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ABSTRACT 

 

The aim of this study was to investigate dysregulated genes during Squamous Cell Carcinoma 

(SCC) and identify potential biomarkers and therapeutics for the disease. Three specific 

objectives were pursued: (1) to identify key genes and pathways involved in the progression of 

Cutaneous SCC from AK, (2) to investigate the impact of somatic non-synonymous mutations 

on BTK protein and their potential influence on FDA-approved therapies for SCC, and (3) to 

find chemical perturbations associated with identified biomarkers for the correction of SCC. 

The first objective focused on identifying key genes and pathways involved in the progression 

of cutaneous SCC from AK. To accomplish this, the study applied an eXplainable Artificial 

Intelligence (XAI) approach to the XGBoost classification model. XAI techniques, such as 

SHAP barplot and SHAP summary plots, were utilized to establish interpretability by linking 

the model outputs to relevant genes. By analyzing the model’s predictions, significant genes 

associated with SCC progression were identified. This approach not only provided insights into 

the genes involved in the disease but also demonstrated the potential of XAI methods in 

identifying biomarkers [1]. 

The second objective aimed to investigate the impact of somatic non-synonymous mutations 

on Bruton’s tyrosine kinase (BTK) protein and their potential influence on FDA-approved 

therapies for SCC. A literature survey was conducted to identify FDA-approved drugs for skin 

cancer, leading to the discovery of Ibrutinib, a BTK inhibitor. Although there has been limited 

research on the role of BTK protein in SCC, the study chose to focus on it to address the existing 

research gap. Molecular dynamics (MD) simulations were performed to analyze the effects of 

individual amino acid mutations on the stability of the BTK protein. The findings indicated 

that these mutations may contribute to the prognosis of SCC by rendering the protein unstable. 

Additionally, the interaction between the BTK protein and its mutants with Ibrutinib was 
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examined, revealing that the mutants exhibited comparable binding to Ibrutinib as the wild-

type protein. This observation highlighted the potential efficacy of Ibrutinib-based therapy in 

targeting these mutations for SCC treatment [2]. 

The third objective aimed to find chemical perturbations associated with the identified 

biomarkers for the correction of SCC. To achieve this, gene expression profiles of individuals 

diagnosed with SCC, healthy individuals, and those with AK were rigorously compared. 

Several dysregulated genes that exhibited significant differential expression were identified. 

These dysregulated genes were found to be involved in crucial biological processes closely 

associated with SCC progression, such as cellular disassembly, regulation of protein 

catabolism, and extracellular matrix disassembly. Additionally, important biological pathways, 

including WNT signaling and regulation of the actin cytoskeleton, were found to play a role in 

SCC progression. To further augment the research outcomes, the Drug Gene Budger tool was 

utilized to investigate potential therapeutic interventions. Analysis using this tool revealed the 

notable effectiveness of certain drugs, such as Doxorubicin, Dasatinib, and Tretinoin, in 

rectifying the abnormal expression patterns of the identified dysregulated genes associated with 

SCC. 

This study contributes to the identification of potential biomarkers and therapeutics for SCC 

through a comprehensive approach. The utilization of XAI techniques facilitated the 

identification of significant genes associated with SCC progression. The investigation of 

somatic non-synonymous mutations in the BTK protein provided insights into its stability and 

potential therapeutic targeting with Ibrutinib. The exploration of chemical perturbations 

associated with dysregulated genes shed light on potential treatment options for SCC. 

Collectively, these findings have implications for precision medicine and innovative drug 

discovery strategies in the field of SCC. 



Page | xiv  
 

TABLE OF CONTENTS 
 

Chapter 1. Overview of the Thesis ................................................................................................... 2 

I. Introduction ................................................................................................................................. 2 

II. Aim ............................................................................................................................................. 4 

III. Objectives ............................................................................................................................... 4 

1. To identify key genes and pathways involved in the progression of Cutaneous Squamous 

Cell Carcinoma from Actinic Keratosis. ......................................................................................... 4 

2. To investigate the impact of somatic non-synonymous mutations on BTK protein and their 

potential influence on FDA-approved therapies for SCC. .............................................................. 6 

3. To find chemical perturbations associated with identified biomarkers for correction of 

Squamous Cell Carcinoma. ............................................................................................................. 8 

Chapter 2. Review of literature ....................................................................................................... 11 

I. Introduction ............................................................................................................................... 11 

II. Genetic Predisposition to Squamous Cell Carcinoma .............................................................. 14 

III. Role of dysregulated genes for identification of SCC biomarkers ........................................ 16 

IV. A comprehensive overview of Machine Learning and its types ........................................... 17 

1. Unsupervised Machine Learning .......................................................................................... 18 

2. Reinforcement Machine Learning ........................................................................................ 20 

3. Supervised Machine learning ................................................................................................ 21 

V. XGBoost ML classifier in the prediction of SCC biomarkers .................................................. 26 

1. Feature selection and extraction: ........................................................................................... 27 

2. Early detection and diagnosis: .............................................................................................. 27 

3. Risk stratification and prognosis: .......................................................................................... 28 

4. Drug response prediction: ..................................................................................................... 28 

5. Feature importance and interpretability: ............................................................................... 28 

6. Ensemble learning and model performance: ......................................................................... 29 

7. Real-time monitoring and decision support: ......................................................................... 29 

VI. Machine Learning Model Evaluation Metrics ...................................................................... 29 

1. Accuracy ............................................................................................................................... 30 



Page | xv  
 

2. Precision ................................................................................................................................ 30 

3. Recall .................................................................................................................................... 31 

4. F1 Score ................................................................................................................................ 32 

5. AUC-ROC curve ................................................................................................................... 32 

VII. XAI for SCC Biomarker Identification: Enhancing Interpretability in ML Models ............. 34 

1. SHAP (SHapley Additive exPlanations) ............................................................................... 34 

2. LIME (Local Interpretable Model-Agnostic Explanations) .................................................. 35 

VIII. Exploring Drug Repurposing for Innovative Therapeutic Solutions .................................... 36 

IX. Molecular Docking and Dynamic Simulations ..................................................................... 38 

X. Unraveling Molecular Interactions: Contact Analysis in Molecular Dynamic Simulations ..... 39 

1. PyContact .............................................................................................................................. 39 

2. CONAN (CONtact ANalysis) ............................................................................................... 40 

XI. Drug Gene Budger ................................................................................................................ 40 

XII. Conclusion ............................................................................................................................ 41 

Chapter 3. Application of Explainable Artificial Intelligence in the Identification of Squamous 

Cell Carcinoma Biomarkers .................................................................................................................. 43 

I. Introduction ............................................................................................................................... 44 

1. What is Explainable AI (XAI)? ............................................................................................ 47 

2. SHAP values explained ......................................................................................................... 48 

II. Materials and methods .............................................................................................................. 50 

1. Data retrieval ......................................................................................................................... 50 

2. Data Preprocessing ................................................................................................................ 51 

3. Machine learning on the datasets .......................................................................................... 51 

4. Explainable AI (XAI) on the trained ML models ................................................................. 52 

III. Results ................................................................................................................................... 53 

1. Data Preprocessing ................................................................................................................ 54 

2. Machine learning on datasets ................................................................................................ 55 

3. Explainable AI on the Trained ML models .......................................................................... 56 

4. Evaluation of XAI output ...................................................................................................... 59 



Page | xvi  
 

5. Statistical analysis of identified genes .................................................................................. 61 

IV. Discussion ............................................................................................................................. 62 

1. Function and Pathway enrichment analysis on the identified key Genes ............................. 64 

2. Biological Significance of the identified key Genes ............................................................. 68 

V. Conclusion ................................................................................................................................ 71 

Chapter 4. Rare deleterious mutations in Bruton’s Tyrosine Kinase as biomarkers for Ibrutinib-

based therapy: an in-silico insight ......................................................................................................... 74 

I. Introduction ............................................................................................................................... 75 

II. Material and Methods ............................................................................................................... 77 

1. Data Retrieval ....................................................................................................................... 77 

2. Mutation Analysis ................................................................................................................. 77 

3. Molecular Dynamics Study ................................................................................................... 79 

4. Principle Component Analysis on wild type and mutant BTK proteins ............................... 80 

5. CONAN Analysis for wild type and mutant BTK proteins .................................................. 81 

6. Docking and contact analysis ................................................................................................ 81 

III. Results ................................................................................................................................... 83 

1. Retrieval of Variations and Drug associated with BTK protein. .......................................... 83 

2. Mutational Analysis .............................................................................................................. 83 

3. Molecular Dynamic Simulation Analysis ............................................................................. 84 

4. PCA Analysis on MD Trajectories ....................................................................................... 90 

5. Contact map analysis through CONAN. ............................................................................... 91 

6. Docking and MM-PBSA and MM-GBSA binding energies analysis ................................... 93 

7. Contact analysis for wild and mutant BTK-Ibrutinib complexes. ........................................ 96 

IV. Discussion ............................................................................................................................. 97 

V. Conclusions ............................................................................................................................. 103 

Chapter 5. Exploring Dysregulated Genes for Novel Targeted Therapies in Squamous Cell 

Carcinoma…… ................................................................................................................................... 106 

I. Introduction ............................................................................................................................. 107 

II. Materials and methods ............................................................................................................ 109 



Page | xvii  
 

1. Data retrieval and Pre-processing ....................................................................................... 109 

2. Identification of key dysregulated genes and their statistical analysis ................................ 109 

3. Function and Pathway enrichment analysis on the identified key Genes ........................... 110 

4. Identification of Chemical perturbations for each dysregulated gene ................................. 110 

III. Results ................................................................................................................................. 111 

1. Identification of key dysregulated genes and their statistical analysis ................................ 111 

2. Function and Pathway enrichment analysis on the identified key dysregulated Genes to find 

their role in SCC. ........................................................................................................................ 113 

3. Identification of Chemical perturbations for each identified gene ...................................... 118 

IV. Discussion ........................................................................................................................... 126 

V. Conclusion .............................................................................................................................. 127 

Chapter 6. Summary and Future Prospects ................................................................................... 130 

References ........................................................................................................................................... 137 

Publications ......................................................................................................................................... 174 

 

 

 

 

 

 

 

 

 

 

 



Page | xviii  
 

LIST OF TABLES 

Table 3.1: Microarray data description with their GEO accession number, number of samples in each 

series, sample type, sample size and the platform. ............................................................................... 53 

Table 3.2: Performance evaluation of XGBoost ML classifier for each dataset in terms of Accuracy 

percentage. ............................................................................................................................................ 56 

Table 3.3: List of significant genes in each dataset after applying the SHAP values on the XGBoost 

ML classifier. ........................................................................................................................................ 59 

Table 3.4: Comparison of the accuracy before and after the calculation of SHAP values on the 

XGBoost ML classifier for a 10000 gene set as well as 14 gene set. ................................................... 60 

Table 3.5: Comparison of accuracy for the Independent test set classified into Healthy vs AK, Healthy 

vs SCC and SCC vs AK datasets. ......................................................................................................... 61 

Table 3.6: Statistical analysis results for each identified genes in the datasets. ................................... 61 

Table 3.7: Significant GO terms with their P-value for STRING network........................................... 65 

Table 3.8: Significant pathway terms with their P-value for the STRING network. ............................ 67 

Table 4.1: Mutations that were determined to be detrimental by all seven tools. ................................. 84 

Table 4.2: Binding energy of mutated and wild system when docked with Ibrutinib. ......................... 93 

Table 4.3: MM-PBSA and MM-GBSA analysis results for free binding energy of Ibrutinib with wild 

type and mutant BTK proteins. ............................................................................................................. 94 

Table 4.4: Analysis of Ibrutinib’s interactions with BTK protein residues throughout different time 

frames. ................................................................................................................................................. 101 

Table 5.1: List of identified dysregulated genes identified using ML and SHAP .............................. 111 

Table 5.2: Statistical analysis results for each identified dysregulated genes. .................................... 112 

Table 5.3: GO terms with their P-value from STRING network. ....................................................... 114 

Table 5.4: Pathway terms with their P-value for the STRING network. ............................................ 116 

Table 5.5: List of drugs/small molecules obtained from L1000 dataset. ............................................ 120 

Table 5.6: List of drugs/small molecules obtained from CREEDS. ................................................... 124 

 

 



Page | xix  
 

LIST OF FIGURES 

Figure 1.1: Workflow of the proposed study showing the applicability of XAI in SCC biomarkers 

identification. .......................................................................................................................................... 5 

Figure 1.2: Workflow of the proposed study showing RMSD and RMSF analysis to find the impact of 

mutations on BTK protein and their potential influence on the Ibrutinib drug for SCC therapy. .......... 7 

Figure 1.3: Workflow of the proposed study showing the identification of chemical perturbations for 

biomarker-driven correction of SCC. ...................................................................................................... 9 

Figure 2.1: The Trifecta of Machine Learning: Supervised ML, Unsupervised ML, and Reinforcement 

ML. ....................................................................................................................................................... 18 

Figure 2.2: Unsupervised ML workflow ............................................................................................... 19 

Figure 2.3: Reinforcement ML workflow ............................................................................................. 20 

Figure 2.4: Supervised ML workflow ................................................................................................... 22 

Figure 2.5: XGBoost ML Algorithm .................................................................................................... 25 

Figure 2.6: Applications of XGBoost ML Algorithm ........................................................................... 27 

Figure 2.7: ML in SCC Prediction: Enhancing Accuracy through Machine Learning ......................... 34 

Figure 2.8: Molecular Docking and Dynamic Simulations: Investigating Molecular Interactions and 

Behavior ................................................................................................................................................ 39 

Figure 3.1: An overview of RMA Normalization. Density plots (a and b) show the expression density 

distribution in each array’s color channel, while the Box plots (c and d) show the expression distribution 

in each array before and after doing RMA normalization. ................................................................... 54 

Figure 3.2: Principal Component Analysis plots for (a) Healthy vs AK dataset, (b) Healthy vs SCC 

dataset, (c) SCC vs AK dataset. Segregation was observed for both modes between Healthy and AK, 

Healthy and SCC, and finally, SCC and AK individuals. ..................................................................... 55 

Figure 3.3: SHAP Barplot depicting the genes of highest relevance on top for (a) Healthy vs AK dataset, 

(b) Healthy vs SCC dataset, (c) SCC vs AK dataset. ............................................................................ 57 

Figure 3.4: SHAP Summary plot depicting the most important genes and their impact in (a) Healthy vs 

AK dataset, (b) Healthy vs SCC dataset, (c) SCC vs AK dataset. ........................................................ 58 

Figure 3.5: Confusion matrix for (a) Healthy vs AK dataset, (b) Healthy vs SCC dataset, (c) SCC vs 

AK dataset of 14 genes. ........................................................................................................................ 60 

Figure 3.6: A STRING network made from the genes that were retrieved to be of the highest relevance 

using SHAP values. Here the edge thickness represents confidence in the connection. ...................... 63 



Page | xx  
 

Figure 4.1: Three-dimensional structures of (a) BTK protein with all the mutations depicted by red 

spheres b) BTK protein complexed with Ibrutinib, highlighted by a black circle (c) Ibrutinib. ........... 85 

Figure 4.2: RMSD plot of all the four mutated and wild type BTK proteins showing a high degree of 

variability in mutated BTK proteins as compared to wild type BTK protein. P566Q mutation showing 

the highest unstability indicated by “Green” color. .............................................................................. 86 

Figure 4.3: Local RMSD plot of Beta-sheets conformation from residue 402-421 highlighted by yellow 

color in left panel. A rigidity can be seen after 44ns in the mutant protein as compared to wild type 

showing the F413L mutation’s impact on protein. ............................................................................... 87 

Figure 4.4: Local RMSD plot for P566Q mutant protein located in helix conformation starting from 

residue 560-572 highlighted by yellow color in left panel. A high rise in RMSD peak can be seen at 

various positions but a significant rise can be seen after 44ns. ............................................................. 88 

Figure 4.5: Local RMSD plot for G584E and E589K mutant proteins located in helix conformation 

starting from residue 575-592 highlighted by yellow color in left panel. A high rise in RMSD peak can 

be seen after 65ns in the mutant protein as compared to wild type BTK protein. ................................ 89 

Figure 4.6: RMSF plot of all the four mutated and wild type BTK proteins showing a high degree of 

variability in mutated BTK proteins with respect to wild type BTK protein. P566Q mutation showing 

the highest unstability indicated by “Green” color. .............................................................................. 90 

Figure 4.7: Principal Component Analysis for both wild and mutant BTK proteins exhibiting large 

dynamic movements and evident fluctuations in terms of atomic vibrations as a consequence of 100 ns 

MD simulation. ..................................................................................................................................... 91 

Figure 4.8: Contact maps generated by CONAN for both wild and mutant BTK proteins exhibiting 

lightning of backbone represented by the diagonal and missingness throughout the MD trajectory for 

mutant proteins as compared to the wild type BTK protein. ................................................................ 92 

Figure 4.9: Average decomposition values for each residue in both wild type and mutant BTK-Ibrutinib 

complexes. ............................................................................................................................................ 96 

Figure 4.10: PyContact analysis graphs for wild and mutant BTK-Ibrutinib protein complexes’ MD 

trajectories for potential hydrogen bond occupancy. ............................................................................ 97 

Figure 4.11: Interaction and proximity of residues around Ibrutinib in wild type and mutant BTK-

Ibrutinib complexes throughout different time frames. ...................................................................... 100 

Figure 5.1: STRING network made from the identified dysregulated genes that were retrieved to be of 

the highest relevance using SHAP values. .......................................................................................... 113 

 

 

 



Page | xxi  
 

LIST OF ABBREVIATIONS 

SCC   Squamous Cell Carcinoma 

BCC   Basal Cell Carcinoma 

AK   Actinic Keratosis 

ML   Machine Learning 

AI   Artificial Intelligence 

XAI   eXplainable Artificial Intelligence 

SHAP   SHapley Additive exPlanations 

LIME   Local Interpretable Model-Agnostic Explanations 

KNN   K-Nearest Neighbors   

SVM   Support Vector Machines 

XGBoost  Extreme Gradient Boosting 

PCA   Principle Component Analysis 

AUC-ROC  Area Under the Receiver Operating Characteristic Curve 

CONAN  CONtact ANalysis 

DGB   Drug Gene Budger 

GO   Gene Ontology 

BP   Biological Processes 

MF   Molecular Function 

CC   Cellular Components 

PAMR1  Peptidase Domain Containing Associated with Muscle Regeneration-1 

CTSC   Cathepsin-C 

PHYHIP  Phytanoyl-CoA 2-Hydroxylase Interacting Protein 

CD24   Cluster of Differentiation-24 



Page | xxii  
 

WNT5A  WNT family member-5A 

RAB3B  RAS-associated binding family member-3B 

WIF1   WNT-Inhibitory Factor-1 

TNNC1  Troponin-C1 

PARK7  Parkinson disease protein-7 

MMP14  Matrix Metalloprotease-14 

ARHGEF4  Rho guanine nucleotide exchange factor 4 

CFL1   Cofilin-1 

HNRNPM  heterogeneous nuclear ribonucleoprotein M 

RPS13   Ribosomal Protein S-3 

GTSE1  G2 And S-Phase Expressed-1 

CHTOP  Chromatin Target Of PRMT1 

EDNRB  Endothelin Receptor Type-B 

DNAJC8  DnaJ heat shock protein family (Hsp40) member C-8 

S100A11  S100 calcium binding protein A-11 

TFG   Tropomyosin-receptor kinase fused gene 

GAPDH  Glyceraldehyde-3-Phosphate Dehydrogenase 

RPS3A  Ribosomal Protein S-3A 

 

 

 



Page | 1  
 

 

 

 

Chapter 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Overview of the Thesis 
 

 

 

 

 

 



Page | 2  
 

Chapter 1. Overview of the Thesis 
 

I. Introduction 

The integration of computational methodologies and biological data is of utmost importance in 

the healthcare domain, wherein bioinformatics assumes a central position. Through the 

analysis, management, and interpretation of vast biological datasets that encompass genomics, 

transcriptomics, proteomics, and metabolomics, researchers acquire knowledge regarding 

diverse facets of health and disease [3], [4]. The acquisition of such datasets is crucial in order 

to gain a comprehensive understanding of the molecular mechanisms that underlie various 

diseases and to facilitate the development of targeted therapeutic interventions [5]. The advent 

of eXplainable Artificial Intelligence (XAI) and Machine Learning (ML) has significantly 

bolstered the capabilities of bioinformatics in extracting meaningful insights from intricate 

biological data, thereby transforming the healthcare industry by facilitating comprehensive 

analysis of genomic and clinical datasets. ML algorithms accelerate the identification and 

management of various diseases by revealing patterns, relationships, and predictive models. 

The analysis of genomic data enables the use of algorithms to predict the probability of disease 

onset, thereby enabling prompt intervention and tailored preventive measures. Also, ML 

models utilize electronic health records (EHRs) and clinical data to assist precise diagnoses 

and anticipate patient outcomes for healthcare professionals [6], [7]. 

The amalgamation of bioinformatics and ML has become an essential component in the 

healthcare industry, specifically in the realm of drug discovery and development. Docking and 

simulation techniques are extensively utilized by researchers to comprehend the interaction 

between drug molecules and target proteins, as well as to evaluate their binding affinity [8]. 

The methodologies employed entail the simulation of the docking mechanism between a small 

molecule and a target protein, with the objective of ascertaining the most favorable binding 
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configuration and potential energy. By utilizing sophisticated computational algorithms, 

researchers are able to effectively examine extensive compound libraries in order to identify 

potential drug candidates, resulting in a notable acceleration of the drug discovery process [9]. 

The application of comprehensive drug databases has brought about a significant 

transformation in the field of drug repurposing, which involves the identification of alternative 

therapeutic indications for drugs that were initially developed for different purposes [10]. 

Professionals in the field of bioinformatics utilize information on drug structures, targets, and 

clinical outcomes to identify possible candidates for repurposing. ML algorithms are utilized 

to forecast new therapeutic indications for already existing drugs by examining databases and 

taking into account various factors such as target interactions, chemical similarity, and disease 

pathways. This methodology results in significant savings of both time and resources in the 

drug development process [11], [12]. 

In the advancement of personalized medicine, bioinformatics tools, and techniques have been 

indispensable, involving the customization of therapeutic approaches according to the distinct 

genomic, environmental, and lifestyle attributes of individual patients. Bioinformatics software 

is utilized to analyze genomic data, detecting genetic variations that impact a patient’s reaction 

to medication or vulnerability to a particular condition [13], [14]. This information is utilized 

by medical practitioners to make well-informed decisions regarding the selection of treatment 

and to tailor drug dosages for individual patients, leading to enhanced effectiveness and 

minimized adverse reactions [15]. 

The fusion of bioinformatics with other omics technologies, namely proteomics and 

metabolomics, amplifies our comprehension of disease mechanisms [16], [17]. As a result, 

significant biomarkers are recognized, facilitating the detection, anticipation, and surveillance 

of diseases. ML algorithms are utilized by researchers to scrutinize vast omics datasets in order 



Page | 4  
 

to detect accurate biomarkers that are linked to particular diseases or treatment results. 

Biomarkers play a crucial role in enabling the timely identification of diseases, tailoring 

treatment options to individual patients, and tracking the development of diseases. The domain 

of bioinformatics and computational biology is in a state of perpetual evolution, as it assimilates 

a wide range of data sources and devises sophisticated algorithms to enhance patient outcomes 

and transform the domains of disease diagnosis, treatment, and prevention [18], [19]. 

The study of dysregulated genes during SCC relied on the integration of bioinformatics and 

computational methodologies. The primary aim of this study is to identify precise biomarkers 

and therapeutics for SCC. To achieve this goal, the study is divided into three main objectives: 

II. Aim 

Study of dysregulated genes during Squamous Cell Carcinoma for identification of potential 

biomarkers and therapeutics. 

III.  Objectives  

 

1. To identify key genes and pathways involved in the progression of Cutaneous 

Squamous Cell Carcinoma from Actinic Keratosis. 

XAI has garnered increasing attention in recent years for its potential to identify biomarkers 

associated with diverse conditions, such as cancer. The present objective was centered on the 

utilization of XAI to discern biomarkers associated with (Actinic Keratosis) AK to SCC. A 

two-phase methodology was utilized, which involved the development of a classification 

model based on ML using XGBoost, followed by the application of XAI techniques to establish 

interpretability by linking the model outputs to pertinent genes. This study reported the 

outcomes of our research, encompassing the identification of the most significant genes that 

contribute to the precision of the model and their plausible implications in the development of 

cancer (Figure 1.1).  
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Figure 1.1: Workflow of the proposed study showing the applicability of XAI in SCC 

biomarkers identification. 

 

In the beginning, a classification model based on XGBoost was developed by applying ML 

approach. The XGBoost algorithm is widely recognized for its exceptional predictive 

performance, rendering it a highly suitable option for our research. The model was trained 

utilizing a dataset comprising pertinent genes associated with SCC. In order to guarantee the 

interpretability of the XGBoost model, we applied XAI techniques. The SHAP (SHapley 

Additive exPlanations) barplot and SHAP summary plots were employed to elucidate the 

predictions of the model. The plots yielded valuable insights into the individual gene 

contributions toward the classification outcomes, thus establishing a correlation between the 

model output and genes associated with SCC. The findings of our analysis indicated that the 

precision of the XGBoost classification model remained stable both prior to and subsequent to 

the implementation of SHAP values. This discovery suggested that it is possible to attain the 

interpretability of ML models without compromising their efficacy. The observation 
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underscored the capacity of XAI methods to augment the interpretability of models while 

maintaining their precision. The genes that were identified in this study exhibit potential as 

prospective targets for the management of SCC. The present research strongly supported the 

implementation of XAI in the identification of biomarkers for predictive and prognostic 

purposes in the biomedical domain [1]. 

 

2. To investigate the impact of somatic non-synonymous mutations on BTK 

protein and their potential influence on FDA-approved therapies for SCC. 

To achieve this objective, we began with the genes implicated in the progression of SCC based 

on our previous study. As these genes are still being studied and there are no known FDA-

approved drugs that target them, we conducted a literature survey to identify FDA-approved 

drugs for skin cancer. This survey led to the discovery of Ibrutinib, a Bruton’s tyrosine kinase 

(BTK) inhibitor. Although there have been few studies on the role of BTK protein in SCC, we 

chose to focus on BTK in order to close the extant research gap. By investigating the impact 

of somatic non-synonymous mutations on BTK protein and their potential influence on 

Ibrutinib for SCC, we obtained a better understanding of this drug as a potential therapeutic 

target for this cancer.  

The development and progression of SCC are significantly impacted by protein mutations that 

play a pivotal role in the disease. This study was directed to examine the effects of individual 

amino acid mutations in the BTK protein. The adverse effects of selected deleterious mutations 

in the BTK protein on protein stability were analyzed using molecular dynamics (MD) 

simulations. The results suggested that by making the protein unstable, these mutations may 

affect SCC prognosis. Additionally, a study was done to see how the BTK protein, and its 

mutations interacted with Ibrutinib, a medication created especially for the treatment of SCC. 

Despite the adverse impact of mutations on protein structure, it was noted that the mutants 
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exhibited comparable binding to Ibrutinib as the wild-type protein. The outcomes of this 

objective suggested that regardless of the adverse effects of missense mutations on protein 

function, particularly in SCC, Ibrutinib-based therapy remains a viable option for targeting 

these mutations with efficacy (Figure 1.2).  

 
Figure 1.2: Workflow of the proposed study showing RMSD and RMSF analysis to find 

the impact of mutations on BTK protein and their potential influence on the Ibrutinib drug 

for SCC therapy. 

 

Seven computational tools were used in this study to evaluate the impact of individual amino 

acid mutations. Insights into the differences in protein and mutant dynamics were obtained 

through the use of Molecular Dynamics (MD) simulations and trajectory analysis techniques 

such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), 

Principal Component Analysis (PCA), and Contact analysis. Furthermore, we utilized 

Molecular docking, Molecular Mechanics-Generalized Born Surface Area (MM-GBSA), 

Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA), and interaction 

analysis to evaluate the free binding energy and its decomposition for each protein-drug 

complex for both the wild-type protein and its mutants. This study provided evidence that the 

stability and function of the BTK protein are negatively affected by single amino acid 
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mutations in SCC. However, it is noteworthy that Ibrutinib-based therapy continues to exhibit 

efficacy against these mutations, thereby highlighting their potential as biomarkers for targeted 

treatment with Ibrutinib in SCC [2]. 

 

3. To find chemical perturbations associated with identified biomarkers for 

correction of Squamous Cell Carcinoma.  

The main objective of this study was to identify chemical perturbations that are linked to 

biomarkers/dysregulated genes for the treatment of SCC, with a significant emphasis on their 

potential use in drug discovery and repurposing. This study identified crucially dysregulated 

genes that are associated with SCC and assessed their potential as therapeutic targets. Through 

a rigorous comparison of gene expression profiles among individuals diagnosed with SCC, 

healthy individuals, and those with AK, we successfully identified several genes that exhibit 

significant differential expression. These dysregulated genes have been identified to have 

involvement in crucial biological processes that are closely associated with the progression of 

SCC. These processes include cellular disassembly, regulation of protein catabolism, and 

extracellular matrix disassembly. Also, we have found several biological pathways, such as 

WNT signaling, regulation of actin cytoskeleton, etc., which are crucial in the progression of 

SCC. 

In order to augment our research outcomes, we utilized Drug Gene Budger (DGB), a tool 

designed to investigate potential therapeutic interventions. The analysis revealed the notable 

effectiveness of certain drugs, such as Doxorubicin, Dasatinib, Tretinoin, etc., in rectifying the 

atypical expression patterns of identified dysregulated genes associated with SCC. This 

study presents promising opportunities for precise therapeutic interventions in personalized 

treatment, thereby facilitating innovative drug development and repurposing strategies in the 

field of cancer (Figure 1.3). 
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Figure 1.3: Workflow of the proposed study showing the identification of chemical 

perturbations for biomarker-driven correction of SCC. 
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Chapter 2. Review of literature 
 

I. Introduction 

 

“The two areas that are changing are information technology and medical technology. Those 

are the things that the world will be very different 20 years from now than it is today.” 

Bill Gates 

Bill Gates’s quote emphasizes the transformative impact of information technology and 

medical technology on the global landscape within the next two decades. These two areas have 

the potential to revolutionize various aspects of society. Information technology advancements, 

such as AI and data analytics, are already reshaping industries and opening new avenues for 

innovation. Medical technology breakthroughs, including genomics and personalized 

medicine, are paving the way for precise diagnostics and targeted therapies. When it comes to 

SCC, these advancements have already contributed to more accurate diagnoses, personalized 

treatment approaches, and ongoing research advancements. As we embrace these technologies 

further, we can anticipate even greater progress in the fight against cancer and other complex 

diseases. 

Non-melanoma skin cancer (NMSC) is the fifth most prevalent cancer in men and women 

worldwide. About 1 million cases of NMSCs are diagnosed worldwide, with SCC being the 

second most prevalent NMSC, accounting for approximately 20% of all skin malignancies 

[20], [21]. SCC is characterized by the uncontrolled proliferation of aberrant squamous cells, 

which are slender and flat cells that make up the skin’s outer layer and the lining of the body’s 

hollow organs. Numerous studies have indicated that SCC is likely to develop from AK or 

from Bowen’s disease, also known as Carcinoma-in-situ [22]. The chance of 

developing SCC exhibits variability contingent upon the cancer’s anatomical site and also upon 

an individual’s age and gender, among other risk factors. Adults over the age of 65 experience 
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the highest rates of diagnosis, making them the most likely group to experience it. Men are 

more likely than women to acquire SCC, and also individuals with a pale complexion and green 

or blue eyes are at greater risk [23]. The prevalence and incidence of SCC can vary 

significantly depending on the population being investigated and the individual risk factors 

involved, making it challenging to provide precise figures. The combination of radiation and 

surgical interventions has demonstrated efficacy in the management of the majority of cases 

of SCC. Nevertheless, a considerable fraction of high-risk SCC, constituting 5-10% of 

instances, poses a formidable therapeutic challenge [24]. The present treatments available for 

metastatic skin cancer are still inadequate, particularly in the elderly population, highlighting 

the necessity for more efficient and methodical therapeutic alternatives. The risk of morbidity 

and mortality from SCC is an unrecognized public health problem. According to statistical 

reports, SCC has been identified as a significant health burden, resulting in numerous fatalities, 

particularly in European countries. The scientific community is presently engaged in 

developing precise anti-cancer therapeutics through the analysis of genomic data, with a focus 

on identifying a viable remedy for both melanoma and non-melanoma skin cancers [25], [26]. 

A meta-analysis conducted on the oncogenome of SCC has indicated that while the alterations 

associated with each tumor may vary, a significant number of SCC cases exhibit shared 

dysregulated molecular pathway networks resulting from these alterations. The acquisition 

from these studies can prove to be advantageous in comprehending the cellular and molecular 

mechanisms involved in the progression of SCC [27]. 

The etiology of SCC remains uncertain; however, it is hypothesized to be associated with 

protracted exposure to ultraviolet radiation emanating from the sun or alternative sources, such 

as tanning devices. Additional risk factors comprise compromised immune function, exposure 

to specific chemical agents, and medical history of skin disorders [28]. Upon its onset, SCC has 

the potential to proliferate and metastasize to distant anatomical sites. During its initial phases, 
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the condition may manifest as a diminutive, scaly lesion on the epidermis that exhibits a reddish 

or otherwise altered hue. As the condition advances, it has the possibility to develop into a 

protruding, papilloma-like lesion or an ulcerated wound that exudes blood. During the later 

stages, the malignancy has a tendency to metastasize to adjacent lymph nodes as well as other 

bodily structures, thereby rendering therapeutic interventions more challenging [29]. The 

therapeutic approach for SCC is contingent upon the cancer’s stage and location and may 

involve surgical intervention to excise the malignant tissue, radiation, or chemotherapy. The 

primary therapeutic modality for SCC is surgical intervention, which entails the excision of 

malignant tissue. The aforementioned procedure can be accomplished through a local excision, 

which involves the removal of solely the cancerous tissue, or an expanded excision, which 

entails the removal of a portion of healthy tissue surrounding the cancer [30]. Radiation therapy 

employs ionizing radiation, such as X-rays, to induce lethal damage to malignant cells. This 

therapeutic intervention is capable of being applied either as a monotherapy or in conjunction 

with a surgical procedure. The efficacy of the treatment of SCC can be considerable; however, 

it is not without chances for adverse effects, including skin inflammation and fatigue [31]. 

Chemotherapy involves the use of medications to eliminate cancer cells, and its efficacy is 

typically inferior to that of these alternative modalities. The administration of chemotherapy 

may result in adverse reactions, including but not limited to emesis, alopecia, and nausea [32].  

Managing SCC can pose challenges, particularly in cases where metastasis has taken place, 

and the efficacy of existing treatments may not always meet expectations. Researchers are 

currently endeavoring to devise novel and efficacious interventions for SCC. Also, the 

challenge of identifying SCC in its initial phases may lead to treatment delays, thereby 

augmenting the intricacy of managing cancer’s progress. Also, it has been observed that SCC 

may exhibit a suboptimal response to specific therapeutic interventions such as radiation and 
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chemotherapy, leading to unfavorable outcomes or adverse reactions in some individuals, so 

the timely diagnosis of SCC is crucial for effective treatment [32], [33].  

Researchers are considering using AI-based diagnostic tools, such as ML algorithms, to solve 

the difficulties of early SCC detection and improve patient outcomes [34]. These technologies 

have shown promise in improving the accuracy and effectiveness of SCC diagnosis by using 

medical data and images to find patterns linked to the condition and lowering the number of 

unwanted biopsies, which can be painful and expensive. They can also assist in monitoring the 

course of lesions over time, allowing medical experts to change treatment approaches as 

needed. The integration of AI in the diagnosis of SCC holds the promise of transforming cancer 

research and enhancing the general health status of patients [35].  

Moreover, AI is currently being applied to the pursuit of novel drugs and therapeutic options 

for individuals afflicted with SCC. The application of AI possesses the ability to considerably 

expedite the drug development process, consequently enhancing the probability of prompt and 

effective therapy for patients. Further, it can aid in the recognition of individuals who are best 

suited to receive specific treatments, thus allowing for the establishment of personalized 

therapies that are customized to the specific needs and characteristics of each patient. With the 

continued breakthroughs in AI, it is likely that further pioneering applications of this 

technology in the fight against SCC and various forms of cancer will emerge [36]. 

II. Genetic Predisposition to Squamous Cell Carcinoma 

A higher probability of developing SCC can be attributed to genetic predispositions. Such 

predispositions refer to an innate susceptibility to a disease that increases the risk of its 

occurrence. Individuals who have a family history of SCC or carry certain genetic mutations, 

like TP53, PIK3CA, CDKN2A, or KRAS genes, may have a genetic predisposition to 

developing this condition [37].  
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The PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) gene is 

responsible for coding the PIK3CA protein, which plays a significant role in regulating cell 

growth and division through the PI3K signaling pathway. When activated, this protein triggers 

the production of AKT/Protein kinase B, which, in turn, activates other proteins that promote 

cell growth and division. However, mutations in the PIK3CA gene can cause the protein to 

become overactive, leading to uncontrolled cell growth and the development of SCC [38].  

The TP53 (tumor protein p53) gene produces a protein that assists in regulating cell growth 

and division. In the event of a mutation in this gene, the regulatory mechanism may be 

disrupted, potentially resulting in the onset of SCC. Mutations in genes linked to TP53, such 

as TP63 and TP73, can also contribute to SCC formation [39].  

The CDKN2A, which is a cyclin-dependent kinase inhibitor 2A, is of paramount importance 

in the maintenance of appropriate cellular growth and division control. However, mutations in 

the CDKN2A gene can cause the CDKIs to become less effective, resulting in uncontrolled 

cell growth and cancer. Mutations in other genes related to the CDKN2A pathway, such as 

CDK4 and CDK6, can also contribute to the development of cancer, including SCC [40].  

The KRAS (Kirsten rat sarcoma viral oncogene homolog) gene codes for the KRAS protein. If 

it undergoes a mutation, it can produce an abnormal version of the protein that can cause cells 

to grow and divide uncontrollably. This uncontrolled growth can lead to the formation of 

tumors that may eventually develop into SCC. Mutations in the KRAS gene have also been 

linked to a more aggressive form of SCC that is challenging to treat as the abnormal protein 

can interfere with other signaling pathways within the cell, leading to further dysregulation of 

cell growth and division. While the KRAS gene plays a significant role in SCC’s development, 

there may be other genes and pathways involved in its development yet to be discovered [41]. 
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Although having a genetic inclination towards SCC doesn’t guarantee its occurrence, other 

elements like UV radiation may also affect the chances. Apart from certain genetic mutations 

or a family history of SCC, additional factors contribute to the likelihood of the disease [42]. 

Therefore, it is crucial for individuals to have a discussion with their healthcare provider to 

understand their individual risk factors and take preventive measures to reduce their risk of 

developing SCC. By being proactive and taking steps to protect their skin from harmful UV 

rays, individuals can help reduce their risk of developing this type of skin cancer. 

III.  Role of dysregulated genes for identification of SCC biomarkers 

The identification of biomarkers for SCC is of the highest importance, and dysregulated genes 

may serve as viable candidates for this purpose. The aberrant or mutated genes have the 

potential to trigger anomalous cellular proliferation. By acknowledging these genes and their 

corresponding pathways, it is feasible to develop biomarkers that can facilitate the 

identification and monitoring of SCC.  In conjunction with other diagnostic modalities, such 

as biopsies and imaging, biomarkers can provide a comprehensive assessment of the patient’s 

medical status, which can aid in the selection of appropriate therapeutic interventions [43]. The 

genes in question can provide crucial insights into the mechanisms underlying the development 

of SCC, thereby facilitating the identification of targeted therapies for this condition [44], [45]. 

The use of computational tools by researchers has led to the precise recognition of dysregulated 

genes in cancer. By analyzing publicly accessible gene expression data, unusual expression 

levels can be identified, potentially leading to the discovery of biomarkers and therapeutic 

targets [46]. RNA-seq, microarray analysis, and gene ontology analysis are among the 

computational tools available to researchers for this purpose. Due to the unique benefits and 

drawbacks of each tool, it is essential to choose the most appropriate one for a particular 

research query [47]. 
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Advanced computational methodologies are being used to scrutinize diverse data repositories, 

encompassing genomic, transcriptomic, and proteomic data, with the aim of detecting plausible 

genes linked to SCC. The approach entails the acquisition and pre-processing of data to 

eliminate inaccuracies and incongruities, followed by the application of statistical and 

ML algorithms, such as association analysis, regression analysis, and clustering, to detect 

patterns and trends. Subsequently, functional analysis techniques such as gene ontology, 

pathway analysis, and network analysis are utilized to comprehend the biological mechanisms 

underlying these gene associations [48]. It is imperative to validate the outcomes utilizing 

autonomous datasets prior to ascertaining the function of the identified genes in SCC via 

experimental methodologies such as gene knockdown or overexpression experiments. This is 

necessary to facilitate the development of novel diagnostic and therapeutic strategies for SCC. 

IV.  A comprehensive overview of Machine Learning and its types 

In recent times, there have been notable transformations in the field of cancer research. 

Researchers have employed diverse techniques, such as preventive screening, to identify cancer 

prior to the manifestation of symptoms, and have come up with novel approaches for predicting 

treatment efficacy. The advent of cutting-edge technologies has led to the acquisition of 

tremendous amounts of data that are accessible to the healthcare research community [49]. 

Nevertheless, accurately predicting disease outcomes remains a challenging task for 

physicians. In response to this challenge, the application of ML techniques has gained 

widespread popularity among medical researchers due to their ability to efficiently discern 

patterns and correlations within intricate datasets, thereby enabling the prediction of future 

outcomes for various forms of cancer [50]. 

ML is a robust tool that facilitates the improvement of system performance on particular tasks 

without the need for explicit programming to execute those tasks. ML is propelling numerous 

innovative advancements in various domains, including but not limited to image and speech 
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recognition, natural language processing, and robotics, by utilizing extensive data. It also has 

real-world uses in areas like fraud analysis, client profiling, and preventative maintenance. ML, 

in its many forms, provides researchers and organizations with a formidable tool for taking on 

difficult challenges [51]. 

 

Figure 2.1: The Trifecta of Machine Learning: Supervised ML, Unsupervised ML, and 

Reinforcement ML. 

 

ML is commonly classified into three fundamental categories (Figure 2.1), which are 

determined by the specific techniques and methodologies utilized for the learning process. The 

aforementioned categories comprise: 

1. Unsupervised Machine Learning 

Unsupervised ML pertains to a set of algorithms that facilitate the autonomous identification 

of patterns and structures, thereby uncovering underlying insights from unannotated data 

(Figure 2.2). Clustering algorithms, such as k-means and hierarchical clustering, enable the 

categorization of data points with comparable characteristics, thus enabling the detection of 

distinct clusters within the data [52].  
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Figure 2.2: Unsupervised ML workflow 

 

Dimensionality reduction methods, such as PCA and t-SNE, are employed to reduce the 

number of dimensions in a given dataset while preserving its essential characteristics [53]. This 

procedure facilitates the representation of information and the elimination of superfluous 

characteristics. Anomaly detection algorithms are employed for the purpose of identifying rare 

or atypical patterns within data. This renders them particularly valuable for detecting fraudulent 

activities and improving the security of networks [54]. Association rule learning algorithms, 

namely Apriori and FP-growth, are employed to uncover associations and dependencies among 

discrete items in a provided dataset [55].  

Unsupervised learning is a widely employed technique in diverse domains, such as customer 

segmentation, recommendation systems, image, and text analysis, etc. This facilitates the 

acquisition of valuable insights by data scientists, enabling them to make informed decisions 

predicated on the underlying structures of the data. 
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2. Reinforcement Machine Learning 

Reinforcement learning is a distinct category of ML that instructs an agent to optimize a reward 

signal while making decisions within a designated environment. The process of achieving this 

involves a trial-and-error approach, where the agent is provided with feedback in the form of 

positive rewards or negative punishments. The provision of feedback is of utmost importance 

in facilitating the agent’s acquisition of knowledge and adjustment of its policy to enhance 

decision-making capabilities in subsequent instances without the need for explicit directives 

(Figure 2.3). This methodology is effective in intricate or unfamiliar settings where the 

identification of the most advantageous course of action necessitates the agent’s exploration 

and experimentation. Reinforcement learning comprises three fundamental constituents, 

namely the agent, environment, and action space [56].  

 
Figure 2.3: Reinforcement ML workflow 

 

Reinforcement learning algorithms encounter the challenge of delayed, noisy, or sparse 

feedback signals, which poses a difficulty in devising an effective policy. Approaches such as 

exploration and exploitation, temporal difference learning, and Monte Carlo methods are 
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employed to assist agents in mitigating this issue. These techniques facilitate the enhancement 

of agents’ learning efficacy [57], [58]. 

Q-learning is a commonly employed approach in reinforcement learning algorithms for 

determining the optimal strategy. This method entails the agent maintaining a record of 

anticipated rewards for each feasible action in all environmental states. The approximations are 

revised based on the incentives obtained by the agent subsequent to executing manoeuvres 

within the given context. Over time, these approximations approach the accurate anticipated 

reward values, facilitating the agent in obtaining the most advantageous approach [59]. 

Reinforcement learning has proven to be beneficial in various fields, such as recommendation 

systems, natural language processing, games, and robot control. One example of this 

phenomenon is the application of reinforcement learning in the development of robotic agents 

capable of performing complex tasks. The field of reinforcement learning is a significant and 

evolving area of research within the realm of AI. It has the capacity to tackle complex real-

world problems and has demonstrated encouraging results in diverse applications. An 

exemplary instance of this phenomenon is the advancement of computer game agents that 

possess the capacity to match or surpass human performance in games such as chess. 

3. Supervised Machine learning 

Supervised ML is a widely used methodology in which an algorithm is trained on a 

predetermined dataset that contains annotated outputs for each instance (Figure 2.4). The 

objective of this procedure is to generate a model that has the capability of predicting results 

for novel instances that bear a resemblance to the data used for training. This form of learning 

has diverse practical applications, like natural language processing, image recognition, credit 

scoring, etc. The application of supervised learning has become a prominent methodology for 
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making informed decisions and estimations by exploiting data [60], [61]. Various forms of 

supervised learning are delineated and elaborated upon in the subsequent discourse. 

 

Figure 2.4: Supervised ML workflow 

 

a) Regression  

Regression is a commonly used algorithm in the field of supervised learning. Its primary 

objective is to predict a continuous output variable based on one or more input variables. 

Regression analysis is utilized in diverse domains, including the estimation of a house’s value 

based on its location, size, and other pertinent variables. In order to reduce the discrepancy 

between anticipated and observed values within the training dataset, these algorithms identify 

the optimal line of best fit. The resultant model generates forecasts for unobserved data by 

applying this equation. There are several regression algorithms available, including linear 

regression, logistic regression, and non-linear regression. Each algorithm exhibits its own 

distinct advantages and disadvantages, and the selection of the optimal algorithm is contingent 

upon the specific problem being addressed [62]. 
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• Linear regression is a statistical technique involving the use of empirical data to 

construct an equation of linearity that represents the relationship between one or 

more predictor variables and a response variable. Typically, the dependent variable 

exhibits continuity, while the independent variables may assume either continuous 

or categorical forms. The aim is to ascertain the most appropriate line that represents 

their association [63]. 

• Logistic regression is a fitting method that is appropriate for situations where the 

dependent variable has only two potential outcomes, namely 0 or 1. Through the 

application of this regression methodology, it is possible to approximate the 

probability of an occurrence, such as evaluating the likelihood of an individual 

developing a condition or disease based on particular risk elements [64]. 

• Non-linear regression is a modeling technique employed when a linear equation fails 

to accurately represent the relationship between a dependent variable and a number 

of independent variables. This method uses non-linear functions, such as 

trigonometric or polynomial functions, to accommodate more intricate data patterns. 

The primary objective of non-linear regression is to ascertain the function that most 

accurately characterizes the given data points [65]. 

b) Classification 

Classification algorithms are used in supervised learning to predict output variables from input 

variables. The objective of classification is to classify data into distinct categories, for instance, 

ascertaining whether an email meets the criteria for being spam or whether a customer intends 

to renew their subscription. The procedure entails the identification of decision boundaries that 

demarcate distinct classes within the training dataset. Subsequently, the model makes use of 

these boundaries to generate predictions on novel data. The commonly used supervised 

classifiers in ML are k-nearest neighbors, decision trees, and support vector machines [66]. 
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• KNN, an abbreviation for k-nearest neighbors, is an ML methodology that works in 

both classification and regression tasks. The fundamental principle underlying the 

KNN algorithm is to determine the k nearest neighboring data points to a specific 

point in a dataset and subsequently utilize these points to generate predictions 

concerning the given point. In classification tasks, KNN draws on the labels of the 

k-closest data points to anticipate the label of an unknown data point. On the other 

hand, in regression tasks, KNN relies on the values of these data points to figure out 

the value of a new data point [67]. 

• The decision tree algorithm is frequently used in tasks involving supervised learning 

for the purposes of classification and regression both. The development of a tree 

structure allows for the representation of tests on characteristics as internal nodes, 

the representation of results as branches, and the indication of the class label as leaf 

nodes. In order to generate precise projections for novel data, this model acquires 

knowledge from antecedent training data [68]. 

• Support Vector Machines (SVMs) represent a type of supervised learning algorithm 

that is capable of performing classification or regression tasks on data. The primary 

aim of the analysis is to identify an optimal decision boundary, commonly referred 

to as a hyperplane, that effectively segregates data into distinct categories. 

SVMs exhibit a high level of efficacy in handling datasets with a large number of 

features in high-dimensional spaces using the kernel trick. This allows SVMs to 

identify a linear boundary for decisions in the transformed space that can effectively 

segregate the classes in the original data [69]. 

• The XGBoost algorithm, which is a highly potent form of supervised learning, is 

commonly employed for the purposes of classification and regression. This belongs 

to the class of gradient-boosting algorithms that combine several weak models, such 
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as decision trees, to generate a dependable predictive model. XGBoost is 

distinguished by its widespread adoption owing to its outstanding performance and 

capacity to effectively manage complex datasets with a high degree of precision [70].  

The XGBoost algorithm is based on the principle of iteratively constructing a series 

of decision trees to form an ensemble. Gradient boosting is a technique in which 

each subsequent tree is formulated to correct the mistakes of the preceding trees. The 

process of optimizing the ensemble entails the computation of gradients or partial 

derivatives of a loss function specified by the user in relation to the predicted values 

of the ensemble. The subsequent trees are developed with the aim of mitigating this 

gradient, resulting in a gradual decrease in the aggregate error of the model (Figure 

2.5) [71]. 

Figure 2.5: XGBoost ML Algorithm 
 

XGBoost works on a range of crucial characteristics to enhance its efficacy and 

prevent overfitting. The optimization function incorporates L1 and L2 regularization 

components, which impose penalties on complex models and promote parsimony. 

This algorithm integrates gamma as a hyperparameter for regulating the minimum 
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loss reduction which is required to partition a leaf in a tree, leading to the elimination 

of extraneous branches.  

The capability of XGBoost to effectively manage missing values is a significant 

benefit, as it can acquire knowledge on the optimal direction to allocate them during 

the tree-building process by applying accessible data without the need for manual 

accusation. Also, XGBoost offers valuable insights into the significance of features 

by quantifying the extent to which each feature contributes to minimizing the loss 

function across all trees. This feature is particularly useful for feature selection and 

comprehending the interrelationships between features and the target variable [72]. 

V. XGBoost ML classifier in the prediction of SCC biomarkers 

The XGBoost algorithm is widely recognized as a significant ML technique that has proven to 

be advantageous in the realm of cancer investigation, specifically in the domains of therapy 

and diagnostics. The capacity to proficiently handle intricate and multi-dimensional datasets 

has established it as an essential resource for both scholars and healthcare practitioners. 

XGBoost can analyze complex biological data, enabling the detection of substantial patterns 

that enhance the precision of predictions. The contributions of XGBoost to this field have also 

facilitated progress in the development of treatments tailored to individual patients [73]. The 

importance of XGBoost in the biomedical domain (Figure 2.6) is underscored by the 

subsequent factors: 
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Figure 2.6: Applications of XGBoost ML Algorithm 

 

1. Feature selection and extraction: 

The XGBoost algorithm exhibits proficiency in analyzing large datasets that encompass 

numerous features, rendering it a fitting choice for cancer research. XGBoost can perform 

feature selection and extraction, thereby streamlining the research process by identifying 

crucial factors. By prioritizing the most informative variables, users can enhance their ability 

to make more accurate predictions [74]. 

2. Early detection and diagnosis: 

Early detection considerably enhances the probability of successful cancer treatment. The 

application of XGBoost algorithms enables medical practitioners to assess patient data, 

encompassing genomic profiles, medical imaging, and clinical records, for the purpose of 
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detecting patterns and ascertaining the likelihood of cancer. This procedure expedites the 

timely detection of the condition, enabling expeditious execution of suitable therapies [75]. 

3. Risk stratification and prognosis: 

XGBoost has the capability to perform risk stratification of patients by analyzing a multitude 

of factors, such as tumor characteristics, biomarkers, and patient demographics. This analysis 

enables the prediction of the likelihood of disease progression, recurrence, and patient survival. 

The acquisition of this data is paramount in the development of tailored therapeutic regimens 

and the judicious allocation of medical provisions [76]. 

4. Drug response prediction: 

The XGBoost algorithm possesses the capability of using molecular and genetic data analysis 

in order to suggest the response of a patient toward cancer therapies. Incorporating discrete 

features such as genomic modifications and genetic expression patterns into XGBoost 

algorithms is pivotal in discerning individuals who may derive therapeutic benefits or 

experience unfavorable reactions to particular pharmacological interventions. The 

implementation of a beneficial approach can effectively optimize treatment options while 

simultaneously mitigating the occurrence of unfavorable side effects [77]. 

5. Feature importance and interpretability: 

Through the elucidation of salient attributes within the model, XGBoost facilitates researchers’ 

comprehension of the pivotal factors that underlie prediction. As a result, the aforementioned 

transparency can facilitate the selection of potential biomarkers and enhance our understanding 

of the fundamental mechanisms underlying cancer progression [78]. 
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6. Ensemble learning and model performance: 

XGBoost effectively harnesses the potential of ensemble learning to augment the precision and 

strength of the ultimate model by amalgamating numerous inferior predictive models. The 

implementation of this methodology amplifies the efficacy of cancer prognostication models, 

rendering them more reliable and appropriate for medical applications [79]. 

7. Real-time monitoring and decision support: 

By examining information like vital signs and laboratory results, XGBoost algorithms can help 

medical practitioners monitor and make decisions about patients in real-time. With these 

features, clinicians can get alerts about possible cancer-related complications or shifts in a 

patient’s condition, allowing them to act quickly. Consequently, the XGBoost models exhibit 

promising potential as valuable channels within healthcare environments [80]. 

VI.  Machine Learning Model Evaluation Metrics 

The metrics used to assess the efficacy of ML models are commonly referred to as ML model 

evaluation metrics. These metrics make it possible to evaluate various models and select the 

most suitable one for a particular task, assisting in the quantitative evaluation of a model’s 

accuracy and efficacy. Commonly used measures for evaluating ML include accuracy, 

precision, recall, F1 score, and AUC-ROC (Area under the receiver operating 

characteristic curve). Through the quantification of diverse aspects of a model’s performance, 

these metrics facilitate the assessment of its capacity to generate precise predictions, prevent 

erroneous positive and negative outcomes, and manage data that is unevenly distributed [81]. 

Evaluation metrics are an important part of ML because they let us compare different models 

in a fair way and figure out which one fits a certain problem the best. Also, this method permits 

us to identify areas in need of improvement and to adjust the models’ parameters in order to 
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achieve superior outcomes. To measure the efficacy of an ML model, there are a variety of 

widely employed evaluation matrices available [82]. 

1. Accuracy 

Accuracy is a commonly used metric for assessing the performance of ML models. This metric 

is computed by determining the proportion of the model’s predictions that were accurate out 

of the total number of predictions made. It is frequently used as a fundamental evaluation 

method for classification models, for instance, predicting the classification of wildlife in an 

image. The mathematical expression for calculating this metric is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

To calculate the accuracy of a model, the total number of accurate predictions is divided by the 

total number of predictions [83], [84]. Accuracy can be expressed in terms of percentage or a 

decimal value between 0 and 1, where 1 is perfect accuracy, and 0 is no accuracy. However, 

when evaluating model performance on imbalanced datasets, accuracy might not be the most 

meaningful metric to use. In these kinds of situations, precision and recall might provide more 

useful information. 

2. Precision 

The precision of an ML model can be evaluated by the ratio of true positive predictions to total 

positive predictions. Accurate predictions mean that the model has correctly found the presence 

of a positive class, while false positives happen when the model predicts a positive class in an 

image with a negative class. The concept of precision is frequently applied in scenarios where 

the occurrence of false positives is more detrimental than that of false negatives. This is 

particularly relevant in medical diagnoses, where the prediction of a disease in an otherwise 

healthy individual can result in severe implications. In such situations, it is imperative to 
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prioritize the avoidance of false positives to mitigate the risk of unnecessary medical 

interventions and potential harm to patients. The precision formula can be expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Commonly, this metric is represented as a percentage or decimal value between 0 and 1, with 

1 representing flawless precision and 0 representing no precision [83], [84]. The assessment of 

an ML model’s performance solely based on precision may not offer a comprehensive 

overview. Therefore, it is frequently accompanied by other metrics, such as recall and the F1 

score. 

3. Recall 

Recall is used to measure the performance of a classification model in ML. The objective of 

this metric is to evaluate the performance of a model’s predictions with respect to positive 

instances. To be more precise, the model’s true positive predictions are evaluated against a 

total of potential positive instances. In this case, a real positive prediction would mean the 

correct identification of a positive class, like an image of a cat. In contrast, if a model makes a 

prediction that an image does not contain a cat despite the presence of an actual positive class, 

it would be deemed as a false negative prediction. 

In specific contexts, such as fraud detection, recall is commonly used to prioritize the avoidance 

of false negatives over false positives. When it comes to finances, a false negative can lead to 

significant losses, while a false positive might cause less harm overall. The recall of an 

ML model can be calculated by dividing the predicted number of true positives by the actual 

number of positive cases [83], [85]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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If the model accurately anticipated 75 positive cases out of a total of 100, its recall metric would 

be 75%. The metric of recall is often used in conjunction with other measures, such as precision 

and the F1 score, in order to obtain a more all-encompassing assessment of the effectiveness 

of the model. 

4. F1 Score 

The F1 score, which is the harmonic mean of precision and recall, offers a comprehensive 

evaluation of a model’s efficacy. This calculation entails the utilization of the harmonic mean 

of precision and recall, which confers greater significance to lower values due to the typical 

inverse correlation between precision and recall. 

The F1 score is considered valuable due to its ability to provide a straightforward and easily 

understandable metric that encapsulates the overall performance of a model. The value of a 

model becomes evident when there is a requirement for equal consideration of precision and 

recall in the evaluation process [85], [86]. In the field of medical diagnosis, it is imperative to 

ensure both accuracy, which prevents false positives, and completeness, which prevents false 

negatives; for this reason, the F1 score has emerged as a reliable performance metric. The F1 

score is computed through the subsequent formula: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

5. AUC-ROC curve 

The AUC-ROC curve is a commonly used visualization tool in the ML domain to evaluate the 

performance of a binary classifier. The acronym AUC-ROC denotes the "area under the 

receiver operating characteristic curve," a graphical representation of the relationship between 

true positive rate (TPR) and false positive rate (FPR). The computation of the True Positive 

Rate (TPR) involves the division of the number of positive instances that are correctly predicted 
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by the total number of positive instances that actually exist. On the other hand, False Positive 

Rate (FPR) is determined by dividing the number of positive instances that are predicted 

incorrectly by the total number of negative instances that actually exist. 

In the event that a classifier has the ability to effectively distinguish between positive and 

negative classes, its AUC-ROC curve will manifest as a step function with a score of 1. This 

means that the true positive rate will be one, and the false positive rate will be zero. In contrast, 

when a classifier fails to distinguish between positive and negative classes, its AUC-ROC curve 

will manifest as a diagonal line with a value of 0.5, denoting that the true positive rate will be 

equivalent to the false positive rate [87]. 

The AUC-ROC curve provides a single-number summary that is helpful in assessing the 

effectiveness of a classifier. It is especially useful when comparing the performance of various 

classifiers, enabling the selection of the optimal solution for a given problem. For example, if 

two ML classifiers have respective AUC-ROC values of 0.75 and 0.85, the classifier with the 

higher value would be considered preferable. It is a common statistic used by experts in the 

field of ML when evaluating and choosing among several classifiers [88]. 

Applying evaluation metrics permits us to measure the efficacy of incorporating ML into 

cancer research. The utility of ML algorithms is being investigated for the identification of 

biomarkers for various cancer forms and the prediction of effective therapies against them 

(Figure 2.7). With the use of these algorithms, novel biomarkers for SCC can be found by 

analyzing large datasets to find patterns and relationships. This improves the personalization 

of treatment for SCC patients by allowing for more accurate forecasts of therapeutic outcomes.  



Page | 34  
 

 

Figure 2.7: ML in SCC Prediction: Enhancing Accuracy through Machine Learning 

 

VII. XAI for SCC Biomarker Identification: Enhancing Interpretability in ML 

Models 

XAI is a set of techniques and methodologies used to enhance the interpretability and 

comprehension of ML models by humans. The primary objective of XAI is to provide insight 

into how a model arrives at a particular decision or prediction, thereby enhancing confidence 

and transparency in AI systems. XAI offers the opportunity to bridge the gap between black-

box ML models and human comprehension by allowing users to understand a model’s output 

factors and the reasoning behind them. SHAP (SHapley Additive exPlanations) and LIME 

(Local Interpretable Model-Agnostic Explanations) are well-known XAI techniques [89], [90]. 

1. SHAP (SHapley Additive exPlanations) 

The SHapley Additive exPlanations (SHAP) method is a widely used technique in the XAI 

domain. Its primary purpose is to provide an interpretation of the predictions generated by ML 
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models. It is based on the idea of Shapley values from cooperative game theory and offers a 

framework independent of any particular model for comprehending the significance and 

contributions of features. The goal of SHAP is to quantify each feature’s influence on the 

outcome and attribute it to the final prediction in order to explain the output of a black-box 

model. SHAP provides a fair distribution of importance across all features and their interactions 

by producing Shapley values, which indicate the average marginal contribution of each feature 

across distinct feature subsets [91]. 

SHAP offers the benefit of furnishing both local and global interpretations, which are valuable 

in comprehending the process of decision-making. The provision of local explanations 

facilitates comprehension of the influence of distinct features on the prediction of a given 

instance, whereas global explanations afford a comprehensive understanding of the 

significance of features across the entirety of the dataset. SHAP is versatile in its applicability 

to a range of model types, such as tree-based models, neural networks, and ensemble models. 

Also, it offers consistent and reliable explanations, irrespective of the underlying model 

architecture. This facilitates the establishment of generalizability and fosters confidence in the 

interpretive procedure [92]. 

2. LIME (Local Interpretable Model-Agnostic Explanations) 

LIME is a well-known XAI technique used to provide explanations for ML model predictions.  

The concept behind LIME is to create an interpretable model that replicates the behavior of the 

original model close to a specific instance by modifying input features and observing the 

resulting prediction changes. LIME generates a locally accurate and interpretable model by 

fitting simple models such as linear regression or decision trees to perturbed instances and their 

respective predictions. LIME’s model-agnostic nature allows it to be applied to different types 

of ML models, making it a versatile tool that can be used in various applications across 
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domains. Its flexibility makes it easy to use without requiring knowledge of internal 

architecture [93], [94]. 

Biomarker identification is essential for SCC diagnosis, prognosis, and treatment decisions. 

Researchers and medical professionals can comprehend the factors underpinning SCC 

development and progression with the aid of XAI techniques. By selecting an explainable 

ML model, such as XGBoost, researchers are able to evaluate the importance of various 

features in predicting SCC occurrence. Rule extraction algorithms and local interpretability 

methods such as SHAP facilitate the understanding of individual predictions and the 

identification of specific biomarkers implicated in SCC diagnosis, prognosis, and treatment 

decision-making. The interpretability provided by XAI fosters confidence in the predictions of 

the ML model and facilitates its implementation in clinical practice [1], [95]. 

VIII. Exploring Drug Repurposing for Innovative Therapeutic Solutions 

Drug repurposing, also known as drug repositioning or drug reprofiling, is the process of 

identifying new therapeutic uses for existing drugs originally developed for different 

indications. Instead of commencing the process of drug development from scratch, researchers 

investigate the potential of existing drugs to treat other diseases or conditions. This strategy is 

gaining popularity in the pharmaceutical industry due to its ability to accelerate the 

development process, reduce costs, and provide innovative treatment options. To initiate the 

process of drug repurposing, researchers typically employ data mining, systematic screening, 

or serendipitous observations to identify promising drugs for a new therapeutic indication. 

Large databases of clinical, pharmacological, and genomic data are analyzed to identify 

pharmaceuticals that may be effective against specific targets or pathways pertinent to the new 

indication. 
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In contrast to traditional drug discovery and development, which can take years and cost 

billions of dollars, drug repurposing can significantly reduce the time and cost associated with 

drug development. Repurposing an existing drug has the added benefit of shortened 

development timelines, as many aspects, such as formulation, pharmacokinetics, and toxicity, 

are already known. In addition, the safety profiles of repurposed pharmaceuticals are well-

documented because they have already been administered to humans for their original 

indications. Since safety data is already available, regulatory approval can be expedited, 

allowing the focus to shift to establishing efficacy for the new indication. Also, drug 

repurposing enables the discovery of new applications for drugs that have failed in their 

original indications or have limited market potential [96]. 

Metformin [97], a pharmaceutical agent predominantly employed in the management of 

diabetes, exemplifies the concept of drug repurposing, as it is currently under investigation for 

its prospective anti-cancer attributes. Thalidomide [98], originally utilized as a sedative and 

antiemetic for expectant mothers, has been repurposed for the treatment of leprosy and multiple 

myeloma, a form of cancer, owing to its anti-inflammatory characteristics. In both instances, 

the pharmaceutical agents were found to exhibit additional advantages beyond their initially 

intended therapeutic application [99], [100]. The preceding examples illustrate the possibility 

of repurposing existing pharmaceuticals for new therapeutic purposes, which can result in 

substantial clinical benefits. Repurposing medications enables scientists to utilize their prior 

safety precautions knowledge. This expedites the availability of new medications, potentially 

reducing patient and healthcare system costs [101]. With drug repurposing comes the 

possibility of treating a wide range of diseases and conditions, which could result in novel and 

efficient healing options for people all over the world. 
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IX.  Molecular Docking and Dynamic Simulations 

Using molecular dynamics (MD) is a valuable tool in drug repurposing as it allows researchers 

to investigate how molecules interact with target proteins. Molecular docking [102], a 

computational technique within MD, can predict and analyze binding interactions between a 

drug and a target protein by simulating the docking process. This technique helps researchers 

prioritize potential drug candidates by estimating their binding affinities and identifying those 

with the most favorable interactions. However, to obtain a more comprehensive understanding 

of the underlying mechanisms and dynamic behavior, researchers use molecular dynamics 

simulations that model the movements and interactions of individual atoms within a system 

over time using physical laws and mathematical equations [103].  

Researchers can use molecular dynamics simulations [104] to observe the dynamic behavior, 

structural fluctuations, and conformational changes of both the protein and ligand. These 

simulations capture the interactions and movement of atoms, providing detailed information 

about the kinetics, thermodynamics, and energetics of the system. Molecular dynamics 

simulations are especially useful for drug repurposing because they can help researchers 

understand potential off-target effects and elucidate the mechanisms of action of repurposed 

drugs. By observing ligand-protein complex behavior, researchers can investigate how drugs 

interact with target proteins, how binding sites may undergo conformational changes, and how 

drug presence affects overall protein stability and function [105], [106]. 

Researchers can obtain a complete comprehension of repurposing candidates by merging 

molecular docking and molecular dynamics simulations (Figure 2.8). Molecular docking aids 

in the detection of possible drug candidates by analyzing their binding affinities. Meanwhile, 

molecular dynamics simulations offer a more profound understanding of the dynamic behavior, 

structural modifications, and mechanisms of action. This strategy enables researchers to 

investigate and assess the therapeutic capabilities of current drugs in a more comprehensive 
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manner, leading to the identification of new therapeutic applications through drug repurposing 

[107], [108]. 

 

Figure 2.8: Molecular Docking and Dynamic Simulations: Investigating Molecular 

Interactions and Behavior 

 

X. Unraveling Molecular Interactions: Contact Analysis in Molecular Dynamic 

Simulations 

In molecular dynamics (MD) simulations, contact analysis is an important tool for examining 

the interactions between various molecular entities such as proteins, ligands, and protein-

protein complexes. This method is useful for identifying specific residues or regions that come 

in contact during the simulation, which provides insights into potential binding sites, protein-

protein interfaces, or critical interactions [109]. PyContact and CONAN are two commonly 

used tools for performing contact analysis in MD simulations. 

1. PyContact 

PyContact is a software package created using Python that simplifies contact analysis by 

computing different structural and dynamic features from MD trajectories. It has several 

metrics that can be used to evaluate contacts, such as hydrogen bonds, residue-residue 
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distances, hydrophobic interactions, and salt bridges. PyContact utilizes an adaptable and easy-

to-use framework for the analysis and visualization of contacts, allowing researchers to 

determine significant interactions and obtain mechanistic knowledge from MD simulations. Its 

user-friendly interface has made it prevalent in the scientific community as it enables 

researchers to perform contact analysis quickly [110]. 

2. CONAN (CONtact ANalysis) 

CONAN, a command-line utility, is a tool utilized in molecular dynamic simulations for 

contact analysis. Its primary focus includes quantifying protein-protein contacts and 

interactions by computing various properties such as contact frequency, lifetime, and strength. 

The software also provides numerous customization options, including contact definitions and 

analytical choices to cater to the diverse research requirements. Researchers find CONAN 

helpful in identifying critical residues involved in protein-protein interfaces and interactions 

[111]. 

The use of contact analysis can assist in comprehending the behavior and interactions of 

biomolecular systems. By analyzing contacts formed during MD simulations, significant 

information about structural and functional aspects can be obtained. Researchers can identify 

crucial residues, explain binding mechanisms, and gain a better understanding of molecular 

processes through contact analysis. This knowledge can be pivotal in drug discovery, protein 

engineering, and comprehending biological functions at a molecular level [112]. 

XI.  Drug Gene Budger 

Drug Gene Budger (DGB) is a web and mobile-based application that assists in the 

prioritization of drugs and small molecule compounds based on their ability to influence the 

expression of a target gene. It employs datasets such as LINCS L1000 [113] and CMap [114], 

which characterize the transcriptomic response of human cell lines to numerous small 
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molecules, such as FDA-approved drugs and preclinical compounds. DGB incorporates and 

analyzes these datasets, as well as drug-induced gene expression signatures curated from 

sources such as Gene Expression Omnibus (GEO) database [115] via crowdsourcing initiatives 

such as CREEDS [116]. DGB seeks to identify small molecules that significantly affect the 

expression of a specific target gene by employing these exhaustive collections of drug-induced 

transcriptomic signatures. A user-friendly interface of DGB allows users to select their target 

gene of interest and interact with the ranked list of small molecules generated as query results. 

It is a valuable tool for researchers and scientists engaged in drug discovery and personalized 

medicine research, as it enables the prioritization of drugs and small molecules based on their 

capacity to modulate the expression of a specific target gene [117].  

XII.  Conclusion 

The present literature review was centered on the identification of prospective biomarkers and 

therapeutic interventions for SCC through an exploration of genes that have been found to be 

dysregulated. This was achieved by looking at the involvement of these genes in the 

development of SCC and highlighting the significance of using ML approaches for biomarker 

discovery. In order to give ML models interpretability, the use of XAI techniques was 

investigated to improve the accuracy of SCC biomarker prediction. The review also examined 

drug repurposing methods, molecular docking, and simulation techniques as plausible 

approaches in cancer research. These methods have the potential to identify novel biomarkers 

and treatment options, ultimately leading to enhanced patient outcomes. 
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Chapter 3. Application of Explainable Artificial Intelligence in 

the Identification of Squamous Cell Carcinoma 

Biomarkers 
 

Abstract 

NMSCs are the fifth most common type of cancer worldwide, affecting both men and women. 

Each year, more than a million new occurrences of NMSC are estimated, with SCC 

representing approximately 20% of all skin malignancies. The purpose of this study was to find 

potential diagnostic biomarkers for SCC by application of XAI on XGBoost ML models trained 

on binary classification datasets comprising the expression data of 40 SCC, 38 AK, and 46 

normal healthy skin samples. After successfully incorporating SHAP values into the ML 

models, 23 significant genes were identified and were found to be associated with the 

progression of SCC. These identified genes may serve as diagnostic and prognostic biomarkers 

in patients with SCC. 
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I. Introduction 

Skin cancers are commonly divided into two categories: firstly, NMSC, which includes SCC 

and Basal cell carcinoma (BCC), and secondly, melanoma skin cancers [118]. NMSC is the 

world’s fifth most prevalent form of cancer, affecting both men and women. In the United 

States, over 1.8 million new cases of NMSCs are reported each year, with cutaneous SCC being 

the most frequent kind of skin cancer. [119], [120]. African Americans and Asian Indians have 

a higher incidence of SCC, and also, it ranks the second most prevalent among Hispanics and 

Chinese/Japanese Asians. [121]. SCC has been recognized as a kind of cancer that originates 

in keratinocytes. The skin ailment AK, also known as Carcinoma-in-Situ, has been associated 

with the emergence of SCC in numerous studies. However, a considerable number of high-risk 

SCC cases, approximately 5-10 percent of all instances, are exceedingly difficult to diagnose 

and treat, necessitating the use of radiation or surgery in the majority of cases. It is less likely 

that therapies associated with such high-risk metastatic skin cancer will be effective, 

particularly in an elderly population [122] in critical need of a promising yet systematic 

diagnosis and treatment for SCC [123], [124]. Microarray data is growing in volume, and the 

information it gives on the genes responsible for a disease phenotype is being used more and 

more for variant categorization and analysis, as well as other applications. Microarrays are a 

relatively recent method that involves the placement of hundreds of DNA probes that are 

matched to target genes on a tiny chip that can then be used to analyze gene expression in 

samples. One of the primary applications of this approach was to compare cancer and normal 

tissues, as well as distinct cancer subtypes and individuals with varying prognoses, among other 

things [125], [126]. When it came to identifying microarray samples, the widely used ML 

technique of support vector machines (SVMs) [127], artificial neural network [128], logistic 

regression, naïve Bayes, etc., worked admirably. In a large number of studies, metabolomic 

data is used to gain insight into the metabolites that define each organism's state and the 
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dynamics of those metabolites under various settings. The ‘omics’ domain is a critical 

component of systems biology. Due to its emphasis on small molecules and interactions, it has 

gained widespread adoption in a variety of fields recently, such as biomarker discovery and 

identification, development of drugs, customized health care, etc. [129]. Some pioneer studies 

on omics data have made normalization tools like NOREVA [130], [131], [132] and ANPELA, 

an integrated workflow for Label-free quantification (LFQ) [133] of data. These tools have 

made significant contributions to numerous facets of scientific investigations. 

Technological advances like Next Generation Sequencing (NGS), Genome-wide association 

studies (GWAS), and computational methods have expanded the scope of precision medicine 

and diagnostics by enabling the cost-effective analysis and integration of clinical data to 

examine tumor genomes, transcriptomes, and so on [134], [135]. Additionally, single-cell 

sequencing enabled the identification of key cancer driver genes, paving the way for 

personalized cancer management [136]. Most of the research are currently going on to find 

what causes SCC to create biomarkers that may be used to develop more precise methods of 

diagnosis and treatment [137]. Differential expression analysis is a widely used technique for 

determining how a gene is controlled and whether or not it is associated with a particular 

condition. It is a statistical technique that uses normalized read count data to determine 

quantifiable differences in the level of expression between the experimental and control group. 

Statistics are used to establish whether an observed variation in read counts for a particular 

gene is statistically substantial, that is, more than what would be predicted from natural random 

fluctuation. In addition to edgeR and DESeq (based on Negative Binomial (NB) distributions) 

and baySeq and EBSeq (Bayesian techniques based on an NB model), there are numerous other 

methods for differential expression analysis [138], [139]. Computational strategies have been 

applied in bioinformatics research for nearly three decades to help in the study of molecular 

processes and the development of novel medical interventions for a variety of disorders [140]. 
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Deep learning algorithms have witnessed a spike in popularity in recent years in fields such as 

omics data analysis, sequence data analysis, biomedical imaging, and signal processing, where 

they have proven extraordinary performance [141], [142]. 

Using ML algorithms, previous studies have identified crucial biomarkers in the search for 

genes with greater predictive value for SCC, thereby facilitating the identification of 

biomolecules with higher predictive value [143]. Researchers are currently utilizing AI-based 

ML techniques to investigate the genetic variability of cancers, which can be used to enhance 

the accuracy of cancer diagnosis, the development of potent biomarkers, and the success rate 

of cancer therapies [144]. Regarding robots, AI refers to their capacity to imitate human 

behavior, a feature that proves especially advantageous in processing vast quantities of 

information. ML is a crucial application of AI that enables computer systems to acquire 

knowledge from their own unique encounters without requiring explicit programming [145], 

[146]. ML models can be conceptualized as a modeling technique that entails a buildup of 

knowledge and the improvement of performance. The purpose of these models is to facilitate 

the recognition of advantageous components and their interrelationships [147]. In recent years, 

AI has made significant progress, transitioning from a primarily theoretical concept to a 

practical, application-focused field. The utilization of AI across various domains is presently 

linked with elevated prospects, particularly in the realm of cancer research. ML has already 

been employed to investigate survival rates and prognostic models for pancreatic cancer, 

advanced nasopharyngeal carcinoma, breast cancer, and several other types of cancer [144], 

[148]. AI algorithms, specifically those utilizing ML, have demonstrated efficacy in producing 

accurate outcomes and predictions. However, these algorithms suffer from a lack of 

transparency, which impedes understanding of their fundamental operational processes. This 

opacity presents a significant challenge, as relying on a system that cannot provide self-

explanation poses considerable risks when making critical decisions. The concept of XAI 



Page | 47  
 

proposes a fundamental change in the approach to AI, with the aim of achieving greater 

transparency and comprehensibility to address this challenge. This study aims to develop a set 

of strategies that lead to the improvement of more comprehensible models while 

simultaneously maintaining a high level of performance. 

1. What is Explainable AI (XAI)? 

XAI is a field of research that seeks to make the outcomes of AI systems more human-

comprehensible. Recently, academia and practitioners have rekindled interest in the concept of 

XAI. The term ‘explainable’ or ‘explainability’ refers to a model’s ability to rationalize its 

output. Additionally, explainability ensures the model’s compliance with accuracy 

and refers to the complete and precise representation of a model’s output. Explainability can 

be classified as either local (for a single instance of a decision) or global (for comprehending 

the model’s decision-making mechanism). The growing significance of explainability 

underscores the critical nature of tools that assist humans in comprehending the behavior of 

black-box models [149]. SHAP (SHapely Additive Explanation), LIME (Local Interpretable 

Model-agnostic Explanation), ELI5, AIX360, and Skaters are just a few of the XAI frameworks 

available, with SHAP and LIME being the most widely used and interoperable with any deep 

learning or ML model.  

SHAP stands for SHapley Additive exPlanations and is an open-source package that 

determines if an ML model is trustworthy or not. SHAP evolved from Lloyd Shapley’s 1951 

presentation of Shapley values as a solution paradigm for cooperative game theory. SHAP 

employs game theory in an understandable manner to create a link between optimal credit 

apportionment and local explanations by using standard Shapley values for a typical model 

explanation. In brief, SHAP is a wonderful state-of-the-art ML explainer that helps in reverse-

engineering any prediction algorithm’s results. It is generally used for a complex model, like 

in the case of gradient boosting, deep neural networks, etc., to better understand the decisions 
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that have been made by the model to check its correctness and faithfulness. From here, SHAP 

values come into existence; the calculation of these values means a lot to explain and interpret 

the outcomes of the model. SHAP values originated from Shapley values of game theory, 

which is a concept that employs ‘game,’ which represents the outcome of the prediction model, 

and ‘players’ represent the features of the model. Shapley values play a significant role in 

quantifying the performance of the players in the betterment of the game equivalently, SHAP 

values quantify the performance of each feature that contributes to the decision-making of the 

prediction model locally. SHAP identifies two estimation approaches, KernelSHAP and 

TreeSHAP, for Shapley values, where KernelSHAP is for local surrogate models to explain 

black-box ML model predictions and TreeSHAP for complex models based on trees [150], 

[151]. 

2. SHAP values explained 

SHAP is a cooperative game theory-based approach for determining Shapley values, and its 

main objective is to compute each attribute’s contribution to the forecast of an incident ‘x’ to 

account for it. Shapley values provide guidance on how to distribute the prediction evenly 

across the attributes. The Shapley value explanation is portrayed as a strategy for attributing 

additive features, a linear model, which is an innovation of SHAP. ‘∅𝑠’ can be calculated with 

the help of a linear cooperative model, where ‘x’ represents a vector for all the feature values 

which are present in the model. According to SHAP, the following is the explanation: 

𝑔(𝑧′) =  ∅0 + ∑ ∅𝑖

𝑀

𝑖=1

𝑧′𝑖 

Where ‘g’ denotes the model of explanation; the coalition vector of game theory is denoted by 

𝑧′ = {0,1}M; the coalition size is denoted by ‘M,’ and the feature attribution for a feature ‘i’ is 

denoted by ∅𝑖  ∈  ℝ. Efficiency, Symmetry, Dummy, and Additivity are all satisfied by 
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Shapley values. SHAP computes Shapley values; hence it meets both. Discrepancies between 

SHAP and Shapley characteristics are found in the various SHAP studies. SHAP identifies 

local accuracy, missingness, and consistency which are the three desirable characteristics.  

Property 1: Local accuracy 

𝑓(𝑥) = 𝑔(𝑥′) =  ∅0 + ∑ ∅𝑖

𝑀

𝑖=1

𝑥′𝑖 

If we put ∅0 = 𝐸𝑋 (𝑓(𝑥)) and all 𝑥′𝑖 are set to 1, then this will become the Shapley efficiency 

property using the coalition vector.  

𝑓(𝑥) = ∅0 +  ∑ ∅𝑖

𝑀

𝑖=1

𝑥′𝑖 =  𝐸𝑋 (𝑓(𝑋)) +  ∑ ∅𝑖

𝑀

𝑖=1

 

Property 2: Missingness 

𝑥′𝑖 = 0 ⇒  ∅𝑖 = 0 

According to missingness, a feature that is not present is assigned a value of zero. Take note 

that x′i denotes coalitions, with a value of ‘0’ denoting the lack of a feature value. In 

cooperative game theory terminology, all feature values x′i of the instance to be analyzed must 

be ‘1’. The existence of a ‘0’ implies the fact that the instance’s feature value is absent. In 

contrast to "regular" Shapley values, this trait does not appear on their list of characteristics. In 

the words of Lundberg, it is a “small book-keeping feature”. Because it is multiplied by x′i =

0, a missing feature might theoretically have any Shapley value it desired without impairing 

the local accuracy property of the feature set. The Missingness property ensures that features 

that are not present receive a Shapley value of zero. When it comes to practical application, 

this is significant only for continuous traits. 
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Property 3: Consistency 

If f̂x(z′) denotes f̂(hx(z′)) and z′\i denotes that z′i = 0. For any binary model f and f′ that meet 

the following condition:  

f̂′x(z′) − f̂′x(z′
\i)  ≥  f̂x(z′) −  f̂x(z′

\i) 

If z′ ∈  {0,1}M is true for all inputs, then, 

∅𝑖(𝑓′, 𝑥) ≥ ∅𝑖(𝑓, 𝑥) 

In terms of the consistency property, if a model is adjusted in such a way that the relative 

contribution of a feature value rises or remains constant (independent of the contribution of 

other features), the Shapley value similarly increases or stays constant. Consistency contributes 

to the Shapley characteristics of Linearity, Dummy, and Symmetry, which are all derived from 

it [150], [152]. 

The purpose of this work was to use an ML-based approach that uses the XAI method for 

elucidation of the molecular mechanism by which AK progresses to SCC and to identify 

important genes associated with SCC, which may give novel diagnostic options for SCC 

management. Differentially expressed genes from SCC samples were compared to healthy skin 

samples and AK samples to elucidate the molecular biological processes behind SCC.  

II. Materials and methods 

1. Data retrieval 

The normalized, calibrated, and pre-processed array data for AK and SCC were obtained from 

the GEO database available at NCBI. Three datasets were identified using the search terms 

SCC and AK: GSE45216, GSE98744, and GSE108008. The GSE45216 collection has 30 SCC 

and 10 AK samples, while the GSE98774 collection contains 18 AK and 36 normal healthy 
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skin samples. There are 10 SCC, 10 AK, and 10 normal healthy skin samples in the GSE108008 

dataset.  

2. Data Preprocessing  

Given that the dataset was constructed by integrating three GEO datasets, its quality must be 

verified. RMA (Robust MultiArray Average) normalization method was applied for microarray 

summarization and quantile normalization of the datasets. We have performed log2-

transformation and quantile normalization on the expression data to draw boxplots and 

expression density plots for both normalized and non-normalized data [153]. Finally, we 

identified around 10,000 common genes that were present in all three datasets; consequently, 

we merged the expression profiles for these 10,000 common genes. PCA provides the 

visualization of variables’ correlations and the identification of clusters of comparable data. 

The resulting dataset had 10,000 genes classified into three types (Healthy, Actinic Keratosis, 

and Squamous Cell Carcinoma). The dataset was subsequently separated into three binary 

classification problems, namely Healthy vs AK, Healthy vs SCC, and SCC vs AK, with each 

case treated separately. Each dataset was subjected to PCA using the scikit-learn package of 

python to assess whether or not the sample groups separated based on the variance of gene 

expression in two major components, hence determining the dataset’s quality. 

3. Machine learning on the datasets 

The datasets were randomly apportioned in an 80:20 ratio into training and testing sets. ML 

techniques like SVMs, KNNs, deep learning, etc., gained popularity recently in disciplines 

such as omics data analysis, sequence data analysis, biomedical imaging, and signal processing 

[140], [141], [142], so we chose to conduct ML on our datasets. The training sets were used to 

train three XGBoost models for the classification of three datasets. The XGBoost algorithm 

(Extreme Gradient Boosting) is an ML technique based on decision trees that optimizes 
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performance via a process known as boosting. Since its inception, it has consistently 

outperformed the majority of other ML methods, including logistic regression, the random 

forest model, and conventional decision trees. XGBoost frameworks are available for a variety 

of programming languages, most notably Python, and it interacts well with the popular scikit-

learn ML framework used by Python data scientists. After the application of the XGBoost ML 

classifier using Scikit-learn library on the datasets, the testing sets were used to evaluate the 

models’ performances. Models were evaluated in terms of the confusion matrix and accuracy 

of the model calculated using the test set.  

4. Explainable AI (XAI) on the trained ML models  

The XAI analysis on the trained XGBoost models was performed using the Python SHAP 

(SHapley Additive exPlanations) package. The XAI analysis probes into the process of 

decision-making by the ML model and assists in identifying the features that contribute 

significantly to the model’s prediction confidence. Thus, XAI analysis will aid in identifying 

relevant genes from which trained models may identify/classify the phenotype/condition, such 

as Healthy, AK, or SCC. A local summary plot was built to illustrate SHAP values, where 

values indicate the feature’s contribution to decision confidence. Additionally, a SHAP 

summary plot was created to show the global feature relevance derived from the training data. 

We chose the top 14 genes with the highest average SHAP value as features and utilized them 

for training new XGboost models. The performance of newly trained models was compared to 

that of XGBoost models trained on 10,000 genes to validate the significance of the selected 14 

genes. To check the robustness of the model, we have evaluated the model performance on an 

independent test set retrieved from GEO, accession no. GSE32628. The data for independent 

testing was classified into three datasets (Healthy vs AK, Healthy vs SCC and SCC vs AK 

dataset). Preprocessing of raw data was done using the RMA normalization method, as 

discussed earlier, and the XGBoost ML classifier was applied to find the accuracy of each class. 
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Further, a statistical analysis was conducted on the candidate genes derived through the 

application of SHAP values on ML models to find their significance. The GEO2R tool was 

used to find the statistical significance of identified key genes. Genes with a P-value (False 

discovery rate) <0.05 were considered statistically significant, and on their basis, we have 

checked the expression of each gene for SCC progression. Additionally, a critical examination 

of the literature was conducted to ascertain the significance of the genes with the highest 

average SHAP value in the progression of AK and SCC from healthy skin cells. 

III.  Results 

The normalized, calibrated, and pre-processed array data for SCC were obtained from the GEO 

database available on NCBI, the description given in (Table 3.1). All these datasets were 

retrieved using the search terms AK and SCC. These datasets are then merged based on 

common gene symbols. Ten thousand common genes with their expression values were 

employed as features, and three classes of phenotypes were defined, namely AK, SCC, and 

Control. 

Table 3.1: Microarray data description with their GEO accession number, number of 

samples in each series, sample type, sample size and the platform. 

GEO Accession 

Number 

No. of 

Samples 
Sample Type Sample Size Platform 

GSE45216 40 
Actinic Keratosis 10 

GPL570 
Squamous Cell Carcinoma 30 

GSE98774 54 
Actinic Keratosis 

 
18 

GPL570 
Healthy Skin 36 

GSE108008 30 

Healthy Skin 10 

GPL16686 Actinic Keratosis 10 

Squamous Cell Carcinoma 10 
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1. Data Preprocessing 

The datasets were normalized using RMA (Robust MultiArray Average) normalization. To 

remove biases from the expression data, we used log2 transformation and quantile 

normalization to create the normalized expression boxplot and density plot (Figure 3.1). Box 

plots show the expression distribution in each array, while the Density plots show the 

expression density distribution in each array’s color channel.  

 

Figure 3.1: An overview of RMA Normalization. Density plots (a and b) show the 

expression density distribution in each array’s color channel, while the Box plots (c and d) 

show the expression distribution in each array before and after doing RMA normalization. 

 

A PCA analysis was conducted on the datasets categorized into three binary classification 

problems, namely Healthy vs AK, Healthy vs SCC, and SCC vs AK, by using a scikit-learn 

package of python. PCA was done to verify the quality of data and to ensure that our data is 
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well grouped on the basis of variance among the features, scatter plots were made out of the 

information collected from PCA analysis, as shown in (Figure 3.2). PCA was applied to 

integrate highly correlated variables into a smaller collection of variables that account for the 

majority of the variance in the data. Here, the results of PCs scatter plots describe the classes 

that are well grouped, and ML can be applied for the classification of the data.  

 

Figure 3.2: Principal Component Analysis plots for (a) Healthy vs AK dataset, (b) Healthy 

vs SCC dataset, (c) SCC vs AK dataset. Segregation was observed for both modes between 

Healthy and AK, Healthy and SCC, and finally, SCC and AK individuals. 

 

2. Machine learning on datasets 

For ML purposes, the datasets were prepared and randomly divided in an 80:20 ratio into 

training and testing sets. In our study, the XGBoost ML algorithm was implemented using the 

Scikit-learn library. The training sets were used to train three XGBoost models for 

classification on three different datasets that were separated into three binary classification 

problems, namely Healthy vs AK, Healthy vs SCC, and SCC vs AK, with each case treated 

separately. The models’ performance was then assessed using the testing sets. Models were 

evaluated in terms of the confusion matrix and the accuracy of the model generated using the 

test set. We used accuracy as a predicted performance indicator to assess the performance of 

an ML classifier. Accuracy is a parameter that can be used to evaluate various classifiers; it 
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refers to the model’s percentage of correct predictions. For binary classification, accuracy can 

also be stated in terms of positives and negatives. as described by the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

For our datasets, the XGBoost ML classifier has given a predicting accuracy of 100% for the 

Healthy vs AK dataset, 92.86% for the Healthy vs SCC dataset, and 91.67% for SCC vs AK, 

showing that our ML prediction model has performed well in distinguishing the features 

namely healthy, AK and SCC. The number of instances in each dataset with their computed 

accuracy by our ML algorithm is compiled in (Table 3.2).  

Table 3.2: Performance evaluation of XGBoost ML classifier for each dataset in terms of 

Accuracy percentage. 

Datasets Number of Instances Accuracy % 

Healthy vs AK 
46 Healthy 

100 
38 AK 

Healthy vs SCC 
46 Healthy 

92.86 
40 SCC 

SCC vs AK 
40 SCC 

91.67 
38 AK 

 

3. Explainable AI on the Trained ML models 

XAI analysis was performed on the trained XGBoost models using the Python SHAP (Shapley 

Additive exPlanations) package. The XAI analysis delves into the process of decision-making 

by the model and assists in identifying features that contribute greatly to the model’s prediction 

confidence. Thus, XAI analysis assisted in discovering relevant genes from which trained 

models were able to identify/classify the phenotype/condition, such as Healthy, AK, or SCC. 

A local summary plot was created to display SHAP values, which represent the contribution of 

a feature to decision confidence. 
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By passing an array of SHAP values to the bar plot function, a global feature importance plot 

was created, where the global significance for every gene is defined as its 

average/mean absolute value over all of the given samples. This feature importance plot helped 

us in revealing which genes are the most significant in descending order. The top genes 

contribute more to the ML model’s prediction than the bottom genes and so have high 

predictive power. The bar plots, as shown in (Figure 3.3), depict the genes of utmost importance 

placed on the top and the genes of least significance at the bottom. PAMR1 (of Healthy vs AK); 

HNRNPM (of Healthy vs SCC) and GTSE1 (of SCC vs AK) are the genes of high predictive 

value and are the most significant in our ML prediction model.  

 

Figure 3.3: SHAP Barplot depicting the genes of highest relevance on top for (a) Healthy 

vs AK dataset, (b) Healthy vs SCC dataset, (c) SCC vs AK dataset.  

From the given bar plots, genes of highest importance were driven by implementing SHAP 

values on the trained models, showing PAMR1, CTSC, PHYHIP, CD24, WNT5A, RAB3B, 

WIF1, TNNC1, PARK7, MMP14, ARHGEF4, and CFL1 to be the most significant genes in 

Healthy vs AK dataset; HNRNPM and RPS13 in Healthy vs SCC dataset and GTSE1, CHTOP, 

EDNRB, DNAJC8, S100A11, HNRNPM, TUG1, TFG, GAPDH and RPS3A in SCC vs AK 

dataset. 
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Figure 3.4: SHAP Summary plot depicting the most important genes and their impact in 

(a) Healthy vs AK dataset, (b) Healthy vs SCC dataset, (c) SCC vs AK dataset. 

 

Additionally, the SHAP summary plots were made and used to visualize the predictors’ 

positive and negative associations with the target gene (Figure 3.4). These SHAP summary 

plots illustrate the following points: Genes are ranked descendingly according to their feature 

importance; the horizontal location indicates whether the effect of a gene is related to greater 

or reduced prediction, indicating its impact on the model output; the color indicates whether 

the effect of a particular gene is significant (in red) or minimal (in blue) for that observation; a 

high level of ‘PAMR1’ has a strong positive impact on the quality rating, indicating 



Page | 59  
 

the correlatedness of that particular gene. The "high" is shown by the red color, while the 

"positive" influence is indicated by the X-axis. Similarly, we would state that the "CTSC" is 

inversely connected to the target variable. From the following SHAP summary plots, we have 

inferred that ‘PAMR1’, ‘HNRNPM’, and ‘GTSE1’ are the most significant genes in all the 

datasets and have a high and positive impact on models’ predictions. While ‘CTSC’, ‘RPS13’, 

and ‘EDNRB’ are negatively correlated with models’ predictions.  

4. Evaluation of XAI output 

To quantify the ML output, we applied XAI on the dataset and found the most important genes 

that are involved in the progression of SCC, the list given below in (Table 3.3). 

Table 3.3: List of significant genes in each dataset after applying the SHAP values on the 

XGBoost ML classifier. 

Datasets Significant Genes 

Healthy vs AK 
PAMR1, CTSC, PHYHIP, CD24, WNT5A, RAB3B, WIF1, TNNC1, 

PARK7, MMP14, ARHGEF4, CFL1 

Healthy vs SCC HNRNPM, RPS13 

SCC vs AK 
GTSE1, CHTOP, EDNRB, DNAJC8, S100A11, HNRNPM, TUG1, TFG, 

GAPDH, RPS3A 

 

To further check the authenticity of the results, we have applied the ML classifier XGBoost on 

the top 14 genes of each dataset again. The accuracy of each dataset (Table 3.4) helps us to 

check the performance of our predicted genes and to show their effect on our ML model. The 

confusion matrix of each dataset, namely Healthy vs AK, Healthy vs SCC and SCC vs AK is 

shown in (Figure 3.5).  
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Table 3.4: Comparison of the accuracy before and after the calculation of SHAP values on 

the XGBoost ML classifier for a 10000 gene set as well as 14 gene set. 

Datasets 
Accuracy % on 10000 gene set 

(Before calculating SHAP values) 

Accuracy % on 14 gene set 

(After calculating SHAP values) 

Healthy vs AK 100 100 

Healthy vs SCC 92.86 92.86 

SCC vs AK 91.67 91.67 

 

 

Figure 3.5: Confusion matrix for (a) Healthy vs AK dataset, (b) Healthy vs SCC dataset, 

(c) SCC vs AK dataset of 14 genes. 

 

To check the robustness of the model, we have done independent testing on a GEO dataset, 

namely, GSE32628, and classified this dataset into Healthy vs AK, Healthy vs SCC, and SCC 

vs AK datasets. We have done preprocessing of the raw data as previously explained in the 

materials and methods section and applied XGBoost ML classifier to find the accuracy for each 

classification. Accuracy for Healthy vs AK dataset was found to be 96.30 percent; for Healthy 

vs SCC dataset, accuracy was 85.71 percent, and for SCC vs AK dataset, accuracy was 86.21 

percent, as in (Table 3.5). 



Page | 61  
 

Table 3.5: Comparison of accuracy for the Independent test set classified into Healthy vs 

AK, Healthy vs SCC and SCC vs AK datasets. 

Datasets Accuracy with independent test set 

Healthy vs AK 96.30% 

Healthy vs SCC 85.71% 

SCC vs AK 86.21% 

 

5. Statistical analysis of identified genes 

We employed the GEO2R computational tool to characterize the relevance of important 

genes that were differentially expressed during SCC development. P-values < 0.05 were 

considered statistically significant for the identified genes. PAMR1, PHYHIP, RAB3B, WIF1, 

TNNC1, HNRNPM, GTSE1, CHTOP, DNAJC8, S100A11, TUG1, TFG, and GAPDH were 

found to be down-regulated while CTSC, CD24, WNT5A, PARK7, MMP14, ARHGEF4, CFL1, 

RPS13, EDNRB, and RPS3A were found to be up-regulated in SCC progression (Table 3.6). 

Table 3.6: Statistical analysis results for each identified genes in the datasets. 

Genes P-value logFC 

Dataset: Healthy vs AK Dataset 

PAMR1 6.83E-19 -2.33005 

CTSC 3.35E-11 1.042324 

PHYHIP 6.51E-28 -2.37733 

CD24 8.25E-17 1.790993 

WNT5A 3.09E-14 2.491315 

RAB3B 3.13E-19 -1.33558 

WIF1 1.76E-27 -4.25276 

TNNC1 1.32E-19 -1.87799 

PARK7 2.71E-06 0.342546 

MMP14 2.08E-05 -0.55263 
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ARHGEF4 0.005396 0.444668 

CFL1 4.67E-08 0.367648 

Dataset: Healthy vs SCC 

HNRNPM 3.61E-21 -0.78581 

RPS13 5.91E-15 0.529767 

Dataset: SCC vs AK 

GTSE1 2.91E-21 -1.57927 

CHTOP 7.87E-13 -0.55512 

EDNRB 3.85E-18 2.066272 

DNAJC8 5.62E-13 -0.54132 

S100A11 4.49E-21 -1.1461 

TUG1 1.66E-11 -0.67914 

TFG 2.50E-12 -0.72343 

GAPDH 4.98E-05 -0.42799 

RPS3A 0.03709 0.100498 

 

IV.  Discussion 

SCCs are typically composed of epidermal keratinocytes and exhibit varying degrees of 

keratosis [154]. In 2015, SCC was estimated to affect up to 2.2 million people [155]. While 

SCC has a generally favorable prognosis, when invasion and distant metastases occur, the five-

year survival rate drops to 34% [156], [157]. Until recently, biomarker research on SCC has 

been insufficient, and the discovery of biomarkers indicative of progression from AK to SCC 

is crucial, as they may aid in the management, diagnosis, and treatment of SCC. In this study, 

40 SCC samples, 38 AK samples, and 46 normal healthy skin samples from datasets 

GSE45216, GSE98774 and GSE108008 were divided into 3 binary classifications, namely 

Healthy vs AK, Healthy vs SCC and SCC vs AK and were utilized for bioinformatics analysis 

to elucidate the molecular process behind SCC progression. Finally, 23 genes were identified 

by applying SHAP values on the ML model to quantify the ML predictions. The datasets 
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comprising of top 14 genes in each group were again subjected to ML to compare the results 

before and after the application of SHAP values to make the conclusion, and we have found 

that accuracy in both cases was the same, suggesting that the genes that were identified using 

SHAP values are equally effective for making predictions and are highly valuable in providing 

the insights about the data used. We have effectively identified the most important genes that 

are associated with the progression of SCC and may act as promising biomarkers for the 

prediction and diagnosis of SCC. 

 

Figure 3.6: A STRING network made from the genes that were retrieved to be of the 

highest relevance using SHAP values. Here the edge thickness represents confidence in the 

connection. 

 

A STRING [158] network was generated and visualized using Cytoscape [159], as shown in 

(Figure 3.6), using those 23 genes which we have retrieved by applying SHAP values that 

suggest the role of these genes in causing SCC. By studying this network, we have found that 

MMP14 and CFL1 are involved in cellular component disassembly while ARHGEF4, WIF1, 
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WNT5A, MMP14, S100A11, CFL1, PARK7, and CHTOP have an involvement in the positive 

regulation of cellular processes. Further, we have found that WNT5A is implicated in signaling 

pathways that govern stem cell pluripotency in Gastric cancer, breast cancer, basal cell 

carcinoma, and hepatocellular cancer; WNT5A and CFL1 are involved in axon guidance; 

ARHGEF4 and CFL1 are involved in actin cytoskeleton regulation; WIF1 and WNAT5A are 

involved in WNT signaling pathway, further details are given in functional and pathways 

enrichment analysis section.  

1. Function and Pathway enrichment analysis on the identified key Genes 

To perform the Gene Ontology (GO) enrichment analysis as well as pathway enrichment 

analysis on the key genes, we have used STRING [158]. Based on the identified genes, 

STRING automatically enriched pathways or functional subsystems using hypergeometric 

testing with a P-value of <0.05, set as the threshold. Identified key genes were functionally 

enriched in six GO_BP (Biological Process) terms, one in GO_MF (Molecular Function) terms, 

and thirteen GO_CC (Cellular Component) terms. Also, these genes were pathway enriched in 

nine KEGG pathway terms, five REACTOME terms, and twelve WikiPathway terms. 

Disassembly of cellular components, Positive regulation of the cellular process, Extracellular 

matrix disassembly, Regulation of the catabolic process of proteins, negatively regulating 

proteolysis of membrane protein ectodomains, and Negative regulation of the activity of 

metallopeptidase was the most highly enriched GO_BP terms. Protein binding was the most 

significantly enriched GO_MF term, while the Anchoring junction, Ruffle, Cell leading edge, 

Extracellular matrix, Cell junction, Ruffle membrane, Intracellular organelle lumen, 

Extracellular region, Focal adhesion, Endocytic vesicle membrane with clathrin coating, Cell-

cell junction, and Lamellipodium were the most significantly enriched GO_CC terms, refer to 

the (Table 3.7).  
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Table 3.7: Significant GO terms with their P-value for STRING network 

Term ID Term Description P-value 
Matching proteins in the 

network 

Biological Process 

GO:0022411 
Disassembly of cellular 

components 
0.0039 

TIMP1, APC, TIMP2, MMP14, 

FZD2, CFL1 

GO:0048522 
Positive regulation of 

cellular process 

0.0304 

 

TIMP1, APC, TIMP2, WNT5A, 

S100A11, WIF1, MMP14, 

ARHGEF4, FZD2, LIMK1, 

CHTOP, PARK7, CFL1 

GO:0022617 
Extracellular matrix 

disassembly 
0.0478 TIMP1, TIMP2, MMP14 

GO:0042176 
Regulation of the catabolic 

process of proteins 
0.0478 

TIMP1, APC, TIMP2, WNT5A, 

PARK7 

GO:0051045 

Negatively regulating 

proteolysis of membrane 

protein ectodomains 

0.0478 TIMP1, TIMP2 

GO:1905049 

Negative regulation of the 

activity of 

metallopeptidase 

0.0478 TIMP1, TIMP2 

Molecular Function 

GO:0005515 Protein binding 0.0193 

TIMP1, APC, TIMP2, DNAJC8, 

WNT5A, S100A11, WIF1, 

MMP14, ARHGEF4, FZD2, 

HNRNPM, LIMK1, PARK7, 

CFL1 

Cellular Component 

GO:0070161 Anchoring junction 0.0019 
APC, S100A11, MMP14, FZD2, 

LIMK1, PARK7, CFL1 

GO:0001726 Ruffle 0.0079 
APC, S100A11, ARHGEF4, 

CFL1 

GO:0031252 Cell leading edge 0.0079 
APC, S100A11, ARHGEF4, 

LIMK1, CFL1 

GO:0031012 Extracellular matrix 0.0148 
TIMP1, TIMP2, WNT5A, 

MMP14, HNRNPM 

GO:0030054 Cell junction 0.0164 

APC, WNT5A, S100A11, 

MMP14, FZD2, LIMK1, PARK7, 

CFL1 

GO:0032587 Ruffle membrane 0.0164 APC, ARHGEF4, CFL1 

GO:0070013 
Intracellular organelle 

lumen 
0.0219 

TIMP1, APC, TIMP2, DNAJC8, 

WNT5A, S100A11, MMP14, 

HNRNPM, LIMK1, CHTOP, 

PARK7, CFL1 
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GO:0005576 Extracellular region 0.0338 

TIMP1, TIMP2, DNAJC8, 

WNT5A, S100A11, WIF1, 

MMP14, HNRNPM, PARK7, 

CFL1 

GO:0005925 Focal adhesion 0.0338 MMP14, FZD2, LIMK1, CFL1 

GO:0005912 Adherens junction 0.0373 APC, S100A11, PARK7 

GO:0030669 

Endocytic vesicle 

membrane with clathrin 

coating 

0.0407 
WNT5A, FZD2 

 

GO:0005911 Cell-cell junction 0.0465 APC, S100A11, PARK7, CFL1 

GO:0030027 Lamellipodium 0.0469 APC, LIMK1, CFL1 

 

KEGG pathway analysis indicated that the key genes are enriched in the WNT signaling 

pathway, Regulation of actin cytoskeleton, Basal cell carcinoma, Axon guidance, Hippo 

signaling pathway, signaling pathways regulating pluripotency of stem cells, Breast cancer, 

Hepatocellular carcinoma, and Gastric. Moreover, REACTOME pathway analysis showed the 

enrichment of key genes in the Activation of Matrix Metalloproteinases, Signaling mediated 

by TCF in response to WNT, WNT ligand antagonists exerting a negative regulation effect on 

TCF-dependent signaling, Internalization of FZD2, FZD5, and ROR2 mediated by WNT5A 

and finally RHO GTPases activating ROCKs while the WikiPathways showed the enrichment 

of genes in lncRNA in canonical WNT signaling and colorectal cancer, ncRNAs implicated in 

hepatocellular carcinoma WNT signaling, Matrix metalloproteinases, WNT signaling, 

Regulation of actin cytoskeleton, WNT signaling pathway and pluripotency, Embryonic stem 

cell pluripotency pathways, WNT/beta-catenin signaling pathway in leukemia, Breast cancer 

pathway, and Extracellular vesicle-mediated signaling in recipient cells, WNT signaling in 

kidney disease and G13 signaling pathway, refer (Table 3.8). 
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Table 3.8: Significant pathway terms with their P-value for the STRING network. 

Term ID Term Description P-value 
Matching proteins in the 

network 

KEGG Pathways 

hsa04310 WNT signaling pathway 0.0017 APC, WNT5A, WIF1, FZD2 

hsa04810 
Regulation of actin 

cytoskeleton 
0.0026 APC, ARHGEF4, LIMK1, CFL1 

hsa05217 Basal cell carcinoma 0.0026 APC, WNT5A, FZD2 

hsa04360 Axon guidance 0.0137 WNT5A, LIMK1, CFL1 

hsa04390 Hippo signaling pathway 0.0137 APC, WNT5A, FZD2 

hsa04550 

Signaling mechanisms that 

control stem cell 

pluripotency 

0.0137 APC, WNT5A, FZD2 

hsa05224 Breast cancer 0.0137 APC, WNT5A, FZD2 

hsa05225 Hepatocellular carcinoma 0.0137 APC, WNT5A, FZD2 

hsa05226 Gastric cancer 0.0137 APC, WNT5A, FZD2 

Reactome Pathways 

HSA-1592389 
Activation of Matrix 

Metalloproteinases 
0.0056 

TIMP1, TIMP2, MMP14 

 

HSA-201681 
Signaling mediated by TCF 

in response to WNT 
0.0152 APC, WNT5A, WIF1, FZD2 

HSA-3772470 

WNT ligand antagonists 

exerting a negative 

regulation effect on TCF-

dependent signaling 

0.0414 WNT5A, WIF1 

HSA-5140745 

Internalization of FZD2, 

FZD5, and ROR2 mediated 

by WNT5A 

0.0414 WNT5A, FZD2 

HSA-5627117 
RHO GTPases Activate 

ROCKs 
0.0414 LIMK1, CFL1 

WikiPathways 

WP4258 

lncRNA in canonical WNT 

signaling and colorectal 

cancer 

0.00036 APC, WNT5A, WIF1, FZD2 

WP4336 

ncRNAs implicated in 

hepatocellular carcinoma 

WNT signaling 

0.00036 
APC, WNT5A, WIF1, FZD2 

 

WP129 Matrix metalloproteinases 0.00037 TIMP1, TIMP2, MMP14 
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WP428 WNT signaling 0.00037 APC, WNT5A, WIF1, FZD2 

WP51 
Regulation of actin 

cytoskeleton 
0.00062 APC, ARHGEF4, LIMK1, CFL1 

WP399 
WNT signaling pathway and 

pluripotency 
0.0071 APC, WNT5A, FZD2 

WP3931 
Embryonic stem cell 

pluripotency pathways 
0.0091 APC, WNT5A, FZD2 

WP3658 
WNT/beta-catenin signaling 

pathway in leukemia 
0.0154 

APC, WIF1 

 

WP4262 Breast cancer pathway 0.0154 APC, WNT5A, FZD2 

WP2870 

Extracellular vesicle-

mediated signaling in 

recipient cells 

0.0165 APC, WNT5A 

WP4150 
WNT signaling in kidney 

disease 
0.0214 WNT5A, FZD2 

WP524 G13 signaling pathway 0.0219 LIMK1, CFL1 

 

2. Biological Significance of the identified key Genes  

We have done a literature survey on the identified key genes to find their biological relevance. 

It was found in many studies that ARHGEF4 enhances tumor cell motility and invasiveness 

[160], it communicates with APC through its armadillo repeat domain located at the NH2-

terminus of APC-binding region which helps to improve ARHGEF4’s GEF activity against 

Rac1 and Cdc42, consequently influencing actin cytoskeleton reorganization, cell shape, 

adhesion, and migration [161], [162], [163], so the inhibiting the activity of ARHGEF4 can act 

as a novel molecular therapeutic marker.  

The PAMR1 gene encodes a regeneration-associated muscle protease (RAMP) [164]. It is 

principally generated in tissues of normal skeletal muscle and brain, and its expression is 

downregulated in Duchenne muscular dystrophy muscles and type 2 diabetes [164], [165], 

[166], [167]. PAMR1 expression is diminished in SCC tissues [168], and it is often deleted 
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totally in breast cancer samples (20.8–58.3%) [165], as a result of promoter hypermethylation, 

and hence has been deemed a tumor suppressor gene [169].  

Another gene named GTSE1 has a basic molecular function to adhere to and inhibit the tumor 

suppressor protein p53’s propensity to suppress cancer [170]. Additionally, multiple 

investigations revealed that overexpression of GTSE1 was commonly observed in a spectrum 

of different cancers [171], [172].  

WIF1 is a WNT/-catenin pathway downstream gene that acts as an antagonist and a negative 

regulator of WNT signaling [173]. WIF1 silencing may be a pre-cancerous epigenetic event 

that may help tumors grow and spread [174]. Many human tumors have shown that aberrant 

WNT signaling contributes greatly to cancer genesis. WNT signaling has been shown to reduce 

apoptosis and make cancerous cells more likely to spread in head and neck SCC [175].  

WNT5A is a non-canonical WNT ligand that regulates cell polarity, convergent extension, and 

epithelial-mesenchymal interaction during embryonic morphogenesis [176]. When WNT5A is 

turned on or blocked, it can be both oncogenic and tumor-suppressive [177]. WNT5A has been 

demonstrated to inhibit thyroid and colorectal cancer cell proliferation, migration, and invasion 

[177], [178], [179], but an elevated expression of WNT5A is associated with belligerence in 

other types of malignancies, such as melanoma and gastric cancer [180], [181].  

MMP14 is a membrane-bound extracellular proteinase. It has been demonstrated that MMP14 

is critical for cancer cells to infiltrate and spread [182]. MMP14 expression has been related to 

a poor prognosis in several forms of cancer [183], and downregulation of MMP-14 expression 

has been shown to decelerate cell growth and metastasis in esophageal SCC. Considering these 

facts, MMP14 may be a promising target for esophageal SCC handling, and additional research 

may be required to elucidate this [184].  
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CFL1 is a ubiquitous small protein that promotes actin filament abscission and 

depolymerization. Cytokinesis, cell motility, and morphogenesis are all dependent on CFL1. 

Numerous studies have established a link between CFL1 and cancer cell migration and 

invasion, two key hallmarks of malignant tumor cells in a range of solid tumor tissues [185], 

[186], [187]. According to a study on vulvar SCC, aberrant CFL1 expression can influence 

vulvar carcinogenesis and development. CFL1 gene silencing significantly inhibited the 

development of vulvar SCC cells, showing that CFL1 may be exploited as a target for SCC 

therapy [188].  

PARK7 is a protein that is expressed ubiquitously in the vast majority of mammalian tissues 

[189]. This protein plays a key role in a number of critical physiological processes, including 

cell proliferation, differentiation, regulation of the transcriptional process, protection from 

oxidative stress, maintenance of mitochondrial function, inflammation, and metabolic 

regulation [190], [191], [192], [193], [194]. Silencing PARK7 decreased oral SCC cell growth 

and invasion, indicating that PARK7 may operate as an oncogene during the oral SCC 

carcinogenesis process [195].  

Heterogeneous nuclear ribonucleoprotein M (HNRNPM) is a key component of the 

spliceosome complex. It inhibits pre-mRNA splicing by inhibiting splice site recognition. 

Interestingly, it has been demonstrated that HNRNPM affects the alternative splicing of several 

cancer-related genes, including FGFR2 and the CD44 cell surface protein [196]. Multiple 

studies have also reported that HNRNPM facilitates the transition of triple-negative breast 

cancer cells from CD44v to CD44s, which is needed for the transition from epithelial to 

mesenchymal cells and for cancer to spread [196], [197]. Additionally, in people with breast 

cancer, increased HNRNPM expression is associated with remote metastases, a poor prognosis, 

and an upsurge in CD44s [198]. This indicates that HNRNPM plays a pivotal part in the genesis 
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of cancer. The signals that control the HNRNPM-mediated splicing process in SCC are still 

unknown, but they are being looked into. 

In this study, we examined the applicability of XAI in discovering biomarkers associated with 

SCC. In the first phase, we created an ML-based XGBoost classification model; in the second 

step, we used XAI techniques to demonstrate that the model output was interpretable by 

establishing a relationship between the model output and the relevant genes. SHAP barplot and 

SHAP summary plots were used to explain the outcomes of the XGBoost ML classifiers 

predictions for datasets revealing the genes of the highest relevance in causing SCC from AK. 

PAMR1, GTSE1, ARHGEF4, WIF1, WNT5A, MMP14, S100A11, CFL1, PARK7, HNRNPM, 

DNAJC8, and CHTOP were the top genes that contribute to the model’s accuracy and are 

highly related to cancer development. Also, we have found from this study that the accuracy 

was the same for the XGBoost ML classifier before and after the application of SHAP values 

indicating the fact that explaining ML models can be accomplished without jeopardizing the 

performance of the model. The genes that we have found from this study may serve as 

candidate targets in SCC management. This study highly recommends the use of XAI in 

biomarkers discovery for predictive and prognostic purposes in the biomedical field. While we 

attempted to use the unique approach of XAI to high-dimensional transcriptomics data in order 

to extract useful information in this study, identifying biomarkers using transcriptome data may 

have certain inherent biases, these can be overcome by using additional omics data types such 

as proteomics, metabolomics, and so on, which are not provided in this study but might be an 

extended part of this work. 

V. Conclusion 

SCC is the most prominent type of skin cancer, and its prevalence has increased in recent years. 

Although AK is a precursor lesion for SCC and accounts for around sixty-five percent of SCCs, 

the genetic defect underpinning SCC development is unknown. In this study, we tried the 
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applicability of XAI on transcriptomics data to identify candidate genes, namely PAMR1, 

GTSE1, ARHGEF4, WIF1, WNT5A, MMP14, S100A11, CFL1, PARK7, HNRNPM, DNAJC8, 

and CHTOP that may be highly associated with the occurrence and progression of SCC from 

AK. However, because these conclusions are based on bioinformatics research, they may 

require confirmation through wet-lab experiments. This study supports the use of XAI on ML 

models to quantify and thoroughly assess the prediction results, especially in the field of 

biomedicine, for the discovery of biomarkers relevant to predictive and prognostic purposes. 
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Chapter 4. Rare deleterious mutations in Bruton’s Tyrosine 

Kinase as biomarkers for Ibrutinib-based therapy: 

an in-silico insight 
 

 

Abstract 

Squamous Cell Carcinoma (SCC) is the second most common type of skin cancer caused by 

malignant keratinocytes. Multiple studies have shown that protein mutations have a significant 

impact on the development and progression of cancer, including SCC. We attempted to decode 

the effect of single amino acid mutations in Bruton’s tyrosine kinase (BTK) protein in this 

study. Molecular dynamic (MD) simulations were performed on selected deleterious mutations 

of the BTK protein, revealing that the variants adversely affect the protein, indicating that they 

may contribute to the prognosis of SCC by making the protein unstable. Then, we investigated 

the interaction between the protein and its mutants with Ibrutinib, a drug designed to treat SCC. 

Even though the mutations have deleterious effects on protein structure, they bind to Ibrutinib 

similarly to their wild type counterpart. This study demonstrates that the effect of detected 

missense mutations is unfavorable and can result in function loss, which is severe for SCC, but 

that Ibrutinib-based therapy can still be effective on them, and the mutations can be used as 

biomarkers for Ibrutinib-based treatment. Seven different computational techniques were used 

to compute the effect of SAVs in accordance with the experimental requirements of this study. 

To understand the differences in protein and mutant dynamics, MD simulation and trajectory 

analysis, including RMSD, RMSF, PCA, and contact analysis, were performed. The free 

binding energy and its decomposition for each protein-drug complex were determined using 

docking, MM-GBSA, MM-PBSA, and interaction analysis (wild and mutants). 
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I. Introduction 

Squamous Cell Carcinoma (SCC) is the second most highly prevalent skin tumor that develops 

when keratinocytes alter and turn cancerous. Invasive SCC continues to be influenced by 

everyday UV exposure to the skin. Global disease rates are on the rise due to aging populations 

and other demographic shifts [199]. SCC is significant because it occurs twice as frequently as 

skin cancer in European Caucasians and up to ten times as frequently in fair-skinned 

Australians, where the incidence is even greater [200]. The fact that SCC strikes men more 

frequently than women suggests that female immunity may play some role in protecting against 

the disease, as evidenced by recent studies [201]. People with light skin and light eyes are more 

likely to develop squamous cell carcinoma beyond the age of 50. It often develops in sites that 

have been exposed to the sun in the past. Those with a history of extensive exposure to UV, 

whether through previous medical procedures or the sun, are at a higher risk [202]. 

Immunosuppressed patients also have a high incidence of squamous cell carcinoma, which can 

progress into aggressive subtypes [203]. Small squamous cell carcinoma lesions can be 

removed and are not lethal, but depending on their location, they might cause severe morbidity 

[204]. Most head and neck squamous cell malignancies necessitate extensive surgery, which, 

even in the best of hands, can result in poor symptom relief. In addition, the expense of treating 

these tumors increases each year, posing a critical need to explore low-cost, effective, and 

efficient treatment options for SCC management [205], [206]. 

The significance of amino acid variations as hereditary risk factors for human disease, 

especially cancer, has been recognized for decades [207]. Protein expression and function, its 

subcellular localization, folding and integrity, and protein-protein interactions (PPI) can all be 

impacted by mutations. The genesis and progression of cancer are significantly influenced by 

protein mutations. The variety of mutation’s effects on molecular function determines their 

unique role [208]. Oncogenes and tumor suppressors are examples of proteins where mutations 
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can activate or inactivate protein activity. After realizing the critical role mutations play in 

cancer cause and progression, the scientific community began conducting systematic, 

widespread screening of tumor tissues for mutations. Every year, hundreds of cancer-associated 

protein mutations are revealed as a result of numerous re-sequencing initiatives, and thousands 

more are very certainly still to come [209]. 

In this study, we are trying to decipher the effect of mutations that are found in Bruton’s 

tyrosine kinase (BTK) protein using computational methods. BTK belongs to the Tec tyrosine 

kinase family and is a nonreceptor cytoplasmic tyrosine kinase. The Tec kinase family, which 

includes BTK, TEC, ITK, BMX, and RLK, is the second-largest family of cytoplasmic tyrosine 

kinases [210]. BTK is known primarily for its role in B-lymphocyte development and BCR-

mediated signaling [211]. The tumor microenvironment is a multifaceted and intricate system 

of cells and their precursors, and all of these cells contribute to the emergence of cancer [212]. 

Acknowledging these discoveries, scientists are considering BTK as a therapeutic target for 

solid tumors [213]. Further, we tried to find the impact of the mutation on Ibrutinib binding 

affinity. Ibrutinib, which is also known by its drug code name PCI-32765, is an innovative 

medication that inhibits BTK in an irreversible manner and was envisioned as a possible 

therapy for a number of cancers originating in the B-cell lineage; hence we chose this drug for 

our MD simulation study [214].  

Several computational pipelines can be used to investigate genes and variants associated with 

SCC. These pipelines not only help identify prospective genes and pathogenic mutations but 

also shed light on aberrations in the target gene product’s structure and molecular mechanisms. 

To examine the structural basis of alterations, reveal underlying molecular mechanisms, and 

ascertain their pharmacological influence, we tried to make use of MD simulations and other 
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in silico techniques to explore the influence of mutations namely F413L, P566Q, G584E and 

E589K on the BTK protein and its binding with the Ibrutinib drug for SCC treatment.  

II. Material and Methods 

1. Data Retrieval 

Mutations across the BTK gene that are specifically observed in SCC were retrieved through 

the COSMIC (Catalogue of Somatic Mutations in Cancer) database (Url: 

https://cancer.sanger.ac.uk/cosmic). The COSMIC database is the most comprehensive source 

of information on somatic mutations that are associated with human cancers. This database 

contains information on over 2500 distinct cancer types. The database gathers data from two 

primary sources. As a starting point, the literature is mined for alterations in well-established 

cancer genes, and the Cancer Gene Census is used to identify the genes that are manually 

curated [215]. Second, the Cancer Genome Project collects whole genome sequencing data 

from cancer samples for placement in the database [216]. A comprehensive literature survey 

was conducted to find the BTK-targeting drug used in SCC treatment. DrugBank (Url: 

https://go.drugbank.com/) was also searched to validate the role of the identified drug in SCC 

treatment [217]. 

2. Mutation Analysis 

A total of seven computational tools, namely the Mutation Assessor, SIFT, PON-P2, 

SNPs&GO, PROVEAN, PolyPhen-2, and MutPred2, were used to assess each of the mutations 

associated with the BTK gene previously retrieved from the COSMIC database for its 

deleteriousness. Mutations that were found to be harmful to all seven tools were subjected to 

the simulation study. All the selected tools can help in evaluating a huge number of mutations 

by making use of several computational algorithms and ML classifiers, such as Support Vector 

Machine, Random Forest, Decision Tree, and Neural Network (NN), etc. In addition to putting 
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pathogenicity into categories, these tools give additional data about the functional influence of 

mutations [218]. Mutation Assessor (Url: http://mutationassessor.org/r3/) uses a multiple 

sequence alignment (MSA) to describe the functional effects of a missense variation; the MSA 

is divided into sub-alignments that take into account the conservation scores and the functional 

specificity of each mutation. Combining a conservation score and a specificity score yields a 

functional impact score of the input mutation. Protein function is projected to be unaffected by 

‘neutral’ or ‘low’ variants, whereas it is projected to get affected by ‘medium’ or ‘high’ variants 

[209][219]. SIFT (Url: https://sift.bii.a-star.edu.sg/) Web Server is a novel sequence 

homology-based in silico approach that examines the influence of coding mutations at a 

particular location on the phenotypic effect of proteins [220]. PON-P2 (Url: 

http://structure.bmc.lu.se/PON-P2/) is a computational meta-predictor of mutation tolerance. It 

categorizes amino acid changes into three classes: harmful, neutral, and unknown tolerance. 

PON-P2 is based on a Random Forest classifier that has been developed and found to be 

effective on benchmark datasets to predict harmful and pathogenic mutations by employing 

evolutionary sequence conservation features, amino acid characteristics, GO annotations, and 

functional annotations, if available [221]. SNPs&GO (Url: https://snps.biofold.org/snps-and-

go/) is a suitable ML-based tool that visualizes the link between single amino acid variants 

(SAVs) and a given condition using functional protein annotation. To distinguish normal SAVs 

from disease-causing ones, this computational tool employs a binary SVM classifier. The 

functional score provided by SNPs&GO is an empirical estimate of how likely it is that a 

protein has a harmful SAV based on the related GO terms [222]. PROVEAN (Protein 

Variation Effect Analyzer) (Url: https://www.jcvi.org/research/provean)  is another sequence-

based computational tool that predicts the potentially damaging effects of mutations in 

sequences of protein. A non-synonymous SNP (nsSNP) in an MSA triggers a mutation in the 

symmetry of closely related protein sequences, which is the basis of the prediction output. 

http://mutationassessor.org/r3/
https://sift.bii.a-star.edu.sg/
http://structure.bmc.lu.se/PON-P2/
https://snps.biofold.org/snps-and-go/
https://snps.biofold.org/snps-and-go/
https://www.jcvi.org/research/provean
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PROVEAN uses a delta alignment score calculated from both the native and mutant protein 

sequences to compare homologous sequences. A threshold of -2.5 is set to identify the 

deleterious protein variants, so an nsSNP with a score equal to or less than this threshold value 

will be considered a detrimental mutation [223]. PolyPhen-2 (Url: 

http://genetics.bwh.harvard.edu/pph2/) is a program and a web server that uses structural and 

evolutionary similarities to foretell how changes in amino acids would affect the structural 

stability and proper functioning of human proteins. It annotates functional SNPs, links coding 

SNPs to transcripts, and structurally characterizes proteins to build conservation profiles. All 

these features are then used to assess the missense mutation’s potential pathogenicity [224]. 

MutPred2 (Url: http://mutpred.mutdb.org/) is an ML technique based on neural networks that 

use genetic and molecular information to provide a probabilistic assessment of the 

pathogenicity of amino acid variations. MutPred2 presently replicates a variety of physical and 

functional features of proteins, including their secondary structure, transmembrane 

organization and different signaling pathways, their catalytic efficiency, macromolecular 

interaction, post-translational alterations, metal binding, and allostery [225]. 

The amino acid changes that were considered to be the most harmful by all these seven tools 

used were chosen for molecular dynamics study to check the structural integrity and 

functionality of the BTK protein with the observed mutations. 

3. Molecular Dynamics Study 

Molecular dynamics simulation is utilized to comprehend the influence of structural alterations 

in a mutant protein relative to its natural assembly (wild type) and their interactions with a 

drug. We retrieved the three-dimensional structure of BTK1 co-crystalized with ligand (PDB 

id: 5P9J) resolved at 1.08 A° from RCSB PDB (Url: https://www.rcsb.org/) for simulation 

investigations after removing the ligand [226]. The Swiss PDB Viewer (SPDBV) was used to 

induce mutations in the wild type structure of BTK protein. SPDBV is a tool for visualizing 

http://genetics.bwh.harvard.edu/pph2/
http://mutpred.mutdb.org/
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protein structures on multiple platforms. In addition to structure modeling, the application 

allows for the computation and viewing of protein electrostatic potentials [227]. Energy 

minimization of structures was done through GROMACS version 21 [228], and by using the 

CHARMM-GUI’s (Url: https://www.charmm-gui.org/) solution builder program, five 

structures were prepared for MD simulation. This simulation study employed a TIP3 

rectangular water box function with 10 A° amid box edges. By means of the all-atom additive 

force field CHARMM36 (C36) [229], protein force field function and the generic protein drug 

complex force field CHARMM (Chemistry at Harvard Macromolecular Mechanics), the 

topologies and coordinates for each system were generated [230]. Counter sodium and chlorine 

ions were added to each system to make them neutral. We used GROMACS version 21 for the 

simulation purpose. To decrease steric repulsions, each system has undergone fifty thousand 

steps of sharpest descent minimization of energy. The NVT equilibration was executed for five 

hundred picoseconds to maintain a consistent temperature in the system, and a brief orientation 

limitation NPT was also executed for five hundred picoseconds to keep a constant pressure in 

the system by relaxing them while retaining the protein in place. All systems were subjected to 

a hundred nanosecond (ns) simulation under no constraints. GROMACS utilities were applied 

to analyze the trajectory file. The root mean square deviation (RMSD) was computed with the 

help of the gmx_rmsd file, while the root mean square fluctuation (RMSF) was computed with 

the help of the gmx_rmsf file. 

4. Principle Component Analysis on wild type and mutant BTK proteins 

We considered using PCA to quantify the variance between the trajectories of the wild and 

mutant proteins. Calculating and diagonalizing the covariance matrix for Carbon-alpha (Cα) 

atoms is an essential part of PCA. This helps uncover the accumulated modes of protein 

structural variations [231]. For the objective of identifying fluctuations in wild type and mutant 

proteins from their respective last 25 ns of the simulation trajectories, we conduct PCA on 
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molecular dynamics trajectory files using the scikit-learn Python package [232]. The PCs, or 

eigenvectors, were extracted from the wild and mutant BTK protein structures and displayed 

as cluster groups. 

5. CONAN Analysis for wild type and mutant BTK proteins 

CONAN was also used to determine how each amino acid residue in the wild and mutant BTK 

proteins might interact with other amino acid residues and to create contact maps for them. 

CONAN operates within the GROMACS molecular dynamic engine’s mdmat too [233]. It was 

designed to investigate the statistical and dynamic properties of contacts in order to collect data 

on how contacts between atoms change over time in molecular dynamics simulations (MD). 

The software can also read a set of input files that define any variable against which it can 

determine whether a connection between two contacts was made or broken. CONAN assigned 

a contact map to each atom in the simulated structure, and the average of these maps was 

compared for both the wild and mutant BTK proteins.  

6. Docking and contact analysis 

Ibrutinib is an irreversible, ATP-competitive kinase inhibitor that works by replacing ATP in 

the substrate binding site of mutant BTK proteins, rendering them inactive and leading to tumor 

regression. We docked the wild and mutant BTK proteins with Ibrutinib to establish the mutant 

protein’s relative affinity for Ibrutinib binding. Water molecules were excluded from the final 

simulated structure of each system, i.e., the 100th ns structure. Ibrutinib’s three-dimensional 

structure was obtained from PubChem and then docked via AutoDockTools using AutoDock 

4.2 [234]. The grid box was generated by assigning the coordinates of the CA atoms in C481 

to its center and spacing the resulting points outward by 60 on each axis. Then the complexes 

were simulated using the above-mentioned protocol for 100 ns. 
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The MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) is a reliable and 

efficient free energy simulation tool that has been widely used to mimic molecular affinity, 

including protein-ligand binding interactions [235]. When used in conjunction with molecular 

dynamics (MD) simulations, MM-PBSA can incorporate conformational and entropic 

variables into the binding energy. This method has also been utilized to provide a thorough 

understanding of biomolecular interactions by decomposing the total binding energy into many 

sections. In this study, we provide the results of MM-PBSA analyses conducted with 1000 

snapshots of the MD-trajectory acquired at 25 ps intervals between 76 and 100 ns. We have 

also tested the wild type and mutant protein-drug complexes with the MM-GBSA technique. 

MM-GBSA (Molecular mechanics with generalized Born and surface-area solvation) is one of 

the most widely used in silico approaches for estimating protein–ligand binding energies, 

finding key residues in PPIs, and assessing macromolecular stability [236]. Utilizing the 

gmx_MMPBSA package [237], the free binding energy of BTK-Ibrutinib complexes was 

calculated by the interaction entropy method [238]. 

PyContact was used to perform contact analysis on residues surrounding wild type and mutant 

protein-drug complexes during the final 25 ns of the trajectory. PyContact is a user-friendly, 

highly configurable, and intuitive application with a GUI designed to analyze biomolecular 

interaction in molecular dynamics trajectories. PyContact is intended to assist this effort by 

facilitating the recognition of significant non-covalent interactions in an understandable way, 

offering rapid data analysis and visual representation of data without the need for extra 

programming, by providing entire in-program personalization and comprehensive options for 

cutting-edge users [239].  
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III. Results 

1. Retrieval of Variations and Drug associated with BTK protein. 

Mutations across the BTK gene that are specifically identified in SCC were retrieved using the 

COSMIC (Catalogue of Somatic Mutations in Cancer) database. A total of 47 distinct SCC 

mutations were identified using advanced filters, including whole genome screening and target 

screening as screen types; skin as the SCC cancer tissue location; missense mutations and their 

pathogenic impact. A comprehensive literature search was conducted to identify the BTK-

targeting drug used in SCC treatment, and we have found Ibrutinib for our investigation. 

DrugBank was also examined to validate the role of Ibrutinib (DrugBank Accession No. 

DB09053) in BTK inhibition. Ibrutinib (PCI-32765) is categorized as a targeted covalent drug, 

and it is a propitious anti-cancer treatment for skin cancers [213], [214], [217], [240]. 

2. Mutational Analysis 

A total of seven computational methods, namely Mutation Assessor, SIFT, PON-P2, 

SNPs&GO, PROVEAN, PolyPhen-2, and MutPred2, were utilized to evaluate the 

deleteriousness of each variant associated with the BTK gene. We have found F413L, P566Q, 

G584E, and E589K amino acid variants with the most anticipated adverse impacts, based on 

all the in-silico analysis techniques, as detailed in Table 4.1. Mutation Assessor gives each 

amino acid in a protein a score between -5.2 and 6.5 based on its functional impact. A score 

greater than 3.5 is deemed deleterious to the protein’s proper functioning [209]. SIFT calculates 

the likelihood that an amino acid at a specific site will be tolerated, assuming that the most 

common amino acid is tolerated. If this normalized value falls below a threshold of 0.05, it is 

believed that the substitution will be damaging [220]. PON-P2 employs a cut-off value of 0.5; 

for an amino acid variant to be classified as pathogenic, its probability score must be higher 

than this cut-off value [221]. SNPs&GO computes the prediction’s reliability index, where a 
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score of 0 indicates an unreliable prediction, and a score of 10 indicates the most reliable 

prediction [222]. For each supporting sequence in PROVEAN, a ‘delta alignment score’ is 

worked out. The final PROVEAN score is the average of cluster-level values. The protein 

variation is likely to have a ‘deleterious’ effect if the PROVEAN score is -2.5 or less. If the 

PROVEAN score is more than this cutoff, the effect of the variant is judged to be ‘neutral’ 

[223]. PolyPhen-2 looks at the polyphen probability scores to figure out what will happen. 

Scores between 0 and 0.15 are thought to be harmless. Scores between 0.15 and 1.0 show a 

variant that could be harmful, while scores between 0.85 and 1.0 are more likely to be harmful 

in the long run [224]. MutPred2 provides a general score as its final output, which is the 

likelihood that the amino acid mutation is pathogenic. Each neural network’s score in 

MutPred2 has been averaged to produce this result. A score cut-off of 0.50, if regarded as a 

probability, would infer pathogenicity [225]. F413L, P566Q, G584E, and E589K scores passed 

each computational tool’s cut-off value, so we selected them for molecular dynamics analysis 

to find their impact on protein's structural stability.   

Table 4.1: Mutations that were determined to be detrimental by all seven tools. 

Mutations 
Mutation 

Assessor 
SIFT Pon-P2 SNPs&GO PROVEAN PolyPhen-2 MutPred-2 

E589K 4.225 0 0.958 9 -3.944 0.999 0.946 

G584E 5.075 0 0.842 9 -7.908 1 0.871 

P566Q 5.055 0 0.859 8 -7.936 1 0.838 

F413L 3.665 0 0.779 9 -5.616 1 0.905 

 

3. Molecular Dynamic Simulation Analysis 

Molecular dynamics simulation is utilized to comprehend the influence of structural alterations 

in a mutant protein relative to its natural structure. We selected the three-dimensional 

crystallized structure of BTK1 for simulation investigations (PDB id: 5P9J) [226].  
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Figure 4.1: Three-dimensional structures of (a) BTK protein with all the mutations 

depicted by red spheres b) BTK protein complexed with Ibrutinib, highlighted by a black 

circle (c) Ibrutinib. 

The Swiss PDB Viewer (SPDBV) was used to induce mutations in the wild type structure of 

BTK protein (Figure 4.1), and energy minimization was done by GROMACS version 21. Using 

the CHARMM GUI input generator, distinct systems for each mutant and native BTK protein 

were constructed [230]. These wild and mutant systems were solvated and then neutralized 

using the Monte Carlo Ion placement method. Equilibration input was made with the help of 

the NVT Ensemble class. GROMACS version 202 [241] and for each system (4 mutants and 

the wild type BTK proteins), the simulation was run for 100 ns at an ambient temperature of 

303.15K and a pressure of 1 bar. All MD trajectories in this study used the single chain “A” of 

the BTK protein and its mutant structures (F413L, P566Q, G584E, and E589K). There are 

many domains in BTK protein, starting with the N-terminal PH-domain (Pleckstrin Homology 

Domain) and continuing through the TEC homology domain, the SH3 and SH2 (SRC 

homology domains), and finally, the C-terminal BTK-KD domain (BTK-Kinase Domain) 

[210]. We have taken into consideration BTK-KD (residues 382-659), since not only is there 

are drug binding sites at position C481 but also the pathogenic mutations that have been found 

via the use of computational methods present in this kinase domain.  
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Figure 4.2: RMSD plot of all the four mutated and wild type BTK proteins showing a high 

degree of variability in mutated BTK proteins as compared to wild type BTK protein. 

P566Q mutation showing the highest unstability indicated by “Green” color. 

The convergence of simulated proteins was determined by comparing the RMSD of average 

simulated postures derived from all the frames formed during simulation to the initial structure 

as a result of the time trajectory in MD simulations. Initially, RMSD data for BTK protein (C-

alpha), were retrieved from each 100 ns simulation trajectory with respect to the starting pose. 

All mutants exhibited RMSD variability than the wild system, with P566Q (represented by 

green color) appearing to be the most unstable (Figure 4.2). 

To get a more detailed overview of the RMSD analysis, we evaluate the local regions where 

the mutations are located since the overall instability may dominate the global RMSD. There 

is the presence of an ATP binding site and an intrinsically disordered region in this beta-sheet 

conformation, starting from 402-421. Intrinsically disordered areas are distinguished by a lack 

of secondary and organized tertiary structure; they interact extensively with macromolecules 

and may undergo structural modifications upon binding to interacting molecules [242]. The 

amino acid residue Phe-413 is an important and conserved phenylalanine located at the 

beginning of the beta-strand. It sits directly on top of the triphosphate group of ATP, forming 

a crucial hydrogen bond with the oxygen atom of the beta-phosphate. This interaction is 
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essential for the proper binding and subsequent release of ADP. Substituting the bulky side 

chain of phenylalanine with a leucine residue at position 413 (F413L mutation) would 

significantly limit the flexibility of the loop structure required to accommodate ATP, ultimately 

hindering its binding and subsequent release of ADP. Additionally, this substitution would not 

be optimal for forming the necessary hydrogen bond with ATP, leading to an altered 

conformation of the BTK protein. Consequently, this conformational change could interfere 

with the correct alignment of ATP for catalysis, rendering it incompatible with the enzyme’s 

function. Based on this observation, we can observe that the F413L (represented by cyan color) 

mutation in this segment is involved in increased rigidity of the disordered region of the protein, 

which might affect ATP binding with the BTK protein (Figure 4.3).  

 

Figure 4.3: Local RMSD plot of Beta-sheets conformation from residue 402-421 

highlighted by yellow color in left panel. A rigidity can be seen after 44ns in the mutant 

protein as compared to wild type showing the F413L mutation’s impact on protein. 

P566Q variation lies in the helix region starting from residues 560–572, so we have conducted 

a local RMSD analysis on this segment also. From this RMSD analysis, we have found that the 

P566Q variation is shown to affect the helix formation; higher RMSD can be due to more 

flexibility in this helix region. This might also affect the conformation of the active site due to 

the existence of buried residues that typically form hydrophobic cores to preserve the integrity 

of the protein structure. Compared to exposed residues that are not associated with the active 

site, buried residues are very sensitive to mutation [243], and hence the P566Q (represented by 
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green color) mutation might be causing a very high degree of distortion and flexibility in this 

BTK protein (Figure 4.4). 

 

Figure 4.4: Local RMSD plot for P566Q mutant protein located in helix conformation 

starting from residue 560-572 highlighted by yellow color in left panel. A high rise in 

RMSD peak can be seen at various positions but a significant rise can be seen after 44ns. 

We have observed the presence of buried residues and increased hydropathy in the helix 

conformation starting from residues 575–592 in wild type BTK proteins, indicating the 

existence of hydrophobic buried residues in this particular segment. Because of the 

hydrophobic effect, protein folds are more robust as hydrophobic amino acids are hidden deep 

inside the protein and are protected from water [244]. The local RMSD analysis on mutations 

G584E (shown in blue) and E589K (shown in orange) reveals a distortion in the structure of 

the BTK protein (Figure 4.5). This helix conformation containing our concerned mutations 

seems to lose their rigidity, indicating damage to the hydrophobic effect and hence disruption 

of the protein fold, leaving the residues more flexible and unstable; this distortion was seen 

more for the G584E mutant protein. 
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Figure 4.5: Local RMSD plot for G584E and E589K mutant proteins located in helix 

conformation starting from residue 575-592 highlighted by yellow color in left panel. A 

high rise in RMSD peak can be seen after 65ns in the mutant protein as compared to wild 

type BTK protein. 

The stimulus of the mutation on the dynamic behavior of the residues was determined by 

computing RMSF values for both the wild and mutant BTK proteins. The RMSF values were 

estimated during the final 50 ns of the simulation’s trajectory since the wild structure stagnates 

after a time period. Region 552–559 in the P566Q mutation showed the highest flexibility, as 

the RMSF peak had a rise of 0.42 nm, while E589K showed the highest rigidity for the same 

region. Region 479–483 contains the active site at C481 of the BTK protein. This region 

containing the binding site showed a high level of rigidity, along with another region starting 

from residues 582–592, for all the mutants, out of which the F413L mutation showed the 

highest rigidity for both of these sites, so we can conclude that these mutations may hamper 

the drug binding due to structural instability. The G584E mutation seems to be highly unstable 

as almost all the residues show variation in flexibility in contrast with the wild type, with the 

highest flexibility in the region starting from 572–576. The RMSF plots confirmed that the 

P566Q mutant protein demonstrated considerable residual shifts relative to the wild type 

protein, suggesting a role in structural damage due to protein flexibility, as evident in the latter 

half of the RMSD plots. Drug-binding sites are located in several of these dynamic areas, which 

means they may affect drug-binding interactions (Figure 4.6). 
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Figure 4.6: RMSF plot of all the four mutated and wild type BTK proteins showing a high 

degree of variability in mutated BTK proteins with respect to wild type BTK protein. P566Q 

mutation showing the highest unstability indicated by “Green” color. 

4. PCA Analysis on MD Trajectories 

PCA tries to find the cumulative patterns of fluctuations in the protein structure by computing 

and diagonalizing the covariance matrix for Carbon-alpha (Cα) atoms to determine the 

cumulative modes of fluctuations in the structure of proteins. These produced orthogonal 

vectors, also known as eigenvectors, have been given the name ‘principal components’ since 

they have the biggest eigenvalues (PCs). So, for the purpose of finding fluctuations in native 

and mutant proteins, we run principal component analysis (PCA) on molecular dynamics’ 

trajectory files using the scikit-learn python library to extract the kinase domain interactions 

and the atomic gap in wild type and mutant BTK proteins from their corresponding to last 25 

ns MD simulation trajectories. The principal components (PCs) or eigenvectors were retrieved 

and presented as groups from the corresponding MD simulation trajectories for the wild and 

mutant BTK protein structures. As a result of PCA analysis, we’ve determined that mutant 

proteins exhibit large dynamic movements and evident fluctuations in terms of atomic 

vibrations for the last 25 ns simulation period. PCA plots for extracted PC1 and PC2 indicate 
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the mutations in the groups throughout the observed simulation interval via a color shift from 

yellow to purple, representing the significant periodic bounces amid the different 

conformational postures of the wild type and mutant BTK protein structures. Therefore, it is 

clear that the mutations are altering the BTK protein, as demonstrated by PCA plots (Figure 

4.7). 

 

Figure 4.7: Principal Component Analysis for both wild and mutant BTK proteins 

exhibiting large dynamic movements and evident fluctuations in terms of atomic vibrations 

as a consequence of 100 ns MD simulation. 

5. Contact map analysis through CONAN. 

We tried to find out the possible interactions of each residue with other residues in the wild and 

mutant BTK proteins. For this purpose, we conducted a contact map analysis through CONAN 

(CONtact Analysis). It works with the GROMACS molecular dynamic engine’s mdmat tool. 

In this study, CONAN was used to generate contact maps for each atom in the simulated 

structure, and the average of these was then compared for both wild type and mutant BTK 

proteins. Contact maps capture the secondary and tertiary structural characteristics that 

describe the molecule. Alpha-helices are shown by a deepening of the matrix diagonal. Parallel 

and antiparallel beta-strands, on the other hand, are shown by thin contact segments that are 
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either orthogonal to or parallel to the matrix diagonal. Interestingly, we have found significant 

changes in contact maps of mutant proteins with reference to wild BTK protein for the last 

25ns of MD trajectory, depicting the contact maps in 2D format for a visual interpretation 

(Figure 4.8).  

 

Figure 4.8: Contact maps generated by CONAN for both wild and mutant BTK proteins 

exhibiting lightning of backbone represented by the diagonal and missingness throughout 

the MD trajectory for mutant proteins as compared to the wild type BTK protein. 

By observing the images closely, we can see that the F413L mutant protein’s residues have 

various weak contacts depicted by the thinning of the backbone (represented by the diagonal) 

in contrast with the wild type BTK protein, concluding the weakening of contacts among the 

alpha-helices of this protein. Parallel and anti-parallel beta-strands depicted by thin lines and 

light spots in CONAN contact maps showed the loss of contacts at various places in contrast 

with the wild protein. We can also observe lightning and the missingness of some points 

throughout the entire MD trajectory, which concludes the breaking of contacts in the mutant 

structure. Throughout the MD trajectory, we can see the same kind of thinning of the backbone, 
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showing the weakening of contact among residues in alpha-helices and a similar kind of 

missingness and lighting of various spots at different locations showing the breaking of 

contacts in residues of beta-strands. 

6. Docking and MM-PBSA and MM-GBSA binding energies analysis 

To investigate the influence of amino acid substitution on Ibrutinib binding, we docked the 

mutant and wild BTK protein structures with the FDA-approved drug. Table 4.2, presented the 

outcomes of the docking analysis containing Binding energy (kcal/mol) and predicted 

Inhibition Constant (nM). The estimated free energy is determined by combining the torsion 

and intermolecular free energies. For all the complexes, the calculated binding free energy for 

Ibrutinib ranges from 9.16 to 9.55 kcal/mol. According to the binding energy data, Ibrutinib 

seems to be stable in each of the complexes. 

Table 4.2: Binding energy of mutated and wild system when docked with Ibrutinib. 

System Binding energy (kcal/mol) Predicted Inhibition Constant 

(nM) 

Wild -9.37 135.22 

E589K -9.48 111.82 

G584E -9.43 122.28 

P566Q -9.55 99.59 

F413L -9.16 191.52 

 

The MM-PBSA study has been widely used to simulate molecular affinity, like protein-ligand 

binding interactions, as an active and reliable free energy simulation tool. When paired with 

MD simulations, MM-PBSA has the inherent potential to include conformational variations 

and entropic components in the binding energy. Decomposing the overall binding energy into 

several components, this approach has also been used to provide a comprehensive 

understanding of biomolecular interactions [236], [245]. We provided here the findings of 
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MM-PBSA analyses that were carried out utilizing 1000 snapshots collected from the MD-

trajectory at 25 ps intervals between 76 and 100 ns of MD trajectory of wild and mutant 

complexes with Ibrutinib. We also calculated the -TΔS for both MM-PBSA and MM-GBSA 

analysis using the interaction entropy method and compiled the enthalpy change and entropy 

change in Table 11, using the equation given below. 

ΔGbind =  ΔH –  TΔS 

Where ‘ΔH’ (enthalpy change) is calculated by MM-PBSA/MM-GBSA, while ‘-TΔS’ is 

calculated by interaction entropy. 

From the details given in Table 4.3, we can see that F413L (-25.68 ± 3.0 kcal/mol) and G584E 

(-25.03 ± 3.0 kcal/mol) mutant protein-drug complex has the lowest total free binding energy 

(ΔGbind) indicating good binding between protein and drug while E589K (-15.78 ± 4.08 

kcal/mol) mutant complex has the highest total binding energy followed by wild type (-17.28 

± 4.29 kcal/mol) and P566Q (-22.33 ± 4.33 kcal/mol) mutant protein-drug complexes 

indicating the poor binding affinity. The van der Waals (ΔEvdW), electrostatic interaction 

(ΔEelec), solvent-accessible surface area energy (ΔESASA), enthalpy change (ΔH), and entropy 

change (-TΔS) were the most significant components of the entire free binding energy of each 

wild and mutant protein complex. 

Table 4.3: MM-PBSA and MM-GBSA analysis results for free binding energy of Ibrutinib 

with wild type and mutant BTK proteins. 

MM-PBSA 

Energy 

Component 
Wild F413L P566Q G584E E589K 

ΔEvdW -61.20 ± 0.61 -56.71 ± 0.65 -57.06 ± 1.09 -53.74 ± 0.82 -60.34 ± 1.05 

ΔEelec -23.27 ± 1.16 -31.22 ± 1.62 -30.36 ± 3.14 -29.72 ± 2.00 -24.87 ± 1.97 
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ΔPB 62.30 ± 0.71 61.43 ± 0.31 62.33 ± 0.56 54.64 ± 0.73 66.22 ± 0.80 

ΔESASA -5.44 ± 0.02 -5.10 ± 0.02 -5.12 ± 0.00 -4.88 ± 0.03 -5.40 ± 0.02 

ΔH -27.61 ± 1.77 -31.59 ± 1.98 -30.21 ± 3.50 -33.70 ± 2.44 -24.38 ± 2.54 

-TΔS 10.33 ± 0.11 5.91 ± 0.09 7.87 ± 0.19 8.67 ± 0.24 8.6 ± 0.11 

ΔG -17.28 ± 4.29 -25.68 ± 3.0 -22.33 ± 4.33 -25.03 ± 3.0 -15.78 ± 4.08 

MM-GBSA 

ΔEvdW -61.20 ± 0.61 -56.71 ± 0.65 -57.06 ± 1.09 -53.74 ± 0.82 -60.34 ± 1.05 

ΔEelec -23.27 ± 1.16 -31.22 ± 1.62 -30.36 ± 3.14 -29.72 ± 2.00 -24.87 ± 1.97 

ΔGB 51.48 ± 0.16 55.08 ± 0.59 55.13 ± 0.97 50.79 ± 0.76 52.21 ± 0.99 

ΔESURF -8.06 ± 0.01 -7.54 ± 0.03 -7.65 ± 0.01 -7.19 ± 0.01 -7.83 ± 0.01 

ΔH -41.05 ± 1.63 -40.39 ± 2.04 -39.94 ± 3.59 -39.87 ± 2.45 -40.82 ± 2.61 

-TΔS 10.33 ± 0.11 5.91 ± 0.09 7.87 ± 0.19 8.67 ± 0.24 8.6 ± 0.11 

ΔG -30.72 ± 2.96 -34.48 ± 2.49 -32.07 ± 2.65 -31.19 ± 2.79 -32.22 ± 2.81 

We have also conducted MM-GBSA tests on the wild and mutant protein-drug complexes. 

MM-GBSA is one of the most widely used techniques for estimating protein–ligand binding 

energies, identifying key residues in protein–protein interactions, and investigating 

macromolecular stability [246]. The free binding energy, ΔGbind calculated through MM-

GBSA was found to be highest (-30.72 ± 2.96 kcal/mol) for the wild type BTK-Ibrutinib 

complex, showing poor binding affinity between the BTK protein and the Ibrutinib drug, while 

this was found to be lower for the rest of the mutant protein-drug complexes, showing good 

binding affinity. For the F413L mutant protein-drug complex, the free binding energy was 

found to be the highest (-34.48 ± 2.49 kcal/mol) followed by E589K (-32.22 ± 2.81 kcal/mol), 

P566Q (-32.07 ± 2.65 kcal/mol) and G584E (-31.19 ± 2.79 kcal/mol) mutant protein-drug 

complexes, showing a significant increase in binding affinity between the BTK protein and the 

Ibrutinib drug. The van der Waals energy (ΔEvdW), electrostatic energy (ΔEelec), solvation 

energy (ΔESURF), enthalpy change (ΔH), and entropy change (-TΔS) were the contributing 

factors in identifying the binding nature of protein-drug complexes, and their respective values 
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are given in Table 4.3. We also found the average decomposition value for each residue in both 

wild type and mutant protein-drug complexes, details are given in (Figure 4.9). 

 

Figure 4.9: Average decomposition values for each residue in both wild type and mutant 

BTK-Ibrutinib complexes. 

7. Contact analysis for wild and mutant BTK-Ibrutinib complexes. 

Noncovalent interactions have substantial significance in terms of molecule binding and 

identification. Biomolecular recognition relies considerably on nonbonded interactions, 

including hydrogen bonding, ionic, and hydrophobic [247]. The MD trajectories of wild and 

mutant BTK-Ibrutinib complexes were analyzed using GROMACS and PyContact to identify 

hydrogen bonding interactions. All hydrogen bond interactions were set to have a range of 

bond distances from 1.5 to 2.5, and the cut-off angle for hydrogen bonds was set to 120°. The 

percentage of hydrogen bonding for wild and mutant protein complexes’ MD trajectories at an 

interval of 100 ps is shown in (Figure 4.10). In the wild type BTK-Ibrutinib complex, the 

CYS481 residue showed the maximum hydrogen bond occupancy of 100 percent, whereas the 

remaining residues followed the order MET477=GLU475>THR474. For the F413L mutant 

protein-drug complex, GLU475 showed a maximum hydrogen bond occupancy of 100 percent, 
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and the order of remaining residues follows the order CYS481=MET477>THR474>LYS430 

for hydrogen bond occupancy. We have found the following sequence of residues 

CYS481=GLU475>MET477>THR474 for the mutant P566Q protein-drug complex, where 

CYS481 and GLU475 occupied the highest percentage for hydrogen bond occupancy. The 

occupancy for hydrogen bonds was found to be in the order 

GLU475>MET477>CYS481>THR474>ASN484 for the mutant G584E protein-drug 

complex. For the mutant E589K protein-drug complex, the order of the hydrogen bonds was 

found to be GLU475>MET477>CYS481>LYS430>THR474, with GLU475 having the most 

hydrogen bonds (99.50%) occupied.  

 

Figure 4.10: PyContact analysis graphs for wild and mutant BTK-Ibrutinib protein 

complexes’ MD trajectories for potential hydrogen bond occupancy. 

 

IV. Discussion  

Integrating data from multiple genetic variation databases could provide a thorough 

understanding of the genes associated with SCC. We accessed the COSMIC database to get 
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mutational data on the BTK gene, which is responsible for SCC. This mutation analysis helps 

in the identification of potentially cancer-causing genomic variants. In this study, a total of 47 

mutations of the BTK gene that are unique to Squamous Cell Carcinoma (SCC) were extracted 

from the COSMIC database using advanced filters that considered whole genome screening as 

well as target screening; skin as the SCC tumor tissue site; missense mutations and their impact 

as pathogenic. BTK is a cytoplasmic nonreceptor tyrosine kinase that belongs to the Tec family 

of tyrosine kinases. The Tec family of kinases includes BTK, TEC, ITK, BMX, and RLK. In 

the cytoplasmic tyrosine kinase superfamily, this family is the second largest. BCR-mediated 

signaling and the formation of B-lymphocytes may be its most well-known function. BTK is 

found in all types of hematopoietic cells, not just B cells. Because of this, BTK was found to 

play a vital role in the tumor microenvironment, which is a complex network of cells and their 

precursors. This network includes pericytes and smooth muscle cells, fibroblasts with different 

phenotypes, neutrophils, T- and B-cell lymphocytes, natural killer (NK) cells, antigen-

presenting cells (APCs), etc., to name some. Each of these cell types contributes to the 

progression of cancer. Numerous preclinical and clinical cancer studies have investigated 

Ibrutinib (PCI-32765), a small-molecule pharmacological inhibitor of BTK. An example of a 

targeted therapeutic strategy in cancer would be the use of pharmacological inhibitors to stop 

the BTK gene from functioning. The BTK gene and its targeted drug Ibrutinib are the least-

studied gene-drug combination for SCC, according to the survey of the relevant literature; 

hence, additional research is required. Computational genetics is focussed on learning more 

about certain aspects of cancer biology. Pathogenic and damaging genetic mutations have been 

isolated with the aid of a combination of strong computational methods. In this study, 47 

nsSNPs for the BTK protein were retrieved from the COSMIC database, and after running each 

of these mutations through a total of seven different mutation impact prediction methods, four 

different nsSNPs, specifically, F413L, P566Q, G584E, and E589K, were found to be 
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detrimental, malignant, pathogenic, and deleterious, correspondingly. Also, there are some 

studies where these mutations have a role in carcinoma progression. A study based on tumor 

molecular profiling in precision oncology identified F413L and E589K as cancer biomarkers. 

This study analyzed tumors and matched normal sequence data from over 10,000 patients with 

advanced cancer and found clinically relevant somatic mutations, novel noncoding alterations, 

and mutational signatures shared by common and rare tumor types [248]. Additionally, a study 

on colorectal carcinogenesis analyzed eight pairs of colorectal adenomas and carcinomas using 

whole-exome sequencing and found that P566Q has an associated role in the carcinogenesis of 

colorectal cancer [249]. In another study, P566Q and G584E have been found in tumorigenesis 

of basal cell carcinoma (BCC) by conducting the genetic profiling of 293 BCC samples for the 

identification of cancer driver genes [250]. Based on the above studies, we chose these 

mutations and simulated them in the BTK protein structure in order to analyze their interaction 

and the effect of mutations on the protein structure. This work used molecular simulations to 

identify the underlying molecular mechanism by which non-synonymous variants may cause 

damage to protein structure. In these 100 ns molecular dynamic simulation studies, the 

mutations, namely F413L, P566Q, G584E, and E589K, of the BTK protein exhibited markedly 

altered molecular properties in contrast with the wild BTK protein, notably RMSD and RMSF 

values at the residue level. PCA plots for both wild and mutant proteins made it abundantly 

evident that the mutations are distorting the BTK protein. CONAN analysis was also done to 

find significant changes in contact maps of mutant proteins as compared to wild type for the 

entire MD trajectory, and we have found that the contact maps of mutants of the BTK protein, 

namely F413L, P566Q, G584E, and E589K, showed visible dissimilarity with the contact map 

of the wild type protein, which also supported the fact that the protein is actually distorted upon 

these mutations. When docked with Ibrutinib, all the systems showed similar free energy 

suggesting no effect in binding with the FDA-approved drug. The MM-PBSA method was 
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developed and proven to be an effective tool for assessing protein-drug interactions resulting 

from simulation trajectory information. So, the last 25 ns of the trajectories of the complexes 

were analyzed by means of MM-PBSA, revealing that the G584E mutant protein-drug complex 

has the lowest free binding energy, accompanied by F413L and P566Q mutants, whereas wild 

type and E589K mutants have the highest total free binding energy, indicating that these 

mutations cause structural instability but are not affecting the binding of Ibrutinib to the BTK 

protein. This observation was also validated by the MM-GBSA study, which demonstrated that 

the wild type BTK-Ibrutinib complex has the lowest free binding energy, accompanied by the 

G584E, P566Q, F413L, and E589K mutant protein-drug complexes. Since additional 

mutations have demonstrated modest differences in their free binding energy, the preceding 

observation can be supported.  

 

Figure 4.11: Interaction and proximity of residues around Ibrutinib in wild type and 

mutant BTK-Ibrutinib complexes throughout different time frames. 
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Table 4.4: Analysis of Ibrutinib’s interactions with BTK protein residues throughout 

different time frames. 

 

Systems 

 

Time 

Frames 

Interactions of BTK-protein residues with the Ibrutinib drug 

Hydrophobic 

Interactions 
Hydrogen Bonds 

pi-cation 

interactions 

Wild 

25ns 
VAL416, LYS430, VAL458, 

ILE472, ASN484, LEU528, PHE540 

GLU475, MET477, 

CYS481 
- 

50ns 
VAL416, LYS430, LEU460, 

ILE472, LEU483, LEU528 

GLN412, THR474, 

GLU475, MET477 
- 

75ns 
LEU408, LYS430, LEU460, ILE472, 

THR474, LEU528, LEU542 

GLN412, GLU475, 

MET477 
- 

100ns 
LEU408, LYS430, LEU528, 

PHE540, LEU542 

GLN412, THR474, 

GLU475, MET477 
- 

F413L 

25ns 
VAL416, LYS430, LEU460, 

ILE472, PHE540, LEU542 

GLU475, MET477, 

CYS481 
- 

50ns 
VAL416, LYS430, ILE472, 

THR474, PHE540 

THR474, GLU475, 

MET477, CYS481 
- 

75ns 

VAL416, LYS430, LEU460, 

ILE472, THR474, ASN484, 

LEU528, LEU542 

GLU475, MET477, 

CYS481 
- 

100ns 

VAL416, ALA428, LYS430, 

ILE472, THR474, LEU528, 

PHE540, LEU542 

GLU475, MET477, 

CYS481 
- 

P566Q 

25ns 

LEU408, VAL416, LYS430, 

VAL458, LEU460, THR474, 

PHE540, LEU542 

GLU475, MET477, 

CYS481 
- 

50ns 

PHE413, VAL416, LYS430, 

LEU460, ASN484, LEU528, 

PHE540 

GLU475, MET477, 

CYS481 
- 

75ns 
LEU408, VAL416, LYS430, 

VAL458, ILE472, LEU528, 

THR474, GLU475, 

MET477 
- 

100ns 
ALA428, LYS430, ILE472, 

THR474, LEU528, LEU542 

GLN412, THR474, 

MET477 
- 

G584E 25ns 

LEU408, LYS430, VAL458, 

ILE472, THR474, ASN484, 

LEU528, PHE540 

THR474, GLU475, 

MET477, CYS481, 

ASP539 

- 
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50ns 
LYS430, VAL458, THR474, 

PHE540 

GLU475, MET477, 

CYS481 
- 

75ns 

VAL416, ALA428, VAL458, 

LEU460, ILE472, THR474, 

LEU528, PHE540 

LYS430, GLU475, 

MET477, CYS481 
- 

100ns 

ALA428, LYS430, VAL458, 

LEU460, ILE472, THR474, 

LEU528, PHE540, LEU542 

GLU475, MET477, 

CYS481 
- 

E589K 

25ns 
LEU408, ILE472, ARG525, 

LEU528, PHE540 
GLU475, MET477 LYS430 

50ns 
LYS430, THR474, ARG525, 

LEU528, LEU542 
GLU475, MET477 - 

75ns 

LEU408, VAL416, LYS430, 

LEU460, ARG525, LEU528, 

PHE540, LEU542 

THR474, GLU475, 

MET477 
- 

100ns 
LEU408, LYS430, LEU460, 

THR474, LEU528, PHE540 
GLU475, MET477 - 

 

By PyContact analysis, we have found that in the wild type BTK-Ibrutinib complex, CYS481 

residue showed the maximum hydrogen bond occupancy. In F413L, G584E, and E589K 

mutant protein-drug complexes, GLU475 showed the maximum hydrogen bond occupancy, 

while P566Q showed the maximum hydrogen occupancy for both CYS481 and GLU475. PLIP 

(Protein Ligand Interaction Profiler) analysis for 4-time frames, namely 25 ns, 50 ns, 75 ns, 

and 100 ns, showed the hydrophobic interactions, hydrogen bonding, and pi-cation interactions 

in wild and mutant proteins complexed with Ibrutinib (Table 4.4) (Figure 4.11). We have 

observed that pi-cation interaction is found in a single E589K mutant complex’s residue, 

namely LYS430, at a 25 ns time frame. Being the strongest non-covalent interaction, this pi-

cation interaction is actually giving stability to the E589K mutant protein complex, providing 

another proof that the mutations are distorting the structure, but the protein and drug binding 

are still unaffected, and hence we can use Ibrutinib in populations where we found these 

mutations of BTK protein.  
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V. Conclusions 

In this study, we have tried to decipher the effect of mutations that are found in BTK protein 

and may have a role in SCC progression using computational methods. BTK belongs to the 

Tec tyrosine kinase family and is a nonreceptor cytoplasmic tyrosine kinase. The Tec kinase 

family, which includes BTK, TEC, ITK, BMX, and RLK, is the second-largest family of 

cytoplasmic tyrosine kinases [251]. BTK protein contains a number of domains, beginning 

with the N-terminal PH-domain (Pleckstrin Homology Domain) and progressing through the 

TEC homology domain, SH3 and SH2 (SRC homology domains), and lastly, the C-terminal 

BTK-KD domain (BTK-Kinase Domain). Phosphatidylinositol lipids like PIP3 can be linked 

to the PH domain, bringing proteins close to the cell membrane. The TH domain comprises a 

zinc-finger motif that is required for the protein’s optimal function and integrity. SH domains 

communicate with other proteins and bind to proline-rich areas and phosphorylated tyrosinase. 

LYN or SYK may phosphorylate the catalytic kinase domain’s Y551 site, resulting in 

autophosphorylation of the SH3 domain’s Y233 site [210]. It was observed from many studies 

that mutations in the BTK protein may have a role in SCC disorder, and hence various studies 

are going on to validate its connection. Ibrutinib is a drug that permanently suppresses BTK. 

Ibrutinib was initially proposed as a potential treatment for a range of B-cell lineage-derived 

diseases [214]. Treatment resistance in most cancers may be induced by factors including 

genomic heterogeneity, intratumoral genetic polymorphism, and field cancerization. These 

mutations can influence protein expression and subcellular localization, as well as protein 

folding and integrity, protein function, and protein-protein interactions (PPI). This study was 

aimed at discovering the possible deleterious role of mutations in the BTK protein. We selected 

4 mutants of the BTK protein and observed by conducting simulation studies that these variants 

are actually distorting the proteins, which we confirmed through MD simulation analysis. 

Mutants differed greatly from the native protein, suggesting that they contribute to SCC 
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prognosis by rendering protein unstable. Even the mutant proteins’ MD trajectories were 

distinct from those of normal proteins, and they bound to Ibrutinib in the same manner. 

According to the analysis of the protein-ligand interaction, the mutations had no effect on how 

the drug bound to the proteins. MM-PBSA and MM-GBSA both supported this. Even mutant 

proteins bind to the drug more effectively than wild-type proteins. Consequently, this study 

reveals that the effect of detected missense mutations is unfavorable and can lead to function 

loss, which is severe for SCC, but that Ibrutinib-based therapy can still be effective on them, 

and the mutations can be utilized as biomarkers for Ibrutinib-based treatment. This study 

suggests that the drug Ibrutinib, which targets BTK and is used to treat SCC, may be unaffected 

by these mutations. Nonetheless, this finding must be validated by exhaustive clinical 

investigations. 
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Chapter 5. Exploring Dysregulated Genes for Novel Targeted 

Therapies in Squamous Cell Carcinoma 
 

 

Abstract 

The aim of the present investigation was to identify genes that are dysregulated in SCC and 

explore potential therapeutic interventions against them. In this study, a comparative analysis 

was performed on the gene expression profiles retrieved from the GEO database, containing 

samples taken from individuals diagnosed with SCC, AK, and healthy skin samples to identify 

any significant differences in gene expression between these groups. As a result of the analysis, 

several genes were found to be differentially expressed. The study conducted functional and 

pathway enrichment analysis to determine the involvement of these dysregulated genes in 

biological processes related to SCC progression. The results showed that these 

dysregulated genes play a crucial role in cellular disassembly, regulation of protein catabolism, 

extracellular matrix disassembly, etc. The analysis of pathways has highlighted the significance 

of WNT signaling, regulation of actin cytoskeleton, etc., in the SCC development. DGB was 

used to investigate the potential efficacy of specific chemical perturbations, including drugs 

like Doxorubicin, Dasatinib, and Tretinoin, in restoring abnormal gene expression profiles of 

these dysregulated genes. The results of this study offer new possibilities for 

targeted therapeutic interventions in customized therapies by revealing the molecular 

mechanisms that drive SCC and their effects on the surrounding tumor environment. 
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I. Introduction 

NMSCs, which include SCC and BCC, and melanocytic skin cancers, are the two main 

classifications for skin cancers [252]. NMSC is a neoplastic disease that rates fifth in worldwide 

incidences and affects both genders equally. In the United States, over 1.8 million new cases 

of NMSCs are identified annually, with cutaneous SCC being the most prevalent form of skin 

cancer. African Americans and Asian Indians have been observed to be more susceptible to 

developing SCC. In addition, this cancer has the second-highest incidence rate among Hispanic 

and Chinese/Japanese Asian populations [253]. SCC has been recognized as a cancer of the 

epidermal keratinocytes. AK, a dermatological condition, has been linked in numerous studies 

to the development of SCC. A significant proportion of high-risk SCC cases, comprising 

roughly 5-10% of all occurrences, present a formidable diagnostic and therapeutic challenge, 

necessitating the application of radiation or surgical interventions. The likelihood of successful 

therapeutic interventions for metastatic skin cancer, which entails high risk, appears to be 

diminished, especially in the elderly population, which has an urgent need for a systematic 

diagnosis and treatment for SCC [254].  

Taking advantage of cutting-edge technologies alongside the unique pathophysiological 

characteristics of tumors may facilitate the discovery of novel therapeutic agents aimed at 

enhancing the overall survival of individuals afflicted with SCC. Nonetheless, the endeavor of 

translating these pharmacological agents into the realm of clinical practice is a formidable task, 

given the low efficacy observed in clinical trials, as well as the excessive expenses and long-

lasting timelines that can span over a decade [255]. The strategy of drug repositioning or 

repurposing presents a viable alternative by discerning novel applications for pre-existing drugs 

beyond their initial medical indication. The strategic approach of drug repositioning is deemed 

advantageous due to the pre-existing establishment of pharmacodynamic, pharmacokinetic, 

and toxicity profiles of these drugs [101]. The plausibility of utilizing publicly available 
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databases housing data on gene expression and biological pathways in the context of cancer is 

within reach. Besides being useful to their therapeutic applications, biomarkers may also serve 

as valuable tools for the diagnosis or prognosis of individuals afflicted with cancer [99], [256].  

One such publicly available comprehensive data repository is the Library of Integrated 

Network-based Cellular Signatures (LINCS) [113]. This repository contains a vast collection 

of approximately two million distinct files that provide exhaustive insights into the gene 

expression and metadata of cell lines that have been subjected to chemical perturbation at 

specific doses and durations. Through the application of computational techniques such as 

systems biology, bioinformatics, ML, and network biology, it is feasible to establish a 

relationship between the gene expression profile of cancer and the signature induced by drugs 

or perturbing agents. The relationship between the two variables at hand can serve as a viable 

approach to discern novel indications for pre-existing drugs and reutilize them for intricate 

ailments, including cancer. An additional repository, known as CREEDS [116], exhibits tested 

gene expression profile annotations that demonstrate associations among drugs, genes, and 

diseases. The signatures of the data are thoroughly evaluated with great attention to detail in 

terms of their distinctiveness and quality. Packed circles are utilized to cluster analogous 

signatures, thereby presenting interrelationships in a graphical format. Moreover, CREEDS 

offers interactive heatmaps that display hierarchically grouped matrices for all signatures.  

Transcriptomics-guided drug repositioning has garnered significant attention, as indicated by 

the multitude of studies conducted to date [257]. This methodology exhibits particular potential 

for the treatment of cancer, given the restricted understanding of cancer and the requisite drug 

categories [108]. Prior research has focused on identifying dysregulated genes and enriched 

pathways in diverse cancer types, yet no investigations have delved into SCC utilizing gene 

expression data. The current investigation has identified a group of genes that are responsible 
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for tumorigenesis and the progression of SCC. These genes have exhibited a negative 

correlation with antineoplastic signatures that were obtained from the DGB application. The 

DGB tool is a web-based application designed to prioritize small molecules that are anticipated 

to have an impact on the expression of target genes [258]. 

II. Materials and methods 

1. Data retrieval and Pre-processing 

The data for this study was taken from the previous study, details provided in Chapter 2. Three 

datasets from the GEO database [115] of NCBI, namely, GSE45216, GSE98744, and 

GSE108008 were used for this study. These GEO series contained the normalized, calibrated, 

and pre-processed array data for healthy, AK, and SCC skin samples. The GSE45216 collection 

contains 30 SCC and 10 AK samples, whereas the GSE98774 collection includes 18 AK and 

36 samples of healthy skin. The GSE108008 dataset contains 10 SCC, 10 AK, and 10 

healthy skin samples. These datasets were divided into three binary classification problems: 

Healthy vs. AK, Healthy vs. SCC, and SCC vs. AK, with each case being treated separately 

for ML application. These above-mentioned binary datasets were then subjected to pre-

processing using the RMA-normalization method for microarray summarization and quantile 

normalization [259].  

2. Identification of key dysregulated genes and their statistical analysis 

Through the implementation of ML techniques and the SHAP method of XAI, an attempt was 

made to identify the key dysregulated genes that play a crucial role in the advancement of SCC. 

The application of the GEO2R computational tool facilitated the characterization of the 

significance of pivotal dysregulated genes that exhibited differential expression patterns in the 

course of SCC progression. The statistical significance of these identified genes was 
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established by verifying that their p-values were below the threshold of 0.05. Furthermore, the 

regulatory pattern of all these dysregulated genes was ascertained based on their logFC values. 

3. Function and Pathway enrichment analysis on the identified key Genes 

To perform the Gene Ontology (GO) enrichment analysis as well as pathway enrichment 

analysis on the key dysregulated genes, we have used STRING [260], [261]. Based on these 

identified dysregulated genes, STRING automatically enriched pathways or functional 

subsystems using hypergeometric testing with a P-value of <0.05, set as the threshold. 

Functional and pathway enrichment was done to find the role of all identified dysregulated 

genes in the tumour microenvironment.  

4. Identification of Chemical perturbations for each dysregulated gene 

Recent high-throughput genome-wide expression-based drug screening has resulted in the 

generation of extensive collections of drug-induced transcriptomic signatures. The LINCS 

L1000 dataset [113] documents the transcriptomic responsiveness of human cell lines to over 

20,000 small molecules, including FDA-approved drugs and preclinical compounds. 

Crowdsourcing efforts, like CREEDS [116], have been utilized to curate numerous drug-

induced gene expression signatures from GEO, with the aim of prioritizing small molecules 

that significantly modulate single genes. In this study, we utilized the DGB [258], a web-based 

and mobile application, to identify chemical perturbations against each identified gene. DGB 

utilizes various datasets to prioritize drugs and small molecule compounds that have the 

potential to significantly impact the expression of a target gene. The DGB platform provides a 

user-friendly interface that enables the selection of a target gene and facilitates interaction with 

the resulting list of small molecules, which are ranked based on the query results. 
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III.  Results 

1. Identification of key dysregulated genes and their statistical analysis 

The identification of significant genes in the provided datasets was accomplished by employing 

ML techniques, specifically the XGBoost algorithm [77] and SHAP tool [92], [94] of XAI. The 

ML algorithm conducted an analysis of the datasets and identified pertinent features that 

differentiate between various conditions. The study conducted a comparative analysis of gene 

expression between healthy vs AK skin samples and identified the following genes as 

significantly differentially expressed: PAMR1, CTSC, PHYHIP, CD24, WNT5A, RAB3B, 

WIF1, TNNC1, PARK7, MMP14, ARHGEF4, and CFL1. The comparison between healthy vs 

SCC skin samples revealed the statistical significance of two genes, namely HNRNPM and 

RPS13. Finally, the comparative analysis of SCC vs AK skin samples revealed the 

identification of several significant dysregulated genes, namely GTSE1, CHTOP, EDNRB, 

DNAJC8, S100A11, HNRNPM, TUG1, TFG, GAPDH, and RPS3A [1]. These results 

contribute to our comprehension of the molecular mechanisms underlying the genetic 

differences between these conditions, refer to Table 5.1. 

Table 5.1: List of identified dysregulated genes identified using ML and SHAP 

Datasets Significant Genes 

Healthy vs AK 
PAMR1, CTSC, PHYHIP, CD24, WNT5A, RAB3B, WIF1, TNNC1, 

PARK7, MMP14, ARHGEF4, CFL1 

Healthy vs SCC HNRNPM, RPS13 

SCC vs AK 
GTSE1, CHTOP, EDNRB, DNAJC8, S100A11, HNRNPM, TUG1, TFG, 

GAPDH, RPS3A 

 

We employed the GEO2R computational tool to characterize the relevance of important 

dysregulated genes that were differentially expressed during SCC development. P-values 

< 0.05 were considered statistically significant for the identified genes. LogFC values were 
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also determined to find the expression of all the significant genes. According to LogFC values, 

PAMR1, PHYHIP, RAB3B, WIF1, TNNC1, HNRNPM, GTSE1, CHTOP, DNAJC8, S100A11, 

TUG1, TFG, and GAPDH were found to be down-regulated while CTSC, CD24, WNT5A, 

PARK7, MMP14, ARHGEF4, CFL1, RPS13, EDNRB, and RPS3A were found to be up-

regulated in SCC progression, details given in Table 5.2. 

Table 5.2: Statistical analysis results for each identified dysregulated genes. 

Genes P-value logFC 

Dataset: Healthy vs AK Dataset 

PAMR1 6.83E-19 -2.33005 

CTSC 3.35E-11 1.042324 

PHYHIP 6.51E-28 -2.37733 

CD24 8.25E-17 1.790993 

WNT5A 3.09E-14 2.491315 

RAB3B 3.13E-19 -1.33558 

WIF1 1.76E-27 -4.25276 

TNNC1 1.32E-19 -1.87799 

PARK7 2.71E-06 0.342546 

MMP14 2.08E-05 -0.55263 

ARHGEF4 0.005396 0.444668 

CFL1 4.67E-08 0.367648 

Dataset: Healthy vs SCC 

HNRNPM 3.61E-21 -0.78581 

RPS13 5.91E-15 0.529767 

Dataset: SCC vs AK 

GTSE1 2.91E-21 -1.57927 

CHTOP 7.87E-13 -0.55512 

EDNRB 3.85E-18 2.066272 

DNAJC8 5.62E-13 -0.54132 

S100A11 4.49E-21 -1.1461 

TUG1 1.66E-11 -0.67914 

TFG 2.50E-12 -0.72343 
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GAPDH 4.98E-05 -0.42799 

RPS3A 0.03709 0.100498 

 

2. Function and Pathway enrichment analysis on the identified key dysregulated 

Genes to find their role in SCC. 

 

Figure 5.1: STRING network made from the identified dysregulated genes that were 

retrieved to be of the highest relevance using SHAP values. 

The Gene Ontology (GO) enrichment analysis as well as pathway enrichment analysis was 

performed on the key dysregulated genes using STRING (Figure 5.1) [260], [261]. Identified 

key dysregulated genes were functionally enriched in six GO_BP (Biological Process) terms, 

one in GO_MF (Molecular Function) terms, and thirteen GO_CC (Cellular Component) terms. 

Disassembly of cellular components, Positive regulation of the cellular process, Extracellular 

matrix disassembly, Regulation of the catabolic process of proteins, negatively regulating 

proteolysis of membrane protein ectodomains, and Negative regulation of the activity of 

metallopeptidase was the most highly enriched GO_BP terms. Protein binding was the most 
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significantly enriched GO_MF term, while the Anchoring junction, Ruffle, Cell leading edge, 

Extracellular matrix, Cell junction, Ruffle membrane, Intracellular organelle lumen, 

Extracellular region, Focal adhesion, Endocytic vesicle membrane with clathrin coating, Cell-

cell junction, and Lamellipodium were the most significantly enriched GO_CC terms, details 

in Table 5.3. 

Table 5.3: GO terms with their P-value from STRING network. 

Term ID Term Description P-value 
Matching proteins in the 

network 

Biological Process 

GO:0022411 
Disassembly of cellular 

components 
0.0039 

TIMP1, APC, TIMP2, MMP14, 

FZD2, CFL1 

GO:0048522 
Positive regulation of 

cellular process 

0.0304 

 

TIMP1, APC, TIMP2, WNT5A, 

S100A11, WIF1, MMP14, 

ARHGEF4, FZD2, LIMK1, 

CHTOP, PARK7, CFL1 

GO:0022617 
Extracellular matrix 

disassembly 
0.0478 TIMP1, TIMP2, MMP14 

GO:0042176 

Regulation of the 

catabolic process of 

proteins 

0.0478 
TIMP1, APC, TIMP2, WNT5A, 

PARK7 

GO:0051045 

Negatively regulating 

proteolysis of 

membrane protein 

ectodomains 

0.0478 TIMP1, TIMP2 

GO:1905049 

Negative regulation of 

the activity of 

metallopeptidase 

0.0478 TIMP1, TIMP2 

Molecular Function 

GO:0005515 Protein binding 0.0193 

TIMP1, APC, TIMP2, DNAJC8, 

WNT5A, S100A11, WIF1, MMP14, 

ARHGEF4, FZD2, HNRNPM, 

LIMK1, PARK7, CFL1 

Cellular Component 

GO:0070161 Anchoring junction 0.0019 
APC, S100A11, MMP14, FZD2, 

LIMK1, PARK7, CFL1 
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GO:0001726 Ruffle 0.0079 APC, S100A11, ARHGEF4, CFL1 

GO:0031252 Cell leading edge 0.0079 
APC, S100A11, ARHGEF4, 

LIMK1, CFL1 

GO:0031012 Extracellular matrix 0.0148 
TIMP1, TIMP2, WNT5A, MMP14, 

HNRNPM 

GO:0030054 Cell junction 0.0164 
APC, WNT5A, S100A11, MMP14, 

FZD2, LIMK1, PARK7, CFL1 

GO:0032587 Ruffle membrane 0.0164 APC, ARHGEF4, CFL1 

GO:0070013 
Intracellular organelle 

lumen 
0.0219 

TIMP1, APC, TIMP2, DNAJC8, 

WNT5A, S100A11, MMP14, 

HNRNPM, LIMK1, CHTOP, 

PARK7, CFL1 

GO:0005576 Extracellular region 0.0338 

TIMP1, TIMP2, DNAJC8, WNT5A, 

S100A11, WIF1, MMP14, 

HNRNPM, PARK7, CFL1 

GO:0005925 Focal adhesion 0.0338 MMP14, FZD2, LIMK1, CFL1 

GO:0005912 Adherens junction 0.0373 APC, S100A11, PARK7 

GO:0030669 

Endocytic vesicle 

membrane with 

clathrin coating 

0.0407 
WNT5A, FZD2 

 

GO:0005911 Cell-cell junction 0.0465 APC, S100A11, PARK7, CFL1 

GO:0030027 Lamellipodium 0.0469 APC, LIMK1, CFL1 

 

The identified genes were found to be pathway enriched in nine KEGG pathway [262] terms, 

five REACTOME [263] terms, and twelve WikiPathway [264] terms, details provided in Table 

5.4. KEGG pathway analysis indicated that the key genes are enriched in the WNT signaling 

pathway, Regulation of actin cytoskeleton, Basal cell carcinoma, Axon guidance, Hippo 

signaling pathway, signaling pathways regulating pluripotency of stem cells, Breast cancer, 

Hepatocellular carcinoma, and Gastric carcinoma. Moreover, REACTOME pathway analysis 

showed the enrichment of key genes in the Activation of Matrix Metalloproteinases, Signaling 

mediated by TCF in response to WNT, WNT ligand antagonists exerting a negative 

regulation effect on TCF-dependent signaling, Internalization of FZD2, FZD5, and 

ROR2 mediated by WNT5A and finally RHO GTPases activating ROCKs while the 
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WikiPathways showed the enrichment of genes in lncRNA in canonical WNT signaling and 

colorectal cancer, ncRNAs implicated in hepatocellular carcinoma WNT signaling, Matrix 

metalloproteinases, WNT signaling, Regulation of actin cytoskeleton, WNT signaling pathway 

and pluripotency, Embryonic stem cell pluripotency pathways, WNT/beta-catenin signaling 

pathway in leukemia, Breast cancer pathway, and Extracellular vesicle-mediated signaling in 

recipient cells, WNT signaling in kidney disease and G13 signaling pathway. 

Table 5.4: Pathway terms with their P-value for the STRING network. 

Term ID Term Description P-value 
Matching proteins in the 

network 

KEGG Pathways 

hsa04310 WNT signaling pathway 0.0017 APC, WNT5A, WIF1, FZD2 

hsa04810 
Regulation of actin 

cytoskeleton 
0.0026 

APC, ARHGEF4, LIMK1, 

CFL1 

hsa05217 Basal cell carcinoma 0.0026 APC, WNT5A, FZD2 

hsa04360 Axon guidance 0.0137 WNT5A, LIMK1, CFL1 

hsa04390 Hippo signaling pathway 0.0137 APC, WNT5A, FZD2 

hsa04550 

Signaling mechanisms 

that control stem cell 

pluripotency 

0.0137 APC, WNT5A, FZD2 

hsa05224 Breast cancer 0.0137 APC, WNT5A, FZD2 

hsa05225 Hepatocellular carcinoma 0.0137 APC, WNT5A, FZD2 

hsa05226 Gastric cancer 0.0137 APC, WNT5A, FZD2 

Reactome Pathways 

HSA-1592389 
Activation of Matrix 

Metalloproteinases 
0.0056 

TIMP1, TIMP2, MMP14 

 

HSA-201681 
Signaling mediated by 

TCF in response to WNT 
0.0152 APC, WNT5A, WIF1, FZD2 

HSA-3772470 

WNT ligand antagonists 

exerting a negative 

regulation effect on TCF-

dependent signaling 

0.0414 WNT5A, WIF1 
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HSA-5140745 

Internalization of FZD2, 

FZD5, and 

ROR2 mediated by 

WNT5A 

0.0414 WNT5A, FZD2 

HSA-5627117 
RHO GTPases Activate 

ROCKs 
0.0414 LIMK1, CFL1 

WikiPathways 

WP4258 

lncRNA in canonical 

WNT signaling and 

colorectal cancer 

0.00036 APC, WNT5A, WIF1, FZD2 

WP4336 

ncRNAs implicated in 

hepatocellular carcinoma 

WNT signaling 

0.00036 
APC, WNT5A, WIF1, FZD2 

 

WP129 
Matrix 

metalloproteinases 
0.00037 TIMP1, TIMP2, MMP14 

WP428 WNT signaling 0.00037 APC, WNT5A, WIF1, FZD2 

WP51 
Regulation of actin 

cytoskeleton 
0.00062 

APC, ARHGEF4, LIMK1, 

CFL1 

WP399 
WNT signaling pathway 

and pluripotency 
0.0071 APC, WNT5A, FZD2 

WP3931 
Embryonic stem cell 

pluripotency pathways 
0.0091 APC, WNT5A, FZD2 

WP3658 

WNT/beta-catenin 

signaling pathway in 

leukemia 

0.0154 
APC, WIF1 

 

WP4262 Breast cancer pathway 0.0154 APC, WNT5A, FZD2 

WP2870 

Extracellular vesicle-

mediated signaling in 

recipient cells 

0.0165 APC, WNT5A 

WP4150 
WNT signaling in kidney 

disease 
0.0214 WNT5A, FZD2 

WP524 G13 signaling pathway 0.0219 LIMK1, CFL1 
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The results of the functional and pathway enrichment analysis provided robust evidence for the 

implication of the identified dysregulated genes in the advancement of SCC and their impact 

on the microenvironment of the tumor.  

3. Identification of Chemical perturbations for each identified gene 

Upon performing a statistical analysis of the identified genes, we determined their significance 

and observed their respective expression patterns. The DGB, an online software tool, was 

employed to investigate prospective therapeutic agents for SCC. This application facilitates the 

assessment of small molecules that are anticipated to modulate the transcription of specific 

genes. The LIMMA approach [265] confers statistical significance by means of p-value, q-

value, fold change, and specificity. The DGB conducted a comprehensive analysis of 

transcriptomic responses in diverse human cell lines to systematically profile over 20,000 small 

molecules, encompassing preclinical compounds and FDA-approved drugs. 

DGB analysis on identified dysregulated genes presents the details pertaining to the patterns of 

gene expression and the associated drugs or small molecules capable of reversing these 

expression patterns. The results in Table 5.5, have been obtained from the LINCS L1000 

dataset, a comprehensive gene expression dataset that encompasses data on the impact of 

numerous drugs and small molecules on gene expression profiles. The initial dataset, namely 

Healthy vs AK, PAMR1 exhibited a decrease in expression levels when comparing healthy 

cells to those with AK. According to the DGB analysis, it has been determined that the 

administration of Doxorubicin at a concentration of 10.2 µM for a duration of 24 hours can 

successfully restore the anomalous expression profile. This analysis revealed that Doxorubicin 

had a considerable effect, as evidenced by a low p-value of 6.40e-8 and a q-value of 3.82e-7. 

The observed log2 fold change denotes a significant upregulation of gene expression with a 

value of 1.432, and the drug demonstrated a remarkable degree of specificity, as evidenced by 

a value of 1.16e-4. Another up-regulated gene CTSC expression was found to be effectively 
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reversed through treatment with Dasatinib at a concentration of 10.0 µM for a duration of 24 

hours. The drug exhibited a noteworthy impact, as indicated by the statistical significance of 

the low p-value (9.60e-6) and q-value (1.63e-4). The observed log2 fold change value of -1.348 

denotes a significant reduction in the expression of the gene. It is noteworthy that Dasatinib 

exhibited a high degree of specificity, with a value of 2.74e-4. Another down-regulated 

gene, PHYHIP, was investigated in this dataset. The administration of Tretinoin at a 

concentration of 3.33333 µM for a duration of 6 hours has been demonstrated to be efficacious 

in reinstating the expression pattern of this target gene. The drug demonstrated a noteworthy 

effect, as shown by its low p-value of 1.11e-4 and q-value of 1.86e-3. Despite the moderate 

change in expression indicated by the log2 fold change of 0.398, the drug exhibited a 

reasonable level of specificity, as evidenced by the p-value of 4.53e-4. 

The dataset Healthy vs SCC reports that the application of Cediranib treatment (10.0 µM, 6 

hours) can reverse the downregulation of HNRNPM. The drug showed significant 

effectiveness, as evidenced by the statistically significant low p-value (5.21e-4) and q-value 

(3.96e-2). The observed log2 fold change of 0.678 indicated a moderate upregulation in gene 

expression. Additionally, the drug demonstrated satisfactory specificity, as evidenced by a 

statistically significant value of 4.72e-3. 

In the SCC vs AK dataset, the expression of a down-regulated gene CHTOP was found to be 

moderately up-regulated by administration of Dasatinib at a concentration of 0.4 µM for a 

duration of 24 hours. The drug exhibited a notable effect, as demonstrated by the statistically 

significant low p-value (2.55e-3) and q-value (7.88e-3). The data indicate a moderate increase 

in gene expression as suggested by the log2 fold change value of 0.275. Additionally, the drug 

demonstrated a statistically significant level of specificity with a value of 1.96e-4. Similarly, 

all the genes listed in the table were subjected to analysis using DGB in order to identify drugs 

that target them and assess their efficacy in reversing the observed expression pattern. 
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Table 5.5: List of drugs/small molecules obtained from L1000 dataset. 

Genes Expression 

Drugs/ 

Small 

molecules 

LINCS sig_id Cell Line 
LINCS 

pert_id 
Time Dose p - value q - value 

log2 

Fold 

Change 

Specificity 

Dataset: Healthy vs AK Dataset 

PAMR1 
Down-

regulated 
Doxorubicin 

CRCGN004_HA1E_2

4H:BRD-A76941896-

003-04-6:10.2UM 

HA1E 
BRD-

A76941896 
24 h 

10.2 

µM 
6.40e-8 3.82e-7 1.432 1.16e-4 

CTSC 
Up-

regulated 
Dasatinib 

LJP001_BT20_24H:B

RD-K49328571-001-

06-9:10 

BT20 
BRD-

K49328571 
24 h 

10.0 

µM 
9.60e-6 1.63e-4 -1.348 2.74e-4 

PHYHI

P 

Down-

regulated 
Tretinoin 

AML001_HL60_6H:B

RD-

K71879491:3.33333 

HL60 
BRD-

K71879491 
6 h 

3.3333

3 µM 
1.11e-4 1.86e-3 0.398 4.53e-4 

CD24 
Up-

regulated 
Resveratrol 

CPC010_A375_6H:B

RD-K80738081-001-

32-8:10 

A375 
BRD-

K80738081 
6 h 

10.0 

µM 
6.80e-3 3.98e-2 2.107 4.37e-4 

WNT5A 
Up-

regulated 
Doxorubicin 

CPC003_PC3_24H:B

RD-K92093830-003-

05-0:10 

PC3 
BRD-

K92093830 
24 h 

10.0 

µM 
8.92e-4 2.76e-3 -1.125 1.78e-4 

RAB3B 
Down-

regulated 
Tretinoin 

CPC006_HCC515_24

H:BRD-K64634304-

001-01-5:40 

HCC515 
BRD-

K64634304 
24 h 

40.0 

µM 
1.80e-3 1.22e-2 0.343 3.18e-4 

WIF1 
Down-

regulated 
Imatinib 

LJP001_MCF10A_24

H:BRD-K92723993-

066-12-8:2 

MCF10A 
BRD-

K92723993 
24 h 

2.0 

µM 
2.28e-3 2.13e-2 1.264 5.23e-4 

http://amp.pharm.mssm.edu/dmoa/report/BRD-A76941896
http://amp.pharm.mssm.edu/dmoa/report/BRD-A76941896
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K71879491
http://amp.pharm.mssm.edu/dmoa/report/BRD-K71879491
http://amp.pharm.mssm.edu/dmoa/report/BRD-K80738081
http://amp.pharm.mssm.edu/dmoa/report/BRD-K80738081
http://amp.pharm.mssm.edu/dmoa/report/BRD-K80738081
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92093830
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92093830
http://amp.pharm.mssm.edu/dmoa/report/BRD-K64634304
http://amp.pharm.mssm.edu/dmoa/report/BRD-K64634304
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92723993
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92723993


Page | 121  
 

TNNC1 
Down-

regulated 
Dasatinib 

LJP001_MDAMB231

_24H:BRD-

K49328571-001-06-

9:0.4 

MDAMB

231 

BRD-

K49328571 
24 h 

0.4 

µM 
6.65e-3 1.77e-2 0.630 1.96e-4 

PARK7 
Up-

regulated 
Bortezomib 

CPC006_HT29_24H:

BRD-K88510285-001-

01-2:0.04 

HT29 
BRD-

K88510285 
24 h 

0.04 

µM 
2.32e-6 8.18e-6 -0.784 1.46e-4 

MMP14 
Down-

regulated 
Imatinib 

LJP001_BT20_6H:BR

D-K92723993-066-12-

8:0.4 

BT20 
BRD-

K92723993 
6 h 

0.4 

µM 
6.48e-5 4.01e-3 0.878 1.06e-3 

ARHGE

F4 

Up-

regulated 
Vemurafenib 

CPC006_HCC515_24

H:BRD-K56343971-

001-02-3:10 

HCC515 
BRD-

K56343971 
24 h 

10.0 

µM 
1.46e-3 2.48e-2 -0.575 1.06e-3 

CFL1 
Up-

regulated 
Tretinoin 

AML001_HL60_24H:

BRD-

K71879491:0.37037 

HL60 
BRD-

K71879491 
24 h 

0.3703

7 µM 
2.82e-3 2.61e-2 -0.264 4.85e-4 

Dataset: Healthy vs SCC 

HNRNP

M 

Down-

regulated 
Cediranib 

CPC014_VCAP_6H:B

RD-K86930074-001-

01-9:10 

VCAP 
BRD-

K86930074 
6 h 

10.0 

µM 
5.21e-4 3.96e-2 0.678 4.72e-3 

RPS13 
Up-

regulated 
Cytarabine 

CPC011_VCAP_24H:

BRD-K33106058-001-

12-7:10 

VCAP 
BRD-

K33106058 
24 h 

10.0 

µM 
6.05e-3 2.99e-2 -0.135 3.61e-4 

Dataset: SCC vs AK 

GTSE1 
Down-

regulated 
Doxorubicin 

CPC015_ASC_24H:B

RD-K92093830-003-

05-0:10 

ASC 
BRD-

K92093830 
24 h 

10.0 

µM 
3.31e-5 2.82e-4 0.837 2.04e-4 

http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K71879491
http://amp.pharm.mssm.edu/dmoa/report/BRD-K88510285
http://amp.pharm.mssm.edu/dmoa/report/BRD-K88510285
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92723993
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92723993
http://amp.pharm.mssm.edu/dmoa/report/BRD-K56343971
http://amp.pharm.mssm.edu/dmoa/report/BRD-K56343971
http://amp.pharm.mssm.edu/dmoa/report/BRD-K71879491
http://amp.pharm.mssm.edu/dmoa/report/BRD-K71879491
http://amp.pharm.mssm.edu/dmoa/report/BRD-K86930074
http://amp.pharm.mssm.edu/dmoa/report/BRD-K86930074
http://amp.pharm.mssm.edu/dmoa/report/BRD-K33106058
http://amp.pharm.mssm.edu/dmoa/report/BRD-K33106058
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92093830
http://amp.pharm.mssm.edu/dmoa/report/BRD-K92093830
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CHTOP 
Down-

regulated 
Dasatinib 

LJP001_MDAMB231

_24H:BRD-

K49328571-001-06-

9:0.4 

MDAMB

231 

BRD-

K49328571 
24 h 

0.4 

µM 
2.55e-3 7.88e-3 0.275 1.96e-4 

EDNRB 
Up-

regulated 
Estradiol 

ERG005_VCAP_6H:

BRD-K18910433-001-

14-3:5 

VCAP 
BRD-

K18910433 
6 h 

5.0 

µM 
1.11e-2 4.61e-2 -0.525 3.59e-4 

DNAJC

8 

Down-

regulated 
Doxorubicin 

CRCGN004_HA1E_2

4H:BRD-A76941896-

003-04-6:10.2UM 

HA1E 
BRD-

A76941896 
24 h 

10.2 

µM 
1.89e-8 1.34e-7 0.803 1.16e-4 

S100A1

1 

Down-

regulated 
Dasatinib 

LJP001_MDAMB231

_6H:BRD-

K49328571-001-06-

9:0.08 

MDAMB

231 

BRD-

K49328571 
6 h 

0.08 

µM 
5.23e-4 1.75e-2 0.895 1.55e-3 

TUG1 
Down-

regulated 
Vemurafenib 

CPC006_A375_24H:B

RD-K56343971-001-

02-3:10 

A375 
BRD-

K56343971 
24 h 

10.0 

µM 
1.01e-10 8.16e-10 1.230 1.31e-4 

TFG 
Down-

regulated 
Bortezomib 

CPC006_MCF7_24H:

BRD-K88510285-001-

01-2:0.04 

MCF7 
BRD-

K88510285 
24 h 

0.04 

µM 
3.36e-13 8.60e-12 1.032 1.59e-4 

GAPDH 
Down-

regulated 
Doxorubicin 

CPC004_HT29_6H:B

RD-A52530684-001-

01-1:10 

HT29 
BRD-

A52530684 
6 h 

10.0 

µM 
2.36e-4 1.67e-3 0.693 2.39e-4 

RPS3A 
Up-

regulated 
Estradiol 

CPC014_VCAP_24H:

BRD-K86930074-001-

01-9:10 

VCAP 
BRD-

K86930074 
24 h 

10.0 

µM 
1.71e-3 1.25e-2 -0.232 3.93e-4 

 

http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K18910433
http://amp.pharm.mssm.edu/dmoa/report/BRD-K18910433
http://amp.pharm.mssm.edu/dmoa/report/BRD-A76941896
http://amp.pharm.mssm.edu/dmoa/report/BRD-A76941896
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K49328571
http://amp.pharm.mssm.edu/dmoa/report/BRD-K56343971
http://amp.pharm.mssm.edu/dmoa/report/BRD-K56343971
http://amp.pharm.mssm.edu/dmoa/report/BRD-K88510285
http://amp.pharm.mssm.edu/dmoa/report/BRD-K88510285
http://amp.pharm.mssm.edu/dmoa/report/BRD-A52530684
http://amp.pharm.mssm.edu/dmoa/report/BRD-A52530684
http://amp.pharm.mssm.edu/dmoa/report/BRD-K86930074
http://amp.pharm.mssm.edu/dmoa/report/BRD-K86930074
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Crowdsourced data from the Connectivity Map’s resource CREEDS was utilized to identify 

drugs targeting dysregulated genes through the use of DGB. This analysis was done to discover 

prospective drugs or small molecules that could counteract the aberrant gene expression 

profiles linked with SCC with the aim of investigating novel therapeutic avenues, and the 

results are compiled in Table 5.6. In the Healthy vs AK dataset, a number of genes were 

being dysregulated, and corresponding drugs were found to effectively reverse their abnormal 

expression patterns. The gene PAMR1 exhibited down-regulation, and the administration of 

Doxorubicin resulted in a notable effect in reinstating its expression. The findings of this 

analysis are in line with prior analysis conducted on the LINCS L1000 dataset, which serves 

to reinforce the effectiveness of Doxorubicin in its ability to target PAMR1. Similarly, the 

observation held true for all dysregulated genes with LINCS L1000 dataset in the remaining 

datasets also, namely Healthy vs. SCC and SCC vs. AK.  

These findings obtained by the DGB underscore the capacity of certain drugs to restore the 

expression profiles of aberrantly regulated genes linked to SCC. The findings also offer 

significant perspectives on possible therapeutic remedies for SCC and advocate for the 

investigation of personalized treatment approaches that focus on the regulation of genes that 

are not functioning properly.
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Table 5.6: List of drugs/small molecules obtained from CREEDS. 

Genes Expression 
Drugs/Small 

molecules 

CREEDS 

ID 
GEO ID 

Drugbank 

ID 

PubChem 

ID 
p - value q - value 

log2 Fold 

Change 
Specificity 

Dataset: Healthy vs AK Dataset 

PAMR1 
Down-

regulated 
Doxorubicin drug:3263 GSE6930 DB00997 31703 4.84e-8 1.07e-7 0.295 1.69e-4 

CTSC Up-regulated Dasatinib drug:3306 GSE59357 DB01254 3062316 8.62e-6 3.94e-5 -0.427 2.27e-4 

PHYHIP 
Down-

regulated 
Tretinoin drug:2828 GSE23702 DB00755 444795 1.07e-4 2.23e-4 0.447 1.08e-4 

CD24 Up-regulated Resveratrol drug:3500 GSE25412 DB02709 445154 2.38e-6 3.18e-5 1.090 2.96e-4 

WNT5A Up-regulated Doxorubicin drug:3263 GSE6930 DB00997 31703 7.29e-17 4.39e-15 -2.126 1.78e-4 

RAB3B 
Down-

regulated 
Tretinoin drug:2828 GSE23702 DB00755 444795 5.73e-7 2.74e-6 0.650 1.08e-4 

WIF1 
Down-

regulated 
Imatinib drug:2764 GSE24493 DB00619 5291 6.08e-4 1.79e-3 0.140 1.54e-4 

TNNC1 
Down-

regulated 
Dasatinib drug:3306 GSE59357 DB01254 3062316 5.17e-13 1.28e-10 1.736 1.27e-4 

PARK7 Up-regulated Bortezomib drug:2686 GSE30931 DB00188 387447 6.12e-4 1.09e-2 -0.284 1.02e-3 

MMP14 
Down-

regulated 
Imatinib drug:2764 GSE24493 DB00619 5291 2.16e-6 2.46e-5 0.445 1.54e-4 

ARHGEF4 Up-regulated Vemurafenib drug:2495 GSE42872 DB08881 42611257 1.68e-4 6.32e-4 -0.334 1.62e-4 

CFL1 Up-regulated Tretinoin drug:3233 GSE23702 DB00755 444795 3.47e-4 5.92e-4 -0.137 1.31e-4 
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Dataset: Healthy vs SCC 

HNRNPM 
Down-

regulated 
Cediranib drug:2642 GSE32569 DB04849 9933475 9.14e-6 2.00e-5 0.030 1.07e-4 

RPS13 Up-regulated Cytarabine drug:3422 GSE6930 DB00987 6253 3.00e-3 1.25e-2 -0.173 5.84e-4 

Dataset: SCC vs AK 

GTSE1 
Down-

regulated 
Doxorubicin drug:3265 GSE6930 DB00997 31703 2.39e-2 4.26e-2 0.290 4.46e-4 

CHTOP 
Down-

regulated 
Dasatinib drug:3306 GSE59357 DB01254 3062316 9.70e-7 5.97e-6 0.490 1.27e-4 

EDNRB Up-regulated Estradiol drug:3203 GSE12446 DB00783 5757 1.89e-4 2.43e-3 -1.518 4.87e-4 

DNAJC8 
Down-

regulated 
Doxorubicin 

 

drug:2720 
GSE12972 DB00997 31703 2.85e-17 6.29e-17 0.204 2.03e-4 

S100A11 
Down-

regulated 
Dasatinib drug:3306 GSE59357 DB01254 3062316 4.82e-8 4.75e-7 0.535 1.27e-4 

TUG1 
Down-

regulated 
Vemurafenib drug:2564 GSE37441 DB08881 42611257 1.59e-5 1.17e-4 0.469 2.89e-4 

TFG 
Down-

regulated 
Bortezomib drug:2686 GSE30931 DB00188 387447 1.59e-5 7.02e-4 0.455 1.02e-3 

GAPDH 
Down-

regulated 
Doxorubicin drug:2720 GSE12972 DB00997 31703 5.66e-10 8.90e-10 0.091 2.03e-4 

RPS3A Up-regulated Cediranib drug:2642 GSE32569 DB04849 9933475 2.85e-5 5.66e-5 -0.024 1.20e-4 
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By utilizing DGB analysis on dysregulated genes, valuable insights were gained on potential 

drug and small molecule reversals of these patterns. The LINCS L1000 dataset and CREEDS 

were crucial in obtaining these results, which revealed successful restoration of anomalous 

expression profiles by certain drugs like Doxorubicin and Dasatinib, as well as the 

reinstatement of target gene expression by Tretinoin and Cediranib. These drugs were 

statistically significant in p-values and q-values, demonstrating varying degrees of specificity, 

suggesting their ability to target specific genes. These findings suggest the potential of drugs 

to counteract dysregulated gene expression, and DGB analysis can provide further insight into 

identifying therapeutic interventions for other dysregulated genes. 

IV. Discussion 

The study was conducted to identify primary dysregulated genes linked to SCC and explore 

the potential drugs targeting them. The study applied the ML approach, specifically the 

XGBoost algorithm and the SHAP tool of XAI, to identify significant genes in the given 

datasets, namely healthy vs AK, healthy vs SCC and SCC vs AK. A set of dysregulated genes 

were identified through this analysis, which showed a significant association with SCC and 

AK. The study identified several upregulated genes in SCC, including CTSC, CD24, WNT5A, 

PARK7, MMP14, ARHGEF4, CFL1, RPS13, EDNRB, and RPS3A and also found the genes 

that were downregulated, including PAMR1, PHYHIP, TNNC1, HNRNPM, GTSE1, CHTOP, 

DNAJC8, S100A11, TUG1, TFG, and GAPDH. These dysregulated genes have been found to 

play a crucial role in the molecular mechanisms that drive the progression of SCC, as indicated 

by the findings. 

Gene ontology (GO) enrichment [266] analysis and pathway enrichment [267] analysis were 

conducted to obtain insights into the functional roles of these dysregulated genes. The analysis 

of gene ontology indicated that these dysregulated genes exhibited enrichment in diverse 
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cellular components, molecular functions, and biological processes. The study also conducted 

pathway enrichment analysis to identify significant pathways that may be involved in the 

development of SCC. The findings from these analyses suggest that these genes may play a 

crucial role in SCC development. The DGB tool was utilized to identify chemical perturbations 

for dysregulated genes that have the potential to reverse the abnormal expression patterns of 

these dysregulated genes and discovered that Doxorubicin, Dasatinib, Tretinoin, etc., were 

effective in restoring the expression of PAMR1, CTSC, PHYHIP, etc., respectively.  

The findings of this investigation enhance our comprehension of the molecular pathways 

involved in the advancement of SCC and emphasize the possible therapeutic approaches for 

SCC. These findings provide valuable information for further research and the development of 

personalized treatment approaches for SCC. Additional experimental validation and clinical 

investigations are required to verify the efficacy of these potential therapeutic interventions 

and their implementation in clinical settings. 

V. Conclusion 

A deeper understanding of the molecular mechanisms driving SCC growth and the therapeutic 

treatments that could target these mechanisms has been made possible by the systematic 

investigation of dysregulated genes in SCC. The utilization of ML algorithms and XAI to 

identify significant dysregulated genes holds promise for their potential application in the 

healthcare industry, specifically for advanced diagnostic and therapeutic purposes. The results 

of the investigation provide valuable insights into the understanding of SCC development and 

have the potential to facilitate the establishment of precise treatment approaches. The analysis 

of dysregulated genes through functional and pathway enrichment has identified significant 

biological processes and pathways implicated in SCC, providing direction for future 

investigations into potential diagnostic markers or therapeutic targets. The detection of 
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chemical perturbations that can reverse anomalous gene expression patterns presents novel 

prospects for focused treatments, underscoring the promise of precision medicine. 

This research results possess significant implications in the healthcare sector, as they can serve 

as biomarkers for the diagnosis, prognosis, and monitoring of SCC. Furthermore, they provide 

opportunities for the development of personalized treatment approaches aimed at enhancing 

patient outcomes and quality of life. 
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Chapter 6. Summary and Future Prospects 
 

AI and ML have brought about significant change in various sectors. These state-of-the-art 

technologies have altered the traditional approach to problem-solving and decision-making. AI 

is responsible for creating systems that can mimic human intelligence, thereby facilitating 

complex tasks like speech recognition, image classification, and data analysis. Meanwhile, ML 

has become a subset of AI that concentrates mainly on algorithms that improve machines’ 

workflow without any explicit programming via data reinforcement. AI and ML have proven 

to be beneficial in many industries. In the healthcare sector, AI-based systems can analyze 

extensive medical data to assist in disease diagnosis, recommend personalized treatments, and 

forecast patient outcomes. ML algorithms can detect fraudulent transactions, optimize 

investment strategies, and automate customer service in the finance industry. Additionally, 

virtual assistants, recommendation systems, and tailored advertisements powered by AI have 

revolutionized how we engage with technology and access information, improving user 

experiences [268]. 

As AI and ML models become increasingly intricate and widespread, questions regarding their 

transparency and accountability arise. The opaque nature of AI systems often renders their 

decision-making processes incomprehensible to humans, impeding acceptance, restricting their 

implementation in crucial areas, and raising ethical apprehensions. In recent years, the 

development of XAI has become increasingly important to help address concerns and 

challenges related to artificial intelligence. XAI aims to create AI systems that can provide 

clear explanations for their decisions and actions, making it easier for humans to understand 

and trust them. This enhanced transparency and accountability can help build greater 

confidence in AI technology and its potential applications across a range of fields. By 

employing XAI techniques, AI and ML can be improved in various ways. One benefit is that 
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XAI aids in establishing user and stakeholder confidence and approval. When people 

comprehend the decision-making process of AI models, they are more inclined to trust and 

depend on the technology. This is especially critical in fields such as healthcare, where precise 

diagnoses and treatment suggestions are essential. Second, XAI plays a crucial role in 

promoting regulatory compliance and ethical considerations within AI systems [269]. Due to 

the potential impact on people’s lives, it is essential to ensure fairness, avoid bias, and adhere 

to legal and ethical guidelines. Explainability can aid in identifying and mitigating potential 

biases or discriminatory patterns by providing insights into the decision-making process. This 

allows for corrective actions, if necessary, promoting fair and ethical practices in AI systems. 

XAI encourages the joint efforts of humans and AI [270]. With XAI’s ability to enhance the 

comprehensibility of AI systems, it enables humans to team up with AI models, taking 

advantage of their strengths while reducing their weaknesses. Experts can authenticate and 

approve the judgments made by AI systems, resulting in more resilient and dependable results 

[271]. 

In recent years, there has been a growing interest in the potential of XAI to identify biomarkers 

associated with various conditions, so for the first study, we have used XAI to identify 

biomarkers related to Squamous Cell Carcinoma (SCC). A two-phase methodology was used 

for the development of a classification model based on the predictive performance of the ML 

algorithm XGBoost, followed by the application of XAI techniques to establish interpretability 

by linking model outputs to relevant genes. The XGBoost model was trained using a dataset 

comprised of genes linked to SCC to create the classification model. To ensure interpretability, 

the XAI techniques were implemented, which include the use of SHAP barplots and summary 

plots. These visualization tools allowed for a better understanding of the model’s predictions 

by showing the significance of individual gene contributions in relation to SCC classification 

results and hence, establishing a link between genes associated with SCC and the output of the 
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model. After analyzing the data, it was discovered that there were certain genes that played a 

major role in the XGBoost model’s accuracy, and these genes could have implications for 

cancer development. Adding SHAP values for interpretability did not affect the model’s 

accuracy, indicating the usefulness of XAI methods. Additionally, the identified genes could 

potentially be targeted for managing SCC, making them important for predictive and 

prognostic reasons in the biomedical field.  

The potential for XAI looks very positive as the industry progresses and gains more experience. 

A significant focus is on improving the ways of interpreting XAI through different techniques. 

Experts are currently experimenting with unique mechanisms to offer more transparent and 

straightforward explanations for AI model decisions. As feature importance analysis, rule 

extraction algorithms, and visualization techniques advance, it’ll lead to more sophisticated 

explanations [55]. An interactive interface or immersive environment could be the future to 

facilitate the exploration and comprehension of AI decision-making processes at a deeper level. 

One potential area for future development in XAI is the incorporation of specialized knowledge 

and expertise. By merging AI models with expert knowledge from specific domains like 

finance or healthcare, the explanations generated by AI systems can become more interpretable 

[272]. This blend of AI and domain-specific knowledge can lead to more comprehensive and 

accurate explanations, enabling individuals to make informed decisions based on AI 

recommendations. Consequently, cooperative endeavors between AI researchers and industry 

experts could result in more effective and insightful explanations. The field of XAI must also 

take into account the ethical implications of AI and ML [268]. XAI will be instrumental in 

detecting and lessening biases, guaranteeing equity, and curbing discrimination in AI-based 

decision-making. Transparent explanations provided by XAI can reveal possible biases and 

reveal the decision-making procedure, leading to corrective measures. Future advancements 

will concentrate on creating XAI approaches that actively tackle ethical concerns and 
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encourage the ethical and impartial use of AI technologies. In the future, XAI development 

will give significant attention to human-centric design. The objective is to put the needs and 

preferences of human users first. By doing so, XAI explanations become more intuitive and 

meaningful, and the techniques used to generate these explanations become actionable. To 

ensure trust and transparency in AI reasoning, XAI methods will be designed to communicate 

effectively with non-experts. This approach empowers individuals to make informed decisions 

based on AI recommendations, enhancing acceptance and adoption of AI technologies. To 

ensure that AI systems can function optimally in dynamic environments and make real-time 

decisions, future XAI developments will focus on providing instantaneous and dynamic 

explanations. Real-time XAI will play a vital role in maintaining user trust and confidence in 

AI systems by enabling them to understand the reasoning behind AI decisions as they occur. 

In high-stakes scenarios like autonomous vehicles or critical healthcare interventions, real-time 

explanations can enhance safety and foster more efficient human-AI collaborations [52]. 

The purpose of the second objective was two-fold. It aimed to assess how somatic non-

synonymous mutations influence the BTK protein and its effect on FDA-approved therapies 

for skin cancer. Molecular dynamics simulations were employed to examine the impact of 

individual amino acid mutations on the stability of the BTK protein. According to the results, 

these mutations could potentially make the protein unstable and affect the prognosis of SCC. 

Subsequently, a study was undertaken to examine how the BTK protein and its mutants 

interacted with Ibrutinib, and it was found that the mutants had similar binding to Ibrutinib as 

the wild-type protein, suggesting that Ibrutinib could be an effective therapy for treating SCC 

mutations. To expand on the given directions, more research can be conducted on the 

effectiveness of Ibrutinib-based therapy through clinical trials and preclinical studies for SCC 

patients. This initiative can aid in determining the actual influence of BTK protein mutations 

on SCC’s prognosis and confirm Ibrutinib’s potential as a directed treatment for such 
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mutations. Moreover, the results could act as a catalyst in the creation of new medications or 

treatments focused on treating BTK protein mutations in SCC, hoping to enhance patient 

outcomes and diversify skin cancer treatment options [2], [210]. 

The primary focus of the third objective was to pinpoint chemical perturbations against 

biomarkers or dysregulated genes that are associated with SCC development. By thoroughly 

scrutinizing the gene expression profiles of individuals afflicted with SCC, healthy 

counterparts, and AK patients, we managed to identify a number of dysregulated genes that 

significantly contribute to SCC progression. These genes are closely linked to crucial biological 

processes and pathways known for their importance in the evolution and advancement of SCC. 

We used the DGB tool, which is tailor-made for studying potential therapeutic interventions, 

to improve our research results. Our analysis uncovered the impressive efficacy of certain 

medications, including Doxorubicin, Dasatinib, and Tretinoin, among others, in correcting 

abnormal expression patterns of these identified dysregulated genes linked with SCC [273]–

[275]. This discovery provides hope for precise, personalized treatment and opens up 

possibilities for innovative drug development and repurposing strategies in cancer research.  

The outlook for this study is very positive as it has highlighted the dysregulated genes and their 

associated biological processes in SCC. This discovery has presented new possibilities for 

targeted therapies where researchers can focus on specific genes and related pathways to 

develop novel drugs that can precisely target the molecular abnormalities underlying SCC. 

Repurposing existing drugs such as Doxorubicin, Dasatinib, and Tretinoin, as evidenced by 

their effectiveness, offers an economical and time-saving way to develop treatments for SCC. 

Tailoring treatments to address the specific dysregulated genes of each SCC patient, based on 

their genetic profile and gene expression patterns, has the potential to significantly improve 

therapeutic outcomes. This personalized approach can boost the efficacy of interventions while 
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reducing unwanted side effects, offering hope for more effective treatment options for SCC 

patients. 
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