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ABSTRACT 

Mobile phones are widely utilized for high-security applications, such as financial 

transactions, where personal authentication with a high degree of accuracy and precision 

is needed. Therefore, biometrics-based authentication solutions are required to avoid 

security breaches and attacks during high-security transactions.    

Nowadays, mobile phones have many biometric authentication systems like iris, 

fingerprint, and face recognition. However, fingerprints or facial recognition-based 

systems in mobile phones may not be as applicable in pandemic situations like Covid-19, 

where hand gloves or face masks are mandatory to protect against unwanted exposure of 

the body parts. The biometric research literature has shown relatively few efforts focused 

on providing an effective authentication system that supports the user samples impacted 

by external factors (like gloves, wet hands, face masks) and contextual factors (location, 

time, and network connection).    

 Therefore, this thesis focuses on investigating methods and evaluating 

frameworks for effective biometric authentication in mobile phones in the presence of 

such external and contextual factors.  

In our work, we propose a multimodal biometric authentication framework for 

smartphones utilizing touchscreen swipe and keystroke dynamics that can handle the 

input biometric samples impacted by external factors (like wet hands, and gloved hands). 

This system uses machine learning-based classifiers to lessen the impact of hand gloves 

and sanitized wet hands during the authentication process. An experiment employing 

several classifiers yielded the best authentication accuracy of about 99 percent with 197 

users on the Samsung Galaxy S20 device.  In light of the COVID-19 pandemic, the 

proposed multimodal behavioral biometric authentication framework could be widely 

applicable to smartphones.                                                                                                     

Another proposed system in our work is the use of keystroke dynamics for feature 

phones. We have suggested an approach to incorporate the user’s typing patterns to 

enhance the security of the feature phone. We have applied the k-Nearest Neighbours 

classification with fuzzy logic and achieved an Equal Error Rate of 1.88%.  
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The experiments are performed with 25 users on the Samsung On7 Pro C3590 device.

 Finally, methods for face recognition with masked faces are investigated as part 

of this research study. Through this work, we present an approach using the Haar cascade 

classifier for face detection with Local Binary Patterns Histograms (LBPH) face 

recognizer. In this proposed work for masked face recognition, an accuracy of 86% is 

achieved when a Haar feature based cascade classifier with LBPH face recognizer is used 

which further improves to 97% when used in conjunction with fuzzy logic.     
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Chapter 1: Introduction 

Biometric authentication is a machine learning based technique that is used for identifying 

individuals based on their physiological and behavioral characteristics. These 

characteristics are called “biometric traits” or “biometric identifiers”. In contrast to the 

traditional way of identifying people, a biometric authentication system doesn’t use secret 

information like passwords, smartcards, or tokens to figure out who someone is. As a 

result, biometric authentication systems use attributes that are unique to an individual and 

cannot be replicated. 

1.1 Functioning of Biometric Authentication System 

A biometric authentication system mainly has 4 entities: the sensor that captures raw data, 

the features extracting unit, a unit for matching features, and the authentication system 

database [1]. The sensor module gets basic information from the user, either physically 

or behaviorally. During the user registration phase, a biometric template is created from 

the user's raw biometric data by the feature extractor. This template is saved in the 

authentication database and can be compared to the template that is generated when the 

user logs in. 

The next component is the matching identity unit. Its purpose is to help match user entries 

to inputs in the database, and to validate inputs about the user's existence in the database. 

It acts as a decision-making module. The last component, which is the system database, 

is like a repository where all the biometric data related to user input is stored and used 

during the authentication process. During the user registration phase, the user data is 

scanned by sensors and stored in the database under a particular user ID or by any other 

method adopted for future retrieval. 

Figure 1.1 illustrates the biometric authentication system's operation and depicts all three 

processes – (a) Enrolment, (b) Identification, and (c) Verification using the four main 

modules (Sensor, Feature extraction module, Matcher module, and System database 

module) of Biometric authentication system. In the user registration mode, new users are 

registered to the authentication system. Features extracted from the raw data 
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(Physiological or Biological) of the user are checked for quality and then added to the 

database of the authentication system.   

The biometric authentication system has two modes of operation: verification and 

identification. Verification mode is a “one-to-one” comparison. The system verifies a 

person’s identity by comparing the biometric data entered against the biometric template 

for that individual recorded in the system’s database. The identification mode is a “one-

to-many” comparison in which the system identifies an individual by comparing it to all 

database records. Using this mode, one can determine whether or not a particular 

individual is already in the database. Thus, this technique entails linking identity with a 

specific individual. 

 

 

 

Figure 1.1: Biometric authentication system operation 
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1.2 Biometric Traits 

Biometric authentication systems use biometric characteristics (i.e., identifiable and 

quantifiable biological qualities) to identify and verify individuals. There are two types 

of biometric traits or biometric features (or modalities): physiological and behavioral [2]. 

Physiological features are those associated with the biological and physical qualities of 

the human body which can be a fingerprint, iris, face, etc. In contrast, behavioral 

identifiers are those associated with a person's pattern of conduct that includes signature, 

keystroke, gait, touch dynamics and voice [3]. 

 

Figure 1.2: Biometric traits classification 

 

1.2.1 Physiological Biometric Traits  

(a) Fingerprint: These interlaced ridges and valleys on a fingertip determine the textural 

pattern. This biometric characteristic establishes uniqueness through the positions and 

directions of minutiae, which are small discontinuities created by abruptly broken or 

merged ridges [4]. The primary advantages of fingerprints as a biometrics trait are their 

high matching accuracy, low cost, multiple fingers, twin discrimination capability, and 

cost-effectiveness, making them the most widely used biometrics. As this method has 

many benefits, fingertip scanning for fingerprints is supported by smartphones such as 
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the Samsung Galaxy S9 and S9 Plus, HTC U11, Xiaomi Mix 2, Apple iPhone, Sony 

Xperia XZ2, and many more. 

  

(b) Face: The placement of facial attributes, and the shape of facial features are 

characteristics of this biometric trait that ensure originality [4]. It can work with two-

dimensional or three-dimensional images in static or moving images. It has a high level 

of user acceptance and reasonable accuracy, which means that facial images are probably 

the most frequently used biometric feature for human identification. The accuracy of this 

biometric feature is contingent upon controlled acquisition (background, light, etc.) and 

simple changes in appearance such as glasses, facial hair, emotions, and age. Face 

recognition systems operate best when the surrounding circumstances are correct [5]. 

Face recognition systems are available in smartphones such as the Samsung Galaxy S10, 

Huawei Y5 2019, Apple iPhone XS, Huawei Mate 20 Pro, OnePlus 6T, etc. 

(c) Hand geometry: The features that make this biometric trait unique are the geometric 

structure of the hand, which includes the height, width, thickness, and surface area of the 

back of the hand and fingers. Commercial hand geometry-based verification systems 

capable of operating in highly hostile environments are simple to use and have a high 

level of user acceptance. Hand geometry information may not be invariant throughout a 

child’s growth phase. Individuals' jewelry (e.g., rings) or dexterity impairments (e.g., 

arthritis) may complicate retrieving accurate hand geometry information. A hand 

geometry-based system is too large to fit in a smartphone or even other devices like 

laptops. 

(d) Iris: The iris is the annular region, surrounded by the pupil and sclera (eye white) part 

of the eye. The complex texture pattern of the iris (i.e., the colored part of the eye: Iris 

Code, over 200 points) is the feature that ensures individuality. The Iris of an individual's 

eyesight is distinctive, and even the irises of identical twins are different. Iris-based 

recognition systems have high accuracy and low sensitivity to outside influences. Early 

iris-based recognition systems required considerable user participation and were 

expensive; the newer methods have become more user-friendly and cost-effective. 

Smartphones with built-in iris scanners include the Itel it1520, Samsung Galaxy S9 and 

S9+, LYF Earth 2a, and TCL 560, amongst other models.  
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(e) Retinal scan: The retinal scan is the distinctive pattern of blood veins in the human 

eye’s retina. Each individual's retinal scan is unique. This biometric characteristic is 

challenging to obtain and requires considerable cooperation from the subject for the 

acquisition of the sample. Age-related eye illnesses such as cataracts can complicate the 

capturing process [6]. 

 

Figure 1.3: Physiological biometrics traits (a) Fingerprint (b) Face (c) Hand 

geometry (d) Iris (e) Retinal scan (f) Ear and (g) DNA. 

(f) Ear: Ideally, the shape and structure of an individual’s ear tissues make them suitable 

for use as a biometric for authentication purposes. It is not easy to recognize an ear 

covered with hair. On the other hand, the ear contains a small amount of biometric 

information, making it unsuitable for use with huge populations. 

(g) DNA: Deoxyribonucleic acid (DNA) is the ultimate unique code for individuality. 

Only identical twins share the same DNA sequence. Any human body tissue can serve as 

a source of DNA for research. Forensic applications frequently use DNA as a biometric. 

1.2.2 Behavioral Biometric Traits  

Behavioral biometrics is the field of study that uniquely measures patterns of human 

activities and thereby identifies the user. Behavioral biometric authentication methods 

include Keystroke dynamics, Touch dynamics, Voice, Signatures, Gait, etc. In this 
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section, we introduce some of the most common behavioral biometric authentication 

techniques. Behavioral biometric authentication methods provide several benefits over 

physiological methods. Behavioral patterns can be collected continuously without user 

knowledge. They also usually do not require any additional hardware sensors to support 

them. 

(a) Keystroke dynamics recognition: Keystroke dynamics is a behavioral biometric 

authentication technique that measures the time taken by an individual to type the 

character strings, passwords, etc. For some people, there may be considerable differences 

in how long it takes to type the password, how long it takes to hit each key, and how hard 

(pressure) the key is pressed [6]. These characteristics identify each user uniquely to the 

system like Mobile phones, personal computers, and so on.   

 

(b) Gait: Gait is a term that relates to how an individual walks. Gait does not contain a 

high amount of biometric data. A person's gait may change as their body weight changes 

or as they get older. 

 

(c) Voice: The voice is a biometric trait that is a combination of physiological and 

behavioral characteristics. The shape and size of the appendages involved in sound 

synthesis (e.g., vocal tracts, mouth, nasal cavities, and lips) determine the characteristics 

of an individual's voice. Additionally, voice is not particularly distinctive and may not be 

suitable for large-scale identification. A problem of voice-based recognition is that speech 

features are very susceptible to various circumstances, including background noise. While 

speaker recognition is most useful in phone-based applications, microphones and 

communication channels diminish the quality of the sound signal. 

 

(d) Signature recognition: This method uses behavioral characteristics associated with 

the act of signing one’s name. This system dynamically captures data, such as the 

direction, speed, pressure, and form of the signature, as well as the signature itself. Long 

term reliability, expense, and lack of accuracy are the primary concerns this technology 

must overcome. 
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Figure 1.4: Behavioral biometrics traits (a) Keystroke dynamics recognition, (b) 

Gait, (c) Voice (d) Signature recognition. 

 

1.3 Performance Parameters of Biometric Authentication System 

Biometric authentication systems identify two types of users: “genuine” or “imposter”. 

A biometric authentication system determines whether a user is authentic or a forger. In 

the case of each of these two decisions, there are two conceivable outcomes: the decision 

is either true or false.  The acquisition of biometric characteristics is affected by factors 

(such as sensor imperfections acquisition environment conditions, and the way users 

interact with the sensor) in that case the two samples originating from the same user’s 

biometric subject are generally not similar which can result in errors. 

The performance of a biometric authentication system is generally measured by the below 

mentioned error rates:  

1. False Acceptance Rate (FAR): FAR is a metric that indicates how often the system 

identifies an imposter individual as a genuine user.  

                  𝐹𝐴𝑅 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(%) 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 > 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
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2. False rejection rate (FRR): FRR is a metric that indicates the proportion of genuine                                                                        

users that are identified as imposters or not accepted by the system.   

 

           𝐹𝑅𝑅 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(%) 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑠𝑐𝑜𝑟𝑒 < 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

                               Figure 1.5: FAR and FRR rates are defined by genuine  

        and           imposter distributions 

 

3. Genuine Acceptance Rate (GAR):  The GAR is a metric that indicates how 

precisely the system determines a subject to be genuine.   

 

       𝐺𝐴𝑅 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(%) 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑠𝑐𝑜𝑟𝑒 > 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

4. Equal Error Rate (EER): EER is the most critical metric for evaluating a 

recognition system's performance. It ensures an equal number of false acceptance 

and rejection errors. In the biometrics literature, it is customary to compare the 

efficiency of proposed matching algorithms using this indicator. The efficiency of 
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the algorithm improves as the EER decreases. The EER value is the point at which 

FAR and FRR values equalize. 

1.4 Biometric Authentication System in Smartphones       

Last decade has seen many evolutions in smartphones with touch displays, bigger screens, 

large memory, and processors with high capability. The most powerful and advanced 

systems for smartphones in this decade are Android and iOS, developed by Google and 

Apple, respectively. In the report released from statcounter between June 2021 to June 

2022, the mobile smartphone operating system market share worldwide from these 

smartphone platforms was 99% with Android (72%) and IOS (27%) [7]. As per the report 

from counterpoint research, there were 1.43 billion smartphones sold in the year 2018. 

According to a report from Strategy Analytics, major players such as Samsung which sold 

291.3 million smartphone units, and Apple sold 215 million smartphones worldwide.  

Smartphones have a huge impact on people’s daily lives and are not limited to 

calls and messaging. Its utility has increased manifold with the availability of a huge 

number of diverse applications available for the user, including social networking, 

entertainment, shopping, and financial transactions. Smartphones today store and process 

a large amount of private and financial data, which can cause serious loss when it falls 

into the wrong hands. Therefore, a strong user authentication system is a critical 

requirement in smartphones.  

Traditional authentication approaches in smartphones, such as PIN, password, and 

pattern, are prone to various attacks including shoulder surfing, guessing attacks, brute 

force attacks, and dictionary attacks [8][9]. Biometrics such as the face, fingerprints, 

voice, and iris are some of the authentication solutions that are the recent trends in 

Smartphones. It utilizes a physiological characteristic of the user that needs to be 

presented at the time of authentication; hence, it cannot be guessed or attacked through 

brute force and eliminates the possibility of shoulder surfing. However, face recognition 

also has several limitations, such as low light accuracy, spoofing attacks using 

photographs, and user inconveniences [10]. The adoption of behavioral biometrics-based 

systems for user authentication is possible from keystrokes, touches, and tapping patterns 

on a mobile device. Behavioral biometric methods have various advantages over 

physiological biometric methods, including the ability to gather behavioral patterns 
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continuously and without user knowledge; they also do not require any additional 

hardware sensors, which gives them an advantage. 

1.5  Fuzzy Logic in Biometric Authentication Systems     

Fuzzy logic is used in cases where an absolute measurement cannot be provided for a 

quantity [11]. This enables the modeling of ambiguous data. For example, a temperature 

that is 0.3 units warm and 0.7 units cold can be equated to the imprecise term "fairly cold."  

In biometrics, fuzzy logic can be used to deal with the quality of samples that are affected 

by external factors (for instance, low-light conditions while taking pictures), and noise in 

the input sample collected (for instance, fingerprint samples impacted by dust, cuts, etc). 

It can also be applied in a multi-modal biometric system to do fusion of decisions made 

in individual biometric modes, thus improving the decision-making capabilities of the 

system [12]. 

Behavioral biometrics, by their very nature, are subject to variations. One of the primary 

sources of the variations is the inexactness of human behavior itself. Other sources of 

variation could be external and environmental factors. For example, the user’s hand could 

be affected by sanitizer, dust, oil or grease, different kinds of gloves, and so on. This can 

add variations to the input presented by the user during the authentication phase resulting 

in high false-negative cases. In such scenarios, the conventional machine learning based 

classifiers may not be decisive and fail to handle the test input because their network is 

not trained for all variable factors.  To handle such a situation, we can train a fuzzy 

classifier to minimize the effect of variable factors on authentication accuracy. 

Another example is masked face recognition. Generalized training for masked faces isn’t 

feasible because there is a very high degree of variability in the masks themselves as well 

as their ways of wearing them. Such variable factors reduce the accuracy of face 

recognition. This leads to the occurrence of high false negatives.   

 

1.6 Challenges in Biometrics               

Apart from their simplicity and integration capabilities, the fundamental advantage of 

passwords and tokens over biometrics is their cancellability. Biometric characteristics 
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can't be revised, unlike passwords and tokens, because they can’t be removed from the 

owner and replaced by other traits.  

Unimodal biometric authentication systems are those that use a single biometric modality 

to identify an individual. A lack of invariant representation, circumvention, and 

universality are common problems with biometric authentication systems because there 

isn't much information in the samples used for biometrics [13]. When more than one 

biometric trait or sensor is used to obtain biometric data, and the system makes the 

decision by combining the information from more than one source [14], it is referred to 

as a multimodal biometric authentication system. 

Fingerprints or facial recognition-based systems may not be available due to the use of 

hand gloves or face masks, particularly in healthcare environments and COVID-19 

pandemic situations. Facial recognition based authentication is also prone to spoofing 

with images and photographs, and reduced accuracy in low light. Fingerprints are known 

to fade away in the working population that uses the palms, especially if they do heavy 

work. Fingerprint authentication also fails with wet, wrinkled fingers. 

Like all authentication techniques, biometrics also suffers from the problem of 

specificity-sensitivity tension. Authentication requires high sensitivity, but it comes at the 

cost of reduced specificity, making it prone to focused attacks. Because of these reasons, 

there is always a need for multimodal biometrics. Multimodal biometrics means that 

multiple biometric features are used to improve the overall sensitivity and specificity of 

the authentication system.  

When compared to unimodal biometric approaches, multimodal biometric methods 

provide superior performance in terms of accuracy, dependability, and success rate. Most 

of the available work explores a single-modal biometric approach for user authentication 

in smartphones. Multimodal systems are mostly not considered because of the complexity 

of the fusion of two different biometric traits in real-time in smartphones.   

Over the last few years, the use of biometric-enabled mobile devices has gone up many 

times [15]. However, there are different kinds of problems that arise when you use mobile 

devices (smartphones, tablets, and pads) that have biometric security during pandemics 

like COVID-19 [16][17][18] when an individual has to cover their face with a mask[19] 

and use hand gloves in public places to protect against the virus. In such situations, the 
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use of traditional biometrics (like face recognition, and fingerprint) in smartphones 

becomes difficult. 

1.7 Research Objectives             

The basic aim of this research work is to provide a biometric authentication system for mobile 

phones while the input samples are impacted by external factors (like – hands with gloves, 

face masks, and sanitized hands). The goals of this work are as follows:   

1. To propose a biometric authentication framework that can authenticate the 

users, while the input samples are impacted by external factors (like hands with 

gloves, and wet hands) and contextual factors (like user location and connected 

network provider).  

2. To propose a multimodal behavioral biometric authentication system useful 

during the COVID-19 pandemic situation while the user input samples are 

impacted by external factors like water, sanitizer, and hand gloves. It’s difficult 

for a legitimate user to authenticate using conventional biometric authentication 

methods like fingerprint recognition with a high rate of success during the 

COVID-19 pandemic situation while their hands are either covered with gloves 

or wet due to frequent sanitization.  

3. To study the various behavioral biometric-based techniques and propose a 

method for recognizing mobile phone users on basis of their keystroke typing 

patterns using machine learning and fuzzy logic classifier.  

4. To propose and investigate a method to recognize faces covered with a mask.     

 

1.8   Thesis Organization 

The thesis chapters are structured as follows: 

 

Chapter 2 aims to provide a comprehensive insight into the literature review in the field 

of study. Literature studies related to biometrics in smartphones, behavioral biometrics, 

external factors affecting smartphone authentication, and research motivation are 

discussed. 
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Chapter 3 introduces the framework of a multimodal biometric authentication system, 

which can handle the input biometric samples that are impacted by external and 

contextual factors.   

 

Chapter 4 presents an innovative multimodal behavioral biometric authentication 

system. The HandGlove mode is proposed for Smartphones considering the COVID-19 

pandemic situation when the user input samples are impacted by external factors like 

Water, sanitizer, and surgical gloves, and it's difficult for a legitimate user to authenticate 

using conventional biometric authentication methods like face and fingerprint 

recognition. The design and implementation of a multimodal behavioral biometric 

authentication system based on keystrokes and touch swipes are discussed in this chapter.  

 

Chapter 5 examines the application of keystroke dynamics on feature phones as a 

biometric framework that is both efficient and adaptable. In our research, we proposed a 

method for incorporating the user's typing patterns into the feature phone's security. A 

method based on k-NN with Fuzzy logic is applied to improve accuracy.   

 

Chapter 6 gives an approach for face mask recognition systems based on the HAAR 

cascade and LBPH classifier. The design and implementation of the system are presented 

here.   

 

Chapter 7 concludes the thesis. The effectiveness of a new biometric authentication 

framework for smartphones is talked about, and its use during a COVID-19 like pandemic 

is also explained and talked about. The performance of face mask recognition and how it 

could be used in the future are talked about. Keystroke-dynamics-based authentication 

for mobile phones is shown to be important. 
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Chapter 2: Literature Review 

 In this chapter, we study the published literature focusing on biometric authentication 

systems for mobile phones. Many problems arise during authentication with 

conventional biometric authentication systems during the COVID-19 pandemic. For 

instance, fingerprint inputs are impacted by sanitizers or hands covered with gloves, as 

well as facial recognition is impacted by faces covered with the mask. It can result in 

high error rates and difficult for a legitimate user to authenticate. Therefore, to improve 

the accuracy of biometric authentication systems while input samples are impacted by 

such external factors (gloved hands, face masks, sanitized hands) we have proposed and 

investigated a novel biometric authentication framework.  

 2.1 Biometric Authentication System in Smartphones 

The global smartphone penetration rate reached 6 billion subscribers in 2022, according 

to Statista [20]. Another statistic [21] revealed that smartphone users are increasing 

exponentially. By the end of 2022, the number of global smartphone users is forecasted 

to reach 6.5 billion, an annual growth rate of 10.8 percent in Q2, 2021. Moreover, 

smartphone users have risen by 73.9 percent since 2016. Between 2016 and 2021, the 

overall number of global smartphone users climbed by an average of 11.84 percent per 

year, with 2017 experiencing the most significant growth. The number of smartphone 

users surged by 20.91 percent that year. This upward trend is projected to continue in the 

following years. As a result, smartphones are becoming increasingly popular as a 

necessary tool for accessing business and sensitive personal information. This has created 

a critical worldwide need for proper identification and authentication systems in 

smartphones [22][23]. Many researchers have attempted to provide innovative biometric 

authentication system in smartphones over the last decade. Mohamed Amine Ferrag et al. 

[24] discussed about the threat models, countermeasures of these threats and 

authentication schemes for mobile devices. Also, several smartphone manufacturing 

companies like Samsung and Apple have come out with commercial smartphone products 

with built-in biometric authentication systems like fingerprint [25], IRIS, and face 

recognition to provide a higher level of security. 
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2.1.1 Physiological Biometric Authentication System 

Fingerprints, faces, iris, hand geometry, retina recognition, and other physical 

characteristics that differ from person to person are examples of physiological traits 

[26][27]. Multiple smartphone manufacturing companies have played their roles in 

incorporating biometrics into smartphones. OMRON Corporation, a global leader in 

automation, sensing, and control technology, introduced the “OKAO Vision Facial 

Recognition Sensor” (Figure 2.1). A camera-equipped PDA, smartphone, or other mobile 

devices can use this face recognition technology for the first time. Mobile devices and 

their data are expected to become more secure and safe due to face recognition’s ability 

to identify and authenticate a user’s identification [28]. 

 

 

Figure 2.1: OKAO by Omron 

In a similar development, face-unlocking technology first appeared in Android 4 in 2011. 

At the time, it appeared to be a revolutionary feature. Unfortunately, it was a mediocre 

feature that did not have much security. It could be readily unlocked by using a photo of 

the person. When you register your face with an Android based smartphone, the device 

will take a 2D photo of your face and store it [29]. However, technology has progressed 

significantly since that time. 
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Figure 2.2: First Face unlock Android phone  

Apple introduced Face-ID using face recognition on the iPhone X for the first time in 

2017. The popularity of face-ID has led to various other Android-based smartphones 

introducing face recognition for user access. However, face recognition also has several 

limitations, such as low light accuracy, spoofing attacks using photographs, and user 

inconveniences [30].        

In Japan, Fujitsu’s Arrows NX F-04G smartphone was released, making it the first in the 

world to include built-in iris-scanning technology. The iris-scanning functionality, 

dubbed Iris Passport, was the prominent distinguishing feature. After completing the 

initial registration, the smartphone could be unlocked in half a second using an iris scan. 

Iris recognition could also substitute a password in any device’s applications [31]. 

 

Figure 2.3: Fujitsu’s Arrows NX F-04G smartphone 
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The Aadhaar biometric device using iris recognition technology was included with 

Samsung’s Galaxy Tab Iris which was launched in 2016. The Galaxy Tab Iris’s simple-

to-use biometric technology was developed to support India’s Digital India project [32], 

aiming to use technology to ensure that everyone has access to financial inclusion 

benefits. When applied in a secure device, the most recent iris recognition technology will 

give an integrated solution that will help minimize the challenges of using separate 

biometric identification devices. 

 

Figure 2.4: Samsung Iris Scanner [32] 

 

Among biometric identification technologies, fingerprint sensors are the most common. 

Pantech’s GI100 was the world’s 1st fingerprint phone when it was launched in 2004. 

Toshiba was the company that made fingerprint scanner phones popular. The Toshiba 

G500 and G900 were released and incorporated fingerprint scanners. HTC soon followed 

suit, releasing the HTC P6500 just a few months later. As the world’s first fingerprint-

sensing mobile phone, Toshiba launched the G500 and G900 in 2007 [33]. 
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 (a) (b) 

Figure 2.5: (a) Pantech GI100: The World’s 1st Fingerprint Scanner Phone; (b) 

Toshiba G500 

Users of the most recent smartphones can unlock their devices using various biometric 

verification techniques, including facial recognition, fingerprint scanning, and iris 

recognition, which shows how far mobile phone technology has progressed. Ashraf El-

Sisi [34] designed a software application in Matlab and C# to implement algorithms for 

enhancement, minutiae extraction and matching processing that will be used as a method 

of identifying matching fingerprints, they used Gabor Filter for image enhancement. The 

method of authentication is constantly improving, with more powerful sensors and 

algorithms reducing false acceptance rates (FAR) and limiting hacker attacks.                  

   Face Recognition is a technique of biometric authentication of an 

individual based on the visual pattern of their face. Today’s world necessitates modern 

security measures like facial recognition that can be used for several purposes, 

particularly in presence of a face mask. For this, Hariri [35] proposed a quantization-

based deep learning method called “Bof” paradigm in association with the Multilayer 

Perceptron (MLP) classifier. This proposed technique was responsible for improvising 

the quickness and accuracy of the rapid technological methods to use the same in 

applications like online surveillance, video retrieval, etc. A similar technique called 

MAFA was proposed by Shiming Ge et al. [36] combined with CNN as well as a locally 

linear embedding (abbreviated as LLE) algorithm. This technique was systematically 

implemented using a mix of classification and regression tasks, which made it possible to 

discover and fine-tune potential areas of the face. With the first automated system based 

on a feature vector of a person’s face, Kanade [37] made further breakthroughs in 1977. 
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Sirovich et al. [38] developed principal component analysis (PCA) with feature extraction 

in 1983. The next technical advancement came in 1991 in Eigenfaces [39]. Local binary 

pattern analysis (LBPH) was developed in 1994 for texture recognition and was 

subsequently revised for facial recognition by adding histograms [40][41]. In [42], Kwak 

and Pedrycz proposed an extension to the Fisherface approach developed by combining 

Linear Discriminant Analysis (LDA) along with fuzzy integral as well as wavelet 

decomposition. It was able to recognize faces in a variety of lighting conditions, 

something that the eigenface method [43] could not do. Even to the present day, this 

domain has been continuously evolving, with new technologies ranging from artificial 

neural networks [44], PCA [45], and SVM [46] being added over the last four decades. 

There have been numerous algorithms and works in this context, such as Ibrahim [47]. 

Suchitra et al. in their work used fuzzy logic [48] to improve face recognition results. 

People with different expressions are also detected, proving that with the help of the right 

features extracted. Face detection was done using the YCbCr color model by Yang et al., 

and features were extracted by the method of AAM (Active Appearance Model), resulting 

in an accurate recognition rate of 90–95 percent, which was further enhanced through the 

Artificial Neuro-Fuzzy Inference System (ANFIS), resulting in the rate of recognition 

with 100 percent that is incompatible with some other techniques [49]. A combined 

feature search for face detection and a DCT-based hybrid approach was proposed by 

Henckaerts [50], which was implemented on FPGA and tested with the Yale database, 

giving a reasonable recognition rate of 96.3. 

Renliang Weng et al. [51] worked on a partial face recognition system by robust feature 

set matching, they used local feature and these local feature point sets were matched by 

our Metric Learned Extended Robust Point Matching (MLERPM) approach. Dong Yi et 

al. [52] worked on a semi-automatic way to collect face images from Internet and builds 

a large scale dataset that containing 10,000 subjects and 500,000 images, they named this 

dataset to CASIAWebFace. They used 11-layer CNN to learn discriminative 

representation and obtain state-of-the art accuracy on Labeled Faces in the Wild (LFW) 

and YouTube Faces (YTF). 

Raghavendra et al. use a light field camera to examine visible light iris recognition [53] 

as well as smartphones and tablets [54], with encouraging findings. Using an improved 

OSIRIS segmentation and a feature extraction approach that incorporates deep sparse 
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filtering, an EER (Equal Error Rate) of less than 2 percent can be attained. Raja, 

Raghavendra, and Busch also investigated K-means clustering as a potential recognition 

strategy for visible light images, with the best EER of 0.31 percent [55]. There is a 90 

percent GMR (Genuine Match Rate), and 0.1 percent FMR (False Match Rate) for the 

innovative configuration for obtaining iris photographs in white LED light when using 

the Daugman method on the Nokia Lumia 1020 device [56]. Previous studies in visible-

light iris recognition by Trokielewicz et al. [57] are discussed. With iris photos obtained 

using a smartphone camera, EERs of less than 8% were achieved for two commercial iris 

recognition algorithms. Rattani and Derakhshani [58] proposed leveraging the mobile 

face biometric features to provide security for mobile devices.    

Traditional minutiae matching for fingerprint verification in smartphones was replaced 

with the SIFT (Scale Invariant Feature Transform) method by Yamazaki et al. [59]. 

Vincenzo Conti et al. [60] experimented with three algorithms for fingerprint 

authentication that is tested on LG Nexus 5. A deep analysis provided to evaluate the user 

reactions towards the delay time for acquisition, processing and verification of biometric 

authentication.  Shaveta Dargan et al. [61] did a deep survey on unimodal and multimodal 

biometric systems and analyzes the feature extraction techniques, classifiers, datasets, 

results, efficiency and reliability of the system. An open source face recognition system 

named XFace [62] for Android Operating System for face detection and ROI (Region of 

Interest) preprocessing achieved the accuracy of 93.8% with Eignefaces and 96.0% with 

FisherFaces.  

Several researchers have also studied multimodal biometric identification systems for 

smartphones. For authentication, Raja et al. [63] applied to face, iris, and periocular 

identification methods. They evaluated their system using a database of 78 people and 

appeared with an EER of 0.68 percent. But they adopted an RGB camera for iris imaging, 

which was constrained by the reflections in lighting settings. Rahman et al. [64] proposed 

a four-way multimodal framework that integrates linguistic and behavioral profiling, as 

well as dynamic keystroke features, in addition to other features. 

Swati K. Choudhary et al. [65] provides a detail review on biometric authentication 

system with a lot complexities, Multimodal biometric systems are considered for their 

reliability and result oriented performance as compare to unimodal biometric system.  
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2.1.2 Behavioral Biometric Authentication System 

A biometric authentication method that is relied on a user’s classifiable behavior [66] is 

known as behavioral biometric authentication. Researchers have attempted to understand 

and learn user behavior patterns and how they interact with systems, such as keystrokes, 

touches, and tapping patterns on the device. These behavioral biometric methods provide 

several benefits over physiological methods, such as behavioral patterns that can be 

collected continuously and without user knowledge; they do not require any additional 

hardware sensors to support them.  

• Keystroke Dynamics: 

Biometric authentication using keystroke typing patterns is built on the idea that each 

user’s pattern of typing is distinct and constant. Keystroke biometrics has been used to 

authenticate a variety of devices. Applying keystroke dynamics on mobile devices, Clarke 

and Furnell [67] investigated the application of user authentication. Their research 

differentiated users based on their key-typing patterns for 11-digit telephone numbers and 

4-digit security PINs. EERs varied from 9 percent to 16 percent in their models, which 

were built using generalized regression networks. When using “Arthematic rhythms with 

cues,” Campisi, Patrizio, et al. [68] obtained an EER of 13 percent in their research “User 

authentication using keystroke dynamics for cellular phones”. Zheng et al. [69] extracted 

data from smartphone sensors by combining 4 features: pressure, size, acceleration, and 

time. According to experimental tests, their verification method attains precision with an 

average equal error rate of 3.65 percent. When arthematic rhythms with cues were used, 

Hwang, Cho, and Park [70] attained an EER of 13 percent. They classified users based 

on their key input 4-digit password. As part of their training process, their models include 

a mechanism that only implements valid user patterns. They had 25 users engage in their 

study, and they only collected 5 patterns from each user for registration. According to 

Motwani, Jain, and Sondhi [71], the database used in their study was continuously 

developed, and the impostors weren’t engaged during the registration phase of the study. 

With only 27 features, the FRR (false rejection rate) was 3.2 percent. Sensor-assisted 

keystroke dynamic was studied by Stanciu et al. [72]. During their investigation, they 

used a variety of accelerometers, gyroscopes, and movement sensors. In their 

investigation, 20 people actively participated, and the researchers collected keystroke and 

sensor data from the Samsung Nexus S phone in a properly controlled environment. 
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According to their findings, basic keyboard authentication is susceptible to attack, but 

they achieved superior outcomes against statistical attacks when sensors are used. Huang 

et al. [73] attained an EER of 7.5 percent for Android-based smartphones. They built their 

model using statistical classification methods. They created an Android application to 

gather keystroke data on the client side and a database and authentication engine as a web 

service to gather information on the server side. Their experiments comprised 40 people 

ages ranging from 22 to 55 years. 

Sowndarya Krishnamurty et al. [74] discussed about the behavioral access on keystroke 

dynamics that captures the user's behavioral biometric and applied machine learning to 

classify them. They also applied minimum redundancy maximum relevance (mRMR) 

feature selection to increase the classification performance metrics. A freely typed text-

based Keystroke dynamics-based authentication (KDA) [75] method for mobile devices 

based on free text, accelerator, coordinate, and time which yields an error rate of <1% 

with only one reference keystroke set. Nataasha Raul et al. [76] had reviewed the 

keystroke dynamics methods and concluded that there is a need to strengthen the 

keystroke dynamics dataset which has all essential features. Also an efficient algorithm 

is required to obtain high accuracy to make authentication effective, as the performance 

of biometric keystroke authentication is still an open research. 

Teh et al. [77] conducted a study in which they gathered information from 150 subjects 

and divided it into 3 packages of fifty each. Subjects are required to enter the same string 

ten times, resulting in the collection of 20 samples from each individual. During the 

subject interaction, time data and finger touch size attributes were recorded. The 

probability of a test sample was calculated using 3 matching functions. Standard deviation 

(SD), Gaussian estimation (GE), and Z-score (ZS) drift are the 3 functions. FAR and FRR 

are used to determine biometric authentication system reliability. EER values of 8.55 

percent for a 4-digit input string and 5.49 percent for a 16-digit input string are obtained 

using the Gaussian estimator (GE). Tse and Hung [78] examined their method and 

developed a dataset of 31 subjects, each of whom was required to enter a password fifty 

times. The dataset contained temporal characteristics, spatial dynamics characteristics, 

and swiping attributes. They implemented and trained three distinct RNNs using the RNN 

approach. The final findings were obtained by combining the results of each model. The 

results reveal that late fusion produces better outcomes than early fusion, with spatial 



 

23 

characteristics achieving the best result of 83.91 percent. Zahid et al. [79] discovered that 

mobile phone users used dynamic keystrokes in 2009. On the front end, they applied fuzzy 

classifier particle swarm optimization. On the back end, they created a genetic algorithm 

that distinguished 3 different user identifying characteristics. The frequency with which 

the backspace key is released determines the error rate. Also, five classifiers are used to 

train these features: Radial Basis Function Network (RBFN), Back Propagation Neural 

Network (BPNN), Kstar, Naive Bayes, and J48. This study aims to determine the user’s 

authority to access a bank account based on the PIN (Personal Identification Number) the 

user enters. Jatin Yadav et al. [80] implemented a keystroke dynamics based 

authentication system using fuzzy logic and discussed how it is beneficial as compared to 

other approaches implemented earlier, and how a continuous learning model improves 

accuracy over time. Yu Zhong et al. [81] proposed a distance metric that helps to decouple 

the correlated data, normalize the feature variations and suppress the outliers for 

keystroke dynamics data and provides the superior results as compare to traditional 

methods. 

• Touch Dynamics 

Frank et al. [82] have used the union of four features that is pressure, acceleration, time, 

and size pulled out from smartphone sensors. Experiments show that their verification 

process has an accuracy rate of 3.65 percent on average. To train different classifiers, 

including neural networks, Meng et al. [83] used touch behavioral patterns from touch 

gesture data obtained from 20 Android phone users. They also used Particle Swarm 

Optimization (PSO) to develop the neural network and reached an EER of 2.92 percent 

in their research. Elakkiya Ellavarason et al. [84] provides a data collection framework 

for touch-based behavioral biometric modalities like swipe, keystroke and signature and 

designed an android application “Touchlogger” that captures touch actions of the user on 

the mobile device. Meng et al. [85] worked on touch-dynamics-based authentication 

system that composed with 8 touch gesture features to authenticate a user on phone with 

average error rate of 2.46% with 50 users. 

Inoue and Ogawa [86] studied the Android draw-and-lock pattern to investigate user 

identification through touch screen biometrics. Users were categorized by Angulo et al. 

depending on how much time they spent inside and outside of a dot. Kim et al. [87] 

examined the difficulties of adopting palm print biometrics in unrestricted environments. 



 

24 

They suggested utilizing a local illumination normalization approach to cope with the 

problems originating from diverse backgrounds and illumination conditions. Zaidi et al. 

[88] provides a detailed overview of underpin touch-based continuous mobile device 

authentication. They discussed methods in touch data acquisition, behavioral feature 

extraction, user classification, and evaluation methods with challenges and opportunities 

for touch-based continuous mobile device. 

 

2.2 Factors Impacting Smartphone Biometric Authentication 

This section discusses a research study on factors that can impact the smartphone 

Biometric authentication performance due to external factors (like a mask). The COVID-

19 pandemic is currently affecting the entire world. People are using a variety of methods 

to stop the spread of the coronavirus. In the pandemic times to withdraw the cash from 

ATM machine there is chance of virus spread, Muhammad Irwan Padli Nasution et al. 

[89] proposed to do payment in the offline market by facial recognition instead of PIN. 

Jonathan S. Talahua et al. [90] developed a system to detect people wearing a mask or 

not from photographs. They used MobileNetV2 architecture and the OpenCv’s face 

detector. 

Numerous essential precautions must be taken to avoid contracting COVID-19, the most 

important of which is wearing a face mask. Many researchers concentrated their studies 

during the COVID-19 pandemic on whether or not people wear masks [91][92]. This 

pandemic has left us to focus more on studies that have considered “masks” as a 

requirement to fit into their face recognition systems [93]. Though the studies to improve 

face recognition have improved a lot, recognizing faces covered with masks has evolved 

into an all-new concern due to the sudden pandemic. Unfortunately, not many studies 

have been done in this area. There are only a few researches included in the next 

paragraph. 

One such major study was conducted by Wang et al. [19], who achieved a 95 

percent overall accuracy by adopting a face-eye-based multi-granularity masked face 

recognition model. To a certain extent, they addressed another insufficiency in this 

domain, which is the availability of a few public datasets for face recognition using mask 

datasets.  

https://www.sciencedirect.com/topics/computer-science/classification
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There have been negligible advancements in this regard till now. They used existing face 

recognition datasets as well as self-developed simulated masked faces integrated with 

masked faces from actual scenarios as the final database to train a face-eye-based 

recognition algorithm. Unlike the previous model suggested by Zhongyuan Wang et al., 

which involves eliminating masked face regions and afterward implementing pre-trained 

deep convolutional neural networks (CNNs) to retrieve the best attributes from uncovered 

face regions, Hariri [35] developed a revised approach that relies on throwing away 

masked regions in combination with deep learning-based features (generally forehead 

regions and eyes). Cabani et al. [94] developed a technique for resolving the challenges 

associated with recognizing masked faces using the existing facial recognition system. 

They have developed an open-source tool called MaskTheFace, which can be used to 

mask faces.            

 Xinqi Fan et al. [95] proposed RetinaFaceMask, the first high-performance single 

stage face mask detector for assisting control of the COVID-19 Pandemic. Soad Almabdy 

et al. [96] has proposed a model which investigates the performance of the pre-trained 

convolution neural network (CNN) for face biometric system with AlexNet and ResNet-

50 for extracting features and Support Vector Machine (SVM) as a classifier. Hazar Mliki 

et al. [97]  has proposed an architecture composed of two networks, first one is the region 

proposal network that generates a list of regions of interest (ROIs) and a second 

corresponds to a network that use these ROIs for classification into face/non-face. 

A table of comparisons for different techniques for recognizing masked faces has been 

covered in Table 2.1. 
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Table 2.1: Comparison of Masked Face Recognition Techniques 

Author & 

Publication Year 

Techniques used Dataset used Performance 

metric 

Wang et al. 

[19],2020 

the face-eye-based 

multi-granularity 

recognition model 

MFDD, RMFRD, 

and SMFRD 

95% accuracy 

Hariri [35], 2020 Convolutional 

neural networks 

(CNN) + MLP 

RMFRD 91.3% recognition 

rate 

Shiming Ge et al. 

[36], 2017 

LLE-CNN model MAFA- Masked 

Faces 

76.4% precision 

Cabani et al. 

[94],2021 

MaskTheFace tool 

to generate masked 

faces for better 

training of existing 

face recognition 

ML models 

VGGFace2 +38% in true 

positive rate 

(highest 

recognition rate 

achieved is 93%) 

 

2.3 Research Motivation 

We have identified the following gaps in the literature as a result of the analysis of state-

of-the-art biometric authentication system in smartphones. These research gaps have been 

examined in our study. 

Based on the analysis of the literature study, we found that the impact of external factors 

and contextual factors on biometric authentication is relatively under-investigated in 

smartphones. Moreover, the impact of the COVID-19 pandemic on conventional 

biometric authentication techniques is not been explored much. 

1. From the aforementioned literature review, we conclude that the effect of external 

factors (like the impact of hand gloves, wet hands, etc.) and contextual factors (like 

the location, time etc.) has not been studied in detail and there is a scope for providing 
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useful solution. For this purpose, our work describes the development of an 

intelligent multimodal biometric authentication system that is suitable for a variety 

of contextual and external factors.  

2. Smartphone fingerprint or facial recognition systems may not be as effective in 

pandemic situations like COVID-19, where hand gloves or sanitized hands are 

required to protect against unwanted exposure of body parts. We propose and 

investigate a biometric authentication system for smartphones that is built on the 

multimodal swipe and keystroke dynamics patterns. This gives an alternative solution 

to biometric authentication during COVID-19 pandemic situations. 

3. Feature phones are frequently keyboard-based or less advanced forms of touch-

screen mobile phones, designed for basic calling and messaging. In contrast to 

smartphones, feature phones don’t include a biometric mechanism for unlocking the 

device. According to the existing literature, there have been just a few attempts to 

design an effective biometric authentication system for low-cost feature phones. A 

biometric authentication system makes use of characteristics derived from an 

individual’s behavioral or physiological characteristics. An effective and flexible 

biometric framework can be achieved by applying keystroke dynamics in feature 

phones. We propose and investigate one such framework in this study. 

4. To curb the spread of COVID-19, every healthcare agency and civic body around the 

globe has been advised to wear masks. However, this necessary practice has posed a 

significant challenge for modern facial recognition technology, as it is applied in 

various applications, including face-identification-based attendance systems, 

security checks at city malls, airports, train and metro stations, and face unlocking 

systems in smartphones. There is a need to incorporate measures to recognize human 

faces even when wearing masks. Given the sudden challenge that human society is 

experiencing as a result of technological gaps, enhancing the performance of existing 

facial recognition systems has become a need of fundamental importance for the 

research community. Face recognition is a mature technology with many approaches 

built over the decades using different deep learning methods. These methods are 

continuously improving with advancements in the machine learning field. Face 

recognition finds significant security applications that simultaneously demand speed 

and accuracy. This requires the system to be highly optimized and efficient. In this 
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work, we propose a Face Mask recognition biometric authentication system to handle 

the COVID-19 pandemic face recognition problem when a significant part of the face 

is covered with a mask to protect from the virus. 

 

2.4 Thesis Contribution             

The major contributions from this research to various challenges of biometrics in mobile 

devices are summarized below: 

1.   A novel multimodal biometric authentication framework that has the capability to 

handle the input biometric samples that are impacted by external and contextual 

factors. A machine learning-based biometric authentication framework is 

proposed as part of the study. 

2.     To evaluate the proposed novel biometric authentication framework an innovative 

bi-modal system is proposed which can operate with high accuracy. A Handglove 

mode is proposed for smartphones considering the COVID-19 pandemic situation 

when the user input samples are impacted by external factors like water, sanitizer, 

and surgical gloves and it is difficult for a legitimate user to authenticate using 

conventional biometric authentication methods like fingerprint recognition. We 

develop a multimodal behavioral biometric authentication system based on 

keystroke and touch swipes that can also handle situations when the user samples 

are impacted by external factors like hands with gloves, water, and sanitizer. To 

test the system, data collection was performed with 197 users using an Android 

application developed on Android OS 11.0 and Samsung Galaxy S20 devices. The 

experimental results show an Equal Error Rate of 6.46% while samples are 

impacted by external factors (wet and sanitized hands).  

3.   In this work we have proposed a keystroke dynamics-based system for feature 

phones. In this work, we have utilized the user’s typing patterns to enhance the 

security of feature phones. We have applied k-NN with fuzzy logic classifier and 

achieved an Equal Error Rate of 1.88%. The experiments are performed with 25 

users on Samsung On7 Pro C3590.  



 

29 

  4.   In this work, we propose a solution for Masked face recognition system based on 

the HAAR cascade along with Local Binary Pattern Histogram (LBPH) and Fuzzy 

logic. Our work uses the Haar-feature-based cascade classifier and LBPH to 

determine the similarity between the presented face with the registered face. This 

work further goes on to address the problems due to variations that occur when 

the user wears a mask covering different areas and percentage coverage of the face 

on different occasions resulting in obvious inaccuracies resulting in too many false 

negatives or false positives depending on the threshold score. This problem is 

addressed by making use of a fuzzy-logic-based system that dynamically decides 

the “threshold confidence score” needed to pass the authentication. Our proposed 

model for masked face recognition achieves an accuracy of 86% when a Haar-

feature-based cascade classifier and LBPH are used standalone which further 

increase to around 97% when used in conjunction with a fuzzy-logic-based 

system.  

2.5 Conclusion 

In this chapter, we studied the principles of biometric authentication systems, 

especially for mobile phones as well as examined the current state of the art. We 

also highlighted the impact that the current COVID–19 pandemic has on existing 

biometric authentication systems. We structured the research problem and 

identified the tools, techniques, methods, and processes for developing an 

effective biometric authentication system using the knowledge gained from the 

review. Most of the existing work in behavioral biometric authentication uses a 

single biometric. Thus, the advantages of multimodal biometrics aren’t realized. 

Furthermore, none of the works that we studied incorporate variations in external 

factors like the use of hand gloves or sanitized hands while operating the 

smartphone. We believe that our proposed work can be an incremental 

contribution to the state of knowledge. 
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Chapter 3:  Multimodal Biometric Authentication 

Framework for Mobile Phones in the presence of External 

and Contextual Factors 

3.1 Introduction 

Various methods exist for user authentication in a smartphone device. The commonly 

deployed methods are the use of a PIN type password access, pattern type access (Figure 

3.1), and biometric type of access (e.g.  IRIS, fingerprint, facial recognition, etc.), 

behavioral biometric type of access (for example swiping pattern, tapping speed, etc.). 

Such authentication usually provides an effective way of user verification. The existing 

approaches do not sufficiently consider a real-time scenario in which the user accessing 

a device may face various real-time issues while accessing it. While performing a 

biometric authentication (fingerprint) there can be a possibility the user encounters the 

presence of water droplets/film or dust particles, which we have referred to as external 

factors, on the touch screen of the electronic device. This may result in authentication 

failures with high false negatives. Such scenarios hamper the user experience of 

performing faster and more accurate authentication since the system is interrupted due to 

these external factors and it leads to longer response time and higher error rates. Overall, 

at least the limitations of the existing approach are that they are static and are not trained 

in real-time to identify various external factors. 

Besides external factors, other contextual factors correlated with the 

authentication of the user could be, for example, user location, time, the network 

connectivity of the electronic device, or the behavioral pattern of the user, etc. The 

conventional approaches do not utilize the contextual factors appropriately while the user 

is performing authentication.  

Thus, there is a need to implement an intelligent biometric authentication 

framework that takes care of the external factors while taking advantage of the contextual 

factors. This chapter introduces the proposed biometric authentication framework and 

elaborates in detail on the role of contextual factors in selecting the modality of the 

authentication model. 
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Figure 3.1:  Pattern Lock Authentication  

 
 

3.2 Proposed Multimodal Biometric Authentication Framework  

We propose a method for authenticating the user in the presence of external and 

contextual factors. The method comprises identifying a user context from the plurality of 

contexts (user location, time, device connected, etc.). The presence of external factors 

(dust, water, glove, etc.) is determined on the touch screen from the dynamic external 

factor determination logic. An authenticating action is received from the user in the 

presence of the determined external factor. A selected authentication model is obtained 

from the trained authentication unit which is trained on the plurality of external factors, 

wherein for untrained similar clustered external factor authentication model from fuzzy 

logic is fetched. In a real-time situation, it is difficult to authenticate the user in the 

presence of various external factors for example dust, dirt, water, liquid, and gloves, 

owing to the low accuracy of authentication.  

 

 

To enable this, the proposed system performs: 
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1. Detection of type of external factor  

2. Authentication Model development and training on multiple samples. 

3. Detecting Authentication by matching with the trained model within a threshold 

range along with matching contextual factors. 

      4.  Fetching the next layer of the authentication model dynamically. 

 

Figure 3.2 illustrates an exemplary block diagram of a system for authenticating a user 

in the presence of external factors using machine learning (ML).  

 

 
 

Figure 3.2: Proposed biometric authentication system   

 

The system includes components such as a display interface unit, external factor 

determination unit, contextual factor determination unit, modality determination unit, 

authentication unit, training network, fuzzy logic controller, and feature set unit. 

 

The display interface unit (smartphone touch display) is configured to display information 

to implement the authentication process. The External Factor Determination unit includes 

various sensors to detect external factors present on the display interface unit. The various 

external factors may include, for example dust, dirt, water, liquid, gloves, or artificial lens 

on IRIS.  
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The Contextual Factor Determination unit includes, for example, CPU or one or more 

processors, and various sensors like GPS to determine contextual information of the user 

as well as of the smartphone device [98]. The contextual information or contextual factor 

of the user as well as of the smartphone device includes, for example, network 

connectivity, user behavioral pattern, user location, time, etc. For example, the contextual 

information as represented in Figure 3.3 can be network connectivity or user location of 

the user may be determined whether the smartphone device associated with the user is 

connected with a public network or office network, or home network.   

 The system dynamically detects the contextual information from the 

aforementioned set for each level of the authentication process having varying complexity 

grades. 

 

Figure 3.3: Examples – Contextual and External factors  
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Further, the display interface unit, an external factor determination unit, and a contextual 

factor determination unit form a part of an input module. 

The modality determination unit is configured to determine a single modality or multi-

modality authentication process based on the complexity grade of the authentication 

process. The complexity grade of the authentication process can be categorized as a low, 

moderate, or high complexity grade as explained in Table 3.1. 

 

Table 3.1: Modality Determination – Based on Contextual Factors, and Threshold 

Location 

Familiarity 

Network 

Familiarity 

Computed Contextual 

Confidence Score 

Complexity Modality 

High High 𝑋1 + ∆ Low Single 

High Low 𝑋2 + ∆ Moderate Dual 

Low High 𝑋2 + ∆ Moderate Dual 

Low Low 𝑋3 + ∆ High Multiple 

    

 

 

Here,  

𝑋1 ∶ 𝑓𝑖𝑟𝑠𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑋2 ∶ 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑋3 ∶ 𝑡ℎ𝑖𝑟𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑤ℎ𝑒𝑟𝑒, 𝑋1 > 𝑋2 > 𝑋3 

 

∆ ∶ Positive number, small compared to the X1, X2, and X3 thresholds, showing that 

the calculated contextual confidence score is greater than the contextual confidence 

threshold. It is an attempt to show that the choice of multi-modality in insecure 

environments (in the 2nd, 3rd, and 4th rows of Table 3.1) results in stricter 

authentication regimes. 

 

The Training Network unit can be implemented with various machine learning models. 

Figure 3.4 and Figure 3.5 illustrate an authentication model trained through the training 

unit based on the data sets for Fair samples, Not Good samples (NG) for various 

biometrics such as (keystroke and touch swipe) obtained from the feature set unit. NG 
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samples are the ones impacted by external factors like Dust, Oil, Water, Hand Gloves, 

etc.  

 

 

Figure 3.4: Trained Model – (a) fair samples (b) samples impacted with water      

 (c) samples with gloves     
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Figure 3.5: Trained model with correlated cluster  

Such clusters as mentioned in Figure 3.5 facilitate fetching the right authentication model 

out of the available lot based on the determined external factor.  

The Authentication unit is configured to authenticate the user in the presence of external 

factors by matching at least one contextual information determined by the Contextual 

factor determination unit with corresponding trained authentication models fetched from 

the Training Network unit. The authentication unit and modality determination unit form 

a part of the authentication module.  

Figure 3.6 illustrates the block diagram of the Fuzzy logic controller unit. The fuzzy logic 

controller unit includes a rule-based engine, Fuzzifier unit, Inference engine unit, and De-

fuzzifier unit. If the model is untrained for the determined external factor, then the Fuzzy 

framework is utilized to classify the NG samples. Let us consider the following cases of 

external factors (NG samples) on which Training is not performed - For example oil and 

cloth then the corresponding authentication model is fetched from the Fuzzy logic 
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controller unit. Based on the extracted features, a similar clustered external factor 

authentication model is fetched to act as an authentication model during the first 

authentication process. 

The fuzzy framework classifies the NG samples with external factors for which a trained 

authentication model is not available. The advantage of applying a fuzzy framework is to 

deal with authentication in the presence of external factors which tend to reduce the 

accuracy of authentication. 

 

 

 

Figure 3.6: Block diagram of fuzzy logic controller 

Figure 3.7 illustrates the flow chart for the proposed multimodal biometric authentication 

system while a user accessing a smartphone. It is described below.  

At Block 801: the system determines the access request received from the user 

performing authentication and determine the external factor and the contextual 

information. 

At Block 802: the contextual confidence score is computed by feeding in the contextual 

features to the context classification model to get the ‘Contextual Confidence Score’ for 

the current user’s context. 
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At Block 803: The confidence score computed at block 802 is compared to the ‘First 

Contextual Confidence Threshold’ which is pre-set by the designer. If the score is greater 

than the threshold, the system moves to block 805 otherwise it moves to block 804. 

 

 

 

Figure 3.7: Flowchart of proposed biometric authentication system  

At Block 804: The confidence score computed at block 802 is compared to the ‘Second 

Contextual Confidence Threshold’ which is also pre-set by the designer with constraint 
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(Second threshold < First threshold). If the score is greater than the second threshold, the 

system moves to block 806 otherwise, it moves to block 807   

At Block 805: the system selects a single-modality recognition model for authenticating 

the user. The system moves to block 808 with the selected modality information. 

At Block 806: the system selects a bi-modality recognition model for authenticating the 

user. The system moves to block 808 with selected modality information. 

At Block 807: the system selects a multi-modality (modality > 2) recognition model for 

authenticating the user. The system moves to block 808 with the selected modality 

information. 

At Block 808:  The system determines whether the authentication model is trained for 

the external factor. If the determination is yes, it moves to block 809 else, it moves to 

block 810. 

At Block 809: the system computes the matching score by directly using the selected 

modality model in the previous steps. It then moves to block 811. 

At Block 810: If an authentication model is not trained for the determined external factor, 

then the fuzzy logic unit is utilized. A similar clustered external factor authentication 

model based on the extracted features is extracted to act as an authentication model during 

the first authentication process. 

At Block 811: the system compares the matching score with the authentication threshold 

and if the matching score exceeds the threshold, then the user is authenticated as 

‘Genuine’ otherwise ‘Imposter’. 

 

3.3. Experiment Results 

We collected a dataset of swipe and touch dynamics from 34 users (90 samples from each 

user) during which we have also extracted features that describe the user’s context at the 

time of authentication for each sample as listed in Table 3.2. Then we partitioned the 

dataset into the training set and test set with the size ratio of 4:1. Since the total number 

of samples we collected is 3060, the size of our training set is 2448 samples and the size 

of our test set is 612 samples.  

First, we employ a  model for each user to output the contextual confidence score on that 

user’s context by inputting the contextual features, namely parameters denoting 

familiarity of user’s location and network. The network familiarity parameter is a 

multiplier with the following behavior: A known frequently used network was given the 
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multiplier of 2, a known intermittently used network was assigned a multiplier of 1, and 

an unknown network was assigned a multiplier of 0.5. This multiplier multiplies with the 

location familiarity parameter. The location familiarity parameter is the reciprocal of 

distance in kilometers from the nearest known location hotspot for the user.  

For each user, we consider the self-samples as positive samples and the other users’ 

samples as negative ones. Upon determining the confidence score of the user’s context, 

we determine the modality to be used for authenticating the user by using different 

contextual confidence thresholds.  

Table 3.2: Feature set of the proposed context model and definitions 

Features Description 

Nearest 

Distance 

Distance from the user’s current location to the 

nearest hotspot (Most visited places) of the user 

Network 

Status 

Whether the device is connected to a home/public/ 

private network 

 

 

        Table 3.3: Feature Set of the Touch Swipe pattern  

Event Features Description 

 

 

Swipe 

MajorAxis Orientation of touch area with axis along x-axis 

when touched on a screen 

MinorAxis Orientation of touch area with axis along y-axis 

when touched on a screen 

SwipeTime Duration of swipe 

Speed distance covered by swipe in touch duration 
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Table 3.4: Feature Set of the Keystroke  

Event Features Description 

 

 

 

 

 

KeyStroke 

Key1_Latency Hold Time Key1 

Key2_Latency Hold Time Key2 

Key3_Latency Hold Time Key3 

Key4_Latency Hold Time Key4 

Key5_Latency Hold Time Key5 

Key6_Latency Hold Time Key6 

Key1_2_Latency key switch time  K1->K2 

Key2_3_Latency key switch time  K2->K3 

Key3_4_Latency key switch time  K3->K4 

Key4_5_Latency key switch time  K4->K5 

Key5_6_Latency key switch time  K5->K6 

 

In our current experiments, we have limited the number of variations in modalities to one 

or two, that is, the Uni-modal authentication system and Bi-Modal authentication system. 

For the unimodal approach, we have trained the authentication system with keystroke 

features. For bimodal authentication, we have trained the model with combined feature 

space of touch swipe and keystroke dynamics. The feature set we have used for touch 

swipe and keystroke dynamics is listed in Table 3.3, and Table 3.4 respectively. For 

training the network, we have used a k-NN classifier with hyper-parameter k set to 5. 

   For these two different modalities approaches, we have utilized a 

single contextual confidence threshold for deciding the target modality. If the contextual 

confidence score crosses the threshold, we define the target modality as a single modal 

otherwise, we define it to be bi-modality. To evaluate our approach, we experiment with 
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three different contextual confidence thresholds and for each threshold, we estimate the 

equal error rate of the proposed authentication system on the test set of 612 samples. We 

provide our results in Table 3.5. 

 

 

Table 3.5: Evaluation Results based on Contextual Factors   

First Contextual 

Confidence 

Threshold 

Authentication 

Modality 

No. of samples 

assigned 

Equal Error 

Rate (EER %) 

 

0.5 

Single Modal 228 (37 %) 3.5 

Bi-Modal 384 (63 %) 3.21 

 

0.7 

Single Modal 185 (30 %) 3.51 

Bi-Modal 427 (70 %) 2.68 

 

0.8 

Single Modal 172 (28 %) 3.32 

Bi-Modal 440 (72 %) 2.56 

 

From Table 3.5, we observe that by increasing the confidence threshold, the number of 

samples that are assigned to use bi-modal authentication increases which is as expected. 

The EER of the system also decreases by increasing the threshold which demonstrates the 

effectiveness of the bi-modal system in authentication over a single modality. We 

attribute the increase in accuracy (decrease in EER) to the diverse feature set in the bi-

modal system which suggests that the authentication system accuracy improves by 

increasing the modality of the authentication features. We observe that the EER is about 

~ 3% over the entire experiment.  
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3.4 Conclusion 

In this chapter, we have introduced a novel multimodal biometric authentication 

framework that dynamically defines multi-modality for smartphone user authentication 

based on contextual and external factors. In our system, the contextual model evaluates 

the user’s context at the time of authentication to provide initial confidence of identity. 

Based on the obtained confidence, the authentication complexity or modality of the final 

authentication model is determined dynamically. In our experiments, we have considered 

two different modalities but this can be set based on the designer’s choice. For example, 

the designer might design Uni-, Bi-, Tri- Modal authentication models and utilize them 

for three different confidence levels. More details on the applications of the proposed 

biometric authentication framework are discussed in Chapter 4, where we have utilized 

the proposed multi-modal behavioral biometric authentication framework for Covid-19 

like pandemic situations.  

Published Patent: 

The work discussed in this chapter is published in patent filed in Indian patent office: 

Title: “Method and System of Authenticating a User in an Electronic Device”                              

Authors: Amitabh Thapliyal, Om Prakash Verma and Amioy Kumar                                      

Application number: 202011025242, Published Date:  17th December 2021  
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Chapter 4:  Multimodal Behavioral Biometric Authentication 

System in Smartphones for Covid-19 like Pandemic 

4.1 Introduction 

Smartphones store and process a large amount of private and financial data, which can 

cause serious loss when it falls into the wrong hands. Therefore, a strong user 

authentication system is a critical requirement in smartphones [99]. Traditional 

authentication approaches in smartphones, such as PIN, password, and pattern, are prone 

to various attacks such as shoulder surfing, guessing attacks, brute force attacks, and 

dictionary attacks [9]. Shoulder surfing is a very common attack in which the user’s 

password is compromised by peeping into the password entry screen while the actual user 

types in the password [8]. Biometrics such as the face, fingerprints, voice, and iris are 

some of the authentication solutions that are the recent trend in smartphones [100, 101]. 

Biometrics utilize physiological or behavioural characteristics of the user that need to be 

presented at the time of authentication. Hence, they cannot be guessed or attacked through 

brute force. This eliminates the possibility of shoulder surfing. 

However, biometrics also have their limitations. Fingerprints or facial recognition-based 

authentication systems may not provide accurate results due to the use of hand gloves, 

wet hands or face masks, particularly in healthcare environments and COVID-19 

pandemic situations. Additionally, facial recognition-based verification is less accurate in 

low light [10] and vulnerable to image spoofing. Fingerprints are known to fade away in 

the working population that uses the palms, especially if they do heavy work. Fingerprint 

authentication also fails with wet, wrinkled, as well as aging fingers.  

 Like all authentication techniques, biometrics also suffers from the problem of 

specificity-sensitivity tension [102]. Authentication requires high sensitivity, but it comes 

at the cost of reduced specificity, making it prone to focused attacks. Because of these 

reasons, there is always a need for multimodal biometrics. Multimodal biometrics means 

that multiple biometric features are used to improve the overall sensitivity and specificity 

of the authentication system.  

Most of the existing work in behavioural biometric authentication uses a single biometric. 

Thus, the advantages of multimodal biometrics [103, 104] aren’t realized, especially in 
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mobile phones. Furthermore, based on the literature review study we found that none of 

those behavioural biometric authentication systems for mobile phones, incorporate 

variations in user behaviour and environmental changes like the use of hand gloves, and 

wet hands while operating the smartphone. 

In this work, a new multimodal behavioural biometric authentication system using 

uniquely identifiable characteristics of touch swipe, and keystroke dynamics of the user 

is explained. Keystroke dynamics-based biometric authentication is based on the fact that 

each user’s keystroke pattern is unique and consistent. The proposed system incorporates 

the user’s touchscreen swipe and typing patterns as an additional security layer for 

authentication to increase the overall security of the system. Our experimental results 

suggest that the proposed multimodal biometrics system can operate with high accuracy 

and even wearing hand gloves or wet hands has minimal effect on the accuracy of the 

authentication system. The proposed multimodal system could improve the sensitivity, 

specificity, accuracy, and security of biometrics based authentication in smartphones. 

In this study, experiments were conducted with a range of classifiers, including 

the Isolation Forest Classifier, SVM, k-NN Classifier, and fuzzy logic classifier, to find 

which classifier gives the best authentication accuracy for Samsung Galaxy S20 device 

users. In the case of a COVID-19 pandemic, the suggested multimodal system intends to 

be a significant improvement over existing methods for biometrics-based mobile 

authentication. 

 

4.2 Proposed Multimodal Behavioral Biometric Authentication 

System for Smartphones 

In this research, we propose a new multimodal behavioral biometric system that uses 

touchscreen swipe and keystroke dynamics patterns to uniquely identify the user and 

distinguish them from imposters. We propose a multimodal behavioral biometric 

authentication system with the fusion of the touchscreen swipe and keystroke dynamics. 

The acquisition of these two biometrics is easy and user-friendly, as both of these 

modalities can be acquired in one action of the hand. Another important highlight of this 

work is that it investigates the proposed multimodal system for situations where hand are 

covered with gloves or wet hands. We propose a Hand Glove mode of authentication for 
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smartphones where the system will be triggered to authenticate a user based on 

Touchscreen swipe and Keystroke dynamic patterns.  

 

4.2.1 Hand Glove Mode 

This mode will trigger the multimodal behavioural authentication system and allow 

device access based on user acceptance by the proposed multimodal system using user 

swipe and keystroke dynamics. A depiction of the Hand Glove mode in mobile devices 

is shown in Figure 4.1. 

              

Figure 4.1: Hand Glove Mode - Multimodal Behavioral Biometric 

 

4.2.2 Modules of the Proposed Multimodal Behavioral Biometric Authentication 

System 

In this section the architecture and module details are explained of the proposed 

Multimodal behavioral biometric authentication system.   

A block diagram of the proposed multimodal behavioral biometric authentication system 

is shown in Figure 4.2. 
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Figure 4.2: Multimodal behavioral biometric authentication system. 

 

4.2.2.1 Data Collection 

The data collection for the proposed system is done through an android application that 

triggers the physical sensors to read touchscreen for swipe touch patterns and keystroke 

password-key input by users. For touchscreen swipe, accelerometer and gyroscope are 

the sensors used to acquire the user inputs. It captures the touch speed and distance of 

swipe features corresponding to each enrolled user. For keystroke, we captured the hold-

time and inter-key time as a feature for each enrolled user. In contrast to the enrolment 

module of other biometric systems, the input to the enrolment system in the proposed 

multimodal system may work in continuous enrolment mode.   

 

The enrolment system works in the background and reads the swipe pattern and keystroke 

inputs when the user logs into the system. The application was developed on a Samsung 

Galaxy S20 device using Google Android OS, 11. We collected data from 197 users (124 

men, 73 women) aged between 25 and 40 years. The data collection was done in three 

different postures: standing, sitting, and walking. The users who participated in the data 

collection process are presented with a mobile application to collect sensor measurements 

required to calculate feature values encompassing the behavioral patterns in touch-screen 
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swipe and keystroke dynamics. The users are required to swipe on the application and 

then type the password (6-digit) appearing on the screen. These steps are to be repeated 

30 times for each position and with three different scenarios of external factors namely 

dry hands, wet hands, and hands with gloves. The schematic of the data collection 

application is presented in Figure 4.3. 

For the experiments, we collected 30 patterns from each individual in each posture. We 

also asked users to provide inputs with dry hands, wet hands, with gloves as part of data 

collection, to handle such scenarios to better train the model in Hand Glove mode. In 

total, we collected 53190 samples from 197 users under the three mentioned postures and 

three external factor cases. Data collection was performed in two separate sessions for 

each user. The entire enrolment process took 2 weeks period to collect sample data from 

all 197 users.  

Data collection and all experiments were performed at the Samsung Research Institute, 

India R&D.  

 

   

Figure 4.3: Schematic of the keystroke and touch swipe behavioural data collection 

application from users. (a) Application home-screen where users set their current 

position. (b) Swipe layout where participants are asked to swipe on the screen to 

capture touch-swipe related feature values. (c) Password layout where users type the 

displayed password on the keyboard to capture keystroke dynamics. 
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4.2.2.2 Feature Extraction 

The next step is to extract uniquely identifiable features from the collected data of the 

user. The features employed by us in our experimental setup are detailed in Table 4.1. 

Table 4.1: Feature Set of proposed system and definitions  

Feature Category Features Description 

Swipe 

Touch 

MajorAxis 
Orientation of touch area with axis along x-

axis when touched on a screen 

MinorAxis 
Orientation of touch area with axis along y-

axis when touched on a screen 

SwipeTime Duration of swipe 

Speed 
Distance covered by swipe in touch 

duration 

Accelerometer A_Mean 
Mean of the set of accelerometer values 

during the swipe 

Gyroscope 

G_Mean 
Mean of the set of gyroscope values during 

the swipe 

G_SD 
Standard deviation of the set of gyroscope 

values during the swipe 

         Keystroke 

Key1_Latency Hold Time Key1 

Key2_Latency Hold Time Key2 

Key3_Latency Hold Time Key3 

Key4_Latency Hold Time Key4 

Key5_Latency Hold Time Key5 

Key6_Latency Hold Time Key6 

Key1_2_Latency Key switch time  K1->K2 

Key2_3_Latency Key switch time  K2->K3 

Key3_4_Latency Key switch time  K3->K4 

Key4_5_Latency Key switch time  K4->K5 

Key5_6_Latency Key switch time  K5->K6 
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To use these distinct features jointly in multimodal authentication, we need to fuse the 

information extracted from them. Fusion of this information can occur at various levels, 

such as feature level [105-106], match score level [107], rank level [108], and decision 

level [109]. Prior work in biometric authentication has shown that data fusion at the 

feature level results in the best accuracy. Hence, in our experiments, we employed feature 

level data fusion of the two behavior modalities, namely keystroke, and swipe dynamics. 

We combined the feature vectors of the two modalities and generated a combined feature 

vector with a total of 18 features. However, features extracted from different modalities 

have different value ranges; therefore, these values are normalized to represent them as a 

value from 0 to 1. We employ the min-max normalization, which maps the minimum of 

a feature to zero, the maximum to one, and everything else to a decimal between 0 and 1 

[110]. Given a set of N feature vectors 𝑥1, 𝑥2,…𝑥𝑁 for the𝑗𝑡ℎ feature, we normalize them 

as follows:   

 

𝑥𝑖𝑗,𝑛𝑜𝑟𝑚 = 
𝑥𝑖𝑗− 𝑥𝑚𝑖𝑛,𝑗

𝑥𝑚𝑎𝑥,𝑗− 𝑥𝑚𝑖𝑛,𝑗
 (4.1) 

 

where, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are calculated as follows: 

𝑥𝑚𝑖𝑛,𝑗 = min
𝑖=1 𝑡𝑜 𝑁

𝑥𝑖𝑗    and     𝑥𝑚𝑎𝑥,𝑗 = max
𝑖=1 𝑡𝑜 𝑁

𝑥𝑖𝑗 

 

 

4.2.2.3 Model Training 

After the feature construction step, we experimented with three different classifiers 

namely 1. Isolation Forest (IF) 2. k-Nearest Neighbors and 3. Radial Support Vector 

Machine. We partitioned the collected dataset into training and test sets in a ratio of 85:15, 

and trained these classifiers on the training set. Both the training and the test sets 

contained all the variations of posture (sitting, standing, and walking).  Each model was 

trained on the combined dataset of the presence of different external factors. The external 

factors considered in our experiments are dry hands (normal), wet hands (water), and 

hands with gloves. Each classifier was trained on the combined dataset collected under 

these three external factors presence from each volunteer. Evaluation of the model 
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involves computation of the False acceptance rate (FAR), False rejection rate (FRR), and 

Equal error rate (EER). 

• Isolation Forest 

Isolation Forest works on the principle of the decision tree algorithm. It is an unsupervised 

learning technique mostly utilized for anomaly detection. This algorithm recursively 

generates partitions on the datasets by randomly selecting a feature and then randomly 

selecting a split value for the feature. Anomalies are patterns that have features that are 

dissimilar to the usual cases. It exploits the fact that anomalous observations are few and 

significantly different from normal observations. In other words, it works on the logic that 

outliers take fewer steps to isolate compared to the normal point in any data set. 

Let s: anomaly score at instance t. 

p(t): length of a point t is computed by the number of edges t covered in the tree until the 

traversal is terminated.  

k(m): average of p(t) for a specified m (see Equation 4.3 below). 

E(p(t)): mean of p(t) from a group of isolation trees. 

Then,    

 

𝑠(𝑡,𝑚) = 2
−
𝐸(𝑝(𝑡))

𝑘(𝑚)  (4.2) 

  

where,   

 

𝑘(𝑚) = 2𝑝(𝑚 − 1) −
2(𝑚−1)

𝑚
 (4.3) 

Using the anomaly score, we can make the following assessments:  

a) Values close to 1 are considered an anomaly  

b) Values smaller than 0.5 are considered normal 
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In training, Isolation Forest creates binary search trees for different features. They are 

called Isolation Trees. The test phase entails the following steps: 

• Find the path length of the data point under test from all the trained Isolation Trees 

and find the average path length. The higher the path length, the more normal the 

point, and vice-versa. 

• Based on the average path length, calculate the anomaly score. 

• Based on the anomaly score, we decide whether the given sample is anomalous or 

not by choosing a value of contamination. The contamination was tuned to arrive 

at the Equal Error Rate. 

 

• k-Nearest Neighbors 

k–Nearest Neighbor (k-NN) is a simple supervised classification algorithm that can be 

applied to both classification and regression problems. For each query sample, it finds the 

k number of nearest samples from the train set in the feature space according to a distance 

metric. We train a k-NN classifier model on our dataset as a multi-class classification 

model assigning a label of target identity for the test sample. We divide the entire dataset 

into training and test sets randomly at 85:15 proportion and classify the test samples and 

record the FAR, FRR, and EER of the model for evaluation. By tuning the hyper-

parameters using the validation set, we used k=5 in all our experiments with k-NN. For 

the distance metric, we used the Minkowski distance metric which is computed as 

follows. 

 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛 ) and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) be the two points in the feature space. 

Then the Minkowski distance of order 𝑝 between those two points is given by: 

 

𝐷(𝑋, 𝑌) = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝 (4.4) 

A suitable order (p) is chosen by experiment which gives the lowest Equal Error Rate. 
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• Radial Support Vector Machine 

Support Vector Machines are primarily used for binary classification problems. They 

generate the hyperplanes to separate/classify data in some n-dimensional feature space 

into different regions. The non-linearity in the data are accommodated into SVM to work 

well on high dimensional and linearly inseparable data using a mechanism called the 

kernel trick. 

The kernel trick is based on the idea that the SVM need not compute the exact form of 

the non-linear transformations applied to each data point to increase its dimensionality, 

as long as we have a way to compute the transformed inner products directly from the 

original inner products and utilize them in the SVM. The kernel function is the function 

which computes the transformed inner products of the factors from the original inner 

products. 

In our experiments, we used the radial kernel function, which is of the form, 

 

𝐾(𝑋, 𝑌) = 𝑒𝑥𝑝 (−𝛾 ∑ (𝑥𝑗 − 𝑦𝑗)
2𝑝

𝑗=1 ) (4.6) 

where, γ is the hyper-parameter that controls the smoothness of the decision boundary and 

in turn regularizes the model. The regularization strength of the model is inversely 

proportional to γ. We choose a suitable value for γ which gave the lowest Equal Error 

Rate in our experiments. 

Generally, SVM don’t support multi-class classification in its normal form. For multi-

class classification, the basic SVM principle is utilized after breaking down the multi-

class classification problem into smaller sub-problems, all of which are binary 

classification problems.  

We train the N number of SVM classifiers, where N is the number of identities/classes in 

the dataset. In our case, it is the number of individuals to be authenticated. Each classifier 

learns the decision boundary between its specific class and the rest of the classes. For a 

new test sample, we compute the score on each classifier and decide the target class by 

combining all the scores. 
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• Fuzzification  

Behavioral biometrics, by their very nature, are subject to variations. One of the primary 

sources of the variations is the inexactness of human behavior itself. Other sources of 

variations could be external and environmental factors. For example, the user’s hand 

could be affected by sanitizer, dust, oil or grease, different kinds of gloves, and so on. 

This can add variations to the input presented from the user during the training phase 

resulting in high false-positive cases. In such scenarios, the conventional machine 

learning based classifiers may not be decisive and fail to handle the test input because 

their network is not trained for all variable factors.  To handle such a situation, we fuzzify 

the input to minimize the effect of variable factors on authentication accuracy.  

A membership function for a fuzzy set A on the universe of discourse X is defined as 

𝜇𝐴: 𝑋 → [0,1], where each element of X is mapped to a value between 0 and 1. This value, 

called membership value or degree of membership, quantifies the grade of the 

membership of the element in X to the fuzzy set A.  

In our case, we are doing authentication, so each class is an individual. We introduce an 

additional variable quantifying the degree of membership of a candidate to a class 

representing an individual. In our case, the primary external variables we considered were 

wet, dry, and gloved hands. During the training phase, the degree of membership of a 

candidate was taken as input based on the distance of the candidate feature vector from 

the mean feature vector of the individual. This is done by first recording all the training 

candidate feature vectors for every individual, and then calculating the degree of 

membership of each candidate feature vector based on its distance from the mean feature 

vector. The degree of membership becomes an additional dimension of the vector. The 

enhanced feature vectors along with the degree of membership dimension are then passed 

to the SVM for finding hyper-planes of optimal separation. 

During testing, we first measure the distance of the test feature vector from the mean 

feature vector of the nearest individual. From this, we calculate the degree of membership 

of the test feature vector. The modified test feature vector including the degree of 

membership is then passed to the classifier authentication module. The training and test 

algorithm is shown in Figure 4.4. 
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Let 𝑎𝑖 represent the 𝑖𝑡ℎ feature vector for an individual and 𝑛𝑡𝑟𝑎𝑖𝑛 represent the number 

of training data samples. Then the mean feature vector 𝑎 is: 

𝑎 =
∑ 𝑎𝑖𝑖

𝑛𝑡𝑟𝑎𝑖𝑛
(4.7) 

Let 𝐷 be the distance of the furthest feature vector from the mean feature vector 𝑎. 

𝐷 = 𝑀𝑎𝑥𝑖(𝑎 − 𝑎𝑖) (4.8) 

Let 𝑑𝑖 be the distance of the 𝑖𝑡ℎ feature vector for an individual from the mean feature 

vector 𝑎. 

𝑑𝑖 = 𝑎 − 𝑎𝑖 (4.9) 

Then the membership 𝑚𝑖 of that feature vector was calculated from the following 

expression. 

𝑚𝑖 = 1 −
𝑑𝑖
2𝐷
 (4.10) 

The range of 𝑑𝑖 𝐷⁄  is [0, 1]. The range of 𝑚𝑖 is [0.5, 1]. The minimum membership value 

of the training feature vectors is 50% which happens for the feature vector with the largest 

distance from the mean feature vector 𝑎. All the other feature vectors have higher 

membership values with reducing distance from the mean feature vector𝑎. The highest 

membership value will be for the feature vector nearest to the mean feature vector 𝑎. 

The membership value 𝑚𝑖 is then added to the feature vector 𝑎𝑖. The SVM classifier is 

trained using the enhanced feature vectors. 

During testing, the membership value is calculated for the test feature vector from its 

distance to the mean feature vector 𝑎 and the test vector is enhanced by adding the 

membership value. Then, the enhanced test feature vector is passed to the SVM for 

classification. 

The authentication module makes the authentication decision that the claimant sample 

matches with the owner of the device. In this case, the claimant user fuzzified features are 

matched against the stored model, and the degree of membership for each class is 
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computed. In the matching process, the degree of membership is compared to the 

threshold value; if the membership degree is higher than the threshold value, the sample 

is classified as genuine, otherwise, it is classified as an imposter. The threshold value is 

tuned to give high accuracy and a low error rate. We found that this proposed 

Fuzzification with SVM classifier helps to significantly reduce the equal error rate for the 

authentication system. 

 

Figure 4.4 Training and test algorithm used in our fuzzy SVM based 

authentication system. 

 

4.3 Evaluation Methodology 

We evaluate the accuracy of the proposed multimodal behavioral biometric system based 

on touchscreen Swipe and keystroke dynamics. We employ different binary classifiers 

such as Isolation Forest, k-NN, SVM, and fuzzy logic based SVM Classifier.  

Training

Calculate mean feature vector for each 
individual

Calculate distance of all training candidate 
feature vectors from the mean feature vector

Enhance each candidate feature vector by 
adding a dimension denoting its membership 
to the individual class based on its distance 
from the mean feature vector of that class

Pass the enhanced candidate feature vectors to 
an SVM for finding hyper-planes of optimal 

separation

Testing

Calculate distance of the test feature vector 
from the mean feature vector of the nearest 

class

Enhance test feature vector by adding a 
dimension denoting its membership to the 

individual class based on its distance from the 
mean feature vector of that class

Pass the enhanced test feature vector to the 
SVM for classification 
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First, we divided the subjects into two parts: one was treated as the genuine subject and 

the other as the imposter subject. In our experiment, a total of 197 users participated; for 

every mobile device, one user is the owner of the device, and his/her samples are labeled 

as genuine and the remaining 196 users are labeled as imposters. We partitioned the 

collected dataset into training and test sets in a ratio of 85:15 and trained these classifiers 

on the training set. We generated four models using four different training sets for 

different postures: sitting, standing, walking, and all postures. Both the training and the 

test sets contained all the variations in the external factors (dry hands, wet hands, and 

hands with gloves). Finally, based on the decision, the evaluation metric values were 

computed on the test data.      

We have four sets of data samples: a genuine training set, a genuine testing set, an 

imposter training set, and an imposter testing set. Once we have acquired the sample sets, 

they are used to evaluate the above metrics of the proposed multimodal behavioral 

biometric system. In the experiments with fuzzy classifier with SVM, users presented the 

inputs with non-trained / unseen external inputs such as hands with a sanitizer. 

The accuracy of the proposed multimodal behavioral biometric system was measured 

using the following metrics: 

a) The false rejection rate (FRR) is defined as the probability of a genuine user being 

rejected as an impostor. It is measured as the fraction of the genuine user’s score 

below the predefined threshold.  

b) The false acceptance rate (FAR) is defined as the probability of an impostor being 

accepted as a genuine user. It is measured as the fraction of the impostor score (a 

matching score that involves comparing two biometric samples originating from 

different users) exceeding the predefined threshold.  

 

The equal error rate (EER) is used to determine the accuracy of the biometric system. 

When both FAR and FRR rates are equal, the intersection point is the EER. The lower 

the value of EER, the higher is the precision of the biometric system.  
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4.4 Experimental Results  

In experimental results, the EER value was computed for the Isolation Forest Classifier 

from the graph for FAR and FRR values while controlling the ‘ease of acceptance’ of the 

isolation forest by varying the contamination factor, and the intersection point in the graph 

between FAR and FRR lines gives us the EER  value as shown in Figure 4.5. 

 

Figure 4.5: ROC curve plot of suggested system 

 

From Figure 4.5 the equal error rate with isolation forest is obtained at around 6.74% for 

authentication. These results are obtained on the combined dataset with and without the 

presence of external factors such as hand gloves, wet hands, etc. for both training and 

validation. We conducted experiments by including individual positions in the dataset 

separately as well as the complete dataset with all three positions.  

We also experiment with other classifiers such as k-NN and SVM and summarize our 

results in Table 4.2.  
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Table 4.2: Results of proposed Multimodal Behavioral Biometric system with 

Isolation Forest, k-NN, and SVM classifiers 

 

Classifier Posture Average EER (%) 

Isolation Forest Standing 

Sitting 

Walking 

All 

8.65 

6.55 

8.92 

6.74 

k-NN Standing 

Sitting 

Walking 

All 

4.05 

4.08 

4.76 

1.58 

SVM Standing 

Sitting 

Walking 

All 

2.04 

0.68 

2.70 

0.45 

  

As per the results mentioned in Table 4.2, we observed that SVM gave the best result of 

0.45% equal error rate when including all the positions (Sitting, walking, and standing). 

SVM is closely followed by k-NN at 1.58% and then isolation forest at 6.74% EER. The 

error rates are shown for each posture setting as shown in Figure 4.6. Classifiers gave the 

best results when all the positions are included except for the isolation forest which gave 

the best result with the ‘Sitting’ position. This shows that the presence of samples of each 

identity in diverse positions helps to form precise decision boundaries for that identity 

which further increases the identification accuracy. We note that both touch swipe and 

keystroke dynamics for all the subjects were considered in the dataset to achieve the 

results. Further, we observe that the results obtained in the ‘Sitting’ position are better 

than other positions for all the classifiers as expected because the users are generally more 

stable while in the sitting position and the variance among the different samples obtained 

will be minimum.  
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On contrary, the users will be most unstable while walking and so the variance of the 

samples would be considerably high, and thus walking position accuracy is the lowest. 

 

 

Figure 4.6: Performance of classifiers for each position (Sitting, Standing, Walking 

and All combined)  

 

We also quantitatively compared our work with the recent existing methods utilizing 

touch-swipe and keystroke dynamics behavioral patterns for authentication/verification 

in Table 4.3.   
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Table 4.3:   Comparison with existing work  

 

  Study Work Description Modality 
Average 

ERR 

N. L. Clarke et al. [67] 
Authentication using 

keystroke dynamics   
keystroke 9% to 16% 

 Hwang et. al [70] 
Arthematics rhythms 

with Cues  

   

keystroke 
13% 

 Nan Zheng [69] Tapping patterns Touch   3.65% 

Wang Y. et al. [111] 
Support Vector 

Machine 
  keystroke 8.70% 

Meng et al. [83] 
Neural Network with 

PSO 

Touch 

gestures 
2.92% 

Pin Shen Teh et al. [77] 

Gaussian, Z-Score, 

Standard deviation 
Touch 8.50% 

Ka-Wing Tse et al. [78] RNN 
Touch, 

keystroke 

Accuracy 

83.9% 

Proposed work 

SVM 

Touch, 

Keystroke 

0.45% 

k-Nearest Neighbor 1.58% 

Isolation Forest 6.74% 

javascript:;
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However, in a real case scenario, users can try to access the authentication system in 

presence of varied types of external factors. For example, in the current situation of the 

COVID19 pandemic, the user may likely try to authenticate his mobile by swiping/typing 

a passcode with hands containing sanitizer, dirt or dust, etc. In such cases, the typing or 

swiping behavioral characteristics may vary slightly due to the presence of such external 

factors. So, there is a need for a system that can recognize the true owner/ imposter even 

when the behavioral patterns are slightly varied because of external factors. Since training 

the model on the dataset under the influence of all possible external factors is infeasible 

and impractical, we aim to explore the neighborhood similarities in feature space to solve 

this problem. We argue that the behavioral features influenced by an unknown external 

factor ‘a’, will be in near neighborhood space to the behavioral features of ‘closely 

related’ external factor ‘b’. For example, the behavioral patterns influenced by sanitized 

hands will be in the near neighborhood to the patterns influenced by wet hands (from 

water) in the feature space because of the closely related physical properties of sanitizer 

and water. We utilize this contextual neighborhood to train the model to classify into 

fuzzy sets instead of sharp binary sets such that it incorporates relations between the 

‘closely related’ external factors. For this reason, we train a fuzzy logic classifier on the 

collected dataset with samples affected by only two external factors namely wet hands 

and gloves.  

We then utilized the trained fuzzy logic classifier to classify samples of the same 

individuals affected by an untrained external factor like hands with sanitizer as 

positive/negative. The results on the untrained external factor are summarized in Table 

4.4. We observe that the error rates of the traditional machine learning based classifiers 

increased when trying to evaluate an untrained external factor case. The fuzzy with SVM 

classifier gave the best evaluation results on untrained cases with a 6.46% error rate. This 

shows that our approach can minimize the effect of external factors like sanitizer, gloves, 

etc. which are common during the pandemic times like COVID-19 by making use of 

fuzzy logic.  

 

 



 

63 

Table 4.4: Validation results of the authentication system in the presence of 

untrained external factors: Hands with sanitizer 

Classifier Average EER (%) 

Isolation Forest  22.4 

k-NN Classifier  18.25 

SVM  16.5 

Fuzzy Membership with SVM Classifier 6.46 

4.5 Conclusion 

This research work investigates the situations in which fingerprints cannot be utilized due 

to hand gloves and hence presents an alternative biometric system using the multimodal 

touchscreen swipe and keystroke dynamics pattern. We propose a Hand Glove mode of 

authentication where the system will automatically be triggered to authenticate a user 

based on touchscreen swipe and keystroke dynamics patterns. The proposed system 

incorporates touchscreen swipe and typing patterns as a security layer for authentication 

to increase the total security of the system. We demonstrate use of a fuzzy classification 

with SVM to incorporate fuzziness in the authentication system, thereby reducing the 

effects of unknown external factors such as dust or sanitized hands in user authentication. 

Our experimental results suggest that the proposed multimodal biometrics system can 

operate with high accuracy and that the Hand Glove mode of authentication has a very 

limited of hand gloves on the accuracy of the authentication system. We experimented 

with multiple commonly used machine learning based classification algorithms to obtain 

the best authentication accuracy of 99.55% with 197 users on the Samsung Galaxy S20. 

This proposed work provides a framework for the implementation of a multimodal 

approach for user authentication in smartphones using touch swipe and keystroke patterns 

of users. It also provides extensive experimentation on a dataset created using a 

smartphone (Samsung Galaxy S20). The experimental results established the usability 

and importance of the presented work for smartphones.  

We use a fuzzy network to learn the patterns in this multimodal system to reduce the 

effects of hands with sanitizer in user authentication and achieved 93.5% accuracy. The 
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results are achieved with 197 users; however, it is sufficient to conclude the potential of 

the presented work for user authentication in smartphones. More extensive experiments 

on large smartphone datasets with more variations in acquisition could be a future scope. 

To further increase the scope of this work, other modalities such as application usage 

patterns, battery charging patterns, and walking patterns of an individual can be explored 

as future research work for smartphone security under a multimodal behavioral biometric 

system. 

We are able to demonstrate that a multimodal behavioural biometric classifier based on 

touch swipe, and keystroke dynamics can be suitable for authentication in low security 

applications. We are also able to demonstrate that a multimodal biometric classifier 

performs better than a single mode biometric classifier. 

One of the key takeaways from our experiments is the power of fuzzification of features 

to deal with variations in the external factors and the environment. We find that 

fuzzification reduces the error rate of touch swipe and keystroke dynamics authentication 

with wet hands or hands with gloves from 16.5% for a non-fuzzified SVM model, to 

6.46% for a fuzzified SVM model. 
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Chapter 5: Behavioral Biometric Authentication System for 

Mobile Phones Based on Keystroke Dynamics 

5.1 Introduction 

In the last decade, the use of mobile phones has increased tremendously. The growth of 

mobile phones has increased over time with rapid changes in technology like network 

growth from 2G to 5G and handset evolution from feature phones to powerful 

smartphones. As per a report from GSMA [112], there are 5.2 billion subscribers globally.  

The growth of mobile phones has also increased mobile related thefts with 183 

smartphones stolen every day between March 2015 and March 2016 in the UK itself 

[113]. Mobile phones have become high risk defrauding targets as most of the transactions 

nowadays take place through them, right from the management of bank accounts to the 

buying and selling of stocks. This raises potential questions regarding the security of 

mobile phones [114], [115].  

Nowadays, different authentication approaches have been used on handheld devices to 

ensure the security of content [116], [117]. Some of them are password, fingerprint, iris, 

face, and pattern. These approaches are now the mainstream authentication techniques 

used across all handheld and portable devices. The demerit of the existing approaches is 

that they are prone to attacks like shoulder surfing, guessing attacks, brute force attacks, 

and dictionary attacks. A relatively newer authentication method, that is pattern based 

authentication in touchscreen devices, is also prone to finger marks and smudges which 

can be used to lift the pattern sequence. As per a recent report from counterpoint research, 

there is going to be a huge demand for the feature phone market as mentioned in [118]. 

Globally, the feature phone segment is forecast to generate around $16 billion US dollars 

cumulatively in wholesale hardware revenues over the next three years. The affordability 

of feature phones is one of the major reasons why feature phones are the preferred mobile 

phone in many segments of the population in developing countries like India, Pakistan, , 

and Bangladesh. The market reports from counterpoint and shipment opportunity for 

feature phones there is a strong need to have a robust security system [119], [120] without 

any additional hardware cost. Deploying the fingerprint scanner or iris to the feature 

phone requires additional cost, memory, and high computing power in the device which 
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tends to increase the cost of the phone, therefore, such a system is not a feasible option 

for a feature phone.  

It has been observed that existing security authentication mechanisms in feature phones 

are based on the personal identification number (PIN) or password characters. Current 

security authentication provided in feature phones is prone to security attacks from 

imposters and fraudulent attackers.  

In this work, we have developed an authentication solution based on behavioral keystroke 

dynamics from the user’s learned machine learning model for feature phones that does 

not require any additional hardware support. The basic concept with keystroke dynamics 

is the capacity of the method to understand the patterns like typing patterns during 

keyboard usage from the individual and then use this as a parameter to verify the user. In 

the proposed work, the typing pattern (keystroke modality) of the user is learned with the 

k-nearest neighbors (k-NN) and fuzzy logic. The experimental data was collected on 

Samsung On7 Pro C3590 and the model was trained on the desktop PC Windows 10, by 

dividing user data into training and validation sets.  

 

5.2 Keystroke Dynamics for Feature Phones 

The behavioral biometric [121], [122] technology proposed in this research work by 

analyzing the typing pattern of the user which is also known as keystroke dynamics. 

The block diagram of the proposed keystroke dynamics authentication system is shown 

in Figure 5.1. The whole process of keystroke dynamics is divided into the following 

three steps: 1) data collection, 2) model training, and 3) authentication. 
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Figure 5.1: Keystroke dynamics based authentication system   

 

5.2.1 Data Collection 

In the proposed study, a total of 25 users aged between 22 to 42 years, have participated 

in the experiment. To capture the keystroke data input from the users, we have developed 

a mobile application for Samsung On7 Pro C3590. In our experiments, the 4-digit 

password “1976” was used and users were asked to enter the password 60-times during 

the enrolment phase at the Samsung India Noida R&D center. The data collection was 

done in two separate sessions for each user. The entire enrolment process took one week 

to collect the sample data from all the users. The keystroke data acquisition step comprises 

building character transition lists for the particular chosen keyword. The duration of key-

presses between every two characters is stored. This proposed work was designed to 

classify the users in feature phones based on the typing patterns while entering the 4-digit 

PIN key, which is based on the hold-time of key press, flight time, and the total time 

entering the PIN.  Our work utilizes the following mentioned parameters while capturing 

the data from the user: 1) keystroke latency (flight time): time taken between two 

consecutive keystrokes, 2) hold-time: time to press and release a key, and 3) total time: 

time to press first key press and last key release. The components of features that are 

utilized in this work are shown in Figure 5.2. 
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Figure 5.2: Keystroke dynamics features 

For the keyword “1976,” the input captured during enrolment is in the following format, 

with 8 features [i1, i2, i3, d1, d2, d3, d4, t ]. Where, 

dk ∶ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠 𝑓𝑜𝑟 𝑘𝑒𝑦 (𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

ik ∶ 𝑇𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑖𝑟𝑠𝑡 𝑘𝑒𝑦 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑘𝑒𝑦 𝑝𝑟𝑒𝑠𝑠(𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

t ∶ 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑘𝑒𝑦 𝑝𝑟𝑒𝑠𝑠 𝑡𝑜 𝑙𝑎𝑠𝑡 𝑘𝑒𝑦 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

 

5.2.2 Model Training 

With the help of data collected during the enrolment phase typing pattern is recorded for 

a particular password, after which the model is trained using k-NN and fuzzy logic. 

Overall, 8 features are collected as shown in Figure 5.2 including hold time, flight time, 

and total time from the first key to the last key release for the keyword “1976”. The input 

features obtained are then passed through the k-NN model and the fuzzy logic based 

training model separately and both the models are then trained using the given input 

features.  

Figure 5.3 shows how the authentication values are obtained separately from both models 

and combined to get the final authentication value. 
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Figure 5.3: Proposed Keystroke Model Architecture based on k-NN and Fuzzy 

Logic 

5.2.2.1 k-NN 

The Nearest Neighbours (NN) algorithm is widely used for conventional classification 

problems: namely, where the model predicts a class from the trained classes for the each 

of the test candidates. We used k-Nearest Neighbors (k-NN) algorithm as a classification 

method because of its wide applicability in pattern recognition and classification. 

k-NN searches for the feature value’s k nearest neighbors.  We have used 5-NN to find 

the five closest neighbors of the user’s typing patterns. The difference  between the 

claimed user typing pattern and the primary user features is determined in this algorithm 

using Euclidean distance. The Euclidean disstance is the straight-line segment between 

two locations in space. It assists in discovering the shortest path between two input feature 

vectors along the line segment connecting them. Euclidean distances between all points 

are determined, and the points with the smallest space are chosen as the nearest. Figure 

5.4 shows how Euclidean distance is used in k-NN in a pictorial representation. 

 𝑑(𝑧, 𝑧′) = √(𝑧1 − 𝑧′1)² + (𝑧2 − 𝑧′2)² + ⋯+ (𝑧𝑛 − 𝑧′𝑛)² (5.1) 

where, 

𝑧 : 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑧′: 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 

𝑑(𝑧, 𝑧′) ∶ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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In the Nearest-Neighbor algorithm, the number of degrees of freedom determines the 

number of dimensions in hyper-dimensional space. Each set of identifying features of 

typing pattern is one point in that hyper-dimensional space. 

We collected multiple inputs to train the model from each person to train the model.  We 

have multiple points plotted for each class (every class is a person in our case because our 

problem is of person identification and authentication) once the classifier training is 

complete.  

Our features include hold time, flight time, and total time, and the model is trained for a 

4-digit keyword like “1976”. As shown in Figure 5.5, the model is trained using a data 

set that includes training samples, genuine or true cases, and imposter cases. 

 

 

  

                                 Figure 5.4: k-NN using Euclidean Distance 

 

 

y 

x 
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Figure 5.5: Training - keystroke dynamics  

 

5.2.2.2 Fuzzy Logic 

Fuzzy means something that does not have crisp values. Fuzzy logic is used in the cases 

where a crisp definition cannot be provided for a quantity. As an example, a user when 

typing can have variable typing speeds, classified as fast, slow, or normal. A crisp 

definition of the quantity where the value changes from fast to normal or normal to slow 

cannot be defined in this case. Figure 5.6 shows the frequency of typing speed timings 

for a typical user, the normal typing speed has a maximum frequency that occurs in day-

to-day life while typing, while the frequency decreases as moving towards timings that 

are categorized as fast or slow. The actual values of timing will vary from person to person 

and a crisp range cannot be defined between these three classes. Such classes introduce a 

degree of fuzziness and using methods such as the k-NN algorithm fails to reliably 

classify two users with similar typing speeds. Such impreciseness can be solved by 

employing the ideas of fuzzy Logic. Fuzzy logic is used in authentication systems based 

on behavioral biometrics to provide enhanced security.  This is because, in the case of 

biometrics, a lot of data from different users can be similar to one another. In the case of a 

keystroke dynamics-based authentication system, the input features are keystroke timings 

which can vary for a single user and may or may not overlap with another user's timings.       

From Figure 5.6 we can see that it is not possible to define a single value as fast or slow 

based on typing speed of a given user. As explained in Figure 5.7 in the fuzzy logic model, 

the input properties of the keystroke timings that are initially transformed into the 
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fuzzified input that are then used by the inference engine, which is in charge of calculating 

the output for a given input based on learned data. Using the input keystroke timings, the 

rule base is generated which is used to determine the timing similarities for a test input. 

Similarity gives a degree of closeness between one typing speed timing against the 

timings from learned users and is calculated by fuzzifying the test input. Finally, the fuzzy 

output can be converted to the crisp authentication value using the available de-fuzzification 

functions such as the centroid method, or the normal max value. 

 

Figure 5.6: Timings of a participant’s keystrokes 

 

 

Figure 5.7: Function of the proposed keystroke dynamics fuzzy logic model 
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• Rule Base for User Classification 

The input to the fuzzy system are the keystroke timings from a user collected over 

time; these inputs need to be converted to their fuzzified forms  before they are 

passed through the inference engine for further processing. 

The following timings are taken into consideration when calculating the 

fuzzification function input: 

o Time of press for key (hold time: dk) 

o Time between first key release and next keypress (flight time: ik) 

o Total time from the first keypress to the last key release (t) 

The feature set for the four-character keyword “1976” is as follows:  

[i1, i2, i3, d1, d2, d3, d4, t ]. As the number of characters utilized in learning 

expands, this feature set, which is currently restricted to four-character keywords, 

may change. In this case, i1, i2, and i3 denote the time interval between releasing a 

key and stroking the following key (in milliseconds). Likewise, the values d1, d2, 

d3, and d4 indicate the duration of pressing the key. Finally, the final number 

represents the time interval between pressing the first key and releasing the last 

key (in milliseconds). 

Multiple feature sets, say 𝑛, are obtained for a given user during the learning 

phase. The values were averaged to obtain an average typing time for a single user 

for each of the three types of timings. We get the following 3 values for each input 

tuple for a single user. 

 

 (𝑑, 𝑖, 𝑡) = (∑ 𝑑𝑥
Number of key press (4)
𝑥=1 , ∑ 𝑖𝑦, 𝑡

Intervals between key press (3)
𝑦=1 ) (5.2) 

 𝑑𝑎𝑣𝑔 =
∑ 𝑑𝑘
𝑛
𝑘=0

𝑛
 (5.3) 

 𝑖𝑎𝑣𝑔 =
∑ 𝑖𝑘
𝑛
𝑘=0

𝑛
 (5.4) 

 𝑡𝑎𝑣𝑔 =
∑ 𝑡𝑘
𝑛
𝑘=0

𝑛
 (5.5) 
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where,   

n : total number of input timing feature sets for a single user obtained while training 

Finally, we calculate an upper and lower limit of the typing speeds that can be 

used as a rough estimate of the typing timing of a single user in day-to-day life. 

Threshold tl and tu are defined for every three inputs which give a rough estimate 

of the minimum and maximum value of timing for a single user and is calculated 

as a multiple of the standard deviation from the average value. This methodology 

helps to discard any outliers that may have occurred during data collection: 

The upper limit (u) and lower limit (l), 

For d: 

tld= davg- m *  σ(d) (5.6) 

tud= davg+ m *  σ(d) (5.7) 

For i: 

tli= iavg- m *  σ(i) (5.8) 

tui= iavg+ m *  σ(i) (5.9) 

For t: 

tlt= tavg- m *  σ(t) (5.10) 

tut= tavg+ m *  σ(t) (5.11) 

Here, 𝑚 ∗   σ(d) defines the 𝑚th standard deviation around the average value. 𝑡𝑙𝑘 

and 𝑡𝑢𝑘 represents the lower and upper learned threshold timings for the user, 

where k is d,i,t. These values of the threshold are used during the input 

fuzzification phase to generate an input membership function for user input. 

𝑚 is commonly taken to be 3.  However, for our purposes, we have taken the value 

of m to be 1. This is because we found that in the case of typing, it is possible that 

multiple users may have a high degree of overlap in their timings and may lead to 

false acceptance.  
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• Input Fuzzification  

The obtained threshold values in the previous step (Equation 5.6 to 5.11) are then 

used to generate an input membership function. The input membership function 

for the classes fast, normal, and slow based on the password input speed is defined 

as: 

 

 𝜇𝑘 =

{
 
 

 
 

0

𝑓𝑎𝑠𝑡
+

1

𝑛𝑜𝑟𝑚𝑎𝑙
+

0

𝑠𝑙𝑜𝑤
, 𝑖𝑓 𝑡𝑙𝑘 ≤  𝑡𝑘 ≤ 𝑡𝑢𝑘

(1−
1

|𝑡𝑘− 𝑡𝑙𝑘|
)

𝑓𝑎𝑠𝑡
+

1

|𝑡𝑘 −𝑡𝑙𝑘|

𝑛𝑜𝑟𝑚𝑎𝑙
+

0

𝑠𝑙𝑜𝑤
, 𝑖𝑓 𝑡𝑘 < 𝑡𝑙𝑘

0

𝑓𝑎𝑠𝑡
+

1

|𝑡𝑘−𝑡𝑢𝑘|

𝑛𝑜𝑟𝑚𝑎𝑙
+
1− 

1

|𝑡𝑘−𝑡𝑢𝑘|

𝑠𝑙𝑜𝑤
, 𝑖𝑓 𝑡𝑘 > 𝑡𝑢𝑘

 (5.12) 

 

 

where, k= d, i, and t and the membership function is calculated for d, i, and t 

respectively. The membership function calculations are partitioned based on the 

thresholds. The membership function will have value 1 for normal class when the 

timings are between the upper and lower threshold value and zero for fast and 

slow classes. Similarly for cases when the timing is less than or greater than the 

threshold the degree of membership is calculated as shown in (5.12). 

  

For any incoming test input [ti1, ti2, ti3, td1, td2, td3, td4, t𝑡 ], (𝑑, 𝑖, 𝑡) is calculated 

as shown previously in (5.2). The membership values are calculated for three 

values d, i, and t, using the membership function as mentioned in (5.12). For an 

incoming test input, we have obtained three membership functions 𝜇𝑑, 𝜇𝑖 and 𝜇𝑡. 
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• Inference Engine  

After converting the input to fuzzified values the inference engine uses the rule base 

to determine the similarity of the input to the learned user timings. Based on the 

closeness of the features to the limits of the authentication values, the similarity 

function can be defined as mentioned in (5.13). 

 𝑠 = (
(∑(𝜇𝑘))

3
) (5.13) 

  

where, 

                         μk=input membership function with k=d, i, t 

                         s =represents the similarity, 0<s<1 

 

• Fuzzy Output 

Finally, after applying keystroke dynamics timings and calculating the score, the 

inference engine will calculate the possible authentication value based on the current 

learned preferences, and based on a threshold of similarity ‘𝑠𝑙’, ‘𝑠𝑢’ the authentication 

values are generated, where 𝑠𝑙 is the lower limit and 𝑠𝑢 is the upper limit for similarity 

thresholds. A similarity value below 0.9 times sl of means no authentication, while if 

the similarity is greater than 1.1 times of 𝑠𝑢 the user is fully authenticated. Using a 

range instead of strict values of 𝑠𝑙 and 𝑠𝑢 helps to achieve the desired fuzziness by 

removing any strict crispiness in the threshold values. For in-between values of 

similarity, authentication values are defined using the output membership function as 

shown in (5.14). Values for the 𝑠𝑙 and 𝑠𝑢 can be set based on the learning from the 

previous data. Typical values for 𝑠𝑙 are 0.3 to 0.5 and for 𝑠𝑢 are 0.6 to 0.8. Similar, to 

the input function an output function for the classes NoAuth, ∂Auth, and FullAuth 

based on the fuzzy degree of authentication can be defined as shown in (5.14): 
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 𝜇𝑜𝑝 =

{
 
 
 
 

 
 
 
 

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

1

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓(1.1 ∗ 𝑠𝑙) < 𝑠 ≤ (0.9 ∗ 𝑠𝑢)

1

𝑁𝑜𝐴𝑢𝑡ℎ
+

0

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠 < 𝑠𝑙

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

0

𝜕𝐴𝑢𝑡ℎ
+

1

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠 > 𝑠𝑢

1−
𝑠−𝑠𝑙
0.1∗𝑠𝑙

𝑁𝑜𝐴𝑢𝑡ℎ
+

𝑠−𝑠𝑙
0.1𝑠𝑙

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠𝑙 ≤ 𝑠 ≤ 1.1𝑠𝑢

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

𝑠𝑢−𝑠

0.1𝑠𝑢

𝜕𝐴𝑢𝑡ℎ
+

1−
𝑠𝑢−𝑠

0.1∗𝑠𝑢

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓0.9𝑠𝑢 ≤ 𝑠 ≤ 𝑠𝑢

 (5.14) 

 

Based on the similarity value s, the membership function for the output µop, is 

calculated as shown in (5.14). Three classes have been defined for the 

authentication membership function: 1) no authentication, 2) partial/strict 

authentication, and 3) full authentication.             

Instead of using crisp similarity thresholds for sl and su the authentication 

membership values are generated by varying over a range which helps to achieve 

the desired fuzziness in the output membership function. The partial 

authentication decreases as the reliability/similarity increases while at the same 

time partial authentication membership increases, similarly in the case of partial 

and full authentication the membership values change gradually over a range of 

similarity values. 

 

• Crisp Output  

From this approach, finally, the output can be converted into de-fuzzified output 

by taking the max of the three outputs as defined in (5.15). 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑚𝑎𝑥  (𝑎, 𝑏, 𝑐)    (5.15) 

where, 

a : membership value for no authentication 

b : membership value for partial authentication  

c : membership value for full authentication  
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5.2.3 Authentication 

There are two phases in the authentication system-enrolment and login phase. In the 

enrolment phase, the user keystroke dynamics are learned by the classifier. The final step 

after model training is authentication. Both the trained classifiers separately generate the 

authentication results which are then combined to generate the final authentication value. 

For authentication using k-NN classification, the trained classifier is used to calculate the 

nearest distance of the test sample from all of the training samples in that hyper-

dimensional space. Once the nearest distance of the testing sample is calculated, it is 

checked with the permissible threshold value for that keyword and if the value is outside 

the limits of the threshold, the test sample is marked as an unrecognized typing pattern 

and the user is classified as an imposter.  

 

For the fuzzy model, the similarity is calculated for the user and output authentication 

values are generated for the user. The user is considered to be authenticated if the 

authentication value is obtained as full authentication. A value of no or partial 

authentication is considered as no authentication in this case. Figure 5.8 shows a basic 

flow chart when an unknown user tries to access the mobile app or log in to the device. 

Even when the unknown user knows the password, the proposed system checks the 

behavioral characteristics of the keystroke input pattern and disallows access to the 

imposters. In this way it provides an additional layer of enhanced security. 

 

When setting a 4-digit PIN, the timings for the user are captured feature vector is 

created with it. This feature vector is then passed through the k-NN classifier for training. 

The fuzzy classifier also learns threshold values for the lower and upper typing timings 

for the user. During the login phase when a similar timing feature vector is obtained for 

the candidate user and passed through the learned classifier to obtain the authentication 

output. Similarly, the input is converted to a fuzzified input, and then using the fuzzy 

inference converted to fuzzified output to finally obtain the crisp output result. 
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Figure 5.8: Schematic of proposed keystroke dynamics 

 

5.3 Experiment Results  

Experiments were performed for 25 different users with different acceptance thresholds. 

The authorized user keyed in a 4-digit PIN as input. We recorded 60 patterns from each 

user.   
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Table 5.1 represents a comparative evaluation of accuracy parameters performed between 

our proposed k-NN model and the improved version of our model when fuzzy logic is 

added alongside the k-NN classifier to find the final authentication value. 

 

Table 5.1: Comparison of results k-NN Vs k-NN with Fuzzy Logic  

User Age Gender k-NN k-NN with 

Fuzzy Logic 

EER EER 

User1 27 Male 1.45% 1.6% 

User2 32 Male 3.65% 1.45% 

User3 27 Female 9.25% 1.5% 

User4 24 Female 2.25% 1.95% 

User5 28 Female 9.25% 1.05% 

User6 31 Male 2.20% 1.5% 

User7 42 Male 3.00% 1.39% 

User8 25 Male 1.45% 1.00% 

User9 29 Male 5.25% 1.44% 

User10 22 Male 5.90% 1.35% 

User11 22 Female 2.9% 1.95% 

User12 23 Female 2.1% 1.1% 

User13 24 Female 1.6% 1.20% 

User14 25 Male 2.6% 1.90% 

User15 22 Male 1.46% 1.1% 

User16 23 Female 2.19% 1.6% 

User17 24 Female 2.0% 1.95% 

User18 23 Male 2.3% 2.0% 



 

81 

User Age Gender k-NN k-NN with 

Fuzzy Logic 

EER EER 

User19 22 Male 2.04% 4.2% 

User20 23 Female 0.8% 3.45% 

User21 22 Male 2.9% 3.5% 

User22 22 Male 1.4% 2.3% 

User23 27 Female 1.75% 1.5% 

User24 25 Male 3.0% 2.75% 

User25 27 Male 3.0% 2.35% 

 

 

In this performance evaluation, we find that using only the k-NN model over the biometric 

input features had a limitation in that the model does not take into account the variance 

in the keystroke latencies among the multiple attempts of the same user.  From the 

tabulated experimental results, we can observe that the k-NN classifier has an average 

EER of 3.03%. This is the best result we found with our experiments when the value of k 

was set to 5.  

We can observe that the EER has shown improvement and it decreased from 

3.03% to 1.88% when fuzzy logic was applied along with k-NN. Out of 25 users, we 

observed that EER results for 12 of the users were less than 1.5%. Best results were 

observed for user8 with EER 1% with k-NN classifier combined with fuzzy logic. 
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In Figure 5.9 we have the ERR for 25 users with k-NN, as well as k-NN combined with 

fuzzy logic methods. It can be observed from our experiments that the k-NN classifier 

combined with fuzzy logic have performed better for most users and their results are 

superior to k-NN classifier alone. 

 

 

Figure 5.9: EER Results of proposed system (25 Users)  

 

In Table 5.2 we summarize a comparison of our work with the existing work in keystroke 

dynamics literature. Our results are encouraging when viewed in comparison to previous 

work. 
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Table 5.2: Comparison with Existing Work 

Study Input 

Data 

# Of 

Particip

ants 

# of 

Inputs in 

Training 

Classifier EER 

(%) 

Clarke and Furnell 

[67] 

4-digit 

PIN 
32 30 Neural networks 12.8% 

Hwang et al. [70] 
4-digit 

PIN 
10 5 

Artificial rhythm 

with Cues 

4% to 

13% 

Wang et al. [111] 
4-digit 

PIN 
104 20 

Support vector 

machine (SVM) 
8.70% 

Chang et al. [123] 
200 

words 
114 3 Statistical classifier 7.89% 

Mondal et al. 

[124] 

All keys 

of 

keyboard 

53 7*105 ANN and CPANN 2.35% 

Lee et al. [125] 
6-digit 

PIN 
22 100 

Manhattan and 

Euclidean Distance 
7.89% 

Kim et al. [126] 
6-digit 

PIN 
6 100 Statistical classifier 

13.44

% 

Frolova et al. 

[127] 

alphanu

meric 
15 30 

LOF, Manhattan, and 

Euclidean ensemble 
8.00% 

Proposed Work 
4-digit 

PIN 
25 60 k-NN 3.07% 

Proposed Work  
4-digit 

PIN 
25 60 

k-NN with Fuzzy 

Logic 
1.88% 

 

We have been able to demonstrate improved authentication performance by employing a 

k-NN classifier with a fuzzy logic model to provide enhanced security when keystroke 

behavior data from different users can be overlapping. 

 

5.4 Conclusion 

Behavioral biometrics is set to play a crucial role in the future of authentication, and using 

keystroke modality can be one of the simplest ways to achieve this efficiently and 

precisely. With the current study,  EER of 1.88% is achieved by a  classification model  

with 25 users having 60 samples each.We find that the EER rate improves by using a 

combination of k-NN classifier with fuzzy logic. 

Building multiple models for different keywords that are frequent in usage can help us to 

monitor the user while typing in a general scenarios  like a chatting platform, and 
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suspicious operations over the handheld device can be tracked and prevented. To increase 

the scope of this security, other behavioral modalities such as screen touch analytics and 

walking patterns of an individual can be explored as a potential future research avenue 

for enhanced mobile phone security.   

 

Publication:  

The work discussed in this chapter is published in:                                               

Amitabh Thapliyal, Om Prakash Verma, Amioy Kumar, “Behavioral biometric based 

personal authentication in feature phones”, International Journal of Electrical and 

Computer Engineering, ISSN: 2088-8708, Vol 12, Issue 1,February 2022.  
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Chapter 6: Face Mask Recognition System Based on HAAR 

Cascade Classifier and Fuzzy Logic 

6.1 Introduction 

Face recognition market size is anticipated to grow from USD 3.8 billion in 2020 to USD 

8.5 billion by 2025 [128]. The face recognition process can be categorized into 4 steps: 

face detection, image pre-processing, feature extraction, and matching. Principal 

component analysis [38], fisher Discriminant analysis, along with support vector machine 

[46] are examples of algorithms for face recognition. 

 

The problem of masked face recognition is addressed in this study via Haar-feature 

cascade classifier, a Local Binary Pattern Histogram (LBPH) feature extractor, and a 

fuzzy logic-based decision maker.      

Face detection has been improved by the contribution of the Viola-Jones object detection 

framework [129] with the application of a Haar-feature-based cascade classifier. Haar 

features are specific types of rectangular regions and the difference between the regions 

is used to classify the subsections of an image, separating the non-objects from objects 

[130]. The modular flow diagram for face detection is given in Figure 6.1. 

 

Figure 6.1: Flow diagram of the proposed method for face detection. 

Users wear masks in different ways which change the shape and the regions covered with 

the mask, as well as the regions exposed. This has a significant impact on the accuracy of 

results as the similarity between the trained image of the user and the presented image to 

the system for authentication varies considerably. To address this limitation, we 

introduced a fuzzy logic based system that is implemented to reduce this inaccuracy. 

Fuzzy logic is an approach for computing centred on "degrees of truth" instead of the 

usual "true or false" (1 or 0) [6]. 
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In summary, this work is composed of three steps: 

• Face detection using a Haar-feature cascade classifier.  

• Feature extraction based on Local Binary Pattern Histogram (LBPH). 

• Recognition decision based on Fuzzy logic. 

 

6.2 Proposed System 

Our primary idea comprises of two improvements over most of the existing work: 

1. Modifying traditional face recognition algorithms to consider only the unmasked 

features in the top half of the face. This increased the accuracy of face recognition from 

50% to 86%. 

2. Fuzzy logic based decision maker to reduce false negative for variations 

introduced due to masking. This increased the accuracy of face recognition from 86% to 

97%. 

We trained our system from publicly available face recognition datasets containing both 

masked and unmasked images.  

As mentioned before, our methodology consists of three distinct subsystems that work 

together to complete the masked face recognition process. The first subsystem is Haar 

cascade classifier to detect human faces in the presented image. The second subsystem is 

LBPH recognizer which does the recognition and finds out the percentage similarity 

between the presented (or test) image of the user and the registered image of the same 

user. The third subsystem used in our work is based on fuzzy logic that boosts the 

accuracy of our Face recognition system by predicting the best threshold confidence score 

(or percentage similarity) so that we have minimized false positives and false negatives. 

Mask covers a considerable portion of the face but there are other exposed portions such 

as the eyes and eyebrows. These exposed features are given more weightage for 

recognition. These different weight allocations to the different exposed regions of faces 

help to capture the fact that there are a lot of distinctive features unevenly distributed in 

a face. This helped in enhancing the accuracy of recognition of masked faces from the 
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initial 50% to 86% as we kept tuning our Haar cascade and LBPH-based system. The 

proposed methodology for these sub-systems is explained in sections 6.2.1 and 6.2.2. 

 

6.2.1 Haar feature cascade classifier with LBPH recognizer subsystem 

The proposed methodology to develop the Haar feature cascade classifier with the LBPH 

recognizer subsystem is elucidated with the help of the block diagram in Figure 6.2. 

 

 

Figure 6.2: Block diagram of face recognition classification system 

 

The Haar feature cascade with LBPH recognizer sub-system is developed as a standalone 

system and can independently be applied to recognize whether the presented image 

belongs to an authentic user or not. 
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Working steps: 

1) Face Recognition Dataset: For training, we used publicly available masked face 

datasets. These datasets are namely:  

a. Masked Face Detection Dataset (MFDD): 24,771 Masked Face Images. 

b. Real-World Masked Face Recognition Dataset (RMFRD): 90,000 images 

of 525 subjects without masks and 5,000 images of the same 525 subjects 

wearing masks.   

c. Simulated Masked Face Recognition Dataset (SMFRD): 500,000 face 

images of 10,000 Subjects. 

2) Building the face recognition classifier with Haar cascade and LBPH 

recognizer: Haar features involve calculations that are performed by summing 

the pixel intensities in each region and computing the differences between the 

sums as shown in Figure 6.3. These are executed on adjacent rectangular regions 

at a particular location in a detection window. However, this task can be very 

performance intensive, therefore each pixel is replaced by the sum of pixels above 

it and to the left of it. The image thus formed is called an integral image. 

 

 
Figure 6.3: Integral Image  

The sum of every pixel above and to the left is the value of the integral image at point 

(𝑥, 𝑦). The following equation is deemed:  
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𝐼𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥 ′, 𝑦 ′)𝑥′≤𝑥,𝑦′≤𝑦                                                (6.1) 

 

In Equation 6.1, 𝐼𝑖(𝑥, 𝑦) implies the integral image and 𝑖(𝑥, 𝑦) denotes the original image. 

Being a cascaded classifier, we shall be using many weak classifiers to build a strong 

classifier. These weak learners are trained to utilize boosting which makes for a high 

accuracy classifier based on the mean prediction of all less accurate ones.  

For masked face detection, Haar features are a set of two rectangles that are adjacent to 

each other. These rectangles lie above the region of the cheeks. Sliding these adjacent 

rectangles over the image, we attempt to regions where one of the rectangles is dark and 

the other one is light. This is because the region near the eyes is somewhat darker than 

that of the cheeks. The positioning of these rectangles is done relative to that of a detection 

window.  

Most of such detected Haar features are irrelevant. Hence, Adaboost is used to select the 

best ones. Several weak classifiers are utilized by Adaboost. Each of them is centered on 

disparate features. These disparate weak classifiers are merged into a single powerful 

classifier. The features that successfully propagate through all stages are detected as a 

face region.  

There are several classifiers for face, eyes, etc. as xml files in OpenCV, these xml files 

are stored in Haar cascades. In our implementation, we have used Haar cascade frontal 

face default xml. 

Training the system:  For training the system, the dataset is organized in a form of a 

tuple consisting of a face image and a label. The pre-processed training data prepared 

from the publicly available dataset already contains the label as discussed above. 

Testing the system:  For testing the system, we used multiple combinations of the 

registered image of the user and presented the image of the same user. Also, we used 

random combinations of images of different users to measure the false positivity rate of 

our system. When each of the pairs of the registered and tested images is used to test the 

system, we get the confidence score for the similarity between the images. The decision 

is taken by two separate systems: one a combination of Haar cascade face detector and 

LBPH based face recognizer, and the other by using a separate fuzzy decision-making 
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module to take the final decision based on fuzzy logic. This is done to evaluate the impact 

of fuzzy decision-making on the error rate of the system. 

6.2.2 Fuzzy logic based threshold confidence level selection subsystem 

We found that using a system based only on the Haar cascade classifier and LBPH 

recognizer cannot yield the high accuracy when it comes to the recognition of faces 

covered with masks.  

Generalized training for masked faces isn’t feasible because there is a very high degree 

of variability in the masks themselves as well as their ways of wearing. More importantly, 

this variability is huge, not only among different people but also in each individual at 

different times. Users may wear the mask in different ways and styles. In addition to that, 

the user might be wearing a mask that only covers the mouth while the nose left visible 

to the phone camera whereas in other instances mask is even worn below the lips covering 

only the chin with the rest of the face exposed. Also, face masks come in varieties of sizes 

and shapes. Hence, certain mask sizes and shapes will allow coverage of 70 ~ 75% of the 

face starting from the top of the nose till the neck whereas certain other masks may only 

be covering essential parts of the face i.e., nose and mouth extending to only around 40 ~ 

45% of the face. All these factors reduce the accuracy of face recognition. This leads to 

the occurrence of some false negatives. This issue can be solved by decreasing the 

threshold confidence score of similarity by setting it lesser than the preceding value in the 

algorithm needed for asserting the given user’s image as an authentic user. But the 

problem with this technique is choosing such a strategy will lead to an increase in the 

number of false positives which will again reduce the accuracy of the system. Therefore, 

we conclude that there is a need to decide the threshold confidence level dynamically so 

that our system chooses the best threshold confidence value to get the most accurate 

overall results. 

We found that a fuzzy logic-based subsystem is an appropriate and optimized approach 

to determine the threshold Confidence Score for the above-discussed problems. The fuzzy 

logic can be conveniently applied at this stage when the percentage similarity between 

the presented (or test) image compared with a registered (or trained) set of images has 

been determined and we need to dynamically decide the threshold percent (or confidence 

level) that would be most appropriate to maximize the accuracy of the overall system. 
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Our fuzzy logic based subsystem depends upon the percentage coverage of face with a 

mask in the registered (or trained) set of images, the percentage coverage of face in the 

presented (or tested) image, and the range of confidence levels (or percentage similarity) 

possible for different ranges of variations between the former two in a trained Haar 

cascade face detector with LBPH recognizer system. 

The step-by-step methodology for the working of this subsystem is depicted in Figure 

6.4. 

Figure 6.4: Flow diagram for Fuzzy logic based confidence level prediction system 

This subsystem takes two inputs which are percentage coverage of the area of the face 

which is covered by the mask of the presented and registered image. These inputs will go 

through fuzzification and inference engine to get the aggregated conclusion which is 

passed through the defuzzification process to get the crisp results of which threshold 

confidence score to be picked to determine if the presented image qualifies to be 

recognized as authenticated image against the registered image of user covering its face 

with a typical mask.  

The details of each step are mentioned below: 

1) Input pre-processing: The fuzzy system takes the input in the form of 

percentages for coverage of mask in the training images and tested images. These 
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values are simple arithmetic values that need to be calculated from the provided 

image. The percentage coverage of a face with the mask is estimated from the 

Haar object classifier that finds out the area of the complete face and the area of 

the object lying inside the face area which can be asserted as the mask. Based on 

the above two parameters, the percentage coverage of the face by the mask is 

calculated. It may be noted that the module doesn’t take into account whether the 

user is wearing a mask properly or not (i.e. completely covering the mouth and 

nose together) as this is out of the scope of this study. 

 

2) Fuzzification: The initial step in the fuzzy inference mechanism is Fuzzification. 

It is defined as the process of mapping the crisp value into the degrees to which 

the inputs belong to the respective fuzzy sets. Several sorts of curves could be 

utilized. However, the most common are triangular or trapezoidal-shaped 

membership functions. Here, the triangular membership function is utilized. It is 

specified by ‘3’ parameters {a, b, c} in which for each value, the membership 

function is denoted as )(XA . For fuzzifying the crisp value, if-then rules are 

utilized by fuzzification. The first module of our system obtains the membership 

values for the below two crisp inputs gathered from two input sources namely the 

registered image and presented image. The actual inputs from these sources are 

defined as below: 

 

Variation between percentage coverage of face between registered image and 

presented image (σ): This value is simply the absolute difference between the 

percentage coverage of face with a mask in registered (𝜌r) and presented image 

(𝜌p). Mathematically, this is defined as below: 

σ =  | 𝜌r  −  𝜌p |     (6.2) 

 

We are going to introduce three variables for σ  viz. HIGH (𝜇σH), MEDIUM 

(𝜇σM), and LOW (𝜇σL). The graphical representation of membership functions for 

these variables is depicted in Figure 6.5.  
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Figure 6.5: Membership function for percentage variation 

 

Mathematically, the membership functions for the three variables are represented as 

below in Equations 6.3 to 6.5: 

 

𝜇σH = {

0 ,    𝑖𝑓 σ ≤ 10
σ−10

10
, 𝑖𝑓 10 < σ ≤ 20

1 ,   𝑖𝑓 σ > 20

                                    (6.3) 

𝜇σM =

{
 
 

 
 

0,    𝑖𝑓 σ ≤ 0
σ

10
, 𝑖𝑓 0 < σ ≤ 10

20−σ

10
, 𝑖𝑓 10 < σ ≤ 20

0 ,   𝑖𝑓 σ > 20

                                    (6.4) 

  𝜇σL = {

1 ,    𝑖𝑓 σ ≤ 5
15− σ

10
, 𝑖𝑓 5 < σ ≤ 15

0 ,   𝑖𝑓 σ > 15

           (6.5) 

 

Percentage coverage of face (ρ): This is the percentage of the area of the face 

which is covered with a mask and used for identification of the image by the Haar 

cascade classifier. Similar to the previous input, we are going to use the same 
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variables viz. HIGH (𝜇ρH), MEDIUM (𝜇ρM), along with LOW (𝜇ρL). The 

membership functions for them are defined as below in Figure 6.6: 

 

 

Figure 6.6: Membership function for percentage face coverage 

 

Mathematically, the membership functions for the above three variables are represented 

below in Equations from 6.6 to 6.8: 

 

𝜇ρH = {

0 ,    𝑖𝑓 ρ ≤ 50
ρ−50

20
, 𝑖𝑓 50 < ρ < 70

1 ,   𝑖𝑓 ρ ≥ 70

                                   (6.6) 

 

𝜇ρM =

{
 
 

 
 

0,    𝑖𝑓 ρ ≤ 50
ρ−50

10
, 𝑖𝑓 50 < ρ < 60

70−ρ

10
, 𝑖𝑓 60 ≤  ρ < 70

0 ,   𝑖𝑓 ρ ≥ 70

                                   (6.7) 

 

𝜇ρL = {

1 ,    𝑖𝑓 ρ ≤ 50
70− ρ

20
, 𝑖𝑓 50 < ρ ≤ 70

0 ,   𝑖𝑓 ρ > 70

                                 (6.8) 
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3. Rule Base: The rule base to be used for the inference engine is represented in 

Table 6.1 for various combinations of the two input fuzzy sets: 

 

 

        Table 6.1.  Rule Base representation 

 HIGH MEDIUM LOW 

HIGH LOW LOW MEDIUM 

MEDIUM LOW MEDIUM HIGH 

LOW MEDIUM MEDIUM HIGH 

 

4. Inference engine: Based on the rule base defined above in Table 6.1, the conclusions 

for each of the members viz. HIGH (𝜇rH), MEDIUM (𝜇rM), and LOW (𝜇rL) in the 

output set is done using the below equations: 

 

T = 𝑀𝑖𝑛(𝜇σH, 𝜇ρH) +  𝑀𝑖𝑛(𝜇σH, 𝜇ρM) +  𝑀𝑖𝑛(𝜇σH, 𝜇ρL) +  𝑀𝑖𝑛(𝜇σM, 𝜇ρH)  +

 𝑀𝑖𝑛(𝜇σM, 𝜇ρM)  +  𝑀𝑖𝑛(𝜇σM, 𝜇ρL)  +  𝑀𝑖𝑛(𝜇σL, 𝜇ρH)  +  𝑀𝑖𝑛(𝜇σL, 𝜇ρM)  +

 𝑀𝑖𝑛(𝜇σL, 𝜇ρL)                                                                                                        (6.8) 

 

 

      𝜇rH =
 𝑀𝑖𝑛(𝜇σM,𝜇ρL)+ 𝑀𝑖𝑛(𝜇σL,𝜇ρL)

2𝑇
                                                    (6.9)    

      

                      𝜇rM =
 𝑀𝑖𝑛(𝜇σM,𝜇ρM)+ 𝑀𝑖𝑛(𝜇σL,𝜇ρM)+ 𝑀𝑖𝑛(𝜇σH,𝜇ρL)+𝑀𝑖𝑛(𝜇σL,𝜇ρH)

4𝑇
           (6.10)         

       

           𝜇rL =
𝑀𝑖𝑛(𝜇σM,𝜇ρH)+𝑀𝑖𝑛(𝜇σH,𝜇ρH)+ 𝑀𝑖𝑛(𝜇σH,𝜇ρM)

3𝑇
                          (6.11)
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5. Defuzzification - Defuzzification will be done to get the final crisp output. For 

this, we are going to simply use the max function in the way that member which 

has the highest value in the output fuzzy set is selected. Below is the simple 

equation for doing this: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥(𝜇rH, 𝜇rM, 𝜇rL)                                             (6.12) 

 

With equation 6.12 and the following inference rule base, we will determine which 

level of “threshold confidence score” we need to keep out of HIGH, MEDIUM, 

and LOW for the most optimized results. For our implementation, we took HIGH 

as 90%, MEDIUM as 85% whereas LOW as 80%. This value is returned to the 

comparator for further evaluation. 

 

• If 𝜇rH is maximum, then we keep the threshold score HIGH 

• If 𝜇rM is maximum, then we keep the threshold score MEDIUM 

• If 𝜇rL is maximum, then we keep the threshold score LOW 

 

 

6.3 Implementation Details 

The implementation of the system based on the methodology described in section 6.2 

requires certain technical aspects that include processing the image, developing a Face 

recognition module, creating a training tuple, perform the training followed by testing and 

results. The implementation process is explained in Figure 6.7.  
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Figure 6.7:  Flow chart for implementation steps 

 

The implementation process could be broadly divided into five major stages. These 

include import of required modules, loading face detection Haar cascade, creating face 

recognizer objects, preparing and executing training along with the prior steps to prepare 

training data, and finally testing with the data at the end of which the confidence score 

(or percentage similarity) determines whether the presented (or tested) image belongs to 

the same user as that of the registered (or trained) user. Each of these stages is described 

in detail below. There are several steps involved with our implementation design for the 

proposed technique. 
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A. Import of the required modules  

The available modules in the OpenCV library are used to perform basic processing to 

convert the images into three dimensional arrays. 

The implementation of Haar cascade classifier and LBPH face recognizer are 

implemented using the OpenCV library. Facial recognition modules that are required are 

cv2, numPy, OS, and Image module. cv2 is the name that is chosen by OpenCV 

developers when they generated the binding generators. A module for Python is the 

numPy which is an acronym for "Numeric Python" or "Numerical Python". Moreover, 

the programming language Python is enriched by numPy with powerful data structures, 

applying multi-dimensional arrays along with matrices. System software that handles 

computer hardware, and software resources, along with that it offers common services for 

computer programs is the OS. A class with the same name is offered by the image module 

which is utilized for representing a Python Imaging Library (PIL) image. Many factory 

functions are also offered by the module, comprising functions to load images as files and 

create new images. OpenCV contains module name cv2 which includes functions useful 

in detecting faces as well as their recognition. OS library is used to deal with the image 

as well as the names of the directory as it provides many utility methods to interact with 

the operating system. Modules are initially used to perform basic processing. 

These modules are used necessarily for the following important steps: 

• Modules are initially used to draw out the names of the image from the database. 

A separate number from the names of each image is taken out. The respective 

numbers extracted are assigned to each image respectively. The number assigned 

is utilized as a label for the face present in that image. 

• Images in the dataset are present in gif format by default. Since OpenCV does not 

support the gif format, it is converted into a grayscale format using the image 

module of PIL. This module is used for reading the image in grayscale format and 

the images are stored in NumPy arrays. 
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B. Loading face detection cascade  

We use Haar cascade by OpenCV to grab and segment the face in the image which will 

be used to train the recognizer. Haar cascade classifiers are very efficient in object 

detection. OpenCV has algorithms that use Haar features which are the input to basic 

classifiers. Pre-trained Haar cascade algorithms are offered by OpenCV, which are 

arranged into categories (faces, eyes, etc.), relying upon the images they have been trained 

on. These features are edge features, line features, and center-surround features. These 

features when grouped into different stages of classifiers are applied accordingly on a 

window. In case the window fails at any stage, the processing stops, and the remaining 

features are not considered. But if the window passes, then the second set of features is 

implemented and the process is continued. The window that successfully propagates 

through all stages is termed as face region. There are several classifiers for face, eyes, etc 

as xml files in OpenCV. 

 

C. Creating face recognizer object  

The next step involves creating the face recognizer object. It possesses functions like Face 

Recognizer train for training the recognizer and Face Recognizer predict for recognizing 

a face. We used the Local Binary Patterns Histograms (LBPH) Face Recognizer. The 

LBPH algorithm is a face recognition algorithm centered on a local binary operator. Using 

LBPH, it is possible to comprehend the texture along with the shape of a digital image. 

This image is split into numerous small regions from where the features are drawn out. 

This is then used to find the similarity between the images. In our implementation, we 

used only the top half portion of the face to draw out the features. This improved the 

accuracy of face recognition from 50% to 86%. 

 

D. Prepare and execute the training 

Images of faces are used to train the recognizer. For preparing the training set we need to 

define a function. This function takes input from the absolute path of images of database 

(DB). It outputs the tuple containing two lists. One of the lists of tuples contains the 

detected faces and the other contains the corresponding label for that face. For instance, 

in the case in the list containing the detected faces, the ith location represents the third 

individual in the database then in the list of labels we have value 3 at ith index. This output 
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tuple constitutes the training set. Now the training is performed utilizing the Face 

Recognizer Train function. This function requires two parameters, the features, and the 

label. 

We used three data sets for masked face recognition. Some information about the datasets 

provided is explained below: 

 

• MFDD: This dataset comprises images that are a sample from related research. 

Also, the other source is from the internet. These face images from the internet 

are labeled by adding some more metadata such as whether the mask is there on 

the face or not and the coordinates positioning the masked face. This formed 

dataset has 24771 masked faces. This dataset finds application in training a face 

detection model for face recognition. Besides this, it can also determine if the 

person is wearing a mask or not. 

 

• RMFRD: This dataset is composed by using a python crawler tool. This tool 

crawls the face image of the subject. Also, from the internet sources, it crawls the 

corresponding masked image. Then the unreasonable portions emerging post 

wrong correspondence is removed. Semi-automatic annotation tools namely 

LabelImg along with LabelMe is used to segment accurate face areas. The 90,000 

images of 525 subjects without masks along with 5,000 images of the same 525 

subjects wearing masks. 

 

• SMFRD: This dataset is developed with the help of a mask wearing software on 

Dlib-ML for performing mask wearing automatically. Popular datasets LFW and 

Webface dataset is using this software to apply the mask on the faces. Thus, a 

simulated masked face dataset is generated that has 500000 face images of 10000 

subjects. 
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E. Testing  

At this stage, a new set of images for some of the registered (or trained) users is selected 

and compared with the registered (or trained) images of the same users. A confidence 

score representing the similarity percentage is determined. Testing is done only with 

masked images. 

After the confidence of percentage similarity of the presented image is determined, the 

decision to whether that presented image belongs to one of the users whose image is 

registered in the system. This is being done using a comparator which simply checks 

whether the determined confidence level is above a determined “threshold”. The value of 

this “threshold” is determined using another intelligent subsystem that is based on fuzzy 

logic. The purpose of this subsystem is to determine which category of confidence level 

is appropriate to get accurate results. The comparator passes the value obtained from the 

testing module to the fuzzy subsystem and gets the result back from that after which a 

simple comparison gets to the final result to be displayed. 

 

Fuzzy logic based subsystem: 

The fuzzy logic based subsystem to determine the optimized “threshold” confidence 

score, gets the input from the registered (or training) image of the user. The input mainly 

comprises percentage coverage of the face by mask. This value from multiple images is 

used to calculate the parameters such as mean and variance. Again, the same values are 

determined from the input of the presented (or test) image. The fuzzy inference engine 

based on the pre-determined rule base infers the association of test input image with a 

category of “threshold” confidence level which can be HIGH, MEDIUM, or LOW as per 

our rule base. After this, we take a simple mapping of the determined “threshold” 

confidence category with a percentage number. For our implementation, we took HIGH 

as 90%, MEDIUM as 85% whereas LOW as 80%. This value is returned to the 

comparator for further evaluation.  

The above steps are quite exhaustive and start right from importing modules to yielding 

results after comparison. To demonstrate a practical application of the proposed 

methodology and implementation details along with determining the accuracy results, we 

developed a camera-based security system. Security systems are one of the important 

concerns for time being. We witness advancements in technologies to boost security 



 

102 

systems. Face recognition also comprises the security system. But due to the COVID-19 

pandemic, we witness the necessity of masks and also take into consideration the security 

breach that can happen due to this. Hence, we essentially proposed a technique of face 

mask recognition that could authenticate a person. So, we propose to further deploy it into 

a security system that could identify a person in a mask and also serves as a provision of 

contactless authentication for security aspects. This security system can be deployed at 

door. Once the person enters, his image is taken by the system and compared with the 

existing image data. The snapped image and the authorization details will be sent to 

Google drive. Also, information such as time and entry date will be sent to Google drive. 

The system already has the mechanism to ensure that the image is taken only when a 

person comes to the door. This is done by deploying infrared sensors which sense and 

detects the person. Raspberry pi post receiving the signal from Infrared sensors activates 

the camera and the LCD screen that displays the message to stop. The camera on getting 

activated takes the picture of the person. This picture is saved in a new folder which would 

be later used for comparison. Raspberry pi gets enabled using Ethernet wire. Once the 

image is snapped based on our proposed approach the face is segmented and detected. 

Internally the algorithm works firstly the segmented face is given to the model. Using the 

database records the saved image is extracted, once extracted saved image and snapped 

image are compared and the confidence score is evaluated as per our methodology. Based 

on this authentication is done and correspondingly the LCD screen displays the 

confidence score and claims on this basis whether the person is authorized or not.  

The confidence about how much a person is an authorized person is also displayed as 

shown in Figure 6.8. 
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                          Figure 6.8: Detection of faces with and without the mask 

 

 

It takes about five seconds to give the result of face detection and recognition with a face 

mask on the system which is developed on the LINUX system on a computer with 8GB 

RAM, Intel i7 CPU specs. The decision for lock or unlock is taken based on our 

methodology which has determined the optimized “threshold” confidence score to 

authenticate a user.  

 

6.4 Experimental Results 

Post training, we tested our proposed system for 236 combinations of registered and tested 

images of 89 users spread across different demographical and ethnic backgrounds. We 

classified our results under the heads of 1) “valid authentications”, 2) “false negative” 

authentications, and 3) “false positive” authentications. The “false negatives” are such 

combinations of registered images and tested images wherein the combination was 

expected to be recognized as valid authentication but found as unauthenticated by our 
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system whereas “false positives” are those wherein such combination that should not have 

been recognized as authenticated was wrongly identified to be authentic. The lab 

experiments were performed in Samsung India R&D, Noida. The results are summarized 

in Table 6.2. 

Table 6.2: Results Summary 

 Valid False 

Negative 

False 

Positive 

Only Haar cascade classifier 203 27 6 

Haar cascade classifier combined with Fuzzy 

Logic  

229 2 5 

 

The proposed Haar-cascade classifier model achieved the recognition accuracy of almost 

86% when used standalone with a fixed “threshold” confidence score. Here, the term 

“accuracy” implies the number of valid authentications. This was the highest accuracy 

result possible achieved by tuning the “threshold” confidence score exhaustively several 

times but keeping that fixed for testing all combinations. However, the accuracy reached 

almost 97% when we applied the fuzzy logic based decision making module to determine 

the “threshold confidence score” dynamically when the test image is presented. 

Moreover, it would be worth mentioning that the number of false negatives fell drastically 

whereas there was relatively less impact on the number of false positives.   

 

Comparison with prior work 

Sense Time Technology [131] reported 85% accuracy when the images showed 50% of 

the covered nose. Hanvon Technology [132] reported that their success rate of masked 

Face recognition was 85%. Another study by MINIVISION Technology [133] showed a 

success rate of over 90%. However, the best available results are the outcomes of Wang 

et. al [19] which achieved an accuracy of 95%.  
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This comparison of our results with from different works is summarized in Table 6.3 and 

Figure 6.9.  

 

                                                  
  

  Table 6.3: Comparisons of results with prior works  
 

 

 

 

 

 

 

 

 

 

 

 

 

Name Accuracy of masked face 

recognition 

Sense Time [131] 85% 

Hanvon [132] 85% 

MINIVISION [133] 90% 

Face and eye based multi-granularity 

model [19] 

95% 

HAAR cascade detector + LBPH 

recognizer (our work) 

86% 

HAAR cascade detector + LBPH 

feature extractor + Fuzzy decision 

maker (our work) 

97% 
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Figure 6.9: Performance analysis of different methods: prior work versus our   

work. 

 

 

6.5 Conclusion 

Overall, this work proposes a highly accurate recognition system that can recognize faces 

that are even covered with masks. Not only is accurate, but the system is also overall 

highly efficient as well. The two-component subsystems involved in this work can work 

independently to perform their respective roles of determining similarity between two 

images with faces covered with masks and determining an optimum confidence score 

above which such similarity can qualify the tested image to be authenticated version of 

the same user in the registered image. The Haar cascade classifier and LBPH recognizer 

are evaluated for the masked face and also fuzzy logic is used for the first time to resolve 

such uncertainty when it comes to the problem of recognizing faces with masks. We 

determined the accuracy results of 86% for a standalone Haar cascade classifier with 

LBPH face recognizer and demonstrated how it can be improved to 97% if the fuzzy logic 

based system is applied. Our proposed fuzzy subsystem can be used in conjunction with 

other deep learning models as well. The applications that can be made out of this work 

don’t only include masked Face recognition but also in scenarios when the user’s face is 
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only partially exposed to a Face recognition system. This may include scenarios like 

wearing up spectacles, growing a beard, etc. Future applications of this work are not only 

limited to the ongoing COVID-19 pandemic but also to when the pandemic hopefully 

ends in the future. This includes deployment on handheld devices for a smooth and safe 

user experience, a face recognition-based attendance system at workplaces where the 

mask is mandatory, and so on. 

 

Publication:  

The work discussed in this chapter is published in:                                                

Amitabh Thapliyal, Om Prakash Verma and Amioy Kumar, “Mask Covered Face 

Recognition Using Haar Cascade Classifier and Fuzzy Logic”, International Journal of 

Emerging Technology & Advanced Engineering, Vol. 12, Issue 8, 2022.                         
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Chapter 7: Conclusion and Future Work 

Biometrics-based authentication systems, such as fingerprint or facial recognition, are 

considered more reliable both by security experts and public at large as compared to PIN, 

password, or pattern-based traditional authentication systems on smartphones. Since 

biometrics need to be presented at the time of power-on, hence, they cannot be guessed 

or attacked through brute force, eliminating the possibility of shoulder surfing. However, 

fingerprints or facial recognition-based systems in smartphones may not be applicable in 

a pandemic situation like COVID-19, where hand gloves or face masks are mandatory to 

protect against unwanted exposure of the body parts.  

To tide over these and other similar challenges, our work investigates some potential 

advances in the field of biometrics. The contributions of our work to the existing body of 

literature can be enumerated in the following points: 

⚫ A biometric authentication system is influenced by external and contextual 

factors. A novel multimodal biometric authentication framework was introduced 

that dynamically invokes multi-modality for smartphone user authentication 

based on contextual factors and external variables. In the proposed system, the 

contextual model evaluates a user’s context at the time of authentication to provide 

initial identity confidence. Based on the obtained confidence, the authentication 

complexity or modality of the final authentication model is determined 

dynamically. We designed a multimodal biometric authentication framework to 

meet the changing security needs considering external variables while leveraging 

the contextual factors. The designed system was tested on behavioural biometrics. 

We were able to demonstrate improved results in terms of accuracy with a 

reduction in the equal error rate with proposed framework.  

⚫ A novel bimodal system is developed based on the proposed biometric 

authentication framework. A hand glove mode of authentication is proposed for 

smartphones considering the COVID-19 pandemic when the user’s input samples 

may be impacted by external variables like water, sanitizer, and gloves. In such 

situations, it is difficult for legitimate users to authenticate using conventional 

biometric authentication methods like fingerprint recognition. We developed a 
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bimodal behavioural biometric authentication system based on keystroke and 

touch swipe that can also handle situations when the user samples are impacted 

by external variables like hands with gloves, water, and sanitizer. The data 

collection was performed with 197 users using an Android application developed 

on Android OS 11.0 and a Samsung Galaxy S20 device. The experimental results 

shown good authentication accuracy. 

⚫ We have been able to make the application of keystroke dynamics to mobile 

phones as a biometric authentication system fast, efficient, and adaptable. Our 

study proposed a method for learning the user’s typing patterns on a feature phone 

and employing it for authentication. We applied k-Nearest Neighbours algorithm 

with Fuzzy Logic and attained an equal error rate of 1.88 percent. The experiments 

were carried out using a Samsung On7 Pro C3590 with 25 users.   

⚫ Numerous precautions must be taken to combat COVID-19 pandemic, one of the 

most significant of which is the widespread use of a face mask. Though research 

to improve face recognition has advanced significantly over the last two decades, 

recognizing faces hidden behind masks has become a new concern due to the 

developing situation. Unfortunately, abundant work has not been done in this area. 

Innovative solutions to these problems were proposed and investigated in our 

work. 

Our work investigates the situations in which fingerprints cannot be utilized due to hand 

gloves and presents an alternative biometric system using the multimodal touchscreen 

swipe and keystroke dynamics pattern. A hand glove mode of authentication was 

proposed, where the system would automatically be triggered to authenticate a user based 

on touchscreen swipe and keystroke dynamics patterns. The proposed method 

incorporates the touchscreen’s swipe and typing patterns as a security layer for 

authentication to increase the total security of the system. A fuzzy classification network 

was also proposed to incorporate fuzziness into the authentication system, thereby 

reducing the effects of unknown external variables, such as dust or sanitized hands, on 

user authentication. Our experimental results suggest that the proposed multimodal 

behavioural biometrics system can operate with a high accuracy. We were able to obtain 

an authentication accuracy of 99.55% with 197 users on the Samsung Galaxy S20 device 

and Android 11 OS. The importance of this work is mainly due to the reason that most of 
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the biometrics utilized in smartphones are physiological, such as fingerprints, iris, face, 

etc. Some attempts have been made to use behavioural biometrics such as voice, 

signature, gait, and keystroke. However, these attempts are very few and are currently not 

commercialized on smartphones. The fuzzy logic based decision system was used to 

reduce the effects of hand gloves or sanitized hands on user authentication and achieved 

93.5% accuracy in such cases. Our experimental results suggest that the proposed 

multimodal biometrics system can operate with high accuracy even in the presence of 

gloved, sanitized, and wet hands. It is sufficient to conclude that the presented work for 

user authentication in smartphones has a promising potential for further development and 

investigation. 

We also developed a masked face recognition system based on a Haar cascade 

classifier, which demonstrated better performance than the state of the art. We use a Haar-

feature-based cascade classifier to identify the extent to which a given face and the 

registered face resemble each other. Additionally, this study attempts to address problems 

in face recognition that occur when the user wears a mask that covers a different portion 

of the face in different instances, resulting in visible errors when various tests return false 

negatives or false positives on multiple instances. This problem is addressed by using a 

fuzzy logic based system that decides the “threshold confidence score” needed to pass the 

authentication dynamically. The proposed model for masked face recognition achieves 

an accuracy of 86% when a Haar-feature-based cascade classifier is used standalone, 

which further reaches to around 97% when used in conjunction with a fuzzy logic based 

decision making module. The result is better than reported in the existing literature 

surveyed by us. Therefore, our work provides an accurate identification system that can 

distinguish faces covered with masks. The procedure is not only quite accurate but also 

efficient in general. This work involves two component subsystems that can work 

independently and perform their respective roles for authentication with mask covered 

faces. 

Future applications of our work are limited not just to the COVID-19 pandemic, 

but also applicable to the time when the pandemic is expected to end. This includes mobile 

device authentication system for a convenient and secure user experience, face 

recognition based attendance systems in organizations where masks are required, 

authentication in healthcare settings where gloved hands and masked faces are common, 
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and so on. Various modalities like touch analytics, patterns of battery charging, and 

walking patterns of a person can be investigated as behavioural biometric modalities for 

a future study for mobile phone security.  
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