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ABSTRACT
The outline you have provided covers the main topics related to the Discrete Fourier Trans-

form (DFT) and its applications. Here’s a breakdown of the sections you mentioned:

Sinusoids and Exponentials: This section introduces sinusoids, exponentials, complex sinu-
soids, and their properties. It covers concepts such as t60 (decay time), in-phase and quadrature
components, the analytic signal, positive and negative frequencies, interference, and the rela-
tionship between circular motion and sinusoidal motion. It may also include examples and
plots created using Mathematica.

The Discrete Fourier Transform (DFT) Resulting: The DFT is described in this section as
a projection of a signal onto a collection of sampled complex sinusoids obtained from the unity
roots. It may cover the mathematical formulation of the DFT and its relationship to the time
and frequency domains.

Fourier Theorems for the DFT: This section presents various Fourier theorems specific to
the DFT.The symmetry relations, the shift theorem, the convolution theorem, the correlation
theorem, the power theorem, and theorems pertaining to interpolation and downsampling are
some of the theorems in this group. It explores the applications of these theorems in areas such
statistical signal processing, sampling rate conversion, and linear time invariant filtering.

Use cases for the DFT: This section provides actual instances of FFT (Fast Fourier Trans-
form) analysis using MATLAB. It demonstrates the application of the Fourier theorems dis-
cussed earlier in understanding and analyzing spectral data. The examples may include topics
like spectrum analysis, windowing, zero-padding, and interpreting the results.

Overall, this outline covers the fundamental concepts and applications of the DFT, providing
readers with a comprehensive understanding of spectral analysis and the Fourier theorems
relevant to the DFT.
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Chapter 1

1 ”DFT Primer: An Introduction to the Discrete Fourier
Transform”

The Discrete Fourier Transform (DFT) and opinions on the element that will be applied to
this bibliophile are presented in this section.

1.1 Defining the Discrete Fourier Transform (DFT)

The computation of theFor a signal x, discrete Fourier Transform (DFT) elucidated through

X(ωk) ≜
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, ......, N − 1

and its opposite transformation (also known as the IDFT, Inverse Discrete Fourier Trans-
form)

x(tn) = 1
N

N−1∑
n=0

X(ωk)ejωktn , n = 0, 1, 2, ......, N − 1

here,

x(tn) ≜amplitude of the input signal at phase tn(sec)

tn = nT = nth an example second.

n ≜ trial number (integer)

T ≜ sample period(sec)

X(ωk) ≜The frequency spectrum of signal x at a specific radian frequency. ωk

ωk ≜ kω = kth frequency trial

ω ≜ 2π
NT

= Sample frequency in radians

fs ≜ 1/T = sample rate (samples/sec, or Hz)

N is the total number of time- and frequency-varying trials.
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1.2 The DFT’s airthmetic

The additional pure form produced by setting the DFT must be used to express the equation.
T = 1 in the preceding formulation when performing signal processing:

X(k) ≜
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, ....., N − 1

x(n) = 1
N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, 3, .....N − 1

In this context, x(n) represents the input signal at time (sample) n, while X(k) denotes
the spectral representation at the kth frequency bin. Although the previous system is more
straightforward to comprehend intuitively, this system is mathematically more elegant. here
two remaining signs in the DFT that we have not yet clear:

j ≜
√
−1

e ≜ lim
n→∞

(
1 + 1

n

)n

= 2.7182....

Complex numbers are based on the first equation, j =
√
−1.

2nd , e = 2.718..., , which is a transcendental number by the aforementioned restriction.
We shall derive e from this.

It’s crucial to notice that we have them looking in exponents, as in, in addition to complex
numbers to contrast with.

sk(n) ≜ ej2πnk/N

In a systematic manner, we will explore the concept of imaginary exponents and clarify the
meaning behind such mathematical expressions.

We may demonstrate Euler’s identity if e, j, and the imaginary exponent are in agreement:

ejθ = cos(θ) + jsin(θ)

Euler’s Identity plays a crucial role in understanding the meaning of terms such as

sk(tn) ≜ ejωktn = cos(ωktn) + jsin(ωktn)

By examining such an expression, we can comprehend that it represents a complex sinusoid.
In the subsequent discussion, we will delve into the details of sinusoids, particularly from an
audio perspective.

Finally, it is important to recognize the role of the summation over n in explaining the
Discrete Fourier Transform (DFT). We will explore that the summation can be interpreted as
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the calculation of the inner product between the signal x and the complex sinusoid sk. With
this knowledge, we can use the following inner-product representation to represent the DFT:

X(k) ≜ ⟨x, sk⟩

where

sk(n) ≜ ej2πnk/N

is the complex sinusoid evaluated at the normalized radian frequency ωk = 2πk/N , and
the inner product operation can be understood as

⟨x, y⟩ ≜
N−1∑
n=0

x(n)y(n)

Since it’s complex numbers, We will show that the inner product of x with the kth ”basis
sinusoid” sk is a measurement of ”how much” and at ”what point” of sk is present in x.

Following the previous, it may be inferred that the inverse DFT is the weighted sum of
projections of x onto sktN−1

k=0

, i.e.,

here

Xk ≜
X̃(k)

N

It should be noted that the projection quantities of the basis sinusoid tildeXk and sk are
both complex.

Having established a comprehensive understanding of the DFT and its inverse from a math-
ematical standpoint, we can now proceed to explore several Fourier theorems. These theorems,
Theorems, such as the ”Theorem of convolution.,” the ”Changing Theorem,” and the ”Theorem
of Parseval,” offer a practical foundation for modifying and analysing signals in both the time
and frequency domains.

Furthermore, we will delve into practical spectrum analysis applications, utilizing primarily
MATLAB as a tool to analyze and visualize signals and their frequency content. By applying
these techniques, we will gain practical insights into various cases of spectrum analysis.
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1.3 Overview of DFT Math

In conclusion, taking into account the DFT covers the following topics:

1. Intricate Numbers

2. Exponents that are complex

3. Why e?

4. Euler’s approach

5. Signal projection onto signal via internal outcome

6. The amount of a signal’s x projection into a sinusoid as measured by the DFT

8. A hypothetical accumulation of sinusoidal projections that represents the IDFT

9. A number of Fourier theorems Sets with elementary tie-frequency

10. Useful Matlab spectrum analysis

Additionally, we will go over practical aspects of working with sinusoids, like decibels (dB)
and presentation techniques.
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Chapter 2

2 Geometric Signal concept

This section provides a general introduction of the geometric signal concept’s constituent
parts, including vector spaces, norms, inner products, orthogonality, mutual projection, and
basic vector space operations.

2.1 The DFT

For a complex sequence of length N, x(n), n = 0, 1, 2, ..., N−1, the discrete Fourier transform
(DFT) is obvious.

X(ωk) ≜
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2, ....., N − 1

tn ≜ nt =nth sample instant (sec)

ωk ≜ kΩ=trial of kth frequency (rad/sec)

T ≜ 1/fs =time sample duration (sec)

Ω ≜ 2πfs/N = sample frequency in seconds

We may now fully consider the transform kernel because we are in this position:

e−jωktn = cos(ωktn)− jsin(ωktn)

The kernels consist of N discrete frequency omegak trials of a sinusoid evenly spaced between
0 and the sampling rate omegastriangleq2pifs.

It is sufficient to understand the purpose and operation of the summing over n of the point
wise product of x(n) times each complex sinusoid. We’ll look at an inner product operation that
computes the amount of the signal’s projection onto the complex sinusoid, cos(omegaktn) +
jsin(omegaktn). Since the complex sinusoid at frequency omegak is present in the input signal
x, X(omegak), the DFT at that frequency, is a measurement of its amplitude and period.
Summations in discrete time, integrals in continuous time, and their kernels all perform this
fundamental operation.

2.2 Vectors as Signals

All transmissions and bands for the DFT are N length. A series of length N is characterised
by x(n), wheren = 0, 1, 2, ..., N − 1. Here, x(n) may be real or complex, depending on the
number of the length N. We now intend to look at x as a vector in an N-dimensional vector
space, with the notation x. To put it another way, every experiment x(n) is regarded as a
harmonise in that field. a single N-space point that can be represented by a set of coordinates
(x0, x1, x2, ....., xN−1) is referred to as a vector in mathematics and is called a underlinex. (The
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symbol xn is equivalent to x(n) in meaning.) Geometrically speaking, it can be represented as
an arrow that moves from the source to the point x ≜ (x0, x1, x2, ....., xN − 1).

We will now explain the the subsequent ideas and their corresponding counterparts:

x ≜ x ≜ x(.) ≜ (x0, x1, x2, ....., xN−1) ≜ [x0, x1, x2, ....., xN−1] ≜ [x0, x1, x2, ....., xN−1]

here xn ≜ x(n) is the nth trial of the signal (vector) x. From now on, unless precisely stated
else, The length of all signals is N.

2.2.1 Vector View Illustration with N = 2

to employ the two-sample signal x = (2, 3)

Each trial is a coordinate in the N-dimensional space according to the geometric explanation
of a signal of length N. Two trial signals are not very difficult to hear, but they are simple to
plot geometrically.

2.3 6.3Adding vectors

Suppose two vectors are in RN . x = (x0, x1, ......XN−1) and y = (y0, y1, ......yN−1), the vector
sum is clear by element wise addition. For n = 0, 1, 2, ..., N − 1, w(n) = x(n) + y(n) follows if
the sum is denoted by the symbol w ≜ x + y.

The parallelogram rule can be used to create the vector sum for the sum of two vectors,

The figure also includes additional dashed lines that complete the parallelogram formed by
vectors x and y, representing the vector sum of x and y. These dashed lines correspond to the
vectors x and y individually. Since the vector sum forms a parallelogram, these lines complete
the geometric shape.

In some cases, where the vector sum represented as a by a triangle connecting the origin
of one vector to the tip of the other vector. In the figure, vector x is converted to the tip of
vector y to form the triangle. However, Vector y can be changed to point at the end of vector
x with similar validity and effectiveness, as vector addition is commutative, meaning the order
of addition does not affect the result. Therefore, the vector sum x + y is equal to y + x.

14
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2.4 Vector subtraction

Figure explains the omega = x − y vector difference between x = (2, 3) and y =
(4, 1).Wecalculateomega=x-y=(-2,2) from the coordinates.

the distinction In order to underline the relationship between vectors, the vector ω may
be displayed after the tip of y to the tip of x rather than after the origin to the point (-2,2).
However, the conversion in the plot has no influence on the mathematical importance or
attributes of the vector. However, Commutative subtraction is not possible.

Rewriting the difference vector’s definition as x = y + omega makes it apparent that the
vector x should be the sum of the vectors y and omega, which is why the arrowhead is on the
right endpoint.

2.5 Signal Metrics

Some helpful uses of the signals are described in this section.

The average value of a signal x is its mean, or more precisely, the ”trial mean”:

µx ≜
1
N

N−1∑
n=0

xn

The entire energy of a signal x is defined the sum of squared moduli:

εx ≜
1
N

N−1∑
n=0
|xn|2(energyofx)

Energy can be defined as the ”capacity to do work.” Units like ”force times distance” or
”mass times velocity squared,” among others, are used to measure energy and work in the
science of physics. In the context of pressure waves, the energy is calculated by calculating
the wave impedance divided by the pressure squared integral over time of the medium through
which the wave is propagating. For velocity waves, the energy is obtained by integrating the
squared velocity multiplied by the wave impedance over time.
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A signal x in audio applications often denotes a collection of pressure readings taken from a
microphone signal. It might also be used to represent other measures, such as velocity from a
magnetic guitar pickup or force from a piezoelectric transducer. In each of these scenarios, the
sum of the squared signal samples represents the entire physical energy related to the signal.
Music 4212 delves deeper into the physical interpretation and ramifications of signal processing.

The energy per trial of a signal with an average power of x is clear:

ρx ≜
εx

N
= 1

N

N−1∑
n=0
|xn|2(averagepowerofx)

Another way to express the average power of a signal x, particularly when x is real, is
through the concept of ”mean square.” When x is a complicated sinusoid with the following
form x(n) = Aej(ωnT +ϕ), where A represents the amplitude, ω is the angular frequency, T is the
sampling period, and ϕ is the phase, the average power can be defined as ρx = A2. Alternatively,
the average power of a complex sinusoid is equal to the instantaneous power, which equates to
the amplitude squared.

Physical energy per unit of time is the standard unit of measurement for power. Therefore,
it follows logically that the normal signal power is the whole signal energy distributed along
its length. Typically, we work with signals, which are time-dependent functions. However, the
”power” as defined above still has the clarity of a spatial energy density if the signal instead
manifests as a function of distance (for example, displacement tests along a pulsating string).
In contrast, power is a density of temporal energy.

Simply put,
√

(ρx) is the root mean square (RMS) level of a signal x.However, take note
that after eliminating the mean value, an RMS level can be computed in exercise (especially in
audio work). This is referred to as the variance.

The power of the signal with its trial mean subtracted is referred to as the variance (more
specifically, the trial variance) of the signal x:

σx
2 ≜

1
N

N−1∑
n=0
|xn − µx|2

The fact that we have real signals is quickly displayed.

σx
2 = ρx − µ2

x

This is described as the ”mean square minus the mean squared.” When we consider anything
other than direct current, we typically think of the variance as the strength of non-constant sig-
nal systems. Following the discipline of statistics, particularly the idea of stochastic processes,
the words ”trial mean” and ”trial variance” are used. Time series analysis, random variance,
and probability are all statistical concepts that are fundamental to the statistical signal pro-
cessing area. We shall just touch briefly and in a self-contained manner on a few features of
statistical signal processing in this bibliophile. A signal’s norm can be determined by taking
the square root of its total energy:

||x|| ≜
√

ϵx =

√√√√N−1∑
n=0
|x2

n|
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The length of x in N-space is what we refer to as ||x||. Furthermore, the distance between
x and y is seen to be ||x− y||. The ”absolute value” or ”radius” of a vector can be thought of
as the norm.

2.5.1 1. Illustration :

Returning to the straightforward 2D illustration x = [2, 3], we can calculate its norm as
||x|| = sqrt22 + 32 = sqrt13. The norm’s physical definition as a length measurement is shown
in fig.

2.5.2 Illustration :

Let’s take another look at the vector-sum Illustration that was updated in fig. 6.6.

The vector sum’s norm is ω = x + y.

||ω|| ≜ ||x + y|| ≜ ||(2, 3) + (4, 1)|| = ||(6, 4)|| =
√

62 + 42 =
√

52 = 2
√

13

X and Y are while, independently, have norms of
√

13 and
√

17. We discover that the
triangle inequality is illustrated by the fact that ||x + y||||x|| + ||y||. (As may be observed
mathematically by examining fig., equality only exists when x and y are collinear.)

2.5.3 Illustration

Think about the vector difference Fig. 1’s illustration is diagrammed.

ω = x− y is the difference vector’s norm.

||ω|| ≜ ||x− y|| ≜ ||(2, 3)− (4, 1)|| = ||(−2, 2)|| =
√

(−2)2 + (2)2 = 2
√

2
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2.6 Additional Norms

We use what is known as a L2 norm since our core norms are square roots of sums of squares.
To emphasise this, we can write ||x||2.

Similar to how we may have picked a normalised L2 norms:

||x||2 ≜
√

ρx =

√√√√N−1∑
n=0
|xn|2

(normalized L2 norm of x)

This only represents the ”RMS level” x.

more frequently, the x ∈ CN L2 norm is defined.

||x||P ≜

(
N−1∑
n=0
|xn|2

) 1
p

The most intriguing Lp standards include

1. p = 1 : the L1, ”absolute value,” or ”city block” standard.

2. p = 2 : The ”Euclidean,” ”root energy,” or ”least squares” norm, all abbreviated as L2.

3. The ”Chebyshev,” ”supremum,” ”minimax,” or ”uniform” norm, denoted by p =∞.

Keep in mind that the limiting scenario p =∞ results in

||x||∞ = max0≤n<N |xn|

There are other additional likely options for the norm. A real-valued signal function f(x)
must possess the following three properties in order to be successful as a norm on CN :

1. f(x) = 0⇐⇒ x = 0

2. f(x + y) ≤ f(x) + f(y)

3. f(cx) = |c|f(x), c ∈ C

The first attribute, ”positivity,” specifies that only vectors with a value of zero have a
norm. The second characteristic is called ”subadditivity” and is occasionally referred to as
the ”triangle inequality” for reasons that may be understood by looking at Fig. According to
the third characteristic, As far as scalar multiplication is concerned, the norm is ”absolutely
homogeneous.”, which can be complicated and therefore the stage of the scaler is unimportant.

What we are dealing with is known mathematically as a Banach Space, which is a normed
linear vector space. To recap, we described a vector as any collection of N real or complex
values that we may interpret as being located at certain points in the N-dimensional vector
space. We also provided a definition for scalar multiplication, It involves combining a scalar
with a vector,which we also regard as a component of the real or complex numbers field. This
is also accomplished in a straightforward manner by multiplying each coordinate obtained by
adding vectors and scalars.Assuming any two vectors from the vector space, x ∈ CN and
y ∈ CN , and any two scalars from the field of scalars, c1 ∈ CN and c2 ∈ CN , it follows that
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every linear combination, c1x + c2y, must also exist in the space. We have defined both our
scalars and our vector modules using the field of complex numbers C (or real numbers R),and
we possess the required properties of closure to guarantee that any linear combination of vectors
after CN lies in CN . Finally, a vector space becomes a Banach space by virtue of the definition
of a norm (any norm).

2.7 The Inner Product

A operation on two vectors called the inner product (or ”dot product”) results in a scalar.
A Hilbert space (also known as a ”inner product space”) is created by adding an inner product
to a Banach space. There are numerous Hilbert space illustrations, but for this bibliophile, we
simply need CN , C (N-dimensional complex vectors and complex scalars).

The inner product between x and y, two (complex) N-vectors, is defined as

⟨x, y⟩ ≜
N−1∑
n=0

x(n)y(n)

In order to tempt a norm in the inner product, the complex conjugation of the second vector
is finished.

⟨x, x⟩ ≜
N−1∑
n=0

x(n)x(n) =
N−1∑
n=0
|x(n)| ≜ ϵx = ||x||2

Because of this,Conjugate symmetrical inner product.

⟨y, x⟩ = x, y

Keep in mind that the inner product converts C to CN ∗ CN . In other words, a complex
scalar is mapped to two complex vectors of length N.

2.7.1 Illustration:

In general, we have for N = 3

⟨x, y⟩ = x0y0 + x1y1 + X2y2

let

x = [0, j, 1]
y = [1, j, j]

then

⟨x, y⟩ = 0.1 + j(−j) + 1(−j) = 0 + 1 + (−j) = 1− j
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2.7.2 Internal Production Linearity

It is claimed that a vector x ∈ CN is linear if some function f(x) of the vector x ∈ CN (also
known as an operator on CN) is linear for all x1 ∈ CN and x2 ∈ C as well as for all scalars C1
and C2 in C.

=⇒ f(c1x1 + c2x2) = c1f(x1) + c2f(x2)

Because of this, a linearity operator ”commutes with mixing.”

Linearity requires two qualities of the elements.

1. additivity: f(x1 + x2) = f(x1) + f(x2), and

2. homogeneity: f(c1x1) = c1f(x1).

In its first argument, the inner product ⟨x, y⟩ is linear, i.e. ⟨c1x1 + c2x2, y⟩ = c1 ⟨x1, y⟩ +
c2 ⟨x2, y⟩

This is simple to demonstrate following the explanation:

⟨c1x1 + c2x2, y⟩ ≜
N−1∑
n=0

[c1x1(n) + c2x2(n)]y(n)

=
N−1∑
n=0

[c1x1(n)y(n) +
N−1∑
n=0

c2x2(n)]y(n)

= c1

N−1∑
n=0

[x1(n)y(n) + c2

N−1∑
n=0

x2(n)]y(n)

≜ c1 ⟨x1, y⟩+ c2 ⟨x2, y⟩

The second argument of the internal product, i.e.,

⟨x, y1 + y2⟩ = ⟨x, y1⟩+ ⟨x, y2⟩

It is homogeneous in conjugation only in the second argument.

⟨x, c1y1⟩ = c1 ⟨x, y1⟩ ≠ c1 ⟨x, y1⟩

With regard to real scalars, the inner product’s second argument is strictly linear:

⟨x, r1, y1 + r2y2⟩ = r1 ⟨x, y1⟩+ r2 ⟨x.y2⟩ , ri ∈ R

The term ”inner product” is frequently used as a bilinear operator in that case since it is
linear in both of its arguments for real scalars.
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2.7.3 Norm Induced by the Inner Product

By the inner product, we can characterise a norm onx ∈ CN :

||x|| ≜
√
⟨x, x⟩

It is easy to demonstrate that a norm’s characteristics 1 and 3 are true. The Schwarz
Inequality, which is the cause of the following subsection, is simply followed by Property 2. If
not,It doesn’t take us long to realise that the inner product produces the well-known L2 norm
on CN .

2.7.4 Cauchy-Schwarz Unfairness

According to the Cauchy-Schwarz Unfairness (sometimes known as the ”Schwarz Inequal-
ity”), for any x ∈ CN and y ∈ CN , we have

|
〈
x, y

〉
| ≤ ||x||.||y||

with equality if and only if x = cy for some scalar c.

We can quickly display this for real vectors x ∈ RN , y ∈ RN , as follows: If any x or y is zero,
the inequality holds (as equality). Assuming both are nonzero, let’s scale them to unit-length
by describing the normalized vectors x̃ ≜ x/||x||, ỹ ≜ y/||y|| , which are unit-length vectors
lying on the “unit ball” in RN (a hypersphere of radius 1). We have

0 ≤ ||x̃− ỹ||2 = ⟨x̃− ỹ, x̃− ỹ⟩

= ⟨x̃, x̃⟩ − ⟨x̃, ỹ⟩ − ⟨ỹ, x̃⟩+ ⟨ỹ, ỹ⟩

= ||x̃||2 −
[
⟨x̃, ỹ⟩ − ⟨x̃, ỹ⟩

]
+ ||ỹ||2

= 2− 2re ⟨x̃, ỹ⟩

= 2− 2 ⟨x̃, ỹ⟩

This suggests

⟨x̃, ỹ⟩ ≤ 1

alternatively, stopping the normalisation,

re
〈
x, y

〉
≤ ||x||.||y||

similar derivation still applies if x is substituted by −x yielding
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−re
〈
x, y

〉
≤ ||x||.||y||

The final two equations signify

|
〈
x, y

〉
| ≤ ||x||.||y||

The complex case can be revealed by turning the components of x and y such that re{⟨x̃, ỹ⟩}
becomes equal to | ⟨x̃, ỹ⟩ |.

2.7.5 Triangle Inequality

The triangle inequality asserts that any side of a triangle has a distance that is the total of
the distances on the other two sides is less than or equal to that value. Equality only occurswhen
the triangle scuffs up against a line, according to the triangle inequality. This is equivalent in
CN , to

||x + y|| ≤ ||x||+ ||y||

The Schwarz Inequality makes this point clear-cutly.

||x + y||2 =
〈
x + y, x + y

〉

= ||x||2 + 2re{
〈
x, y

〉
}+ ||y||2

≤ ||x||2 + 2{
〈
x, y

〉
}+ ||y||2

≤ ||x||2 + 2||x||.||y||+ ||y||2

(||x||+ ||y||)2

=⇒ ||x + y|| ≤ ||x||+ ||y||

2.7.6 Triangle Difference Inequality

The length of any triangleside is bigger than the difference between the other two sides’
lengths put together, which is an important variation on the triangle inequality:

||x− y|| ≥ ||x|| − ||y||

Proof:
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||x|| − ||y||2 = ||x||2 − 2re{
〈
x, y

〉
}+ ||y||2

≥ ||x||2 − 2{
〈
x, y

〉
}+ ||y||2

≥ ||x||2 − 2||x||.||y||+ ||y||2

= [||x||+ ||y||]2

=⇒ ||x− y|| ≥ ||x|| − ||y||

2.7.7 Variable Cosine

There is a formula for the Cauchy-Schwarz inequality.

|
〈
x, y

〉
|

||x||.||y||
≤ 1

We can always discover a real number phi that satisfies the condition for real vectors x, y

cos(θ) ≜
|
〈
x, y

〉
|

||x||.||y||

As a result, phi is understood to be the angle between two vectors in RN . We may also
write |cos(θ)| in CN .

2.7.8 Orthogonality

The x and y vectors (signals) are supposed to be orthogonal if ⟨x, y⟩ = 0,symbolized x ⊥ y.

x ⊥ y ⇐⇒ ⟨x, y⟩ = 0

Keep in mind that the cosine of the angle between actual, orthogonal x and y is zero. The
angle formed by two perpendicular lines in plane geometry (N = 2) is π

2 , and cosπ
2 = 0, as would

be predicted. Likely. More often than not, orthogonality agrees that Physical perpendicularity
is established by the straight angle at which two vectors in N-space connect.

2.8 Signal Reform based on projections

We now see how to plan a signal onto other signals. We now want to study how to recreate
a signal x ∈ CN from its projections onto N different vectors sk, k = 0, 1, 2, ..., N − 1. This will
give us the reverse DFT operation.
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Consider the projection of a signal x ∈ CN onto the direct manage axes of CN as a straight-
forward illustration. Simply (x0, 0, .., , 0) are the projection’s coordinates on the 0th axis of
coordinates. The coordinates for the projection along axis 1 are (0, x1, 0, ..., 0, 0), and so forth.
The vector sum of the signal’s projections onto the coordinate axes is then evidently the original
signal x:

x = (x0, ...., xN−1) = (x0, 0, ..., 0) + (0, x1, 0..., 0) + ....(0, ...0, xN−1)

Let’s look at the details for the N = 2 example to ensure that the previous section has been
comprehended.The coordinate axes in 2D must be projected with a random two-trial signal
x = (x0, x1). Any nonzero vector along a coordinate axis can serve as its symbol. Any vector
of the form (α, 0) can denote the horizontal axis, while any vector of the form (0, β) can denote
the vertical axis.Let’s use the positive unit-length representatives for simplicity’s sake:

e0 ≜ (1, 0)

e0 ≜ (0, 1)

The projection of x onto e1 is by definition

ρe0
(x) ≜ ⟨x, e0⟩

||e0||2
e0 = ⟨x, e0⟩ e0 = ⟨[x0, x1], [0, 1]⟩ e0 = (x0.0 + x1.1)e0 = x1e0 = [x0, 0]

Likewise, the forecast of x onto e1 is

ρe1
(x) ≜ ⟨x, e1⟩

||e1||2
e1 = ⟨x, e1⟩ e1 = ⟨[x0, x1], [0, 1]⟩ e1 = (x0.0 + x1.1)e1 = x1e0 = [x0, 0]

The vector sum of the projections is then used to reconstruct x from its projections onto
the coordinate axes:

x = ρe0
(x) + ρe1

(x) = x0e0 + x1e1 ≜ x0(1, 0) + x1(0, 1) = (x0, x1)

Given that the coordinates are scalars xn which may be used with the linear combination
of the coordinate vectors en to produce an arbitrary vector xinCN ., the projection of a vector
onto its coordinate axes is, in some senses, trivial:

x ≜ x0e0 + x1e1 + ..... + xN−1eN−1

The coordinate vectors’ orthogonality should be noted.If they are also unit length, ||en|| = 1,
we claim that the coordinate vectors are orthonormal, {en}

N−1
n=0 . The projection of a signal onto

a different collection of vectors from the coordinate set is what is more intriguing. This may be
thought of as a change in CN coordinates.The new vectors will be chosen in the DFT scenario
to test complex sinusoids.
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2.8.1 General Conditions

2.8.2 Definition

:

Given any two members, a collection of vectors is expected to form a vector space x and y
from the set,The vectors x + y and x, where c is a scalar, are also included in the collection.

Vectors defined as a list of N complex numbers x = (x0, ..., xN−1) ∈ CN , using element wise
addition and multiplication by complex scalars c ∈ C, form a vector space, where CN means
the set of all dimension N complex sequences.Similarly, real N-vectors x ∈ RN and real scalars
α ∈ R form a vector space.

2.8.3 Theorem:

The term ”vector space” refers to the collection of all linear combinations of any set of
vectors from RN or CN .

Proof:

Let’s write the first set of vectors as s0, ...., sM − 1, where M can be any positive integer
greater than 0. Any component of the vector space that is x0 is then by definition a linear
combination of them:

x0 = α0s0 + .... + α0sM−1

From this we understand that cx0 is also a linear combination of the original vectors, and
therefore is in the vector space. Also, given any second vector from the space x1 = α1s0 + .....+
α1sM−1, the sum is

x0 + x1 = (α0s0 + ..... + α0sM−1) + (α1s0 + ..... + α1sM−1)

= (α0 + α1)s0 + .... + (α0 + α1)sM−1

It is in vector space because this is essentially an additional linear combination of the original
vectors. Here, it is evident how the closure of scalar multiplication and vector addition differs
in a ”organic” way from the closure of addition and multiplication of real or complex numbers.

2.8.4 Definition:

If a vector space is the set of all linear combinations of a finite collection of vectors, then
these vectors should span the space. s0, ...., sM−1 in the sentence below.

Illustration:

Each vector in CN span CN can be expressed as a linear combination of the coordinate
vectors as the coordinate vectors in CN span CN .
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x = x0e0 + x1e1 + ... + xN−1eN−1

here xi ∈ C, and e0 = (1, 0, 0, ..., 0), e1 = (0, 1, 0, ..., 0), e2 = (0, 0, 1, 0, ..., 0)and so forth till
eN−1 = (0, ..., 0, 1).

2.8.5 Theorem:

(i) If s0, ..., sM−1 span a vector space, and if one of them, say sm, is linearly dependent on
the others, then the vector space is spanned by the set got by failing sm from the original set.

(ii) We can constantly choose from them a linearly independent set that spans the same
space if s0, ..., sM − 1 span a vector space.

Proof:

A linear combination of the vectors s0, ..., sM−1 can be used to represent any x in the space.
The linear combination for x produces a other than linearly combining vectors sm by asserting
that sm is a additional vectors in the collection are linearly combined. Thus, it is possible to
remove sm from the set, establishing (i). We can construct a procedure for initiating the desired
subset of the initial vectors to demonstrate (ii).First, allocate (s0) to the set. Assess the linear
dependence between s0 and underlines1 next. If this is the case (i.e., s1 is a scalar times s0),
discard s1; if not, add it to the new set as well. Check to determine if s2 is linearly dependent
on the new collection of vectors by s2. Remove it if it is (i.e., s1 is some linear combination
of underlines0 and underlines1); if not, assign it to the new set as well. The new set will
only contain linearly independent vectors that span the original space when this operation is
finished after processing sM − 1.

2.8.6 Definition:

The term ”basis” refers to a collection of linearly independent vectors that spans a vector
space.

2.8.7 Definition:

The dimension of the space refers to the quantity of vectors contained in a basis for a
given space. An N-dimensional space, often known as an N-space, is one in which the dimen-
sion is N. We shall only discuss finite-dimensional vector spaces in considerable detail in this
bibliophile. Contrarily, as there are an unlimited number of points in both the time and fre-
quency domains,Infinite-dimensional basis sets are necessary for both the discrete-time Fourier
transform (DTFT) and Fourier transform.

2.8.8 Orthogonalization through Gram-Schmidt

2.8.9 Theorem:

Considering a collection of N linearly independent vectorss0, ..., sN−1 from CN , we can make
an orthonormal set ˜s0, ..., s̃N−1 They cover the same space and are linear combinations of the
first set.
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Proof:

We prove the theorem by making the preferred orthonormal set {s̃k} successively from the
original set {sk}. This process is recognized as Gram-Schmidt orthogonalization.

1. Set s̃0 ≜ s0
||s0||

2. By subtracting the projection of the s1 onto the

s0, we can define the y1 as follows:

y1 ≜ s1 − ρs̃0
(s1) ≜ s1 − ⟨s1, s̃0⟩ s̃0

The vector y1 is orthogonal to s̃0 by construction. (We deducted out the part of s1 that
wasn’t orthogonal to s̃0 .)

3. Set s̃1 ≜
y1

||y1|| (i.e., make the outcome of the preceding step normal.).

4. Define y2 as the s2 minus the anticipated s2 onto s̃0 and s̃1:

y2 ≜ s2 − ρs̃0
(s2)− ρs̃1

(s2) = s2 − ⟨s2, s̃0⟩ s̃0 − ⟨s2, s̃1⟩ s̃1

5. Normalisation: s̃2 ≜
y2

||y2||

6.This procedure should be followed up till s̃N−1 is given.

Any set of N linearly independent vectors can be converted into an orthonormal basis using
the Gram-Schmidt orthogonalization method. It is obvious that we may easily build merely
an orthogonal basis without performing normalisation. The crucial step in this process is the
deduction out of the projection of the following linearly independent vector onto the vectors
assumed up to this point in the set in order to obtain each new orthonormal basis vector. Each
new linearly independent vector sk is, as we can say,In order to make it orthogonal to the entire
subspace,Any projection in that subspace that is not zero is deducted from k.. This projection
is made into the subspace spanned by the vectors {s̃2, ...., s̃k−1}. To put it another way, we
only keep the parts of each new vector Sk that point in the direction of the new dimension.
Whatever vector we select initially (S0 here) determines the first direction, which is arbitrary.
The following vector is required to be orthogonal to the preceding one. The third must be
opposite to the first two, and so on. This section can be seen as an overview of some of the
most important linear algebraic ideas.
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Chapter 3

3 Discrete Fourier Transform (DFT) derivation

The Discrete Fourier Transform (DFT), which is a projection of the length N signal x() onto
the set of N sampled complex sinusoids created by the N roots of unity, is introduced in this
section.

3.1 Using The DFT

The Discrete Fourier Transform (DFT) will be discussed after this.

3.1.1 Series in Geometry

Remember that for some complex number z1 ∈ C, the signal x(n) ≜ z1
n, n = 0, 1, 2, ...,

explains a sequence of geometrical terms where each phrase is obtained by multiplying the
previous term by a (complex) persistent. The sum of a geometric sequence is a straightforward
definition of a geometric series:

SN(z1) ≜
N−1∑
n=0

z1
n = 1 + z1 + z2

1 + z3
1 + ..... + zN−1

1

If z1 ̸= 1, the summation can be stated in closed form as

SN(z1) = 1− z1
n

1− z1

Proof: We have

SN(z1) ≜ 1 + z1 + z2
1 + z3

1 + ..... + zN−1
1

z1SN(z1)− z1 + z2
1 + z3

1 + ..... + zN−1
1 + zN

1

=⇒ SN(z1)− z1SN(z1) = 1− zN
1

SN(z1) = 1− z1
n

1− z1
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3.1.2 Orthogonality of Sinusoids

The fact that sinusoids are orthogonal at various frequencies is one of their main character-
istics. i .e

ω1 ̸= ω2 =⇒ A1sin(ω1t + ϕ1) ⊥ A2sin(ω2t + ϕ2)

This holds true regardless of how vast and how long they may have been around, whether
they are complex or real. The frequencies being different is the only issue. The sinusoidal
periods must, however, be infinite.

Sinuoidal signal segments that have been sampled for length N, like those employed by the
DFT, exact orthogonality only applies to the harmonics of the sampling rate shared by N, or
only across the frequencies fk = kfs/N, k = 0, 1, 2, , ..., N−1. The only frequencies with a strict
integer number of periods throughout N trials are those mentioned above.matching complex
sinusoids to the frequencies fk

sk(n) ≜ ejωknT , ωk ≜ k
2π

N
fs, k = 0, 1, ..., N − 1

In the complex plane, these sinusoids are generated by the N roots of unity.

W k
N ≜ ejωkT ≜ ejk2π( fs

N
)T = ejk( 2π

N
), k = 0, 1, 2, .....N − 1

Due to the fact that they all satisfy, these are known as the N roots of oneness.

[
W k

N

]N
=
[
ejωkT

]N
=
[
ejk( 2π

N
)
]N

= ejk2π = 1

on Fig., the N roots of unity are depicted for N = 8 on the complex plane. Overall, a point
at z = 1 will always exist for some N, and the points similarly split the unit circle.When N is
even, there is a point at z = −1 (which corresponds to a sinusoid at precisely half the sampling
speed), but not if N is odd.

=‘

The planned sampling sinusoids for the N roots of unity are shown in Fig. These are
the sampled sinusoids that the DFT uses: (W k

N)n = ej2πk/N = ejωknT Note that taking
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Consecutively advanced integer powers of the point W k
N on the unit circle produces trials of

the kth DFT sinusoid, giving
[
W k

N

]n
, n = 0, 1, 2, ..., N − 1. The kth sinusoid originator W k

N is
in turn the kth power of the original Nth root of unity ωN ≜ ej2π/N . The symbolization WN ,
W k

N , and W n
Nk are mutual in the digital signal processing literature.

Note that in Fig. the range of k is taken to be [−N/2, n/2 − 1] = [−4, 3] in its place of
[0, N − 1] = [0, 7]. The best ”physical” option is this since it fits with our understanding of
”negative frequencies.” However, we can increase k by an integer multiple of N without changing
the sinusoid that is indexed by k. For all integer m in new parameters, kpmmN signifies the
same sinusoid.

3.1.3 Sinusoids of the DFT are orthogonal

We now make a point of proving that the DFT sinusoids are only orthogonal. Let

sk(n) ≜ ejωknT = ej2πkn/N

Denote the DFT sinusoid for the kth order. Then

⟨sk, sl⟩ ≜
N−1∑
n=0

sk(n)sl(n) =
N−1∑
n=0

ej2πkn/Ne−j2πkn/N

=
N−1∑
n=0

ej2π(k−l)n/N = 1− ej2π(k−l)

1− ej2π(k−l)/N

where the closed-form equation for the sum of a geometric series was used in the prior step.
If k ̸= l, the numerator is zero while the denominator is nonzero. This shows

sk ⊥ sl, k ̸= l
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It is gleefully confirmed that the (nonzero) amplitude and period have no effect on orthog-
onality despite the fact that we only looked at unit amplitude, zero time complex sinusoids, as
utilised by the DFT.

3.1.4 The DFT Sinusoids’ norm

When k = l, we proceed from the previous step by using the earlier root to obtain

⟨sk, sk⟩ =
N−1∑
n=0

ej2π(k−l)/N = N

This proves

||sk|| =
√

N

3.1.5 A set of orthonormal sinusoids

To obtain an orthonormal set, we can standardise the DFT sinusoids:

s̃k(n) ≜ sk(n)√
N

= ej2πkn/N

√
N

The signals with an orthonormal sinusoidal basis satisfy

⟨s̃k, s̃l⟩ = {1, k = l0, k ̸= l

The standardised DFT sinusoids are what we refer to as.

3.1.6 DFT, or discrete Fourier Transform

The band is defined by for a signal x() ∈ CN .

X(ωk) ≜ ⟨x, sk⟩
N−1∑
n=0

x(n)sk(n), k = 0, 1, 2, ...., N − 1

or,way it is usually expressed

X(ωk) ≜
N−1∑
n=0

x(n)e−j 2πkn
N , k = 0, 1, 2, ...., N − 1

In other words, the inner product of x and the kth DFT sinusoid sk defines the kth sample
of the band of x, denoted by the symbol X(ωk). This formulation is N times the x projection
coefficient onto sk, or
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⟨x, sk⟩
||sk||2

= X(ωk)
N

The projection of x onto sk itself is

ρsK
(x) = X(ωk)

N
sk

The projections’ totality is all that the inverse DFT represents:

x =
N−1∑
n=0

X(ωk)
N

sk

alternatively, as we typically do,

x(n) = 1
N

N−1∑
n=0

X(ωk)ej 2πkn
N

In conclusion, A superposition of the original signal’s sinusoidal projections is how the
original signal gets reformed in the inverse DFT., and The set of projection coefficients onto
the sinusoidal basis set is inversely proportional to the DFT.

3.1.7 Frequencies in the “Cracks”

Only for frequency ωk = 2πkfs/N does the DFT appear evident. These really are the
only frequencies present in the signal ω = ωk. Nevertheless, we investigate random signals from
nature using the DFT. What occurs when a signal x contains a frequency ω that is not one of
the ωk DFT-sinusoid frequencies?

Let’s plan a length N segment of a sinusoid onto the kth DFT sinusoid at a random frequency
ω to find out:

x(n) ≜ ejωnT

sk(n) ≜ ejωnT

ρsk
(x) = ⟨x, sk⟩

⟨sk, sk⟩
sk ≜

x(ωk)
N

sk

The coefficient of projection is proportional to

X(ωk) ≜ ⟨x, sk⟩ ≜
N−1∑
n=0

x(n)sk(n)

N−1∑
n=0

ejωnT e−jωnT =
N−1∑
n=0

e−j(ω−ωk)nT = 1− ej(ω−ωk)nT

1− ej(ω−ωk)T
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ej(ω−ωk)(N−1)T/2 Sin [(ω − ωk)nT/2)]
Sin [(ω − ωk)T/2)]

by the total of a geometric series in closed-form. The sum is displayed earlier. The total is
N for ω = ωk and zero at ωl, for l ̸= k, as was previously demonstrated.However, at all other
frequencies, the total is not zero.

Any sinusoidal segment may be projected onto the N DFT sinusoids and then rebuilt using
merely a linear combination of them because we are only considering N trials. An alternative
formulation of this is to say that CN is based on the DFT sinusoids, allowing every length N
signal to be described as a linear combination of them. As a result, we need to comprehend
what we observe when looking at recorded signal segments. The usual way to approach this in
practise is to think about the functioning of a digital filter using DFT.1 What we just added,
2 is the frequency return of this filter, and its magnitude is

|X(ωk)| =
∣∣∣∣∣Sin [(ω − ωk)nT/2)]

Sin [(ω − ωk)T/2)]

∣∣∣∣∣
(shown in Fig. for k = N/4). At all other integer values of k, the comeback is the same

but moved (circularly) left or right so that the peak is concentrated on ωk. The secondary
peaks away from ωk are called sidelobes of the DFT response,The comeback is the same for
all other integer values of k, but it is relocated (circularly) left or right such that the peak is
focused on in Fig.(Clipped at dB60). We see that the sidelobes are really pretty high from an
audio perspective. Sinusoids with frequencies near ωk ± 1.5, for example, are only attenuated
approximately 13dB in the DFT output X(ωk).

We can see that all frequencies between dc and the sampling rate are sensitive to X(ωk),
with the exception of the other DFT-sinusoid frequencies ω for lneqk. This is known as spectral
leakage or cross-talk in the band research community. When N is precisely a period or some
multiple of a period and the signal being studied is genuinely periodic, there is once more no
error. However, in most cases, this is difficult to organise, and spectral leakage can truly cause
issues.

Keep in mind that raising N does not concentrate spectral leakage. You may think of it as
the result of two sharp sinusoid cuts that were made at the beginning and conclusion of the
N-trial time window. Only the DFT sinusoids are left uncut around the window margins. All
other frequencies will experience some truncation distortion, and the sidelobes can be attributed
to the spectral content of the abrupt cut-off or turn-on transient. Keep in mind that the input
signal x(n) is identical to its periodic extension in terms of the DFT. Since the signal is not
periodic in N samples, there will be a ”glitch” every N samples if we repeat N samples of a
sinusoid at frequency ω = ωk. This issue can reflected a new energy source across the entire
band.

To lessen spectral leakage (cross-talk from far-off frequencies), we often use a window func-
tion, such as a ”raised cosine” window, to match the data record nicely to zero at both endpoints
of the window. The primary lobe of the DFT response widens and the sidelobes shrink as a
result of the smooth tapering. Unless the signal is precisely periodic over the course of N trials,
no window can be as effectively observed as a rectangular window of length N. Both Music 420
and the ” Illustrations by the DFT” section expand on these topics.
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Given that X(ωk), the kth spectral sample, is indeed perceived as a gauge of spectral am-
plitude over a nominal k−1/2 to k+1/2 range of frequencies, this range is frequently referred
to as a frequency bin (as in a ”storage bin” for spectral energy). The total energy in the kth
bin can be observed as |X(ωk)|2 (see Parseval’s Theorem in the ”Fourier Theorems” division).
The frequency index k is known as the bin number. Trials of any continuous bandlimited
function are mentioned in connection with this; nevertheless, Despite having a mathematically
equivalent meaning in the time domain, the term ”bin” is exclusively used in the frequency
domain.

3.1.8 Standardised DFT

The normalised DFT sinusoids are projected onto for a more ”theoretically clean” DFT.

s̃k(n) ≜ ej2πkn/N

√
N

In this situation, the normalised DFT of x is

X̃(ωk) ≜ ⟨x, s̃k⟩ = 1√
N

N−1∑
n=0

x(n)e−j2πkn/N

This also precisely corresponds to the coefficient of x projection onto sk. Then, it is easier
to calculate the inverse normalised DFT.

x(n) =
N−1∑
n=0

X(ωk)s̃k(n) = 1√
N

N−1∑
n=0

X(ωk)ej2πkn/N

Although from the perspective of ”geometric signal theory” this meaning is considerably
clearer, Since it involves more computation than the typical explanation, it is rarely used in
exercise. The sign of the exponent in the kernel, however, is the only difference between the
forward and inverse transforms in this instance.
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3.2 The Length 2 DFT

Since the basis sinusoids are real, the length 2 DFT is primarily straightforward:

s0 = (1, 1)

s1 = (1,−1)

The DFT sinusoid s1 is a sampled sinusoid at half the sample rate, whereas s0 is a sampled
constant signal.Figure shows the graphical relationships for the signal’s length 2 DFT (x =
[6, 2]).

According to logic,The DFT is identified by us as

X(ω0) ≜ ρs0
≜
⟨x, s0⟩
⟨s0, s0⟩

s0 = 6.1 + 2.1
12 + 12 s0 = 4s0 = (4, 4)

X(ω1) ≜ ρs1
≜
⟨x, s1⟩
⟨s1, s1⟩

s1 = 6.1 + 2.(−1)
12 + (−1)2 s0 = 2s1 = (2,−2)

Be sure to pay attention to the orthogonal projection lines shown in the illustration. The
vectors make up the ”time domain” basis. {e0, e1}, and the projections onto them that are
orthogonal to each other are (6, 0) and (0, 2), respectively. The ”frequency domain” basis
vectors are composed of {s0, s1. Additionally, they provide an orthogonal basis set that is
rotated by 45 degrees in relation to the time-domain basis vectors.. Giving them an orthogonal
projection results in X(ω0) = (4, 4) and X(ω1) = (2,−2), respectively.The vector sum of the
initial signal x’s coordinate projections, which represents it in the time domain, or the vector
sum of its projections onto the DFT sinusoids, which represents it in the frequency domain,
respectively, can be used to represent it.Making x the vector sum of its projections onto the
DFT sinusoids is known as ”taking the inverse DFT,” as opposed to computing the coefficients
of projection, which is conceptually identical to ”taking the DFT.”
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Chapter 4

4 Fourier Theorems for the DFT

Numerous Fourier theorems are developed in this section for the DFT condition. The shift
theorem, convolution theorem, correlation theorem, power theorem, symmetry relations, and
theorems relating to interpolation and downsampling are all included. The applications of
several theorems, linear time-invariant filtering, sampling rate conversion, and statistical signal
processing are discussed.

4.1 DFT and its Inverse

Let x(n), n = 0, 1, , ..., N − 1i.e., x ∈ CN , indicate an n-sample complex sequence. The
Discrete Fourier Transform (DFT) is used to define the band of x after that:

X(k) ≜
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, .....N − 1

The definition of the inverse DFT (IDFT) is

x(n) ≜ 1
N

N−1∑
n=0

X(k)ej2πnk/N , n = 0, 1, 2, .....N − 1

Notably, we are not including the sample interval T = 1/fs in our representation for the
first time. Actually, this is the approach used the most frequently in digital signal processing
projects.It is common to specify that the sample frequency is fs = 1. But the substitute can
set it to any desired value..

ej2πnk/N = ej2πk(fs/N)nT ≜ ejωktn

For the rest of this book lover, though, we’ll make the more typical (and mathematical)
assumption that fs = 1.For the purpose of this chapter solely, we’ll use the definition ωk ≜
2πk/N . The term ”radian frequency” in this context refers to the number of ”radians per
sample.”Throughout this bibliophile, ωk always refers to ”radians per second.” (Of course, if
the sample rate is indeed 1, there is no change.) In relation to the fs = 1settlement, we also
refer to normalised frequency as follows: The range [−π, π) encompasses all normalised radian
frequencies, whereas the range [−π, π) encompasses all normalised Hz frequencies. [−0.5, 0.5).

4.1.1 Nomenclature and terminology

If X is x’s DFT, then x and X constitute a transform pair, and x and X are written as a
pair.

x←→ X

(“x is equivalent to X”).
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We’ll utilise this additional illustration instead:

DFT (x) ≜ X,

and

DFTk(x) ≜ X(k)

Time-domain signals are consistently denoted by lowercase letters, such as ”x,” but frequency-
domain signals, such as spectra, are denoted by capital letters (”X”).

4.1.2 Modulo Indexing, Periodic Extension

Each of the DFT sinusoids, sk(n) ≜ ejωkn, has a periodicity with periods that divide N.
Consequently, for any integer m, sk(n + mN) = sk(n).A linear combination of the time-domain
DFT sinusoids can be described as the signal x for length N.

x(n) = 1
N

∑
k

X(k)sk(n),

Given that x(n + mN)triangleqx(n) for any integer m,Periodic extension is hence the ”au-
tomatic” definition of x(n) outside of the range [0, N − 1].

Additionally, the DFT recurs every N trials without a doubt, as

X(k + mN) ≜
∑

n

⟨x, sk + mN⟩ =
N−1∑
n=0
⟨x, sk⟩X(k)

because sk +mN(n) = ej2πn(k+mN)/N = ej2πnk/Nej2πnm = sk(n). (The DFT sinusoids behave
in the same way as n and k functions.) For the purpose of DFT investigations, all signals in
CN can be viewed as single periods from an infinitely long periodic signal with period N trials:

4.1.3 Definition

For a particular signal x ∈ CN , we define

x(n + mN) ≜ x(n)

for all integer m.

This agreement allows all indexing of signals and spectra1 to be understood as N, and we
can emphasise this by writing x(n mod N). The correct definition of ”n mod N” is n − mN ,
where m is selected to provide n−mN in the range [0, N − 1].

When indexing a band X, for instance, we see that X(N) = X(0), proving that the sampling
rate for discrete time signals is physically equal to dc. We have what is referred to as the
”periodic extension” of x(n) in the time domain.
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In other words, the input to the DFT is mathematically regarded as N trials of a periodic
signal of period NT seconds. The band is zero between frequency trials ωk, which is the
equivalent assertion in the frequency domain. It is also feasible to adopt the viewpoint that the
time-domain signal x(n) is made up of N samples with zeros coming before and after each one.
The spectrum is not zero in this situation between the spectral samples ωk, and band restricted
interpolation can be used to restore the band between trials. Except for the topic of ”zero
padding ←→ interpolation below, which is outside the purview of Music, the ”time-limited”
interpretation of the DFT input is considered in Music 420 in great depth.

4.2 Signal Operators

The following signal operator definitions can be used in the Fourier theorems that follow.

4.2.1 Switch Operators

Definition:

As stated by, the flip operator

Flipn(x) ≜ x(−n)

which is x(N−n) via modulo indexing. As seen in Fig., the Flip() operator flips the order of a
sequence’s trials 1 through N−1, leaving trail 0 alone.Because of modulo indexing, the sequence
can also be thought of as being ”flipped” about the vertical axis,shown in Fig.When used on
a signal or band, the Flip operator is generally referred to as ”time reversal” or ”frequency
reversal,” and this interpretation of Fig. is typically what we desire.

4.2.2 Shift Operators

Definition:

The definition of the shift operator is

Shift△, n(x) ≜ x(n−△)

and Shift△(x) represents the full shifted signal. Keep in mind that the shift is circular
because indexing is done modulo N. However, we typically employ it to illustrate time delay
using △ samples. To prevent the ”wrap-around” associated with a circular shift, we usually
combine the shift operator with zero padding (adding zeros to the signal x). Figure shows a
periodic signal with a first period given by repeated one-trial delays [0, 1, 2, 3, 4].

Illustration:

Shift1([1, 0, 0, 0]) = [0, 1, 0, 0] (The delay was caused by an impulse).

Illustration:

Shift1([1, 2, 3, 4]) = [4, 1, 2, 3] (a case of cyclic shifting).

Illustration:
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Shift−2([1, 0, 0, 0]) = [0, 0, 1, 0] (Another instance of a circular shift).

4.2.3 Convolution

Definition:

The definition of the symbol ′′x ∗ y′′ for the convolution of x and y signals in CN are

(x ∗ y)n ≜
N−1∑
m=0

x(m)y(n−m)
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It should be noted that this convolution is cyclic or ”circular”. The significance of convolu-
tion in the theory of linear systems is covered. Since convolution is commutative,

x ∗ y = y ∗ x

Proof:

(x ∗ y)n ≜
N−1∑
m=0

x(m)y(n−m) =
n−N+1∑

l=n

x(n− l)y(l) =
N−1∑
l=0

y(l)x(n− l) ≜ (y ∗ x)n

where we changed the summation variable l ≜ n−m in the first step and used the knowledge
that a sum over all N terms is equal to a sum from 0 to in the second step N = 1.

Convolution in Graphics

The cyclic convolution operation can be expressed in terms of previously established oper-
ators as follows:

y(n) ≜ (x ∗ h)n ≜
N−1∑
m=0

x(m)h(n−m) = ⟨x, SHIFTn(FLIP (h))⟩ (hreal)

here x, y ∈ CN and h ∈ RN . It helps to visualise how to comprehend the last sentence
above.

Figure shows convolution of

y = [1, 1, 1, 1, 0, 0, 0, 0]

h = [1, 0, 0, 0, 0, 1, 1, 1]
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Take y as an illustration, where y is a ”rectangularly windowed signal, zero-padded by a
factor of 2,” and y is dc (all 1s). The convolution should be as desired.

Flip(h) = [1, 1, 1, 1, 0, 0, 0, 0]

This is equivalent to y. When h is a matched filter for y3, we say that h = Flip(y). In
this instance, h is zero-padded by a factor of 2 and matched to check for a ”dc component.”
The purpose of the zero- padding is to mimic cyclic convolution by circular convolution. The
calculation of the convolution of y and h is shown in the figure:

(y ∗ h) ≜
N−1∑
n=0

y(n).FLIP (h) = [4, 3, 2, 1, 0, 1, 2, 3]

Note that the convolution output reaches a big peak at time 0. This huge peak, which is the
greatest conceivable if all signals are constrained to a magnitude range of [−1, 1], shows that
the matching filter has ”found” the dc signal beginning at time 0. Even if additional sinusoids
and noise were introduced, this peak would still persist.

4.2.4 Polynomial Multiplication

It should be noted that the coefficients of two polynomials are convolved when they are
multiplied together. Let p(x) stand for the mth-order polynomial to illustrate this.

p(x) = p0 + p1x + p2x
2 + .... + pmxm
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q(x) should represent the nth-order polynomial, and the coefficients should be pi.

q(x) = q0 + q1x + q2x
2 + .... + qmxm

using qi coefficients. Then comes [17].

p(x)q(x) = p0q0 + (p0q1 + p1q0)x + (p0q2 + p1q1 + p2q)x
2

+(p0q3 + p1q2 + p2q1 + p3q0)x3

+(p0q4 + p1q3 + p2q2 + p3q1 + p4q0)x4 + ůůů

+(p0qn+m + p1qn+m−1 + p2qn+m−2 + pn+m−1q1 + pn+mq0)xn+m

p(x)q(x) being represented by

r(x) ≜ p(x)q(x) = r0 + r1x + r2x
2 + ...... + rm + nxm+n,

We can denote the ith coefficient as follows.

ri = p0qi + p1qi−1 + p2qi−2 + ........ + pi−1q1 + piq0

=
i∑

j=0
pjqi−j =

∞∑
j=−∞

pjqi−j

≜ (p ∗ q)(i)

Here, The sequences qi and pi are doubly infinite that are both evident as zero when i is
equal to 0 and when i is equal to m, n.

4.2.5 Adding and subtracting decimal numbers

Since, for instance, decimal values are just polynomials with powers of 10„

7984 = 7.103 + 9.102 + 8.101 + 4.100

Therefore, adding two numbers together causes their digits to become confused. The only
difference is that we have conveys instead of the usual polynomial multiplication. In other
words, when a convolution result is more than 10, we deduct 10 and raise the digit in the next
higher place by 1.
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4.2.6 Correlation

Definition:

For two signals in the space, x and y CN , The correlation operator is explained as follows:

(x ∗ y)n ≜
N−1∑
m=0

x(m)y(n−m)

Coefficient of correlation can be interpreted as

(x ∗ y)n = ⟨Shift−n(y), x⟩

This is the factor that shifts y unconventionally to the left in a circular motion by n trials
onto x. The correlation lag is denoted by the time offset n, and the lagged product is denoted
by x(m)y(m + n). In 8.8, applications of correlation are examined.

4.2.7 Stretch Operator

The StretchL() operator, in contrast to all other operators before it, transforms an input
signal of length N to an output signal of length M ≜ LN , where L and N are integers. To
emphasise this point, we use ”m” as the time index rather than ”n”.

Definition:

A The definition of stretch by factor L is

StretchL,m(x) ≜ {x(m/L), m/L = integer0, m/L = integer

Therefore, add L-1 zeros between each pair of trials to expand a signal by the factor L.
Figure 1 shows an illustration of a three-fold stretch. It is an illustration.

Stretch3([4, 1, 2]) = [4, 0, 0, 1, 0, 0, 2, 0, 0]

Up sampling, or raising the sampling rate by an integer factor, is defined and studied using
the stretch operator.
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4.2.8 Zero Padding

Definition:

Zero padding is the practise of padding a signal with zeros. It converts a signal of length N
into one of length M ≥ N , albeit An integer multiple of N is not required for M:

ZeroPadM,m(x) ≜ {x(m), 0 ≤ m ≤ N − 10, N ≤ m ≤M − 1

For example,

ZeroPad10([1, 2, 3, 4, 5]) = [1, 2, 3, 4, 5, 0, 0, 0, 0, 0]

When x(n) denotes a signal beginning at time 0 and encompassing for N trials, the afore-
mentioned concept makes sense. The zero padding is typically introduced between trials if,
on the other hand, we are zero padding a band or have a time-domain signal with nonzero
trials for negative time indices (N − 1)/2 and For N odd, use (N + 1)/2 (Keep in mind that
((N + 1)/2 = (N + 1)/2 − N = −(N − 1)/2modN)),The point z = −1(ω = πfs) is where
zero padding is added for spectra. This is also true for even N. Figure exemplifies this second
interpretation of zero padding. Additionally, it is utilised with zero-phase FFT windows, which
are covered in more detail below.

We will be able to demonstrate using Fourier theorems how zero padding in the time do-
main results in band-limited interpolation in the frequency domain. Additionally, band-limited
interpolation in the time domain results from zero padding in the frequency domain. This is
an example of an effective optimum sampling rate change.

Band restricted interpolation is the best interpolation for digital signal processing, it is vital
to highlight.

4.2.9 Repetition Operator

Like the StretchL() operator, the RepeatL() operator converts a signal of length N to a
signal of length M ≜ LN .

Definition:

The repeat L times operator is, as stated by,

RepeatL,m(x) ≜ x(m), m = 0, 1, 2, ...., M − 1

where M ≜ LN . Thus, the RepeatL() Basically, the operator repeats its input signal L
times. In Fig., an illustration of Repeat2(x) is shown
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Figure: Here’s one of zero padding in the frequency domain

a) The first spectrum X = [3, 2, 1, 1, 2] plotted in the range [0,N - 1] over the domain
k where N = 5, or as a computer array would normally depict the spectral array.

b) ZeroPad11(X).

c) The identical signal X shown over a more intuitive range for interpreting negative fre-
quencies, k ∈ [−(N − 1)/2, (N − 1)/2] .

d) ZeroPad11(X).

The original spectrum X is presented in Fig., and Repeat3(X) is shown in Fig. as a
frequency-domain example. On the right-rear face of the enclosing box is the z = 1 point
(dc). It should be noted that the spectrum of X appears to be slightly ”triangularly shaped”
when centred at k = 0. The repeating block can be thought of as reflecting the triangularly
shaped ”baseband” spectrum centred around z = 1 or as extending from the point at z = 1 to
the point far to the left.

To formulate the Fourier theorem, utilise the repeat operator.

StretchL ←→ RepeatL

This means that when a signal is stretched by the factor L, its band repeatsL rotations of
the unit circle.

4.2.10 Operator for Downsampling

Definition:
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Every Lth trial, beginning with trial 0, is taken when downsampling by L.

SelectL,m(x) ≜ x(mL), m = 0, 1, 2, ......, M − 1(N = LM, x ∈ CN)

A length N = LM signal is reduced to a length M signal using the SelectL() operator. It
is the StretchL() operator’s opposite (but not the other way around), that is,

SelectL(StretchL(x)) = x

StretchL(SelectL(x)) ̸= x(ingeneral).

Because they are linear time-varying operators, the stretch and downsampling processes
do not interchange. Time-varying switches controlled by the trial index n can be used to
demonstrate them.
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Figure : An example of Select2(x). The circles with a white fill represent the samples
that were kept, while the circles with a black fill represent the samples that were discarded.

Fig. displays a Select2(x) example. Here’s one:

Select2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) = [0, 2, 4, 6, 8]

4.2.11 Alias Operator

When a signal is undersampled, aliasing happens. Frequency-domain aliasing results from
too low a signal sampling rate (fs).

When sampling a continuous-time signal, the issue of aliasing typically arises. According to
Shannon’s Sampling Theorem, aliasing caused by sampling won’t occur as long as the sample
rate is greater than twice the highest frequency present in the signal being tested. In order to
keep the maths as straightforward as possible, we are simply taking discrete-time signals into
account in this part. When a discrete-time signal is decimated to lower its sample rate, aliasing
can place. Continuous-time sampling can be thought of as the restrictive case when the initial
sample rate is infinite.

Figure 1 shows an illustration of aliasing.

Due to aliasing, the high-frequency sinusoid and lower frequency sinusoid in the figure
cannot be distinguished from one another. We refer to the lower frequency as aliasing the
higher frequency. Time-domain aliasing results from undersampling in the frequency domain.
The term ”aliasing” typically refers to frequency-domain aliasing when time or frequency is not
specified.

It is stated that the aliasing operator is

AliasL,m(x) ≜
N−1∑
l=0

x
(

m + l
N

L

)
, m = 0, 1, 2, ...., M − 1(N = LM, x ∈ CN)

A length N = LM signal is reduced to a length M signal using the AliasL() operator, just as
the SelectL() operator. The best approach to think of it is to divide the initial N samples into
L blocks, each of length M, with the first block covering samples 0 through M − 1, the second
block 2M − 1, etc. Simply put the blocks after that. This method is known as aliasing. Time
domain aliasing is the term used when the original signal is a time signal; frequency-domain
aliasing, or simply aliasing, is used when the original signal is a band. Keep in mind that
aliasing cannot be reversed. In general, it is impossible to improve the original blocks once
they have been joined together.

For Use As An Example

Alias2([0, 1, 2, 3, 4, 5]) = [0, 1, 2] + [3, 4, 5] = [3, 5, 7]

47



Alias3([0, 1, 2, 3, 4, 5]) = [0, 1] + [2, 3] + [4, 5] = [6, 9]

The Fourier theorem is expressed using the alias operator.

SelecL ←→ AliasL

In other words, the signal’s spectrum is aliased when it is lowered by the factor L.

Figure displays the outcome of applying Alias2 to Repeat3(X) from Fig. Imagine that the
spectrum shown in Figure is drawn on a piece of paper that has been rolled into a cylinder
whose edges come together at z = 1 (Figure’s upper right corner). The paper cylinder can then
be rerolled to trim its perimeter in half, simulating the Alias2 process. Reroll it in such a way
that two sheets of paper are always interacting on the new, narrower cylinder. Just incorporate
the

Figure Illustration of aliasing in the frequency domain.

a) Repeat3(X) from Fig.

b)The new, smaller unit circle (which is magnified to the original size) was wrapped
around the first half of the previous unit circle (0 to π).

c) Second half, also wrapped around the new unit circle (πto2π).

d) The combination of the summable components.

48



You may find the Alias2 of the original band on the unit circle by adding the values on the
two intersecting sheets. The cylinder would be further shrunk to alias by three, resulting in
three layers of paper in the cylinder, and so on.

The first circular wrap of the paper cylinder is shown in Figure, and the second wrap is
shown in Figure. Figure 2 overlays these and Figure 2 adds them all up. Finally, Fig. illustrates
the two components’ addition and overlay. The first component is reflected to be at its original
frequencies, whilst the second component ”aliases” to new frequency components. All other unit
circles in Figure cover frequencies from 0 to fs/2 if the unit circle in Figure covers frequencies
from 0 to fs.

Overall, aliasing by the factor K equates to a K-fold reduction in sampling rate. Anti-
aliasing low pass filters are typically employed to prevent aliasing when the sample rate is
decreased. a lowpassAll signal components outside of the frequency range [−fs/(2K), fs/(2K)]
are reduced by the filter. They will alias if they are not filtered out, and aliasing is typically
not reversible.

When the two parts are added, the unit circle is supposedly compressed by Alias2 to a unit
circle that is half its original size. A better way to explain ”repeating,” which is the reverse of
aliasing, is as ”periodic extension” of the unit circle’s perimeter that results in ”more band” for
the larger unit circle. Downsampling is the stretch operator’s counterpart in the time domain.
The restriction on factors being integers is lifted in continuous time, and we arrive at the
(simpler) similarity theorem (proved in 8.9). Only for integer stretch, downsampling, aliasing,
and repetition factors are all of these correlations precise.

4.3 Odd and Even Functions

Even and odd symmetries can be used to express some of the Fourier theorems in a concise
manner.

Definition:

If f(−n) = f(n), then a function f(n) is said to be even. Although the term ”symmetric”
is often used to refer to functions that are symmetric around a point other than 0, an even
function is also symmetric.

Definition:

If f(−n) = −f(n), a function f(n) is said to be odd. Anti-symmetric is another name for
an odd function.

Take note that f(0) = 0 must hold for any odd function f(n). Moreover,

Given that x(N/2) = −x(−N/2) = −x(−N/2 + N) = −x(N/2), i.e., N/2 and −N/2 index
the same point, we also have x(N/2) = 0 for every x ∈ CN with N even.

Theorem:

Each function f(n) can be broken down into its even and odd parts, denoted by fe(n) and
fo(n), respective

fe(n) ≜ f(n) + f(−n)
2
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f0(n) ≜ f(n) + f(−n)
2

Proof:

According to the definitions above, by construction, fe(n) is even and f0(n) is odd. As a
whole,

fe(n) + f0(n) = f(n) + f(−n)
2 + f(n) + f(−n)

2 = f(n)

Theorem:

Odd functions produce an even product, even functions produce an odd product, and odd
functions produce an odd product.

Proof is plainly seen.

Even can be thought of as (+) and odd as (-): (+) (+) = (+), (-) (-) = (+), and (+) (-)
= (-) (+) = (-). This is because even times even are even, odd times odd are even, and even
times odd are odd.

Illustration: Since cos(−θ) = cos(θ), cos(ωkn) is an even signal.

For instance, since sin(−θ) = sin(θ), the signal sin(ωkn) is peculiar.

As an example, the ratio of cos(ωkn) to sin(ωln)isodd(evenwhenodd).

Example: The difference between sin(ωkn)andsin(ωln)iseven(oddtimesodd).

Theorem: An odd signal xo in CN has zero trials total when added together.

Proof:

By stating the sum as xo(0)+[xo(1)+xo(−1)], thisiseasilyseen.wherethefinaltermonlyappearswhenNiseven :
+......... + x(N/2). For an odd signal xo, each term written in this manner is 0.

A good example is omegak = 2πk/N for all DFT sinusoidal frequencies.

N−1∑
n=0

sin(ωkn)cos(ωkn) = 0, k = 0, 1, 2, ......, N − 1

more broadly,

N−1∑
n=0

xe(n)xo(n) = 0

for any xe even signal and xo odd signal in CN .

4.4 Fourier Theorems

The fundamental Fourier theorems are presented and proven in this lesson. It does not mat-
ter how straightforward these theorems are when compared to other DTFTs, Fourier transforms,
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and Fourier series in the DFT situation. The mathematical prerequisites for the existence of the
Fourier transform can be rather challenging to explain when infinite summations or integrals
are intricate. On these issues, mathematicians have expended a great deal of work. Focusing
solely on the DFT situation allows us to understand the fundamental ideas behind the Fourier
theorems without getting bogged down in complex mathematical issues.

4.4.1 Linearity

The DFT fulfils the following theorem for all x, y in CN and α, β in CN .

αx + βy ←→ αX + βY

Because of this, the DFT is a linear operator.

Proof:

DFTk(αx + βy) ≜
N−1∑
n=0

[αx(n) + βy(n)]e−j2πnk/N

=
N−1∑
n=0

[αx(n)]e−j2πnk/N +
N−1∑
n=0

[βy(n)]e−j2πnk/N

= α
N−1∑
n=0

x(n)e−j2πnk/N + β
N−1∑
n=0

y(n)e−j2πnk/N

≜ αX + βY

4.4.2 Judgement and Reversal

Theorem: If x is any number in CN ,

x↔ Flip(X)

Proof:

DFTk(x) ≜
N−1∑
n=0

x(n)e−j2πnk/N =
N−1∑
n=0

x(n)ej2πnk/N

N−1∑
n=0

x(n)e−j2πn(−k)/N ≜ FLIPk(X)

Theorem: If x is given in CN ,

x↔ Flip(X)
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Proof: We obtain by altering the summing variable m ≜ N − n

DFTk(FLIP (x)) ≜
N−1∑
n=0

x(N − n)e−j2πnk/N =
1∑

m=N

x(m)e−j2π(N−m)k/N

=
N−1∑
n=0

x(m)e−j2πnk/N =
N−1∑
n=0

x(N − n)e−j2πnk/N ≜ X(k)

Theorem: For any x ∈ CN ,

FLIP (x)↔ Flip(X)

DFTk(FLIP (x)) ≜
N−1∑
n=0

x(N − n)e−j2πnk/N =
N−1∑
m=0

x(m)e−j2π(N−m)k/N

=
N−1∑
m=0

x(m)ej2πnk/N ≜ X(−k) ≜ FLIPk(X)

corollary : For some x ∈ RN ,

FLIP (x)↔ X (xreal)

Proof:Prioritising the prior demonstration at the third formula and keeping in mind that x
is real

N−1∑
n=0

x(n)ej2πnk/N =
N−1∑
n=0

x(n)ej2πnk/N =
N−1∑
n=0

x(n)ej2πnk/N ≜ X(k)

when x(n) is an integer.

Therefore, reversal in the time domain corresponds to conjugation in the frequency domain.
Negating the spectral phase is a novel approach that causes the signal to move backwards in
time.

corollary: If x ∈ R, then

FLIP (x)↔ X (xreal)

Proof:The preceding two situations lead to this.

Hermitian symmetry, often known as ”conjugate symmetry,” is the property X(−k) = X(k).
It may be referred to as skew-Hermitian if X(−k) = −X(k).

An alternative formulation of the previous corollary is

x ∈ Rn ↔ XisHermitian
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4.4.3 Symmetry

When x is real, we discovered in the last section that Flip(X) = overlineX. This fact
is highly applicable. Every genuine signal, according to this, has a Hermitian band. This
symmetry allows us to discard all of a genuine signal’s negative frequency spectral trials and
replace them if necessary with fresh positive-frequency trials. Additionally, spectral graphs of
actual signals are displayed between 0 Hz and fs/2 Hz. On the other hand, because a com-
plex signal’s positive and negative frequency components are independent, A complex signal’s
spectrum must often be shown between −fs/2 and fs/2 (or from 0 to fs).

Theorem: If x ∈ RN , re{X} is even and im {X} is odd.

Proof: The conjugate symmetry of X for real signals x leads to this right away.

Theorem: If x ∈ RN , |X| is even and ∠X is odd.

Proof: This naturally derives from X’s conjugate symmetry when stated in polar form.
X(k) = |X(k)|ej∠X(k).

One of the most significant symmetry theorems is maybe the conjugate balancing of bands
of real signals. However, there are a few more that we can display right away.

A signal that is even has an even transform.

xeven↔ Xeven

Proof:By using the formula x ≜ xr + jxi, express x in terms of its real and imaginary
components. The real and imaginary portions of a complex signal x must be equal for the
signal to be even. Then

X(k) ≜
N−1∑
n=0

x(n)e−jωkn

=
N−1∑
n=0

[xr(n) + jxi(n)]cos(ωkn)− j[xr(n) + jxi(n)]sin(ωkn)

=
N−1∑
n=0

[xr(n)cos(ωkn) + xi(n)sin(ωkn)] + j[xi(n)cos(ωkn)− xr(n)sin(ωkn)]

=
N−1∑
n=0

even.even +
N−1∑
n=0

even.odd + j
N−1∑
n=0

even.even− j
N−1∑
n=0

even.odd

=
N−1∑
n=0

even.even + j
N−1∑
n=0

even.even = even + j.even = even

Theorem: The transform of a real even signal is real even:

xrealandeven↔ Xrealandeven

53



Proof: This follows directly from the previous proof’s assumption of xi(n) = 0 and the
observation that the DFT of an even and real function reduces to a certain kind of cosine
transform.

X(k) =
N−1∑
n=0

x(n)cos(ωkn),

or we may present it straight up:

X(k) ≜
N−1∑
n=0

x(n)e−jωkn =
N−1∑
n=0

x(n)cos(ωkn) + j
N−1∑
n=0

x(n)Sin(ωkn)

=
N−1∑
n=0

x(n)cos(ωkn)(
∑

even.odd =
∑

odd = 0)

N−1∑
n=0

even.even =
N−1∑
n=0

even = even

Zero phase signals are frequently referred to as signals having a real band, such as real,
even signals. However, take note that the phase is actually π, not 0, when the band goes
negative, which it can do. Even though the phase of such signals fluctuates between 0 and π
at the zero-crossings of the band, they are sometimes referred to as ”zero phase.” In real-world
applications, such zero-crossings frequently occur at low amplitudes, like in the ”sidelobes” of
the DTFT of an FFT window.

4.4.4 Change Theorem

Theorem: Given any integer △ and any x ∈ CN ,

DFTk[SHIFT△(x)] = e−jωk△X(k)

DFTk[SHIFT△(x)] ≜
N−1∑
n=0

x(n−△)e−j2πnk/N

=
N−1−△∑
m=−△

x(m)e−j2π(m+△)k/N

=
N−1∑
n=0

x(m)e−j2πmk/Ne−j2πk△/N

= e−j2πk△/N
N−1∑
n=0

x(m)e−j2πmk/N

≜ e−jωk△X(k)
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The shift theorem states that a delay in the time domain agrees with a linear phase compo-
nent in the frequency domain. In particular, the linear phase term matches a delay of △ time
waveform samples. The spectrum is multiplied by e−jωk△, where ωk ≜ 2πk/N . Simply replace
△ with △T to modify the delay from samples to seconds (to consider ωk as radians per second
instead of radians per trial). A linear phase term has no effect on spectral magnitude, it should
be emphasised. In other words, |e−jωk△X(k) = |X(k)|.

4.4.5 Phase Linear Terms

Because the phase of the e−jωk△ is a linear function of frequency, it is referred to as a
linear phase term:

∠e−jωk△ = −△.ωk

The phase against radian frequency map thus exhibits a −△ slope. In most circumstances,
the slope of the linear phase component is deducted from the samples’ time delay. Using the
polar version of the original spectrum as an example

X(k) = G(k)ejθ(k),

We can see that a linear phase term simply alters the spectral phase in the equation where
G and θ are the magnitude and phase of X, respectively (both real) θ(k):

e−jωk△X(k) ≜ e−jωk△G(k)ejθ(k) = G(k)ej[θ(k)−ωk△]

where ωk ≜ 2πk/N . The original spectral phase is supplemented with a negatively sloped
linear phase by a positive time interruption (waveform shift to the right). The original spectral
phase is supplemented with a positively sloped linear phase via a negative time delay (waveform
shift to the left). This relationship is one of the most important in exercise, so if it seems like
we are overstressing it, that is because we are.

If a signal’s phase is of the forml kind, it is referred to as linear phase signal.

θ(ωk) = ±△.ωk ± πI(ωk)

where (ωk) is a function that indicates if anything is 0 or 1.

4.4.6 Convolution Theorem

Theorem: For any x, y ∈ CN ,

x ∗ y ↔ X.Y

DFTk(x ∗ y) ≜
N−1∑
n=0

(x ∗ y)ne−j2πnk/N
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≜
N−1∑
n=0

N−1∑
m=0

x(m)y(n−m)e−j2πnk/N

=
N−1∑
m=0

x(m)
N−1∑
n=0

y(n−m)e−j2πnk/N

(
N−1∑
m=0

x(m)y(n−m)e−j2πnk/N

)
Y (k)

≜ X(k)Y (k)

One could argue that this is the most important Fourier theorem ever. It serves as the
foundation for many FFT applications. The convolution theorem enables the FFT to do a rapid
Fourier transform as well as a fast convolution. It turns out that using the FFT to perform
convolutions is only actually more efficient in practise for convolutions that are genuinely long,
like Ngeq100. When compared to ”direct” convolution, the savings increase dramatically for
considerably longer convolutions. This occurs because FFT-based convolution only takes on
the order of N lg(N) operations, but direct convolution requires on the order of N2 operations
(multiplications and adds).

4.4.7 Theorem of Convolution Dual

The Convolution’s Dual Theorem asserts that convolution in the frequency domain corre-
sponds to multiplication in the time domain:

Theorem:

x.y ↔ 1
N

X ∗ Y

4.4.8 Correlation Theorem

Theorem: For any x, y ∈ CN ,

x ∗ y ↔ X.Y

Proof:

(x ∗ y)n ≜
N−1∑
m=0

x(m)y(n + m)

=
N−1∑
m=0

x(−m)y(n−m)

(FLIP (x ∗ y)n)
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↔ X.Y

where the Convolution Theorem leads to the final step, and the outcome Flip(x)↔ X from
the section on Conjugation and Reversal.

4.4.9 Power Theorem

Theorem: For any x, y ∈ CN ,

⟨x, y⟩ = 1
N
⟨X, Y ⟩

Proof:

⟨x, y⟩ ≜
N−1∑
n=0

x(n)y(n) = (x ∗ y)0 = DFT −1
0 (Y .X)

= 1
N

N−1∑
n=0

X(k)Y (k) ≜ 1
N
⟨X, Y ⟩

The power theorem would be more appealing, you should note (⟨x, y⟩ = ⟨X, Y ⟩) if the
normalised DFT sinusoid were the coefficient of projection onto the DFT, s̃k(n) ≜ sk(n)/

√
N .

4.4.10 Theorem of Rayleigh Energy (Parseval’s Theorem))

Theorem: For any x ∈ CN ,

||x||2 = 1
N
||X||

i.e.

N−1∑
n=0
|x(n)|2 = 1

N
|X(k)|2

Proof: A unique instance of the Power Theorem is this.

Remember that if we were using the normalised DFT, the relationship (||x|| = ||X||) would
be clearer.

4.4.11 Stretch Theorem (Repeat Theorem)

Theorem: For any x ∈ CN ,

STRETCHL(x)↔ REPEATL(X)
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Proof: Describe the stretcher driver:

StretchL,m(x) ≜ {x(m/L), m/L = integer0, m/L ̸= integer

Let y ≜ StretchL(x), where y ∈ CM , M = LN .Define additionally the new denser frequency
grid linked to length M by ω′

k△ = 2πk/M , with ωk = 2πk/N as usual. Then

Y (k) ≜
M−1∑
m=0

y(m)e−jω′
km =

N−1∑
n=0

x(n)e−jω′
knL(n ≜ m/L)

but

ω′
L ≜

2πk

M
L = 2πk

N
= ωk

Thus, Y (k) = X(k),and when k increases from 0 to 1, L copies of X are created using
modulo indexing of X M − 1 = LN − 1.

4.4.12 Downsampling Theorem (Aliasing Theorem)

Theorem: For any x ∈ CN ,

STRETCHL(x)↔ 1
L

ALIASL(X)

Proof: Let k′ ∈ [0, M − 1]in the aliased spectrum, denote the frequency index, and let
Y (k′) ≜ AliasL,k′(X). Then Y is length M = N/L, where L is the downsampling factor. We
have

Y (k′) ≜ AliasL,k′(X) ≜
L−1∑
l=0

Y (k′ + lM), k′ = 0, 1, 2, ...M − 1

≜
L−1∑
l=0

N−1∑
n=0

x(n)e−j2π(k′+lM)n/N

N−1∑
n=0

x(n)e−j2πk′n/N
L−1∑
l=0

e−j2πlnM/N

Since M/N = L, the sum over l becomes

L−1∑
l=0

e−j2πlnM/N =
L−1∑
l=0

[
e−j2πn/L

]l
= 1− e−j2πn

1− e−j2πn/L
= {L, n = 0modL0, n ̸= 0modL

utilising the preceding derived geometric series’ closed form statement. We can observe
that per L samples, the total over L effectively samples x. The prior formula can be used to
represent this by defining m ≜ n/L, which exclusively ranges over the nonzero samples:
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ALIASL,k′(X) =
N−1∑
n=0

x(n)e−j2πk′n/N
L−1∑
l=0

e−j2πln/L

= L
N/L−1∑

m=0
x(mL)e−j2πk′(mL)/N(m ≜ n/L)

≜ L
M−1∑
m=0

x(mL)e−j2πk′m/M ≜ L
M−1∑
m=0

SELECTL,m(x)e−j2πk′m/M

≜ L.DFT ′
k(SELECTL(x))

The theorem is proved since the aforementioned deduction is likewise valid in reverse.

4.4.13 Zero Padding Principle

Zero padding is a useful tool for practical band learning. This theorem demonstrates how
ideal interpolation in the frequency domain and zero padding in the time domain are equiva-
lent.Let x ∈ CN and define y = ZeroPadM(x). Then y ∈ CM with M ≥ N .Put k in front of
the original frequency index to indicate ωk ≜ 2πk/N and the new frequency index by k’, where
ω′

k ≜ 2πk′/M .

Definition:A spectrum’s optimal band-limited interpolation X(ωk) ≜ DFTk(x), x ∈ CN , to
an arbitrary new frequency ω ∈ [−π, π) is defined as

X(ω) ≜
N−1∑
n=0

x(n)e−jωn

Keep in mind that this is simply the DFT definition with ωk and ω altered. Specifically, the
band is projected onto the new sinusoid just as if it were a DFT sinusoid in order to interpolate
it. When x is taken to be N trials of a time-limited signal, this makes the most sense. This
means that the inner product between the signal and any sinusoid will be exactly as in the
equation above if the signal truly is zero outside of the time range [0, N − 1]. Thus, this type
of interpolation is excellent for signals with a limited amount of time.

By applying an integer factor L to a signal, the interpolation operator interpolates it. This
is,

InterpL,k′(X) ≜ X(ω′
k), ω′

k = 2πk′/M, k′ = 0, 1, 2, ...., M1, M ≜ LN

Since X(ωk) ≜ DFTN,k(x) , which at first only defines itself over the N roots of unity, X(ω′
k)

is defined over M = LN roots of unity, we define X(ω′
k) for ω′

k ̸= ωk by ideal bandlimited
interpolation.

Theorem: For any x ∈ CN ,

ZEROPADLN(x)↔ INTERPL(X)
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Proof: LetM = LN with L ≥ 1. Then

DFTM,k′(ZeroPadM(x)) =
N−1∑
m=0

x(m)e−j2πmk′/M ≜ X(ω′
k) = INTERPL(X)

4.4.14 Interpolation in Time with a Band Limit

Zero padding in the frequency domain corresponds to perfect band restricted interpolation
in the time domain, according to the dual of the Zero-Padding Theorem. In the time domain,
we have not yet established ideal band restricted interpolation in detail. We shall therefore
leave the definition of the Zero-Padding Theorem to its dual: Definition: For all x ∈ CN and
any integer L ≥ 1,

InterpL(x) ≜ IDFT (ZeroPadLN(X))

In this case, the zero-padding is of the frequency-domain variety, as previously defined and
shown in Fig.

It is useful to consider how the Stretch Theorem StretchL(x) ↔ RepeatL(X) can be used
to interpret the Interpolation Theorem. It is practical to define a ”zero-centered rectangular
window” operator for this purpose:

Theorem: For x ∈ CN ,

InterpL(x) = IDFT (RectWinN(DFT (StretchL(x))))

To put it another way, one can achieve perfect band-limited interpolation of x by the factor
L by stretching x by the factor L first (by inserting L − 1 zeros between successive x-trials),
obtaining the DFT, using the ideal low pass filter, and then applying the inverse DFT.

Proof: To begin with, keep in mind that StretchL(x) When a signal is stretched by the
factor L, or by RepeatL(X), a new signal y = StretchL(x) is created with a spectral grid L
times as dense as X and a spectrum Y that has L copies of X repeated around the unit circle.
”Baseband copy”

It is possible to define as the breadth N sequence centred on frequency 0 of X. So if we can
use a ”ideal filter” to ”pass” the baseband spectral copy and zero out all others, we can change
RepeatL(X) to ZeroPadLN(X). I.e.,

RectWinN(RepeatL(X)) = ZeroPadLN(X)↔ InterpL(x)

where the final step is time-domain ideal bandlimited interpolation by definition.

It should be noted that the unit’s definition of perfect band-limited time-domain interpo-
lation only applies to signals that exhibit periodicity across N trials. Consider the fact that
cyclic convolution conforms with rectangular windowing operation in the frequency domain in
the time domain8, and that cyclic convolution is only identical to acyclic convolution when one
of the signals is genuinely periodic in N trials, in order to understand this.There is no issue with
the definition of ideal spectral interpolation utilised in linking with the Zero-Padding Theorem
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because all spectra XinCN are actually periodic in N samples. Though we should apply the
counterpart of the Zero- Padding Theorem for the DTFT case instead for a more useful formu-
lation of ideal time-domain interpolation. However, the current definition is ideal for signals
that are precisely periodic in N trials (a rare circumstance).
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Chapter 5

5 Example Applications of the DFT

Certainly! I’d be happy to provide you with some practical illustrations of FFT analysis in
MATLAB. The Fast Fourier Transform (FFT) is a powerful tool for analyzing signals in the
frequency domain. By applying the FFT algorithm to a time-domain signal, you can obtain its
frequency spectrum, which reveals the different frequency components present in the signal.

5.1 Spectrum Analysis of a Sinusoid: Windowing, Zero-Padding,
and the FFT

Let’s continue with the illustrations that gradually develop the spectrum analysis process.
These examples will help you understand the steps involved in analyzing real data using spec-
trum analysis techniques.

5.1.1 Example 1: FFT of a Simple Sinusoid

The basic sinusoid from our first example is an FFT.

x(n) = cos(ωxnT )

where we select T = 1 (sampling rate set to 1) and ωx = 2π(fs/4) (frequency fs/4). The
signal length N must be a power of 2 because we’re utilising the FFT.

62



The outcomes are shown in Fig. 9.1. Figure 9.1a displays the time-domain signal in
sampled and pseudo-continuous forms. Two peaks in the magnitude spectrum can be seen in
Fig. 9.1b, located at normalised frequencies f = 0.25 and f = 0.75 = −0.25 and each measuring
magnitude 32 on a linear scale. We anticipate a spectral peak amplitude of 32 = (1/2)64 because
the DFT length is N = 64.

DFTk(Cos(ωxn)) ≜
N−1∑
n=0

ejωxn + e−jωxn

2 e−jωxn =
N−1∑
n=0

ej0n

2 = N

2

as soon as ωk = ±ωx. For N = 64, this occurs at bin numbers k = (0.25/fs)N = 16 and
k = (0.75/fs)N = 48.The peaks will really show up at index 17 and 49 in the magX array
because, as you may recall, Matlab requires indexing from 1.

You can alter the preceding code to display the magnitude spectrum on a logarithmic scale
(dB scale). The resulting spectrum is shown on a logarithmic (dB) scale as well as a linear
scale. You can see the near-zero magnitudes in the other bins because the spectral magnitude
is better represented by the dB scale.

5.1.2 Illustration 2 Using a Not-So-Simple Sinusoid

To add one-half of a bin to the preceding example’s frequency

This enables us to see the repetitive character of the signal and comprehend the phenom-
ena of spectral leakage by analysing the periodic extension of the time waveform and observing
the spectral leakage. For additional analysis, the magnitude spectrum is also shown on both
linear and dB scales.

Please be aware that Figs. 9.2b and 9.2c are merely placeholders for the figures in the text;
the real figures will be determined by how the code is run.
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The outcome is shown in Fig. 9.3. When the signal starts its forced repetition, there is a
”glitch” in the middle.

5.1.3 Illustration 3: A Zero-Padded Sinusoid’s FFT

Funny enough, if we go back and look at Fig. 9.2c, there are no negative dB values. Let’s
apply some zero padding in the time domain to provide optimal interpolation in the frequency
domain so we can clearly see the band:
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With 0 padding, we can tell that there is a lot going on. The band actually has a typical
side lobe configuration. We can now clearly observe that there are negative dB values on
the dB scale in Fig. 9.4c. This demonstrates how crucial zero padding is when interpolating
spectrum displays so that the eye can properly ”fill in” the gaps between the trials.

5.1.4 Illustration 4: Blackman Window

Let’s examine the impact of a Blackman window(22), which has respectable but unfavourable
features for audio work, to wrap up this sinusoid. The Blackman window is shown in Figure9.5
a, its magnitude band is shown on a dB scale in Figure9.5 b, and a more natural frequency
axis is used in Figure9.5 c, which interprets the upper half of the caddy figures as negative
frequentness

5.1.5 Example 5. Utilising the Blackman Window

Let’s connect this window to the sinusoidal data now.
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5.1.6 Illustration 6: Hanning-Windowed Complex Sinusoid

On a complicated sinusoid, the effects of applying the Hanning window against the Black-
man window are contrasted.You can see the variations in the spectral properties and the
effects of the Hanning window against the Blackman window by contrasting the two magni-
tude spectra. The Blackman window has a wider main lobe but lower sidelobe levels than the
Hanning window, which often has a narrower main lobe and faster sidelobe roll-off..
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You can change the previous code by adding zero-padding in the time domain to add
severely interpolated spectra to visualise the entire band. You can see the whole band and
contrast it with the original spectra acquired from the shorter signals by looking at the
interpolated spectra. The interpolation aids in giving the signals’ frequency content a clearer
representation.

67



Because we are studying a complex sinusoid [1, j,−1,−j, 1, j, .....], which is a sampled
complex sinusoid frequency fs/4 alone, note that there are no negative frequency components
in Fig. 9.8.Consider how difficult it would be to correctly comprehend the shape of the ”side
lobes” with no padding. The sidelobes in a spectral magnitude plot are easily not visible with
symbols that have a zero- padding factor of 2, which was once twice as crucial as necessary to
save all spectral information faithfully.
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