
TEXT SUMMARIZATION SYSTEM USING
NATURAL LANGUAGE PROCESSING

AND MACHINE LEARNING

PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

Submitted By:

MANEESH NARAYAN

2K21/CSE/14

Under the supervision of

DR. MANOJ SETHI

(Professor)

DEPARTMENT OF COMPUTER SCIENCE
& ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

May, 2023

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Maneesh Narayan, Roll No. 2K21/CSE/14 student of M. Tech (Computer Science

and Engineering), hereby declare that the Project Dissertation titled “TEXT

SUMMARIZATION SYSTEM USING NATURAL LANGUAGE

PROCESSING AND MACHINE LEARNING.” which is being submitted by me

to the Department of Computer Science & Engineering, Delhi Technological

University, Delhi, in partial fulfilment of requirements for the award of the degree of

Master of Technology, is original and not copied from any source without proper

citation. This work has not previously formed the basis for the award of any Degree,

Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi MANEESH NARAYAN

Date: (2K21/CSE/14)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, hereby certify that the Project titled “TEXT SUMMARIZATION SYSTEM

USING NATURAL LANGUAGE PROCESSING AND MACHINE

LEARNING.”, which is submitted by Maneesh Narayan, Roll No. 2K21/CSE/14,

Department of Computer Science & Engineering, Delhi Technological University,

Delhi in partial fulfilment of the requirement for the award of degree of Master of

Technology, is a record of the project work carried out by the student under my

supervision. To the best of my knowledge this work has not been submitted in part or

full for any Degree or Diploma to this University or elsewhere.

Place: Delhi DR.MANOJ SETHI

Date: (Professor)

SUPERVISOR

ABSTRACT

Information overload, caused by the rapid growth of the Internet, has become
a significant issue. The abundance of information available online necessitates
the simplification of relevant content through summarization. Manual
summarization of large amounts of text is a daunting task for humans, leading
to a demand for more advanced and powerful summarization techniques.
Researchers have been striving to enhance the quality of machine-generated
summaries to match those created by humans since the 1950s. This study
presents a comprehensive analysis of text summarization, covering various
aspects such as summarization approaches, techniques, standard datasets,
evaluation metrics, and future research prospects.The study delves into two
widely accepted approaches in text summarization: extractive and abstractive.
These approaches are explored in detail, highlighting their strengths and
limitations. To facilitate comparison and replication of findings, the evaluation
of summaries and the development of reusable resources and infrastructure are
crucial, fostering healthy competition and driving improvements in
summarization outcomes. The study also discusses different evaluation
methods employed to assess the quality of generated summaries.In conclusion,
this study provides valuable insights into the field of text summarization. It
examines the current state of the art, including summarization techniques,
datasets, evaluation metrics, and future research opportunities. By
summarizing vast amounts of information effectively, text summarization can
alleviate the burden of information overload. The challenges and opportunities
discussed in this study offer a roadmap for researchers interested in advancing
text summarization techniques and contributing to this evolving field.

ACKNOWLEDGEMENT

I am extremely grateful to my project guide, Dr. Vinod Kumar, Professor,

Department of Computer Science and Engineering, Delhi Technological University,

Delhi for providing invaluable guidance and being a constant source of inspiration

throughout my research. I will always be indebted to him for the extensive support

and encouragement he provided. I am highly indebted to the panel faculties during

all the progress evaluations for their guidance, constant supervision and for

motivating me to complete my project work. They helped me throughout by giving

new ideas, providing necessary information and pushing me forward to complete the

project work.

MANEESH NARAYAN

(2K21/CSE/14)

CONTENTS

Candidate’s Declaration i

Certificate ii

Abstract iii

Acknowledgment Iv

List of Figures

List of Tables

CHAPTER 2 INTRODUCTION

2.1 Extractive Text Summarization

2.1.1 Naive Bayes

2.1.2 Maximum Entropy

2.1.3 Text Rank Algorithm

2.1.4 Artificial Neural Network

2.1.5 Decision Trees

2.1.6 BERT for extractive summarization

2.2 Abstractive Text Summarization

2.2.1 Encoder-Decoder Models

2.2.2 BERT

2.3 Evaluation Metrics

2.3.1 ROUGE (Recall Oriented Understudy for Gisting Evaluation)

2.3.2 BLEU (Bilingual Evaluation Understudy)

2.3.3 METEOR (Metric for Evaluation of Translation with Explicit
fsdfsfdsfOrdering)

2.3.4 CIDEr (Consensus based Image Description Evaluation)

2.3.5 Length-based metrics

2.3.5 Semantic similarity metrics

CHAPTER 3 METHODOLOGY

3.1 Data Collection

3.2 Data Analysis

3.3 Data Pre-Processing

3.4 Model Building and Training

3.5 Prediction

REFERENCES

LIST OF FIGURES

● Fig 1.0 Brief working of text summarization

● Fig 2.0 Word Embedding

● Fig 2.1 Support vector Machine

● Fig 2.2 Graph-based Model

● Fig 2.3 Extractive Text Summarization

● Fig 2.4 TextRank Graph Representation

● Fig 2.5 Artificial Neural Network

● Fig 2.6 BERT for Extractive Summarization

● Fig 2.7 Steps involving Bert

● Fig 2.8 Abstractive Text Summarization

● Fig 2.9 LSTM encoder-decoder

CHAPTER 1 INTRODUCTION

In the age of the internet, massive volumes of textual data have been amassed
and are still growing exponentially every day in the form of cloud resources
including websites, blogs, news, user messages, and social networking sites.
Several more articles, books, novels, court records, scientific papers,
biomedical materials, and other archives also include substantial textual
content. Information overload is hence becoming a greater issue.Users
regularly spend a significant amount of time viewing various long texts and
filtering out unnecessary information, which significantly lowers their
productivity. It is now an essential and fundamental issue that needs to be
solved to efficiently discover the information required from the text resources,
then summarise and compress it.Manual summarization requires initial
analyzing every item of content, which is very expensive and vulnerable to
error in huge amounts of data. Automated text summarization (ATS) offers a
practical solution to this issue.The goal of ATS is to automatically produce a
brief and understandable summary that conveys the key points of the input
text. The problem of how to collect necessary information promptly,
accurately, and efficiently is becoming more and more important. ATS has
evolved into one of the most challenging tasks in the field of natural language
processing(NLP) as a result of the complexity of the input text
In early 1958, H. P. Luhn [1] publish a paper on the study of ATS.It proposed a
Statistical information derived from word frequency and distribution form the
magazine articles and technical papers.In M. T. Maybury[2] built a system that
can choose important data from an event database, and a high-quality
summary was defined as the most important information obtained from the
input document.int 2002, D. R. Radev, E. Hovy, and K. McKeown [3] defined
the summary as a grouping of sentences produced from a number of (or a
single) input documents that includes the main topics of the input materials.
They made a point of emphasising that the generated summary is only half as
long as the input, if not even less. The summaries should cover the main points
of the input document and be brief, which is one of the ATS tasks' key
qualities that is captured in the previous descriptions.
Based on how the summaries are produced, there are typically two
well-known summarization systems: extractive summarization and abstractive
summarization (ABS). Extractive systems, such as graph-based approaches
(such as LexRank [4]), centrality-based methods (such as Centroid [5]), and
corpus-based methods, directly extract sentences or words from the original

content to provide a summary . Before employing the algorithm of natural
language generation (NLG) to create a more succinct summary using
paraphrase, synonymous replacement, sentence compression, etc., abstractive
systems must first comprehend the semantics of the text. ABS is therefore
more similar to the process of handwritten summaries when compared to
extractive summarization.

CHAPTER 2 LITERATURE SURVEY

Text summarization using machine learning and natural language processing
(NLP) is an area of research and application that aims to automatically
generate concise and coherent summaries from textual documents. It involves
leveraging various machine learning techniques and NLP models to
understand the content of the text, extract key information, and produce
informative summaries. Let's dive deeper into the process of text
summarization using machine learning and NLP.Text summarization can be
broadly classified into two categories: extractive and abstractive
summarization.

1. Extractive Summarization:
In extractive summarization, the system selects important sentences or
phrases from the source document and combines them to form a
summary. It relies on identifying salient information rather than
generating new text [6].

2. Abstractive Summarization:
Abstractive summarization aims to generate summaries by
understanding the context and meaning of the source document and
creating concise and coherent summaries that may include novel
sentences or paraphrases [7].

To train a machine learning model for text summarization, a dataset of source
documents and their corresponding summaries is required. This data can be
collected from various sources such as news articles, scientific papers, or
online resources.
Once the dataset is collected, preprocessing is performed to clean and
normalize the text. This involves removing special characters, converting text
to lowercase, tokenizing the text into words or subwords, and applying
techniques like stemming or lemmatization to normalize the words.
After all the preprocessing process it need represent the textual data in a
suitable format for machine learning models, feature extraction techniques are
applied. Common approaches include:

1. Bag-of-Words (BoW): The Bag-of-Words (BoW) model is a popular
technique in natural language processing (NLP) and information
retrieval. It represents a document as an unordered collection of words
and treats it as a "bag" of its constituent words. The model disregards
grammar and word order, focusing solely on the presence or frequency
of words in the document [8].To implement the BoW model, several
steps are involved. First, the text is tokenized by breaking it into
individual words or tokens. This creates the basis for the subsequent
analysis. Next, a vocabulary is created by compiling a list of unique

words present in the corpus. Each word in the vocabulary becomes a
feature in the model.After creating the vocabulary, feature extraction
takes place. This involves constructing a feature vector for each
document in the corpus based on the vocabulary. The feature vector
represents the frequency or presence of each word in the document.
There are two common approaches for feature extraction:
frequency-based and presence-based. In the frequency-based approach,
the feature vector contains the count of each word in the document. In
the presence-based approach, the feature vector consists of binary
values indicating whether a word is present or absent in the document
[9].The final representation of a document is a high-dimensional vector,
where each entry corresponds to a word in the vocabulary. The order of
the words is ignored, and the vector is sparse since most entries are zero
due to the sparsity of words in each document.The BoW model has
several advantages. It is simple to implement and computationally
efficient, making it suitable for large datasets. It is also
language-independent and can be applied to a wide range of NLP tasks,
such as text classification and sentiment analysis. The model effectively
captures keyword information and document-level statistics.However,
the BoW model has limitations. It overlooks the semantics and
relationships between words in a document. Since it treats each word
independently, it fails to consider the context and order of words. As a
result, it may lose valuable information, especially for tasks requiring a
deeper understanding of the text. To address these limitations, more
advanced techniques like word embeddings and deep learning models
have been developed.In summary, the Bag-of-Words model is a
foundational technique in NLP that represents documents as collections
of words, disregarding grammar and word order. It constructs feature
vectors based on word frequencies or presence and has been widely
used in various NLP tasks. While simple and effective, the model has
limitations in capturing semantic information and word relationships.
Researchers continue to explore more sophisticated models to enhance
the representation and understanding of textual data [10].

2. TF-IDF (Term Frequency-Inverse Document
Frequency)(formulas): Term Frequency-Inverse Document (TF-IDF)
Frequency) is a well-known numerical statistic used in text mining and
information retrieval to evaluate the significance of a phrase in a
document or database,an corpus. Inverse document frequency and word
frequency are combined in this sentence. A phrase's frequency inside a

text is measured by term frequency (TF). It serves to highlight a word's
significance inside a particular documentA term's term frequency is
determined by how frequently it appears in a document.The inverse
document frequency (IDF) method determines a term's rarity within a
corpus. By taking into account how frequently a phrase appears in the
full collection of papers, it measures how informative it is. Higher IDF
ratings for uncommon phrases that are found in fewer papers suggest
their potential importance.The term frequency and inverse document
frequency are multiplied to get the TF-IDF. [11]. The formula is as
follows:

The resulting TF-IDF score reflects the relative importance of a term in
a document or a collection of documents. If a term has a high frequency
within a document but appears in many other documents as well, its
TF-IDF score will be moderate. Conversely, if a term has a high
frequency in a document but is rare across the corpus, its TF-IDF score
will be high.TF-IDF is widely used in various natural language
processing tasks, including information retrieval, document
classification, and text summarization. It helps to identify important
terms and distinguish them from common ones. By considering both
local (term frequency) and global (inverse document frequency)
aspects, TF-IDF provides a more nuanced representation of the
significance of terms in a document collection.In practice, TF-IDF can
be computed using various algorithms and libraries. It is often
employed as a feature in machine learning models or as a ranking factor
in search engines. Researchers and practitioners continue to explore
variations and enhancements to TF-IDF to improve its effectiveness in
different applications.

3. Word Embeddings: Word embeddings are a fundamental concept in
natural language processing (NLP) and machine learning that enable
computers to represent and understand the meaning of words [11]. In
essence, word embeddings are dense vector representations that capture

https://www.codecogs.com/eqnedit.php?latex=TF(t%2Cd)%20%20%3D%5Cfrac%7B%20number%20%5C%20of%20%5C%20times%20%5C%20t%20%5C%20appears%20%5C%20in%20%5C%20d%7D%7Btotal%20%5C%20number%20%5C%20if%20%5C%20terms%20%5C%20in%20%5C%20d%7D#0
https://www.codecogs.com/eqnedit.php?latex=IDF(t)%20%20%3D%20log%5Cfrac%7BN%7D%7B1%2Bdf%7D#0
https://www.codecogs.com/eqnedit.php?latex=TF%20-%20IDF(t%2Cd)%20%3D%20TF(t%2Cd)%20%5Ctimes%20IDF(t)%20#0

the semantic relationships and contextual information of words in a
mathematical space.Traditionally, words in NLP were represented as
one-hot vectors, where each word in a vocabulary was assigned a
unique index, and the vector contained all zeros except for a single one
at the index corresponding to the word. However, one-hot vectors are
sparse and fail to capture the inherent semantic relationships between
words.Word embeddings, on the other hand, encode words as
continuous-valued vectors of fixed dimensions, typically ranging from
50 to 300 dimensions. These vectors are learned by training models on
large corpora of text data using unsupervised learning techniques, such
as Word2Vec, GloVe, or FastText [12].

Fig 2.0 Word Embedding

The main idea behind word embeddings is the distributional hypothesis,
which states that words that occur in similar contexts tend to have
similar meanings. By analyzing the co-occurrence patterns of words in
a text corpus, word embedding models learn to represent words that
have similar meanings as vectors that are close together in the
embedding space.Word embeddings capture not only the semantic
relationships between words but also capture syntactic and contextual
information. This allows the models to understand the meaning of
words in different contexts and perform better on various NLP tasks,
such as sentiment analysis, machine translation, named entity
recognition, and text summarization.One of the significant advantages
of word embeddings is their ability to handle out-of-vocabulary (OOV)
words. Since word embeddings are learned based on the context in
which words appear, they can provide meaningful representations for

words that were not present in the training data. This is particularly
useful in real-world applications where new words or terms continually
emerge.

Word Embeddings: Word embeddings capture the semantic relationships
between words by mapping them into a dense vector space. Pretrained models
like Word2Vec, GloVe, or FastText can be used to obtain word embeddings
[11] [12].

● Support Vector Machines (SVM):Support Vector Machines (SVM), a
supervised machine learning technique, is frequently used for
classification and regression applications. It has an excellent reputation
for being adaptable and successful in managing both linear and
non-linear patterns in data. Finding the best hyperplane to partition data
points into discrete groups is the goal of SVM. This hyperplane serves
as a decision boundary in binary classification by maximising the
distance between the closest data points in each class. Support vectors,
which are very important pieces of information, are necessary in
establishing the hyperplane. SVM accomplishes its goal by projecting
the input data onto a higher-dimensional feature space, which makes it
simpler to separate the data points. This mapping is accomplished using
a kernel function that measures the similarity between pairs of data
points. Popular kernel functions include linear, polynomial, Gaussian
radial basis function (RBF), and sigmoid. The choice of kernel function
depends on the data characteristics and the specific problem at
hand.Once the data is mapped into the higher-dimensional feature
space, SVM aims to identify the hyperplane that maximizes the margin
between the support vectors. The margin represents the distance
between the hyperplane and the nearest support vectors. A larger
margin indicates better generalization performance of the model. SVM
is capable of handling both linearly separable and non-linearly
separable data. In cases where the data is linearly separable, SVM
identifies a linear hyperplane to separate the different classes. However,
for non-linearly separable data, SVM employs the kernel trick to
implicitly transform the data into a higher-dimensional space where it
can be effectively separated using a linear hyperplane.

Fig 2.1 Support vector Machine
This allows SVM to handle complex decision boundaries and capture
non-linear relationships in the data.In addition to classification, SVM
can also be used for regression tasks. In regression, SVM finds a
hyperplane that best fits the data while minimizing the error between
the predicted and actual values. The objective is to find a hyperplane
that lies within a certain margin around the data points.SVM has
several advantages. It is effective in handling high-dimensional data,
works well with small to moderate-sized datasets, and has a strong
theoretical foundation. It is also less prone to overfitting compared to
other algorithms. SVM can handle both numerical and categorical data
through appropriate kernel functions.However, SVM has some
limitations. It can be computationally expensive, especially with large
datasets. The choice of the kernel function and its parameters can
significantly impact the performance of the model. SVM is also
sensitive to outliers as they can affect the position of the hyperplane
[14].

● Graph-based Models: Graph-based models are a category of
algorithms used in text summarization that leverage the structure of the
document to identify important sentences and generate summaries.
These models represent the document as a graph, where sentences are
nodes, and the relationships between them are represented as edges.In
graph-based models, the first step is to construct the graph

representation of the document. Each sentence is treated as a node, and
the edges between nodes capture the relationships between sentences.
These relationships can be based on various criteria, such as sentence
similarity, semantic coherence, or temporal ordering.Once the graph is
constructed, the importance of each sentence is determined by
analyzing its centrality within the graph. Centrality measures, such as
PageRank or HITS (Hyperlink-Induced Topic Search), are commonly
used to assign importance scores to sentences. These measures take into
account the connectivity of the nodes in the graph and the importance
of neighboring sentences.After determining the importance scores, the
graph-based model selects the most important sentences to form the
summary. This selection process can be performed using different
strategies, such as selecting sentences with the highest importance
scores until a certain length constraint is reached or using optimization
algorithms to find the optimal subset of sentences that maximize a
predefined objective function.Graph-based models have several
advantages in text summarization. They can capture the relationships
and dependencies between sentences, enabling a more coherent and
contextually relevant summary [4].

Fig 2.2 Graph-based Model

By considering the global structure of the document, they can overcome
the limitations of extractive methods that may miss important
information or fail to provide a cohesive summary.Additionally,
graph-based models can handle different types of documents, such as
news articles, scientific papers, or social media posts, by adapting the
graph construction and importance scoring strategies to the specific
characteristics of each domain.However, graph-based models also face
challenges. Constructing an accurate and representative graph requires
addressing issues like sentence representation, semantic understanding,
and handling various types of relationships. Furthermore, as the size of
the document increases, the graph's complexity grows, making the
summarization process computationally expensive.In recent years,
advancements in graph neural networks (GNNs) have further improved
the capabilities of graph-based models in text summarization. GNNs
can capture more complex relationships between nodes and incorporate
contextual information, leading to more accurate importance scoring
and better summary generation.

● Neural Networks: Neural networks play a significant role in text
summarization, enabling the development of more advanced and
accurate models. These models can be trained to understand the context
of a document and generate concise and coherent summaries. Neural
networks excel in learning complex patterns and representations from
data, making them suitable for text summarization tasks.In the context
of text summarization, neural networks can be used for both extractive
and abstractive approaches. In extractive summarization, neural
networks can be employed to classify sentences based on their
importance or relevance to the overall content. These models learn to
assign scores or probabilities to individual sentences, allowing the
selection of the most salient ones for inclusion in the summary. Various
architectures, such as recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and transformer models like BERT, have been
used for this purpose.For abstractive summarization, neural networks
are used to generate summaries that capture the essence of the source
text. These models learn to comprehend the input document and
produce new sentences that effectively summarize the information.
Recurrent neural networks, such as LSTM (Long Short-Term Memory)
and GRU (Gated Recurrent Unit), are commonly employed due to their
ability to handle sequential data and capture contextual dependencies.
Transformers, like the popular BERT (Bidirectional Encoder

Representations from Transformers), have also shown promising results
in abstractive summarization by capturing long-range dependencies and
improving the fluency of generated summaries.Training neural
networks for text summarization typically involves large-scale datasets,
including pairs of source documents and their corresponding
summaries. These datasets are used to optimize the network parameters
through techniques like backpropagation and gradient descent. Loss
functions, such as cross-entropy or maximum likelihood estimation, are
employed to measure the discrepancy between the generated summaries
and the ground truth summaries. Reinforcement learning can be applied
to fine-tune the models, using reward signals to encourage the
generation of high-quality summaries.Neural networks for text
summarization face certain challenges. Coherence and fluency are
important aspects, and ensuring that generated summaries maintain the
original meaning and flow can be a complex task. Additionally, training
data biases and the lack of diverse datasets can impact the performance
of these models. Domain adaptation is another challenge, as models
trained on one domain may not generalize well to other domains with
different terminologies and writing styles.In conclusion, neural
networks have revolutionized text summarization by enabling both
extractive and abstractive approaches. These models leverage their
ability to learn patterns and representations from data to effectively
summarize textual information. They have been trained using
large-scale datasets and optimized through backpropagation and
gradient descent. While neural networks have shown remarkable
performance in text summarization, challenges related to coherence,
fluency, biases, and domain adaptation persist and require ongoing
research and development efforts to overcome.

Abstractive summarization involves generating summaries by understanding
the content and context of the source document. Neural networks, particularly
sequence-to-sequence models, are commonly used for abstractive
summarization:

● Encoder-Decoder Architecture: An encoder-decoder architecture,
frequently based on transformers or recurrent neural networks (RNNs).
The encoder converts the source document into a fixed-length
representation after processing it. The summary is subsequently
produced by the decoder using the encoded representation.

● Attention Mechanism:To enhance communication between the encoder
and the decoder, attention methods are used. They enable the model to

concentrate on various areas of the source document when producing
the summary, assisting in the acquisition of essential data and
enhancing coherence.

● Training with Ground Truth Summaries: During the training phase, the
abstractive summarization model is provided with pairs of source
documents and their corresponding human-generated summaries. The
model's parameters are optimized to minimize the discrepancy between
the generated summaries and the ground truth summaries. Techniques
like cross-entropy loss or maximum likelihood estimation are
commonly used as training objectives.

● Fine-tuning with Reinforcement Learning: To further improve the
generated summaries, reinforcement learning techniques can be
applied. Reinforcement learning uses reward signals to guide the model
towards generating high-quality summaries. It encourages the model to
explore different wordings and sentence structures, leading to more
creative and diverse summaries.

Evaluating the quality of generated summaries is a crucial step. Various
evaluation metrics can be used to measure the effectiveness of summarization
systems. Common metrics include:

● ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE
measures the overlap between the generated summary and the reference
summary in terms of n-gram matches, longest common subsequences,
and skip-bigram matches [15].

● BLEU (Bilingual Evaluation Understudy): BLEU, which was first
created for machine translation assessment, is now utilised for
summarization. It calculates the n-gram overlap between the reference
summary and the summary that was created. [16].

● METEOR (Metric for Evaluation of Translation with Explicit
Ordering): METEOR combines precision, recall, and alignment-based
measures to assess the quality of generated summaries [17].

● Human Evaluation:In addition to automatic metrics, human review is
useful for determining the summaries' general quality, coherence, and
readability. The summaries may be judged by human assessors using
standards including relevance, fluency, and subject coverage.

2.1 Extractive Text Summarization
In this portion, we are limited to extractive summarization. We briefly outline
the fundamental strategies and go into deeper depth on cutting-edge machine
learning and graph-based strategies.
A text must be pre-processed before it can be summarized. Pre-processing
reduces dimensions by reducing noise such as meaningless words or
conjugation. This decrease makes managing the vectorization of documents
much simpler. The pre-processing stage frequently entails the following steps:
segmenting the text into chunks of phrases, sentences, and paragraphs,
segmenting the chunks into words (tokenization); normalizing the words
(lemmatization, stemming); removing stopwords; POS tagging identifying
named entities extracting terms and keywords; and weighting terms which
depend on representation. The complexity of each of these procedures varies
depending on the language. A language identification module like TreeTagger
can be used to determine the language if it is unidentified [18].
Almost all summarizers carry out three tasks: picking a summary, scoring
sentences, and producing an intermediate representation of the input.

Fig 2.3 Extractive Text Summarization

For Vector Model, Let be the set of terms and
the set of documents. A document is represented as a

vector:

Where is the weight of a term in the document

https://www.codecogs.com/eqnedit.php?latex=%7Bt_1%2Ct_2%2Ct_3%2C...%2Ct_k)#0
https://www.codecogs.com/eqnedit.php?latex=%7BD_1%2CD_2%2CD_3%2C...%2CD_N%7D#0
https://www.codecogs.com/eqnedit.php?latex=D_i#0
https://www.codecogs.com/eqnedit.php?latex=%20d_%20i%20%3D%20w(D_i%20%2C%20t_1)%2C%20w(D_i%20%2C%20t_2)%2C%20.%20.%20.%20%2C%20w(D_i%20%2C%20t_k)%20%20#0
https://www.codecogs.com/eqnedit.php?latex=w(D_i%2CD_j)#0
https://www.codecogs.com/eqnedit.php?latex=t_j#0
https://www.codecogs.com/eqnedit.php?latex=D_i#0

By ignoring word order, we arrive at a bag-of-words model where each word
is given a weight based on its significance within the text.There are three types
of weighting equals 1 if term is present in the sentence and 0 if not,
occurrences or frequency (number of time a term is present in the sentences)
and corrective (frequency normalized by word distribution -).The𝑇𝐹 × 𝐼𝐷𝐹
result is a matrix of rows (sentences) and columns (terms in the𝑆

|ρ×𝑁|
ρ 𝑁

lexicons). Each sentence is projected as a vector of terms weighted by their
prominence in it.

Where each row contains the weighting of word in a sentence
[19].
Indicator representation, Indicator representation makes use of indicators of
importance for example proper nouns, sentence length, the presence of
numerical data in a sentence, the location of a sentence in the document, and
the presence of words in the title. Cue phrases are a list of specific phrases that
identify a potentially significant sentence. Studies show that the phrase's
placement in the text is the most important indicator, and that cue words, title
words, and positional keywords are more effective than simply distributing the
frequency of keywords [20].
In a graph representation, the edges between the vertices (or nodes) indicate
the relationships between the text units (words, phrases, or documents). This
relationship can be expressed using word overlap or a cosine similarity. We
can represent the relation in binary form rather than giving the edges weights;
vertices are connected if their similarity is greater than a predetermined
threshold.
Graph G might be undirected, directed either forward or backward, or both. A
sentence in a graph that is pointed forward or backward simply indicates the
sentences that come after or before it in the text. Then, a summary is created
by extracting the best sentences. While backward graphs are better suited to
journalistic publications, forward graphs are appropriate for cinema and
literary critique. A sentence can suggest any of the two sentences in undirected
graphs [4].

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Comega_i_%2C_j%20#0
https://www.codecogs.com/eqnedit.php?latex=s%5E%7B'%7D_%7B%5Cmu%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20S%20%3D%20%5Cbegin%7Bpmatrix%7D%20S_%7B1%2C1%7D%20%26%20S_%7B1%2C2%7D%20%26%20%20%5Cldots%20%26%20S_%7B1%2CN%7D%20%5C%5C%5C%5C%20S_%7B2%2C1%7D%20%26%20S_%7B2%2C2%7D%20%26%20%20%5Cldots%20%26%20S_%7B2%2CN%7D%20%5C%5C%5C%5C%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cldots%20%26%20%5Cvdots%20%5C%5C%5C%5C%20S_%7B%5Crho%2C1%7D%20%26%20S_%7B%5Crho%2C2%7D%20%26%20%20%5Cldots%20%26%20S_%7B%5Crho%2CN%7D%20%20%20%5Cend%7Bpmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S_%7B%5Cmu%2Cj%7D%20%3D%20%20%5Cbegin%7Bcases%7D%20%5Comega_%7B%5Cmu%2Cj%7D%5C%20%5C%20when%20%5C%20the%20%5C%20word%20%5C%20%20j%20%5Cin%20S%5E%7B'%7D_%7B%5Cmu%7D%20%5C%5C%5C%5C%20%200%20%5C%20%5C%20%5C%20otherwise%20%5Cend%7Bcases%7D%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_%7B%5Cmu%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%20S%5E%7B%2C%7D_%7B%5Cmu%7D#0

Additionally, the summarizer chooses summary phrases. The summary's
length is typically restricted. The best n strategy is used to choose the top n
phrases with the highest scores. To avoid repetition, we can penalise
statements that are exact duplicates of the ones that were previously chosen for
a summary. Maximum Marginal Relevance (MMR) formula below maximises
relevant data while minimising unnecessary data. When a new sentence is
chosen, the scores are updated according to a linear combination of its starting
weight and how similar it is to previously selected words.

Where is the set of sentence in documentm, is the set of sentences
already selected for the summary, is a query (topic of the summary), is a
penalization coefficient and is a function which returns the similarity
of two sentences.
In approaches,limitations are imposed on the subset of
words to increase overall significance, reduce repetition, and increase
coherence.

2.1.1 Naive Bayes

This approach of summarising was handled as a statistical classification
problem. Researchers developed a Bayes classifier to calculate the likelihood
that a particular text belongs in the summary. They utilized hand-selected
summaries for their training set.
It used six discrete characteristics to train the classifier, which was prioritized
in the following order:

1. Paragraph feature: This feature shows where a sentence falls in a
paragraph. The authors noted that a sentence's significance for a
summary might vary depending on where it is in a paragraph.

2. Fixed-phrase feature: This feature determines if a certain phrase from a
predetermined list is included in the sentence. These words and phrases
might help determine how important a sentence is for summary
extraction.

3. Sentence length cutoff feature: This function establishes a limit,
designated as , with a value of 5. Over this length threshold,𝑢1
sentences are deemed significant for a summary.

https://www.codecogs.com/eqnedit.php?latex=%20%5Comega_%7BMMR(s)%7D%20%3D%20argmax_%7Bs%5Cin%20D%2FSum%7D%5B%5Clambda%20%5C%20%5Cunderbrace%7Bsim_1(s%2CQ)%7D_%7BRelvance%7D%20%5C%20-%20%5C%20%20(1-%5Clambda)%20%5C%20%5Cunderbrace%7Bargmax_%7BS_%7B%5Cmu%20%5Cin%20Sum%7D%7D%20%5C%20sim_2(s%2Cs_%7B%5Cmu%7D)%7D_%7BRedundancy%7D%20%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=Sum%20#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=sim_i()#0
https://www.codecogs.com/eqnedit.php?latex=globlal%20selection#0

4. Thematic word feature: The existence of thematic words in the sentence
is determined by this attribute. Words that are directly connected to the
text's principal theme or topic are known as thematic words. Such
keywords can be used to determine if a statement is appropriate for
summary creation 0.

5. Uppercase word feature: This characteristic indicates if the phrase
contains words in capital letters. It noted that capitalized words
frequently denote significant individuals or essential details in the text,
which may add to the relevance of the phrase for summary inclusion
[21].

2.1.2 Maximum Entropy (add formulas)
Osborne in his work discuss, the problem of extracting sentences for document
summarising is covered in the research. In order to construct a summary,
sentence extraction involves selecting important sentences from a document.
For this purpose, the authors investigate the usage of naive Bayes classifiers
and maximum entropy [22].By maximising the weights given to various
factors, the maximum entropy classifier enables the integration of multiple
knowledge sources. It may efficiently overlook aspects that aren't important by
adapting to them. The naïve Bayes classifier, in contrast, treats features
categorically and assumes independence between them [22].The research
provides a maximum entropy classifier-based incremental approach to
sentence extraction. Based on attributes taken from the sentence and its
context, the classifier decides whether or not to extract a sentence.The authors
acknowledge that the maximum entropy approach has limitations, particularly
when using standard features on technical documents. The features that predict
sentence extraction tend to be specific and infrequent, leading to low recall.
However, the addition of an optimized prior to the maximum entropy classifier
improves its performance compared to naive Bayes [22].The importance of
considering lexical cohesion factors in sentence extraction, such as lexical
repetition, ellipsis, and co-reference. These factors contribute to the overall
discourse structure and need to be modeled in an ideal sentence extraction
system.The general framework for sentence extraction using maximum
entropy modeling and presents a comparison with the naive Bayes classifier.

2.1.3 Text Rank Algorithm
TextRank Algorithm is a graph based method for text processing. It is
unsupervised method for keyword and sentence extraction from single
document.As we know graph are used to represent data as vertex and edges as
relationship between them.In textRank sentence is treated as vertex, “voteing”
or “recommendation” is treated as edge between two sentences in a
graph.Consider a directed graph consisting of a set of vertices
and a set of edges , where the edges are a subset of . For a given
vertex , represents the set of vertices that point to it (predecessors),
and represents the set of vertices that points to (successors). The
score of a vertex is defined as follows:

Where is a damping factor that can be range from to . Where is the𝑑 0 1 𝑆(𝑖)
score of [23][4].𝑉𝑖
Depending on the application of the algorithms, text unit of different length
can be added as vertices in the graph e.g. words,collcation,entire sentence or
other like wise, it is the application that define the type of relations that are
used to make connections between any two such vertices, For Example lexical
or semantic relation, contextual overlap,etc.
We require an order to allow the use of graph-based ranking algorithms for
natural language texts. Creation of a graph that depicts the text and
connections between words or other text entities in a meaningful way.Words,
collocations, complete sentences, and other text units can be added as vertices
in the graph depending on the specific application available. Similar to how
the type of relations used to draw connections between any two of these
vertices is determined by the application [23][4].
The process of applying graph-based ranking algorithms to natural language
texts involves the following fundamental phase, regardless of the kind and
characteristics of the individual elements added to the graph.

1. Select the text components that best represent the given task, and
incorporate them into the graph as individual vertices..

2. Establish connections between the vertices of the graph by identifying
the relationships that link these textual elements. These connections can
be represented by edges, which can have different characteristics such
as weights or directions.

https://www.codecogs.com/eqnedit.php?latex=G%20%3D%20(V%2CE)#0
https://www.codecogs.com/eqnedit.php?latex=V#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=V%20%5Ctimes%20V#0
https://www.codecogs.com/eqnedit.php?latex=V_i#0
https://www.codecogs.com/eqnedit.php?latex=In(V_i)#0
https://www.codecogs.com/eqnedit.php?latex=Out(V_i)#0
https://www.codecogs.com/eqnedit.php?latex=V_i#0
https://www.codecogs.com/eqnedit.php?latex=V_i#0

3. The graph-based ranking method should be iterated till convergence.
4. Arrange the vertices based on their final scores. Utilize the associated

values of each vertex to make decisions regarding ranking and
selection.

Fig 2.4 TextRank Graph Representation

Applications of Text Rank Algorithm
Keyword Extraction:
A keyword extraction objective is to automatically find the words that best
characterize a text in a given text. Such keywords may serve as helpful entries
for creating a document collection's automated index, can be utilized to
categorize a text,

It might act as a brief summary of the information presented. The
implementation of a system for the automatic identification of important terms
in a text can also help with the issue of terminology extraction and the
development of domain-specific dictionaries. The simplest technique for
identifying the "important" phrases in a text may be to use a frequency factor.
However, it was demonstrated that this method frequently led to disappointing

results. Text Rank instead extracts keywords based on part of speech tags,
ranks them based on the co-occurrences of words determined by a sliding
window, and then selects potential keywords. [23][4].

Text Rank is expected to produce a set of phrases or words that best describe a
particular natural language text. The ranking units are Consequently,
sequences of one or more lexical units that are retrieved from text and serve as
the vertices for the text network. Any link (edge) that may be added between
two of these vertices and that can be formed between two lexical units is
potentially beneficial.It makes use of a co-occurrence connection that is
influenced by the separation between word occurrences. Two vertices are
connected if their corresponding lexical units co-occur within a window of
maximum words, which can be set anywhere between 2 and 10 words. Similar
to the semantic linkages that have been proven effective for the process of
word meaning disambiguation, co-occurrence links describe relationships
between syntactic components and serve as cohesion indicators for a specific
text.Here illustrates how the unsupervised TextRank keyword extraction
algorithm works. Tokenizing the text and adding part-of-speech tags are the
first steps needed to enable the use of syntactic filters. We only consider single
words as candidates for addition to the graph because adding all combinations
of sequences made up of multiple lexical units (n-grams) would result in an
excessive increase in the graph's size. Instead, multi-word keywords are
eventually reconstructed during the post-processing stage [23][4].

Then, all lexical units that pass the syntactic filter are added to the graph, and
an edge is generated between each lexical unit that co-occurs within a window
of words. After being created, an undirected unweighted graph is iterated over
a certain number of times until it converges, usually between 20 and 30 times
at a limit of 0.0001.
After assigning a final score to each vertex in the graph, the vertices are
ranked in reverse order of their final scores, with the top vertices being
retained for further analysis. While any set value may be selected, a more
flexible technique that relies the number of keywords on the length of the text
is frequently used, typically between 5 and 20 keywords One-third of the data
used in our trials, which consists of short summaries, is set as the network's
number of vertices.
Sentence Extraction:
Since both applications aim to identify sequences that are more
"representative" of the provided text, the challenge of sentence extraction may

be related to that of keyword extraction.In keyword extraction, the candidate
text units are constructed from words or phrases, but we deal with complete
sentences in sentence extraction. It turns out that TextRank is a good fit for
these kinds of applications since it enables recursively computing rankings
across text units using data from the complete text.
To use TextRank, we must first create a text-related graph in which the
vertices represent the units that will be scored. A vertex is added to the graph
for each sentence in the text as the objective of sentence extraction is to rate
full sentences [23][4].
Given that the text units being analyzed are larger in size and the concept of
co-occurrence is not applicable in such extensive contexts, the conventional
co-occurrence relation used for keyword extraction cannot be employed here.
Instead, we are introducing a new relation that establishes a connection
between two phrases based on their degree of content overlap, which can be
considered as a measure of "similarity." This relationship between two
sentences can be likened to a process of "recommendation," where a sentence
addressing specific concepts in the text suggests that the reader refers to other
sentences discussing the same concepts. Consequently, a connection can be
established between any two sentences that share common information. The
degree of overlap between sentences can be computed by counting the shared
tokens across their lexical representations. Alternatively, syntactic filters can
be applied to consider only words belonging to specific syntactic categories,
such as nouns, verbs, or all open-class words. Additionally, a normalization
factor is utilized by dividing the content overlap of two phrases by the length
of each sentence. This prevents favoring longer sentences in the similarity
calculation. Formally, when given two sentences and , where a sentence
is represented by the set of words appearing in the sentence:

= , the similarity between and is defined as:𝑆
𝑖

𝑤
1
𝑖 . 𝑤

2
𝑖 𝑤

𝑁
𝑖

𝑖

,) =𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆
𝑖

𝑆
𝑗

𝑤
𝑘
 | 𝑤

𝑘
∈ 𝑆

𝑖
 & 𝑤

𝑘
 ∈ 𝑆

𝑗{ }| |
𝑙𝑜𝑔(|𝑆

𝑖
|)+𝑙𝑜𝑔(|𝑆

𝑗
|)

We are now assessing the effects of other word similarity metrics on the
impact of summarization, including string kernels, cosine similarity, longest
common subsequence, etc [23][4].

2.1.4 Artificial Neural Network(table and formulas)

NetSum is an innovative approach for automatically summarising papers that
makes use of neural networks to extract essential data. Each sentence is given

https://www.codecogs.com/eqnedit.php?latex=S_i#0
https://www.codecogs.com/eqnedit.php?latex=S_j#0
https://www.codecogs.com/eqnedit.php?latex=N_i#0
https://www.codecogs.com/eqnedit.php?latex=S_i#0
https://www.codecogs.com/eqnedit.php?latex=S_j#0

a set of attributes that the system uses to determine its importance in the
document. These properties, which provide useful context information, are
based on Wikipedia entities and news search query logs.The RankNet learning
algorithm is used to train the system. It is a pair-based sentence ranker that
gives each phrase in the text a score to show how important they are. The
training process involves labeling a training set and extracting features from
the sentences.The system then creates a ranked list of sentences for each text
after learning the distribution of properties that correspond to the best
sentences. Documents gathered from CNN.com, each of which contains
highlights and an article, are used to evaluate NetSum. The ROUGE-1 metric,
which evaluates the calibre of the generated summaries, is used to gauge the
success of the system. On more than 70% of the document collection, NetSum
outperforms the typical baseline in the ROUGE-1 metric, demonstrating its
better summarising skills. The technique of automatically condensing papers
into shorter forms, known as summarization, has been the focus of research for
many years. Early approaches focused on linguistic and statistical methods to
identify key phrases and concepts in sentences or across multiple documents.
More recently, machine learning techniques have been successfully applied to
summarization, including binary classifiers, Markov models, Bayesian
methods, and heuristic approaches [24].

Fig 2.5 Artificial Neural Network
The decline in studies on single-document summarization is attributed to the
discontinuation of the Document Understanding Conference (DUC) task and

the perception that single-document summarization is more challenging than
multi-document summarization. However, with the increasing availability of
information on the internet, single-document summarization remains crucial
for efficient information access [24].
The motivation for NetSum comes from the addition of story highlights on
CNN.com, which allows readers to quickly gather information about news
articles. These highlights provide a brief overview of the article in bullet
points, making them easily scannable. Despite the introduction of highlights
and previous summarization systems, none have surpassed the strong baseline
of choosing the first few sentences as the summary.NetSum addresses this
challenge by using a neural network ranking algorithm and incorporating
third-party datasets to enhance sentence features. By leveraging the power of
neural networks, NetSum outperforms the baseline with statistical
significance, providing more accurate and informative summaries.The system
is designed for single-document extract summaries of newswire articles. It
focuses on extracting three sentences that best match the highlights generated
by humans. Two tasks are defined: creating a summary block that matches the
highlights as a whole and preserving the ordering of sentences to match
individual highlights.The evaluation corpus for NetSum consists of 365 news
documents collected from CNN.com. Each document includes the title,
timestamp, story highlights, and article text. The dataset provides a diverse
range of news articles for training and evaluation purposes [24].
In conclusion, NetSum introduces a novel approach to automatic
summarization using neural networks. By extracting features from sentences
and training a ranker, NetSum identifies the most important sentences in a
document. The system outperforms the standard baseline on the ROUGE-1
measure, demonstrating its effectiveness in generating high-quality
summaries. With the increasing need for efficient access to large amounts of
information, single-document summarization remains a crucial area of
research, and NetSum offers a promising solution.

2.1.5 BERT for extractive summarization

For extractive text summarization, the BERT (Bidirectional Encoder
Representations from Transformers) language model is an efficient tool. The
process of extractive summarising is choosing and combining the key words
or sentences from a source material to produce a summary. BERT might be
customised expressly for this kind of task due to its capacity to gather
contextual information and semantic connections in text. [25].

To elaborate on BERT for extractive summarization, let's go through the key
steps involved:

1. Pretraining BERT:
With the use of a disguised language modelling target, BERT is
pretrained on a sizable corpus of text data. BERT gains the ability to
anticipate masked words in a phrase based on the surrounding context
during this pretraining phase. As a result, it is able to capture word and
phrase context, which is the basis for its language comprehension skills.
[26].

2. Fine-tuning BERT for summarization:
After pretraining, BERT is fine-tuned on a specific dataset for the task
of extractive summarization. The dataset consists of pairs of source
documents and their corresponding human-generated summaries. The
objective is to teach BERT how to identify the most important
sentences or phrases in the document for summarization.

a. Input Representation:
To prepare the input for fine-tuning, each sentence or phrase in
the document is combined into a single input sequence. Special
tokens like [CLS] and [SEP] are inserted to mark the beginning
and separation of the segments. Segment embeddings are
assigned to tokens to indicate their respective sentence or phrase
segments [25][26].

b. Binary Classification:
During fine-tuning, BERT is trained as a binary classifier to
predict whether a sentence or phrase should be included in the
summary or not. Each input sequence is labeled with binary
values (0 or 1) to indicate whether it should be part of the
summary. This allows BERT to learn to identify the most salient
and informative parts of the document [25][26].

c. Training Objective:
The fine-tuning process involves optimizing BERT's parameters
to minimize the discrepancy between the predicted binary labels
and the ground truth labels. This is typically done using
techniques like binary cross-entropy loss or sigmoid activation
function. The objective is to guide BERT to accurately identify
the sentences or phrases that should be included in the summary.

3. Sentence Ranking and Selection

Once BERT is fine-tuned, it can be used for extractive summarization
by ranking and selecting the most important sentences or phrases from
the document. This can be done using various strategies:

a. Sentence Similarity:BERT can compute the similarity between
each sentence or phrase in the document and a predefined
summary length. The sentences or phrases with the highest
similarity scores are selected as candidates for the summary.
This approach leverages BERT's contextual understanding to
identify the most relevant content [27].

b. Sentence Importance:
BERT can also assign importance scores to each sentence or
phrase based on their predicted probabilities. The sentences or
phrases with the highest importance scores are included in the
summary. This approach allows BERT to prioritize the most
informative and salient parts of the document [27].

4. Summary Generation:
The selected sentences or phrases are combined to create the final
summary. Additional post-processing techniques, such as removing
redundant information or adjusting the summary length, can be applied
to improve the coherence and readability of the generated summary.

Fig 2.6 BERT for Extractive Summarization

BERT for extractive summarization allows for the automatic selection of
important sentences or phrases, eliminating the need for manual
summarization. It leverages BERT's language understanding capabilities to

identify the most relevant content from the document, providing a concise and
informative summary [25][26][27].

Fig 2.7 Steps involving Bert

It's important to note that while BERT can generate high-quality extractive
summaries, it may not capture the entire context or provide a coherent
narrative as in abstractive summarization. However, it offers a more
data-driven and objective approach to summarization by directly extracting

2.2 Abstractive Text Summarization

Fig 2.8 Abstractive Text Summarization

Abstractive summarization is a text summarization technique that aims to
generate concise and coherent summaries by understanding the content of the
source document and rephrasing it in a new way. Unlike extractive
summarization, which selects and combines existing sentences or phrases,
abstractive summarization goes beyond the source material to create
summaries that may include novel sentences and paraphrases. Abstractive
summarization involves several key steps and techniques [28][29]:

1. Input Representation:
To perform abstractive summarization, the source document is
tokenized into individual words or subword units. Each word or
subword is then encoded into a numerical representation suitable for
processing by the model. Common encoding techniques include word
embeddings, such as Word2Vec or GloVe, or subword embeddings like
Byte Pair Encoding (BPE) or SentencePiece [29][30].

2. Sequence-to-Sequence Models:
The learning problem of sequence-to-sequence (Seq2Seq) learning is
frequently used to describe abstractive summarization. An encoder and
a decoder are components of Seq2Seq models. The encoder analyses
the original material, extracts the contextual and semantic information,
and encodes it into a fixed-length representation. After decoding the
encoded form, the decoder then produces the summary. [30][31].

3. Attention Mechanism:
To improve the information flow between the encoder and the decoder,
attention mechanisms are commonly employed. Attention allows the
model to focus on different parts of the source document while
generating the summary. It helps the model align important words or
phrases in the document with the corresponding words in the summary,
facilitating the generation of coherent and meaningful
summaries[29][30].

4. Training with Ground Truth Summaries:
During the training phase, the model is provided with pairs of source
documents and their corresponding human-generated summaries. The
model's parameters are optimized to minimize the discrepancy between
the generated summaries and the ground truth summaries. Techniques
like cross-entropy loss or maximum likelihood estimation are used as
training objectives.

5. Beam Search or Sampling:
When it comes to generating the actual summaries, decoding
techniques such as beam search or sampling are employed. Beam
search explores multiple candidate sequences by considering the most
likely words at each step, while sampling selects words
probabilistically. These techniques help to balance between generating
fluent summaries and exploring diverse possibilities.

6. Copy Mechanism:
In abstractive summarization, the model sometimes needs to copy
content directly from the source document to ensure accuracy. To
address this, copy mechanisms are introduced, allowing the model to
selectively copy words or phrases from the source document instead of
relying solely on the decoder's generation. This helps to preserve
specific details and maintain fidelity to the original text.

7. Fine-tuning with Reinforcement Learning:
To further improve the generated summaries, reinforcement learning
techniques can be applied. Reinforcement learning uses reward signals
to guide the model towards generating high-quality summaries. It
encourages the model to explore different wordings and sentence
structures, leading to more creative and diverse summaries.+

8. Evaluation Metrics:
Abstractive summaries are evaluated for quality using a variety of
parameters. ROUGE (Recall-Oriented Understudy for Gisting
Evaluation), which assesses the degree to which the produced summary

and the ground truth summary coincide in terms of n-gram matches, is
one example of a common metric. Aside from these measures,
METEOR (Metric for Evaluation of Translation with Explicit
ORdering) and BLEU (Bilingual Evaluation Understudy) can also be
employed. [8][9][10].

Abstractive summarization offers the advantage of generating more concise
summaries that capture the essence of the source document while providing a
more coherent narrative. However, it is a challenging task as it requires the
model to understand the semantics, context, and nuances of the text and
generate grammatically correct and contextually appropriate summaries.

Furthermore, abstractive summarization models often struggle with generating
summaries that are factually accurate or consistent. Ensuring the faithfulness
and coherence of the generated summaries remains

2.2.1 Encoder-Decoder Models
Encoder-decoder architectures are widely used in text summarization,
particularly in the context of abstractive summarization. This approach
involves two main components: an encoder and a decoder. The encoder
processes the input text, while the decoder generates a concise summary based
on the encoded representation. This method has demonstrated impressive
results in generating human-like summaries that capture the essence of the
source document.

Let's delve deeper into the workings of an encoder-decoder model for text
summarization:

1. Encoder:
The encoder receives the input document, which consists of a sequence
of words or tokens. It encodes the document by processing it
sequentially. Recurrent Neural Networks (RNNs), such as Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)
networks, are commonly used for this purpose. The encoder updates its
hidden state at each step, incorporating information about the current
word and the previous hidden state. By the end of the encoding process,
the encoder produces a fixed-length representation that encodes the
document's semantics and contextual information [31][32][33].

Fig 2.9 LSTM encoder-decoder

2. Attention Mechanism:
To improve the performance of the encoder-decoder model, an attention
mechanism is often employed. The attention mechanism allows the
decoder to focus on different parts of the encoded representation during
summary generation. It assigns weights or probabilities to different
positions in the encoded representation, indicating their relevance or
importance for the current decoding step. By considering these weights,
the decoder can selectively attend to the most informative parts of the
document representation, leading to more accurate and contextually
relevant summaries [31][33].

3. Decoder:
The decoder takes the encoded representation generated by the encoder
and generates the summary. Like the encoder, the decoder is typically
implemented as an RNN, such as an LSTM or GRU network. During
decoding, the decoder maintains its own hidden state, which is updated
based on the previously generated words and the attention-weighted
combination of the encoded representation. Using this hidden state, the
decoder predicts the next word in the summary. This process continues
until an end-of-sentence token is generated or a predefined length for
the summary is reached [31][32][33][24].

4. Training:
The encoder-decoder model is taught during the training phase to use
an appropriate loss function, frequently cross-entropy loss, to minimise
the difference between the produced summary and the reference
summary. The parameters of both the encoder and decoder, including
word embeddings, RNN weights, and attention weights, are updated

using the backpropagation algorithm through time. This iterative
process allows the model to learn how to generate high-quality
summaries that align with human-generated summaries [31][32].

5. Training:
The encoder-decoder model is taught during the training phase to use
an appropriate loss function, frequently cross-entropy loss, to minimise
the difference between the produced summary and the reference
summary. The backpropagation technique is used to update the encoder
and decoder's parameters over time, including word embeddings, RNN
weights, and attention weights. This iterative procedure enables the
model to develop high-quality summaries that are compatible with
summaries produced by humans.

Encoder-decoder models have demonstrated their efficacy in text
summarization tasks. They have the advantage of being able to generate
abstractive summaries, which are not restricted to extracting sentences from
the input document. These models can generate summaries that incorporate
new phrases, rephrase the information, and provide a more concise and
coherent representation. Researchers continue to explore and improve upon
the encoder-decoder architecture for text summarization, incorporating
techniques such as pointer networks, coverage mechanisms, or reinforcement
learning to enhance the quality and fluency of the generated summaries
[32][31][33][34].

2.2.2 BERT
BERT (Bidirectional Encoder Representations from Transformers) is a
powerful language model that has been successfully applied to various natural
language processing tasks, including abstractive text summarization.
Abstractive summarization involves generating concise and coherent
summaries that capture the key information from a given document. BERT,
with its ability to understand the context and capture the semantic
relationships within text, can be fine-tuned specifically for this task
[25][26][27].
To elaborate on BERT for abstractive summarization, let's go through the key
steps involved:

1. Pretraining BERT:
BERT is pretrained on a large corpus of text data using a masked
language modeling objective. During this pretraining phase, BERT

learns to predict masked words in a sentence based on the surrounding
context. By doing so, it captures the contextual representations of
words and sentences, which forms the foundation of its language
understanding capabilities [25].

2. Fine-tuning BERT for summarization:
After pretraining, BERT is fine-tuned on a specific dataset for the task
of abstractive summarization. The dataset consists of pairs of source
documents and their corresponding human-generated summaries. The
objective is to teach BERT how to generate accurate and informative
summaries [25][26].

a. Input Representation:
To prepare the input for fine-tuning, the source document and
the summary are combined into a single input sequence. Special
tokens like [CLS] and [SEP] are inserted to mark the beginning
and separation of the two segments. Additionally, segment
embeddings are assigned to tokens to indicate whether they
belong to the document or summary segment.

b. Masked Language Model (MLM):
During fine-tuning, BERT is further trained using the masked
language modeling objective. In this step, some tokens in the
input sequence are randomly masked, and BERT learns to
predict the original words based on the surrounding context. By
doing so, BERT gains an understanding of the relationships
between words and phrases, which is crucial for generating
accurate summaries.

c. Next Sentence Prediction (NSP):
BERT also undergoes next sentence prediction training. It is
presented with pairs of source document-summary sequences,
and it learns to predict whether the summary is the actual next
sentence following the document. This helps BERT capture the
coherence and flow between the document and summary, which
is important for generating coherent summaries.

d. Training Objective
The fine-tuning process involves optimizing BERT's parameters
to minimize the discrepancy between the predicted summary and
the ground truth summary. This is typically done using
techniques like cross-entropy loss or maximum likelihood
estimation. The objective is to guide BERT to generate
summaries that closely match the human-generated ones.

3. Decoding the Summary:
During inference, BERT is used to generate the summary by decoding
the most probable sequence of words. Decoding techniques such as
beam search or sampling are employed to explore multiple possible
word sequences and select the most appropriate one.

a. Beam Search:
Beam search is a popular decoding technique that explores
multiple candidate word sequences. It maintains a set of top-k
candidate sequences and expands them by predicting the next
word at each step. The candidates are then ranked based on their
probabilities, and the process continues until a maximum length
or stopping condition is reached. The generated summary is
selected from the candidate pool.

b. Sampling:
Sampling involves randomly selecting words based on their
probabilities. This technique allows for more diversity in the
generated summaries but may lead to less optimal or coherent
results. Different sampling strategies, such as temperature-based
sampling or nucleus sampling, can be used to control the
randomness and quality of the generated summaries.
[25][26][27]

By fine-tuning BERT for abstractive summarization, the model learns to
capture the contextual relationships between words and generate concise and
coherent summaries that convey the essential information from the source
document. However, BERT's conservative nature may result in summaries that
closely match

2.3 Evaluation metrics
Evaluating the quality of text summarization systems is crucial to assess their
performance and compare different approaches. Various evaluation metrics
have been developed to measure the effectiveness of summaries generated by
these systems. Here are some commonly used text summarization evaluation
metrics:

1. ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
2. BLEU (Bilingual Evaluation Understudy)
3. METEOR (Metric for Evaluation of Translation with Explicit Ordering)
4. CIDEr (Consensus-based Image Description Evaluation)
5. Pyramid

6. Length-Based Metrics
7. Semantic Similarity Metrics

2.3.1 ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

ROUGE is a commonly employed evaluation metric in the field of text
summarization. It quantifies the degree of overlap between the summary
produced by a system and the reference summary created by humans, based on
matching n-grams. ROUGE measures the recall of the generated summary by
examining its ability to capture essential information from the reference
summary. [15].

The ROUGE metric consists of several variations, including ROUGE-N,
ROUGE-L, and ROUGE-S.

1. ROUGE-N: ROUGE-N measures the n-gram overlap between the
generated summary and the reference summary. It considers different
values of n, typically ranging from 1 to 4, to evaluate unigram, bigram,
trigram, and quadgram matches. ROUGE-N counts the number of
n-gram matches between the generated and reference summaries, and
then calculates precision, recall, and F-score based on these counts.
Precision measures the ratio of matched n-grams in the generated
summary to the total number of n-grams in the generated summary,
while recall measures the ratio of matched n-grams to the total number
of n-grams in the reference summary [15].

2. The longest common subsequence (LCS) between the produced
summary and the reference summary is measured by ROUGE-L. The
longest set of words to appear in both summaries in the same order is
LCS. ROUGE-L measures how well the produced summary can extract
significant quotes or passages of text from the reference summary.
Based on the length of the LCS and the lengths of the produced and
reference summaries, it determines accuracy, recall, and F-score [15].

3. ROUGE-S: ROUGE-S evaluates skip-bigram matches, considering the
order of words in the summaries. Skip-bigrams are pairs of words that
are not necessarily adjacent but appear in the same order in both
summaries. ROUGE-S captures the syntactic similarity between the
generated and reference summaries, measuring their ability to maintain
the overall sentence structure and word order. Similar to other ROUGE
variants, ROUGE-S calculates precision, recall, and F-score based on
the number of skip-bigram matches [15]

The ROUGE scores range from 0 to 1, with higher scores indicating better
quality summaries. ROUGE evaluates the content overlap between the
generated summary and the reference summary, providing a quantitative
measure of summary quality. It has been widely used in research and
benchmarking to compare different summarization systems and
approaches.However, it is important to note that ROUGE has its limitations. It
does not capture the overall coherence, fluency, or readability of summaries,
as it focuses primarily on content overlap. ROUGE metrics also do not
account for paraphrasing or rephrasing of information in the summaries.
Additionally, the choice of n-gram order and the specific ROUGE variant can
impact the results, and different ROUGE variants may provide different
insights into the quality of the summaries [15] .

To complement ROUGE evaluation, it is often recommended to combine it
with other metrics that capture different aspects of summary quality, such as
human evaluation or semantic similarity metrics. This multi-faceted evaluation
approach provides a more comprehensive understanding of the strengths and
weaknesses of the summarization systems [15].

2.3.2 BLEU (Bilingual Evaluation Understudy)

Natural language processing activities like text summarization and machine
translation frequently employ the evaluation metric known as BLEU. It
evaluates generated text's quality by contrasting it with one or more reference
texts, which are often written by actual experts. The goal of BLEU is to
identify the overlap of n-grams (contiguous word sequences) between the
reference text and the output that is created.
The BLEU metric computes precision scores for different n-gram orders
(unigrams, bigrams, trigrams, etc.) and combines them using a geometric
mean. The precision score measures how many of the n-grams in the generated
output match with the reference text. Higher precision scores indicate better
quality output [16].

Here's how BLEU works in more detail:
1. N-gram Matching:

BLEU computes the precision for different n-gram orders (typically up
to 4-grams) between the generated output and the reference text. It
counts the number of overlapping n-grams between the two texts [16].

2. Modified Precision Calculation:
To avoid favoring overly short outputs, BLEU includes a modified
precision calculation. It counts the maximum number of times any
n-gram appears in any single reference text and limits the count of that
n-gram in the generated output to that maximum value. This
modification prevents artificially high scores when the generated output
simply repeats a few n-grams from the reference [16].

3. Penalty for Short Outputs:
BLEU penalizes short outputs to discourage generating very few words
as summaries. It includes a brevity penalty that reduces the BLEU score
for outputs that are significantly shorter than the reference text. This
penalty incentivizes generating summaries of appropriate length [16].

4. Cumulative BLEU Score:

The precision scores for different n-gram orders are combined using a
geometric mean. This cumulative BLEU score reflects the overall
quality of the generated output, considering the match at different levels
of granularity (unigrams, bigrams, trigrams, etc.). The geometric mean
balances the contribution of different n-gram orders [16].

BLEU scores range from 0 to 1, with 1 indicating a perfect match between the
generated output and the reference text. However, it's important to note that
BLEU is a reference-based metric and is limited in capturing the semantic
quality, coherence, and fluency of the generated output. It primarily focuses on
lexical overlap.While BLEU has been widely used, it has some limitations.
For instance, it may assign low scores to outputs that differ in phrasing but still
convey the same meaning. It also does not account for word order variations
or structural differences between the generated output and the reference text.
Therefore, BLEU scores should be interpreted with caution and used in
combination with other evaluation metrics and human judgment to get a
comprehensive assessment of the quality of generated text [16].
Despite its limitations, BLEU provides a quick and automated way to evaluate
the quality of generated outputs, enabling researchers and practitioners to
compare different systems and track their performance over time. It has
become a standard metric for many natural language processing tasks,
including machine translation and text summarization [16].

2.3.2 METEOR (Metric for Evaluation of Translation with Explicit

Ordering)
METEOR is an evaluation metric commonly used in machine translation and
text summarization tasks. It combines precision, recall, and alignment-based
measures to assess the quality of generated summaries or translations.
METEOR incorporates various linguistic aspects, including unigram
matching, stemming, synonymy, and word order, to provide a comprehensive
evaluation [17].
To elaborate on METEOR, let's delve into its key components and how they
contribute to the metric:

1. Unigram Matching:
METEOR computes the precision and recall of unigrams (individual
words) in the generated summary compared to the reference summary.
It takes into account exact matches, stem matches, and matches using
WordNet synonyms. This allows the metric to capture semantic
similarity beyond strict word-for-word matches [17].

2. Stemming:

METEOR applies stemming to both the generated and reference
summaries to account for variations in word forms. By considering the
stemmed forms of words, it helps overcome discrepancies arising from
inflectional forms or minor variations [17].

3. Synonymy:
To address synonymy, METEOR uses WordNet, a lexical database, to
identify synonyms of words in both the generated and reference
summaries. If a word in the generated summary has a synonym that
matches a word in the reference summary, it contributes to the
matching score. This accounts for lexical variations and promotes
flexibility in word choices [17].

4. Word Order:
METEOR incorporates an alignment-based measure that takes into
consideration the word order in the generated and reference summaries.
It captures the extent to which the word order in the generated summary
resembles that of the reference summary. This aspect is important in
evaluating the coherence and fluency of the generated summaries [17].

5. F-score and Harmonic Mean:
METEOR computes an F-score, which is the harmonic mean of
precision and recall. The harmonic mean accounts for cases where
precision and recall have a trade-off. It provides a single score that
reflects the balance between generating accurate matches and covering
the content of the reference summary [17].

6. Implementation Variations:
Different implementations of METEOR may have slight variations in
their specific calculations and parameter settings. These variations can
affect the final scores obtained using METEOR. Therefore, it is
important to refer to the specific implementation and guidelines
provided for consistent and accurate evaluation [17].

METEOR has gained popularity due to its ability to incorporate various
linguistic aspects, providing a more comprehensive evaluation compared to
simple matching-based metrics like BLEU. It considers not only exact word
matches but also accounts for stemming, synonymy, and word order. By
capturing these linguistic properties, METEOR aims to align more closely
with human judgment and evaluation of summaries or translations.While
METEOR is a valuable evaluation metric, it is important to note that no single
metric can fully capture the quality and nuances of human-generated
summaries. Complementary evaluation methods, such as manual human

evaluation or qualitative analysis, can provide additional insights into the
overall coherence, readability, and informativeness of the generated
summaries [17].

2.3.3 CIDEr (Consensus-based Image Description Evaluation)

CIDEr is an evaluation metric initially developed for image captioning, but it
has also been adapted for text summarization evaluation. CIDEr measures the
consensus between the generated summary and multiple reference summaries,
aiming to capture the quality and effectiveness of the generated
summaries.CIDEr incorporates both n-gram precision and term
frequency-inverse document frequency (TF-IDF) measures to evaluate the
importance of words in the summaries. It considers the consensus among the
reference summaries, ensuring that the generated summary aligns well with
the human-generated references.The calculation of CIDEr involves several
steps. First, the generated summary and the reference summaries are tokenized
into individual words or subword units. Then, the n-gram precision is
computed by comparing the n-gram counts between the generated summary
and the reference summaries. This precision measure assesses how well the
generated summary matches the n-grams present in the references.Next, the
term frequency-inverse document frequency (TF-IDF) weighting is applied to
capture the importance of words. TF-IDF assigns higher weights to words that
appear more frequently in the summaries but are less common in the overall
dataset. This weighting scheme helps prioritize important words and
discourage using generic or frequently occurring terms.
Finally, the n-gram precision and TF-IDF scores are combined using a
weighted harmonic mean, where the weights are determined through empirical
analysis. The resulting CIDEr score provides an overall measure of the quality
and effectiveness of the generated summary, taking into account both the
content overlap with the references and the importance of words.CIDEr has
gained popularity as an evaluation metric because it considers the consensus
among multiple reference summaries, capturing a broader range of valid
summary variations. It addresses some limitations of traditional evaluation
metrics that solely focus on n-gram matches, such as BLEU or ROUGE. By
incorporating TF-IDF weighting, CIDEr can capture the specificity and
importance of words in the summaries, providing a more nuanced evaluation.

However, it's worth noting that CIDEr, like other automatic evaluation metrics,
may not fully capture all aspects of summary quality, such as coherence,
logical flow, or overall coherence. Human evaluation is still crucial for
assessing these aspects. Nonetheless, CIDEr serves as a valuable tool in the
evaluation toolkit, complementing other metrics to provide a comprehensive
assessment of the generated summaries.

2.3.4 Length-based metrics
Length-based metrics in text summarization assess the quality of summaries
based on their length compared to the reference summaries. These metrics
provide insights into the conciseness and informativeness of the generated
summaries. Here are some commonly used length-based metrics:

1. Summary-to-Reference Length Ratio:
The summary to reference length ratio evaluates the difference between
the lengths of the generated and reference summaries. It calculates the
degree to which the produced summary deviates from the anticipated
length. Ratios that are near to 1 show that the summary and the
reference are around the same length, but ratios that are much lower or
higher may point to problems with concision or information loss.

2. Compression Ratio:
The summary-to-reference length ratio evaluates the difference between
the lengths of the generated and reference summaries. It calculates the
degree to which the produced summary deviates from the anticipated
length. Ratios that are near to 1 show that the summary and the
reference are around the same length, but ratios that are much lower or
higher may point to problems with concision or information loss.

3. Relative Compression:
The length difference between the source material and the output
summary is what is measured by relative compression. It determines the
summarising process's percentage decrease. The length of the original
material is reduced more when the relative compression is higher,
demonstrating the manner in which the summarization method expands
information.

Length-based metrics provide a straightforward and quantitative assessment of
the conciseness of summaries. However, they have limitations as standalone
evaluation metrics. Length alone does not guarantee the quality or
informativeness of a summary. It is possible to generate short summaries that

lack important details or longer summaries that contain irrelevant or redundant
information.

To obtain a comprehensive evaluation, length-based metrics are often used in
conjunction with other evaluation measures, such as semantic similarity or
content coverage metrics. The combination of length-based metrics with other
evaluation techniques helps in capturing both the conciseness and the
informativeness of the summaries.

Additionally, it is important to consider the nature of the source documents
and the desired summary length when interpreting length-based metrics. Some
documents may inherently require longer summaries due to their complexity
or the amount of essential information. Different domains or genres may also
have different expectations regarding summary length.
In summary, length-based metrics in text summarization provide a quantitative
assessment of the conciseness and compression achieved by the
summarization process. They are useful for understanding the trade-off
between summary length and the preservation of key information. However,
they should be used in conjunction with other evaluation measures to ensure a
comprehensive evaluation of summary quality.

2.3.5 Semantic similarity metrics

Semantic similarity metrics in text summarization aim to measure the
similarity or relatedness between the generated summary and the reference
summary based on their semantic content. These metrics go beyond
surface-level matching of words or n-grams and consider the meaning and
context of the text. Here are some commonly used semantic similarity metrics
in text summarization:

1. Word Mover's Distance (WMD):
WMD calculates the minimal distance that words from one text must
"travel" to match terms in the other text in order to determine how
different two texts are. To measure the semantic similarity of words,
word embeddings are used. WMD takes word context and total
meaning into account, enabling a more thorough evaluation of semantic
similarity.

2. Smoothed Word Embedding Similarity (ESim):
ESim uses smoothed word embeddings to determine the semantic
similarity between two texts. Between the word vectors in the created
summary and the reference summary, it computes the cosine similarity.
By smooothing the vectors, ESim solves the sparsity problem of word
embeddings and produces a more reliable indicator of semantic
similarity.

3. Vector Space Model (VSM):
The VSM represents documents as vectors in a high-dimensional space.
Two texts are compared for similarity based on the cosine similarity
between their vector representations. The VSM system captures the
semantic relationships between words by taking into consideration the
patterns of word co-occurrence in the texts. Semantically, the generated
summary may be assessed in connection to the reference summary.

These semantic similarity metrics help evaluate the quality of summaries by
considering the meaning and context of the text. They enable a more nuanced
understanding of the semantic relationships between words and phrases,
capturing the overall coherence and relatedness of the summaries. By utilizing
word embeddings or vector representations, these metrics can handle
synonyms, paraphrases, and related concepts, enhancing the evaluation of
abstractive summarization models.

It is worth noting that semantic similarity metrics are typically used in
conjunction with other evaluation metrics, such as ROUGE or BLEU, to
provide a comprehensive assessment of summarization quality. While these
metrics provide valuable insights, they still have limitations and may not fully
capture the complex semantic understanding required for evaluating
human-like summarization. Thus, it is often recommended to combine
automated metrics with human evaluation to obtain a more comprehensive and
accurate assessment of summary quality.

CHAPTER 3 METHODOLOGY

The Following steps are taken in this project:
1. Data Collection: In this step, data is collected for GloVe: Global

Vectors for Word Representation and News Summary.
2. Data Analysis: In this step, the data is being analyesd on different

parameter.
3. Data Pre-Processing: In this step, the data is split into two

categories,i.e, Training data and Testing data.
4. Model Building and Training: In this step, Machine Learning models

are created and trained on the dataset processed in the above stages.
5. Prediction: The sample dataset is used to predict the outcome of the

trained model.
6. Compare and Evaluate: In this step, performance of different models

is evaluated and compared by different parameters like Precision,
Recall, Accuracy, F-score etc.

3.1 Data Collection
GloVe is a widely used dataset and methodology in natural language
processing (NLP) that plays a crucial role in text summarization tasks. It is
designed to capture semantic and syntactic relationships between words and
create vector representations that encode meaningful information about word
usage.GloVe gives pre-trained word embeddings, which is a vector
representations of words in a continuous vector space. These embeddings are
learned from large-scale text corpora, such as Wikipedia or Common Crawl.
The key idea behind GloVe is to factorize the word co-occurrence matrix to
capture the statistical relationships between words. By doing so, GloVe
produces word embeddings that encode the contextual information of words
based on their co-occurrence patterns.In the context of text summarization,
GloVe embeddings can be leveraged to enhance the understanding of the input
text and improve the performance of summarization models. The use of GloVe
embeddings allows the model to capture the semantic relationships between
words and make more informed decisions when generating summaries.When
summarizing a text, the model can utilize the GloVe embeddings to compute
the similarity between words or phrases. By measuring the cosine similarity
between the word vectors, the model can identify important concepts and
select relevant sentences or phrases for inclusion in the summary. This helps to
capture the essence of the original text and produce concise summaries that

retain the main points.GloVe embeddings have the advantage of being
pre-trained on large-scale datasets, making them useful for tasks where
training data is limited. They provide a way to transfer knowledge from the
general language domain to the specific task of summarization. By
incorporating the GloVe embeddings into the summarization model, it
becomes more capable of understanding the underlying semantics of the text
and generating coherent and informative summaries.
The dataset used for this project consists of 4,515 instances and includes
various fields such as the author's name, headlines, URL of the article, a short
text snippet, and the complete article. The summarized news data was
collected from Inshorts, while the news articles were scraped from reputable
sources such as Hindu, Indian Times, and Guardian. The time period covered
in the dataset spans from February to August 2017.

3.2 Data Analysis

Data analysis in machine learning is a fundamental process that involves
various tasks aimed at understanding, processing, and modeling data to extract
valuable insights and make informed decisions. It plays a crucial role in the
development of effective machine learning models and ensures the reliability
and quality of the results obtained.The process of data analysis typically
begins with the collection of relevant data from different sources, such as
databases, APIs, or online repositories. This data may be in structured or
unstructured formats and needs to be carefully gathered for further
analysis.Once the data is collected, the next step is to clean and preprocess it.
This involves removing any inconsistencies, errors, or missing values present
in the data. Tasks such as handling missing data, removing duplicates, and
normalizing data are performed to ensure data quality.Once the data is
prepared, the appropriate machine learning model is selected based on the
problem at hand. This involves choosing the right algorithm and optimizing
hyperparameters. The data is then split into training and testing sets,in the ratio
of 70:30 [35] and the model is trained on the training data.

3.3 Data Pre-Processing
Machine learning requires the preparation of raw data for analysis and
modelling, which is known as data preprocessing. It encompasses several
important tasks that enhance the quality and effectiveness of the machine
learning algorithm.One crucial aspect of data preprocessing is data cleaning.
This involves handling missing data, dealing with outliers, and removing
irrelevant or redundant information. Missing data can be addressed by
imputing values using techniques like mean, median, or interpolation.
Outliers, which are data points that deviate significantly from the norm, can be
identified and treated using statistical techniques or domain
knowledge.Another important step is data integration, which involves
combining data from different sources into a unified dataset. This may require
resolving inconsistencies in attribute names, data types, or encoding to ensure
compatibility and consistency. The process of transforming data into a format
that can be analysed is known as data transformation. This entails converting
skewed distributions into more normalised distributions, storing categorical
variables, and scaling numerical characteristics to a common range.
Techniques like one-hot encoding, label encoding, normalization, and
logarithmic transformations are commonly used.Feature selection is a crucial
step in data preprocessing, where relevant features are selected to improve
model performance and reduce dimensionality. Removing irrelevant or
redundant features can enhance the accuracy and training time of the model.
The most useful characteristics may be found using methods including
correlation analysis, feature importance, and model-based selection.Data
preparation also involves dividing the dataset into training, validation, and test
sets. The validation set aids in hyperparameter tuning, the test set is used to
assess the performance of the final model, and the training set is utilised to
train the model.

3.4 Model Building and Training
The model training process starts after choosing the right model architecture or
method. The model taught the underlying patterns and connections between
the input characteristics and the target variable using the training set.
Optimization algorithms like gradient descent iteratively update the model
parameters to minimize errors or maximize performance on the training
data.Hyperparameter tuning is an essential step in optimizing the model.
Hyperparameters are configuration settings that govern the model's behavior
and performance. Examples include learning rate, number of hidden layers,
regularization parameters, and batch size. To determine the optimal set of
hyperparameters that enhance model performance, methods like grid search,
random search, or Bayesian optimisation are used.The validation set is used to
assess the model's performance after it has been trained and optimised. Various
evaluation metrics like accuracy, precision, recall, F1 score, mean squared
error, or area under the curve (AUC) are used to assess the model's
effectiveness. Based on the validation results, the model can be further
fine-tuned.Once the model is deemed satisfactory, it undergoes final testing
using the independent test set. This guarantees a fair assessment of the model's
performance on hypothetical data, demonstrating its applicability and
performance in the real world.

3.5 Prediction

Predicting in machine learning is the act of using a trained model to predict or
estimate data that has not yet been seen or that will be observed in the future
based on patterns and correlations discovered from the training data. It is a
fundamental aspect of many machine learning tasks, such as classification,
regression, and even text summarization.When a model is trained, it learns the
underlying patterns and dependencies in the training data. In order to reduce
the discrepancy between the anticipated output and the actual output of the
training data, the model's internal parameters are adjusted as part of the
learning process. Once the model is trained, it can be used to predict the
outcomes for new, unseen data. The prediction process involves feeding the
input data into the trained model and obtaining the predicted output. The input
data can take various forms depending on the problem domain, such as
numerical features, images, or textual data. For text summarization, the input
data typically consists of textual documents or articles.The output of the
model's prediction can take different forms depending on the specific text
summarization approach. It could be a summary sentence, a sequence of
sentences, or even a hierarchical representation of the original text.

3.6 Results
In result, we are using rouge metrics for find the performance of the method.
Based on this we test a semple text for finding the summary of sample.In the
following figure, we make a graph for text and summary lengths from the data
set for better descriptions of results.

here, input text has average length of 200 words and summary average length
is about 35 words depending on relevant content on the input text.

For a simple test we input a CNN new article for finding the text
summarization performance using ROUGE matrics.

REFERENCES

[1] Luhn, Hans Peter. "The automatic creation of literature abstracts." IBM Journal of
research and development 2.2 (1958): 159-165.

[2] Mani, Inderjeet, and Mark T. Maybury, eds. Advances in automatic text summarization.
MIT press, 1999.

[3] McKeown, K., & Radev, D. R. (1995, July). Generating summaries of multiple news
articles. In Proceedings of the 18th annual international ACM SIGIR conference on Research
and development in information retrieval (pp. 74-82).

[4] Erkan, Günes, and Dragomir R. Radev. "Lexrank: Graph-based lexical centrality as
salience in text summarization." Journal of artificial intelligence research 22 (2004): 457-479.

[5] Cheung, J. C. K., & Penn, G. (2013, August). Towards robust abstractive multi-document
summarization: A caseframe analysis of centrality and domain. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
(pp. 1233-1242).

[6] Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., & Huang, X. (2020). Extractive
summarization as text matching. arXiv preprint arXiv:2004.08795.

[7] Gupta, S., & Gupta, S. K. (2019). Abstractive summarization: An overview of the state of
the art. Expert Systems with Applications, 121, 49-65.

[8] Zhang, Y., Jin, R., & Zhou, Z. H. (2010). Understanding bag-of-words model: a statistical
framework. International journal of machine learning and cybernetics, 1, 43-52.

[9] Wallach, H. M. (2006, June). Topic modeling: beyond bag-of-words. In Proceedings of the
23rd international conference on Machine learning (pp. 977-984).

[10] Tsai, C. F. (2012). Bag-of-words representation in image annotation: A review.
International Scholarly Research Notices, 2012.

[11] Liu, Y., Liu, Z., Chua, T. S., & Sun, M. (2015, February). Topical word embeddings. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 29, No. 1).

[12] Li, Q., Shah, S., Liu, X., & Nourbakhsh, A. (2017, May). Data sets: Word embeddings
learned from tweets and general data. In Proceedings of the International AAAI Conference
on Web and Social Media (Vol. 11, No. 1, pp. 428-436).

[13] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector
machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.

[14] Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In Machine learning
(pp. 101-121). Academic Press.

[15] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out (pp. 74-81).

[16]Wołk, K., & Marasek, K. (2015). Enhanced bilingual evaluation understudy. arXiv
preprint arXiv:1509.09088.

[17] Khan, S. N., & Usman, I. (2019). Amodel for english to urdu and hindi machine
translation system using translation rules and artificial neural network. Int. Arab J. Inf.
Technol., 16(1), 125-131.

[18] N. Moratanch and S. Chitrakala, "A survey on extractive text summarization," 2017
International Conference on Computer, Communication and Signal Processing (ICCCSP),
Chennai, India, 2017, pp. 1-6, doi: 10.1109/ICCCSP.2017.7944061.

[19] Juan-Manuel TORRES-MORENO. Automatic Text Summarization. London: ISTE, 2014.
isbn: 978-1-84821-668-6.

[20] Juan-Manuel TORRES-MORENO. Automatic Text Summarization. London: ISTE, 2014.

isbn: 978-1-84821-668-6. [2] Petr MACHOVEC. “Automatická sumarizace textu [online]”.

Master’s thesis. Masaryk University, Faculty of Informatics, Brno, 2015 [cit. 2016-05-10]. url:

http://is.muni.cz/th/359331/fi_ m/. [3] Ani NENKOVA. “Automatic Summarization”. In:

Foundations and Trends in Information Retrieval 5 (2 2011). [4] Charu C. AGGARWAL and

ChengXiang ZHAI. Mining Text Data. New York: Springer, 2012, pp. 43–76. isbn:

978-1-4614-3222-7.

[21] Neto, J. L., Freitas, A. A., & Kaestner, C. A. (2002). Automatic text summarization using
a machine learning approach. In Advances in Artificial Intelligence: 16th Brazilian
Symposium on Artificial Intelligence, SBIA 2002 Porto de Galinhas/Recife, Brazil, November
11–14, 2002 Proceedings 16 (pp. 205-215). Springer Berlin Heidelberg.

[22] Miles Osborne. 2002. Using maximum entropy for sentence extraction. In Proceedings
of the ACL-02 Workshop on Automatic Summarization, pages 1–8, Phildadelphia,
Pennsylvania, USA. Association for Computational Linguistics.

[23] Mihalcea, R., & Tarau, P. (2004, July). Textrank: Bringing order into text. In Proceedings
of the 2004 conference on empirical methods in natural language processing (pp. 404-411).

[24] Tsai, C. I. (2019). A Study on Neural Network Modeling Techniques for Automatic
Document Summarization.

[25] Liu, Y., & Lapata, M. (2019). Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

[26] Abdel-Salam, S., & Rafea, A. (2022). Performance study on extractive text
summarization using BERT models. Information, 13(2), 67.

[27] Srikanth, A., Umasankar, A. S., Thanu, S., & Nirmala, S. J. (2020, October). Extractive
text summarization using dynamic clustering and co-reference on BERT. In 2020 5th
International Conference on Computing, Communication and Security (ICCCS) (pp. 1-5).
IEEE.

[28] Gupta, S., & Gupta, S. K. (2019). Abstractive summarization: An overview of the state of
the art. Expert Systems with Applications, 121, 49-65.

[29] Lin, H., & Ng, V. (2019, July). Abstractive summarization: A survey of the state of the art.
In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp.
9815-9822).

[30] Liu, F., Flanigan, J., Thomson, S., Sadeh, N., & Smith, N. A. (2018). Toward abstractive
summarization using semantic representations. arXiv preprint arXiv:1805.10399.

[31] Nallapati, R., Xiang, B., & Zhou, B. (2016). Sequence-to-sequence rnns for text
summarization.

[32] Nallapati, R., Zhou, B., Gulcehre, C., & Xiang, B. (2016). Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023.

[33] Nallapati, R., Xiang, B., & Zhou, B. (2016). Sequence-to-sequence rnns for text
summarization.

[34] Yao, K., Zhang, L., Du, D., Luo, T., Tao, L., & Wu, Y. (2018). Dual encoding for
abstractive text summarization. IEEE transactions on cybernetics, 50(3), 985-996.

[35] Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 15(4), 531-538.

