lower layers till block4 pool layer of VGG16 pre-trained network and the higher 

layers comprising of naïve Inception module and the dense layers. 

However, the imbalanced nature of this dataset brings in several challenges as 

the class imbalance problem causes several incorrect predictions. To tackle this 

problem, we have proposed a novel deep learning based architecture incorporating 

transfer learning in this work. The transfer learning approach using the pre-trained 

networks has the advantage of transferring the learned weights from an architecture 

that is trained in another domain to the biomedical domain, which will ultimately 

reduce the training time along with the computational cost to train the model from 

scratch. The contribution of the work is elaborated below: (a) Successful design of 

novel deep network architecture using transfer learning approach to solve class 

imbalance problem in breast cancer datasets. The proposed architecture is created by 

combining the relevant layers from the VGG16 pre-trained network (layers till block4 

pool layer) along with the naïve Inception module in combination with flatten, batch 

normalization, and dense layers. Also, certain regularization techniques have been 

infused in the proposed model such as data augmentation and dropout which overall 

helps to reduce the overfitting to a great extent. (b) The proposed network has been 
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successfully tried and tested on images of different magnification factors, establishing 

the network's invariance to size and scale of the image. The results indicate an overall 

improvement in the classification performance. (c) We have analyzed the effect and 

significance of block-wise fine-tuning on the proposed deep transfer neural network 

architecture which has a substantial impact on the classification performance. (d) The 

proposed 24-layer network architecture has been articulated by integrating the right 

combination of layers in a well-ordered way to reduce the computational complexity 

involved. The formulated 24-layer architecture is constructed as shown in Figure 5.2 

by first stacking the VGG16 layers, starting from the VGG16 pre-process layer till 

the block4 pool layers. The 224 x 224 x 3 image is given to the VGG16 pre-trained 

network as input. The reason for considering the features till block4 pool layers from 

the VGG16 pre-trained model is to extract the significant bottleneck features. The 

consideration of features beyond the block4 pool layer would only increase the 

computational difficulties with improvement in the performance of the model, as 

validated by our experimental results. Further, the obtained relevant bottleneck 

features till block4 pool layer of VGG16 pre-trained network are concatenated with 

the layers of naïve Inception block. The naïve Inception block consists of 

convolutional layers having filters of sizes of 1x1, 5x5, and 3x3, with each layer 

having a stride of size 3x3 and ReLU (Rectified linear unit) activation function 

(Szegedy, et al. 2015), with the addition of max pooling 2D layer. In this work, we 

have considered the goodness of both the pre-trained models (VGG16 and Inception) 

to create a more robust architecture that effectively resolves the class imbalance 

problem. The use of VGG16 pre-trained layers in the initial stage of our network was 

motivated by the fact that VGG16 architecture achieves good accuracy for most of 

the image classification problems and this network is efficient in dealing with images 
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of different scales and magnification factors. This is particularly useful for our study 

as one of the target datasets that we experiment with, is the BreakHis dataset which 

consists of images of varying magnification factors. 

There are certain crucial deployment challenges faced in the VGG-based 

architecture which motivated us to modify the VGG16 architecture. As inspired by 

the previous works (Perdana, et al. 2019, Kumar, et al. 2020, Baheti, et al. 2018) we 

have modified the VGG16 architecture so as to overcome the deployment challenges 

that come with VGG-Nets. Such computational challenges are prevalent even on 

powerful single-GPU systems (Graphical Processing Units) due to their large memory 

footprint. The sequential ConvNet, VGG16 bears a large number of parameters (140 

million) due to the presence of multiple convolutional layers of varying receptive 

fields, hence, it can become inefficient for inference at test time. Due to the presence 

of the large number of parameters, the VGG16 network is also prone to vanishing 

gradient problems. The presence of three fully connected layers present in the original 

VGG16 architecture is primarily responsible for the major bulkiness of the model. So, 

we have extracted the relevant deep features uptill block4 of the pre-trained model 

and removed all the layers after that which added extra complexity and computation 

to the proposed architecture. Further, to address the shortcomings seen in the VGG16 

architecture, we have added the naïve Inception block as an additional block in the 

proposed architecture. The GoogLeNet incarnation of the Inception architecture uses 

multiple auxiliary classifiers to tackle the vanishing gradient problem. In our case, 

any auxiliary loss has not been used to train the inception block because of the 

presence of a lesser number of images available in the currently used dataset in 

comparison to the large-scale ImageNet. The reason for the addition of a single 
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Inception block in the higher layers of the proposed architecture is that it would not 

require auxiliary classifiers and the model can converge by itself using a single loss 

only. Also, it would be less computationally expensive to add a single Inception 

module instead of the addition of multiple similar modules. The main idea behind 

adding the naïve Inception module to the higher end of our network is to cover a larger 

region of a convoluted image while preserving the finer details. The naïve inception 

block is specifically engineered to convolve in parallel such that accurate detailing is 

possible through 1x1, 3x3, and 5x5 convolutions (64, 128, and 32 filters were used 

respectively). The goal of adding the naïve module is to increase the CNN’s learning 

ability and abstraction of complex filters which was also found to be a drawback in 

VGG-based architectures. Moreover, the advantage of the Inception architecture is 

that it is able to perform well even with a single fully connected layer (Szegedy, et al. 

2015). The consideration of the naïve Inception block as a suitable choice along with 

a single dense layer makes the architecture less computationally expensive. A single 

dense (fully connected) layer with a softmax activation function is present at the 

output to learn the proposed network architecture to deal with the higher-end linear 

features and to find the probability of occurrence of the image belonging to each class 

for the two-class classification problem (i.e. Benign and Malignant). Further, batch 

normalization, flatten, and dropout layers are added to enhance the network 

performance. We refrain from using multiple batch normalization layers (one batch 

normalization per convolutional layer) as per inspiration from (He, et al. 2016) as a 

single batch normalization should suffice when layers are being concatenated as in 

the case of the Inception module. Flatten layer is added after batch normalization to 

reduce the features into one dimension of size 144256. Dropout regularization 

(Srivastava, et al. 2014) with a rate of 0.4 is added after the flatten layer which in turn 
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helps to avoid overfitting problems. Our transfer network learns the higher layer 

features specific to cancer images. In doing so, we follow the guidelines as per work 

done by Yosinski, et al. who propounded the theory that when the base and target 

datasets are dissimilar, the use of pre-trained weights alone may degrade the 

performance (Yosinski, et al. 2014). It is essential that the higher-level features should 

be specific to the target dataset instead of the base dataset. Another regularization 

technique involved in the proposed architecture, specifically at the data level, is data 

augmentation which is applied to the training dataset in order to synthetically increase 

the number of samples and also to improve the overall performance of the network by 

reducing the fitting problem (Shorten, et al. 2019). The typical CNN training process 

employing data augmentation would include on the fly generation of random image 

samples across training mini-batches by use of affine transformations. In the proposed 

network, we have applied certain data augmentation operations as inspired by Howard 

2013 on both the classes (Benign and Malignant). The data augmentation operations 

applied on images include: (a) random rotation within a range of 20 degrees, (b) 

random width and height shift operation with a range of 0.2 i.e. translation of the 

images both horizontally as well as vertically by the number of pixels less than or 

equal to 20% of the actual image dimensions, (c) random horizontal and vertical flip, 

combined with (d) random shear and random zoom operations with the same range as 

that of translation. These values were determined after lots of experimental trials in 

order to maximize performance. To improve the regularization of our network further 

we make use of random crop which helps the network to learn even better due to the 

translation invariance property of convolutional networks (Howard 2013). The image 

patches are resized to 224 x 340 using bilinear resizing and then randomly cropped 

into patches of 224 x 224. At inference (test) time, a central crop was used. The fine-
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tuning approach has further been adapted on the proposed deep transfer learning 

architecture, inspired by several works in literature. In the case of the DeTrac 

approach, Abbas et al focused on the relevance of applying fine-tuning to different 

architectural blocks of pre-trained CNN (Abbas, et al. 2020). Similarly, Sharma and 

Mehra (2018) emphasized the role of transfer learning, full training, and fine-tuning 

of several pre-trained networks for the medical image dataset (Sharma and Mehra 

2020). From the analysis, it was found that VGG16 pre-trained network features with 

logistic regression as classifier give the best performance amongst other combinations 

of VGG19 and ResNet-50 pre-trained network with regression. The same authors 

further extended their work and elaborated on the role of layer-wise fine-tuning and 

presented the in-depth study of layer-wise fine-tuning on AlexNet for the BreakHis 

dataset (Sharma and Mehra 2020). Authors have emphasized the role of appropriately 

fine tuning the network for different magnification factors Kandel and Castelli (2020) 

did the comparative analysis by emphasizing the role of fine-tuning of complete 

networks on various pre-trained networks. For their study, they used VGG16, 

VGG19, and Inception pre-trained networks on the histopathological image dataset 

(Kandel and Castelli 2020). From the analysis, it was found that fine-tuning the 

complete pre-trained network might not be the ideal choice in all situations while 

considering different magnification factor images. All these previous works 

motivated us to apply a block-wise fine-tuning approach to the proposed network. 

Our research work proposes a novel approach by combining modified VGG16 

architecture with naïve Inception block to tackle imbalanced problems in breast 

cancer classification. The same has been empirically validated by conducting 

extensive experimentation along presented with the ablation study to prove the 
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veracity of our claim that our proposed architectural combination is able to solve the 

breast cancer classification task effectively by proposing an explainable and less 

computationally costly architecture. By adjusting the sequence and the right 

combination of appropriate layers in the proposed architecture we are able to obtain 

the competent architecture to enhance the performance of the classifier that can be 

utilized for transfer learning on any other breast cancer dataset. The modified VGG16 

architecture is chosen in such a manner as to resolve the deployment issues associated 

with original VGG-Nets by reducing the number of dense layers to one and extracting 

the appropriate features from suitable layers. In addition, we have introduced the 

naive Inception block with the batch normalization layer to address the vanishing 

gradient problem, and data augmentation, regularization, and fine-tuning techniques 

have been used for improving the prediction performance.  

All the experiments related to this work were conducted on the Google Cloud 

Platform using a single Compute Engine VM instance with dual-core Intel Xeon CPU 

(2.00 GHz) and 8GB RAM, and an NVIDIA Tesla T4 GPU accelerator with 16 GB 

memory. For performing all our experiments, we used the TensorFlow v2.3.0 

framework with the help of Keras API (Chollet 2021) using Python v3.8.9. The 

proposed deep network architecture, VGGIN-Net, takes approximately 1 hour to train 

on a GPU when training on BREAKHIS dataset. The different hyperparameters were 

selected so as to maximize the performance. (i) Adam optimizer, used with learning 

rate initially assigned as 0.001; the Adaptive Momentum optimization automatically 

adjusts the learning rate for further training. (ii) The loss function used was categorical 

cross-entropy. (iii) The training batch size was set to 128 with a net budget of 100 

epochs. The proposed architecture is fine-tuned for four different magnification 
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factors. While fine-tuning the network, the learning rate is significantly reduced so as 

to make sure that any large gradient updates would not cause the network to abruptly 

change any of the pre-trained weights. The training process is conducted with the help 

of a simple learning rate schedule where we exponentially decay the learning rate after 

15 starting warmup epochs. While performing the fine-tuning process, the network is 

trained for a total of 50 sweeps (epochs). The warmup steps linearly increase the 

learning rate from 1e-5 to 5e-5 which is further exponentially decayed by a factor of 

0.8.  To verify our claim that the proposed network architecture can further support 

transfer learning based tasks on other target histopathological images dataset, we use 

the weights of our VGGIN-Net trained on BreakHis 40X dataset with some amount 

of fine-tuning to classify IDC +ve and –ve images from Breast-Histopathology-

Images dataset. The weights chosen were from the 40X magnification factor as the 

target dataset also consists of images scanned at a 40X zoom factor. The 

hyperparameters for training the terminal dense layer for the new classification are 

similar to our other experiments except that have used Adam optimizer with a learning 

rate of 0.001. As any learning rate higher than that would have an effect on the overall 

performance of the classifier.  

In our study, we have compared the proposed architecture with a few state-of-

the-art deep learning approaches as well as popularly used CNN architectures. For 

this curated set of architectures, we primarily applied a transfer learning approach. 

This is due to the fact that our target imbalanced classification dataset contains much 

fewer samples in comparison to large-scale datasets (a few million images) which is 

almost always required to effectively train a large ConvNet from scratch. Initially, we 

experimented with VGG architecture using the well-known VGG16 network 
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proposed by Zisserman, et al. (Simonyan and Zisserman 2014). We also used the 

GoogLeNet incarnation of the Inception architecture as well as deep residual network 

ResNet-50 which was invented by He, et al. 2018 to classify histopathological images 

from the imbalanced BreakHis dataset. These methods when applied using transfer 

learning serve as effective baseline methods. So, we have evaluated the performance 

of popular deep learning approaches i.e., VGG16, GoogLeNet, and ResNet-50. We 

have also done the comparative analysis between these methods and our proposed 

deep transfer network, named VGGIN-Net, obtained after considering the features 

extracted till block4 pool layer of VGG16 with a single dense layer, and also with the 

addition of an Inception block and a single dense layer which is the proposed 

architecture. The VGG16 architecture had been modified with a single dense layer 

but after the addition of a naïve Inception block, the same network architecture had 

shown tremendous improvement in the results. From the results tabulated in Tables 

5.1, 5.2 (i) and (ii) and 5.3 (i) and 5.3 (ii), it is observed that VGGIN-Net shows 

remarkable improvement in terms of accuracy, F1 score, IBA, and GMean. In Figure 

5.2. Validation accuracy and loss plot corresponding to the proposed architecture 

VGGIN-Net for different magnification factors are displayed. ROC curve analysis 

with its AUC is also shown in Figure 5.3 to validate the proposed approach for 

different magnification factors 40X, 100X, 200X, and 100X. Figure 5.4. Training, 

validation loss, and accuracy while training VGGIN-Net on BreakHis dataset for 

different magnification factors are displayed. Further Pre-trained weights from the 

same are used to fine-tune the Breast Histopathological Images dataset. In Table 5.1, 

comparative analysis with state-of-the-art methods is shown for the BreakHis dataset 

using accuracy as the evaluation parameter with scores reported across several runs. 

Hence, it is evident that our proposed network with and even without fine-tuning 
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shows remarkable improvement in results. Table 5.2. (i) and (ii) Performance 

Evaluation of VGG16, GoogLeNet, And ResNet-50 with the Modified VGG16 

Architecture and the proposed approach on Breakhis Dataset for 40X, 100X, 200X 

and 400X magnification factors is shown respectively. 

To emphasize the veracity of our claim that the proposed network architecture 

helps to tackle the class imbalance problem, certain experiments were conducted. A 

comparative analysis illustrates the use of various well-known approaches that deems 

to solve the class imbalance problem i.e., with undersampling and oversampling 

techniques. We observe the comparisons to sampling experiments in Table 5.3. (i) 

and Table 5.3 (ii), that the proposed architecture itself is able to tackle the class 

imbalance problem by itself without the requirement of any sampling technique. 

Extensive experiments were conducted related to the block-wise fine-tuning 

technique applied to the proposed network. It is observed from the analysis that the 

block-wise fine-tuning operations have shown significant improvement in 

performance as depicted in Table 5.4. (i) and Table 5.4 (ii). It is evident that different 

fine-tuning combinations are found suitable for different magnification factors. For 

40X, fine-tuning of block3, block4, and Inception block seems to be an ideal choice, 

whereas, in the case of 400X, fine-tuning of block4 and Inception block was only 

found to be the perfect fit. Fine-tuning of the complete network was found to be ideal 

in the case of 100X and 200X magnification factor images. It can be inferred from the 

results that complete fine-tuning of the network is not always the perfect choice for 

different magnification factor images as different block-wise fine-tuning 

combinations can also be deemed to be suitable in certain scenarios. It is clearly 

visible that with the help of suitable block-wise fine-tuning, the network training 
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improves its anytime performance, and learning curves get more and more stable. The 

proposed approach along with fine tuning has shown significant improvements in the 

classification performance. For 40X, 100X, 200X and 400X magnification factors of 

the BreakHis dataset, the best obtained accuracies are 98.51%, 97.53%, 96.688% and 

95.528% respectively. So, in a nutshell, it is notable to mention that our work 

demonstrates that single branch models can converge quite well and our work is not 

intended to deal with the training of increasingly complex residual models. Rather, 

we are aimed at building a simple model with reasonable depth and favorable 

accuracy that can be simply implemented using basic architecture blocks (like 

convolution, ReLU, max pooling, etc.) on a single branch while tackling imbalanced 

biomedical datasets. From the analysis, it was validated that the VGGIN-Net 

architecture also supports the transfer learning concept when tested on other breast 

cancer datasets. An ablation study has been conducted for the proposed VGGIN-Net 

architecture. In Table 5.5, we show experimental results on the 40X magnification 

factor to compare and contrast the use of blocks 3, 4, and 5 as the backbone features 

for our network. We inferred that feature extraction till the block4 pool layer is an 

ideal combination. Another set of experiments was conducted to demonstrate the 

selection of naïve Inception block in the proposed architecture. Comparison with 

another variant of the Inception block as tabulated in Table 5.6. proves that the naïve 

inception block is apt for our model. Although the dimensionality reduction block 

variant of the Inception module is less computationally expensive in comparison to 

the naïve inception block, the attained model performance obtained after combining 

the dimensionality reduction block to the proposed architecture is less in comparison 

to the naïve Inception block as validated by the experimental results illustrated in 

Table 5.6. The naïve Inception block was initially used with 64, 128, and 32 filters 
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for 1x1, 3x3, and 5x5 conv layers respectively. In Table 5.7., we show experiments 

on using diverse widening factors (K) where each value of K indicates the multiple 

factors by which the filters are increased.  It was found that a K value as 1 is the ideal 

choice instead of K values of 2, 3, 5, and 10 in the naïve Inception block. Also, it 

helps to validate our choice of the number of filters besides keeping the computational 

complexity optimum since K=1 is the lowest possible considered value. More results 

in the supplementary file highlight the significance of data augmentation for 

enhancing the performance of the various deep networks including VGGIN-Net. 

Table 5.8 illustrates the experiments related to the proposed VGGIN-Net with and 

without data augmentation for different magnification factors for the BreakHis 

dataset. Experiments show that VGGIN-Net with data augmentation works 

significantly better in comparison to VGGIN-Net without Data Augmentation. Figure 

5.5. Performance evaluation of our proposed VGGIN-Net across epochs with and 

without data augmentation learning curves are shown for accuracy and loss for 

training and test sets for different magnification factors of the BREAKHIS dataset 

shown. The incorporation of data augmentation in the training pipeline helps reduce 

overfitting by imparting the necessary regularization, allowing the models to learn 

continually across several epochs. For our case, we have applied all random 

transformations including random cropping of samples to fixed crop size. To validate 

that our design of the proposed deep transfer architecture supports further transfer 

learning on any other breast cancer biomedical dataset we performed experiments as 

illustrated in Table 5.9 using the Breast-Histopathological-Images dataset. Table 5.10. 

analysis of the effect of data augmentation (applied at a mini-batch level using 

transformations as aforementioned) on baseline VGG16, GoogLeNet networks and 
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comparing it with proposed VGGIN-Net network using the ratio of inter-class F1 

scores for models trained on BREAKHIS dataset. 

Final conclusion drawn from this work is a novel deep learning based network 

VGGIN-Net has been proposed using layers from the pre-trained deep network VGG-

16 at the lower level, and a trainable Inception module and dense layers at the higher 

level. The proposed transfer network has been compared with various state-of-the-art 

approaches on the basis of various performance evaluation metrics. It is validated 

from the experiments that VGGIN-Net was designed to deal with the imbalanced 

breast cancer dataset and overall helps to improvise the robustness and 

generalizability of the approach. The proposed deep transfer network with fine-tuning 

has achieved accuracies of 97.10%, 96.67%, 97.16%, and 93.68% for the different 

magnification factors, for the BreakHis dataset. The proposed network was able to 

classify both the minority and majority classes effectively. We also validated through 

experiments that the trained VGGIN-Net model supports transfer learning on other 

breast cancer datasets.  

Table 5.1. Comparison Of The Proposed Approach With The State-Of-The-Art 

Approaches On BreakHis Dataset. 

Technique 40X 100X 200X 400X 

Spanhol, et al. 2016 0.8960 ± 0.0650 0.8500 ± 0.0480 0.8400 ± 0.0320 0.8080 ± 0.0310 

Spanhol, et al. 2017 0.8460 ± 0.0290 0.8480 ± 0.0420 0.8420 ± 0.0170 0.8160 ± 0.0370 

Bayramoglu, et al. 

2016 
0.8300 ± 0.0300 0.8310 ± 0.0350 0.8460 ± 0.0270 0.8210 ± 0.0440 

Zhu, et al. 2019 0.8570 ± 0.0190 0.8420 ± 0.0320 0.8490 ± 0.0220 0.8010 ± 0.0440 

Gupta and 

Bhavsar 2017 
0.8674 ± 0.0237 0.8856 ± 0.0273 0.9031 ± 0.0376 0.8831 ± 0.0301 
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Deniz, et al. 2018 0.9096 ± 0.0159 0.9058 ± 0.0196 0.9137± 0.0172 0.9130 ± 0.0740 

Song, et al. 2017 0.9002 ± 0.0302 0.9120 ± 0.0440 0.8780 ± 0.0530 0.8740 ± 0.0720 

Gupta and 

Bhavsar 2018 
0.9471 ± 0.0088 0.9590 ± 0.0420 0.9676 ± 0.0109 0.8911 ± 0.0012 

Ours 0.9588 ± 0.0033 0.9657 ± 0.0087 0.9500 ± 0.0122 0.9315 ± 0.0034 

Ours (with fine-

tuning) 
0.9710 ± 0.0046 0.9667 ± 0.0022 0.9716 ± 0.0033 0.9368 ± 0.0053 

 

Table 5.2. (i) Performance Evaluation of VGG16, GoogLeNet, And ResNet-50 

with the Modified VGG16 Architecture and the Proposed Approach on Breakhis 

Dataset for 40x and 100x magnification factors. 

Technique 

40X 100X 

Accura

cy 
F1 IBA GMean 

Accurac

y 
F1 IBA GMean 

VGG16 0.9294 0.87 / 0.95 0.79 0.89 0.9240 0.86 / 0.95 0.80 0.89 

GoogLeNet 0.8682 0.78 / 0.91 0.71 0.84 0.8674 0.78 / 0.91 0.72 0.85 

ResNet50 0.9350 0.89 / 0.95 0.85 0.92 0.9381 0.89 / 0.96 0.86 0.93 

Modified VGG16 

w/ Single Dense 

Layer 

0.9387 0.89 / 0.96 0.84 0.91 0.9522 0.92 / 0.97 0.90 0.95 

Modified VGG16 

w/ Inception 

Block w/ Single 

Dense Layer 

0.9628 0.93 / 0.97 0.93 0.96 0.9681 0.95 / 0.98 0.93 0.96 

Table 5.2. (ii) Performance Evaluation of VGG16, GoogLeNet, And 

ResNet-50 with the Modified VGG16 Architecture and the Proposed Approach on 

BreakHis Dataset for 200x and 400x magnification factors. 

Technique 

200X 400X 

Accura

cy 
F1 IBA GMean 

Accurac

y 
F1 IBA GMean 

VGG16 0.9119 0.86 / 0.94 0.83 0.91 0.8913 0.81 / 0.92 0.72 0.85 

GoogLeNet 0.8880 0.82 / 0.92 0.78 0.88 0.8668 0.77 / 0.91 0.69 0.83 

ResNet50 0.9431 0.90 / 0.96 0.87 0.93 0.9221 0.87 / 0.94 0.81 0.90 

Modified VGG16 

w/ Single Dense 

Layer 

0.9357 0.88 / 0.96 0.82 0.91 0.8893 0.82 / 0.92 0.77 0.88 

Modified VGG16 

w/ Inception 

Block w/ Single 

Dense Layer 

0.9651 0.88 / 0.96 0.80 0.89 0.9364 0.89 / 0.95 0.86 0.93 
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Table 5.3. (i) Performance Evaluation of the Proposed Approach with 

Undersampling and Oversampling Techniques on BreakHis dataset for 40X and 

100X magnification factors. 

Sampling 

Technique 

40X 100X 

Accur

acy 
F1 IBA GMean Accuracy F1 IBA GMean 

Undersampling 0.9591 0.93 / 0.97 0.89 0.94 0.9381 
0.90 / 

0.96 
0.89 0.94 

Oversampling 0.9406 
 0.90 / 

0.96 
0.89 0.94 0.9593 

0.93 / 

0.97 
0.90 0.95 

None 0.9628 0.93 / 0.97 0.93 0.96 0.9681 
0.95 / 

0.98 
0.93 0.96 

Table 5.3. (ii) Performance Evaluation of the Proposed Approach with 

Undersampling and Oversampling Techniques on BreakHis dataset for 200X and 

400X magnification factors. 

Sampling 

Technique 

200X 400X 

Accur

acy 
F1 IBA GMean 

Accurac

y 
F1 IBA GMean 

Undersampling 0.9540 
  0.91 / 

0.97 
0.86 0.92 0.9262 0.88 / 0.95 0.84 0.91 

Oversampling 0.9669 
 0.94 / 

0.98 
0.92 0.96 0.9303 0.88 / 0.95 0.83 0.91 

None 0.9651 
0.88 / 

0.96 
0.80 0.89 0.9364 0.89 / 0.95 0.86 0.93 

 

Table 5.4. (i) Performance Evaluation of Block Wise Fine-Tuning on Proposed 

VGGIN-Net on Breakhis Dataset  for 40x, 100x Magnification Factors. 

Fine Tuning 

40X 100X 

Accurac

y 
F1 IBA GMean Accuracy F1 IBA GMean 

Complete 

Network 
0.9666 

0.99 / 

0.97 
0.89 0.94 0.9753 0.96 / 0.98   0.96 0.98 

Block 2, 3, 4, 

Inception block 
0.9777 

0.96 / 

0.98 
0.95 0.97 0.8674 0.71 / 0.91 0.56 0.74 

Block 3, 4, 

Inception block 
0.9851 

0.97 / 

0.99 
0.96 0.98 0.9646 0.94 / 0.98 0.89  0.94 

Block 4, 

Inception block 
0.9610 

 0.93 / 

0.97 
0.88 0.94 0.9700 0.95 / 0.98 0.92 0.96 

No Fine Tuning 0.9628 
0.93 / 

0.97 
0.93 0.96 0.9752 0.95 / 0.98 0.93 0.97 
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Table 5.4. (ii) Performance Evaluation of Block Wise Fine-Tuning on 

Proposed VGGIN-Net on Breakhis Dataset  for 200x, 400x Magnification 

Factors. 

Fine Tuning 

200X 400X 

Accurac

y 
F1 IBA GMean Accuracy F1 IBA GMean 

Complete 

Network 
0.9688 

0.95 / 

0.98 
0.92 0.96 0.9077 0.86 / 0.93 0.85 0.93 

Block 2, 3, 4, 

Inception block 
0.9467 

0.91 / 

0.96 
0.91 0.95 0.9323 0.89 / 0.95 0.83 0.91 

Block 3, 4, 

Inception block 
0.9651 

0.94 / 

0.98 
 0.89 0.94 0.9426  0.90 / 0.96 0.85 0.92 

Block 4, 

Inception block 
0.9614 

0.93 / 

0.97 
0.92 0.96 0.9528  0.92 / 0.97 0.91 0.95 

No Fine Tuning 0.9651 
0.88 / 

0.96 
0.80 0.89 0.9364 0.89 / 0.95 0.86 0.93 

 
Figure 5.2. Validation accuracy and loss plot corresponding to the proposed 

architecture VGGIN-Net for different magnification factors (40X, 100X, 200X 

and 400X). Purple line indicates the start of fine tuning.
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Figure 5.3. ROC curve comparison of proposed approach with state-of-the-art 

networks in case of (i) 40X, (ii) 100X, (iii) 200X and (iv) 400X. 

Table 5.5. Analysis of features extracted from different blocks of VGG16 

architecture to find the appropriate features in the Proposed architecture for 40X 

magnification factor on BreakHis Dataset. 

Technique 

40X 

Accuracy F1 IBA GMean 

Proposed Network using 

block3_pool 
0.9536 

0.92 / 

0.97 
0.89 0.94 

Proposed Network using 

block4_pool 
0.9628 

0.93 / 

0.97 
0.93 0.96 

Proposed Network using  

block5_pool 
0.9536 

0.92 / 

0.97 
0.89 0.94 

 

Table 5.6. Analysis of Proposed architecture with the Inception block and 

dimensionality reduction Inception block for 40X magnification factor on 

BreakHis Dataset. 

Technique 

40X 

Accuracy F1 IBA GMean 

Proposed Network w/ 

Naïve Inception Block 
0.9628 0.93 / 0.97 0.93 0.96 
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Proposed Network w/ 

Dimensionality 

Reduction Inception 

Block 

0.9443 0.90 / 0.96 0.82 0.90 

Table 5.7. Analysis Of Appropriate Number Of Filters In Inception Block 

To Be Used In The Proposed Architecture For 40x Magnification Factor On 

Breakhis Dataset. 

Widening 

Factor 

40X 

Accuracy F1 IBA GMean 

k=1 0.9628 0.93 / 0.97 0.93 0.96 

k=2 0.9443 0.90 / 0.96 0.83 0.91 

k=5 0.9684 0.95 / 0.98 0.93  0.96 

k=10 0.9684 0.94 / 0.98 0.90 0.95 

 

Table 5.8. Proposed VGGIN-Net with and without data augmentation for 

40x, 100x, 200x And 400x Magnification Factors On Breakhis Dataset. 

Technique 

40X 100X 

Accuracy F1 IBA GMean Accuracy F1 IBA GMean 

VGGIN-Net w/ 

Data 

Augmentation 

0.9628 
0.93 / 

0.97 
0.93 0.96 0.9681 

0.95 / 

0.98 
0.93 0.96 

VGGIN-Net w/o 

Data 

Augmentation 

0.9239 
0.86 / 

0.95 
0.80 0.89 0.9134 

0.85/ 

0.94 
0.78 0.88 

 

Technique 

200X 400X 

Accuracy F1 IBA GMean Accuracy F1 IBA GMean 
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VGGIN-Net w/ 

Data 

Augmentation 

0.9651 
0.88 / 

0.96 
0.80 0.89 0.9364 

0.89 / 

0.95 
0.86 0.93 

VGGIN-Net w/o 

Data 

Augmentation 

0.9155 
0.85 / 

0.94 
0.78 0.88 0.8852 

0.79/ 

0.92 
0.68 0.82 

 

Table 5.9. Transfer Learning of Proposed VGGIN-Net On Breast Histopathological 

Images Dataset with and without Fine-Tuning after pre-training on BreakHis dataset. 

Transfer Learning Accuracy F1 IBA GMean 

VGGIN-Net as 

Fixed Feature 

Extractor 

0.8470 
0.89 / 
0.73 

0.66 0.81 

Fine Tuning the 

VGGIN-Net 

Inception Block 

0.8678 
0.91 / 

0.75 
0.67 0.82 
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Figure 5.4. Training, validation loss, and accuracy while training VGGIN-Net on 

BreakHis dataset for different magnification factors. Pre-trained weights from the 

same are used to fine-tune on Breast Histopathological Images dataset.1 

 

Table 5.10. Analysis of effect of data augmentation (applied at mini-batch 

level using transformations as aforementioned) on baseline VGG16, GoogLeNet 

networks and comparing it with proposed VGGIN-Net network using ratio of 

inter-class F1 scores for models trained on BREAKHIS dataset. 

Model Magnificati

on Factor 

Without Data Augmentation With Data Augmentation 

F1 Score F1 Score 

Benign Malignant Benign Malignant 

Baseline Consideration 

VGG16 40X 0.80 0.92 0.87 0.95 

Ratio: 0.8695 Ratio: 0.9157 

 
1 https://tensorboard.dev/experiment/PSnYyZUWTBem4dLvQYNm2g/  

https://tensorboard.dev/experiment/PSnYyZUWTBem4dLvQYNm2g/
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100X 0.80 0.92 0.86 0.95 

Ratio: 0.8695 Ratio: 0.9052 

200X 0.83 0.93 0.86 0.94 

Ratio: 0.8924 Ratio: 0.9148 

  

400X 

0.74 0.90 0.81 0.92 

Ratio: 0.8222 Ratio: 0.8804 

GoogLeNet 40X 0.81 0.93 0.78 0.91 

Ratio: 0.8709 Ratio: 0.8571 

100X 0.72 0.90 0.78 0.91 

Ratio: 0.8 Ratio: 0.8571 

200X 0.83 0.93 0.82 0.92 

Ratio: 0.8924 Ratio: 0.8913 

  

400X 

0.79 0.92 0.77 0.91 

Ratio: 0.8586 Ratio: 0.8461 

Proposed Approach 

VGGIN-Net 40X 0.86 0.95 0.93 0.97 

Ratio: 0.9052 Ratio: 0.9587 

100X 0.85 0.94 0.95 0.98 

Ratio: 0.9042 Ratio: 0.9693 

200X 0.85 0.94 0.88 0.96 

Ratio: 0.9042 Ratio: 0.9166 

  

400X 

0.79 0.92 0.89 0.95 

Ratio: 0.8586 Ratio: 0.9368 
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Figure 5.5.  Performance evaluation of our proposed VGGIN-Net across epochs. 

(a) without data augmentation and (b) with data augmentation. (Top to Bottom) 

Learning curves are shown for accuracy and loss for training and test sets for 

different magnification factors of the BREAKHIS dataset (Left to Right 

respectively). 

Further, we have designed a novel approach to correctly classify the cervix 

type from cervigram images for a multi-class imbalanced dataset. We have extended 

our work VGGIN-Net for multi-class imbalanced datasets. In the proposed model, we 

have used regularization in the form of dropout and data augmentation. Also, we have 

used the RandAugment approach for data augmentation for our multi-class 

imbalanced task which was found better as opposed to random combinations of flip, 

rotate, shift, and zoom which was used with this model on the binary classification 
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task of BreakHis. The experimental results prove the proposed approach along with 

the data augmentation and random undersampling strategy is effective for multi-class 

imbalanced datasets. As analyzed through our comparative analysis, the proposed 

approach in comparison to the other state-of-the-art approaches is vividly proven to 

be a more efficient method. 

5.1.2 Multi-class Classification using VGGIN-Net 

Cervical cancer is a deadly type of cancer that occurs in females. Screening 

for cancer is a very crucial aspect in order to cure it at its early stages. For cervical 

cancer screening tasks, the first primary task is the detection of the female cancer type 

which can be any of three known types. Type 1 cervixes don't require screening but 

women having Type 2 and Type 3 cervix require screening for further cancer 

detection (Matsuo, et al. 2019). Despite the availability of advanced medical and 

science facilities, there are still challenges to detect the cervix transformation zones 

correctly for further treatment later. So correct screening is very important to strongly 

fight against cancer through further diagnosis if required. However, screening and 

detection of the cervix type manually are problematic, time-consuming, and tedious 

due to the high probability and occurrence of manual errors. So, an automated 

screening approach can increase the efficiency of cancer detection tasks as well.  In 

this work we have proposed the deep learning based architecture for multi-class 

imbalanced datasets. The crucial  contributions of the work are (1) transfer learning 

of the features from a large dataset to a small cervical cancer multi-class imbalanced 

dataset and (2) data augmentation was applied successfully which has an overall 

impact on the deep learning architectures along with random undersampling strategy 

(Pereira and Nunes 2018) on the performance of the deep learning networks and also 
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avoids overfitting or underfitting problems to great extend (3) Extensive set of 

experiments were performed to demonstrate that the proposed approach achieves 

better performance using various evaluation measures such accuracy (weighted 

average and micro average), precision, recall, F1 score, geometric mean, index 

balanced accuracy, (Japkowicz 2013) in comparison to various state-of-the-art deep 

learning architectures. We have designed a novel approach to correctly classify the 

cervix type from cervigram images for a multi-class imbalanced dataset. We have 

extended our work on VGGIN-Net for multi-class imbalanced datasets and applied 

the proposed VGGIN-Net model to multi-class cervical cancer screening tasks instead 

of the binary classification of Breast cancer datasets (Saini and Susan 2022a). The 

proposed novel deep neural network architecture is based on the transfer learning 

approach by using the features till the block4 pool layer of the VGG16 pre-trained 

model (Simonyan and Zisserman 2014) along with the naïve Inception block module 

(Szegedy, et al. 2015). Further, we have added the batch normalization (Ioffe, et al. 

2015), flatten, dense, flatten layers in the proposed architecture, and constructed the 

24-layer architecture by stacking the appropriate layers of VGG16 layers with the 

naïve Inception block and a few more layers. In the proposed model, we use 

regularization in the form of dropout and data augmentation. We have used the 

RandAugment (Cubuk, et al. 2020) approach for data augmentation for our multi-

class imbalanced task which was found better as opposed to random combinations of 

flip, rotate, shift, and zoom which was used with this model on the binary 

classification task of BreakHis (Spanhlol, et al. 2015). All our experiments related to 

this work were trained on Google Cloud TPU hardware (Ying, et al. 2018) access to 

which was granted through the TensorFlow Research Cloud (TRC) program. Each of 

our deep learning models was trained on the TPU v3-8 accelerator with the help of 
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128 GB high bandwidth memory and the TensorFlow Keras framework and the 

training of the networks for multi-class classification took around 30 minutes on Intel 

MobileODT Cervical Cancer Dataset. While training the models, we have considered 

50 steps per epoch, the number of epochs as 300 and 512 as the batch size. Similar to 

the training setting used previously. We set the learning rate to 0.0001 and allow the 

models to train using the SGD algorithm with 0.9 as momentum. As a part of the data 

pipeline for model training, the training images were resized to 299 x 224, applied 

RandAugment with m=8 and n=2, and further randomly cropped into images of size 

224 x 224. During testing and evaluation, images are centrally cropped to 224 x 224 

size. 

We have done the comparative analysis between various pre-trained networks 

with our proposed approach on a multi-class imbalanced dataset containing cervigram 

images in order to detect different cervix types helpful for cancer screening tasks. The 

models used for comparison are trained on a large-scale ImageNet dataset and further 

pre-trained on the cervix dataset similar to the training setting for our proposed 

VGGIN-Net model. Table 5.11. illustrates an analysis between our proposed VGGIN-

Net model and other state-of-the-art CNN architectures such as VGG16, InceptionV3, 

ResNet50, ResNet50V2, Xception, InceptionResNetV2, DenseNet121, EfficientNet-

B0. Imbalanced measures such as Precision, Recall, F1 Score, Index Balanced 

Accuracy, and Geometric Mean for each class are used to determine which approach 

is able to tackle imbalance to a greater extent. Our analysis shows that among all the 

models VGGIN-Net is able to perform quite better and gives significant performance 

improvement over other pre-trained models. In   Table 5.12. We have done a 

comparison of our proposed VGGIN-Net approach with other state-of-the-art pre-
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trained models even without applying the rejection resampling technique by using 

imbalanced evaluation measures. It was observed that there is a significant drop in the 

results which proves that application of rejection resampling is important for the given 

classification task. Further, we have conducted the ablation study to show the efficacy 

of different hyperparameters chosen in our proposed approach as shown in Tables 

5.13 (i) and (ii). Additionally, we have shown the efficacy of transfer learning in our 

proposed approach by tabulating the results of different CNN models trained from 

scratch. Due to the smaller dataset having fewer samples of images, visual similarities 

present in various classes, and a multi-class imbalanced dataset, this classification 

task was challenging to deal with. To conclude, here in this work we have proposed 

an approach along with the data augmentation and random crop and rejection 

resampling techniques to combat the challenges faced by multi-class imbalanced 

classification tasks. We have done a comparative analysis of various pre-trained 

networks with a cervical cancer dataset on the basis of various evaluation metrics such 

as accuracy, precision, recall, F1 score, geometric mean and index balanced accuracy. 

The experimental results show that the proposed approach is demonstrating better 

results than compared to pre-trained networks. 

Table 5.11. Comparison of proposed VGGIN-Net Approach with other state-of-

the-art pre-trained models using imbalanced evaluation measures. 

Model 

Accuracy 

Precision Recall F1 Score 
Index Balanced 

Accuracy 
Geometric Mean 
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T
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e 

3 
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VGG16 

0.7

1 

0.

59 

0.

73 

0.

76 

0.

72 

0.

63 

0.

77 

0.

66 

0.

71 

0.

61 

0.

75 

0.

71 

0.

71 

0.

56 

0.

54 

0.

59 

0.

56 

0.

76 

0.

73 

0.

77 

0.

75 

InceptionV3 

0.7

1 

0.

64 

0.

75 

0.

68 

0.

71 

0.

67 

0.

72 

0.

71 

0.

71 

0.

65 

0.

74 

0.

7 

0.

71 

0.

6 

0.

54 

0.

59 

0.

56 

0.

78 

0.

73 

0.

78 

0.

75 

ResNet50V2 

0.7

3 

0.

65 

0.

75 

0.

74 

0.

73 

0.

59 

0.

8 

0.

69 

0.

73 

0.

62 

0.

77 

0.

72 

0.

73 

0.

53 

0.

57 

0.

6 

0.

58 

0.

74 

0.

75 

0.

79 

0.

76 

Xception 

0.5

9 

0.

39 

0.

74 

0.

61 

0.

64 

0.

62 

0.

48 

0.

77 

0.

59 

0.

48 

0.

58 

0.

68 

0.

6 

0.

49 

0.

38 

0.

6 

0.

47 

0.

7 

0.

63 

0.

77 

0.

69 

InceptionResnet

V2 

0.6

3 

0.

48 

0.

72 

0.

63 

0.

65 

0.

66 

0.

58 

0.

71 

0.

63 

0.

55 

0.

65 

0.

67 

0.

64 

0.

55 

0.

44 

0.

57 

0.

5 

0.

75 

0.

67 

0.

76 

0.

71 
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DenseNet121 

0.7

2 

0.

61 

0.

74 

0.

75 

0.

72 

0.

62 

0.

78 

0.

67 

0.

72 

0.

62 

0.

76 

0.

71 

0.

72 

0.

55 

0.

55 

0.

59 

0.

56 

0.

76 

0.

74 

0.

78 

0.

75 

EfficientNet-B0 

0.5

6 

0.

37 

0.

66 

0.

62 

0.

6 

0.

63 

0.

49 

0.

64 

0.

56 

0.

47 

0.

56 

0.

63 

0.

57 

0.

49 

0.

35 

0.

51 

0.

42 

0.

7 

0.

6 

0.

72 

0.

65 

VGGIN-Net 

0.7

5 

0.

74 

0.

76 

0.

73 

0.

75 

0.

66 

0.

8 

0.

7 

0.

75 

0.

7 

0.

78 

0.

72 

0.

74 

0.

61 

0.

58 

0.

61 

0.

59 

0.

79 

0.

76 

0.

79 

0.

77 

Table 5.12. Comparison of proposed VGGIN-Net Approach with other state-of-

the-art pre-trained models without applying rejection resampling using 

imbalanced evaluation measures. 
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0.

61 
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55 
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56 
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56 
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79 

0.

74 

0.
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0.
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InceptionV3 

0.7
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0.

71 

0.

76 

0.

73 

0.
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0.

83 
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61 
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72 
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0.

68 
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55 

0.
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0.

54 
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54 
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0.7
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0.
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0.

55 

0.

83 

0.
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0.
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0.

72 

0.
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0.

57 

0.

55 

0.
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76 
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Xception 0.6 

0.
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0.
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0.

59 

0.

28 
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0.

36 

0.
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0.

53 

0.
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0.

69 

0.
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33 

0.

82 

0.

57 

0.
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0.

42 

0.

73 

0.

63 

0.

64 

0.

3 

0.

45 

0.

49 

0.

44 

0.

56 

0.

66 

0.

71 

0.

66 

VGGIN-Net 

0.7

1 

0.

83 

0.

68 

0.

73 

0.

72 

0.

6 

0.

84 

0.

56 

0.

71 

0.

69 

0.

75 

0.

63 

0.

7 

0.

56 

0.

49 

0.

49 

0.

5 

0.

76 

0.

69 

0.

71 

0.

71 

Table 5.13. (a) Ablation experiments to determine the veracity of the proposed 

VGGIN-Net approach. 
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0.

78 
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0.
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0.
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0.
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0.
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0.
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0.

76 

Table 5.13 (b) Ablation experiments to compare with and without transfer 

learning of various pre-trained networks. 

Model 

Accuracy 
Precision Recall F1 Score 

Index Balanced 

Accuracy 
Geometric Mean 
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0.
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47 
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InceptionV3 
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Learning) 

0.3
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0.
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0.

26 
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33 
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0.

46 

0.

0 

0.

56 

0.

25 

0.

51 

0.

0 

0.

4 

0.

21 

0.

71 

0.

0 

0.

56 

0.

25 

VGG16 

(w/ Transfer 

Learning) 

0.7

1 

0.

59 

0.

73 

0.

76 

0.

72 

0.
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76 

EfficientNet-B0 
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0.5
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0.
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0.
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5.2 Limitations 

The proposed VGGIN-Net has demonstrated excellent performance in image 

classification tasks. However, it was primarily designed for binary and multi-class 

classification problems, specifically in distinguishing between different types of 

cancer in biomedical datasets. One limitation associated with VGGIN-Net is to 

explore the performance and generalizability of VGGIN-Net on different types of 

biomedical datasets, particularly in various cancer classification tasks. This limitation 

needs to be addressed in order to explore the potential of VGGIN-Net for multi-class 

challenges, ultimately improving its overall generalizability and performance across 

diverse biomedical datasets.
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Chapter 6 

Summary and Conclusions 

In this chapter we have presented the overall conclusion of the thesis derived 

from different experimental results. This section is presented in two parts: a list of 

conclusions and the curated set of research contributions which are based upon our 

work on the design and development of deep learning architectures to address the 

class imbalance problem described in various chapters above. Further, we have added 

the future scope of our research as a separate subsection in this chapter to briefly 

describe the future direction and scope of the conducted research work. 

6.1. Conclusion 

In the real-world, many machine learning problems are prone to the curse of 

class imbalance.  The most popular applications in this field are generally around 

fraud detection or are usually native to the biomedical domain. In the case of fraud 

detection and other imbalanced applications, we deal with supervised learning 

problems for structured data, text, etc. However, for image classification problems, 

we naturally found many datasets that belong to the biomedical domain and have a 

sufficiently high number of samples for training deep models which motivated us to 

work with such datasets for most of our work apart from the natural scene features 

dataset consisting of images of objects. Within the biomedical domain itself, we could 

find different datasets having different imbalanced ratios for both multi-class and 

binary problems for classification. Interestingly, both object detection and 

segmentation problems were also inherently found to be highly imbalanced in nature 
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due to the large number of background pixels outnumbering the other foreground 

pixels.  

We have used a variety of different data augmentation strategies for tackling 

the class imbalance problem. We found that data augmentation is a regularization 

technique that can be used to resolve the class imbalance scenario to an extent. 

Applying data augmentation to minority classes is well suited for the minority class 

where samples are low as it is easy to balance the distribution by nearly creating the 

artificial samples using synthetic generation. For larger datasets, applying data 

augmentation on both classes is more suitable as augmentation can be used directly 

in the pipeline at a mini-batch level which helps the model to learn different variations 

within the dataset for imbalance settings and is much more suitable for large datasets. 

In case the dataset is large and highly imbalanced, we can use data augmentation on 

both the classes as well as use random undersampling at a mini-batch level to help 

solve the imbalance problem.  

However there are certain limitations that come in while using deep learning-

based systems as deep learning comes at the expense of computational resources, and 

it can be difficult to use deep learning models on the edge, like IoT devices, embedded 

chips, etc. Specialized hardware specific to ML applications would be required in 

such scenarios. Deep learning and neural networks in general try to capture the 

different variations in the trained dataset and given task, for applications where the 

data input to the model doesn’t have many variations, deep learning would be overkill. 

Extremely vast amount of training data is required to train models that are able to 
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yield good performance. Transfer learning serves as a solution but it can be 

challenging to find pre-trained models for specific applications. 

Some of the major conclusions that can be drawn from the study are listed as 

follows: 

i. Deep features extracted appear to be more relevant in comparison to the 

other traditional features as it shows tremendous improvement in the performance of 

the Bag-of-visual-words approach. 

ii.Accuracy cannot always be considered the right evaluation metric in case of 

an imbalanced dataset. There is a need to consider other evaluation metrics in order 

to gauge the actual performance of any model as considering accuracy as the only 

evaluation measure can many times lead to false results. 

iii. Transfer learning is appropriate in order to transfer the knowledge from the 

larger dataset to a smaller targeted dataset. It will save the training time to train any 

network from scratch and improve the performance and generalizability of the model. 

iv. Explored the effect of applying the data augmentation (i) Traditional affine 

transformation (shifted, zoomed in /out, rotated, flipped, distorted, cropping, rescaling 

or shaded with hue, etc.) (ii) Generative Adversarial Nets (GANs) to generate 

synthetic samples from the original images which will help to train the models to 
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become more robust by seeing more synthetic created samples and also helps in 

resolving class imbalance issues. 

v. Applying different regularization techniques like dropout and data 

augmentation helps reduce overfitting to a great extent even for highly imbalanced 

datasets. 

vi. Created the novel deep learning architecture VGGIN-Net by combining the 

appropriate layers from VGG16 architecture with naive Inception block and a single 

dense (fully connected) layer to proposed network architecture to deal with the higher-

end linear features and to find the probability of occurrence of the image belonging 

to each class for the classification problem. Further, batch normalization, flatten, and 

dropout layers are included to improvise the network performance. 

vii. The DenseNet121 pre-trained model is well suited for diabetic retinopathy 

image classification. The EfficientDet-D0 and SSD (MobileNetV1) are best suited for 

object detection on diabetic retinopathy datasets. In the case of segmentation, PSPNet 

(with focal loss) is working best in comparison to other pre-trained networks.  

viii. VGGIN-Net network is also able to work well on multi-class imbalanced 

datasets apart from binary classification datasets which is empirically evaluated with 

the help of applying the same model to the Cervical cancer screening dataset. 
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x. VGGIN-Net can be deemed to be a novel deep transfer network obtained 

by the fusion of VGG16 and Inception architectures which works quite well on 

multiple classification tasks from the biomedical domain. 

xi. Application of RandAugment and other automated data augmentation 

techniques can be used to rapidly simplify the data pre-processing pipeline used for 

deep network training which could lead to quite better model performance with a 

certain amount of parameter tuning. 

xii. For highly imbalanced datasets, especially the ones which are present in 

the biomedical domain, rejection resampling or mini-batch level random 

oversampling serves as a simple yet effective method to tackle class imbalance as the 

training distribution gets balanced. 

6.2. Research Contributions 

The research contributions are listed briefly as follows:  

i. Analyzed and explored the relevance of using the data augmentation 

operations to the minority class only to enhance the efficiency of the network 

architecture instead of applying to both the classes (majority and minority). 

ii. Assessed the significance of applying pre-trained deep neural networks for 

Image classification, object detection, and classification tasks using imbalanced 

datasets. 
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iii. Development of unique combinations of deep learning architecture to 

handle the class imbalance problem for multi-class and binary class and imbalanced 

datasets. 

iv. Successfully applied transfer learning approach to extract deep features 

using pre-trained models, for generating the visual codebook in our improved Bag-

of-Visual-Words model. 

v. Conducted an extensive empirical analysis to find the optimal set of deep 

features for codebook generation and the appropriate classifier for class imbalance 

problem. 

vi. Analyzing the role of Chi-Squared kernelized SVM as an effective 

classifier for the histogram features. 

vii. Successfully created a novel deep transfer model using DCGAN as a data 

augmentation technique for cancer-related biomedical imbalanced datasets for images 

of varying magnification factors 

viii. Mitigated the effect of covariance shift by using the Batch Normalization 

layer which effectively normalizes data inputs tackling imbalanced situations. 
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ix. Proposed a novel approach using transfer learning by transferring the 

knowledge from the source ImageNet object dataset to the target Breast cancer dataset 

effectively. 

x. Analyzed the proposed transfer learning approaches with respect to other 

state-of-the-art networks for distinguishing the Benign samples from Malignant in 

case of the imbalanced dataset.  

xi. Analyzed the effect of weighted SVM in comparison to different SVM 

variants when applied to extracted features from the images. 

xii. Emphasis on the aspect that accuracy is not the only evaluation metric to 

check the efficacy of deep learning architecture on imbalanced datasets. There are 

other evaluation metrics that need to be considered while measuring the imbalanced 

dataset such as Precision, Recall, Receiver Operating Characteristics (ROC) analysis, 

Area Under the curve (AUC), Mathew’s correlation, and Cohen’s kappa coefficient.  

xiii. Analyzed the significance of SGDR optimizer in different networks. 

From the analysis, it was found that the proposed approach is more stable in 

comparison to other approaches using SGDR optimizer, which further leads to 

improved convergence.  

xiv. Analyzed the effect of applying fine-tuning by retraining pre-trained 

networks on the deep learning architectures. 
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xv. Emphasized research on the medical diabetic retinopathy imbalanced 

datasets for classification, object detection, and segmentation tasks together as a 

single unit by conducting extensive comparative analysis between various state-of-

the-art pre-trained models on varied size datasets. 

xvi. Effective classification of cervigram images used for cancer screening to 

detect different cervix types with the proposed VGGIN-Net model, which proves the 

efficacy of the model even on multi-class imbalanced datasets. 

xvii. Society could be benefitted through research in biomedical systems and 

models for detecting and screening different diseases because most of our work is 

focused in the biomedical domain and inherently, we find that problems in biomedical 

are also highly imbalanced in nature. 

6.3. Future Scope 

This section discusses the different limitations in our current research work 

followed by the future scope of the work ahead. Object detection and segmentation 

tasks are more challenging for multi-class imbalanced datasets than classification 

tasks. Thus, further research will need to be carried out in the creation of novel deep 

learning architectures for object detection and segmentation. Also, new variants of 

deep learning architectures can be designed to deal with imbalanced scenarios for 

various other challenging real-world problems apart from natural scene features, 

objects, and or biomedical domain. We shall also create different deep learning 

architectures in the future for a multi-class imbalanced dataset for object detection 

and segmentation by exploring the effect and usage of focal loss in the creation of 
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deep learning to handle class imbalance problems. We would also look into 

constructing other deep network architectures as well as explore more advanced pre-

trained network architectures combining them with custom layers which would have 

significance in the overall healthcare sector. Additionally, we shall be developing a 

cloud-based framework where the deep neural network architectures with the best 

performance could be easily accessible to diagnose diseases accurately so that disease 

can be tackled at an early stage by automatic deep learning and computer vision-based 

approaches.  

 

 

 

Table 6.1: Summarization of results in thesis 

 

Chapter  Proposed method 

and its 

performance 

Database 

Used 

Classifier 

used  

Comparison 

Methods 

Highlights/ 

Novelties 

Chapter 3 ResNet-50 Deep 
Feature 

Extraction for 

Bag-of-Visual-

Words codebook 

generation with 

Chi² SVM 

Classification 

-Graz-02 

-TF-

Flowers  

- Chi² 
SVM   

 

- Quasi 

SVM  

➢VGG16  

➢Inception-V3 

➢ResNet-50 

➢SIFT + BOVW 

➢VGG16 + 

BOVW 

➢Inception-V3 + 

BOVW 

 

 

➢ResNet-50 

BOVW Features 

+Logistic 

Regression 

➢ResNet-50 

BOVW Features + 

Linear 

Discriminative 

Analysis 

➢ResNet-50 

BOVW Features 

➢Designed to 

tackle the 

challenges 

associated with 

multi-class 

imbalanced 

datasets. 
 

 

➢Features are 

extracted from 

residual block of 

the fifth layer just 
preceding the 

global average 

pooling and dense 

layer of pre-trained 

model ResNet-50, 

defined as the 

Res5c features are 

most suitable deep 

features 
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+KNearest 

Neighbors 

Classifier 

➢ResNet-50 

BOVW Features + 

Decision Tree 

➢ResNet-50 

BOVW Features 

+Gaussian Naïve 

Bayes 
 

 

 

incorporated in the 

proposed 

approach. 

 

➢ non-linear layer 

Chi² SVM using 

the one-versus-all 

scheme is found to 

be an optimal 

choice of classifier 

 

➢Alternative 

approach suitable 

for large-scale 

settings is 

proposed with the 

help of Quasi 

SVMs constructed 

with the help of 

neural networks. 

This approach 
vouches for the 

scalability of the 

proposed BOVW-

based approach on 

data expensive 

scenarios as well. 

Chapter 3 Imbalanced 

diabetic 

retinopathy 

detection 
problem for 

classification, 

segmentation 

and object 

detection tasks. 

- IDRiD 

- DDR 

- Kaggle 

Diabetic 

Retinopath

y  

 ➢VGG16 

➢VGG19 

➢InceptionV3 

➢ResNet50 

➢ResNet50V2 

➢ResNet152 

➢ResNet101 

➢ResNet152V2 

➢ResNet101V2 

➢Xception 

➢InceptionResNetV2 

➢MobileNetV2 

➢DenseNet121 

➢DenseNet169 

➢DenseNet201 

➢EfficientNetB0 

 

➢EfficientDet-D0 

➢Faster RCNN 

(ResNet-50) 

➢SSD 

(MobileNetV1) 

➢RetinaNet 

(ResNet50) 

➢DenseNet121 is the 

best suited for the 

diabetic retinopathy 

image classification 

task. 

 

➢EfficientDet-D0 

and SSD 

(MobileNetV1) are 

best suited based on 

the diabetic 

retinopathy dataset 

for object 

detection tasks.  

 

➢In case of 

segmentation, 

PSPNet (with focal 

loss) performs best in 

comparison to other 

pre-trained networks. 
 

➢It was also 

observed 

experimentally that in 

the case of Class 1, 

early-stage diabetics 
is difficult to detect 
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➢SSD 

(MobileNetV2) 

 

 

➢PSPNet (w/ Focal 

Loss) 

➢DeepLab v2 (w/ 

Focal Loss) 

➢DeepLab v3 (w/ 

Focal Loss) 

➢PSPNet (w/ Cross 

Entropy Loss) 

➢DeepLab v2 (w/ 

Cross Entropy Loss) 

➢DeepLab v3 (w/ 

Cross Entropy Loss) 
 

irrespective of 

whether that class 

falls under the 

minority category in 

the case of all the 

three available 

diabetic retinopathy 

datasets. 

 

Chapter 4 ➢Proposed 

novel deep 

transfer network 
in collaboration 

with Deep 

Convolutional 

Generative 

Adversarial 

network 

(DCGAN). 

➢Proposed 

Network (w/ 
BatchNormalizat

ion and w/ 

DCGAN 

samples. 

- BreakHis  

 

 ➢BOVW  

➢CNN 

➢VGG16 

➢InceptionV3 

➢ResNet50    

➢VGG16 + Linear 

SVM 

➢InceptionV3 + 

Linear SVM 

➢ResNet50 + 

Linear SVM 

➢VGG16 + RBF 

SVM 

➢InceptionV3 + 

RBF SVM 

➢ResNet50 + RBF 

SVM 

➢Proposed 

Network (w/o 

Batch 

Normalization) 

➢Proposed 

Network (w/o 

Batch 

Normalization and 

w/ DCGAN 

samples) 
 

 

➢The proposed 

approach works 

well for cancer-
related biomedical 

imbalanced 

datasets for various 

magnification 

factors: 40X, 

100X, 200X, and 

400X. 

 

➢Mitigate the 

effect of covariant 

shift by using the 

Batch 

Normalization 

 

➢Proposed 

transfer learning 

approach 

effectively transfer 

the knowledge 

from the source 

ImageNet object 

dataset to the target 

Breast cancer 
dataset effectively 

 

➢Proposed 

approach is more 

stable approaches 

using SGDR 
optimizer with 

hyper parameter 

tuning, which 

further leads to 

improved 
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convergence and 

have improved the 

consistency of the 

learning curve for 

the last few sets of 

epochs.  

Chapter 4 Proposed 

Inception-V3 + 

weighted 

SVM  

with data 

augmentation on 

minority class 

- BreakHis  

- Breast 

Histopathol

ogical 

- 

Weighted 

SVM 

 

➢Inception-V3 

➢Inception-V3 

(with data 

augmentation on 

both class) 

➢Inception-V3 

(with data 

augmentation on 

minority class) 

➢ResNet-50 

➢ResNet-50 (with 

data augmentation 

on both class) 

➢ResNet-50 (with 

data augmentation 

on minority class) 

➢Inception-V3 + 

SVM 

 

➢Pre-trained 

Inception-V3 

model with data 

augmentation on 

minority class 

outperforms other 

network types.  

 

➢ Inception-V3 

with data 

augmentation of 

minority class and 

transfer learning 

with weighted 

SVM gives overall 

better 

performance. 

 

Chapter 5 VGGIN-Net -BreakHis  

- Breast 

Histopathol

ogical 

-Intel 

MobileOD

T Cervical 

Cancer 

Screening  

VGG16 

pre-

trained 

(layers till 

block 4 

pool 

layer) 

along with 

the naive 

Inception 

module in 

combinati

on with 

flatten, 

batch 

normaliza

tion and 

dense 

layer. 

➢ VGG16 

➢ GoogLeNet 

➢ ResNet50 

➢Modified VGG16 

w/ Single Dense 

Layer 

➢Modified VGG16 

w/ Inception Block 

w/ Single Dense 

Layer 
 

➢ Spanhol, et al. 

2016 

➢ Spanhol, et al. 

2017 

➢ Bayramoglu, et 

al. 2016 

➢ Zhu, et al. 2019 

➢ Gupta and 

Bhavsar 2017 

➢ Deniz, et al. 

2018 

➢ Song, et al. 2017 

➢ Proposed novel 

deep learning 

architecture, 

VGGIN-Net, can 

be employed for 

various binary-

class and multi-

class problems. 

 

➢ In this work, the 

goodness of both 

the pre-trained 

models (VGG16 

and Inception) to 

are considered 
create a more 

robust architecture 

that effectively 

resolves the class 

imbalance 

problem. 

  

➢ Further, batch 

normalization, 

flatten, and 

dropout layers are 
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➢ Gupta and 

Bhavsar 2018 

 

 

➢VGG16 

➢InceptionV3 

➢ResNet50V2 

➢Xception 

➢InceptionResnet

V2 

➢DenseNet121 

➢EfficientNet-B0 

 

➢VGG16 

(w/o Transfer 

Learning) 

➢InceptionV3 

(w/o Transfer 

Learning) 

➢ResNet50V2 

(w/o Transfer 

Learning) 

➢EfficientNet-B0 

(w/o Transfer 

Learning) 

➢VGG16 

(w/ Transfer 

Learning) 

➢InceptionV3 

(w/ Transfer 

Learning) 

➢ResNet50V2 

(w/ Transfer 

Learning) 

➢EfficientNet-B0 

(w/ Transfer 

Learning) 

➢VGGIN-Net 

(w/o Transfer 

Learning) 
 

added to enhance 

the network 

performance.  

 

➢ To improve the 

regularization of 

proposed network  

the random crop 

was applied which 

helps the network 

to learn even better 

due to the 

translation 

invariance property 

of convolutional 
networks  

 

➢ Block-wise 

fine-tuning 

operations have 

shown significant 
improvement in 

performance. 

It is evident that 

different fine-

tuning 

combinations are 

found suitable for 

different 

magnification 

factors. For 40X, 

fine-tuning of 

block3, block4, 
and Inception 

block seems to be 

an ideal choice, 

whereas, in the 

case of 400X, fine-

tuning of block4 

and Inception 

block was only 

found to be the 

perfect fit. Fine-

tuning of the 
complete network 

was found to be 

ideal in the case of 

100X and 200X 

magnification 

factor images.  

 

 

➢Transfer 

learning of the 

features from a 

large dataset to a 
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small cervical 

cancer multi-class 

imbalanced dataset 

and data 

augmentation was 

applied 

successfully which 

has an overall 

impact on the deep 

learning 
architectures  

 

➢RandAugment 

approach for data 

augmentation was 
applied for multi-

class imbalanced 

tas have significant 

impact in the 

overall 

performance. 

 

➢ Proposed 

approach along 

with the data 

augmentation and 

random crop and 

rejection 

resampling 

techniques to 

combat the 

challenges faced 

by multi-class 
imbalanced 

classification tasks. 
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