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Abstract

In the present thesis, an attempt has been made to construct, apply, analyse and optimise

some simple and efficient parameter-uniform finite difference methods for solving singu-

larly perturbed parabolic convection-diffusion problems with discontinuous coefficients,

source term and delay. These problems commonly arise in the different fields of applied

mathematics, for example, edge layers in solid mechanics, aerodynamics, oceanography,

rafted-gas dynamics, transition points in quantum mechanics, shock and boundary layers

in fluid dynamics, magnetohydrodynamics, drift-diffusion equations of semiconductor de-

vices, plasma dynamics, skin layers in electrical applications, Stoke’s line in mathematics

and rarefied-gas dynamics. These types of problems depend on a small perturbation pa-

rameter ε, that multiplies some or all of the highest-order derivative terms. On limiting

the value of the perturbation parameter to zero, the solutions to such problems approach a

discontinuous limit and exhibit a multiscale character. Often these mathematical problems

are extremely difficult (or even impossible) to solve exactly, and in these circumstances,

approximate solutions are necessary. Asymptotic analysis and numerical analysis are two

principal approaches for solving singular perturbation problems. The classical numerical

methods have been known to be effective for solving most problems that arise in appli-

cations, but they failed when applied to singular perturbation problems. That is, for the

solutions to these problems, classical numerical methods fail to provide good approxima-

tions. This motivated us to develop robust numerical methods for solving such types of

problems with an emphasis on non-uniform grids.

In this thesis, we have provided numerical schemes for solving three different types

of convection-diffusion problems of varying complexity. The thesis consists of six chap-

ters. A brief outline of the chapters is as follows:

Chapter one provides an overview of the fundamentals of singular perturbation the-

ory. Besides, it presents concepts and a historical assessment of the related literature. This

chapter also provides a detailed literature survey of various state-of-the-art techniques de-

veloped in the recent past. In addition, the chapter illustrates the aim and objectives of the

research work.
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xii Abstract

Chapter two presents an adaptive finite difference method to solve a class of sin-

gularly perturbed parabolic delay differential equations with discontinuous convection

coefficient and source. The simultaneous presence of discontinuity and the delay makes

the problem stiff. The solution to the problem considers the present state of the physi-

cal system and its history. The numerical scheme based on the upwind finite difference

method is presented on a specially generated mesh to solve the problem. The adaptive

mesh is chosen so that most of the mesh points remain in regions with rapid transitions.

The proposed numerical method is analysed for consistency, stability and convergence.

Extensive theoretical analysis is performed to obtain consistency and error estimates. The

proposed method is unconditionally stable, and the convergence obtained is parameter-

uniform with first-order convergence in space and first-order convergence in time. The

chapter ends with numerical illustrations for the method suggested.

Chapter three extends the idea further and aims to provide a better numerical ap-

proximation of the solution to the model problem considered in Chapter two. The chapter

presents a higher-order hybrid difference method over an adaptive mesh to solve the prob-

lem. The proposed method is a composition of a central difference scheme and a midpoint

upwind scheme on a specially generated mesh. Moreover, the time variable is discretised

using an implicit finite difference method. The error estimates of the proposed numerical

method satisfy parameter-uniform second-order convergence in space and first-order con-

vergence in time. The rigorous numerical analysis of the proposed method on a Shishkin

class mesh establishes the supremacy of the proposed scheme.

Chapter four presents a high-order finite difference scheme to solve singularly per-

turbed parabolic convection-diffusion problems with a large delay and an integral bound-

ary condition. The solution of the problem features a weak interior layer besides a

boundary layer. This chapter presents a higher-order accurate numerical method on a

specially designed non-uniform mesh. The technique employs the Crank-Nicolson dif-

ference scheme in the temporal variable, whereas an upwind difference scheme in space.

It is proved that the proposed method is unconditionally stable and converges uniformly,

independent of the perturbation parameter. The error analysis indicates that the numerical

solution is uniformly stable and shows parameter-uniform second-order convergence in

time and first-order convergence in space.

Chapter five presents a robust computational technique to solve a class of two-

parameter parabolic convection-diffusion problems with a large delay. The presence of

perturbation parameters leads to the twin boundary layers and interior layers in the so-

lution, whose appropriate numerical approximation is the main goal of this chapter. The

numerical method is composed of an upwind difference scheme in space, and a Crank-
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Nicolson scheme in time is used to find the approximate solution of the problem. It is

proved that the method is parameter-uniform with second-order accuracy in time and al-

most first-order accuracy in space. Numerical examples are provided in support of the

theory.

Chapter six concludes the work done and provides insight into the author’s thoughts

on the future direction of the research.
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Chapter 1

Introduction

1.1 Perturbation Theory

Differential equations generally model physical phenomena in natural sciences and engi-

neering. When considering a mathematical model associated with natural phenomena, we

often attempt to deal with the essential quantities while ignoring the negligible ones that

involve small parameters. The model obtained by keeping the small parameters is called

the perturbed model, whereas the simplified degenerate model is called the unperturbed

or reduced model. As a matter of course, we choose unperturbed models because they

are relatively simple to deal with. However, a natural question concerning the role of the

omitted terms arises. Does the presence or omission of such terms affect the solution or

the information obtained from the mathematical model?

Perturbation theory is the study of the effect of small disturbances in a mathematical

model of physical phenomena due to these small parameters, and these small parameters

are called perturbation parameters. The problems we obtain by retaining the small pa-

rameters are called perturbed problems, whereas the simplified degenerate problems are

known as unperturbed or reduced problems. The perturbation problems are categorized

broadly into two types, namely

1. regular perturbation problems (RPPs), and

2. singular perturbation problems (SPPs).

Let D be an open bounded set with smooth boundary Γ and D̄ denotes its closure. Con-

sider the boundary value problem

Pε : Lεu := L0 + εL1 = f (x, ε); x ∈ D and u(Γ) is given. (1.1)

Here ε is a small parameter such that 0 < ε � 1,Lε is a differential operator, and f (x, ε) is

a given real-valued smooth function. We assume that, for each ε, Pε has a unique smooth

1



2 Introduction

solution u := uε(x). Denote by P0 the corresponding degenerate equation obtained by

setting ε = 0 in (1.1) and by u0 the smooth solution of P0.

Definition 1.1.1. Problem Pε is called regularly perturbed with respect to some norm

‖ · ‖ if there exists a solution u0 of problem P0 such that

‖ uε − u0 ‖→ 0 as ε→ 0.

Otherwise, Pε is said to be singularly perturbed with respect to the same norm.

Here ‖ · ‖ is the supremum norm (or maximum norm) defined for every continuous func-

tion g : Ω̄→ R as

‖ g ‖Ω̄= sup
{
|g(x)| : x ∈ Ω̄

}
.

Example 1.1.2. Consider the initial-boundary-value problem Pε:

u
′′

ε (x) + 2εu
′

ε(x) − uε(x) = 0, x ∈ (0, 1) with uε(0) = 0, uε(1) = 1 and 0 < ε � 1.

The solution of Pε reads

u := uε(x) =
em1 x − em2 x

em1 − em2
, where m1 = −ε +

√
1 + ε2 and m2 = −ε −

√
1 + ε2.

Moreover, it follows that lim
ε→0

uε(x) =
sinh(x)
sinh(1)

:= u0. Clearly, u0 is the solution of the

reduced problem P0, obtained by setting ε = 0. Therefore, Pε is a regular perturbation

problem (RPP).

Example 1.1.3. Consider the initial-boundary-value problem Pε:

−εu
′′

ε (x) + u
′

ε(x) = 1, x ∈ (0, 1) with uε(0) = uε(1) = 1 and 0 < ε � 1.

The solution of Pε reads

u(x) := uε(x) = x −
e

(
− 1−x

ε

)
− e

(
− 1
ε

)
1 − e

(
− 1
ε

) .

The solution uε regarded as function of two variables uε : [0, 1]× (0, 1)→ u(x, ε) satisfies

lim
x→c

lim
ε→0

u(x, ε) = c = lim
ε→0

lim
x→c

u(x, ε),∀c ∈ [0, 1).

However,

lim
x→1

lim
ε→0

u(x, ε) = 1 , 0 = lim
ε→0

lim
x→1

u(x, ε).

The solution uε as a function of two variables possesses a singularity at the point (1, 0) in

the (x, ε)-plane. Since, ‖ uε − u0 ‖9 0 uniformly over the entire domain as ε→ 0, Pε is a

singular perturbation problem.
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Example 1.1.4. Consider the initial-boundary-value problem Pε:

εu
′

ε(x) + uε(x) = 0, x ∈ (0, 1) with uε(0) = u0.

Here, u0 ∈ R is a given constant, and the singular perturbation parameter ε is assumed to

be non-negative. When 0 < ε � 1, the problem is singularly perturbed, and a boundary

layer may appear depending on the given value of u0. When ε > 0, the exact solution

of the problem is uε(x) = u0e−x/ε. Putting ε = 0 in the differential equation gives the

reduced equation u0(x) = 0 for all x ∈ (0, 1). The solution uε of the continuous problem

has value u0 at the point x = 0, whereas the solution of the degenerate problem vanishes

identically. Therefore, these two solutions differ in all cases except for the case when

u0 = 0. Excluding this case, there is a small neighbourhood of x = 0 in which the solution

changes exponentially and has a steep gradient when 0 < ε � 1. This behaviour of uε is

called a boundary layer phenomenon, and the problem Pε is called a singular perturbation

problem of layer type.

1.2 Singular Perturbation Problems

Singular perturbation problems are widespread in nature and arise in the modelling of var-

ious complex phenomena, such as electromagnetic field problems in moving media [110],

the theory of plates and shells [124], turbulence model [165], convective heat transfer

problems with large Peclet numbers [126], water quality problems in river networks [29],

drift-diffusion equation of semiconductor device modelling [231], atmospheric dispersion

[235], Black-Scholes model [38], Michaelis-Menton theory for enzyme reactions [198],

groundwater transport [31], neuronal variability [275], simulation of oil extraction from

underground reservoirs [78], Reissner-Mindlin plate theory [13], Fokker-Planck equation

[23], impulses and physiological states of nerve membrane [84], chemical reactor theory

[188] to name a few among many others [255, 176, 291, 89, 200, 188, 33].

1.2.1 Historical Overview

More than half a century ago, A.N. Tikhonov [288, 289, 290] began to systematically

study singular perturbations, although there had been some previous attempts in this di-

rection [22, 63]. However, the aerodynamic boundary layer was first defined by Prandtl

[232]. The term singular perturbation was first used in the work of Friedrichs and Wasow

[87]. In 1957, in a fundamental paper [295], M.I. Vishik and L.A. Lyusternik studied

linear partial differential equations with singular perturbations, introducing the famous
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method which is today called the Vishik-Lyusternik method. From that moment on, an

entire literature has been devoted to this subject [162, 146, 134, 131, 247].

It is a common experience that when we stand in a breeze or wade in the water, we

feel the drag force. We know that the drag is due to fluid friction or viscosity. However,

scientists long believed viscosity should not play a role in the picture, as it had such a

small value for water and air. Assuming no viscosity, the finest mathematical physicists

of the 19th century constructed a large body of elegant results, predicting that the drag

on a body in steady flow would be zero. This discrepancy between ideal fluid theory or

hydrodynamics and the common experience was known as d’ Alembert’s paradox. The

paradox was only resolved in a revolutionary 1904 paper by L Prandtl, who showed that

viscous effects can never be neglected, no matter how small the viscosity [11, 232]. More

precisely, the determining factor is the Reynolds number Re, a dimensionless measure of

the relative importance of inertial to viscous forces in the flow. Prandtl postulated that

for certain kinds of high Reynolds numbers or nearly frictionless flows, for example, the

flow past a streamlined body like an airfoil, the viscous effects would be confined to thin

regions called boundary layers. For certain other kinds of high Re flows, such as the flow

past a bluff body like a sphere, viscous effects need not be confined to such thin layers;

viscosity then has a more dramatic effect than what its low value might suggest. The

critical concept of boundary layers has now spread to many other fields; boundary layers

often arise in what is known as singular perturbation problems [11, 232].

We reproduced a long-standing paradox from [11] in the paragraph above. For more

on historical overview, an introduction to Prandtl’s resolution of the Paradox: Flow past a

Thin Plate, and for other classical examples, the interested reader is referred to an exciting

general article, “Ludwig Prandtl and boundary layers in fluid flow-How a small viscosity

can cause large effects" by J. H. Arakeri and P. N. Shankar [11].

1.2.2 Classification of Singular Perturbation Problems

The singular perturbation problems are further classified broadly into two categories.

1. Singular perturbation problem of cumulative type: A small perturbation param-

eter ε characterises these problems, and its effect is apparent after a considerable

amount of time, typically after an interval of order O
(
1
ε

)
. For instance, let’s con-

sider the motion of a satellite around the Earth, where the dominant force is the

spherically symmetric gravitational field. If the gravitational field were the only

force acting on the satellite, its motion would be periodic. However, small influenc-

ing forces from factors such as the thin atmosphere, moon, distant sun, and other
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stars significantly alter the satellite’s motion after many orbital revolutions due to

their cumulative effect.

2. Singular perturbation problem of layer type: A small perturbation parameter ε

characterises these problems, leading to narrow spatial regions called layer regions

in short intervals of time where the solution changes exponentially and exhibits a

steep gradient. In contrast, away from these regions, the solution varies smoothly.

These problems can be classified into two types based on the position of the layer

in the solution.

(i) Singular perturbation problems of boundary layer type: In these types of

problems, the layer region is adjacent to the boundary of the domain. Experts

commonly refer to this region as the boundary layer, a term Prandtl introduced

in the context of fluid mechanics. However, in the context of gas motion, one

can also refer to it as shock waves. In electric applications, people know this

layer as skin layers, and in mathematics, it sometimes goes by the name of

Stoke’s surfaces.

(ii) Singular perturbation problems of interior layer or free layer type: In

these problems, the layers lie within the domain, away from boundaries.

Hence, we refer to them as interior layers or free layers. We can attribute

the presence of these interior layers to various factors, such as the existence of

turning points, non-smooth coefficients, non-smooth initial/boundary condi-

tions, non-linearities, or lack of compatibility at the domain boundaries. These

reasons give rise to interior layers, contributing to the complexity of the prob-

lem.

1.2.3 Model Problems

The objective is to determine the solution to these problems by identifying the location,

width, and strength of all the layers present in the solution. Consequently, we classify

these problems into convection-diffusion problems and reaction-diffusion problems. The

characteristics of the layers, such as their strength, width, and location, depending on

whether the problem is of convection-diffusion or reaction-diffusion type. The coeffi-

cients and initial/boundary conditions specified in the problem also influence these char-

acteristics. Several physical and mathematical models of the convection-diffusion and

reaction-diffusion equations have been mentioned in the literature, as referenced by some

authors [189, 248, 82, 266, 191].
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1. Convection-diffusion problems: Convection-diffusion problems model physical

phenomena involving convection, reaction, and diffusion processes. In these prob-

lems, the order of the degenerate equation reduces by one. Let us consider a two-

point boundary value problem on a unit interval Ω = (0, 1)
−εu

′′

ε (x) + u
′

ε(x) = 0, x ∈ Ω

uε(0) = u0, uε(1) = u1,

where u0, u1 ∈ R are some given constants and 0 < ε � 1. The exact solution of

the problem is uε(x) =
u1e−1/ε − u0

e−1/ε − 1
+

u0 − u1

e−1/ε − 1
e−(1−x)/ε. The corresponding degen-

erate equation is of order one, and we can impose only one boundary condition. It

needs to be clarified which of the two possible boundary conditions we can impose.

Since the characteristic direction aligns with the positive x-axis, we cannot impose

a boundary condition at x = 1. The corresponding degenerate problem reads
v
′

0(x) = 0, x ∈ Ω

v0(0) = u0,

and its solution is v0(x) = u0. Therefore, a boundary layer will form near x = 1

unless the boundary value of uε at x = 1 agrees with the value of the reduced

solution v0 at x = 1. Thus we may say that the solution exhibit only one boundary

layer of width ε in the neighbourhood of x = 1.

2. Reaction-diffusion problems: Reaction-diffusion problem models physical phe-

nomena involving both reaction and diffusion processes. In these types of problems,

the order of the degenerate equation reduces by two. Let us consider a two-point

boundary value problem defined on a unit interval Ω = (0, 1)
−εu

′′

ε (x) + uε(x) = 0, x ∈ Ω

uε(0) = u0, uε(1) = u1,

where u0, u1 ∈ R are the given constants and 0 < ε � 1. The exact solution of the

problem is uε(x) =
u1 − u0e−1/

√
ε

1 − e−2/
√
ε

e−(1−x)/
√
ε +

u0 − u1e−1/
√
ε

1 − e−2/
√
ε

e−x/
√
ε. Note that the cor-

responding degenerate equation has order zero. Consequently, we cannot impose

any boundary conditions on its solution. The exact solution of the degenerate equa-

tion is v0(x) = 0. Therefore, a boundary layer will appear at x = 0 unless u0 = 0.

Similarly, a boundary layer will occur at x = 1 unless u1 = 0. The layer correc-

tion function e−x/
√
ε in the solution suggests that the solution has a steep gradient

in (0,
√
ε) but not in (

√
ε, 1). The behaviour of e−(1−x)/

√
ε is analogous. Therefore,
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we may have two boundary layers of width
√
ε, each at outflow boundary regions.

However, one or no boundary layer may occur for special choices of boundary con-

ditions.

In this thesis, we focus on singular perturbation problems of convection-diffusion type.

To gain insights into the strength and location of layers in the solution of the convection-

diffusion problems in question, we consider the following simple mathematical represen-

tation of a convection-diffusion problem defined on a unit interval Ω = (0, 1)

− εu′′ε (x) + a(x)u′ε(x) + b(x)uε(x) = f (x), x ∈ Ω, (1.2)

where 0 < ε << 1 is the perturbation parameter and appropriate boundary conditions

are specified. The rules tabulated in Table 1.1 are helpful for inferring information about

the boundary and interior layers present in the analytical solution of the problem. When

the function a(x) in the general convection-diffusion problem specified in (1.2) is equal

to zero, the problem transforms to the reaction-diffusion problem. The information about

the strength and location of the interior/ boundary layers can be inferred from Table 1.2.

1.3 Delay Differential Equation

A differential-difference equation also called a delay differential equation, is a type of

functional differential equation where the system’s evolution at a certain time depends

not only on the present state of the system but also on the state of the system at an earlier

time. The simplest form of a first-order delay differential equation with constant time

delays can be expressed as

u′(x) = f (x, u(x), u(x − σ1), u(x − σ2), . . . , u(x − σk)).

An initial value problem for a first-order delay differential equation differs from its coun-

terpart in a notable way. While a differential requires an initial condition specified at a

point to determine a unique solution, a delay differential equation necessitates the speci-

fication of the solution profile over an interval of length equivalent to delay. For example,

consider the following initial value problem for a linear first-order differential equation

du
dt

= ku, t ∈ (0, 1], u(0) = 1

admits the exponential solution u(t) = ekt. In this problem, the value of u at a given

point (i.e. u(0)) is sufficient to obtain a solution at any time t. The past has no role in
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Table 1.1: Strength and location of boundary and interior layers in convection-
diffusion SPPs.

Smoothness of functions Value of the

function

Strength and location of

b(x) a(x) f (x) a(x) Boundary

Layer

Interior Layer

Smooth < 0,∀x ∈ Ω Strong, at x = 0 —

Smooth > 0,∀x ∈ Ω Strong, at x = 1 —

Smooth Discontinuous

at x = d ∈ Ω

< 0,∀x ∈ Ω Strong, at x = 0 Weak, on right

side of x = d

Smooth Discontinuous

at x = d ∈ Ω

> 0,∀x ∈ Ω Strong, at x = 1 Weak, on left

side of x = d

Smooth Discontinuous at x = d ∈ Ω < 0,∀x ∈ Ω Strong, at x = 0 Weak, on right

side of x = d

Smooth Discontinuous at x = d ∈ Ω > 0,∀x ∈ Ω Strong, at x = 1 Weak, on left

side of x = d

Smooth Discontinuous at x = d ∈ Ω > 0, x ∈ (0, d)

and

< 0, x ∈ (d, 1)

— Strong, on both

side of x = d

Smooth Discontinuous at x = d ∈ Ω < 0, x ∈ (0, d)

and

> 0, x ∈ (d, 1)

Solution is unbounded

— = 0 SPP is of reaction-diffusion type

Table 1.2: Strength and location of boundary and interior layers in reaction-diffusion
SPPs.

Smoothness of functions Strength and location of

b(x) f (x) Boundary Layer Interior Layer

Smooth Strong, at both endpoints

x = 0 and x = 1

—

Smooth Discontinuous

at x = d ∈ Ω

Strong, at both endpoints

x = 0 and x = 1

Strong, on both sides

of x = d
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determining the solution. Now, we consider the following initial value problem for a

linear first-order delay differential equation

du
dt

= ku(t − σ), t ∈ (0,T ], σ > 0, T ≥ 2, u(t) = 1, −σ ≤ t ≤ 0. (1.3)

Here, the derivative of the unknown function u is expressed in terms of u at some previous

time (t − σ) and σ represents the delay, shift or time lag. We must specify the unknown

function u on a finite interval to obtain a unique solution. This specified function is com-

monly referred to as the memory function, as it provides information about the solution in

the past. It is important to note that this requirement, i.e. the specification of the solution

profile over a finite interval, makes the delay differential equations infinite dimensional

problems, even if there is only a single linear delay differential equation, as an infinite

dimensional set of initial conditions between t = σ and t = 0 have to be defined. An-

other significant characteristic of delay differential equations is that the solutions of delay

differential equations have discontinuities that propagate. In (1.3), assuming k = −1 and

σ = 1. Then, note that

u′(0−) = 0 , −1 = u′(0+), u
′′

(1−) = 0 , 1 = u
′′

(1+)

so that the jump in u′(t) at t = 0 propagates to a jump in u
′′

(t) at t = 1, and so on. More

generally, the jump in u′(t) at t = 0 propagates to a jump in un+1(t) at t = n, n ∈ N.

In this thesis, we will focus on parabolic PDEs with spatial delay, or we may also call

them shift. Parabolic problems with spatial delay refer to a class of PDEs that incorpo-

rate shifts or translations in their formulation. These equations arise in various scientific

and engineering fields where spatially distributed systems exhibit dynamic time delays or

shifts of mixed type. Understanding the characteristics of parabolic problems with spatial

delay is crucial for analyzing and predicting the behaviour of such systems.

One notable characteristic of these equations is the presence of both temporal and

spatial dependencies. The delay or shift introduces a memory effect, where the system’s

current behaviour depends not only on its current state but also on its past states at neigh-

bouring or distant locations. This memory effect can arise from physical phenomena such

as diffusion, advection, or transport processes with finite propagation speeds. This spatial

interaction can lead to complex dynamics, spatial patterns, and wave propagation phe-

nomena. Such problems frequently appear in epidemics and population dynamics, where

these small shifts play an essential role in modelling various real-life phenomena [152].

For example, boundary value problems for delay differential equations arise naturally in

studying variational problems in control theory, where the problem is complicated by the

effect of delays in signal transmission [75]. In the mathematical model for determining
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the expected first-exit time in generating action potential in nerve cells by random synap-

tic inputs in dendrites, the shifts are due to the jumps in the membrane potential, which are

very small [275]. Analyzing parabolic problems with spatial delay requires specialized

mathematical techniques that extend traditional methods used for parabolic PDEs.

1.4 Methods for Solving Singular Perturbation

Problems

In the literature, researchers widely use two approaches to solve singularly perturbed

problems: asymptotic and numerical methods.

1.4.1 Asymptotic Methods

The asymptotic methods provide a straightforward way to determine an accurate approxi-

mation to the solution of a singular perturbation problem. In these methods, the behaviour

of the analytical solution of the problem can be studied through the asymptotic expansion

method. The solution is approximated as an asymptotic series in the small parameter ε

such as

u = u0 + εu1 + ε2u2 + . . . + εnun.

The values of u0, u1, u2, . . ., un can be obtained by substituting u into the given equation

after doing term by term differentiation. After substitution, first few terms are solved to

get u0, u1, u2, . . ., un and form an approximate solution to the problem. The asymptotic

solution accurately approximates the solution to the problem over a large portion of the

domain, i.e., the outer region but is inaccurate over the small region, i.e., the layer region

because the effect of the perturbation term in the problem is not negligible in this region.

However, the straightforward asymptotic expansion leads to a differential equation of

lower order than the original differential equation, and the solution fails to satisfy all the

boundary or the initial conditions.

Thus, the method of asymptotic expansion does not properly approximate the exact

solution of singular perturbation problem. This limitation of the asymptotic expansion

method is removed by using the following methods:

1. Method of matched asymptotic expansions: This approach involves obtaining

two complementary solutions, the inner solution and the outer solution, in their

respective regions by treating a specific portion of the domain as a distinct pertur-

bation problem. Subsequently, the solutions from different regions of the domain

are patched or matched to derive an approximate solution for the entire domain.
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The inner and outer solutions were first matched by using stretching transformation

[86]. During the 1950s, this method was refined and applied to numerous physical

problems [167, 212, 137, 163, 138, 294, 295]. For more details on this technique,

one can refer to the books [291, 144, 216].

2. Method of multiple scales: This method constructs uniformly valid approx-

imations for solving singular perturbation problems by incorporating multiple

scales for the independent variable. Additional terms are included by introduc-

ing new independent variables to eliminate secular terms and determine a uni-

formly approximate solution. This method was introduced in the late 1950s

and has since been extensively explored in various examples [36]. Later, this

method has been employed to solve numerous singular perturbation problems in

[143, 64, 268, 58, 123, 34, 159, 164]. The multiple scales method offers a significant

advantage in tackling nonlinear problems [159]. However, introducing additional

slow scales can lead to potential ambiguities in the perturbation series solution,

which must be carefully addressed, as demonstrated in [36].

3. WKB approximation: This method is used to obtain a global approximation for

solving linear singular perturbation problems. The method assumes an exponen-

tial dependence of the solution on the boundary layer, which is a reasonable as-

sumption for linear singular perturbation problems. This assumption significantly

reduces the effort of finding an asymptotic approximation for the solution. The

method involves initially identifying approximate linearly independent solutions,

which are then combined through superposition to form a general solution. Unlike

other asymptotic methods like matched asymptotic expansions or multiple scales,

the boundary conditions are typically solved exactly at the end of the process rather

than being approximated. This method, known as the Wentzel-Kramers-Brillouin

(WKB) method, was first utilized in the 1920s to approximate solutions to the

Schrödinger equation. The historical development of this method can be found

in [116], while the mathematical details about the method can be found in [256].

Applications of the WKB method in quantum mechanics and solid mechanics can

be found in [41] and [274], respectively. Further, this method has been applied to

solve various SPPs [3, 96, 151].

4. Other Methods: In addition to the previously mentioned prominent asymptotic

methods, several other asymptotic methods are available for both linear and non-

linear problems. For linear problems, some of these methods include the Poincaré-

Lindstedt method [145, 222, 35, 181, 47, 202], the method of strained parame-
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ters [203, 267, 273], the method of periodic averaging [57, 136, 6], and the lin-

earized perturbation method. For nonlinear problems, there are methods such as

the variational iteration method [112, 115], the modified Poincaré-Lindstedt method

[113, 174, 236, 8], the homotopy perturbation method [211, 114, 2], the parameter

expansion method [245, 298] and the perturbation-iteration methods [15, 186, 204].

For a comprehensive understanding of the progressive developments in the asymp-

totic theory of singular perturbations, additional information can be found in books

[293, 272, 36, 214].

The asymptotic expansion treats a relatively small class of problems and requires the

user to know the boundary layer’s location and width. Additionally, the method is not

well-suited for tackling two-dimensional problems efficiently. Even for complex one-

dimensional nonlinear problems, the asymptotic approximation remains valid only for

small perturbation parameter values. Applying these methods requires a thorough under-

standing of the expected solution behaviour. This motivates one to use numerical methods

to solve such problems.

1.4.2 Numerical Methods

Numerical methods are used to obtain an approximate solution for problems where finding

a closed-form solution is typically not possible. These methods are intended for a broad

range of problems and provide quantitative information about the particular problem. Be-

ing quantitative in nature, the solution generated by these methods is quite different from

the qualitative solution provided by asymptotic methods.

Researchers have developed several numerical methods to solve SPPs in the past few

decades. These methods are generally classified as computational methods and parameter-

uniform numerical methods. When the perturbation parameter is set to a critical value, the

standard finite difference, finite element, or finite volume methods, collectively known as

classical computational methods, are found to be insufficient on uniform meshes and re-

quire an extremely large number of mesh points to generate accurate numerical solutions

[249]. The reason behind this limitation of the computational methods is the presence of

steep gradients in the boundary layer(s) of the analytical solution. These methods fail to

reduce the maximum point-wise error until the mesh size and the singular perturbation

parameter have the same order of magnitude. However, refining the mesh size to the or-

der of perturbation parameter (say when ε = 10−6) unexpectedly increases the number of

mesh points and the associated computational cost. Thus the major limitation of the com-

putational method is the dependence of domain discretization on the perturbation param-

eter. It is desirable to develop robust computational methods in which the discretization,
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error, and order of convergence are independent of the perturbation parameter. Such ro-

bust methods work uniformly for all values of the perturbation parameter and are known

as parameter-uniform numerical methods. These methods are generally classified into

two main categories: the fitted finite difference operator and the fitted mesh method. A

brief survey enumerating the chronological developments in both classical computational

methods and parameter-uniform numerical methods is as follows.

1. Finite difference methods: The finite difference method (FDM) is a well-

established and straightforward technique for approximating the solution of a sin-

gular perturbation problem. Its introduction in numerical applications dates back

to the late 1960s, coinciding with the emergence of minicomputers that provided

a convenient framework for handling complex problems. In this method, the do-

main of interest is discretized by dividing it into a mesh or grid. Then, all the

derivatives present in the differential equation are replaced with algebraic differen-

tial quotients. For instance, the derivative
du
dx

can be approximated using either the

first-order forward difference quotient
du
dx

∣∣∣∣∣
i
≈

ui+1 − ui

h
or the second-order central

difference quotient
du
dx

∣∣∣∣∣
i
≈

ui+1 − ui−1

2h
, where ui is the value of u at the mesh point i

and h is the mesh spacing. By replacing the derivatives at all interior mesh points,

a system of algebraic equations is generated in which u′i s represent the unknowns.

After enforcing the boundary conditions, the number of unknowns in the system

will be equal to the number of interior nodes in the mesh. These unknowns can

be determined by solving the system of equations either exactly or approximately,

utilizing direct methods or iterative methods like the Gauss-Seidel method, Jacobi

method, Successive Overrelaxation method, or other advanced techniques.

The development of a three-point difference scheme on a uniform mesh for a one-

dimensional two-point singular perturbation boundary value problem was first in-

troduced in [228]. The approach involved identifying mesh locations where the

difference between the computed solution and its neighbouring value exceeded a

predetermined threshold value. An iterative procedure was implemented to increase

the concentration of mesh points at these identified locations, and a smoothing tech-

nique was employed to mitigate accuracy loss caused by abrupt changes in mesh

spacing. The Gauss elimination method was applied to solve the linear algebraic

equations formed by the difference scheme. The obtained numerical results indi-

cate that the computed solution converged to the exact solution. Later, this method

is extended to solve a class of nonlinear problems [229].
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These methods require strict constraints on the mesh spacing to maintain stability

when the perturbation parameter is very small. For instance, consider the following

singular perturbation boundary value problem:

εu′′(x) + a(x)u′(x) + b(x)u(x) = f (x), x ∈ Ω = (0, 1), u(0) = p0, u(1) = p1,

where ε represents the perturbation parameter, a(x), b(x) and f (x) are smooth func-

tions satisfying a(x), b(x) ≥ 0 on Ω. It was found that the central difference scheme,

implemented on a uniform mesh {xi = ih} with mesh spacing (h = 1/N), becomes

unstable and oscillates when a(xi)h/2ε > 1[67]. The authors in [125] introduced an

upwind scheme to overcome this stability issue. In this scheme, the first derivative

is replaced by a one-sided (forward or backward) difference instead of the central

difference. The choice of forward or backward difference depends upon the sign

of a(x) at a particular mesh point xi. This scheme is known as the Il’in-Allen-

Southwell scheme [7]. The upwind scheme was observed to provide stability and

exhibits better convergence when compared to the central difference scheme. Al-

though it is considered as the first fitted operator scheme, it has limitations that it is

first-order uniformly convergent in the outer region only.

In [20], the authors solved a singularly perturbed reaction-diffusion problem using

the finite difference method on a non-uniform mesh. The non-uniform mesh was

constructed by using a continuous mesh generating function ψ : Ω̄ → [0, 1], which

is defined as

ψ(t) =


χ(t) := −

σε

β
ln(1 − t/q), t ∈ [0, τ],

φ(t) := χ(τ) + ψ′(τ)(t − τ), t ∈ [τ, 1/2],

1 − ψ(1 − t), t ∈ (1/2, 1],

where the transition point τ is the solution of the nonlinear problem

(1 − 2τ)φ′(τ) = 1 − 2χ(τ). The mesh generated by this method is known as the

Bakhvalov mesh. This mesh is considered to have a complicated structure, and

extending the mesh to solve the singularly perturbed partial differential equations

(PDEs) is difficult.

In [68], a class of SPPs is solved by using an upwind finite difference method. The

author compared the asymptotic behaviour of the solution obtained from the dif-

ference scheme with the exact solution. Later, the authors extended this method to

solve second-order ODEs [69]. They obtained elementary estimates for the solu-

tion and its derivatives by using the maximum principle [234]. In [4], the upwind
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method is further refined and used to solve SPPs with systems of equations. In this

method, a parameter was introduced in the difference equation, and it was chosen

in such a way that an accurate approximation for the reduced problem is obtained

in the interior region as well. Later, this method is extended to solve SPPs with

internal turning points [28].

In [142], three-point difference schemes is applied to SPPs without turning points.

The authors examined three difference operators(L1
h, L2

h and L3
h) on a uniform mesh

of size h to approximate the solution. The operator L1
h provides an approximation

of order h. The error bounds for the L2
h operator, used in [109], and the L3

h operator,

used in [28, 125], contain a term of the form
h2

(h + ε)
, indicating a reduction in the

order of convergence by one as ε approaches 0. Therefore, methods using the L2
h

and L3
h operators exhibit second-order convergence in the outer region and first-

order convergence inside the layer region.

In [73], the exponential box scheme is introduced to solve singularly perturbed

convection-diffusion problems. This scheme combined the exponential difference

operator [7] with Keller’s box scheme [141] to achieve a stable and second-order

accurate approximation of the solution. Later in [37], the authors proved that the

exponential difference [73], when applied on a uniform mesh with a mesh size

of h, provides uniformly second-order accuracy for solving convection-diffusion

problems. This result demonstrated that the exponential box scheme is reliable and

accurate across the entire computational domain, ensuring consistent second-order

accuracy of the approximation.

In [16], the authors modified the upwind scheme to enhance its accuracy for

convection-diffusion SPPs. This modified scheme achieved second-order accuracy,

similar to the central difference scheme, while preserving the stability properties of

the upwind scheme. This modification improved the accuracy of the solution and

provided better convergence properties.

In [264], the author developed a scheme based on the integro-interpolation method

[253] to solve a class of singularly perturbed differential equations of ordinary

type and parabolic type. The scheme was developed on a mesh similar to the

Bakhvalov mesh and exhibited third-order convergence for ODEs and first-order

convergence for PDEs. In [296], the author generalized the Bakhvalov mesh for

the finite-difference discretization of one-dimensional nonlinear reaction-diffusion

SPPs. This generalization extended the use of the Bakhvalov mesh to handle non-

linear problems and achieved a uniform second-order convergence.
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In [90], the author developed a family of uniformly accurate finite difference

schemes for convection-diffusion SPPs using the high-order differences with iden-

tity expansion (HODIE) framework [178, 66]. The discretization error analysis was

carried out using the stability results from [209]. The theoretical analysis showed

that the uniform convergence of any order could be achieved, depending on the

smoothness of the data. Achieving higher-order convergence with this scheme re-

quired additional evaluations of the data.

In [80], it is shown that for convection-diffusion SPPs, the fitted finite difference op-

erator is only necessary for the layer region, while the solution in the outer region

can be accurately approximated using the standard fitted operator. This observation

allowed for more efficient computation by reducing the computational cost in the

outer region. In [81], the author investigated a variety of finite difference schemes

to derive sufficient conditions for uniform convergence. He showed that these con-

ditions are not only satisfied by uniformly convergent schemes but also by a more

general class of upwind schemes.

In [91], an exponentially graded mesh was employed for two-point singularly per-

turbed boundary value problems. The graded mesh divided the domain into three

regions: the inner region with an extremely fine mesh, the transit region where the

mesh geometry changes from fine to coarse, and the outer region with a uniform

mesh. The number of mesh points in the inner region was significantly higher (ap-

proximately k times) than the number of mesh points in the outer region. Various fi-

nite difference schemes were applied on the graded mesh and uniform convergence

of order O(hk) was achieved. However, the complexity involved in creating the

graded mesh made it challenging to extend the mesh to higher dimensions. Consid-

ering this limitation, the author in [265] introduced a relatively simple mesh known

as the Shishkin mesh, which could be conveniently extended to higher dimensions.

For convection-diffusion problems, he proposed a piecewise uniform mesh with a

transition point τ defined as τ = min(1/2, ετ0 ln N), where τ0 ≥ p/α. The param-

eter p characterizes the order of convergence of the numerical method. The mesh

Ω̄N = {xi}
N
i=0 is constructed by dividing both subintervals [0, τ] and [τ, 1] into N/2

equal subintervals if a boundary layer is present near the left endpoint of the do-

main. When ετ0 ln N > 1/2, (for sufficiently large N compared to 1/ε), this mesh

transforms into a uniform mesh. Similarly, if there is a boundary layer near the right

endpoint, the domain Ω̄ is divided into [0, 1− τ] and [1− τ, 1], each with N/2 equal

subintervals, to obtain a piecewise uniform mesh. For reaction-diffusion problems,

the transition parameter τ is defined as τ = min(1/4,
√
ετ0 ln N), where τ0 ≥ p/β.
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A piecewise uniform mesh is constructed by discretizing the domain Ω̄ = [0, 1] into

[0, τ], [τ, 1−τ], [1−τ, 1], where the subintervals contain N/4, N/2, and N/4 equally

spaced mesh points, respectively. It is important to note that one limitation of the

Shishkin mesh is that it requires prior knowledge about the location and width of

the boundary layers. All these meshes, Bakhvalov [20], Vulanović [296], Gartland

[91], and Shishkin [265], are constructed based on a priori information about the

width and location of the layers in the exact solution and are thus known as apriori

meshes.

In [77], the author analysed a defect-correction method for a one-dimensional

convection-diffusion problem without turning points. He showed that the kth ap-

proximation obtained using the defect-correction method converges uniformly with

a rate of O((ε0 − ε)k + h2), where ε0 is of the order O(h) in outer regions. However,

the error estimates degrade to O(1) in the inner regions.

In [284], the authors introduced a spline difference scheme that uses quadratic and

cubic splines for discretizing reaction-diffusion problems on a non-uniform mesh.

In [285], the authors discretized reaction-diffusion problems using quadratic splines

on a piecewise uniform Shishkin mesh and achieved an almost second-order accu-

racy in the discrete maximum norm. In [122], the authors used a cubic spline differ-

ence scheme on Bakhvalov mesh to solve reaction-diffusion problems. The result

obtained using the Bakhvalov mesh was found to be superior to that achieved with

the Shishkin mesh.

In [179], the author introduced a posteriori mesh, which does not require prior in-

formation about the width and location of the layers in the exact solution. The

method involves computing an approximate solution on an arbitrary mesh and then

using the error estimate, based on the difference derivatives of the computed so-

lution to determine a monitor function. This monitor function helps in achieving

mesh equidistribution. Authors in [32] further developed this idea by proposing a

monitor function that combines a constant term with an appropriate power of the

second derivative of the singular component of the solution. This choice of monitor

function improved the mesh equidistribution and enhanced the accuracy of the nu-

merical solution. In [149, 169], the authors utilized the arc-length monitor function

for mesh equidistribution to solve convection-diffusion problems. In [230], the au-

thor introduced numerical methods based on exponential finite difference approxi-

mations with h4 accuracy for solving one and two-dimensional convection-diffusion

problems. A nonlinear two-point SPP is considered in [132]. The authors employed
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quasi-linearization to linearize the original nonlinear equation for each linear case.

Then, they used a cubic spline difference scheme on a variable mesh to approxi-

mate the linear equations. Continuing their work, the authors in [133] developed an

exponentially fitted difference scheme using spline in compression for solving two-

point singularly perturbed boundary value problems. In [170], the author presented

a survey on layer-adapted meshes for convection-diffusion problems, emphasizing

the importance of using appropriate grids to achieve uniform convergence.

In [10], the authors considered a one-dimensional steady-state convection-diffusion

problem with Robin boundary conditions. To discretize the problem, they use stan-

dard upwind finite difference operators on Shishkin meshes. Furthermore, the au-

thors in [54] developed a finite difference scheme for solving a one-dimensional

time-dependent convection-diffusion problem with initial-boundary conditions.

They employed the classical Euler implicit method for time discretization and the

simple upwind scheme on a Shishkin mesh for spatial discretization.

In [54], the authors developed a finite difference scheme to solve one-dimensional

time-dependent convection-diffusion problem. They used the classical Euler im-

plicit scheme and upwind scheme for the time discretization and spatial discretiza-

tion, respectively. In [254], the authors presented an adaptive finite difference

method to solve singularly perturbed convection-diffusion problems. The authors

combined a first-order upwind and a second-order central scheme to achieve a

higher order of convergence. In [171], the author discretized a singularly perturbed

convection-diffusion problem using a simple first-order upwind difference scheme

on general meshes. He derived an expansion of the error of the scheme that enables

uniform error bounds with respect to the perturbation parameter in the discrete max-

imum norm for both a defect correction method and the Richardson extrapolation

technique.

In [30], the author presented a cubic spline in compression to solve two-point sin-

gularly perturbed boundary value problems. In [148], the author analysed that the

arc-length monitor function does not yield satisfactory numerical approximations

for reaction-diffusion problems. It has been observed that an optimal choice of the

monitor function not only depends on the discretization technique and the norm of

the error to be minimized but also on the nature of the problem.

In [226], the authors considered a self-adjoint two-point singularly perturbed

boundary value problem. They employ a fitted finite difference scheme on a

Shishkin mesh for solving the problem by reducing it to normal form. While the
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authors in [177] proposed a non-standard finite difference scheme for solving self-

adjoint two-point singularly perturbed boundary value problems using Micken’s

finite difference method.

In [258], the authors introduced a finite difference scheme for discretizing singularly

perturbed boundary value problems. The presented scheme is a combination of the

simple upwind scheme and the central difference scheme on a Shishkin mesh. It is

observed that the proposed scheme exhibited higher-order convergence compared

to the simple upwind scheme alone.

In [244], the authors used spline in compression to generate second and fourth-order

uniformly convergent numerical techniques for singularly perturbed boundary value

problems. To deal with Robin-type boundary conditions, authors in [201] applied

the central difference method on the regular region of standard Shishkin mesh and

cubic splines to discretize the layer region.

In [197], the authors investigated the effect of Richardson extrapolation on two fitted

operator finite difference methods (FOFDM), (FOFDM-I) [226] and (FOFDM-II)

[177]. They found that FOFDM-I achieved fourth-order accuracy for moderate val-

ues of the perturbation parameter, while it attained second-order accuracy for small

values of the perturbation parameter. However, they observed that Richardson ex-

trapolation did not improve the order of convergence for FOFDM-I. For FOFDM-

II, which is uniformly second-order convergent, the order of convergence can be

improved up to fourth order by using Richarson extrapolation. In [172], the au-

thor proposed a compact fourth-order finite difference scheme for solving two-point

reaction-diffusion SPPs on a Shishkin mesh.

Authors in [242] applied exponential splines to generate an almost second-order

uniformly convergent difference scheme on standard Shishkin mesh for semi-linear

reaction-diffusion problems. The method exhibits uniform convergence of almost

second-order in discrete maximum norm. Later, they devised an exponential spline

difference scheme on piecewise uniform Shishkin mesh [243].

In [130], the authors proposed a numerical approach to solve the singularly per-

turbed time-dependent convection-diffusion problem in one spatial dimension.

They employed a semi-discretization technique by applying the backward Euler

finite difference method in the temporal direction. To discretize the resulting set

of ordinary differential equations, they utilized the midpoint upwind finite differ-

ence scheme on a non-uniform mesh of Shishkin type in the spatial direction. In

[105], the authors proposed a method in which domain decomposition was com-
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bined with higher-order difference discretization for solving two-point singularly

perturbed boundary value problems of convection-diffusion type. In [61], the au-

thors used the same scheme combination as in [201] on an equidistributed grid.

Their approximation scheme uses cubic splines for the mixed-boundary conditions

and the classical central scheme elsewhere.

In [196], the authors considered a time-dependent singularly perturbed reaction-

diffusion problem. They employ the classical backward Euler method to discretize

the problem in time and a fitted operator finite difference method in space. In [98],

the authors proposed a classical upwind finite difference scheme on layer-adapted

nonuniform meshes to solve singularly perturbed parabolic convection-diffusion

problem. In [195], the authors proposed a uniformly convergent FDM for a coupled

system of singularly perturbed ODEs of convection-diffusion type. It was proved

that the proposed discrete operator satisfies the stability property in the maximum

norm. In [227], the author presented a survey of non-standard FDMs.

In [92], the authors proposed an adaptive finite difference technique using the cen-

tral difference scheme on a layer-adapted mesh for a linear second-order singularly

perturbed boundary value problem. It was shown that the proposed technique has

fourth-order convergence. In [180], the authors considered singularly perturbed de-

generate parabolic convection-diffusion problems in two-dimension. They used an

alternating direction implicit finite difference scheme to discretize the time deriva-

tive and an upwind finite difference scheme to discretize the spatial derivative.

In [210], the authors introduced a hybrid difference scheme for solving singu-

larly perturbed convection-diffusion problems. Their scheme combined the up-

wind scheme on the coarse part of the Shishkin mesh with the central difference

scheme on the fine part. In [93], the authors considered a singularly perturbed

fourth-order differential equation with a turning point. They used the classical fi-

nite difference scheme on an appropriate piecewise uniform Shishkin mesh to solve

the problem. In [60], the authors proposed a second-order uniformly convergent

numerical method for a singularly perturbed parabolic convection-diffusion initial-

boundary-value problem in two-dimension. They used a fractional-step method in

the time direction, while a finite difference scheme was used in the spatial direction.

In [269], a higher-order Richardson extrapolation scheme is presented for solving a

singularly perturbed system of parabolic convection-diffusion problems. Whereas

in [175], a septic B-spline method is presented for solving a self-adjoint singularly

perturbed two-point boundary value problem.



1.4 Methods for Solving Singular Perturbation Problems 21

In [184], the authors proposed a uniformly convergent FDM to solve singularly

perturbed time-dependent convection-diffusion problems in the framework of the

method of lines. The method uses the fitted operator finite difference method to

discretize the spatial derivatives, followed by the Crank–Nicolson method for the

time derivative. Moreover, Richardson extrapolation is performed in space to im-

prove the accuracy of the method. In [104], a linear singularly perturbed parabolic

reaction-diffusion problem with incompatible boundary-initial data is considered.

The method combines the computational solution of a classical finite difference

operator on a tensor product of two piecewise-uniform Shishkin meshes with an

analytical function that captures the local nature of the incompatibility. In [100],

the authors proposed a parameter-uniform numerical method for viscous Burgers’

equation. In order to find a numerical approximation, they linearized the equa-

tion to obtain a sequence of linear PDEs. The linear PDEs are then solved by

a finite difference scheme, which comprises the backward-difference scheme for

the time derivative and the upwind finite difference scheme for the spatial deriva-

tives. Whereas in [62], the authors considered a system of singularly perturbed

reaction-diffusion problems. In [56], the authors deal with linear parabolic singu-

larly perturbed systems of convection-diffusion type in two-dimension. The numer-

ical method combines the upwind finite difference scheme to discretize in space,

and the fractional implicit Euler method, together with a splitting by directions and

components of the reaction–convection–diffusion operator, to discretize in time.

In [297], a hybrid higher-order finite-difference scheme is presented for a class

of linear singularly perturbed convection-diffusion problems in one dimension.

Whereas in [183], the authors presented a hybrid scheme for solving singularly

perturbed parabolic problems with Robin-type boundary conditions. The scheme is

a combination of FOFDM in space and the backward Euler method in time. They

have also proposed a finite difference scheme to solve Volterra integro singularly

perturbed differential equation. The proposed scheme used a non-standard finite

difference scheme for solving the differential part and Simpson’s rule for solving

the integral part. The Richardson extrapolation is used to increase the order of con-

vergence to two. In [185], the authors proposed a second-order finite difference

scheme to solve a singularly perturbed Volterra integro-differential equation.

In [106], the author proposes a higher-order numerical scheme to solve singularly

perturbed reaction-diffusion problems. The proposed scheme is a combination of a

fourth-order numerical difference method and a classical central difference method.

In [157], the authors presented a parameter-uniform numerical method on equidis-
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tributed meshes for solving a class of singularly perturbed parabolic problems with

Robin boundary conditions. The discretization consists of a modified Euler scheme

in time, a central difference scheme in space, and a special finite difference scheme

for the Robin boundary conditions.

In [128], the authors presented a second-order robust method for solving singularly

perturbed Burgers’ equation. In [88], a specific class of parabolic singularly per-

turbed convection-diffusion problems is investigated. The problem is discretized

using the backward Euler scheme in the temporal direction and the upwind scheme

on a Harmonic mesh in the spatial direction. In [158], the authors introduce a

high-order convergent numerical method for singularly perturbed time dependent

problems using mesh equidistribution. The discretization is based on the backward

Euler scheme in time and a high-order non-monotone scheme in space. In [199], nu-

merical approximations are computed for the solution of a system of two reaction-

convection-diffusion equations by a fitted mesh finite difference method. In [270],

authors conducted a numerical investigation of an initial boundary value problem

for a singularly perturbed system of two equations of convection-diffusion type.

The authors proposed a numerical method that combined a spline-based scheme

with a Shishkin mesh and achieved second-order uniform convergence. While in

[271], the authors present a uniformly convergent numerical technique for a time-

dependent singularly perturbed system of two equations of reaction-diffusion type.

The proposed numerical technique consists of the Crank–Nicolson scheme in the

temporal direction over a uniform mesh and the quadratic B-splines collocation

technique over an exponentially graded mesh in the spatial direction. In [208],

the authors considered singularly perturbed elliptic convection-diffusion differen-

tial equations in two dimensions. They discretized the problem by using an upwind

difference scheme on a modified exponentially graded Bakhvalov mesh. Further,

in[303], the authors analysed a higher order numerical method for a class of two-

dimensional parabolic singularly perturbed problem of convection-diffusion type

for the case when the convection coefficient is vanishing inside the domain. The

Peaceman–Rachford scheme is used on a uniform mesh for time discretization, and

a hybrid scheme is applied on the Bakhvalov–Shishkin mesh for spatial discretiza-

tion. In [55], the authors deal with one-dimensional linear parabolic singularly per-

turbed systems of convection-diffusion type. The diffusion term in each equation is

affected by a small positive parameter of different magnitudes. The numerical algo-

rithm combines the classical upwind finite difference scheme to discretize in space
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and the fractional implicit Euler method together with an appropriate splitting by

components to discretize in time.

In [94], a parameter-uniform numerical method is constructed for singularly per-

turbed Robin type parabolic convection-diffusion problems having boundary turn-

ing points. The problem is discretized by means of the implicit Euler method in

time and the non-standard finite difference method in space on a uniform mesh.

Moreover, the non-standard finite difference method is used to discretize the Robin

boundary conditions. While in [263], the authors deal with a singularly perturbed

two-dimensional steady-state convection-diffusion problem with Robin boundary

conditions.

In [156], the authors present a domain decomposition method to solve a class of

singularly perturbed parabolic problems of reaction-diffusion type having Robin

boundary conditions. The method considers three subdomains, of which two are

fine mesh and the other is coarse mesh. The partial differential equation associated

with the problem is discretized using the finite difference scheme on each subdo-

main, while the Robin boundary conditions associated with the problem are ap-

proximated using a special finite difference scheme to maintain accuracy. In [250],

the authors considered a class of time-fractional singularly perturbed convection-

diffusion problems. To discretize the problem, a classical L1 finite difference

scheme is employed on a graded mesh to discretize the time-fractional derivative.

Further, a standard upwinding procedure in the spatial direction is used on a piece-

wise uniform Shishkin mesh.

In [223], the authors considered a second-order singularly perturbed Volterra

integro-differential equation. On a layer adapted Shishkin mesh, the problem is

solved using finite difference schemes. Whereas in [224] author presents a fitted

mesh finite difference method for solving a singularly perturbed Fredholm integro-

differential equation.

2. Finite element methods: The finite element method (FEM) is a numerical tech-

nique commonly used to approximate solutions to ODEs or PDEs. In this method,

the dependent variable u in the differential equation is approximated by a function

uh which is a linear combination of basis functions ψ as u ≈ uh =
∑

i uiψi. The basis

functions, ψi, are chosen such that they form a set of functions that span the solu-

tion space. The coefficients of the basis functions, ui, represent the unknowns that

need to be determined. These coefficients correspond to the values of the solution

at specific mesh points, i. By substituting the approximation uh into the original dif-
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ferential equation, the problem is transformed into a system of algebraic equations.

This system is then solved to determine the values of the coefficients ui, which in

turn define the approximate solution uh. The finite element method offers flexibility

in choosing the shape and size of the basis functions, allowing for adaptability to

complex geometries and varying solution behaviour. It is widely used in various

fields of engineering and applied sciences for solving a wide range of problems

governed by differential equations.

During the late 1970s, researchers began applying Petrov-Galerkin methods, a vari-

ant of the FEM, to solve SPPs. In [307], the authors recognized the need for special

approaches to address SPPs using finite element analysis. They developed a FEM

approach analogous to the upwind scheme by incorporating upwinding into the test

function. This modification aimed to obtain an oscillation-free solution for SPPs.

In [187], the author proposed a FEM formulation that reduced to a simple upwind

scheme in the limiting case, specifically for solving singularly perturbed ODEs.

In [48], the authors introduced a FEM that utilized piecewise linear and quadratic

basis functions to solve second-order differential equations. Further, in [118],

the authors used an upwind finite element scheme for two-dimensional convec-

tive transport equations. Author in [292] proposed a FEM technique employing

piecewise polynomials of degree at most k to solve two-point singularly perturbed

boundary value problems. The proposed method provided parameter-uniform error

estimates of O(hk+1) in the maximum norm, indicating convergence rates that de-

pended on the mesh size h. In [119], the authors conducted a survey summarizing

various FEMs and upwind schemes employed to solve convection-dominated flow

problems.

In [117], the author proposed a FEM that utilized a combination of quadratic trial

and cubic test functions to solve the steady-state convection-diffusion equation. A

series of papers were published investigating the selection of test spaces to sym-

metrize the associated bilinear form; see, e.g., [24, 26, 25, 27]. The goal was to

obtain an optimal approximate solution similar to the ones achieved by applying

Galerkin methods to symmetric problems.

In [70], a convection-dominated diffusion problem is solved by combining the FEM

or FDM with the method of characteristics. The authors derived optimal order error

estimates in L2 and W1,2 for the FEM and various error estimates for a variety of

FDMs. The concept of hinged elements was introduced in [217]. These elements

were essentially piecewise linear finite elements that could vary according to prob-
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lem data and were used to solve one-dimensional linear non self-adjoint two-point

singularly perturbed boundary value problems.

In [277], the authors applied the FEM with a Petrov-Galerkin approach using expo-

nential basis elements to solve conservative non self-adjoint singularly perturbed

boundary value problems. The method has first-order convergence in L∞ and

second-order convergence at the nodes. The Authors, in [76], introduced an adap-

tive streamline diffusion finite element method for solving stationary convection-

diffusion problems by using shock capturing artificial viscosity technique.

In [282], the authors applied Galerkin FEMs using a piecewise polynomial ba-

sis functions on a Shishkin mesh to obtain optimal convergence results for high-

order elliptic two-point singularly perturbed boundary value problem of reaction-

diffusion type. They also achieved uniform convergence results for a family of

Galerkin FEMs on a Shishkin mesh for high-order elliptic two-point singularly per-

turbed boundary value problems of convection-diffusion type [283].

In [168], the author utilized Galerkin FEM on a Bakhvalov-Shishkin mesh to solve

a linear two-dimensional convection-diffusion problem. It was shown that better

error estimates were obtained on the Bakhvalov-Shishkin mesh compared to the

Shishkin mesh. Further, in [306], the author studied superconvergence approxima-

tions of singularly perturbed boundary value problems of reaction-diffusion type

and convection-diffusion type. He obtained superconvergence with an error bound

of O((N−1 ln(N + 1))p+1) in a discrete energy norm by applying the standard finite

element method of any fixed order p on a modified Shishkin mesh.

In [276], the author presented a FEM approach for solving a non self-adjoint SPP. In

[246], the author achieved optimal convergence results for the two-point singularly

perturbed boundary value problem of convection-diffusion type in the energy norm.

The analysis was conducted on a Bakhvalov mesh.

In [286], the authors considered a two-parameter elliptic SPP. They decomposed the

solution into smooth and layer components and derived error bounds for these com-

ponents and their derivatives. This analysis was then used to analyse the FEM in

[287]. In [300], the performance of high-order versions of FEM on various meshes

is investigated. The authors proposed the p/hp FEM, which aimed to approximate

the solution to a problem with an exponential rate of convergence independent of

the perturbation parameters.

In [85], the authors applied Galerkin FEM to solve elliptic convection-diffusion

problems. They analysed the superconvergence property of the method on a
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Shishkin mesh and determined that it was almost first-order accurate in the energy

norm. In [49], the authors proposed a multiscale FEM to approximate the solution

to elliptic SPPs with high contrast coefficients using coarse quasiuniform meshes.

The method achieved first-order convergence in the energy norm and second-order

convergence in the L2 norm. Authors in [127] compared the performance of He’s

homotopy perturbation method with that of FEM for solving the two-dimensional

heat conduction equation. They concluded that there was excellent agreement be-

tween the analytical results obtained using the homotopy perturbation method and

the numerical results obtained using FEM, demonstrating the accuracy and reliabil-

ity of FEM in solving heat conduction problems.

In [304], the authors solved a singularly perturbed convection-diffusion equation

using linear FEM on a Shishkin mesh. They utilised symmetries in the convective

term of the bilinear form over adjacent intervals to achieve superconvergence of

almost second-order accuracy in general cases. This research highlighted the po-

tential for improving the accuracy and efficiency of FEM through the exploitation of

specific problem structures and symmetries. In [299], the authors construct a finite

volume element method on the Shishkin mesh for solving a singularly perturbed

reaction-diffusion problem. In [239], the authors introduce numerical methods for

singularly perturbed convection-diffusion problems with a turning point. As a re-

sult of the turning point, the problem typically exhibits exponential-type boundary

layers or a cusp-type interior layer. They develop non-symmetric discontinuous

Galerkin FEM with interior penalties for both cases. Usual Shishkin mesh is in-

voked for the problem with boundary layers, whereas generalized Shishkin type

mesh is used to tackle the interior layer of cusp-type. In [155], the authors pre-

sented a convergence analysis of a weak Galerkin FEM using polygonal meshes for

the semilinear singularly perturbed time-dependent convection-diffusion-reaction

equations.

Comprehensive discussions on the theoretical foundations and practical implemen-

tations of FEM for various problems can be found in several books; see, e.g.

[43, 40, 18]. These references extensively cover the theory and applications of

FEM.

3. Finite volume methods: The finite volume method (FVM) is a numerical tech-

nique used to approximate the solution to PDEs. In this method, the domain is

discretized into mesh elements known as control volumes. The PDE is integrated

over each control volume to obtain a set of balance equations. These balance equa-
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tions are then discretized into a set of algebraic equations, resulting in a system of

equations with discrete unknowns. The system of equations can be solved either

exactly or approximately using direct or iterative methods such as the Gauss-Seidel

method and the Jacobi method. Iterative methods iteratively update the values of

the unknowns until a desired level of accuracy is achieved. Direct methods, on the

other hand, solve the system of equations in one step but may be computationally

expensive for large systems. The FVM is an integral scheme, similar to the FEM,

whereas FDM is a differential scheme. In FVM, the integral form of the PDEs is

used to construct the discrete equations, whereas FDM approximates the derivatives

directly using finite difference approximations. Differential schemes are generally

faster than integral schemes, but integral schemes, such as FVM, have the advan-

tage of being more accurate than their differential counterparts when dealing with

irregular meshes. For a detailed description of FVM, several books are available

as references. [191] provides a detailed description of cell-vertex FVMs, [166] fo-

cuses on FVMs for hyperbolic problems, and [182] covers FVMs for general PDEs,

providing a comprehensive overview of the method and its applications.

1.5 Plan of the Thesis

In this thesis, we study, analyse and develop adaptive numerical schemes for solving var-

ious models of singularly perturbed convection-diffusion boundary value problems. An

adaptive discretization technique can accommodate problems with different physical and

dynamic features by adjusting the resolution, order and type of discretization. It is gener-

ally used with an adaptive numerical method that balances the solution accuracy and the

associated computational cost. Therefore, an appropriate numerical method and the dis-

cretization technique accurately solve the problem and improve convergence. Taking this

into account, in this thesis, we propose different methods to solve singularly perturbed

parabolic convection-diffusion problems with discontinuous coefficient, source term and

delay. We apply the proposed methods to solve three different convection-diffusion prob-

lems of varying complexity.

The thesis is organized as follows: Chapter 2 presents an adaptive finite difference

method to solve a class of singularly perturbed parabolic delay differential equations with
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discontinuous convection coefficient and source that reads

εuxx(x, t) + a(x)ux(x, t) − b(x)u(x − 1, t) − c(x)u(x, t) − ut(x, t) = f (x, t),

(x, t) ∈ S − ∪ S + := (0, 1) × (0,T ] ∪ (1, 2) × (0,T ],

u(x, t) = p0(x, t) on Γ1 := {(x, 0), x ∈ [0, 2]},

u(x, t) = p1(x, t) in Γ2 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = p2(x, t) on Γ3 := {(2, t), t ∈ [0,T ]},


(1.4)

where ε � 1 is a small positive parameter, b and c are sufficiently smooth functions such

that b(x) < 0, c(x) > 0 and b(x) + c(x) ≥ 0 for all x ∈ [0, 2]. Moreover, we assume that

a(x) =


a1(x) if 0 ≤ x ≤ 1,

a2(x) if 1 < x ≤ 2,
f (x, t) =


f1(x, t) if (x, t) ∈ S

−
,

f2(x, t) if (x, t) ∈ S
+
,

a1(x) < −γ1 < −2γ < 0, a2(x) > γ2 > 2γ > 0, | [a] |≤ C, | [ f ] |≤ C,


(1.5)

where γ = min {γ1, γ2}. The simultaneous presence of discontinuity and the delay makes

the problem stiff. The solution to the problem considers the present state of the physi-

cal system and its history. The numerical scheme based on the upwind finite difference

method is presented on a specially generated mesh to solve the problem. The adaptive

mesh is chosen so that most of the mesh points remain in regions with rapid transitions.

The proposed numerical method is analysed for consistency, stability and convergence.

Extensive theoretical analysis is performed to obtain consistency and error estimates. The

proposed method is unconditionally stable, and the convergence obtained is parameter-

uniform with first-order convergence in space and first-order convergence in time. Nu-

merical results are presented for model problems demonstrating the effectiveness of the

proposed technique. Convergence obtained in practical satisfies theoretical predictions.

Chapter 3 extends the idea further and aims to provide a better numerical approxi-

mation of the solution to the model problem (1.4). The chapter presents a higher-order

hybrid difference method over an adaptive mesh to solve the problem (1.4). The proposed

method is a composition of a central difference scheme and a midpoint upwind scheme

on a specially generated mesh. Moreover, the time variable is discretised using an im-

plicit finite difference method. The error estimates of the proposed numerical method

satisfy parameter-uniform second-order convergence in space and first-order convergence

in time. The rigorous numerical analysis of the proposed method on a Shishkin class

mesh establishes the supremacy of the proposed scheme.

Chapter 4 presents a high-order finite difference scheme to solve singularly per-

turbed parabolic convection-diffusion problems with a large delay and an integral bound-
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ary condition which is given as

−εuxx(x, t) + p(x)ux(x, t) + q(x)u(x, t) + r(x)u(x − 1, t) + ut(x, t) = g(x, t),

(x, t) ∈ (0, 2) × (0,T ],

u(x, t) = ψ1(x, t) in Γ1 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = ψ2(x, t) on Γ2 := {(x, 0), x ∈ [0, 2]},

Ku(x, t) = u(2, t) − ε
∫ 2

0
f (x)u(x, t)dx = ψ3(x, t) on Γ3 = {(2, t), t ∈ [0,T ]},


where ε � 1 is a small positive parameter, g(x, t), p(x), q(x) and r(x) are sufficiently

smooth functions. Also, assume that the initial-boundary data ψ1, ψ2 and ψ3 are smooth

and bounded functions such that

p(x) ≥ p0 > p∗0 > 0, q(x) ≥ q0 > 0, r(x) ≤ r0 < 0,

p∗0 + q0 + r0 > 0, q(x) + r(x) ≥ 2η > 0,

u(1−, t) = u(1+, t), ux(1−, t) = ux(1+, t).


Here, f (x) is non-negative, monotonic function such that

∫ 2

0
f (x)dx < 1. The solution of

the problem features a weak interior layer besides a boundary layer. This chapter presents

a higher-order accurate numerical method on a specially designed non-uniform mesh.

The technique employs the Crank-Nicolson difference scheme in the temporal variable,

whereas an upwind difference scheme in space. It is proved that the proposed method

is unconditionally stable and converges uniformly, independent of the perturbation pa-

rameter. The error analysis indicates that the numerical solution is uniformly stable and

shows parameter-uniform second-order convergence in time and first-order convergence

in space. The numerical result for two model problems is presented, which agrees with

the theoretical estimates.

Chapter 5 presents a robust computational technique to solve a class of two-

parameter parabolic convection-diffusion problems with a large delay which is given as

εuxx(x, t) + µp(x, t)ux(x, t) − q(x, t)u(x, t) + r(x, t)u(x − 1, t) − ut(x, t) = g(x, t),

(x, t) ∈ (0, 2) × (0,T ],

u(x, t) = ψ1(x, t) in Γ1 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = ψ2(x, t) on Γ2 := {(x, 0), x ∈ [0, 2]},

u(x, t) = ψ3(x, t) on Γ3 = {(2, t), t ∈ [0,T ]},


where 0 < ε < 1, 0 < µ < 1 are small parameters, the functions f (x, t), p(x, t), q(x, t) and

r(x, t) are sufficiently smooth functions and assume that

p(x, t) ≥ p0 > 0, q(x, t) ≥ q0 > 0, r(x, t) ≥ r0 > 0, (q − r)(x, t) ≥ κ > 0,
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γ = min
(x,t)∈D̄

(
q(x, t) − r(x, t)

p(x, t)

)
and the initial-boundary data ψ1, ψ2 and ψ3 are smooth func-

tions on their respective domain. The presence of perturbation parameters leads to the

twin boundary layers and interior layers in the solution, whose appropriate numerical ap-

proximation is the main goal of this chapter. The numerical method is composed of an up-

wind difference scheme in space and a Crank-Nicolson scheme in time is used to find the

approximate solution of the problem. It is proved that the method is parameter-uniform

with second-order accuracy in time and almost first-order accuracy in space. Numerical

examples are provided in support of the theory.

Finally, Chapter 6 concludes the thesis with a summary of the work highlighting

its significant contributions. It opens the discussion about future research directions and

points out the challenging steps towards analyzing more complicated problems.



Chapter 2

Parabolic Problems with Discontinuous
Coefficient and Delay

2.1 Introduction

Singularly perturbed parabolic PDEs with delay and discontinuous coefficients terms con-

stitute a challenging class of mathematical models that arise in various fields, including

physics, engineering, and biology. These equations include time-dependent variables and

exhibit sensitivity to small perturbations in the system parameters. The parabolic nature

of these PDEs indicates their ability to describe dynamic processes with diffusion-like

behaviour, where quantities such as temperature, concentration, or population density

evolve over time and space. However, what sets them apart is the presence of delays,

discontinuous coefficients and source terms, which introduce additional complexity to the

problem.

The incorporation of delays in these equations captures the influence of past states

or events on the current evolution of the system. Delays add memory-like behaviour

to the PDEs, making their analysis and numerical solution more intricate. Furthermore,

the discontinuous coefficients introduce abrupt changes or jumps in the system’s mate-

rial properties or physical characteristics. Moreover, the problem is singularly perturbed,

and the solution of these equations exhibits a multiscale character since the correspond-

ing degenerate system fails to satisfy the given boundary data. There are narrow regions

across which the solution changes rapidly and displays layer behaviour. Standard numer-

ical methods on uniform meshes fail to consistently approximate solutions in these layer

regions. Consequently, traditional solution techniques may not be directly applicable,

requiring specialized methods to handle the discontinuities appropriately.

31
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Many researchers have tried to provide consistent numerical approximations to

singularly perturbed differential equations with a delay, discontinuous coefficients, and

source terms. In [279, 280], a standard numerical method with piecewise linear interpola-

tion on a Shishkin mesh is proposed to solve second and third-order ordinary differential

equations. In [79], the authors solve a reaction-diffusion equation with a discontinuous

diffusion coefficient. Whereas in [240] author presents an almost first-order uniformly

convergent method for a coupled system of two reaction-diffusion equations with discon-

tinuous source terms. Later, researchers extended the technique to n-number of equations

in [225].

A discrete approximation of singularly perturbed parabolic partial differential equa-

tion with a discontinuous initial condition is proposed in [120]. The problem is bi-

singular, where a classical singularity is twisted together with the singular nature of the

problem. A numerical scheme is presented based on the fitted operator method defined

over a uniform mesh. Indeed, it is an exact finite difference scheme for the error function

associated with the discontinuity in the initial condition. However, there appears no fur-

ther attempt towards developing fitted operator methods for parabolic reaction-diffusion

problems until authors in [103] regularize the problem by reinstating the discontinuous

initial condition. A linear parabolic problem with a turning point is also brought to at-

tention [220]. The interior layer problem considered by the authors is of the following

form
−εuxx + aux + bu + cut = f , (x, t) ∈ (0, 1) × (0,T ], b, c ≥ 0,

0 < ε � 1, u(0, t), u(1, t), u(x, 0) is specified.
(2.1)

A particular case, when the convection coefficient is discontinuous across the

curve Γ1 := {(d(t), t) | t ∈ [0,T ], 0 < d(t) < 1} and having a particular sign pattern

a(x) > 0, x < d(t) or a(x) < 0, x > d(t) is examined in [71]. Whereas, in [221] author

presents a parameter uniform method over a specially designed Shishkin mesh. The

mesh is obtained by mapping Γ1 to the vertical line x = d(0). The case when the

initial condition u(x, 0) contains its interior layer is studied separately in [102]. How-

ever, the convection coefficient is assumed to be space independent, smooth, and of

one sign. It is to note that the reduced initial condition (set ε = 0) is discontinu-

ous at some point. Moreover, the discontinuity travels with the characteristic curve

Γ2 := {(d(t), t) | t ∈ [0,T ], d′(t) = a(t), d(0) = d} associated with the reduced hyperbolic

equation avx + bv + cvt = f . In [193], a hybrid difference scheme is presented to solve

the parabolic problem with a discontinuous convection coefficient. On the other hand, in

[220], an interior layer appears in the solution of (2.1) since the convective coefficient of

the problem contains an interior layer with a hyperbolic tangent profile. This problem



2.1 Introduction 33

appears to be a time-dependent version of the ordinary differential equation examined in

[219]. In [72], the authors deal with a parabolic problem with a boundary turning point. In

[82], an experimental technique is presented to analyse uniform convergence over piece-

wise uniform meshes. However, it was presented in context to a singularly perturbed

elliptic equation when the convective term degenerates on the boundary of the domain.

In [53, 45], a two-parameter parabolic problem is studied. A hybrid monotone dif-

ference scheme is conferred using the averaging method at the discontinuous points [45].

While [53] presents the case when the convective term degenerates inside the spatial do-

main, and the source term has a discontinuity of the first kind on the degeneration line.

A particular case, when µ = 0 was studied in [83]. In [140, 51, 52], researchers studied

a similar problem for µ = 1. In [241], authors present a parameter uniformly convergent

method for a singularly perturbed parabolic system of equations with a discontinuous

source term. In this work, the diffusion term in each equation is affected by a small

positive parameter of different magnitudes. Besides, researchers have paid attention to

nonlinear problems with an interior layer in [237, 150, 205]. In [150], the authors con-

sider a parabolic periodic boundary value problem and construct the interior layer type

formal asymptotics. They establish the existence and asymptotic stability of the solution

by using precise lower and upper solutions. The analysis presented is then used to con-

struct an efficient numerical method for a slightly general nonlinear problem in [237]. In

[279], researchers used a finite difference method based on linear interpolation to solve an

ordinary delay differential equation with a discontinuous coefficient. They later consid-

ered a hybrid initial value method for the same problem and demonstrated that it yielded

improved results.

The analysis of the special methods for singularly perturbed parabolic partial func-

tional differential equations with discontinuous data and degenerating convective terms

has yet to see much development in the literature. This chapter presents a numerical

method to solve singularly perturbed parabolic partial differential equations with a delay,

discontinuous coefficient and source. Besides, the chapter presents rigorous consistency,

stability, and convergence analysis of the proposed scheme and illustrates numerical re-

sults.
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2.2 Continuous Problem

Let D = S − ∪ S + := (0, 1) × (0,T ] ∪ (1, 2) × (0,T ], Ω̄ = [0, 2] and consider the non-

homogeneous initial-boundary-value problem

εuxx(x, t) + a(x)ux(x, t) − b(x)u(x − 1, t) − c(x)u(x, t) − ut(x, t) = f (x, t) in D,

u(x, t) = p0(x, t) on Γ1 := {(x, 0), x ∈ [0, 2]},

u(x, t) = p1(x, t) in Γ2 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = p2(x, t) on Γ3 := {(2, t), t ∈ [0,T ]},


(2.2)

where ε � 1 is a small positive parameter, b(x) and c(x) are sufficiently smooth functions

such that b(x) < 0, c(x) > 0 and b(x) + c(x) ≥ 0 for all x ∈ [0, 2]. Moreover, we assume

that

a(x) =


a1(x) if 0 ≤ x ≤ 1,

a2(x) if 1 < x ≤ 2,
f (x, t) =


f1(x, t) if (x, t) ∈ S

−
,

f2(x, t) if (x, t) ∈ S
+
,

a1(x) < −γ1 < −2γ < 0, a2(x) > γ2 > 2γ > 0, | [a] |≤ C, | [ f ] |≤ C,


(2.3)

where γ = min {γ1, γ2}. The solution of (2.2) satisfies [u] = 0 and [ux] = 0 at

x = 1. Here, [u] denotes the jump of u defined at the point of discontinuity x = 1 as

[u] (1, t) = u(1+, t) − u(1−, t), where u(1±, t) = lim
x→1±0

u(x, t). The functions p0, p1 and p2

are sufficiently smooth functions and satisfy the compatibility conditions

p0(0, 0) = p1(0, 0), p0(2, 0) = p2(2, 0),

ε
∂2 p0(0, 0)

∂x2 + a(0)
∂p0(0, 0)

∂x
− b(0)p1(−1, 0) − c(0)p0(0, 0) −

∂p1(0, 0)
∂t

= f (0, 0),

ε
∂2 p0(2, 0)

∂x2 + a(2)
∂p0(2, 0)

∂x
− b(2)p0(1, 0) − c(2)p0(2, 0) −

∂p2(2, 0)
∂t

= f (2, 0).


Let us rewrite (2.2) as

Lεu(x, t) = F (x, t),

where

Lεu(x, t) =


εuxx(x, t) + a1(x)ux(x, t) − c(x)u(x, t) − ut(x, t) if (x, t) ∈ S −,

εuxx(x, t) + a2(x)ux(x, t) − b(x)u(x − 1, t) − c(x)u(x, t) − ut(x, t) if (x, t) ∈ S +,

and

F (x, t) =


f1(x, t) + b(x)p1(x − 1, t) if (x, t) ∈ S −,

f2(x, t) if (x, t) ∈ S +.
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Under these assumptions, the solution of (2.2) exists and is unique [9, 139]. The simulta-

neous presence of discontinuity and delay makes the problem stiff. The solution u(x, t) of

(2.2) exhibits a strong interior layer and a weak boundary layer in the neighbourhood of

the points x = 1 and x = 2, respectively. Moreover, it is easy to follow that the differential

operator Lε satisfies the following minimum principle.

Lemma 2.2.1. Suppose P ∈ C0(D̄) ∩ C2(S − ∪ S +) satisfies P(x, t) ≥ 0 for all

(x, t) ∈ Γ := D̄ \ D, [Px](1, t) ≤ 0, t > 0 and LεP(x, t) ≤ 0 for all (x, t) ∈ S − ∪ S +.

Then P(x, t) ≥ 0 for all (x, t) ∈ D̄.

Proof. Choose (xk, tk) ∈ D̄ such that P(xk, tk) = min
(x,t)∈D̄

P(x, t). Consequently,

Px(xk, tk) = 0, Pt(xk, tk) = 0 and Pxx(xk, tk) > 0 for (xk, tk) ∈ (S − ∪ S +). (2.4)

Suppose P(xk, tk) < 0 and it follows that (xk, tk) < Γ.

Case I: If (xk, tk) ∈ S −, then

LεP(xk, tk) = εPxx(xk, tk) + a1(xk)Px(xk, tk) − Pt(xk, tk) − c(xk)P(xk, tk).

Since a1(x) < 0, c(x) > 0. Then, by using (2.4), we have

LεP(xk, tk) > 0.

Case II: If (xk, tk) ∈ S +, then

LεP(xk, tk) = εPxx(xk, tk) + a2(xk)Px(xk, tk) − b(xk)P(xk − 1, tk)

−c(xk)P(xk, tk) − Pt(xk, tk)

= εPxx(xk, tk) + a2(xk)Px(xk, tk) − c(xk)P(xk, tk)

−b(xk)
(
P(xk − 1, tk) − P(xk, tk)

)
− b(xk)P(xk, tk) − Pt(xk, tk)

= εPxx(xk, tk) + a2(xk)Px(xk, tk) −
(
b(xk) + c(xk)

)
P(xk, tk)

−b(xk)
(
P(xk − 1, tk) − P(xk, tk)

)
− Pt(xk, tk).

Since a2(x) > 0, b(x) < 0, c(x) > 0, b(x) + c(x) > 0 and by using (2.4), we have

LεP(xk, tk) > 0.

Case II: If (xk, tk) = (1, tk), then

[Px](xk, tk) = Px(xk+, tk) − Px(xk−, tk) > 0 since Px(xk+, tk) < 0.

A contradiction to the assumption and consequently the required result follows. �
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An important application of the minimum principle is establishing the boundedness

of the solution. As an immediate application, we obtain

Lemma 2.2.2. Let u be the solution of (2.2). Then

‖u‖∞,D̄ ≤ ‖u‖∞,Γ +
1
γ
‖ f ‖∞,D̄, γ = min{γ1, γ2}. (2.5)

Proof. Consider

ψ± =


‖u‖∞,Γ +

x
γ
‖ f ‖∞,D̄ ± u if x ≤ 1,

‖u‖∞,Γ +
(2 − x)‖ f ‖∞,D̄

γ
± u if x ≥ 1.

For (x, t) ∈ S −, it follows that

Lεψ±(x, t) = εψxx + a1(x)
(
‖ f ‖∞,D̄
γ
± ux

)
− c(x)

(
x
γ
‖ f ‖∞,D̄ + ‖u‖∞,Γ ± u

)
∓ ut

= ±Lεu + a1(x)
‖ f ‖∞,D̄
γ
− c(x)‖u‖∞,Γ − c(x)

x‖ f ‖∞,D̄
γ

≤ 0

since a1(x) < 0 and c(x) > 0. Similarly, for (x, t) ∈ S +, it is easy to verify that

Lεψ±(x, t) ≤ 0. Also, [ψx±](1, t) = ±[ux](1, t) = 0. The required result (2.5) now follows

from Lemma 2.2.1. �

In general, one can assume homogeneous boundary conditions p0 = p1 = p2 = 0 by

subtracting from u some suitable smooth function that satisfies the original boundary con-

ditions [249]. Moreover, as proved in [139], it is an easy exercise to obtain the following

estimate.

Lemma 2.2.3. Let u be the solution of (2.2). Then∣∣∣∣∣∣∂iu
∂ti (x, t)

∣∣∣∣∣∣ ≤ C for all (x, t) ∈ D̄ and i = 0, 1, 2.

Proof. The proof follows from the mean value theorem and (2.5). �

2.3 Time Discretization

Let Tt
M = {tk = kT/M, k = 0, . . . ,M} be a uniform mesh in the time direction. Then, the

backward Euler method leads to

ε∆tUxx(x, tk+1) + a∆tUx(x, tk+1) − b∆tU(x − 1, tk+1) − ĉU(x, tk+1) (2.6)

= −U(x, tk) + ∆t f (x, tk+1), x ∈ (0, 1) ∪ (1, 2) and k = 0, 1, . . . ,M − 1
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such that

U(x, 0) = p0(x), 0 ≤ x ≤ 2,

U(x, tk+1) = p1(x, tk+1), −1 ≤ x ≤ 0, 0 ≤ k ≤ M − 1,

U(2, tk+1) = p2(tk+1), 0 ≤ k ≤ M − 1,

U(1−, tk+1) = U(1+, tk+1), Ux(1−, tk+1) = Ux(1+, tk+1), 0 ≤ k ≤ M − 1,

(2.7)

where ĉ(x) = (c(x)∆t + 1). Let us rewrite (2.6) as

L
MU(x, tk+1) = F (x, tk+1), (2.8)

where

L
MU(x, tk+1) =


ε∆tUxx(x, tk+1) + a(x)∆tUx(x, tk+1) − ĉ(x)U(x, tk+1) if x ∈ (0, 1),

ε∆tUxx(x, tk+1) + a(x)∆tUx(x, tk+1) − b(x)∆tU(x − 1, tk+1)

−ĉ(x)U(x, tk+1) if x ∈ (1, 2),

(2.9)

and

F (x, tk+1) =


∆t f (x, tk+1) + ∆tb(x)p1(x − 1, tk+1) − U(x, tk) if x ∈ (0, 1),

∆t f (x, tk+1) − U(x, tk) if x ∈ (1, 2).
(2.10)

The operator LM satisfies the following minimum principle.

Lemma 2.3.1. Let φ(x, tk+1) be a smooth function such that φ(x, tk+1) ≥ 0 for x = 0, 2,

[φx](1, tk+1) ≤ 0 and LMφ(x, tk+1) ≤ 0 for all x ∈ (0, 1) ∪ (1, 2). Then φ(x, tk+1) ≥ 0 for all

x ∈ [0, 2].

Proof. Choose (xo, tk+1) such that φ(x, tk+1) attains its minimum at xo ∈ [0, 2]. Then

φx(xo, tk+1) = φt(xo, tk+1) = 0 and φxx(xo, tk+1) > 0 for xo ∈ (0, 1) ∪ (1, 2). (2.11)

Suppose φ(xo, tk+1) < 0 and it follows that (xo, tk+1) < Γ since φ(x, tk+1) ≥ 0 for x = 0, 2.

Case I: If xo ∈ (0, 1)

L
Mφ(xo, tk+1) = ε∆tφxx(xo, tk+1) + a1(xo)∆tφx(xo, tk+1) − ĉ(xo)φ(xo, tk+1)

> 0, from (2.3) and (2.11).

Case II: If xo ∈ (1, 2)

L
Mφ(xo, tk+1) = ε∆tφxx(xo, tk+1) + a2(xo)∆tφx(xo, tk+1) − b(xo)∆tφ(xo − 1, tk+1)

−ĉ(xo)φ(xo, tk+1)

= ε∆tφxx(xo, tk+1) + a2(xo)∆tφx(xo, tk+1) − b(xo)∆tφ(xo, tk+1)

−b(xo)∆t(φ(xo − 1, tk+1) − φ(xo, tk+1)) − c(xo)∆tφ(xo, tk+1)

−φ(xo, tk+1)
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= ε∆tφxx(xo, tk+1) − b(xo)∆t(φ(xo − 1, tk+1) − φ(xo, tk+1))

+a2(xo)∆tφx(xo, tk+1) − ∆tφ(xo, tk+1)(b(xo) + c(xo)) − φ(xo, tk+1)

> 0, from (2.3) and (2.11).

Case III: If xo = 1

[φx](xo, tk+1) = φx(xo+, tk+1) − φx(xo−, tk+1) > 0 since φ(xo, tk+1) < 0.

It contradicts the assumption and hence, the required result follows. �

The operator LM is inverse monotone and ‖(LM)−1‖∞ ≤ C [21]. Consequently, the

stability of the scheme is immediate.

Lemma 2.3.2. Let êk+1 := Û(x, tk+1) − u(x, tk+1) be the local truncation error at (k + 1)th

time step. Then ‖êk+1‖∞ ≤ C(∆t)2 for some constant C.

Moreover, if Ek := u(x, tk) − U(x, tk) denotes the global error in the time direction.

Then, it follows that

‖Ek+1‖∞ =

∥∥∥∥∥∥∥
k∑

i=1

êi

∥∥∥∥∥∥∥
∞

≤ ‖ê1‖∞ + ‖ê2‖∞ + ‖ê3‖∞ + . . . + ‖êk‖∞ ≤ C∆t. (2.12)

This in turn ensures the uniform convergence of the time semidiscretization process. Next,

we obtain a priori estimate on the solution of the semidiscretized problem (2.6).

Lemma 2.3.3. Let U(x, tk+1) be the solution of (2.6). Then

‖U(x, tk+1)‖∞,Ω̄ ≤ max
{
|U(0, tk+1)|,

||F ||∞,Ω̄

γ
, |U(2, tk+1)|

}
for all x ∈ [0, 2].

Proof. Consider ψ±(x, tk+1) = max
{
|U(0, tk+1)|,

||F ||∞,Ω̄

γ
, |U(2, tk+1)|

}
± U(x, tk+1). Then,

ψ±(0, tk+1) ≥ 0 and ψ±(2, tk+1) ≥ 0. For x ∈ (0, 1)

L
Mψ±(x, tk+1) = −ĉ(x) max

{
|U(0, tk+1)|,

||F ||∞,Ω̄

γ
, |U(2, tk+1)|

}
± LMU(x, tk+1)

≤ 0

since ĉ(x) = c(x)∆t + 1 ≥ 0. Similarly, for x ∈ (1, 2) we compute

L
Mψ±(x, tk+1) = −(b(x)∆t + ĉ(x)) max

{
|U(0, tk+1)|,

||F ||∞,Ω̄

γ
, |U(2, tk+1)|

}
± LMU(x, tk+1)

≤ 0

since b(x) + c(x) ≥ 0. Moreover, for x = 1, [ψ±x ](1, tk+1) = ±[Ux](1, tk+1) = 0. Conse-

quently, from Lemma 2.3.1 the required result follows. �
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The solution U(x, tk+1) of the semidiscretized problem (2.6) is known to admit a

decomposition into smooth and a singular component [173]. We write

U(x, tk+1) := V(x, tk+1) + W(x, tk+1).

The smooth component V(x, tk+1) is the solution of

LMV(x, tk+1) = F (x, tk+1), x ∈ (0, 1) ∪ (1, 2), 0 ≤ k ≤ M − 1,

V(0, tk+1) = V0(0, tk+1),

V(1−, tk+1) = −(ĉ(1))−1 (∆t f (1, tk+1) − U(1, tk) + ∆tb(1)p1(0, tk+1)) ,

V(1+, tk+1) = −(ĉ(1))−1 (∆t f (1, tk+1) − U(1, tk) + ∆tb(1)V0(0, tk+1)) ,

V(2, tk+1) = V0(2, tk+1),

(2.13)

where V0(x, tk+1) satisfies the corresponding degenerate problem. Also, the singular com-

ponent W(x, tk+1) satisfies a homogeneous problem which reads

LMW(x, tk+1) = 0, x ∈ (0, 1) ∪ (1, 2), 0 ≤ k ≤ M − 1,

W(0, tk+1) = 0,

W(2, tk+1) = U(2, tk+1) − V(2, tk+1),

W(1+, tk+1) −W(1−, tk+1) = V(1−, tk+1) − V(1+, tk+1),

Wx(1+, tk+1) −Wx(1−, tk+1) = Vx(1−, tk+1) − Vx(1+, tk+1).

(2.14)

The next Lemma provides bounds on the derivative of V(x, tk+1) and W(x, tk+1) with re-

spect to x.

Lemma 2.3.4. Let V(x, tk+1) and W(x, tk+1) be the solutions of (2.13) and (2.14), respec-

tively. Then, for s = 0, 1, 2, 3∣∣∣∣∣dsV(x, tk+1)
dxs

∣∣∣∣∣ ≤ C(1 + ε2−s) for x ∈ (0, 1) ∪ (1, 2) and

∣∣∣∣∣dsW(x, tk+1)
dxs

∣∣∣∣∣ ≤

ε−s exp

(
−γ(1 − x)

ε

)
for x ∈ (0, 1),

ε−s exp
(
−γ(x − 1)

ε

)
+ ε−(s+1) exp

(
−γ(2 − x)

ε

)
for x ∈ (1, 2).

Proof. The proof follows from [279]. �

2.4 Spatial Discretization

The solution of the problem exhibits strong interior layer across discontinuity x = 1 and

a weak boundary layer at x = 2. Therefore, we construct a piecewise uniform mesh D̄N
x

which condenses around x = 1 and x = 2. We write

[0, 2] = [0, 1 − τ1] ∪ [1 − τ1, 1] ∪ [1, 1 + τ2] ∪ [1 + τ2, 2 − τ2] ∪ [2 − τ2, 2],
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where τ1 = min
{

0.5,
2ε ln N
γ

}
and τ2 = min

{
0.25,

2ε ln N
γ

}
are the mesh transition

parameters. We place N/4 mesh points each in intervals [0, 1−τ1], [1−τ1, 1], [1+τ2, 2−τ2]

and N/8 mesh points in intervals [1, 1 + τ2] and [2 − τ2, 2]. Consequently, we obtain

D̄N
x = {xi}

N
0 =


xi = 0 for i = 0,

xi = xi−1 + hi for i = 1, . . . ,N,

where

hi =



4
N (1 − τ1) for i = 1, . . . ,N/4,

4
Nτ1 for i = N/4 + 1, . . . ,N/2,

8
Nτ2 for i = N/2 + 1, . . . , 5N/8,

4
N (1 − 2τ2) for i = 5N/8 + 1, . . . , 7N/8,

8
Nτ2 for i = 7N/8 + 1, . . . ,N.

To discretize the differential operator in (2.8), we first define the finite difference operators

on the piecewise uniform mesh D̄N
x as

D+
x Ui,k+1 =

Ui+1,k+1 − Ui,k+1

hi+1
, D−x Ui,k+1 =

Ui,k+1 − Ui−1,k+1

hi
,

D+
x D−x Ui,k+1 =

2(D+
x Ui,k+1 − D−x Ui,k+1)

hi + hi+1
.

The discrete problem on D̄N,M = D̄N
x × Tt

M thus reads

L
N,M
ε Ui,k+1 = Fi,k+1, (2.15)

where

L
N,M
ε U(xi, tk+1) =


ε∆tD+

x D−x Ui,k+1 + ai∆tD−x Ui,k+1 − ĉiUi,k+1 for i = 1, . . . ,N/2 − 1,

ε∆tD+
x D−x Ui,k+1 + ai∆tD+

x Ui,k+1 − bi∆tUi−N/2,k+1 − ĉiUi,k+1

for i = N/2 + 1, . . . ,N − 1,

and

Fi,k+1 =


∆t fi,k+1 − Ui,k + ∆tbi p1(xi−N/2, tk+1), for i = 1, . . . ,N/2 − 1,

∆t fi,k+1 − Ui,k, for i = N/2 + 1, . . . ,N − 1.

Moreover, for i = N/2

D+
x UN/2,k+1 = D−x UN/2,k+1

with 
Ui,0 = p0(xi) for i = 0, . . . ,N,

UN,k+1 = p2(tk+1) for k = 0, . . . ,M − 1,

Ui,k+1 = p1(xi, tk+1) for k = 0, . . . ,M − 1 and i = −N/2, . . . 0.
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Lemma 2.4.1. Let φi,k+1 be a mesh function so that φi,k+1 ≥ 0 for i = {0,N}, LN,M
ε φi,k+1 ≤ 0

for all i = 1, . . . ,N/2− 1,N/2 + 1, . . . ,N and D+
xφN/2,k+1 −D−xφN/2,k+1 ≤ 0. Then φi,k+1 ≥ 0

for all i = 0, 1, . . . ,N.

Proof. Choose i∗ ∈ {0, 1, . . . ,N} such that φi∗,k+1 = min
D̄N

x ×Tt
M
φi,k+1. Assume that φi∗,k+1 < 0

and it follows that i∗ < {0,N}. For i∗ ∈ {1, 2, . . . ,N/2 − 1}

L
N,M
ε φi∗,k+1 = ε∆tD+

x D−xφi∗,k+1 + ai∆tD−xφi∗,k+1 − ĉiφi∗,k+1

=
2ε∆t

ĥi

{
φi∗+1,k+1 − φi∗,k+1

hi+1
−
φi∗,k+1 − φi∗−1,k+1

hi

}
+ ai∆t

{
φi∗,k+1 − φi∗−1,k+1

hi

}
− ĉiφi∗,k+1

> 0.

Also, LN,M
ε φi∗,k+1 > 0 for i∗ ∈ {N/2 + 1, . . . ,N − 1} and for i∗ = N/2

D+
xφi∗,k+1 − D−xφi∗,k+1 > 0 since φi∗,k+1 < 0.

A contradiction to the assumption and the required result follows. �

As an immediate consequence of Lemma 2.4.1, we obtain the following estimate.

Lemma 2.4.2. Let φi,k+1 be the numerical solution of (2.15). Then

‖φi,k+1‖∞,D̄N,M ≤ max
{
|φ0,k+1|, |φN,k+1|, ‖L

N,M
ε φ‖∞,D̄N,M

}
, ∀ 0 ≤ i ≤ N, 0 ≤ k ≤ M − 1.

Proof. Let ψ±i,k+1 = max
{
|φ0,k+1|, |φN,k+1|, ‖L

N,M
ε φ‖∞,D̄N,M

}
± φi,k+1. Clearly, ψ±i,k+1 ≥ 0 for

i = 0,N and LN,M
ε ψ±i,k+1 ≤ 0 for i ∈ {1, . . . ,N − 1}\{N/2}. Moreover, (D+

x − D−x )ψ±i,k+1 = 0

for i = N/2. The required result thus follows from Lemma 2.4.1. �

2.5 Error Estimates

We decompose the solution Ui,k+1 into smooth and singular components to obtain param-

eter uniform error bounds. We write Ui,k+1 := Vi,k+1 + Wi,k+1, where V and W satisfy

L
N,M
ε Vi,k+1 = Fi,k+1 for i ∈ {1, . . . ,N − 1} \ {N/2},

V0,k+1 = V(0, tk+1),

VN/2−1,k+1 = V(1−, tk+1),

VN/2+1,k+1 = V(1+, tk+1),

VN,k+1 = V(2, tk+1),

(2.16)
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and 

L
N,M
ε Wi,k+1 = 0 for i ∈ {1, . . . ,N − 1} \ {N/2},

W0,k+1 = W(0, tk+1),

WN,k+1 = W(2, tk+1),

VN/2+1,k+1 + WN/2+1,k+1 = VN/2−1,k+1 + WN/2−1,k+1,

D−x VN/2,k+1 + D−x WN/2,k+1 = D+
x VN/2,k+1 + D+

x WN/2,k+1.

(2.17)

Moreover, the error ei,k+1 is defined as

ei,k+1 := U(xi, tk+1) − Ui,k+1

= (V(xi, tk+1) − Vi,k+1) + (W(xi, tk+1) −Wi,k+1).

Theorem 2.5.1. Let V(xi, tk+1) and Vi,k+1 be the solution of (2.13) and (2.16), respectively.

Then

|LN,M
ε (V(xi, tk+1) − Vi,k+1)| ≤ CN−1 for i ∈ {0, . . . ,N} \ {N/2} .

Moreover, if W(xi, tk+1) and Wi,k+1 be the solution of (2.14) and (2.17), respectively. Then

|LN,M
ε (W(xi, tk+1) −Wi,k+1)| ≤ CN−1(ln N)2 for i ∈ {0, . . . ,N} \ {N/2} .

Proof. The proof follows from [189, 139]. �

Next, we obtain some priori estimates at (xN/2, tk+1). To that end, we consider

|(D+
x − D−x )eN/2,k+1| =

∣∣∣(D+
x − D−x )

(
U(xN/2, tk+1) − UN/2,k+1

)∣∣∣
=

∣∣∣∣(D+
x − D−x )

(
U(x N

2
, tk+1)

)∣∣∣∣
≤

∣∣∣∣∣∣
(
D+

x −
d
dx

)
U(x N

2
, tk+1)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
(
D−x −

d
dx

)
U(x N

2
, tk+1)

∣∣∣∣∣∣
≤

1
2

h+
N
2

max
xi∈(1,2)

∣∣∣∣∣∣d2U(xi, tk+1)
dx2

∣∣∣∣∣∣ +
1
2

h−N
2

max
xi∈(0,1)

∣∣∣∣∣∣d2U(xi, tk+1)
dx2

∣∣∣∣∣∣
≤ Ch∗ max

xi∈(0,1)∪(1,2)

∣∣∣∣∣∣d2U(xi, tk+1)
dx2

∣∣∣∣∣∣
≤

Ch∗

ε2 (2.18)

since (D+
x − D−x )UN/2,k+1 = 0 and h∗ = h−N

2
= h+

N
2
.
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If we consider

φi,k+1 =



i∏
k=1

(
1 +

γ

ε
hk

)
N/2∏
k=1

(
1 +

γ

ε
hk

) for 0 ≤ i ≤ N/2,

N−1∏
k=i

(
1 +

γ

ε
hk+1

)
N−1∏

k=N/2

(
1 +

γ

ε
hk+1

) for N/2 ≤ i ≤ N,

then 0 ≤ φi,k+1 ≤ 1 for 0 ≤ i ≤ N. Moreover, for i = 0, 1, . . . ,N/2

D+
xφi,k+1 =

γ

ε
φi,k+1,

D−xφi,k+1 =
1
hi

i∏
k=1

(
1 +

γ

ε
hk

)
N/2∏
k=1

(
1 +

γ

ε
hk

)
(
1 −

1
1 +

γ

ε
hi

)
=
γ

ε

1(
1 +

γ

ε
hi

)φi,k+1,

and

δ2φi,k+1 =
2

hi + hi+1
(D+

x − D−x )φi,k+1

=

(
γ

ε

)2 2hi

hi + hi+1

(
1

1 +
γ

ε
hi

)
φi,k+1

≤ 2
(
γ

ε

)2
φi,k+1.

Also, for i = N/2, . . . ,N

D+
xφi,k+1 =

−γ

ε

(
φi,k+1

1 +
γ

ε
hi+1

)
, D−xφi,k+1 =

−γ

ε
φi,k+1, δ2φi,k+1 ≤ 2

(
γ

ε

)2
φi,k+1

and at i = N
2

(D+
x − D−x )φi,k+1 = −

γ

ε

 1
1 +

γ

ε
h+

N/2

+
1

1 +
γ

ε
h−N/2

 φN/2,k+1

=
−γ

ε

 2
1 +

γ

ε
h∗N/2

 φN/2,k+1

≤ −
C
ε
.

Then, for 0 ≤ i ≤ N/2 − 1

L
N,M
ε φi,k+1 = ε∆tδ2φi,k+1 + ai∆tD−xφi,k+1 − ĉiφi,k+1

≤

(
2∆tγ2

ε
+
γ

ε

ai∆t
(1 +

γ

ε
hi)
− ĉi

)
φi,k+1. (2.19)
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Similarly, for N/2 + 1 ≤ i ≤ N

L
N,M
ε φi,k+1 = ε∆tδ2φi,k+1 + ai∆tD+

xφi,k+1 − bi∆tφi−N/2,k+1 − ĉiφi,k+1

≤

(
2∆tγ2

ε
−

γai∆t
ε(1 +

γ

ε
hi+1)

− ĉi

)
φi,k+1 − bi∆tφi−N/2,k+1.

Theorem 2.5.2. Let U(xi, tk+1) and Ui,k+1 be the solutions of (2.6) and (2.15), respectively.

Then at (k + 1)th time step∣∣∣U(xi, tk+1) − Ui,k+1

∣∣∣ ≤ CN−1(ln N)2 for 0 ≤ i ≤ N.

Proof. Consider the barrier function

ψ±i,k+1 = C1N−1(ln N)2 + C2
γ

ε
h∗φi,k+1 ± ei,k+1 for i = 0, 1, . . . ,N,

where C1 and C2 are constants. Using (2.19), the assumption ai < −2γ and Theorem 2.5.1

to obtain

L
N,M
ε ψ±i,k+1 = −C1ĉiN−1(ln N)2 + C2

γ

ε
h∗

(
2∆tγ2

ε
+ ai∆t

γ

ε
− ĉi

)
± LN,M

ε ei,k+1

≤ −C1ĉiN−1(ln N)2 + C2

(
γ

ε

)2
h∗∆t

(
2γ + ai − ĉi

ε

γ
∆t

)
±CN−1(ln N)2

≤ 0

for i = 1, . . . ,N/2 − 1. Similarly, for i = N/2 + 1, . . . ,N − 1 we obtain

L
N,M
ε ψ±i,k+1 = C1(−ĉi − bi∆t)N−1(ln N)2 + C2

(
γ

ε

)
h∗LN,M

ε φi,k+1 ± L
N,M
ε ei,k+1

= C1(−ĉi − bi∆t)N−1(ln N)2 + C2

(
γ

ε

)
h∗
γ

ε
∆t

(
2γ − ai − ĉi

ε∆t
γ

)
−C2

(
γ

ε

)
h∗bi∆tφi−N/2,k+1 ±CN−1(ln N)2

≤ 0.

Also, if i = N/2

(D+
x − D−x )ψ±N/2,k+1 = (D+

x − D−x )
(
C1N−1(ln N)2 + C2

(
γ

ε

)
h∗φN/2,k+1 ± eN/2,k+1

)
≤ C2

(
γ

ε

)
h∗

(
−C
ε

)
±

Ch∗

ε2

≤ 0

for some suitable constant C2. Moreover, ψ±0,k+1 ≥ 0, ψ±N,k+1 ≥ 0 and 0 ≤ φi,k+1 ≤ 1.

Consequently, the required result follows from Lemma 2.4.1. �

Next, we combine (2.12) and Theorem 2.5.2 to obtain the main result.

Theorem 2.5.3. Let u and Ui,k+1 be the solutions of (2.2) and (2.15), respectively. Then∣∣∣u(xi, tk+1) − Ui,k+1

∣∣∣ ≤ C(∆t + (N−1(ln N)2))

for 0 ≤ i ≤ N and 0 ≤ k ≤ M.
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2.6 Numerical Illustration

In this section, we examine the performance of the proposed method and numerically ver-

ify the theoretical estimates. We consider two test problems for numerical computations.

Example 2.6.1. Consider the following singularly perturbed problem [139]:

εuxx(x, t) + a(x)ux(x, t) + u(x − 1, t) − 3u(x, t) − ut(x, t) = f (x, t), (x, t) ∈ (0, 2) × (0, 2],

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = 0, (x, t) ∈ [−1, 0] × [0, 2],

u(2, t) = 0, t ∈ [0, 2],

where a(x) =


−(4 + x), x ∈ [0, 1],

(3 + x2), x ∈ (1, 2],
and f (x, t) =


−1, (x, t) ∈ [0, 1] × [0, 2],

1, (x, t) ∈ (1, 2] × [0, 2].

Example 2.6.2. Consider the following singularly perturbed problem:

εuxx(x, t) + a(x)ux(x, t) + 2u(x − 1, t) − 5u(x, t) − ut(x, t) = f (x, t), (x, t) ∈ (0, 2) × (0, 2],

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = 0, (x, t) ∈ [−1, 0] × [0, 2],

u(2, t) = 0, t ∈ [0, 2],

where

a(x) =


−(4 + x2), x ∈ [0, 1],

(8 − x2), x ∈ (1, 2],
and f (x, t) =


4xt2e−t, (x, t) ∈ [0, 1] × [0, 2],

4(2 − x)t2e−t, (x, t) ∈ (1, 2] × [0, 2].

The exact solution of the problem is not available for comparison. Therefore, we

estimate the error using the double mesh principle [173]. The maximum absolute error

(EN,4t
ε ) and order of convergence (RN,4t

ε ) are calculated using

EN,4t
ε := max

∣∣∣UN,4t(xi, tk+1) − Ũ2N,4t/2(xi, tk+1)
∣∣∣ and RN,4t

ε := log2

(
EN,4t
ε

E2N,4t/2
ε

)
,

where UN,4t(xi, tk+1) and Ũ2N,4t/2(xi, tk+1) are the numerical solutions obtained on D̄N
x ×Tt

M

and D̄2N
x × Tt

2M, respectively.

In case, perturbation parameter tends to zero, the solution of the problem exhibit

turning point behaviour (Figures 2.1-2.4). Maximum absolute error and order of conver-

gence for Example 2.6.1 and Example 2.6.2 are tabulated for different values of ε, M, and

N in Tables 2.1-2.4. Moreover, log-log plots of the maximum absolute error can be had

from Figure 2.5 and Figure 2.6. It is evident from it that the errors decreases monotoni-

cally as N increases. Numerical solution for Example 2.6.1 and Example 2.6.2 are plotted

in Figure 2.1 and Figure 2.3, respectively. Also, the numerical solutions at final time step

(t = 2) for different values of ε are displayed in Figure 2.2 and Figure 2.4.



46 Parabolic Problems with Discontinuous Coefficient and Delay

Table 2.1: Maximum absolute error and order of convergence for Example 2.6.1 for dif-

ferent values of ε, M, and N when M = N.

N ε = 2−0 2−1 2−2 2−4 2−6 2−8 2−10

32 0.007388 0.009292 0.013393 0.017789 0.019344 0.019860 0.019962

0.9895 0.8712 0.8571 0.8718 0.8797 0.8639 0.8490

64 0.003721 0.005080 0.007394 0.009721 0.010513 0.010912 0.011082

0.9834 0.9274 0.9196 0.9107 0.9253 0.8718 0.8571

128 0.001882 0.002671 0.003909 0.005171 0.005536 0.005963 0.006118

0.9878 0.9423 0.9418 0.9263 0.9106 0.8876 0.8650

256 0.000949 0.001390 0.002035 0.002721 0.002945 0.003223 0.003359

0.9924 0.9571 0.9588 0.9332 0.9260 0.9026 0.8809

512 0.000477 0.000716 0.001047 0.001425 0.001550 0.001724 0.001824

0.9970 0.9721 0.9713 0.9649 0.9488 0.9346 0.9036

1024 0.000239 0.000365 0.000534 0.000730 0.000803 0.000902 0.000975

0.9984 0.9938 0.9928 0.9931 0.9897 0.9743 0.9339

Table 2.2: Maximum absolute error and order of convergence for Example 2.6.1 for dif-

ferent values of ε, M, and N when M = 2N.

N ε = 2−0 2−1 2−2 2−4 2−6 2−8 2−10

32 0.004733 0.007924 0.012284 0.016524 0.018423 0.019067 0.019182

0.9713 0.9124 0.9063 0.8804 0.8825 0.8848 0.8796

64 0.002414 0.004210 0.006554 0.008976 0.009993 0.010326 0.010426

0.9857 0.9481 0.9329 0.9622 0.8555 0.8931 0.8890

128 0.001219 0.002182 0.003433 0.004607 0.005523 0.005560 0.005630

0.9917 0.9660 0.9508 0.9246 0.9811 0.9129 0.9115

256 0.000613 0.001117 0.001776 0.002427 0.002798 0.002953 0.002993

0.9976 0.9731 0.9584 0.9515 0.9444 0.9364 0.9336

512 0.000307 0.000569 0.000914 0.001255 0.001454 0.001543 0.001567

0.9953 0.9874 0.9781 0.9783 0.9705 0.9567 0.9479

1024 0.000154 0.000287 0.000464 0.000637 0.000742 0.000795 0.0008123

0.9967 0.9905 0.9893 0.9884 0.9815 0.9781 0.9721
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Table 2.3: Maximum absolute error and order of convergence for Example 2.6.2 for dif-

ferent values of ε, M, and N when M = N.

N ε = 2−0 2−1 2−2 2−4 2−6 2−8 2−10

32 0.003389 0.003688 0.003854 0.003972 0.005890 0.005892 0.005894

0.8167 0.9260 0.9037 0.9017 0.8897 0.8825 0.8749

64 0.001924 0.001941 0.002060 0.002126 0.003179 0.003196 0.003214

0.9527 0.9184 0.9038 0.8953 0.8853 0.8805 0.8863

128 0.000994 0.001027 0.001101 0.001143 0.001721 0.001736 0.001746

0.9487 0.9274 0.9197 0.9130 0.8957 0.8881 0.8841

256 0.000515 0.000540 0.000582 0.000607 0.000925 0.000938 0.000946

0.9586 0.9475 0.9275 0.9236 0.9049 0.9048 0.9027

512 0.000265 0.000280 0.000306 0.000320 0.000494 0.000501 0.000506

0.9730 0.9694 0.9445 0.9469 0.9250 0.9297 0.9277

1024 0.000135 0.000143 0.000159 0.000166 0.000260 0.000263 0.000266

0.9843 0.9795 0.9674 0.9672 0.9512 0.9459 0.9417

Table 2.4: Maximum absolute error and order of convergence for Example 2.6.2 for dif-

ferent values of ε, M, and N when M = 2N.

N ε = 2−0 2−1 2−2 2−4 2−6 2−8 2−10

32 0.002107 0.002316 0.002723 0.003246 0.003356 0.003378 0.003410

0.9429 0.9271 0.9191 0.9112 0.9012 0.8859 0.8799

64 0.001096 0.001218 0.001440 0.001726 0.001797 0.001828 0.001853

0.9713 0.9488 0.9353 0.9330 0.9196 0.9038 0.9029

128 0.000559 0.000631 0.000753 0.000904 0.000950 0.000977 0.000991

0.9871 0.9661 0.9491 0.9375 0.9289 0.9182 0.9110

256 0.000282 0.000323 0.000390 0.000472 0.000499 0.000517 0.000527

1.0000 0.9778 0.9635 0.9460 0.9405 0.9319 0.9175

512 0.000141 0.000164 0.000200 0.000245 0.000260 0.000271 0.000279

1.0102 1.0000 0.9856 0.9708 0.9563 0.9529 0.9442

1024 0.000070 0.000082 0.000101 0.000125 0.000134 0.000140 0.000145

1.0104 1.0010 0.9921 0.9914 0.9784 0.9749 0.9668
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Figure 2.1: Numerical solution of Example 2.6.1 for ε = 2−6 when M = N = 64.
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Figure 2.2: Numerical solutions of Example 2.6.1 at t = 2 for different values of ε when

N = 64.
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Figure 2.3: Numerical solution of Example 2.6.2 for ε = 2−6 when M = N = 64.
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Figure 2.4: Numerical solutions of Example 2.6.2 at t = 2 for different values of ε when

N = 64.
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Figure 2.5: Error plot for Example 2.6.1.
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Figure 2.6: Error plot for Example 2.6.2.
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2.7 Concluding Remarks

A class of singularly perturbed parabolic partial differential equations with discontinuous

coefficients and source terms is solved numerically. The solution of the problem takes

into account not just the present state of the physical system but also its history. The

simultaneous presence of discontinuous data and delay makes the problem stiff. In the

limiting case, the solution of the problem exhibits a multiscale character [214, 249]. There

are narrow regions where solution derivatives are exponential and exhibit turning point

behaviour across discontinuities besides weak boundary layers.

An implicit numerical scheme based on the upwind finite difference method is pre-

sented on a specially generated mesh. The mesh has been chosen such that most of the

mesh points remain in the regions with rapid transitions. The proposed numerical method

has been analysed for consistency, stability and convergence. Theoretical analysis is per-

formed to obtain consistency and error estimates. It is found that the method proposed

is unconditionally stable, and the convergence obtained is parameter uniform. Numerical

examples have been presented to demonstrate the effectiveness of the technique. Conver-

gence obtained in practical satisfies theoretical predictions. The method presented is easy

to implement and, with a little modification, can easily be extended to even more general

situations like problems in higher dimensions and nonlinear evolution equations.





Chapter 3

Parabolic Problems with Discontinuous
Coefficient and Delay-A Hybrid Method

3.1 Introduction

In Chapter 2, we proposed a numerical method for solving singularly perturbed parabolic

PDEs with a delay, discontinuous coefficient and source subject to the Dirichlet boundary

conditions. This Chapter extends our scope of work to study a higher-order hybrid method

for such problems.

Hybrid methods leverage the strengths of different numerical techniques to achieve

high accuracy and efficiency in approximating the solutions. In recent years, the develop-

ment of higher-order methods has shown promising results in efficiently and accurately

solving singularly perturbed parabolic PDEs with discontinuous coefficients and delay.

Combining higher-order methods with other specialized techniques, such as domain de-

composition or adaptive mesh refinement, can accurately capture the multiscale charac-

ter and discontinuities in the solution, allowing for a more faithful representation of the

underlying physical phenomena. Additionally, the improved accuracy often leads to sig-

nificant computational savings compared to first-order methods, as fewer grid points are

required to achieve the desired level of accuracy. The significance of hybrid numerical

methods lies in their ability to overcome the limitations of individual methods and provide

tailored approaches that adapt to the specific characteristics of the problem at hand.

Researchers have developed various hybrid methods for solving singular perturba-

tion problems. In [59], the authors report a hybrid scheme for a time-delayed convection-

diffusion problem. The presented method combines an upwind scheme and a central

difference scheme, achieving nearly second-order accuracy in space, which is consid-

ered optimal compared to the approach in [99]. Furthermore, researchers have investi-

53
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gated a hybrid difference scheme for parabolic partial differential equations with delay

and advance terms in [238, 108]. Moreover, authors in [252] use a hybrid scheme for a

two-parameter singularly perturbed parabolic problem with a delay. In [233], the authors

presented an efficient and higher-order numerical method to solve a singularly perturbed

time-delayed parabolic convection-diffusion problem. The hybrid scheme combines the

central difference scheme in the layer region and the mid-point upwind scheme in the

outer region defined on a Shishkin mesh for discretization in the spatial direction. The

Peaceman-Rachford splitting algorithm splits each time step into two partial time steps.

This splitting is performed based on the concept of the Crank-Nicholson scheme.

In [251], the researchers consider a singularly perturbed parabolic problem with a

simple interior turning point. They employ a fitted mesh finite difference scheme to ap-

proximate the numerical solution, which consists of a hybrid finite difference operator on

a non-uniform Shishkin mesh in the space direction and a backward implicit Euler scheme

on a uniform mesh in the time variable. To improve the accuracy of the resulting scheme

in the temporal direction, they utilize the Richardson extrapolation scheme. The study re-

veals that the extrapolated scheme exhibits almost second-order uniform convergence in

space and time variables. In [301], the authors consider a problem involving a singularly

perturbed parabolic equation with multiple interior turning points and twin boundary lay-

ers. To discretize the problem, they utilize the implicit Euler method on a uniform mesh

for the time variable and a hybrid scheme on a generalized Shishkin mesh for the spatial

variable. Additionally, in [302], the authors employ a finite difference scheme to solve a

one-dimensional singularly perturbed parabolic convection-diffusion problem with an in-

terior turning point. This scheme combines the implicit Euler method on a uniform mesh

in the time direction and a hybrid finite difference operator on a generalized Shishkin

mesh in the spatial direction.

In [154], a high-order parameter-robust hybrid numerical method is used to solve

a Dirichlet problem for a one-dimensional time-dependent singularly perturbed reaction-

diffusion equation. To approximate the solution to the problem, the author constructs a nu-

merical method by combining the Crank–Nicolson method on a uniform mesh in the time

direction, together with a hybrid scheme which is a suitable combination of a fourth-order

compact difference scheme and the standard central difference scheme on a generalized

Shishkin mesh in the spatial direction. In contrast, [194] focuses on a two-dimensional

singularly perturbed parabolic convection-diffusion initial-boundary value problem. They

employ the Peaceman-Rachford alternating direction implicit method to approximate the

time derivative on a uniform mesh. For spatial discretization, they propose a hybrid finite

difference scheme on a piecewise uniform Shishkin mesh. This scheme incorporates a
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midpoint upwind scheme on the coarse part of the mesh and the standard central differ-

ence scheme on the fine part of the mesh. Furthermore, in [192] and [193], researchers

examined the robustness of the similar hybrid scheme for a parabolic convection-diffusion

problem with both smooth and non-smooth data.

The literature on the analysis of hybrid methods for singularly perturbed parabolic

partial functional differential equations with discontinuous data and a large delay remains

relatively limited. This chapter addresses this gap by introducing a hybrid numerical

method for solving singular perturbation problems. The method is designed to handle

equations with a delay, discontinuous coefficient and source term. Additionally, the chap-

ter provides a thorough analysis of the scheme’s consistency, stability, and convergence.

The presented numerical results illustrate and validate the effectiveness of the proposed

approach.

3.2 Continuous Problem

Let D := (0, 2) × (0,T ] and S − ∪ S + := (0, 1) × (0,T ] ∪ (1, 2) × (0,T ]. Consider the

non-homogenous initial-boundary-value problem

Lεu = εuxx(x, t) + a(x)ux(x, t) − b(x)u(x, t) − ut(x, t)

= f (x, t) + c(x)u(x − 1, t) in S − ∪ S +,

u(x, t) = p0(x) on [0, 2] × {t = 0},

u(x, t) = p1(x, t) in [−1, 0] × [0,T ],

u(x, t) = p2(t) on {x = 2} × [0,T ],


(3.1)

where ε � 1 is a small positive parameter, b(x) and c(x) are sufficiently smooth functions

such that c(x) > 0, b(x) > 0 for all x ∈ [0, 2]. Moreover, we assume that

a(x) =


a1(x) if 0 ≤ x ≤ 1,

a2(x) if 1 < x ≤ 2,
f (x, t) =


f1(x, t) if (x, t) ∈ S

−
,

f2(x, t) if (x, t) ∈ S
+
,

−γ∗1 < a1(x) < −γ1 < 0, γ∗2 > a2(x) > γ2 > 0, |[a]| ≤ C, |[ f ]| ≤ C,


(3.2)

where γ = min {γ1, γ2} and γ∗ = max
{
γ∗1, γ

∗
2

}
. The solution of (3.1) satisfies [u] = 0 and

[ux] = 0 at x = 1. Here, [u] denotes the jump of u defined at the point of discontinuity

x = 1 as [u] (1, t) = u(1+, t) − u(1−, t), where u(1±, t) = lim
x→1±0

u(x, t). The functions p0, p1
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and p2 are Hölder continuous and satisfy the compatibility conditions

p0(0, 0) = p1(0, 0), p0(2, 0) = p2(2, 0),

ε
∂2 p0(0, 0)

∂x2 + a(0)
∂p0(0, 0)

∂x
− b(0)p0(0, 0) − c(0)p1(−1, 0) −

∂p1(0, 0)
∂t

= f (0, 0),

ε
∂2 p0(2, 0)

∂x2 + a(2)
∂p0(2, 0)

∂x
− b(2)p0(2, 0) − c(2)p0(1, 0) −

∂p2(2, 0)
∂t

= f (2, 0).


On the domain S −, the delay term u(x − 1, t) = p1(x − 1, t). Under these assumptions, the

solution of (3.1) exists uniquely and satisfies u ∈ C1+λ(D) ∩C2+λ(S − ∪ S +) [160, 248] .

The solution u(x, t) of (3.1) displays a strong interior layer in the neighbourhood of the

point x = 1 [193]. Moreover, it is easy to follow that the differential operator Lε satisfies

the following maximum principle.

Lemma 3.2.1. Suppose P ∈ C0(D̄) ∩ C2(S − ∪ S +) satisfies P(x, t) ≤ 0 for all

(x, t) ∈ Γ := D̄ \ D, [Px](1, t) ≥ 0, t > 0 and LεP(x, t) ≥ 0 for all (x, t) ∈ S − ∪ S +.

Then P(x, t) ≤ 0 for all (x, t) ∈ D̄.

Proof. Choose (xk, tk) ∈ D̄ such that P(xk, tk) = max
(x,t)∈D̄

P(x, t). Consequently,

Px(xk, tk) = 0, Pt(xk, tk) = 0 and Pxx(xk, tk) < 0.

Suppose P(xk, tk) > 0 and it follows that (xk, tk) < Γ. If (xk, tk) ∈ S − ∪ S +, note that

LεP(xk, tk) < 0. Moreover, if xk = 1, then [Px](xk, t) < 0. A contradiction to the assump-

tion and the required result follows. �

As an immediate application of the maximum principle, we obtain the following

result.

Lemma 3.2.2. Let u be the solution of (3.1). Then

‖u‖∞,D̄ ≤ ‖u‖∞,Γ +
1
γ
‖ f ‖∞,D̄, γ = min{γ1, γ2}. (3.3)

Proof. Consider

ψ± =


−‖u‖∞,Γ −

x
γ
‖ f ‖∞,D̄ ± u if x ≤ 1,

−‖u‖∞,Γ −
(2 − x)‖ f ‖∞,D̄

γ
± u if x ≥ 1.

For (x, t) ∈ S −, it follows that

Lεψ±(x, t) = ±Lεu − a1(x)
‖ f ‖∞,D̄
γ

+ b(x)‖u‖∞,Γ + b(x)
x‖ f ‖∞,D̄

γ
≥ 0

since a1(x) < 0 and b(x) > 0. Similarly, for (x, t) ∈ S +, it is easy to verify that

Lεψ±(x, t) ≥ 0. Also, [ψx±](1, t) = ±[ux](1, t) = 0. The required result (3.3) now follows

from Lemma 3.2.1. �
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To find sharper bounds on the solution and its derivatives, we decompose the solution

u into smooth and singular components. We write u := v + w. The smooth component v

satisfies

Lεv(x, t) = f (x, t) + c(x)v(x − 1, t) in S − ∪ S +,

v(x, t) = u(x, t) in [−1, 0] × [0,T ],

v(1−, t) = j1(t), v(1+, t) = j2(t), t ∈ (0,T ],

v(x, t) = u(x, t) on {x = 2} × (0,T ],

v(x, t) = u(x, t) on [0, 2] × {t = 0},


(3.4)

where the functions j1(t) and j2(t) will be computed later using Theorem 3.2.4. The

singular component w satisfies

Lεw(x, t) = c(x)w(x − 1, t) in S − ∪ S +,

w(x, t) = 0 in [−1, 0] × [0,T ],

w(x, t) = 0 on {x = 2} × (0,T ],

w(x, t) = 0 on [0, 2] × {t = 0},

[w] (1, t) = − [v] (1, t),
[
∂w
∂x

]
(1, t) = −

[
∂v
∂x

]
(1, t), t ∈ (0,T ].


(3.5)

The following theorem is the direct result from [121] that we will use in Theorem 3.2.4.

Theorem 3.2.3. Let a, b, c ∈ C2[0, 2], f ∈ C2+λ(D̄) and a(x) ≥ γ > 0 for all x ∈ [0, 2].

Also, suppose p0, p1 and p2 are identically zero so that the compatibility conditions hold

in Γc := (−1, 0) ∪ (0, 0) ∪ (2, 0) ∪ (1, 0) and

∂k+mF
∂xk∂tm = 0, 0 ≤ k + 2m ≤ 2,

where F(x, t) = f (x, t) + c(x)u(x − 1, t). Then u ∈ C4+λ(D̄) and∥∥∥∥∥∥ ∂k+mu
∂xk∂tm

∥∥∥∥∥∥
∞,D

≤ Cε−k, 0 ≤ k + 2m ≤ 4. (3.6)

Theorem 3.2.4. There exist smooth functions j1(t), j2(t) such that the smooth and singular

component defined in (3.4) and (3.5) satisfies the following bounds for 0 ≤ k ≤ 3, m ≥ 0

and 0 ≤ k + 2m ≤ 4∥∥∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥∥∥
∞,S −∪S +

≤ C,

∥∥∥∥∥∥∂4v

∂x4

∥∥∥∥∥∥
∞,S −∪S +

≤ Cε−1,

and ∣∣∣∣∣∣ ∂k+mw

∂xk∂tm (x, t)

∣∣∣∣∣∣ ≤


C(ε−k exp(−(1 − x)γ1/ε)) for (x, t) ∈ S −,

C(ε−k exp(−(x − 1)γ2/ε)) for (x, t) ∈ S +,∣∣∣∣∣∣∂4w

∂x4 (x, t)

∣∣∣∣∣∣ ≤


C(ε−4 exp(−(1 − x)γ1/ε)) for (x, t) ∈ S −,

C(ε−4 exp(−(x − 1)γ2/ε)) for (x, t) ∈ S +.
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Proof. We present our analysis separately in the subregions S − and S +. Let us begin with

the subregion S + and define D̄∗ such that S̄ + ⊂ D̄∗. Let D∗ = Ω∗ × (0,T ], Ω∗ = [−2, 2]

and define function v∗ on D∗ as

v∗ = v0
∗ + εv1

∗ + ε2v2
∗ + ε3v3

∗,

where the function v∗0 is the solution of

a∗
∂v0
∗

∂x
− b∗v0

∗ −
∂v0
∗

∂t
= f ∗ + c∗v∗0(x − 1, t) in D∗,

v0
∗(x, t) = p1

∗(x, t) in [−3, 0] × [0,T ],

v0
∗(x, t) = p0

∗(x) on [−2, 2] × {t = 0},

 (3.7)

the function v∗1 and v∗2 are the solutions of

a∗
∂vi
∗

∂x
− b∗vi

∗ −
∂vi
∗

∂t
= −

∂2vi−1
∗

∂x2 + c∗vi
∗(x − 1, t) in D∗, i = 1, 2,

vi
∗(x, t) = 0 in [−3, 0] × (0,T ], vi

∗(x, t) = 0 on [−2, 2] × {t = 0}, i = 1, 2,

 (3.8)

and v3
∗ is the solution of

ε
∂2v3

∗

∂x2 + a∗
∂v3
∗

∂x
− b∗v3

∗ −
∂v3
∗

∂t
= c∗v3

∗(x − 1, t) −
∂2v2

∗

∂x2 in D∗,

v3
∗(x, t) = 0 in [−3, 0] × [0,T ],

v3
∗(x, t) = 0 on [−2, 2] × {t = 0}, v3

∗(x, t) = 0 on {x = 2} × (0,T ].

 (3.9)

Here, the coefficients a∗, b∗ and c∗ as well as the function p0
∗ are smooth extensions of

a, b, c and p0 from the domain [1, 2] to the domain [−2, 2], respectively. The functions

f ∗ and p1
∗ are the smooth extensions of f and p1 from the domain S̄ + to the domain D̄∗.

In a neighbourhood of the point (−2, 0), the functions p0
∗, p1

∗ and f ∗ are built such that

p0
∗ = p1

∗ = f ∗ = 0. Assuming that a∗, b∗, c∗ and f ∗ are sufficiently smooth on D̄∗.

We set all the initial-boundary data associated with (3.7) and (3.8) equal to zero. Define

F∗ = f ∗ + c∗v∗(x − 1, t) and impose the following compatibility condition on the set Γc:

∂k+mF∗

∂xk∂tm = 0 for 0 ≤ k + m ≤ 7. (3.10)

Using the results of [39] for the first order differential equations defined in (3.7) and (3.8),

we have vi
∗ ∈ C9−2i+λ(D̄∗) ∩ C8−2i(D̄∗), i = 0, 1, 2. This implies

∂2v2
∗

∂x2 ∈ C2+λ
(
D̄∗

)
and

therefore v3
∗ ∈ C4+λ

(
D̄∗

)
. Then, it follows that∥∥∥∥∥∥∂k+mvi

∗

∂xk∂tm

∥∥∥∥∥∥
∞,D∗
≤ C, i = 0, 1, 2,

∥∥∥∥∥∥∂k+mv3
∗

∂xk∂tm

∥∥∥∥∥∥
∞,D∗
≤ Cε−k for 0 ≤ k + 2m ≤ 4.
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The smooth component v is now defined as a restriction of v∗ on the domain S̄ +. Define

v∗(1, t) = j2(t) = v(1, t). Thus v satisfies

Lεv = f + c(x)v(x − 1, t) in S +,

v(x, t) = v∗(x, t) on {x = 1} × (0,T ],

v(x, t) = u(x, t) on [1, 2] × {t = 0}.

Since v∗ = v∗0 + εv∗1 + ε2v∗2 + ε3v∗3, we deduce∥∥∥∥∥∥ ∂k+mv∗

∂xk∂tm

∥∥∥∥∥∥
∞,S +

≤

∥∥∥∥∥∥∂k+mv0
∗

∂xk∂tm

∥∥∥∥∥∥
∞,S +

+ ε

∥∥∥∥∥∥∂k+mv1
∗

∂xk∂tm

∥∥∥∥∥∥
∞,S +

+ ε2

∥∥∥∥∥∥∂k+mv2
∗

∂xk∂tm

∥∥∥∥∥∥
∞,S +

+ε3

∥∥∥∥∥∥∂k+mv3
∗

∂xk∂tm

∥∥∥∥∥∥
∞,S +

≤ C
(
1 + ε3−k

)
for 0 ≤ k + 2m ≤ 4.

As v is a restriction of v∗ on the domain S̄ +, we have∥∥∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥∥∥
∞,S +

≤ C
(
1 + ε3−k

)
for 0 ≤ k + 2m ≤ 4.

Thus, for 0 ≤ k ≤ 3 and 0 ≤ k + 2m ≤ 4, the smooth component v satisfies∥∥∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥∥∥
∞,S +

≤ C and

∥∥∥∥∥∥∂4v

∂x4

∥∥∥∥∥∥
∞,S +

≤ Cε−1.

Similarly, the bounds for smooth component v in the subregion S − can be obtained.

Next define the barrier functions on S − ∪ S + as

φ±(x, t) =


(±v(x, t) −C) exp

(
−(1−x)γ1

ε

)
± w(x, t) for (x, t) ∈ S −,

(±v(x, t) −C) exp
(
−(x−1)γ2

ε

)
± w(x, t) for (x, t) ∈ S +,

(3.11)

where C is a constant. For (x, t) ∈ S −, using assumption a1 + γ1 < 0 to obtain

Lεφ±(x, t) = Lε

(
(±v −C) exp

(
−(1 − x)γ1

ε

))
± Lεw(x, t) ≥ 0.

Similarly, for (x, t) ∈ S +, we obtain

Lεφ±(x, t) =
γ2

ε
exp

(
−(x − 1)γ2

ε

) (
(±v −C)(−a2 + γ2) − 2εvx +

Cbε
γ2

)
±
γ2

ε
exp

(
−(x − 1)γ2

ε

) (
f + cv(x − 1, t)

γ2

)
≥ 0.

Moreover, φ± ∈ C0(D̄) and φ±(x, t) ≤ 0 for (x, t) ∈ Γ. Consequently, the required bounds

on w follows from Lemma 3.2.1. The required estimates for the derivatives of w follow

from [190]. �
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3.3 Difference Scheme

The solution of the problem exhibits a strong interior layer at x = 1. Therefore, we

discretize the domain by constructing a rectangular mesh D̄N,M = D̄N
x × Tt

M in such a way

that it will condense around the point x = 1. We write

[0, 2] = [0, 1 − σ] ∪ [1 − σ, 1] ∪ [1, 1 + σ] ∪ [1 + σ, 2] ,

where σ = min
{

1
2
, σ0ε ln N

}
and σ0 is a constant that will be chosen later on. We place

N
4

mesh points in each of the subintervals. Consequently, we obtain

D̄N
x = {xi : i = 0, . . . ,N} ,

and

hi = xi − xi−1, i = 1, 2, . . . ,N, ĥi = hi + hi+1, i = 1, 2, . . . ,N − 1,

hi =


H =

4(1 − σ)
N

for i = 1, . . . ,N/4, 3N/4 + 1, . . . ,N,

h =
4σ
N

for i = N/4 + 1, . . . ,N/2,N/2 + 1, . . . , 3N/4.

We define the uniform mesh for the domain [0,T ], as follows

Tt
M = {tk = k∆t : k = 0, . . . ,M, ∆t = T/M}.

To discretize the differential operator in (3.1), we first define the finite difference operators

on the mesh D̄N,M as

D+
x v

k
i =

vk
i+1 − v

k
i

hi+1
, D−x v

k
i =

vk
i − v

k
i−1

hi
, D0

xv
k
i =

vk
i+1 − v

k
i−1

hi+1 + hi
, D−t v

k
i =

vk
i − v

k−1
i

∆t
,

and δ2
xv

k
i =

2(D+
x v

k
i − D−x v

k
i )

hi+1 + hi
. Also, define vk

i∓1
2

=

(
vk

i∓1 + vi
k
)

2
and v i∓1

2
=

(vi∓1 + vi)
2

.

We employ the classical central difference scheme within the intervals (1 − σ, 1)

and (1, 1 + σ) while utilizing the midpoint upwind scheme in the remaining intervals.

We utilize second-order one-sided difference approximations to ensure continuity of the

spatial derivative at the point of discontinuity. For the time derivative, we employ the

backward-Euler method for discretization. Thus, the discrete problem can be expressed
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as follows

Ui,0 = p0(xi) for i = 0, . . . ,N,

LN,M,(L)
mu Ui,k+1 = f i−1

2 ,k+1 + c i−1
2

p1 for i = 1, . . . , N
4 ,

LN,M
cen Ui,k+1 = fi,k+1 + ci p1 for i = N

4 + 1, . . . , N
2 − 1,

LN,M
cen Ui,k+1 = fi,k+1 + ciUi−N/2,k+1 for i = N

2 + 1, . . . , 3N
4 − 1,

LN,M,(R)
mu Ui,k+1 = f i+1

2 ,k+1 + c i+1
2

Ui−N/2,k+1 for i = 3N
4 , . . . ,N − 1,

DF
x Ui,k+1 − DB

x Ui,k+1 = 0 for i = N
2 ,

for k = 0, . . . ,M − 1,

(3.12)

where
Lmu

N,M,(L)Ui,k+1 = εδ2
xUi,k+1 + a i−1

2
D−x Ui,k+1 − b i−1

2
U i−1

2 ,k+1 − D−t U i−1
2 ,k+1,

Lcen
N,MUi,k+1 = εδ2

xUi,k+1 + aiD0
xUi,k+1 − biUi,k+1 − D−t Ui,k+1,

Lmu
N,M,(R)Ui,k+1 = εδ2

xUi,k+1 + a i+1
2

D+
x Ui,k+1 − b i+1

2
U i+1

2 ,k+1 − D−t U i+1
2 ,k+1,

(3.13)

and 
DF

x U N
2 ,k

=
(
−U N

2 +2,k + 4U N
2 +1,k − 3U N

2 ,k

)
/2h,

DB
x U N

2 ,k
=

(
U N

2 −2,k − 4U N
2 −1,k + 3U N

2 ,k

)
/2h.

(3.14)

After simplifying the terms in (3.12), we obtain

U0
i = p0(xi) for i = 0, . . . ,N,

LN,M
ε Ui,k+1 = f̃i,k+1 for i = 1, . . . ,N − 1,

Ui,k+1 = p1(xi, tk+1) for i = −N/2, . . . , 0,

UN,k+1 = p2(tk+1) for k = 0, . . . ,M − 1,

(3.15)

where

LN,M
ε Ui,k+1 =



[
r−i Ui−1,k+1 + r0

i Ui,k+1 + r+
i Ui+1,k+1

]
+

[
p−i Ui−1,k + p0

i Ui,k + p+
i Ui+1,k

]
for i = 1, . . . ,N/2 − 1,N/2 + 1, . . . ,N − 1,

q−,2i Ui−2,k+1 + q−,1i Ui−1,k+1 + q0
i Ui,k+1 + q+,1

i Ui+1,k+1 + q+,2
i Ui+2,k+1

for i = N/2,

(3.16)

and

f̃i,k+1 =


m−i fi−1,k+1 + m0

i fi,k+1 + m+
i fi+1,k+1 + s+

i p1(xi−N/2, tk+1) + s−i Ui−N/2,k+1

for i = 1, . . . ,N/2 − 1, N/2 + 1, . . . ,N − 1,

0 for i = N/2.

(3.17)
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Here, for i = 1, . . . ,N/4
r−i =

(
2ε

ĥihi
−

ai−1/2

hi
−

bi−1/2

2
−

1
2∆t

)
, r0

i =

(
−2ε

hihi+1
+

ai−1/2

hi
−

bi−1/2

2
−

1
2∆t

)
,

r+
i =

2ε

ĥihi+1
, p−i =

1
2∆t

, p0
i =

1
2∆t

, p+
i = 0,

m−i = 1
2 , m0

i = 1
2 , m+

i = 0, s+
i = ci−1/2, s−i = 0,

(3.18)

for i = N/4 + 1, . . . ,N/2 − 1,N/2 + 1, . . . , 3N/4 − 1
r−i =

(
2ε

ĥihi
−

ai

ĥi

)
, r0

i =

(
−2ε

hihi+1
− bi −

1
∆t

)
, r+

i =

(
2ε

ĥihi+1
+

ai

ĥi

)
,

p−i = 0, p0
i = 1

∆t , p+
i = 0, m−i = 0, m0

i = 1, m+
i = 0,

(3.19)

for i = N/4 + 1, . . . ,N/2 − 1

s+
i = ci, s−i = 0,

for i = N/2 + 1, . . . , 3N/4 − 1

s+
i = 0, s−i = ci,

for i = 3N/4, . . . ,N − 1

r−i =
2ε

ĥihi
, r0

i =

(
−2ε

hihi+1
−

ai+1/2

hi+1
−

bi+1/2

2
−

1
2∆t

)
,

r+
i =

(
2ε

ĥihi+1
+

ai+1/2

ˆhi+1
−

bi+1/2

2
−

1
2∆t

)
,

p−i = 0, p0
i = 1

2∆t , p+
i = 1

2∆t ,

m−i = 0, m0
i = 1

2 , m+
i = 1

2 , s
+ = 0, s− = ci+1/2,

(3.20)

and lastly,

q−,2N/2 =
−1
2h
, q−,1N/2 =

2
h
, q0

N/2 = −
3
h
, q+,1

N/2 =
2
h
, q+,2

N/2 =
−1
2h
. (3.21)

3.4 Error Estimates

The difference operator LN,M
ε in (3.16) fails to fulfil the conditions of discrete maximum

principle because, for this, we need qi ≥ 0 to prove A to be an M-matrix. Consequently,

we must modify (3.15). For i = N/2

q−,2N/2UN/2−2,k+1 + q−,1N/2UN/2−1,k+1 + q0
N/2UN/2,k+1 + q+,1

N/2UN/2+1,k+1 + q+,2
N/2UN/2+2,k+1 = 0. (3.22)

From (3.15), for i = N/2 − 1, we have(
2ε − haN/2−1

2h2

)
UN/2−2,k+1 = fN/2−1,k+1 + cN/2−1 p1(x−1, tk+1) − r0

N/2−1UN/2−1,k+1

+r+
N/2−1UN/2,k+1 +

1
∆t

UN/2−1,k (3.23)
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and, for i = N/2 + 1(
2ε + haN/2+1

2h2

)
UN/2+2,k+1 = fN/2+1,k+1 + cN/2+1U(x1, tk+1) − r0

N/2+1UN/2+1,k+1

+r+
N/2+1UN/2,k+1 +

1
∆t

UN/2+1,k. (3.24)

Now put the values of UN/2−2,k+1 and UN/2+2,k+1 from (3.23) and (3.24) into (3.22) to write

q−,2N/2

(
2h2

2ε − haN/2−1

) (
fN/2−1,k+1 + cN/2−1 p1(x−1, tk+1) − r0

N/2−1UN/2−1,k+1

−r+
N/2−1UN/2,k+1 −

1
∆t

UN/2−1,k

)
+ q−,1N/2UN/2−1,k+1 + q0

N/2UN/2,k+1 + q+,1
N/2UN/2+1,k+1

+q+,2
N/2

(
2h2

2ε + haN/2+1

) (
fN/2+1,k+1 + cN/2+1U(x1, tk+1) − r0

N/2+1UN/2+1,k+1

−r+
N/2+1UN/2,k+1 −

1
∆t

UN/2+1,k

)
= 0. (3.25)

After rearranging the terms in (3.25), the discrete problem reads

Ui,0 = p0(xi) for i = 0, . . . ,N,

LN,M
τ Ui,k+1 = f̃τ,i,k+1 for i = 1, . . . ,N − 1,

Ui,k+1 = p1(xi, tk+1) for i = −N/2, . . . , 0,

UN,k+1 = p2(tk+1) for k = 0, . . . ,M − 1,

(3.26)

where

LN,M
τ Ui,k+1 =



(
r−i Ui−1,k+1 + r0

i Ui,k+1 + r+
i Ui+1,k+1

)
+

(
p−i Uk

i−1 + p0
i Uk

i + p+
i Ui+1,k

)
if i = N/2,

LN,M
ε Ui,k+1 if i , N/2,

(3.27)

and

f̃τ,i,k+1 =



[
m−i fi−1,k+1 + m0

i fi,k+1 + m+
i fi+1,k+1

]
+l1 p1(x−1, tk+1) + l2U(x1, tk+1) if i = N/2,

f̃i,k+1 if i , N/2.

Now, for i = N/2

r−i =
1
2h

4 − 2
(
2ε + h2bi−1 + h2

∆t

)
2ε − hai−1

 , r0
i =

1
2h

(
−6 +

2ε + hai−1

2ε − hai−1
+

2ε − hai+1

2ε + hai+1

)
,

r+
i =

1
2h

4 − 2
(
2ε + h2bi+1 + h2

∆t

)
2ε + hai+1

 ,
p−i =

h
(2ε − hai−1)∆t

, p0
i = 0, p+

i =
h

(2ε + hai+1)∆t
,

m−i =
h

(2ε − hai−1)
, m0

i = 0, m+
i =

h
(2ε + hai+1)

,

l1 =
−hci−1

2ε − hai−1
, l2 =

−hci+1

2ε + hai+1
,
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and for i , N/2, these coefficients are defined in (3.18), (3.19) and (3.20). Let

DN,M = D̄N,M ∩ D and ΓN,M = D̄N,M \ DN,M.

Lemma 3.4.1. Let N > 0 be such that

N
ln N

≥ 2σ0γ
∗ (3.28)

and (
‖ b ‖∞ +∆t−1

)
≤
γN
2
. (3.29)

Let Y be the mesh function such that Y ≤ 0 on ΓN,M and LN,M
τ Y ≥ 0 in DN,M. Then Y ≤ 0

in D̄N,M.

Proof. Write LN,M
τ as

−LN,M
τ Yi,k+1 =

[
Ai,i−1Yi−1,k+1 + Ai,iYi,k+1 + Ai,i+1Yi+1,k+1

]
−

[
Bi,i−1Yi−1,k + Bi,iYi,k + Bi,i+1Yi+1,k

]
, (3.30)

where A := (Ai, j) and B := (Bi, j) are written as

Ai,i−1 = −r−i , Ai,i = −r0
i , Ai,i+1 = −r+

i ,

Bi,i−1 = p−i , Bi,i = p0
i , Bi,i+1 = p+

i .

Clearly, B ≥ 0 since p−i , p0
i , p+

i ≥ 0, and it is easy to follow from (3.28) and (3.29) that

A is an M-matrix [82]. The remaining part we prove by induction. For that, we assume

Yi,k ≤ 0, k = 0, . . . ,N−1. Then, we can rewrite (3.30) as AYi,k+1 = BYi,k−LN,MYi,k+1. Note

that B ≥ 0, Yi,k ≤ 0, A−1 ≥ 0 and LN,M
τ Yi,k+1 ≥ 0 by hypothesis. Consequently, it follows

that Yi,k+1 ≤ 0 in DN,M . �

Next, we obtain the following estimate as an immediate consequence of

Lemma 3.4.1.

Lemma 3.4.2. Let U be the solution of (3.26) and the conditions (3.28) and (3.29) hold

true. Then

‖U‖∞,D̄N,M ≤ ‖U‖∞,ΓN,M +
1
γ
‖ f̃τ‖∞,D̄N,M .

Proof. Let

φ±,k+1
i = −‖U‖∞,ΓN,M −


xi
‖ f̃τ‖∞,D̄N,M

γ
∓ Ui,k+1 for i = 0, . . . ,N/2,

(2 − xi)
‖ f̃τ‖∞,D̄N,M

γ
∓ Ui,k+1 for i = N/2 + 1, . . . ,N.
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Then φ±,k+1
N ≤ 0, φ±,k+1

i ≤ 0 for i = −N/2, . . . , 0 and φ±,0i ≤ 0 for i = 0, . . . ,N. For i , N/2,

LN,M
τ φ±,k+1

i ≥ 0. Further, for i = N/2

LN,M
τ φ±,k+1

N/2 = LN,M
τ {−‖U‖∞,ΓN,M −

1
γ
‖ f̃τ‖∞,D̄N,M ∓ UN/2,k+1} ≥ (DF

x − DB
x )φ±,k+1

N/2 ,

and

(DF
x − DB

x )φ±,k+1
N/2 =

1
2h

(
−φ±,k+1

N/2+2 + 4φ±,k+1
N/2+1 − 6φ±,k+1

N/2 − φ
±,k+1
N/2−2 + 4φ±,k+1

N/2−1

)
≥ 0.

Consequently, the required result follows from Lemma 3.4.1. �

Next, we decompose the solution into smooth and singular component. We write

Ui,k+1 := Vi,k+1 + Wi,k+1. We define the mesh functions VL and VR as the approximation

of v to the left and the right of the point of discontinuity x = 1. Similarly, we define the

mesh functions WL and WR as the approximation of w to the left and the right of the point

of discontinuity x = 1. Here, the functions VL and VR satisfy

LN,M
τ VL,i,k+1 = f̃τ,i,k+1 for i = 1, . . . ,N/2 − 1,

VL,i,k+1 = v(xi, tk+1) for i = −N/2, . . . , 0,

VL,N/2,k+1 = v(1−, tk+1), k ≥ 0,

VL,i,0 = v(xi, 0) for i = 0, . . . ,N/2,


(3.31)

and

LN,M
τ VR,i,k+1 = f̃τ,i,k+1 for i = N/2 + 1, . . . ,N − 1,

VR,N/2,k+1 = v(1+, tk+1), VR,N,k+1 = v(2, tk+1), k ≥ 0,

VR,i,0 = v(xi, 0) for i = N/2, . . . ,N.

 (3.32)

Moreover, the functions WL and WR satisfy

LN,M
τ WL,i,k+1 = 0 for i = 1, . . . ,N/2 − 1,

WL,i,k+1 = 0 for i = −N/2, . . . , 0,

WL,i,0 = 0 for i = 0, . . . ,N/2,

LN,M
τ WR,i,k+1 = 0 for i = N/2 + 1, . . . ,N − 1,

WR,N,k+1 = 0, k ≥ 0,

WR,i,0 = 0 for i = N/2, . . . ,N,

WR,N/2,k+1 + VR,N/2,k+1 = WL,N/2,k+1 + VL,N/2,k+1,

DF
x WR,N/2,k+1 + DF

x VR,N/2,k+1 = DB
x WL,N/2,k+1 + DB

x VL,N/2,k+1, k ≥ 0.



(3.33)
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Now, the numerical solution U can be written as

Ui,k+1 =


VL,i,k+1 + WL,i,k+1 for i = 0, . . . ,N/2 − 1,

VL,i,k+1 + WL,i,k+1 = VR,i,k+1 + WR,i,k+1 for i = N/2,

VR,i,k+1 + WR,i,k+1 for i = N/2 + 1, . . . ,N.

(3.34)

Lemma 3.4.3. Let VL and VR be the solutions of (3.31) and (3.32), and v be the solution

of (3.4). Then under the assumptions (3.28) and (3.29)

|VL,i,k+1 − v(xi, tk+1)| ≤ C(N−2 + ∆t)xi for i = 1, . . . ,N/2 − 1,

|VR,i,k+1 − v(xi, tk+1)| ≤ C(N−2 + ∆t)(2 − xi) for i = N/2 + 1, . . . ,N − 1.

Proof. Consider Ψk+1
L,i = −C(N−2 + ∆t)xi for i = 0, . . . ,N/2. Then

LN,M
τ (VL,i,k+1 − v(xi, tk+1)) = (Lε − LN,M

τ )v(xi, tk+1).

For i = 1, . . . ,N/2 − 1, we obtain∣∣∣LN,M
τ

(
VL,i,k+1 − v(xi, tk+1)

)∣∣∣
≤


C

[
(ε + hi)(hi + hi+1)

∥∥∥∥ ∂3v
∂x3

∥∥∥∥
∞

+ hi
2
(∥∥∥∥ ∂2v

∂x2

∥∥∥∥
∞

+
∥∥∥ ∂v
∂x

∥∥∥
∞

)
+ ∆t

∥∥∥∥∂2v
∂t2

∥∥∥∥
∞

]
for i = 1, . . . ,N/4,

C
[
h2

(
ε
∥∥∥∥ ∂4v
∂x4

∥∥∥∥
∞

+
∥∥∥∥ ∂3v
∂x3

∥∥∥∥
∞

)
+ ∆t

∥∥∥∥∂2v
∂t2

∥∥∥∥
∞

]
for i = N/4 + 1, . . . ,N/2 − 1.

Using Theorem 3.2.4, conditions hi ≤ CN−1 and ε ≤ N−1 to find∣∣∣LN,M
τ (VL,i,k+1 − v(xi, tk+1))

∣∣∣ ≤ C(N−2 + ∆t) ≤ LN,M
τ ψk+1

L,i .

Furthermore, from Lemma 3.4.1, we have∣∣∣VL,i,k+1 − v(xi, tk+1)
∣∣∣ ≤ C(N−2 + ∆t)xi, 1 ≤ i ≤ N/2 − 1.

Now, consider ψk+1
R,i = −C

(
N−2 + ∆t

)
(2− xi) for i = N/2, . . . ,N. Similarly, it follows that

for i = N/2 + 1, . . . ,N − 1∣∣∣LN,M
ε

(
VR,i,k+1 − v(xi, tk+1)

)∣∣∣
≤


C

[
h2

(
ε
∥∥∥∥ ∂4v
∂x4

∥∥∥∥
∞

+
∥∥∥∥ ∂3v
∂x3

∥∥∥∥
∞

)
+ ∆t

∥∥∥∥∂2v
∂t2

∥∥∥∥
∞

]
for i = N/2 + 1, . . . , 3N/4 − 1,

C
[
(ε + hi+1)(hi + hi+1)

∥∥∥∥ ∂3v
∂x3

∥∥∥∥
∞

+ hi+1
2
(∥∥∥∥ ∂2v

∂x2

∥∥∥∥
∞

+
∥∥∥ ∂v
∂x

∥∥∥
∞

)
+ ∆t

∥∥∥∥∂2v
∂t2

∥∥∥∥
∞

]
for i = 3N/4, . . . ,N − 1.

For i = N/2 + 1, . . . ,N − 1, a similar argument for (VR − v) yields∣∣∣VR,i,k+1 − v(xi, tk+1)
∣∣∣ ≤ C(N−2 + ∆t)(2 − xi).

�
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Next, we define two mesh functions on D̄N
x = {xi}

N
0 given by

S i =

i∏
j=1

(
1 +

αh j

ε

)
for i = 1, . . . ,N/2 and Qi =

N−i∏
j=1

(
1 +

αh j

ε

)
for i = N/2, . . . ,N − 1

so that S 0 = 1 and QN = 1, where α is a positive constant.

Lemma 3.4.4. Let α ≤ γ/2. Then the functions S i and Qi satisfy

−LN,M
τ S i ≥


C

ε + αH
S i if i = 1, . . . ,N/4,

C
ε + αh

S i if i = N/4 + 1, . . . ,N/2 − 1,

and

−LN,M
τ Qi ≥


C

ε + αh
Qi if i = N/2 + 1, . . . , 3N/4 − 1,

C
ε + αH

Qi if i = 3N/4, . . . ,N − 1.

Proof. For i = 1, . . . ,N/4

−LN,M
τ S i = −

2ε

ĥi

[(
S i+1 − S i

hi+1

)
−

(
S i − S i−1

hi

)]
− a i−1

2

(
S i − S i−1

hi

)
+ b i−1

2
S i−1

2
.

Since S i =

(
1 +

αhi

ε

)
S i−1, we obtain

S i − S i−1 =
αhi

ε
S i−1 and ai ≤ −γ1 ≤ −2α.

It follows that

−LN,M
τ S i = −

2α

ĥi
(S i − S i−1) − a i−1

2
S i−1 + b i−1

2
S i−1

2
≥

C
ε + αhi

S i.

Moreover, for i = N/4 + 1, . . . ,N/2 − 1

−LN,M
τ S i = −εδ2

xS i − aiD0
xS i + biS i + D−t S i ≥

C
ε + αh

S i.

In case i = N/2 + 1, . . . , 3N/4 − 1

−LN,M
τ Qi = −εδ2

xQi − aiD0
xQi + biQi + D−t Qi

= −
ε

h

[(
Qi+1 − Qi

hi+1

)
−

(
Qi − Qi−1

hi

)]
− ai

(
Qi+1 − Qi−1

ĥi

)
+ biQi.

Since Qi+1 − Qi =
−αhN−i

ε
Qi+1 and ai ≥ γ2 ≥ 2α, we have

−LN,M
τ Qi ≥

α

h
(Qi+1 − Qi) +

ai

2
α

ε
(Qi+1 − Qi−1) ≥

C
(ε + αh)

Qi.
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For i = 3N/4, . . . ,N − 1

−LN,M
τ Qi ≥ −

2ε

ĥi

[(
Qi+1 − Qi

hi+1

)
−

(
Qi − Qi−1

hi

)]
− a i+1

2

(
Qi+1 − Qi

hi+1

)
.

Since Qi+1 − Qi =
−αhN−i

ε
Qi+1 and ai ≥ γ2 ≥ 2α, we can write

−LN,M
τ Qi ≥

2α

ĥi
(Qi+1 − Qi) + a i+1

2

α

ε
Qi+1 ≥

C
(ε + αhN−i)

Qi.

�

Lemma 3.4.5. Let σ0 ≥ 2/α. Then(
S i

S N/2

)
≤ CN−4( 1−2i

N ), i = N/4, . . . ,N/2 − 1, (3.35)

and (
Qi

QN/2

)
≤ CN−4( 2i

N−1 ), i = N/2 + 1, . . . , 3N/4. (3.36)

Proof. For i = N/4, . . . ,N/2 − 1, hi = h and therefore(
S i

S N/2

)
=

(
1 −

αh
ε + αh

)(N/2−i)

.

Taking log on both sides(
S i

S N/2

)
≤ exp

(
(N/2 − i)

(
−αh
ε + αh

))
≤ CN−4(1−2i/N)

because N

8(ασ0)2(1 − 2i/N)(N−1 ln N)
(1 + 4ασ0N−1 ln N) is bounded. Further , for i = N/2 + 1, . . . , 3N/4(

Qi

QN/2

)
=

∏N−i
j=1 (1 + αh

ε
)∏N/2

j=1 (1 + αh
ε

)
=

(
1 +

αh
ε

)−(i−N/2)

.

Similarly, it is easy to follow that
(

Qi

QN/2

)
≤ CN−4(2i/N−1). �

Now, we will calculate the errors for the layers components WL and WR in

((0, 1 − σ] ∪ [1 + σ, 2)) × (0,T ].

Lemma 3.4.6. Let α ≤ γ/2 and σ0 ≥ 2/α. Then under the assumptions (3.28) and (3.29),

the errors associated to the layer components satisfy

|WL,i,k+1 − w(xi, tk+1)| ≤ CN−2 for i = 1, . . . ,N/4,

|WR,i,k+1 − w(xi, tk+1)| ≤ CN−2 for i = 3N/4, . . . ,N − 1.
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Proof. From (3.34), we have

|UN/2,k+1| = |VR,N/2,k+1 + WR,N/2,k+1| = |VL,N/2,k+1 + WL,N/2,k+1| ≤ |VL,N/2,k+1| + |WL,N/2,k+1|.

Using Theorem 3.2.4 and Lemma 3.4.2 to obtain |WN/2,k+1| ≤ C. Let us next consider

φk+1
L,i = −C

(
S i

S N/2

)
for i = 0, . . . ,N/2,

where C is chosen sufficiently large. For i = 0, . . . ,N/2 an application of Lemma 3.4.4

yields

LN,M
τ

(
φk+1

L,i ±WL,i,k+1

)
= LN,M

τ φk+1
L,i ± LN,M

τ WL,i,k+1 ≥ C
S i

S N/2
≥ 0,

and WL,0,k+1 = 0 = WL,i,0. Thus

φk+1
L,0 ±WL,0,k+1 = φk+1

L,0 =
−CS 0

S N/2
≤ 0.

Similarly, we can show that φ0
L,i ± WL,i,0 ≤ 0 and φk+1

L,N/2 ± WL,N/2,k+1 ≤ 0. Next we use

Lemma 3.4.1 and observe that

|WL,i,k+1| ≤ C
(

S i

S N/2

)
, i = 1, . . . ,N/2 − 1. (3.37)

Furthermore, |WL,i,k+1| ≤ C
(

S i

S N/2

)
≤ C

(
S N/4

S N/2

)
for i = 1, . . . ,N/4 and from Lemma 3.4.5,

we have

|WL,i,k+1| ≤ CN−2, i = 1, . . . ,N/4. (3.38)

Since α ≤ γ/2 < γ, σ = σ0ε ln N, σ0 ≥ 2/α, we see using Theorem 3.2.4 that

|w(xi, tk+1)| ≤ C exp
(
−(1 − xi)γ1

ε

)
≤ CN−2, i = 1, . . . ,N/4. (3.39)

Combine (3.38) and (3.39) to obtain

|WL,i,k+1 − w(xi, tk+1)| ≤ CN−2, i = 1, . . . ,N/4.

Let us next consider φk+1
R,i = −C

(
Qi

QN/2

)
for i = N/2, . . . ,N. Then using Lemma 3.4.4 for

i = N/2 + 1, . . . ,N − 1 we calculate

LN,M
τ

(
φk+1

R,i ±WR,i,k+1

)
= LN,M

τ φk+1
R,i ± LN,M

τ WR,i,k+1 ≥ C
Qi

QN/2
≥ 0
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and WR,N,k+1 = 0 = WR,i,0. Thus φk+1
R,N ±WR,N,k+1 = φk+1

R,N ≤ 0.

Similarly, we can show that φ0
R,i ± WR,i,0 ≤ 0, φk+1

R,N/2 ± WR,N/2,k+1 ≤ 0 and Lemma 3.4.1

leads to φk+1
R,i ±WR,i,k+1 ≤ 0 for i = N/2, . . . ,N. Thus

|WR,i,k+1| ≤ |φ
k+1
R,i | ≤ C

(
Qi

QN/2

)
for i = N/2 + 1, . . . ,N − 1

≤ C
(

Q3N/4

QN/2

)
for i = 3N/4, . . . ,N − 1

because Q is decreasing and from Lemma 3.4.5, we have
(

Q3N/4

QN/2

)
≤ CN−2. Thus

|WR,i,k+1| ≤ CN−2, i = 3N/4, . . . ,N − 1. (3.40)

Now, using Theorem 3.2.4 and doing the same calculation as we did for WL, we get

|w(xi, tk+1)| ≤ C exp
(
−(xi − 1)γ2

ε

)
≤ CN−2, i = 3N/4, . . . ,N − 1. (3.41)

Using (3.40) and (3.41), we find

|WR,i,k+1 − w(xi, tk+1)| ≤ CN−2, i = 3N/4, . . . ,N − 1.

�

Next, we will state and prove some results required to obtain parameter uniform

error bounds.

Lemma 3.4.7. The following inequalities hold true:

exp (−α(1 − xi)/ε) ≤
(

S i

S N/2

)
, i = 1, . . . ,N/2 − 1 (3.42)

and

exp (−α(xi − 1)/ε) ≤
(

Qi

QN/2

)
, i = N/2 + 1, . . . ,N − 1. (3.43)

Proof. For each j, from Lemma 2.5 of [278], it follows that

exp
(
−αh j

ε

)
=

(
exp

(
αh j

ε

))−1

≤

(
1 +

αh j

ε

)−1

. (3.44)

Consequently, for j = i + 1, . . . ,N/2
N/2∏
i+1

exp
(
−αh j

ε

)
≤

N/2∏
i+1

(
1 +

αh j

ε

)−1

exp
(
−α

ε
(hi+1 + hi+2 + . . . + hN/2)

)
=

i∏
1

(
1 +

αh j

ε

)
i∏
1

(
1 +

αh j

ε

) N/2∏
i+1

(
1 +

αh j

ε

)
exp

(
−α

ε
(1 − xi)

)
≤

S i

S N/2
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and for j = N − (i + 1), . . . ,N/2

N/2∏
N−(i+1)

exp
(
−αh j

ε

)
≤

N/2∏
N−(i+1)

(
1 +

αh j

ε

)−1

exp
(
−α

ε
(hN−(i+1) + hN−(i+2) + . . . + hN/2)

)
=

N−i∏
1

(
1 +

αh j

ε

)
N/2∏

N−(i+1)

(
1 +

αh j

ε

) N−i∏
1

(
1 +

αh j

ε

)
exp

(
−α

ε
(xi − 1)

)
≤

Qi

QN/2
.

�

Lemma 3.4.8. The difference operators DB
x and DF

x satisfy

DB
x S N/2 ≥

C
ε + αh

S N/2 and − DF
x QN/2 ≥

C
ε + αh

QN/2.

Proof. Since (S i − S i−1) =
αhi

ε
S i−1, we have

DB
x S N/2 =

1
2h

(
S N/2−2 − 4S N/2−1 + 3S N/2

)
=

1
2
α

ε

(
3S N/2−1 − S N/2−2

)
=
α

2ε
(
2S N/2−1 + S N/2−1 − S N/2−2

)
=
α

2ε

(
2S N/2−1 +

αh
ε

S N/2−2

)
=
α

2ε

 2S N/2(
1 + αh

ε

) +
αh
ε

S N/2−1(
1 + αh

ε

)
=
α

2ε
S N/2(

1 + αh
ε

)2

(
2 +

3αh
ε

)

=
α

2ε
S N/2(

1 + αh
ε

)2

(
2
(
1 +

αh
ε

)
+
αh
ε

)

≥
α

ε

S N/2(
1 + αh

ε

)2

(
1 +

αh
ε

)

≥
C

ε + αh
S N/2.

Also, since Qi+1 − Qi =
−αhN−i

ε
Qi+1, we have

−DF
x QN/2 =

1
2h

(
QN/2+2 − 4QN/2+1 + 3QN/2

)
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=
1

2h
(
QN/2+2 − QN/2+1 + 3(QN/2 − QN/2+1)

)
=

1
2h

(
(QN/2+2 − QN/2+1) − 3(QN/2+1 − QN/2)

)
=

1
2
α

ε

(
3QN/2+1 − QN/2+2

)
=

1
2h
αh
ε

(
2QN/2+1 + QN/2+1 − QN/2+2

)
=
α

2ε

(
2QN/2+1 +

αh
ε

QN/2+2

)
=
α

2ε

 2QN/2(
1 + αh

ε

) +
αh
ε

QN/2+1(
1 + αh

ε

)
=
α

2ε

 2QN/2(
1 + αh

ε

) +
αh
ε

QN/2(
1 + αh

ε

)2


=
α

2ε
QN/2

1(
1 + αh

ε

)2

(
2
(
1 +

αh
ε

)
+
αh
ε

)

≥
α

ε

(
1 + αh

ε

)
(
1 + αh

ε

)2 QN/2

≥
C

ε + αh
QN/2.

�

Theorem 3.4.9. Let u and Ui,k+1 be the solutions of (3.1) and (3.26), respectively. Then

under the assumptions (3.28), (3.29) and α ≤ γ/2 with σ0 ≥ 2/α

|Ui,k+1 − u(xi, tk+1)| ≤


C

(
N−2 + ∆t

)
for i = 1, . . . ,N/4, 3N/4, . . . ,N − 1,

C
(
N−2 ln2 N + ∆t

)
for i = N/4 + 1, . . . , 3N/4 − 1.

(3.45)

Proof. We compute the error separately in the layer region and outside the layer region.

Case I: For i = 1, . . . ,N/4, 3N/4, . . . ,N − 1. The triangle inequality, Lemma 3.4.3 and

Lemma 3.4.6 yields

|Ui,k+1 − u(xi, tk+1)| ≤ |VL,i,k+1 − v(xi, tk+1)| + |WL,i,k+1 − w(xi, tk+1)|

≤ C(N−2 + ∆t)xi + CN−2

≤ C(N−2 + ∆t). (3.46)
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Case II: For i = N/4 + 1, . . . , 3N/4 − 1. Consider

LN,M
τ (Ui,k+1 − u(xi, tk+1)) = LN,M

τ Ui,k+1 − LN,M
τ u(xi, tk+1)

= f̃τ − LN,M
τ u(xi, tk+1)

= Lεu(xi, tk+1) − LN,M
τ u(xi, tk+1)

= (Lε − LN,M
τ )u(xi, tk+1)

=

(
ε

(
∂2

∂x2 − δx2
)

+ a
(
∂

∂x
− D0

x

)
−

(
∂

∂t
− D−t

))
u(xi, tk+1).

Using Theorem 3.2.4, we have

|LN,M
τ (Ui,k+1 − u(xi, tk+1))| ≤ h

∫ xi+1

xi−1

(
ε

∥∥∥∥∥∥∂4u
∂x4

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∂3u
∂x3

∥∥∥∥∥∥
∞

)
dx + C∆t

∥∥∥∥∥∥∂2u
∂t2

∥∥∥∥∥∥
∞

≤ h
∫ xi+1

xi−1

(
ε

∥∥∥∥∥∥∂4v

∂x4

∥∥∥∥∥∥
∞

+ ε

∥∥∥∥∥∥∂4w

∂x4

∥∥∥∥∥∥
∞

)
dx

+h
∫ xi+1

xi−1

(∥∥∥∥∥∥∂3v

∂x3

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∂3w

∂x3

∥∥∥∥∥∥
∞

)
dx

+C∆t
(∥∥∥∥∥∥∂2v

∂t2

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∂2w

∂t2

∥∥∥∥∥∥
∞

)
≤

(
C

h
ε2

[
exp(−(1 − xi+1)γ1/ε) − exp(−(1 − xi−1)γ1/ε)

])
+Ch2 + C∆t

=

(
C

h
ε2

[
exp(−(1 − xi − h)γ1/ε) − exp(−(1 − xi + h)γ1/ε)

] )
+Ch2 + C∆t

=

(
C

h
ε2 exp(−(1 − xi)γ1/ε)

[
exp(hγ1/ε) − exp(−hγ1/ε)

])
+Ch2 + C∆t

≤ C
[
h2 +

h
ε2 exp

(
−(1 − xi)γ1

ε

)
sinh

(
hγ1

ε

)]
+ ∆t. (3.47)

From (3.16), we have

2σ0γ
∗ ≤

N
ln N

4σ0γ1 ≤
2N
ln N

,
4σγ1

ε ln N
≤

2N
ln N

and
hγ1

ε
≤ 2.

Since sinh x ≤ cx, x ∈ [0, 2]. This implies sinh
(
hγ1

ε

)
≤ C

(
hγ1

ε

)
. Therefore, (3.47)

becomes

|LN,M
τ (Ui,k+1 − u(xi, tk+1))| ≤ C

[(
h2 +

h2

ε3 exp
(
−(1 − xi)γ1

ε

))
+ ∆t

]
. (3.48)

Similarly, for i = N/2 + 1, . . . , 3N/4 − 1, we have

|LN,M
τ (Ui,k+1 − u(xi, tk+1))| ≤ C

[(
h2 +

h2

ε3 exp
(
−(xi − 1)γ2

ε

))
+ ∆t

]
. (3.49)
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Furthermore, at xN/2 = 1

|LN,M
τ (UN/2,k+1 − u(xN/2, tk+1))| =

∣∣∣LN,M
τ UN/2,k+1 − LN,M

τ u(xN/2, tk+1)
∣∣∣

=
∣∣∣ f̃τ,N/2,k+1 − LN,M

τ uN/2,k+1

∣∣∣
≤

∣∣∣m−N/2 fN/2−1,k+1 + m+
N/2 fN/2+1,k+1 − LN,M

τ uN/2,k+1

∣∣∣
≤ m−N/2

∣∣∣ fN/2−1,k+1 − LN,M
τ uN/2−1,k+1

∣∣∣
+m+

N/2

∣∣∣ fN/2+1,k+1 − LN,M
τ uN/2+1,k+1

∣∣∣
+

∣∣∣(DF
x − DB

x )UN/2,k+1

∣∣∣
≤ C

∣∣∣LN,M
τ (UN/2−1,k+1 − u(xN/2−1, tk+1))

∣∣∣
+C

∣∣∣LN,M
τ (UN/2+1,k+1 − u(xN/2+1, tk+1))

∣∣∣
+

∣∣∣∣∣∣(DF
x − DB

x )UN/2,k+1 −

[
∂u
∂x

]
(xN/2, tk+1)

∣∣∣∣∣∣
≤ C

(
h2

ε3 + ∆t
)
.

Let us next define the function

Θk
i =


−C(N−2 + ∆t) (1 + (xi − (1 − σ))) −C

h2

ε2

(
S i

S N/2

)
for i = N/4, . . . ,N/2,

−C(N−2 + ∆t) (1 + ((1 + σ) − xi)) −C
h2

ε2

(
Qi

QN/2

)
for i = N/2 + 1, . . . , 3N/4.

Then

LN,M
τ Θk+1

i =


−C(N−2 + ∆t)LN,M

τ (xi) −C
h2

ε2

(
LN,M
τ S i

S N/2

)
for i = N/4, . . . ,N/2,

C(N−2 + ∆t)LN,M
τ (xi) −C

h2

ε2

(
LN,M
τ Qi

QN/2

)
for i = N/2 + 1, . . . , 3N/4,

=


−C(N−2 + ∆t)(ai − bixi) −C

h2

ε2

(
LN,M
τ S i

S N/2

)
for i = N/4, . . . ,N/2,

C(N−2 + ∆t)(ai − bixi) −C
h2

ε2

(
LN,M
τ Qi

QN/2

)
for i = N/2 + 1, . . . , 3N/4.

Using assumption α ≤ γ/2, Lemma 3.4.6 and Lemma 3.4.7 to obtain

LN,M
τ Θk+1

i ≥


Cγ1(N−2 + ∆t) + C h2

ε2 exp (−(1 − xi)γ1/ε) for i = N/4, . . . ,N/2,

Cγ2(N−2 + ∆t) + C h2

ε2 exp (−(xi − 1)γ2/ε) for i = N/2 + 1, . . . , 3N/4.
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From assumption (3.28) and σ = σ0ε ln N implies that
N

ln N
≥

2σγ∗

ε ln N
. Since h =

4σ
N

, we

have
h
ε
≤

2
γ∗
. Now, using Lemma 3.4.8 we calculate that

LN,M
τ Θk+1

i ≥ (DF
x − DB

x )Θk+1
i

= −C(N−2 + ∆t)(DF
x (xi) − DB

x (xi)) +
ch2

ε2

[(
DB

x S N/2

S N/2

)
−

(
DB

x QN/2

QN/2

)]
= 2C(N−2 + ∆t)

h2

ε2

1
ε + αh

[
S N/2

S N/2
+

QN/2

QN/2

]
≥ 2C(N−2 + ∆t) + 2C

h2

ε3 . (3.50)

Therefore, it follows from (3.46) − (3.50) that
LN,M
τ Θk+1

i ≥ |LN,M
τ (Ui,k+1 − u(xi, tk+1))| for i = N/4 + 1, . . . , 3N/4 − 1,

−Θk+1
i ≥ |Ui,k+1 − u(xi, tk+1)| for i = N/4, 3N/4 and

−Θ0
i ≥ |Ui,0 − u(xi, t0)| for i = N/4, . . . , 3N/4.

Then applying the discrete maximum principle to Θk+1
i ± (Ui,k+1 − u(xi, tk+1)) over the

domain D̄N,M ∩ ([1 − σ, 1 + σ] × [0,T ]), we obtain∣∣∣Ui,k+1 − u(xi, tk+1)
∣∣∣ ≤ C

(
h2

ε2 + ∆t
)
≤ C(N−2 ln2 N + ∆t) for i = N/4 + 1, . . . , 3N/4 − 1.

�

3.5 Numerical Illustrations

The performance of the proposed method is examined in this section and the theoretical

estimates are numerically verified. We consider two test problems for numerical compu-

tations.

Example 3.5.1. Consider the following singularly perturbed problem:

εuxx(x, t) + a(x)ux(x, t) − x(2 − x)u(x, t) − ut(x, t) = f (x, t) + u(x − 1, t),

(x, t) ∈ (0, 2) × (0, 2],

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = t2, (x, t) ∈ [−1, 0] × [0, 2],

u(2, t) = 0, t ∈ (0, 2],

where

a(x) =


−(2 + x(2 − x)), x ∈ [0, 1],

(2 + x(2 − x)), x ∈ (1, 2],
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and

f (x, t) =


2(1 + x2)t2, (x, t) ∈ [0, 1] × [0, 2],

3(1 + x2)t2, (x, t) ∈ (1, 2] × [0, 2].

Example 3.5.2. Consider the following singularly perturbed problem:

εuxx(x, t) + a(x)ux(x, t) − 5u(x, t) − ut(x, t) = f (x, t) + 2u(x − 1, t), (x, t) ∈ (0, 2) × (0, 2],

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = 0, (x, t) ∈ [−1, 0] × [0, 2],

u(2, t) = 0, t ∈ (0, 2],

where

a(x) =


−(4 + x2), x ∈ [0, 1],

(6 − x2), x ∈ (1, 2],

and

f (x, t) =


4xt2 exp(−t), (x, t) ∈ [0, 1] × [0, 2],

4(2 − x)t2 exp(−t), (x, t) ∈ (1, 2] × [0, 2].

The exact solutions for the problems are unknown for comparison. Therefore, we

use the double mesh principle to estimate the error. The maximum absolute error (EN,4t
ε )

and order of convergence (RN,4t
ε ) are calculated using

EN,4t
ε := max

∣∣∣UN,4t(xi, tk+1) − Ũ2N,4t/2(xi, tk+1)
∣∣∣ and RN,4t

ε := log2

(
EN,4t
ε

E2N,4t/2
ε

)
,

where UN,4t(xi, tk+1) and Ũ2N,4t/2(xi, tk) are the approximate solutions obtained on the

mesh D̄N,M and D̄2N,2M, respectively. When, the perturbation parameter approaches zero,

the problem’s solution exhibits turning point behaviour (Figures 3.1-3.4). Maximum

absolute error and order of convergence for Examples 3.5.1 and 3.5.2 are tabulated in

Tables 3.1-3.2. Moreover, the maximum absolute errors for Examples 3.5.1 and 3.5.2 are

plotted in Figures 3.5 and 3.6, respectively. The surface plot of the numerical solution

for Examples 3.5.1 and 3.5.2 are plotted in Figures 3.1 and 3.3, respectively. Also, the

numerical solutions at final time step (t = 2) for different values of ε are displayed in

Figures 3.2 and 3.4.

The numerical results tabulated in Tables 3.1-3.2 do not clearly depict the theoretical

order of convergence for spatial discretization. It is to be noted that the error in numerical

solution is due to spatial and temporal discretization. Consequently, the errors given in
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Tables 3.1 and 3.2 are a combination of temporal and spatial errors, with the layer regions

playing a significant role.

The hybrid difference scheme improves accuracy in space only. To verify this, we

performed numerical experiments for M = N2 and numerical results are tabulated in

Table 3.3. In Table 3.4, we have fixed ε = 2−6 and N = 512 and reduce ∆t by half and the

associated errors are presented at different values of x. It can be observed that the errors

reduce by almost half which confirms the first-order convergence in time. Figures 3.7 and

3.8 have also been illustrated to show the errors in layer region and outside layer region.

This demonstrates that the numerical method is second-order spatially accurate outside

of the interior layer and the errors are reduced in the layer region as claimed in Theorem

3.4.9.

Table 3.1: Maximum absolute error and order of convergence for Example 3.5.1 for dif-

ferent values of ε, M and N when M = N.

N ε = 2−2 2−4 2−6 2−8 2−10 2−12

32 1.099e-01 8.697e-01 8.723e-01 8.712e-01 8.709e-01 8.708e-01

1.6274 1.5675 1.2466 1.2572 1.2601 1.2609

64 3.558e-02 2.934e-01 3.676e-01 3.644e-01 3.635e-01 3.633e-01

1.3320 2.0478 1.5866 1.6018 1.6060 1.6071

128 1.413e-02 7.096e-02 1.223e-01 1.200e-01 1.194e-01 1.192e-01

1.1428 1.9332 1.7309 1.7302 1.7308 1.7311

256 6.400e-03 1.858e-02 3.687e-02 3.619e-02 3.598e-02 3.592e-02

1.0336 1.7107 1.6093 1.6294 1.6359 1.6376

512 3.126e-03 5.676e-03 1.208e-02 1.169e-02 1.157e-02 1.154e-02

1.0066 1.5189 1.5926 1.6132 1.6207 1.6241
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Table 3.2: Maximum absolute error and order of convergence for Example 3.5.2 for dif-

ferent values of ε, M and N when M = N.

N ε = 2−2 2−4 2−6 2−8 2−10 2−12

32 1.886e-03 4.150e-03 2.485e-03 2.146e-03 2.288e-03 2.323e-03

1.4071 1.6239 1.1244 1.0741 1.0986 1.1044

64 7.113e-04 1.346e-03 1.139e-03 1.019e-03 1.068e-03 1.080e-03

1.5199 1.6981 1.5245 1.3442 1.3740 1.3811

128 2.480e-04 4.149e-04 3.961e-04 4.015e-04 4.122e-04 4.149e-04

1.5620 1.4068 1.5615 1.6111 1.6576 1.6714

256 8.400e-05 1.565e-04 1.342e-04 1.313e-04 1.304e-04 1.302e-04

1.5102 1.5403 1.5137 1.6794 1.7007 1.7062

512 2.949e-05 5.380e-05 4.700e-05 4.101e-05 4.014e-05 3.991e-05

1.4117 1.5972 1.4798 1.4726 1.4368 1.4272

Table 3.3: Maximum absolute error and order of convergence for Example 3.5.1 and 3.5.2

for different values of M and N when M = N2 and ε = 2−10.

For Example 3.5.1 For Example 3.5.2

N left region interior layer region right region left region interior layer region right region

[0, 1 − σ] (1 − σ, 1 + σ) [1 + σ, 2] [0, 1 − σ] (1 − σ, 1 + σ) [1 + σ, 2]

32 7.602e-03 9.073e-01 2.237e-02 1.863e-04 2.215e-03 6.044e-05

1.9665 1.3111 1.9344 1.9878 1.1088 1.8829

64 1.973e-03 3.656e-01 5.687e-03 4.652e-05 1.026e-03 1.632e-05

1.9760 1.6430 1.9033 1.9624 1.3972 1.7645

128 5.083e-04 1.170e-01 1.478e-03 1.182e-04 3.895e-04 4.790e-06

1.9592 1.7816 1.8513 1.9592 1.7332 1.5841

256 1.323e-04 3.404e-02 3.992e-04 3.064e-06 1.186e-04 1.594e-06

1.9438 1.9236 1.8205 1.9382 1.8560 1.5632

Table 3.4: Maximum absolute error and order of convergence for Example 3.5.2 for dif-

ferent values of M and x when N = 512 and ε = 2−6.

x M = 32 64 128 256 512

xN/2+1 3.837e-04 2.058e-04 1.071e-04 5.486e-05 2.773e-05

0.8988 0.9423 0.9651 0.9843 0.9981

xN/2+4 3.999e-04 2.122e-4 1.093e-04 6.530e-05 3.225e-05

0.9144 0.9569 0.7432 1.0177 1.0184
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Figure 3.1: Numerical solution of Example3.5.1 for ε = 2−4 when M = N = 128.

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-12

-10

-8

-6

-4

-2

0

2

4

6

ǫ=2
-1

ǫ=2
-2

ǫ=2
-4

ǫ=2
-16

N
um

er
ic

al
 S

ol
ut

io
n

Remove


Watermark

Wondershare
PDFelement

Figure 3.2: Numerical solutions of Example 3.5.1 at t = 2 for different values of ε when

N = 128.
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Figure 3.3: Numerical solution of Example 3.5.2 for ε = 2−4 when M = N = 128.
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Figure 3.4: Numerical solutions of Example 3.5.2 at t = 2 for different values of ε when

N = 64.
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Figure 3.5: Error plot for Example 3.5.1.
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Figure 3.6: Error plot for Example 3.5.2.
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Figure 3.7: Error plot of the spatial order of convergence for Example 3.5.1.
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Figure 3.8: Error plot of the spatial order of convergence for Example 3.5.2.
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3.6 Concluding Remarks

Singularly perturbed parabolic functional differential equation with discontinuous coeffi-

cient and source term is numerically solved. The problem’s solution takes into account

not just the present state of the physical system but also its history. The simultaneous

presence of discontinuous data and delay makes the problem stiff. In the limiting case,

the solution of the problem exhibits multiscale character. There are narrow regions where

solution derivatives grow exponentially and exhibit turning point behaviour, leading to

sharp interior layers across discontinuities.

A hybrid numerical scheme composed of a central difference scheme in the layer

region and a midpoint upwind scheme outside the layer region is used to discretize space

variable over a specially generated mesh. Whereas an implicit finite difference scheme

is used to discretize the time variable. The mesh has been chosen so that most of the

mesh points remain in the regions with rapid transitions. The proposed numerical method

has been analysed for consistency, stability and convergence. Theoretical analysis is per-

formed to obtain consistency and error estimates. It is found that the method proposed

is unconditionally stable, and the convergence obtained is parameter uniform. Numerical

illustrations are presented for two test examples that demonstrate the effectiveness of the

technique. Convergence obtained in practical satisfies theoretical predictions.





Chapter 4

Parabolic Problems with Delay and
Integral Boundary Conditions

4.1 Introduction

In Chapters 2 and 3, we proposed numerical schemes for solving singularly perturbed

parabolic PDEs with delay and discontinuous coefficients with Dirichlet boundary con-

ditions. In this chapter, we extend the scope of our work to solve singularly perturbed

parabolic PDEs with a large delay and an integral boundary condition.

Singularly perturbed parabolic PDEs with delay and integral boundary conditions

are mathematical problems that arise in various applications, including fluid dynamics,

heat transfer, and chemical engineering. These problems are characterized by the presence

of a small parameter in the highest-order derivative term, leading to multiple timescales

within the system. The interplay between fast and slow dynamics, non-local effects in-

duced by delays, and the influence of integral boundary conditions give rise to complex

phenomena such as boundary and interior layers. These layers are regions of rapid varia-

tion in the solution, and they can pose significant challenges for numerical solutions.

Many authors have developed numerical methods to solve singularly perturbed

parabolic partial differential equations with delay and integral boundary conditions. Often

these methods involve the use of non-uniform meshes and special time-stepping schemes.

In some cases, it may also be necessary to use adaptive mesh refinement techniques to re-

solve the boundary and interior layers. For the existence, uniqueness and well-posedness

of such problems, the readers can see [12, 42, 19] and references therein. In [257], the au-

thors studied singularly perturbed delay differential equations with integral boundary con-

ditions using an upwind finite difference method on piecewise uniform Shishkin mesh. In

[259], the authors utilized a hybrid difference scheme to obtain the approximate solution

85



86 Parabolic Problems with Delay and Integral Boundary Conditions

for singularly perturbed differential equations with a large delay and integral boundary

condition. They demonstrated that the method exhibits nearly second-order convergence,

which is optimal compared to the results reported in [153]. In [111], the author inves-

tigates the study of singularly perturbed parabolic convection-diffusion equations with

integral boundary conditions and a large negative shift. They employ the implicit Eu-

ler method for the temporal direction and apply the exponentially fitted finite difference

scheme for the spatial direction to formulate a parameter-uniform numerical method. In

[95], the author addresses the numerical solution of singularly perturbed parabolic par-

tial differential equations with a large negative shift in the spatial variable and integral

boundary condition on the right side of the domain. The author formulates a numerical

method that combines the Crank-Nicolson difference scheme for the temporal direction

on a uniform mesh and utilizes the exponentially fitted operator finite difference method

for spatial discretization. Numerical integration techniques are employed to handle the

integral boundary condition. The convergence rate is optimized using the Richardson ex-

trapolation technique. The paper [74] focuses on singularly perturbed delay differential

equations with integral boundary conditions. To address this problem, the author sug-

gests a finite difference scheme utilizing an appropriate piecewise Shishkin-type mesh. It

is proven that the proposed approach exhibits almost first-order convergence. Addition-

ally, an error estimate is calculated using the discrete norm. In [5], the author develops and

improves a higher-order Haar wavelet approach for solving nonlinear singularly perturbed

differential equations with various pairs of boundary conditions, such as initial, bound-

ary, two points, integral, and multi-point integral boundary conditions. The theoretical

convergence and computational stability of the method are also presented. A comparison

between the proposed higher-order Haar wavelet method and recently published works,

including the well-known Haar wavelet method, is performed in terms of convergence

and accuracy. In the case of nonlinear equations, the author adopts the quasilinearization

technique.

The theory and the area of numerical approximation for time-dependent singular

perturbation problems with a large delay and integral boundary conditions still need to

be developed. This chapter presents a parameter uniform numerical method to solve

such a class of singularly perturbed parabolic partial differential equations. Moreover,

the chapter presents rigorous consistency, stability and convergence analysis of the pro-

posed method and illustrates numerical results to support theoretical estimates.
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4.2 Continuous Problem

Let D = Ω × ∆ := (0, 2) × (0,T ] and consider the parabolic delay differential equation

with integral boundary condition

Lu(x, t) = −εuxx(x, t) + p(x)ux(x, t) + q(x)u(x, t) + r(x)u(x − 1, t) + ut(x, t) = g(x, t) in D,

u(x, t) = ψ1(x, t) in Γ1 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = ψ2(x, t) on Γ2 := {(x, 0), x ∈ [0, 2]},

Ku(x, t) = u(2, t) − ε
∫ 2

0
f (x)u(x, t)dx = ψ3(x, t) on Γ3 := {(2, t), t ∈ [0,T ]},


(4.1)

where ε � 1 is a small positive parameter, g(x, t), p(x), q(x) and r(x) are sufficiently

smooth functions. Also, assume that the initial-boundary data ψ1, ψ2 and ψ3 are smooth

and bounded functions such that

p(x) ≥ p0 > p∗0 > 0, q(x) ≥ q0 > 0, r(x) ≤ r0 < 0,

p∗0 + q0 + r0 > 0, q(x) + r(x) ≥ 2η > 0,

 (4.2)

Here, f (x) is a non-negative, monotonic function such that
∫ 2

0
f (x)dx < 1. Moreover,

the given data satisfies the compatibility conditions
ψ2(0, 0) = ψ1(0, 0), ψ2(2, 0) = ψ3(2, 0),

−ε
∂2ψ2(0, 0)

∂x2 + p(0)
∂ψ2(0, 0)

∂x
+ q(0)ψ2(0, 0) + r(0)ψ1(−1, 0) +

∂ψ1(0, 0)
∂t

= g(0, 0),

−ε
∂2ψ2(2, 0)

∂x2 + p(2)
∂ψ2(2, 0)

∂x
+ q(2)ψ2(2, 0) + r(2)ψ2(1, 0) +

∂ψ3(2, 0)
∂t

= g(2, 0).

Rewriting (4.1) as

Lu(x, t) = G(x, t),

where

Lu(x, t) =



L1u(x, t) = −εuxx(x, t) + p(x)ux(x, t) + q(x)u(x, t) + ut(x, t)

if (x, t) ∈ D1 := (0, 1) × [0,T ],

L2u(x, t) = −εuxx(x, t) + p(x)ux(x, t) + q(x)u(x, t) + r(x)u(x − 1, t) + ut(x, t)

if (x, t) ∈ D2 := (1, 2) × [0,T ],

and

G(x, t) =


g(x, t) − r(x)ψ1(x − 1, t) if (x, t) ∈ D1,

g(x, t) if (x, t) ∈ D2
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with

u(x, t) = ψ1(x, t) in Γ1 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = ψ2(x, t) on Γ2 := {(x, 0), x ∈ [0, 2]},

Ku(x, t) = u(2, t) − ε
∫ 2

0
f (x)u(x, t)dx = ψ3(x, t) on Γ3 := {(2, t), t ∈ [0,T ]},

u(1−, t) = u(1+, t), ux(1−, t) = ux(1+, t),

These assumptions confirm the existence and uniqueness of the solution [9, 160]. The

solution u(x, t) of (4.1) exhibits a weak interior layer at x = 1 and a strong boundary layer

at x = 2.

Lemma 4.2.1. Suppose P(x, t) ∈ C2,1(D̄) satisfies P(0, t) ≥ 0, P(x, 0) ≥ 0, KP(2, t) ≥ 0

with LP(x, t) ≥ 0 for all (x, t) ∈ D1 ∪ D2 and [Px](1, t) = Px(1+, t) − Px(1−, t) ≤ 0. Then

P(x, t) ≥ 0 for all (x, t) ∈ D̄.

Proof. Let (xk, tk) ∈ D and P(xk, tk) = min
(x,t)∈D̄

P(x, t). Consequently,

Px(xk, tk) = 0, Pt(xk, tk) = 0 and Pxx(xk, tk) > 0. (4.3)

Suppose P(xk, tk) < 0, it follows that (xk, tk) < Γ := Γ1 ∪ Γ2 ∪ Γ3.

Case I: If xk ∈ (0, 1), then

L1P(xk, tk) = −εPxx(xk, tk) + p(xk)Px(xk, tk) + q(xk)P(xk, tk) + Pt(xk, tk)

< 0, from (4.2) and (4.3).

Case II: If xk ∈ (1, 2), then

L2P(xk, tk) = −εPxx(xk, tk) + p(xk)Px(xk, tk) + q(xk)P(xk, tk)

+r(xk)P(xk − 1, tk) + Pt(xk, tk)

≤ −εPxx(xk, tk) + q(xk)P(xk, tk) + r(xk)P(xk, tk)

< 0, from (4.2) and (4.3).

Case III: If xk = 1, then

[Px](xk, tk) = Px(xk+, tk) − Px(xk−, tk) > 0 since P(xk, tk) < 0.

A contradiction to the assumption and consequently the required result follows. �

As a consequence of Lemma 4.2.1, obtaining the following stability estimate is

straightforward.
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Lemma 4.2.2. Let u be the solution of (4.1). Then

‖u‖∞,D̄ ≤ ‖u‖∞,Γ +
1
η
‖G‖∞,D̄. (4.4)

Proof. Define θ±(x, t) = ‖u‖∞,Γ +
1
η
‖G‖∞,D̄ ± u(x, t), (x, t) ∈ D̄. For (x, t) ∈ Γ, θ±(x, t) ≥ 0,

and if (x, t) ∈ D1 ∪ D2, it follows that

Lθ±(x, t) = (q + r)(x)
(
‖u‖∞,Γ +

‖G‖∞,D̄

η

)
± Lu(x, t) ≥ 2η

(
‖u‖∞,Γ +

‖G‖∞,D̄

η

)
± G ≥ 0.

Moreover, if x = 1, then [θx±](1, t) = ±[ux](1, t) = 0. The required result (4.4) now follows

as a consequence of Lemma 4.2.1. �

Generally, we may take homogeneous boundary data ψ1 = ψ2 = ψ3 = 0 by sub-

tracting some appropriate smooth function from u that satisfies the original boundary data

[249].

Lemma 4.2.3. Let u be the solution of (4.1). Then∣∣∣∣∣∣∂iu(x, t)
∂ti

∣∣∣∣∣∣ ≤ C for all (x, t) ∈ D̄ and i = 0, 1, 2.

Proof. For i = 0, the result follows from Lemma 4.2.2. The assumption

ψ1(x, t) = ψ3(x, t) = 0 gives u = 0 along the left and right hand sides of D, which im-

plies ut = 0 along these sides. Also, ψ2(x, t) = 0 gives u = 0 along the line t = 0. Thus

ux = 0 = uxx along the line t = 0. Now, put t = 0 in (4.1) to obtain

−εuxx(x, 0) + p(x)ux(x, 0) + q(x)u(x, 0) + r(x)u(x − 1, 0) + ut(x, 0) = g(x, 0)

implying ut(x, 0) = g(x, 0) since ux(x, 0) = uxx(x, 0) = u(x, 0) = u(x − 1, 0) = 0. Thus

|ut| ≤ C on Γ as g(x, t) is continuous on D̄. On applying differential operator L on ut(x, t),

we get

Lut(x, t) = gt(x, t)⇒ |Lut| = |gt| ≤ C.

An application of the Lemma 4.2.1 yields |ut| ≤ C on D̄.

Now utt = 0 on Γ1 ∪ Γ3 as ut = 0 on Γ1 and Γ3. Differentiating (4.1) with respect to t

and put t = 0 to obtain

−εuxxt(x, 0) + p(x)uxt(x, 0) + q(x)ut(x, 0) + r(x)ut(x − 1, 0) + utt(x, 0) = gt(x, 0). (4.5)

Since ut(x, 0) = g(x, 0), thus

uxt(x, 0) = gx(x, 0), uxxt(x, 0) = gxx(x, 0)
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and by definition, we have

ut(x − 1, 0) = lim
∆t→0

u(x − 1,∆t) − u(x − 1, 0)
∆t

= 0.

From (4.5), it follows that

utt(x, 0) = εgxx(x, 0) − p(x)gx(x, 0) − q(x)gx(x, 0) + gt(x, 0).

Thus on Γ2, |utt| ≤ C for significantly large value of C as g is continuous on D̄. Therefore,

|utt| ≤ C on Γ. Now, applying the differential operator L on utt gives

|Lutt(x, t)| = |gtt(x, t)| ≤ C on D.

Therefore, from Lemma 4.2.1, we have |utt(x, t)| ≤ C on D̄. �

4.3 Time Discretization

Let Tt
M = {tk = kT/M, k = 0, . . . ,M} be an equidistant mesh that partitions the domain

[0,T ] into M number of subintervals. We semidiscretize (4.1) using the Crank-Nicholson

scheme in the time variable. The resulting semidiscrete problem on Tt
M thus reads

−ε

2
Uxx(x, tk+1) +

p(x)
2

Ux(x, tk+1) + l(x)U(x, tk+1) +
r(x)

2
U(x − 1, tk+1)

=
ε

2
Uxx(x, tk) −

p(x)
2

Ux(x, tk) + m(x)U(x, tk) −
r(x)

2
U(x − 1, tk) (4.6)

+
g(x, tk+1) + g(x, tk)

2
, x ∈ (0, 1) ∪ (1, 2) and k = 0, 1, . . . ,M − 1

such that

U(x, 0) = ψ2(x, 0), 0 ≤ x ≤ 2,

U(x, tk+1) = ψ1(x, tk+1), −1 ≤ x ≤ 0, 0 ≤ k ≤ M − 1,

U(2, tk+1) = ψ3(2, tk+1), 0 ≤ k ≤ M − 1,

U(1−, tk+1) = U(1+, tk+1), Ux(1−, tk+1) = Ux(1+, tk+1), 0 ≤ k ≤ M − 1,

(4.7)

where, l(x) =
∆tq(x) + 2

2∆t
and m(x) =

2 − ∆tq(x)
2∆t

. Let us rewrite (4.6) as

LCNU(x, tk+1) = Ĝ(x, tk+1), (4.8)

where

LCNU(x, tk+1) =


LCN1U =

−ε

2
Uxx(x, tk+1) +

p(x)
2

Ux(x, tk+1) + l(x)U(x, tk+1) if x ∈ (0, 1),

LCN2U =
−ε

2
Uxx(x, tk+1) +

p(x)
2

Ux(x, tk+1) + l(x)U(x, tk+1)

+
r(x)

2
U(x − 1, tk+1) if x ∈ (1, 2),
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and

Ĝ(x, tk+1) =



Ĝ1 =
ε

2
Uxx(x, tk) −

p(x)
2

Ux(x, tk) + m(x)U(x, tk) −
r(x)

2
U(x − 1, tk)

+
g(x, tk+1) + g(x, tk)

2
−

r(x)
2
ψ1(x − 1, tk+1) if x ∈ (0, 1),

Ĝ2 =
ε

2
Uxx(x, tk) −

p(x)
2

Ux(x, tk) + m(x)U(x, tk) −
r(x)

2
U(x − 1, tk)

+
g(x, tk+1) + g(x, tk)

2
if x ∈ (1, 2).

(4.9)

The operator LCN satisfies the following maximum principle.

Lemma 4.3.1. Let χ(x, tk+1) be a smooth function such that χ(x, tk+1) ≥ 0 for x = 0, 2,

LCNχ(x, tk+1) ≥ 0 for all x ∈ (0, 1) ∪ (1, 2) and [χx](1, tk+1) ≤ 0. Then χ(x, tk+1) ≥ 0 for all

x ∈ Ω̄.

Proof. Let χ(ξ, tk+1) = min
x∈Ω̄

χ(x, tk+1) for some ξ ∈ Ω̄. Then

χx(ξ, tk+1) = 0 and χxx(ξ, tk+1) > 0. (4.10)

Suppose χ(ξ, tk+1) < 0 and it follows that (ξ, tk+1) < Γ since χ(ξ, tk+1) ≥ 0 for x = 0, 2.

Case I: If ξ ∈ (0, 1)

LCN1χ(ξ, tk+1) =
−ε

2
χxx(ξ, tk+1) +

p(ξ)
2
χx(ξ, tk+1) + l(ξ)χ(ξ, tk+1)

< 0, from (4.2) and (4.10).

Case II: If ξ ∈ (1, 2)

LCN2χ(ξ, tk+1) =
−ε

2
χxx(ξ, tk+1) +

p(ξ)
2
χx(ξ, tk+1) + l(ξ)χ(ξ, tk+1) +

r(ξ)
2
χ(ξ − 1, tk+1)

≤
−ε

2
χxx(ξ, tk+1) +

p(ξ)
2
χx(ξ, tk+1) + l(ξ)χ(ξ, tk+1) +

r(ξ)
2
χ(ξ, tk+1)

=
−ε

2
χxx(ξ, tk+1) +

(
∆tq(ξ) + 2

2∆t

)
χ(ξ, tk+1) +

r(ξ)
2
χ(ξ, tk+1)

=
−ε

2
χxx(ξ, tk+1) +

(
q(ξ) + r(ξ)

2

)
χ(ξ, tk+1) +

1
∆t
χ(ξ, tk+1)

≤
−ε

2
χxx(ξ, tk+1) + ηχ(ξ, tk+1) +

1
∆t
χ(ξ, tk+1)

< 0, from (4.2) and (4.10).

Case III: If ξ = 1

[χx](ξ, tk+1) = χx(ξ+, tk+1) − χx(ξ−, tk+1) > 0 since χ(ξ, tk+1) < 0.

The required result thus follows from contradiction. �
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Lemma 4.3.2. Let U(x, tk+1) be the solution of (4.6). Then

‖U(x, tk+1)‖∞,Ω̄ ≤ max
{
|U(0, tk+1)|, |U(2, tk+1)|,

∆t
η∆t + 1

‖Ĝ‖∞,Ω̄

}
.

Proof. Consider ζ±(x, tk+1) = max
{
|U(0, tk+1)|,

∆t
η∆t + 1

‖Ĝ‖∞,Ω̄

}
±U(x, tk+1) for x ∈ [0, 1).

Then, ζ±(0, tk+1) ≥ 0. Moreover

LCNζ±(x, tk+1) = l(x) max
{
|U(0, tk+1)|,

∆t
η∆t + 1

‖Ĝ1‖

}
± LCN1U(x, tk+1)

≥
∆tq(x) + 2

2∆t
∆t

η∆t + 1
‖Ĝ1‖ ± Ĝ1

≥
(q(x) + r(x)) ∆t + 2

2(η∆t + 1)
‖Ĝ1‖ ± Ĝ1

≥ 0, from (4.2).

Similarly, consider ζ±(x, tk+1) = max
{
|U(2, tk+1)|,

∆t
η∆t + 1

‖Ĝ‖∞,Ω̄

}
± U(x, tk+1) for

x ∈ (1, 2]. Then, ζ±(2, tk+1) ≥ 0. Also

LCNζ±(x, tk+1) = LCN2ζ±(x, tk+1)

=

(
l(x) +

r(x)
2

)
max

{
|U(2, tk+1)|,

∆t
η∆t + 1

‖Ĝ2‖

}
± LCN2U(x, tk+1)

≥

(
∆tq(x) + 2

2∆t
+

r(x)
2

)
∆t

η∆t + 1
‖Ĝ2‖ ± Ĝ2

≥

(
q(x) + r(x)

2
+

1
∆t

)
∆t

η∆t + 1
‖Ĝ2‖ ± Ĝ2

≥ 0, from (4.2).

Moreover, [ζx±](1, tk+1) = ±[Ux](1, tk+1) = 0. Consequently, the required result follows

from Lemma 4.3.1. �

Next, we compute global error using local error bound. From (4.8)

LCNŨ(x, tk+1) = G̃(x, tk+1), (4.11)

where LCN is as defined in (4.8), and

G̃(x, tk+1) =



ε

2
uxx(x, tk) −

p(x)
2

ux(x, tk) + m(x)u(x, tk) −
r(x)

2
u(x − 1, tk)

+
g(x, tk+1) + g(x, tk)

2
−

r(x)
2
ψ1(x − 1, tk+1) if x ∈ (0, 1],

ε

2
uxx(x, tk) −

p(x)
2

ux(x, tk) + m(x)u(x, tk) −
r(x)

2
u(x − 1, tk)

+
g(x, tk+1) + g(x, tk)

2
if x ∈ (1, 2)
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with 
Ũ(x, 0) = ψ2(x), x ∈ [0, 2],

Ũ(x, tk+1) = ψ1(x, tk+1), −1 ≤ x ≤ 0, −1 ≤ k ≤ M − 1,

Ũ(2, tk+1) = ψ3(tk+1), −1 ≤ k ≤ M − 1.

Lemma 4.3.3. Let êk+1 := Ũ(x, tk+1) − u(x, tk+1) be the local truncation error at (k + 1)th

time step. Then ‖êk+1‖∞ ≤ C(∆t)3 for some constant C.

Proof. For proof, see [50]. �

Moreover, local truncation error at each time step contributes to the estimate for

global error Ek+1 := u(x, tk+1) − U(x, tk+1). Then, it follows that

‖Ek+1‖∞ =

∥∥∥∥∥∥∥
k∑

i=1

êi

∥∥∥∥∥∥∥
∞

≤ ‖ê1‖∞ + ‖ê2‖∞ + . . . + ‖êk‖∞ ≤ C∆t2. (4.12)

As a result, the time semidiscretization procedure achieves uniform convergence.

The solution U(x, tk+1) of the semidiscretized problem (4.6) is known to admit a

decomposition into smooth and singular components [173]. We write

U(x, tk+1) := X(x, tk+1) + Z(x, tk+1).

Here, the smooth component X(x, tk+1) satisfies
LCN1X(x, tk+1) = Ĝ1(x, tk+1),

X(0, tk+1) = X0(0, tk+1),

X(1, tk+1) = (l(x))−1Ĝ1(1, tk+1)

(4.13)

in (0, 1), and in (1, 2) satisfies
LCN2X(x, tk+1) = Ĝ2(x, tk+1),

X(1, tk+1) = (l(x))−1

(
Ĝ2(1, tk+1) −

r(1)
2

X(0, tk+1)
)
,

X(2, tk+1) = X0(2, tk+1),

(4.14)

where X0(x, tk+1) satisfies the associated reduced problem. Also, the singular component

Z(x, tk+1) satisfies

LCNZ(x, tk+1) = 0, x ∈ (0, 1) ∪ (1, 2),

Z(0, tk+1) = 0,

Z(2, tk+1) = U(2, tk+1) − X(2, tk+1),

Z(1+, tk+1) − Z(1−, tk+1) = X(1−, tk+1) − X(1+, tk+1),

Zx(1+, tk+1) − Zx(1−, tk+1) = Xx(1−, tk+1) − Xx(1+, tk+1).

(4.15)
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Further, decompose Z(x, tk+1) as Z(x, tk+1) := ZI(x, tk+1) + ZB(x, tk+1), where ZB(x, tk+1)

satisfies 
LCNZB(x, tk+1) = 0, x ∈ (0, 1) ∪ (1, 2),

ZB(0, tk+1) = 0,

Z(2, tk+1) = U(2, tk+1) − X(2, tk+1),

(4.16)

and ZI(x, tk+1) satisfies
LCNZI(x, tk+1) = 0, x ∈ (0, 1) ∪ (1, 2),

ZI(0, tk+1) = 0, ZI(2, tk+1) = 0,
dZI

dx
(1+, tk+1) −

dZI

dx
(1−, tk+1) =

dX
dx

(1−, tk+1) −
dX
dx

(1+, tk+1).

(4.17)

The following lemma provides bounds on the derivatives of the smooth component

X(x, tk+1) and singular component Z(x, tk+1).

Lemma 4.3.4. Let X(x, tk+1) be the solution of (4.13)-(4.14) and Z(x, tk+1) be the solution

of (4.15)-(4.17). Then, for k = 0, 1, 2, 3∣∣∣∣∣∣dkX(x, tk+1)
dxk

∣∣∣∣∣∣ ≤ C(1 + ε2−k) for x ∈ (0, 1) ∪ (1, 2),∣∣∣∣∣∣dkZB(x, tk+1)
dxk

∣∣∣∣∣∣ ≤ Cε−k exp
(
−p∗0(2 − x)

ε

)
for x ∈ (0, 1) ∪ (1, 2), and

∣∣∣∣∣∣dkZI(x, tk+1)
dxk

∣∣∣∣∣∣ ≤


Cε1−k exp
(
−p∗0(1 − x)

ε

)
for x ∈ (0, 1),

Cε1−k for x ∈ (1, 2).

Proof. For proof, see [257]. �

4.4 Spatial Discretization

The solution of the problem exhibits a strong boundary layer at x = 2 and a weak interior

layer at x = 1. Therefore, to generate a piecewise-uniform mesh D̄N
x , we partition the

given interval [0, 2] into four subintervals as

[0, 2] = [0, 1 − β] ∪ [1 − β, 1] ∪ [1, 2 − β] ∪ [2 − β, 2],

where β = min
{

0.5,
2ε ln N

p∗0

}
is the mesh transition parameter. Each subinterval contains

N/4 mesh points. Consequently, we obtain

D̄N
x = {xi}

N
0 =


xi = 0 for i = 0,

xi = xi−1 + hi for i = 1, . . . ,N,
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where

hi =


4
N (1 − β) for i = 1, . . . ,N/4,N/2 + 1, . . . , 3N/4,

4
Nβ for i = N/4 + 1, . . . ,N/2, 3N/4 + 1, . . . ,N.

The discrete problem on D̄N,M = D̄N
x × Tt

M thus reads

LN
CNUi,k+1 = Ĝi,k+1, i = 1, . . . ,N − 1, (4.18)

where

LN
CNUi,k+1 =



LN
CN1Ui,k+1 =

−ε

2
δ2

xUi,k+1 +
pi

2
D−x Ui,k+1 + liUi,k+1

for i = 1, . . . ,N/2 − 1,

LN
CN2Ui,k+1 =

−ε

2
δ2

xUi,k+1 +
pi

2
D−x Ui,k+1 + liUi,k+1 +

ri

2
Ui−N/2,k+1

for i = N/2 + 1, . . . ,N − 1,

and

Ĝi,k+1 =



Ĝ1(xi, tk+1) =
ε

2
δ2

xUi,k −
pi

2
D−x Ui,k + miUi,k −

ri

2
Ui−N/2,k +

1
2

(
gi,k+1 + gi,k

)
−

ri

2
ψ1(xi−N/2, tk+1) for i = 1, . . . ,N/2 − 1,

Ĝ2(xi, tk+1) = ε
2δ

2
xUi,k −

pi
2 D−x Ui,k + miUi,k −

ri
2 Ui−N/2,k + 1

2

(
gi,k+1 + gi,k

)
for i = N/2 + 1, . . . ,N − 1.

Moreover, for i = N/2

D+
x UN/2,k+1 = D−x UN/2,k+1

with

Ui,0 = ψ2,i,0 for i = 0, . . . ,N,

Ui,k+1 = ψ1,i,k+1 for i = −N/2,−N/2 + 1, . . . 0, k = 0, 1, . . . ,M − 1,

KNUN,k+1 = UN,k+1 − ε

N∑
i=1

fi−1Ui−1,k+1 + fiUi,k+1

2
hi = ψ3,N,k+1 for k = 0, 1, . . . ,M − 1.

The operator LN
CN satisfies the following discrete maximum principle.

Lemma 4.4.1. Let Zi,k+1 be the mesh function such that Zi,k+1 ≥ 0 for i = {0,N},

LN
CNZi,k+1 ≥ 0 for all i = 1, . . . ,N/2 − 1,N/2 + 1, . . . ,N and D+

x ZN/2,k+1 − D−x ZN/2,k+1 ≤ 0.

Then Zi,k+1 ≥ 0 for all i = 0, 1 . . . ,N.

Proof. Choose j∗ ∈ {0, 1, . . . ,N} \{N/2} such that Z j∗,k+1 = min
D̄N

x ×Tt
M

Zi,k+1. Assume that

Z j∗,k+1 < 0 and it follows that j∗ < {0,N}.
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Case I: For j∗ ∈ {1, 2, . . . ,N/2 − 1}

LN
CN1Z j∗,k+1 =

−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 + l j∗Z j∗,k+1

=
−ε

ĥ j∗

{
Z j∗+1,k+1 − Z j∗,k+1

h j∗+1
−

Z j∗,k+1 − Z j∗−1,k+1

h j∗

}
+

p j∗

2

{
Z j∗,k+1 − Z j∗−1,k+1

h j∗

}
+ l j∗Z j∗,k+1

< 0.

Case II: For j∗ ∈ {N/2 + 1, . . . ,N − 1}

LN
CN2Z j∗,k+1 =

−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 + l j∗Z j∗,k+1 +

r j∗

2
Z j∗−N/2,k+1

≤
−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 + l j∗Z j∗,k+1 +

r j∗

2
Z j∗,k+1

=
−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 + (l j∗ + r j∗)Z j∗,k+1

=
−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 +

(
q j∗ + r j∗

2
+

1
∆t

)
Z j∗,k+1

≤
−ε

2
δ2

xZ j∗,k+1 +
p j∗

2
D−x Z j∗,k+1 +

(
η +

1
∆t

)
Z j∗,k+1

=
−ε

ĥ j∗

{
Z j∗+1,k+1 − Z j∗,k+1

h j∗+1
−

Z j∗,k+1 − Z j∗−1,k+1

h j∗

}
+

p j∗

2

{
Z j∗,k+1 − Z j∗−1,k+1

h j∗

}
+

(
η +

1
∆t

)
Z j∗,k+1

< 0.

Case III: For j∗ = N/2, D+
x ZN/2,k+1 − D−xφN/2,k+1 > 0.

The required result follows from contradiction. �

Consequently, we obtain the following stability estimate of the discrete operator

LN
CN .

Lemma 4.4.2. Let Zi,k+1 be the solution of (4.18). Then

‖Zi,k+1‖∞,D̄N,M ≤ max
{
|Z0,k+1|, |ZN,k+1|,

∆t
η∆t + 1

‖LN
CNZi,k+1‖∞,D̄N,M

}
, ∀ 0 ≤ i ≤ N, 0 ≤ k ≤ M−1.



4.5 Error Estimates 97

Proof. Let χ±i,k+1 = max
{
|Z0,k+1|,

∆t
η∆t + 1

‖LN
CN1Zi,k+1‖

}
± Zi,k+1 for i = 0, . . . ,N/2 − 1.

Then, χ±0,k+1 ≥ 0 and

LN
CN1χ

±
i,k+1 = li max

{
|Z0,k+1|,

∆t
η∆t + 1

‖LN
CN1Zi,k+1‖

}
± LN

CN1Zi,k+1

= li max
{
|Z0,k+1|,

∆t
η∆t + 1

‖LN
CN1Zi,k+1‖

}
± Ĝ1(xi, tk+1)

≥
li∆t

η∆t + 1
‖Ĝ1‖ ± Ĝ1

≥
(qi + ri)∆t + 2

2∆t
∆t

η∆t + 1
‖Ĝ1‖ ± Ĝ1

≥
2η∆t + 2

2∆t
∆t

η∆t + 1
‖Ĝ1‖ ± Ĝ1

≥ 0.

Next, define χ±i,k+1 = max
{
|ZN,k+1|,

∆t
η∆t + 1

‖LN
CN2Zi,k+1‖

}
± Zi,k+1 for i = N/2 + 1, . . . ,N.

Then, χ±N,k+1 ≥ 0 and

LN
CN2χ

±
i,k+1 =

(
li +

ri

2

)
max

{
|ZN,k+1|,

∆t
η∆t + 1

‖LN
CN2Zi,k+1‖

}
± LN

CN2Zi,k+1

=

(
li +

ri

2

)
max

{
|ZN,k+1|,

∆t
η∆t + 1

‖LN
CN2Zi,k+1‖

}
± Ĝ2(xi, tk+1)

≥

(
qi + ri

2
+

1
∆t

) (
∆t

η∆t + 1

)
‖Ĝ2‖ ± Ĝ2

≥

(
η +

1
∆t

) (
∆t

η∆t + 1

)
‖Ĝ2‖ ± Ĝ2

≥ 0.

Moreover, if i = N/2, (D+
x − D−x )χ±i,k+1 = 0. Thus, the required result follows from

Lemma 4.4.1. �

4.5 Error Estimates

Let us decompose Ui,k+1 into smooth and singular components to obtain a parameter uni-

form error estimate. We write Ui,k+1 := Xi,k+1 + Zi,k+1, where the smooth component X and

the singular component Z satisfy

LN
CN1Xi,k+1 = Ĝ1(xi, tk+1) for i ∈ {1, 2, . . . ,N/2 − 1} ,

X0,k+1 = X(0, tk+1), XN/2−1,k+1 = X(1−, tk+1),

LN
CN2Xi,k+1 = Ĝ2(xi, tk+1) for i ∈ {N/2 + 1, . . . ,N − 1} ,

XN/2+1,k+1 = X(1+, tk+1), XN,k+1 = X(2, tk+1),

(4.19)
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and 

LN
CNZi,k+1 = 0, for i ∈ {1, . . . ,N − 1} \ {N/2},

Z0,k+1 = Z(0, tk+1), ZN,k+1 = Z(2, tk+1),

XN/2+1,k+1 + ZN/2+1,k+1 = XN/2−1,k+1 + ZN/2−1,k+1,

D−x XN/2,k+1 + D−x ZN/2,k+1 = D+
x XN/2,k+1 + D+

x ZN/2,k+1.

(4.20)

The error ei,k+1 is defined as

ei,k+1 := U(xi, tk+1) − Ui,k+1 = (X(xi, tk+1) − Xi,k+1) + (Z(xi, tk+1) − Zi,k+1).

Theorem 4.5.1. Let U(xi, tk+1) and Ui,k+1 be the solutions of (4.6) and (4.18), respectively.

Then ∣∣∣U(xi, tk+1) − Ui,k+1

∣∣∣ ≤ CN−1 ln2 N, for 0 ≤ i ≤ N.

Proof. The proof follows on the lines similar to the one presented in [257] for ordinary

differential equations. �

Finally, we combine (4.12) and Theorem 4.5.1 to obtain the principle convergence

result below.

Theorem 4.5.2. Let u and Ui,k+1 be the solutions of the continuous problem (4.1) and the

discrete problem (4.18), respectively. Then∣∣∣u(xi, tk+1) − Ui,k+1

∣∣∣ ≤ C(∆t2 + (N−1 ln2 N))

for 0 ≤ i ≤ N and 0 ≤ k ≤ M.

4.6 Numerical Illustrations

In this section, we consider two model problems, present numerical results using the

proposed method, and verify the theoretical estimates numerically.

Example 4.6.1. Consider the following singularly perturbed problem with integral

boundary condition:

[−εuxx + (2 + x(2 − x))ux + 3u + ut](x, t) − u(x − 1, t) = 4xe−tt2, (x, t) ∈ (0, 2) × (0, 2],

u(x, t) = 0, (x, t) ∈ Γ1,

u(x, t) = 0, (x, t) ∈ Γ2,

u(2, t) =
ε

6

∫ 2

0
u(x, t)dx, (x, t) ∈ Γ3.
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Example 4.6.2. Consider the following singularly perturbed problem with integral

boundary condition:

[−εuxx + 3ux + (x + 10)u + ut](x, t) − u(x − 1, t) = 2(1 + x2)t2, (x, t) ∈ (0, 2) × (0, 2],

u(x, t) = t2, (x, t) ∈ Γ1,

u(x, t) = 0, (x, t) ∈ Γ2,

u(2, t) =
ε

6

∫ 2

0
x sin(x)u(x, t)dx, (x, t) ∈ Γ3.

The exact solutions of the above examples are not known for comparison. Therefore,

the double mesh principle [173] is used to estimate the proposed method’s error and rate

of convergence. The maximum absolute error (EN,4t
ε ) and order of convergence (RN,4t

ε ) are

defined as

EN,4t
ε := max

∣∣∣UN,4t(xi, tk+1) − Ũ2N,4t/2(xi, tk+1)
∣∣∣ and RN,4t

ε := log2

(
EN,4t
ε

E2N,4t/2
ε

)
,

where, UN,4t(xi, tk+1) and Ũ2N,4t/2(xi, tk+1) denote the numerical solutions on D̄N
x ×Tt

M and

D̄2N
x × Tt

2M, respectively.

The maximum point-wise error (EN,4t
ε ) and the corresponding order of convergence

(RN,4t
ε ) for Example 4.6.1 and 4.6.2 are tabulated for different values of ε, M, and N in

Tables 4.1 and 4.3, respectively. In addition to this, Tables 4.2 and 4.4 depict the order of

convergence in time variable for Examples 4.6.1 and 4.6.2 when N = 512 and ε = 2−6.

The presence of interior and boundary layers is apparent from the surface plots of

the numerical solution for Examples 4.6.1 and 4.6.2 displayed in Figures 4.1 and 4.3,

respectively. Figures 4.2 and 4.4 further illustrate the presence of the layers when t = 2

for Examples 4.6.1 and 4.6.2. In contrast, Figures 4.5-4.8 present the solution for dif-

ferent time t and for different values of ε for given examples. It is to observed that as ε

approaches the limiting value, it attributes the stiffness to the system and leads to expo-

nential changes across the interior and boundary layers. The log-log plots of errors are

given in Figures 4.9-4.10 for Examples 4.6.1 and 4.6.2, respectively. It agrees with the

expected convergence rate for the proposed method on the specially generated mesh.
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Table 4.1: Maximum absolute error and order of convergence for Example 4.6.1 for dif-

ferent values of ε, M and N when M = N.

ε M = N = 32 64 128 256 512 1024

2−1 1.081e-02 5.961e-03 3.117e-03 1.595e-03 8.078e-04 2.857e-04

0.8587 0.9354 0.9666 0.9814 1.4995 1.5612

2−3 3.050e-02 1.726e-02 7.182e-03 2.791e-03 9.452e-04 3.352e-04

0.8213 1.2650 1.3636 1.5621 1.4956 1.5516

2−5 1.720e-02 9.412e-03 4.872e-03 2.232e-03 8.921e-04 3.172e-04

0.8698 0.9499 1.1262 1.3232 1.4918 1.5245

2−7 1.753e-02 9.578e-03 4.235e-03 2.094e-03 8.232e-04 3.099e-04

0.8720 1.1774 1.0161 1.3473 1.4094 1.4126

2−9 1.785e-02 9.914e-03 4.246e-03 1.875e-03 7.582e-04 2.859e-04

0.8483 1.2234 1.1792 1.3062 1.4071 1.4221

2−11 1.794e-02 1.043e-02 5.021e-03 2.098e-03 9.620e-04 3.900e-04

0.7824 1.0547 1.2590 1.1249 1.3026 1.3861

Table 4.2: Maximum absolute error and order of convergence for Example 4.6.1 for dif-

ferent values of M and x when N = 512 and ε = 2−6.

x M = 32 64 128 256 512 1024

xN/2+1 8.416e-03 2.258e-03 5.966e-04 1.547e-04 3.926e-05 9.972e-06

1.9881 1.9202 1.9473 1.9783 1.9771 1.9916

xN/2+4 8.699e-03 2.366e-03 6.274e-04 1.652e-04 4.172e-05 1.053e-05

1.8784 1.9150 1.9252 1.9854 1.9862 1.9885

xN/2+6 8.920e-03 2.428e-03 6.447e-04 1.633e-04 3.926e-05 9.720e-06

1.8773 1.9131 1.9811 2.0557 2.0148 2.0557
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Figure 4.1: Numerical solution of Example 4.6.1 for ε = 2−4 when M = N = 128 .
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Figure 4.2: Numerical solutions of Example 4.6.1 at t = 2 for different values of ε when

N = 128.
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Figure 4.3: Numerical solution of Example 4.6.2 for ε = 2−4 when M = N = 128.
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Figure 4.4: Numerical solutions of Example 4.6.2 at t = 2 for different values of ε when

N = 128.
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Figure 4.5: Numerical solutions of Example 4.6.1 for different values of t when ε = 2−1.
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Figure 4.6: Numerical solutions of Example 4.6.1 for different values of t when ε = 2−4.
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Figure 4.7: Numerical solution of Example 4.6.2 for different different values of t when

ε = 2−1.
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Figure 4.8: Numerical solutions of Example 4.6.2 for different different values of t when

ε = 2−4.
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Table 4.3: Maximum absolute error and order of convergence for Example 4.6.2 for dif-

ferent values of ε, M and N when M = N.

ε M = N = 32 64 128 256 512 1024

2−1 2.822e-02 9.562e-03 4.223e-03 1.832e-03 6.140e-04 1.902e-04

1.5613 1.1790 1.2048 1.5771 1.6907 1.6973

2−3 1.831e-02 7.134e-03 2.917e-03 1.025e-03 3.872e-04 1.325e-04

1.3598 1.2902 1.5089 1.4045 1.5471 1.6603

2−5 2.090e-02 8.523e-03 4.245e-03 1.834e-03 7.179e-04 2.625e-04

1.2941 1.0056 1.2108 1.3531 1.4515 1.5658

2−7 2.387e-02 1.145e-02 4.675e-03 1.893e-03 8.633e-04 3.236e-04

1.0595 1.2923 1.3043 1.1327 1.4157 1.5139

2−9 2.461e-02 1.156e-02 4.692e-03 1.852e-03 7.278e-04 2.728e-04

1.0901 1.3009 1.3411 1.3475 1.4157 1.4652

2−11 2.480e-02 1.256e-02 5.281e-03 2.356e-03 9.320e-04 3.615e-04

0.9815 1.2502 1.1645 1.3379 1.3663 1.4913

Table 4.4: Maximum absolute error and order of convergence for Example 4.6.2 for dif-

ferent values of M and x when N = 512 and ε = 2−6.

x M = 32 64 128 256 512 1024

xN/2+1 7.810e-03 2.034e-03 5.184e-04 1.313e-04 3.295e-05 8.048e-06

1.9410 1.9722 1.9812 1.9945 2.0336 2.0341

xN/2+4 7.825e-03 2.014e-03 5.220e-04 1.341e-04 3.425e-05 8.712e-06

1.9580 1.9479 1.9607 1.9691 1.9750 1.9917

xN/2+6 8.164e-03 2.098e-03 5.495e-04 1.412e-04 3.602e-05 9.102e-06

1.9603 1.9328 1.9604 1.9709 1.9845 1.9906
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Figure 4.9: Error plot for Example 4.6.1.
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Figure 4.10: Error plot for Example 4.6.2.
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4.7 Concluding Remarks

A class of singularly perturbed parabolic partial differential equations with a large delay

and an integral boundary condition is solved numerically. The proposed method consists

of an upwind finite difference scheme on a non-uniform mesh in space and a Crank-

Nicolson scheme on a uniform mesh in the time variable. The non-uniform mesh in the

spatial direction is chosen so that most of the mesh points remain in the regions with

rapid transitions. The method is investigated for consistency, stability, and convergence.

The error analysis of the proposed method reveals the parameter uniform convergence

of first-order in space and second-order in time. Numerical experiments corroborate the

theoretical findings.





Chapter 5

Parabolic Two-Parameter Problems
with Delay

5.1 Introduction

In the previous chapters, we proposed numerical methods for different classes of singu-

larly perturbed parabolic initial boundary value problems that involve only one small per-

turbation parameter. This chapter extends our study to a class of two-parameter parabolic

initial boundary value problems.

The problem we consider involves a parabolic equation with two small parameters

which control the system’s behaviour and a large delay. This type of problem forms an

essential basis for several physical, biological and chemical processes, including chem-

ical flow [46], lubrication theory [65], and reactor theory [214], to name a few among

numerous others. The presence of two small parameters leads to interesting phenomena

and challenges in the analysis and numerical solution of these problems. The solution

exhibits twin boundary layers due to the presence of two parameters and an interior layer

due to the large delay. O’Malley has started the study of these problems [214, 215, 213].

He has shown that the nature of the problem and the occurrence of boundary layers in the

solution is affected by the magnitude of the two parameters involved. The nature of these

layers depends on the ratio of µ2 and ε, as noted in reference [218].

Many researchers have worked to develop uniformly convergent numerical methods

for the solution of two-parameter singularly perturbed parabolic problems. In [206], the

researchers consider a two-parameter singularly perturbed time-delay parabolic equation.

They employ a fitted operator finite difference scheme to approximate the numerical so-

lution. The first step involves discretising the time variables using the Crank-Nicolson

method. The semidiscrete problem is further discretised in space using the exponentially

109



110 Parabolic Two-Parameter Problems with Delay

fitted tension-spline finite difference method. The study reveals that the numerical scheme

exhibits almost second-order uniform convergence in space and time variables. In [207],

they consider a two-parameter singularly perturbed parabolic problem with time delay.

They discretised the problem using an exponentially fitted scheme in the spatial direction

and the Crank–Nicolson method in the time direction on a uniform mesh. In [17], the au-

thors employ a fitted cubic spline scheme to solve a two-parameter singularly perturbed

time-delayed problem. This scheme combines the θ-method on a uniform mesh in the

time direction and a cubic spline scheme on a uniform mesh in the spatial direction. In

[1], the authors focus on a two-parameter singularly perturbed system of partial differ-

ential equations with discontinuous coefficients. This discontinuity and small values of

the perturbation parameters cause interior and boundary layers to appear in the solution.

They employ a central finite-difference approach on a piecewise uniform Shishkin mesh

in the spatial direction and an implicit Euler scheme on a uniform mesh in the time di-

rection. In [261], the authors used a Hermite wavelet-based numerical method to solve

two parameters singularly perturbed non-linear Benjamina-Bona-Mohany equation. The

method involves time discretisation of Hermite wavelet series approximations with collo-

cation technique. In [305], the authors used a finite element method on a Bakhvalov-type

mesh to solve a two-parameter singularly perturbed two-point boundary value problem.

Utilising individual interpolation, they obtain the errors for Lagrange interpolation and

then prove the optimal order of convergence. In [14], the authors consider a singularly

perturbed initial-boundary value problem with two parameters. They propose a fully-

discrete numerical method combining the Crank-Nicolson scheme for time variables and

the streamline-diffusion finite element method for the spatial variable. In [262], the au-

thors consider a two-dimensional singularly perturbed convection-reaction-diffusion el-

liptic type problem with two parameters. Furthermore, the authors assume that jump dis-

continuities exist in the source term along the x-axis and y-axis. They employ an upwind

finite-difference technique with an appropriate layer-adapted piecewise uniform Shishkin

mesh to approximate the numerical solution.

In [218], the author proposed a numerical method based on an upwind finite dif-

ference operator to solve a two-parameter problem. They proved that the method is

first-order convergent in space and time. The paper [129] presents a higher-order uni-

formly convergent method based on finite elements for a two-parameter parabolic sin-

gular perturbation problem. In [107], researchers have developed a hybrid scheme for

one-dimensional singularly perturbed parabolic problems with two small parameters. The

method presented is a composition of an upwind, midpoint upwind and central difference

operator on a piecewise uniform Shishkin mesh. In contrast, the implicit Euler method is
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used for time stepping on a uniform mesh. A numerical approximation of a two-parameter

parabolic problem with discontinuous data is proposed in [44]. In [97], the authors present

an almost first-order convergent scheme for a two-parameter singularly perturbed problem

with a time delay. The method combines an upwind scheme for spatial discretisation and

the implicit Euler scheme for time discretisation. A hybrid difference approach for a sim-

ilar problem is studied in [281]. The author established almost second-order convergence

in space direction and first-order convergence in time.

Due to their large applications, it is essential to develop robust numerical methods

for solving two-parameter singular perturbation problems. This field of research is still

developing, and this chapter is a step forward in developing a parameter-uniform numer-

ical method to solve a two-parameter singular perturbation problem with a large spatial

delay. Moreover, the chapter presents rigorous consistency, stability and convergence

analysis of the proposed method and illustrates numerical results to support theoretical

estimates.

5.2 Continuous Problem

Let D = Ω × ∆ := (0, 2) × (0,T ] and consider the following two-parameter, non-

homogeneous intial boundary value problem

Lu(x, t) = εuxx(x, t) + µp(x, t)ux(x, t) − q(x, t)u(x, t) + r(x, t)u(x − 1, t) − ut(x, t)

= g(x, t) in D,

u(x, t) = ψ1(x, t) in Γ1 := {(x, t), x ∈ [−1, 0], t ∈ [0,T ]},

u(x, t) = ψ2(x, t) on Γ2 := {(x, 0), x ∈ [0, 2]},

u(x, t) = ψ3(x, t) on Γ3 := {(2, t), t ∈ [0,T ]},


(5.1)

where 0 < ε < 1 and 0 < µ < 1 are small parameters, g(x, t), p(x, t), q(x, t) and r(x, t) are

sufficiently smooth functions such that

p(x, t) ≥ p0 > 0, q(x, t) ≥ q0 > 0, r(x, t) ≥ r0 > 0, (q − r)(x, t) ≥ κ > 0. (5.2)

Moreover, we assume that the initial-boundary data ψ1, ψ2 and ψ3 are smooth functions

on their respective domain and satisfy the compatibility conditions given below
ψ2(0, 0) = ψ1(0, 0), ψ2(2, 0) = ψ3(2, 0),

ε
∂2ψ2(0, 0)

∂x2 + µp(0, 0)
∂ψ2(0, 0)

∂x
− q(0, 0)ψ2(0, 0) + r(0, 0)ψ1(−1, 0) −

∂ψ1(0, 0)
∂t

= g(0, 0),

ε
∂2ψ2(2, 0)

∂x2 + µp(2, 0)
∂ψ2(2, 0)

∂x
− q(2, 0)ψ2(2, 0) + r(2, 0)ψ2(1, 0) −

∂ψ3(2, 0)
∂t

= g(2, 0).
(5.3)
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Let D1 = Ω1 × ∆ := (0, 1) × (0,T ] and D2 = Ω2 × ∆ := [1, 2) × (0,T ]. Rewriting (5.1) as

Lu(x, t) = G(x, t),

where

Lu(x, t) =


L1u = εuxx(x, t) + µp(x, t)ux(x, t) − q(x, t)u(x, t) − ut(x, t) if (x, t) ∈ D1,

L2u = εuxx(x, t) + µp(x, t)ux(x, t) − q(x, t)u(x, t) + r(x, t)u(x − 1, t)

−ut(x, t) if (x, t) ∈ D2,

(5.4)

and

G(x, t) =


g(x, t) − r(x, t)ψ1(x − 1, t) if (x, t) ∈ D1,

g(x, t) if (x, t) ∈ D2

(5.5)

with 
u(0, t) = ψ1(0, t), u(1−, t) = u(1+, t), ux(1−, t) = ux(1+, t),

u(2, t) = ψ3(2, t), u(x, 0) = ψ2(x, 0).
(5.6)

Under these assumptions, the solution of (5.1) exists and is unique [160]. The solution

exhibits twin boundary layers due to the presence of perturbation parameters and an inte-

rior layer due to the presence of delay [218]. Let γ = min
(x,t)∈D̄

(
q(x, t) − r(x, t)

p(x, t)

)
. If

µ2

ε
≤
γ

p0
,

the boundary layers of width O(
√
ε) appear near the boundaries x = 0 and x = 2, as well

as on the left and right neighbourhoods of x = 1 due to the large delay. If
µ2

ε
≥

γ

p0
, the

boundary layers of width O(µ) appear in a left neighbourhood of x = 1 and x = 2, while

a boundary layer of width O
(
ε

µ

)
appears in a right neighbourhood of x = 0 and x = 1.

Lemma 5.2.1. Suppose P(x, t) ∈ C0(D̄) ∩ C2(D) satisfies P(0, t) ≥ 0, P(2, t) ≥ 0,

P(x, 0) ≥ 0 with L1P(x, t) ≤ 0 for all (x, t) ∈ (0, 1) × [0,T ] and L2P(x, t) ≤ 0 for all

(x, t) ∈ [1, 2) × [0,T ]. Then P(x, t) ≥ 0 for all (x, t) ∈ D̄.

Proof. Choose (xk, tk) ∈ D̄ such that P(xk, tk) = min
(x,t)∈D̄

P(x, t). Consequently,

Px(xk, tk) = 0, Pt(xk, tk) = 0 and Pxx(xk, tk) > 0. (5.7)

Suppose P(xk, tk) < 0 and it follows that (xk, tk) < Γ∗ := Γ∗1 ∪ Γ2 ∪ Γ3, where

Γ∗1 := {(0, t), t ∈ [0,T ]}.

Case I: If (xk, tk) ∈ (0, 1) × [0,T ], then

L1P(xk, tk) = εPxx(xk, tk) + µp(xk, tk)Px(xk, tk) − q(xk, tk)P(xk, tk) − Pt(xk, tk)

> 0, from (5.2) and (5.7).
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Case II: If (xk, tk) ∈ [1, 2) × [0,T ], then

L2P(xk, tk) = εPxx(xk, tk) + µp(xk, tk)Px(xk, tk) − q(xk, tk)P(xk, tk)

+r(xk, tk)P(xk − 1, tk) − Pt(xk, tk)

≥ εPxx(xk, tk) − (q − r)(xk, tk)P(xk, tk)

> 0, from (5.2) and (5.7).

A contradiction to the assumption that L1P ≤ 0 for all (x, t) ∈ (0, 1)× [0,T ] and L2P ≤ 0

for all (x, t) ∈ [1, 2) × [0,T ]. Consequently, the required result follows from a contradic-

tion. �

As a consequence of Lemma 5.2.1, obtaining the following stability estimate is

straightforward.

Lemma 5.2.2. Let u be the solution of (5.1). Then ‖u‖D̄ ≤ ‖u‖Γ∗ +
1
κ
‖G‖D̄.

Proof. Define θ±(x, t) = ‖u‖Γ∗ +
1
κ
‖G‖D̄ ± u(x, t), (x, t) ∈ D̄. Then θ±(x, t) ≥ 0 for all

(x, t) ∈ Γ∗ and if (x, t) ∈ (0, 1) × [0,T ], it follows that

L1θ±(x, t) = −q(x, t)
(
‖u‖Γ∗ +

‖G‖D̄

κ

)
± L1u(x, t)

= −q(x, t)
(
‖u‖Γ∗ +

‖G‖D̄

κ

)
± G(x, t) ≤ 0

Similarly, for (x, t) ∈ [1, 2) × [0,T ]

L2θ±(x, t) = −(q − r)(x, t)
(
‖u‖Γ∗ +

‖G‖D̄

κ

)
± L2u(x, t) ≤ 0.

The required result thus follows from Lemma 5.2.1. �

Lemma 5.2.3. Let u be the solution of (5.1). Then, for 1 ≤ k + 2m ≤ 3

∥∥∥∥∥∥ ∂k+mu
∂xk∂tm

∥∥∥∥∥∥
D̄

≤


C

(
√
ε)k

if p0µ
2 ≤ γε,

C
(
µ

ε

)k
(
µ2

ε

)m

if p0µ
2 ≥ γε,

where C is a constant independent of ε and µ.

Proof. We obtain the bounds of the solution and its derivatives by splitting the argument

into two cases p0µ
2 ≤ γε and p0µ

2 ≥ γε.
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Case I: Let p0µ
2 ≤ γε. Consider the stretching variables x̃ =

x
√
ε

, t̃ = t to obtain the

transformed problem on the domain D̃ = (0, 2/
√
ε) × (0,T ] :

(
ũx̃x̃ +

µ
√
ε
p̃ũx̃ − q̃ũ − ũt̃

)
(x̃, t̃) + r̃(x̃, t̃)ũ(x̃ − 1, t̃) = g̃(x̃, t̃) in D̃,

ũ(x̃, t̃) = ψ̃1(x̃, t̃) on Γ̃1,

ũ(x̃, t̃) = ψ̃2(x̃, t̃) on Γ̃2,

ũ(x̃, t̃) = ψ̃3(x̃, t̃) on Γ̃3.

Using the condition p0µ
2 ≤ γε and result from [160], we have∥∥∥∥∥∥ ∂k+mũ

∂x̃k∂t̃m

∥∥∥∥∥∥
Nλ,ξ

≤ C(1 + ‖ũ‖ ¯̃D), 1 ≤ k + 2m ≤ 3,

where Nλ,ξ is the rectangle (λ − ξ, λ + ξ) × (0,T ] ∩ D̃ for any λ ∈ (0, 2/
√
ε) and

ξ > 0. Now, we return back to the original variable to get∥∥∥∥∥∥ ∂k+mu
∂xk∂tm

∥∥∥∥∥∥
D̄

≤ Cε
−k
2 (1 + ‖u‖D̄), 1 ≤ k + 2m ≤ 3

≤
C

(
√
ε)k

, from Lemma 5.2.2.

Case II: Let p0µ
2 ≥ γε. Consider the stretching variables x̃ =

µx
ε

, t̃ =
µ2t
ε

to obtain the

following transformed problem on the domain D̃ = (0, 2µ/ε) × (0, µ2T/ε]:

(
ũx̃x̃ + p̃ũx̃ −

q̃ε
µ2 ũ − ũt̃

)
(x̃, t̃) + r̃ε

µ2 (x̃, t̃)ũ(x̃ − 1, t̃) = ε
µ2 g̃(x̃, t̃) in D̃,

ũ(x̃, t̃) = ψ̃1(x̃, t̃) on Γ̃1,

ũ(x̃, t̃) = ψ̃2(x̃, t̃) on Γ̃2,

ũ(x̃, t̃) = ψ̃3(x̃, t̃) on Γ̃3.

Repeating the argument given in Case I, we get∥∥∥∥∥∥ ∂k+mu
∂xk∂tm

∥∥∥∥∥∥
D̄

≤ C
(
µ

ε

)k
(
µ2

ε

)m

, 1 ≤ k + 2m ≤ 3.

�

Corollary 5.2.4. Let u(x, t) be the solution of (5.1) and Lemmas 5.2.1 and 5.2.2 hold.

Then

‖utt‖D̄ ≤


C if p0µ

2 ≤ γε,

Cµ4ε−2 if p0µ
2 ≥ γε.
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5.3 Time Discretization

Let Tt
M = {tk = kT/M, k = 0, . . . ,M} be an equidistant mesh in the time direction. We

use the Crank-Nicolson method to discretize the problem (5.1) in the time variable. The

semidiscrete problem on Tt
M thus reads

(εUxx + µpUx − lU) (x, tk+1) + r(x, tk+1)U(x − 1, tk+1)

= (−εUxx − µpUx + mU) (x, tk) − r(x, tk)U(x − 1, tk) + g(x, tk+1) + g(x, tk),

x ∈ Ω, k = 0, 1, . . . ,M − 1

 (5.8)

such that
U(x, tk+1) = ψ1(x, tk+1), −1 ≤ x ≤ 0, −1 ≤ k ≤ M − 1,

U(x, 0) = ψ2(x, 0), 0 ≤ x ≤ 2,

U(2, tk+1) = ψ3(2, tk+1), −1 ≤ k ≤ M − 1,

 (5.9)

where l(x, tk+1) = q(x, tk+1) +
2
∆t
, m(x, tk) = q(x, tk) −

2
∆t

and U(x, tk+1) is the numerical

approximation of the continuous solution u(x, t) at (k + 1)th time step.

Let us rewrite (5.8) as

L̃nU(x, tk+1) = G̃n(x, tk+1), n = 1, 2, (5.10)

where

L̃1U(x, tk+1) = (εUxx + µpUx − lU) (x, tk+1) if x ∈ (0, 1),

L̃2U(x, tk+1) = (εUxx + µpUx − lU) (x, tk+1) + r(x, tk+1)U(x − 1, tk+1) if x ∈ [1, 2),

and

G̃1(x, tk+1) = (−εUxx − µpUx + mU) (x, tk) − r(x, tk+1)ψ1(x − 1, tk+1)

−r(x, tk))ψ1(x − 1, tk) + g(x, tk+1) + g(x, tk) if x ∈ (0, 1),

G̃2(x, tk+1) = (−εUxx − µpUx + mU) (x, tk) − r(x, tk))ψ1(x − 1, tk)

+g(x, tk+1) + g(x, tk) if x ∈ [1, 2).

The operator L̃n satisfies the following minimum principle.

Lemma 5.3.1. Let χ(x, tk+1) be a smooth function such that χ(x, tk+1) ≥ 0 for x = 0, 2 with

L̃1χ(x, tk+1) ≤ 0 for all x ∈ (0, 1) and L̃2χ(x, tk+1) ≤ 0 for all x ∈ [1, 2). Then χ(x, tk+1) ≥ 0

for all x ∈ Ω̄.

Proof. Let χ(α, tk+1) = min
x∈Ω̄

χ(x, tk+1) for some α ∈ Ω̄. Then

χx(α, tk+1) = 0 and χxx(α, tk+1) > 0. (5.11)

Suppose χ(α, tk+1) < 0, therefore α < {0, 2} because χ(x, tk+1) ≥ 0 for x = 0, 2.
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Case I: If α ∈ (0, 1)

L̃1χ(α, tk+1) = (εχxx + µpχx − lχ) (α, tk+1)

> 0, from (5.2) and (5.11).

Case II: If α ∈ [1, 2)

L̃2χ(α, tk+1) = (εχxx + µpχx − lχ) (α, tk+1) + r(α, tk+1)χ(α − 1, tk+1)

≥ εχxx(α, tk+1) − l(α, tk+1)χ(α, tk+1) + r(α, tk+1)χ(α, tk+1)

≥ εχxx(α, tk+1) −
(
q(α, tk+1) +

2
∆t
− r(α, tk+1)

)
χ(α, tk+1)

= εχxx(α, tk+1) − (q − r)(α, tk+1)χ(α, tk+1) −
2
∆t
χ(α, tk+1)

> 0, from (5.2) and (5.11).

It contradicts the assumption, and hence the result follows from a contradiction. �

Lemma 5.3.2. Let U(x, tk+1) be the solution of (5.10). Then

‖U(x, tk+1)‖Ω̄ ≤ max
{
|U(0, tk+1)|, |U(2, tk+1)|,

1
κ
‖G̃‖Ω̄

}
for all x ∈ [0, 2].

Proof. Consider M±(x, tk+1) = max
{
|U(0, tk+1)|,

1
κ
‖G̃1‖Ω̄1

}
± U(x, tk+1) for all x ∈ (0, 1).

Then, M±(0, tk+1) ≥ 0. Moreover, for x ∈ (0, 1)

L̃1M±(x, tk+1) = −l(x, tk+1) max
{
|U(0, tk+1)|,

1
κ
‖G̃1‖Ω̄1

}
± L̃1U(x, tk+1)

= −l(x, tk+1) max
{
|U(0, tk+1)|,

1
κ
‖G̃1‖Ω̄1

}
± G̃1(x, tk+1)

≤ 0, from (5.2).

Similarly, consider M±(x, tk+1) = max
{
|U(2, tk+1)|,

1
κ
‖G̃2‖Ω̄2

}
±U(x, tk+1) for all x ∈ [1, 2).

Then, M±(2, tk+1) ≥ 0 and for x ∈ [1, 2) we compute

L̃2M±(x, tk+1) = −(l − r)(x, tk+1) max
{
|U(2, tk+1)|,

1
κ
‖G̃2‖Ω̄2

}
± L̃2U(x, tk+1)

= −

(
q(x, tk+1) +

2
∆t
− r(x, tk+1)

)
max

{
|U(2, tk+1)|,

1
κ
‖G̃2‖Ω̄2

}
±G̃2(x, tk+1)

≤ 0, from (5.2).

Consequently, from Lemma 5.3.1 the required result follows. �
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The local truncation error of the semidiscretized problem (5.10) is given by

ek+1 := Û(x, tk+1) − u(x, tk+1), where Û is the solution of

L̃nÛ(x, tk+1) = Ĝ(x, tk+1), x ∈ Ω, 0 ≤ k ≤ M − 1,

Û(x, tk+1) = ψ1(x, tk+1), −1 ≤ x ≤ 0, −1 ≤ k ≤ M − 1,

Û(x, 0) = ψ2(x, 0), x ∈ Ω̄,

Û(2, tk+1) = ψ3(2, tk+1), −1 ≤ k ≤ M − 1,


(5.12)

where L̃n is defined in (5.10), and

Ĝ =



(−εuxx − µpux + mu) (x, tk) − r(x, tk+1)ψ1(x − 1, tk+1)

−r(x, tk)ψ1(x − 1, tk) + g(x, tk+1) + g(x, tk) if x ∈ (0, 1),

(−εuxx − µpux + mu) (x, tk) − r(x, tk))ψ1(x − 1, tk)

+g(x, tk+1) + g(x, tk) if x ∈ [1, 2).

Lemma 5.3.3. For some constant C, the local truncation error at (k + 1)th time step

satisfies the following bound

‖ek+1‖∞ ≤ C(∆t)3, −1 ≤ k ≤ M − 1.

Proof. For proof, see [50]. �

The global error Ek := u(x, tk) − U(x, tk) of the semidiscretized problem is the con-

tribution of the local truncation error at each time step. Then, it follows that

‖Ek+1‖∞ =

∥∥∥∥∥∥∥
k∑

i=1

êi

∥∥∥∥∥∥∥
∞

≤ ‖ê1‖∞ + ‖ê2‖∞ + . . . + ‖êk‖∞ ≤ C∆t2. (5.13)

This in turn ensures the uniform convergence of the time semidiscretization process.

Lemma 5.3.4. Let U(x, tk+1) be the solution of (5.10). Then∥∥∥∥∥∥dkU
dxk

∥∥∥∥∥∥ ≤ C
(
√
ε)k

1 +

(
µ
√
ε

)k max
{
‖U‖, ‖G̃‖

}
, k = 1, 2,∥∥∥∥∥∥d3U

dx3

∥∥∥∥∥∥ ≤ C
(
√
ε)3

1 +

(
µ
√
ε

)3 max
{
‖U‖, ‖G̃‖

}
+

1
ε

∥∥∥∥∥∥dG̃
dx

∥∥∥∥∥∥ ,
where C is the constant independent of µ and ε.

Proof. For proof, see [135]. �

The solution U(x, tk+1) of the semidiscretized problem (5.10) admit a decomposition

into smooth and singular components [173]. We write

U(x, tk+1) := X(x, tk+1) + Z(x, tk+1),
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where

X(x, tk+1) =


b(x, tk+1), x ∈ [0, 1),

c(x, tk+1), x ∈ [1, 2],
(5.14)

and

Z(x, tk+1) =


z1(x, tk+1), x ∈ [0, 1),

z2(x, tk+1), x ∈ [1, 2].
(5.15)

Here, the smooth component b(x, tk+1) is the solution of

L̃1b(x, tk+1) = G̃1(x, tk+1), x ∈ (0, 1),

b(0, tk+1), b(1, tk+1) are to be chosen lately,

 (5.16)

and c(x, tk+1) is the solution of

L̃2c(x, tk+1) = G̃2(x, tk+1), x ∈ (1, 2),

c(x, tk+1) = b(x, tk+1) on [0, 1),

c(1, tk+1), c(2, tk+1) are to be chosen lately.

 (5.17)

Moreover, the singular components z1(x, tk+1) and z2(x, tk+1) satisfy the following

L̃1z1(x, tk+1) = 0, x ∈ (0, 1), L̃2z2(x, tk+1) = 0, x ∈ (1, 2), (5.18)

z1(0, tk+1) = U(0, tk+1) − b(0, tk+1),

z2(1, tk+1) − z1(1, tk+1) = b(1, tk+1) − c(1, tk+1), (5.19)
dz2

dx
(1, tk+1) −

dz1

dx
(1, tk+1) =

db
dx

(1, tk+1) −
dc
dx

(1, tk+1), (5.20)

z2(2, tk+1) = U(2, tk+1) − c(2, tk+1).

The next lemmas provide bounds on the derivatives of X(x, tk+1) and Z(x, tk+1) with respect

to x. We derive bounds for these components separately for p0µ
2 ≤ γε and p0µ

2 ≥ γε.

5.3.1 Estimates for the Smooth Components When p0µ
2 ≤ γε

Lemma 5.3.5. Let b(x, tk+1) and c(x, tk+1) be the solutions of (5.16) and (5.17), respec-

tively. Then for p0µ
2 ≤ γε and k = 0, 1, 2, 3

‖b(k)‖Ω̄1
≤ C, ‖c(k)‖Ω̄2

≤ C.

Proof. Decompose the smooth components b(x, tk+1) and c(x, tk+1) as

b(x, tk+1) = b0(x, tk+1) +
√
εb1(x, tk+1) + (

√
ε)2b2(x, tk+1) + (

√
ε)3b3(x, tk+1), x ∈ Ω̄1,

c(x, tk+1) = c0(x, tk+1) +
√
εc1(x, tk+1) + (

√
ε)2c2(x, tk+1) + (

√
ε)3c3(x, tk+1), x ∈ Ω̄2,
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where the functions b0 and c0 are the solutions of

−(lb0)(x, tk+1) = (mb0)(x, tk) − r(x, tk+1)ψ1(x − 1, tk+1) − r(x, tk)ψ1(x − 1, tk)

+g(x, tk) + g(x, tk+1), x ∈ Ω̄1,

−(lc0)(x, tk+1) + r(x, tk+1)b0(x − 1, tk+1) = (mc0)(x, tk) − r(x, tk)b0(x − 1, tk)

+g(x, tk) + g(x, tk+1), x ∈ Ω̄2,


the functions b1 and c1 are the solutions of

(lb1)(x, tk+1) = (
√
εb

′′

0 +
µ
√
ε
pb

′

0)(x, tk+1) + (
√
εb

′′

0 +
µ
√
ε
pb

′

0 − mb1)(x, tk), x ∈ Ω̄1,

(lc1)(x, tk+1) − r(x, tk+1)b1(x − 1, tk+1) = (
√
εc
′′

0 +
µ
√
ε
pc
′

0)(x, tk+1) + r(x, tk)b1(x − 1, tk)

+(
√
εc
′′

0 +
µ
√
ε
pc
′

0 − mc1)(x, tk), x ∈ Ω̄2,


the functions b2 and c2 are the solutions of

(lb2)(x, tk+1) = (
√
εb

′′

1 +
µ
√
ε
pb

′

1)(x, tk+1) + (
√
εb

′′

1 +
µ
√
ε
pb

′

1 − mb2)(x, tk), x ∈ Ω̄1,

(lc2)(x, tk+1) − r(x, tk+1)b2(x − 1, tk+1) = (
√
εc
′′

1 +
µ
√
ε
pc
′

1)(x, tk+1) + r(x, tk)b2(x − 1, tk)

+(
√
εc
′′

1 +
µ
√
ε
pc
′

1 − mc2)(x, tk), x ∈ Ω̄2,


and lastly, the functions b3 and c3 are the solutions of

L̃1b3(x, tk+1) = (−
√
εb

′′

2 −
µ
√
ε
pb

′

2)(x, tk+1) + (−
√
εb

′′

2 −
µ
√
ε
pb

′

2)(x, tk)

−(εb
′′

3 + µpb
′

3 − mb3)(x, tk), x ∈ Ω1,

b3(0, tk+1) = 0, b3(1, tk+1) = 0,

 (5.21)

and

L̃2c3(x, tk+1) = (−
√
εc
′′

2 −
µ
√
ε
pc
′

2)(x, tk+1) − (
√
εc
′′

2 +
µ
√
ε
pc
′

2)(x, tk)

−(εc
′′

3 + µpc
′

3 − mc3)(x, tk) − r(x, tk)b3(x − 1, tk), x ∈ Ω2,

c3(1, tk+1) = 0, c3(2, tk+1) = 0, c3(x, tk+1) = b3(x, tk+1) on [0, 1).

 (5.22)

Since, the functions p(x, tk+1), r(x, tk+1), m(x, tk+1), l(x, tk+1), ψ1(x, tk+1) and g(x, tk+1) are

sufficiently smooth and p0µ
2 ≤ γε, we have

‖b(k)
0 ‖Ω̄1

≤ C, ‖c(k)
0 ‖Ω̄2

≤ C, for 0 ≤ k ≤ 7,

‖b(k)
1 ‖Ω̄1

≤ C, ‖c(k)
1 ‖Ω̄2

≤ C, for 0 ≤ k ≤ 5,

‖b(k)
2 ‖Ω̄1

≤ C, ‖c(k)
2 ‖Ω̄2

≤ C, for 0 ≤ k ≤ 3.

Now, using Lemma 2 from [101] to obtain ‖b3‖Ω̄1
≤ C and ‖c3‖Ω̄2

≤ C. Since p0µ
2 ≤ γε,

Lemma 5.3.4 asserts that ‖b
′

3‖Ω̄1
≤

C
√
ε

and ‖c
′

3‖Ω̄2
≤

C
√
ε

. Moreover, from (5.21) and

(5.22), we obtain

‖b(k)
3 ‖Ω̄1

≤
C

(
√
ε)k

, ‖c(k)
3 ‖Ω̄2

≤
C

(
√
ε)k

, for k = 2, 3.
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Next, we choose b(0, tk+1), b(1, tk+1), c(1, tk+1) and c(2, tk+1) to be

b(0, tk+1) = (b0 +
√
εb1 + εb2)(0, tk+1), b(1, tk+1) = (b0 +

√
εb1 + εb2)(1, tk+1),

c(1, tk+1) = (c0 +
√
εc1 + εc2)(1, tk+1), c(2, tk+1) = (c0 +

√
εc1 + εc2)(2, tk+1).

Since b = b0 +
√
εb1 + εb2 + ε3/2b3, for k = 0, 1, 2, 3, we have

‖b(k)‖Ω̄1
≤ ‖b(k)

0 ‖Ω̄1
+
√
ε‖b(k)

1 ‖Ω̄1
+ ε‖b(k)

2 ‖Ω̄1
+ ε3/2‖b(k)

3 ‖Ω̄1
≤ C.

Similarly, we get ‖c(k)‖Ω̄2
≤ C, for k = 0, 1, 2, 3. �

5.3.2 Estimates for the Smooth Components When p0µ
2 ≥ γε

Similar to the previous case, here also, the decomposition of b(x, tk+1) and c(x, tk+1) is

considered, but at two levels. We define operators L̃∗1, L̃∗2, L̃3, L̃∗3, L̃4, and L̃∗4 for this

purpose. These operators are defined as:

L̃∗1 = εD2 + µp(x, tk)D − m(x, tk)I, L̃∗2 = εD2 + µp(x, tk)D − m(x, tk)I + r(x, tk)E,

L̃3 = µp(x, tk)D − l(x, tk)I, L̃∗3 = µp(x, tk)D − m(x, tk)I,

L̃4 = µp(x, tk)D − l(x, tk)I + r(x, tk)E and L̃∗4 = µp(x, tk)D − m(x, tk)I + r(x, tk)E.

Here, DU(x, tk) =
dU
dx

(x, tk) and D2U(x, tk) =
d2U
dx2 (x, tk) are the differential operators.

Additionally, IU(x, tk) = U(x, tk) is the identity operator and EU(x, tk) = EU(x − 1, tk) is

the shift operator. Finally, we consider the decomposition of b(x, tk+1) and c(x, tk+1) as

b(x, tk+1; ε, µ) = b0(x, tk+1) + εb1(x, tk+1; µ) + ε2b2(x, tk+1; µ) + ε3b3(x, tk+1; µ), x ∈ Ω̄1,

c(x, tk+1; ε, µ) = c0(x, tk+1) + εc1(x, tk+1; µ) + ε2c2(x, tk+1; µ) + ε3c3(x, tk+1; µ), x ∈ Ω̄2,

where the functions b0 and c0 are the solutions of

L̃3b0(x, tk+1) = −L̃∗3b0(x, tk) − r(x, tk+1)ψ1(x − 1, tk+1) − r(x, tk)ψ1(x − 1, tk)

+g(x, tk) + g(x, tk+1), x ∈ [0, 1),

b0(1, tk+1) is to be chosen lately,

 (5.23)

and

L̃4c0(x, tk+1) = −L̃∗4c0(x, tk) + g(x, tk) + g(x, tk+1), x ∈ [1, 2),

c0(2, tk+1) is to be chosen lately,

c0(x, tk+1) = b0(x, tk+1) on [0, 1),

 (5.24)
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the functions b1 and c1 are the solutions of

L̃3b1(x, tk+1) = −b
′′

0(x, tk+1) − b
′′

0(x, tk) − L̃∗3b1(x, tk), x ∈ [0, 1),

b1(1, tk+1) is to be chosen lately,

 (5.25)

and

L̃4c1(x, tk+1) = −c
′′

0(x, tk+1) − c
′′

0(x, tk) − L̃∗4c1(x, tk), x ∈ [1, 2),

c1(2, tk+1) is to be chosen lately,

c1(x, tk+1) = b1(x, tk+1) on [0, 1),

 (5.26)

the functions b2 and c2 are the solutions of

L̃3b2(x, tk+1) = −b
′′

1(x, tk+1) − b
′′

1(x, tk) − L̃∗3b2(x, tk), x ∈ [0, 1),

b2(1, tk+1) = 0,

 (5.27)

and

L̃4c2(x, tk+1) = −c
′′

1(x, tk+1) − c
′′

1(x, tk) − L̃∗4c2(x, tk), x ∈ [1, 2),

c2(2, tk+1) = 0,

c2(x, tk+1) = b2(x, tk+1) on [0, 1),

 (5.28)

and lastly, the functions b3 and c3 are the solutions of

L̃1b3(x, tk+1) = −b
′′

2(x, tk+1) − b
′′

2(x, tk) − L̃∗1b3(x, tk), x ∈ (0, 1),

b3(0, tk+1) = 0, b3(1, tk+1) = 0,

 (5.29)

and

L̃2c3(x, tk+1) = −c
′′

2(x, tk+1) − c
′′

2(x, tk) − L̃∗2c3(x, tk), x ∈ (1, 2),

c3(1, tk+1) = 0, c3(2, tk+1) = 0,

c3(x, tk+1) = b3(x, tk+1) on [0, 1).

 (5.30)

Lemma 5.3.6. Let ψ(x, tk+1) satisfies ψ(1, tk+1) ≥ 0 and L̃3ψ(x, tk+1) ≤ 0 for all x ∈ [0, 1).

Then ψ(x, tk+1) ≥ 0 for all x ∈ [0, 1].

Proof. Define ψ(α, tk+1) = min
α∈Ω̄1

ψ(x, tk+1) for some α ∈ Ω̄1. Let ψ(α, tk+1) < 0, then α , 1

and ψ
′

(α, tk+1) = 0. For α ∈ [0, 1), we have L̃3ψ(α, tk+1) = (µpψ
′

(α, tk+1)− lψ(α, tk+1)) > 0,

which contradicts the assumption. Therefore, we can conclude that ψ(α, tk+1) ≥ 0 which

implies ψ(x, tk+1) ≥ 0 for all x ∈ [0, 1]. �

Lemma 5.3.7. Let b(x, tk+1) and c(x, tk+1) be the solutions of (5.23)-(5.30). Then for

p0µ
2 ≥ γε and k = 0, 1, 2, 3

‖b(k)‖Ω̄1
≤ C

1 +

(
ε

µ

)3−k , ‖c(k)‖Ω̄2
≤ C

1 +

(
ε

µ

)3−k .
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Proof. To establish the bounds for the derivatives of the smooth components b and c, we

use the bounds for the derivatives of b0, b1, b2, b3, c0, c1, c2 and c3. Let’s first establish the

bounds for b0 and c0. To do this, we consider the decomposition of b0 and c0 as

b0(x, tk+1; µ) = b0,0(x, tk+1) + µb0,1(x, tk+1) + µ2b0,2(x, tk+1) + µ3b0,3(x, tk+1; µ) for x ∈ Ω̄1,

c0(x, tk+1; µ) = c0,0(x, tk+1) + µc0,1(x, tk+1) + µ2c0,2(x, tk+1) + µ3c0,3(x, tk+1; µ) for x ∈ Ω̄2,

where the functions b0,0 and c0,0 are the solutions of

−(lb0,0)(x, tk+1) = (mb0,0)(x, tk) − r(x, tk+1)ψ1(x − 1, tk+1) − r(x, tk)ψ1(x − 1, tk)

+g(x, tk) + g(x, tk+1), x ∈ Ω̄1,

−(lc0,0)(x, tk+1) + r(x, tk+1)b0,0(x − 1, tk+1) = (mc0,0)(x, tk) − r(x, tk)b0,0(x − 1, tk)

+g(x, tk) + g(x, tk+1), x ∈ Ω̄2,


the functions b0,1 and c0,1 are the solutions of

(lb0,1)(x, tk+1) = (pb
′

0,0)(x, tk+1) + (pb
′

0,0 − mb0,1)(x, tk), x ∈ Ω̄1,

(lc0,1)(x, tk+1) − r(x, tk+1)b0,1(x − 1, tk+1) = (pc
′

0,0)(x, tk+1) + (pc
′

0,0 − mc0,1)(x, tk)

+r(x, tk)b0,1(x − 1, tk), x ∈ Ω̄2,


the functions b0,2 and c0,2 are the solutions of

(lb0,2)(x, tk+1) = (pb
′

0,1)(x, tk+1) + (pb
′

0,1 − mb0,2)(x, tk), x ∈ Ω̄1,

(lc0,2)(x, tk+1) − r(x, tk+1)b0,2(x − 1, tk+1) = (pc
′

0,1)(x, tk+1) + (pc
′

0,1 − mc0,2)(x, tk)

+r(x, tk)b0,2(x − 1, tk), x ∈ Ω̄2,


and lastly, the functions b0,3 and c0,3 are the solutions of

L̃3b0,3(x, tk+1) = −(pb
′

0,2)(x, tk+1) − (pb
′

0,2)(x, tk) − L̃∗3b0,3(x, tk), x ∈ [0, 1),

b0,3(1, tk) = 0,

 (5.31)

and

L̃4c0,3(x, tk+1) = −(pc
′

0,2)(x, tk+1) − (pc
′

0,2)(x, tk) − L̃∗4c0,3(x, tk), x ∈ [1, 2),

c0,3(2, tk) = 0,

c0,3(x, tk+1) = b0,3(x, tk+1), x ∈ [0, 1).

 (5.32)

Since, the functions l(x, tk+1), m(x, tk+1), r(x, tk+1), ψ1(x, tk+1), ψ2(x, tk+1), ψ3(x, tk+1), and

g(x, tk+1) are sufficiently smooth on their respective domain. Thus, we have

‖b(k)
0,0‖Ω̄1

≤ C, ‖c(k)
0,0‖Ω̄2

≤ C, for 0 ≤ k ≤ 10,

‖b(k)
0,1‖Ω̄1

≤ C, ‖c(k)
0,1‖Ω̄2

≤ C, for 0 ≤ k ≤ 9,

‖b(k)
0,2‖Ω̄1

≤ C, ‖c(k)
0,2‖Ω̄2

≤ C, for 0 ≤ k ≤ 8.

(5.33)
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Define ψ±(x, tk+1) = C ± b0,3(x, tk+1), x ∈ Ω̄1. Now, apply Lemma 5.3.6 to ψ±(x, tk+1) to

obtain ‖b0,3‖Ω̄1 ≤ C. Then, we use (5.31) to get

‖b(k)
0,3‖Ω̄1

≤
C
µk , for 0 ≤ k ≤ 8. (5.34)

Similarly, consider the function ψ±(x, tk+1) = C ± c0,3(x, tk+1), x ∈ Ω̄2. Applying Lemma

5.3.6 to ψ±(x, tk+1) yields ‖c0,3‖Ω̄2
≤ C. Using (5.32), we have

‖c(k)
0,3‖Ω̄2

≤
C
µk , for 0 ≤ k ≤ 8. (5.35)

As defined in (5.23) and (5.24), choose b0(1, tk+1) and c0(2, tk+1) to be

b0(1, tk+1) = (b0,0 + µb0,1 + µ2b0,2)(1, tk+1), c0(2, tk+1) = (c0,0 + µc0,1 + µ2c0,2)(2, tk+1).

Therefore, using (5.33)-(5.35) to obtain

‖bk
0‖Ω̄1
≤ C

(
1 +

1
µk−3

)
, ‖ck

0‖Ω̄2
≤ C

(
1 +

1
µk−3

)
, 0 ≤ k ≤ 8. (5.36)

Now, decompose the functions b1 and c1 as

b1(x, tk+1; µ) = b1,0(x, tk+1) + µb1,1(x, tk+1) + µ2b1,2(x, tk+1; µ), x ∈ Ω̄1,

c1(x, tk+1; µ) = c1,0(x, tk+1) + µc1,1(x, tk+1) + µ2c1,2(x, tk+1; µ), x ∈ Ω̄2,

where the functions b1,0 and c1,0 are the solution of

(lb1,0)(x, tk+1) = b
′′

0(x, tk+1) + b
′′

0(x, tk) − (mb1,0)(x, tk), x ∈ Ω̄1,

(lc1,0)(x, tk+1) − r(x, tk+1)c1,0(x − 1, tk+1) = c
′′

0(x, tk+1) + c
′′

0(x, tk) − (mc1,0)(x, tk)

+r(x, tk)c1,0(x − 1, tk), x ∈ Ω̄2,


the functions b1,1 and c1,1 are the solutions of

(lb1,1)(x, tk+1) = (pb
′

1,0)(x, tk+1) + (pb
′

1,0 − mb1,1)(x, tk), x ∈ Ω̄1,

(lc1,1)(x, tk+1) − r(x, tk+1)b1,1(x − 1, tk+1) = (pc
′

1,0)(x, tk+1) + (pc
′

1,0 − mc1,1)(x, tk)

+r(x, tk)b1,1(x − 1, tk), x ∈ Ω̄2,


and the functions b1,2 and c1,2 are the solution of

L̃3b1,2(x, tk+1) = −(pb
′

1,1)(x, tk+1) − (pb
′

1,1)(x, tk) − L̃∗3b1,2(x, tk), x ∈ [0, 1),

b1,2(1, tk) = 0,

L̃4c1,2(x, tk+1) = −(pc
′

1,1)(x, tk+1) − (pc
′

1,1)(x, tk) − L̃∗4c1,2(x, tk), x ∈ [1, 2),

c1,2(2, tk) = 0,

c1,2(x, tk+1) = b1,2(x, tk+1), x ∈ [0, 1).
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To establish the bounds for the derivatives of b1 and c1, we use a similar argument as

we did for b0 and c0. We apply Lemma 5.3.6 to suitable barrier functions and obtain the

bounds for the derivatives of the components of b1 and c1 as follows

‖b(k)
1,0‖Ω̄1

≤ C
(
1 +

1
µk−1

)
, ‖c(k)

1,0‖Ω̄2
≤ C

(
1 +

1
µk−1

)
, 0 ≤ k ≤ 6,

‖b(k)
1,1‖Ω̄1

≤ C
(
1 +

1
µk

)
, ‖c(k)

1,1‖Ω̄2
≤ C

(
1 +

1
µk

)
, 0 ≤ k ≤ 5,

‖b(k)
1,2‖Ω̄1

≤

(
C
µk+1

)
, ‖c(k)

1,2‖Ω̄2
≤

(
C
µk+1

)
, 0 ≤ k ≤ 5.

Therefore, we get the following bounds for the derivatives of b1 and c1

‖b(k)
1 ‖Ω̄1

≤ C
(
1 +

1
µk−1

)
, ‖c(k)

1 ‖Ω̄2
≤ C

(
1 +

1
µk−1

)
, 0 ≤ k ≤ 5.

Similarly, we can establish the bounds for the derivatives of b2 and c2 as given below

‖b(k)
2 ‖Ω̄1

≤

(
C
µk+1

)
, ‖c(k)

2 ‖Ω̄2
≤

(
C
µk+1

)
, 0 ≤ k ≤ 3. (5.37)

From (5.29) and (5.30) and Lemma 2 of [101], we get the following bounds for b3 and c3

‖b3‖Ω̄1
≤

(
C
µ3

)
, ‖c3‖Ω̄2

≤

(
C
µ3

)
.

From Lemma 5.2.3, it follows that

‖b
′

3‖Ω̄1
≤

(
C
εµ2

)
, ‖c

′

3‖Ω̄2
≤

(
C
εµ2

)
, (5.38)

and from (5.29) and (5.30), we have

‖b
′′

3‖Ω̄1
≤

(
C
ε2µ

)
, ‖c

′′

3‖Ω̄2
≤

(
C
ε2µ

)
. (5.39)

Differentiating equations (5.29) and (5.30) and using p0µ
2 ≥ γε, we compute

‖b(3)
3 ‖Ω̄1

≤

( C
ε3

)
, ‖c(k)

3 ‖Ω̄2
≤

( C
ε3

)
. (5.40)

Therefore, we can write

‖b(k)
3 ‖Ω̄1

≤

(
C

εkµ3−k

)
, ‖c(k)

3 ‖Ω̄2
≤

(
C

εkµ3 − k

)
, k = 0, 1, 2, 3.

As defined in (5.16), choose b(0, tk+1) and b(1, tk+1) to be

b(0, tk+1) = b0(0, tk+1) + εb1(0, tk+1) + ε2b2(0, tk+1), b(1, tk+1) = b0(1, tk+1) + εb1(1, tk+1),

and from (5.17), choose c(1, tk+1) and c(2, tk+1) to be

c(1, tk+1) = c0(1, tk+1) + εc1(1, tk+1) + ε2c2(1, tk+1), c(2, tk+1) = c0(2, tk+1) + εc1(2, tk+1).

We now obtain the bounds for the functions b and c by using the estimates for their

components b0, b1, b2, b3, c0, c1, c2 and c3 and get

‖b(k)‖Ω̄1
≤ C

1 +

(
ε

µ

)3−k , ‖c(k)‖Ω̄2
≤ C

1 +

(
ε

µ

)3−k .
�
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5.3.3 Estimates for the Singular Components

Let us decompose the singular component Z(x, tk+1) defined in (5.15) as

Z(x, tk+1) := ZL(x, tk+1) + ZR(x, tk+1)

:= (zL
1 + zL

2)(x, tk+1) + (zR
1 + zR

2 )(x, tk+1),

where the functions zL
1 and zL

2 satisfy

L̃1zL
1(x, tk+1) = 0, x ∈ (0, 1),

zL
1(0, tk+1) = U(0, tk+1) − X(0, tk+1) − j1(ε, µ), zL

1(1, tk+1) = 0,

 (5.41)

and

L̃2zL
2(x, tk+1) = 0, x ∈ (1, 2),

zL
2(1, tk+1) = k1(ε, µ) − j2(ε, µ), zL

2(2, tk+1) = 0,

zL
2(x, tk+1) = zL

1(x, tk+1), x ∈ [0, 1),

 (5.42)

and the functions zR
1 and zR

2 satisfy

L̃1zR
1 (x, tk+1) = 0, x ∈ (0, 1),

zR
1 (0, tk+1) = j1(ε, µ), zR

1 (1, tk+1) = k2(ε, µ),

 (5.43)

and

L̃2zR
2 (x, tk+1) = 0, x ∈ (1, 2),

zR
2 (1, tk+1) = j2(ε, µ), zR

2 (2, tk+1) = U(2, tk+1) − X(2, tk+1),

zR
2 (x, tk+1) = zR

1 (x, tk+1), x ∈ [0, 1).

 (5.44)

Here, k1(ε, µ) and k2(ε, µ) are constants to be chosen to satisfy the jump conditions at

x = 1 given in (5.19) and (5.20). Moreover, constants j1(ε, µ) and j2(ε, µ) are to be

chosen separately for the cases p0µ
2 ≤ γε and p0µ

2 ≥ γε to satisfy the requirements for

the bounds of the singular component.

Lemma 5.3.8. Let ZL(x, tk+1) and ZR(x, tk+1) be the solutions of (5.41)-(5.44). Then for

p0µ
2 ≥ γε and k = 0, 1, 2, 3

‖zL,(k)
1 ‖Ω̄1

≤ C
(
µ

ε

)k
, ‖zL,(k)

2 ‖Ω̄2
≤ C

(
µ

ε

)k
,

‖zR,(k)
1 ‖Ω̄1

≤
C
µk , ‖z

R,(k)
2 ‖Ω̄2

≤
C
µk .

Proof. Since U(0, tk+1) and U(1, tk+1) are bounded by constants independent of ε and µ,

| j1|, | j2|, |k1| and |k2| are also bounded by constants independent of ε and µ. Next, we use

Lemma 5.3.4 to compute

‖zL,(k)
1 (x, tk+1)‖Ω̄1

≤ C
(
µ

ε

)k
, ‖zL,(k)

2 (x, tk+1)‖Ω̄2
≤ C

(
µ

ε

)k
.
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To find bounds for zR
1 and zR

2 , consider the following decomposition of zR
1 and zR

2 as

zR
1 (x, tk+1; ε, µ) = zR

1,0(x, tk+1; µ) + εzR
1,1(x, tk+1; µ) + ε2zR

1,2(x, tk+1; µ)

+ ε3zR
1,3(x, tk+1; ε, µ),

zR
2 (x, tk+1; ε, µ) = zR

2,0(x, tk+1; µ) + εzR
2,1(x, tk+1; µ) + ε2zR

2,2(x, tk+1; µ)

+ ε3zR
2,3(x, tk+1; ε, µ),

(5.45)

where the functions zR
1,0 and zR

2,0 are the solutions of

L̃3zR
1,0(x, tk+1) = 0, x ∈ [0, 1), zR

1,0(1, tk+1) = k2, (5.46)

and

L̃4zR
2,0(x, tk+1) = 0, x ∈ [1, 2), zR

2,0(2, tk+1) = U(2, tk+1) − X(2, tk+1),

zR
2,0(x, tk+1) = zR

1,0(x, tk+1), x ∈ [0, 1),

 (5.47)

the functions zR
1,1 and zR

2,1 are the solutions of

L̃3zR
1,1(x, tk+1) = −zR,(2)

1,0 (x, tk+1), x ∈ [0, 1), zR
1,1(1, tk+1) = 0, (5.48)

and

L̃4zR
2,1(x, tk+1) = −zR,(2)

2,0 (x, tk+1), x ∈ [1, 2), zR
2,1(2, tk+1) = 0,

zR
2,1(x, tk+1) = zR

1,1(x, tk+1), x ∈ [0, 1),

 (5.49)

the functions zR
1,2 and zR

2,2 are the solutions of

L̃3zR
1,2(x, tk+1) = −zR,(2)

1,1 (x, tk+1), x ∈ [0, 1), zR
1,2(1, tk+1) = 0, (5.50)

and

L̃4zR
2,2(x, tk+1) = −zR,(2)

2,1 (x, tk+1), x ∈ [1, 2), zR
2,2(2, tk+1) = 0,

zR
2,2(x, tk+1) = zR

1,2(x, tk+1), x ∈ [0, 1),

 (5.51)

and lastly, the functions zR
1,3 and zR

2,3 are the solutions of

L̃1zR
1,3(x, tk+1) = −zR,(2)

1,2 (x, tk+1), x ∈ (0, 1), zR
1,3(0, tk+1) = 0, zR

1,3(1, tk+1) = 0,

L̃2zR
2,3(x, tk+1) = −zR,(2)

2,2 (x, tk+1), x ∈ (1, 2), zR
2,3(1, tk+1) = 0, zR

2,3(2, tk+1) = 0,

zR
2,3(x, tk+1) = zR

1,3(x, tk+1), x ∈ [0, 1).


Define ψ±(x, tk+1) = C ± zR

1,0(x, tk+1), x ∈ [0, 1] and apply Lemma 5.3.6 to the function

ψ±(x, tk+1) to obtain ‖zR
1,0(x, tk+1)‖Ω̄1

≤ C. Now we use (5.46) to find

‖zR,(k)
1,0 ‖Ω̄1

≤
C
µk , 0 ≤ k ≤ 5. (5.52)
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Similarly, it is easy to follow that

‖zR,(k)
2,0 ‖Ω̄2

≤
C
µk , 0 ≤ k ≤ 5. (5.53)

Now, define ψ±(x, tk+1) = C‖zR,(2)
1,0 ‖Ω1 ± zR

1,1(x, tk+1), x ∈ [0, 1] and apply Lemma 5.3.6 to

the function ψ± we find ‖zR
1,1‖Ω̄1

≤
C
µ2 . From (5.48), we have

‖zR,(k)
1,1 ‖Ω̄1

≤
C
µk+2 , 0 ≤ k ≤ 4. (5.54)

Similarly, we can obtain the following bounds for zR
1,2, zR

2,1 and zR
2,2

‖zR,(k)
1,2 ‖Ω̄1

≤
C
µk+4 , 0 ≤ k ≤ 3, (5.55)

‖zR,(k)
2,1 ‖Ω̄2

≤
C
µk+2 , 0 ≤ k ≤ 4, ‖zR,(k)

2,2 ‖Ω̄2
≤

C
µk+4 , 0 ≤ k ≤ 3. (5.56)

Now, we apply Lemma 1 from [101] to the function ψ±(x, tk+1) = C‖zR,(2)
1,2 ‖Ω1 ± zR

1,3(x, tk+1),

x ∈ [0, 1], we get ‖zR
1,3‖Ω̄1

≤
C
µ6 . Using Lemma 5.3.4 to write

‖zR,(k)
1,3 ‖Ω̄1

≤
C

(
√
ε)kµ6

1 +

(
µ
√
ε

)k , k = 1, 2, (5.57)

‖zR,(3)
1,3 ‖Ω̄1

≤
C

(
√
ε)3µ6

1 +

(
µ
√
ε

)3 +
C
εµ7 . (5.58)

Similarly, we can estimate the following bounds for zR
2,3

‖zR,(k)
2,3 ‖Ω̄2

≤
C

(
√
ε)kµ6

1 +

(
µ
√
ε

)k , k = 0, 1, 2, (5.59)

‖zR,(3)
2,3 ‖Ω̄2

≤
C

(
√
ε)3µ6

1 +

(
µ
√
ε

)3 +
C
εµ7 , k = 1, 2. (5.60)

Since p0µ
2 ≥ γε and using (5.52)-(5.60) in (5.45), we get

‖zR,(k)
1 ‖Ω̄1

≤
C
µk and ‖zR,(k)

2 ‖Ω̄2
≤

C
µk , 0 ≤ k ≤ 3.

�

Lemma 5.3.9. Let ZL(x, tk+1) and ZR(x, tk+1) be the solutions of (5.41)-(5.44). Then for

p0µ
2 ≤ γε and k = 0, 1, 2, 3

‖zL,(k)
1 (x, tk+1)‖Ω̄1

≤ Cε
−k
2 , ‖zL,(k)

2 (x, tk+1)‖Ω̄2
≤ Cε

−k
2 ,

‖zR,(k)
1 (x, tk+1)‖Ω̄1

≤ Cε
−k
2 , ‖zR,(k)

2 (x, tk+1)‖Ω̄2
≤ Cε

−k
2 .
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Proof. Using Lemma 5.3.4, we note that zL
1 and zL

2 satisfy

‖zL,(k)
1 (x, tk+1)‖Ω̄1

≤ Cε
−k
2 , ‖zL,(k)

2 (x, tk+1)‖Ω̄2
≤ Cε

−k
2 , 0 ≤ k ≤ 3.

For the bounds of zR
1 and zR

2 , choose j1(ε, µ) and j2(ε, µ) to be zero and using Lemma 5.3.4,

we get

‖zR,(k)
1 ‖Ω̄1

≤ Cε
−k
2 and ‖zR,(k)

2 ‖Ω̄2
≤ Cε

−k
2 , 0 ≤ k ≤ 3.

�

The following Lemma establishes sharper estimates for the bounds of the singular

components.

Lemma 5.3.10. Let the layer components zL
1 , zL

2 , zR
1 and zR

2 be the solutions of (5.41)-

(5.44). Then

|zL
1(x, tk+1)| ≤ Ce−θ1 x, x ∈ [0, 1], |zL

2(x, tk+1)| ≤ Ce−θ1(x−1), x ∈ [1, 2],

|zR
1 (x, tk+1)| ≤ Ce−θ2(1−x), x ∈ [0, 1], |zR

2 (x, tk+1)| ≤ Ce−θ2(2−x), x ∈ [1, 2],

where

θ1 =


√
γp0
√
ε

if µ2 ≤
γε

p0
,

p0µ

ε
if µ2 ≥

γε

p0
,

and θ2 =


√
γp0

2
√
ε

if µ2 ≤
γε

p0
,

γ

2µ
if µ2 ≥

γε

p0
.

Proof. For proof, see [135]. �

5.4 Spatial Discretization

The solution of the problem exhibits boundary layers at x = 0, x = 2 and an interior layer

at x = 1 [218]. To resolve the layers, we design the mesh to condense in the inner layer

regions and to remain coarse in the outer regions, away from the layers. Consequently, to

generate a piecewise-uniform meh D̄N
x , we partition the interval [0, 2] into six subintervals

as

[0, 2] = [0, β1] ∪ [β1, 1 − β2] ∪ [1 − β2, 1] ∪ [1, 1 + β1] ∪ [1 + β1, 2 − β2] ∪ [2 − β2, 2],

where β1 and β2 are the mesh transition parameters defined as

β1 =


min

{
1
4
,

2
√
ε

√
γp0

ln N
}

if µ2 ≤
γε

p0
,

min
{

1
4
,

2ε
p0µ

ln N
}

if µ2 ≥
γε

p0
,

and β2 =


min

{
1
4
,

2
√
ε

√
γp0

ln N
}

if µ2 ≤
γε

p0
,

min
{

1
4
,

2µ
ε

ln N
}

if µ2 ≥
γε

p0
.
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We place N/8 mesh points each in intervals [0, β1], [1 − β2, 1], [1, 1 + β1], [2 − β2, 2] and

N/4 mesh points in intervals [β1, 1 − β2] and [1 + β1, 2 − β2]. Consequently, we obtain

D̄N
x = {xi}

N
0 =



ih1 for i = 0, . . . ,N/8,

β1 +
(
i − N

8

)
h2 for i = N/8 + 1, . . . , 3N/8,

(1 − β2) +
(
i − 3N

8

)
h3 for i = 3N/8 + 1, . . . ,N/2,

1 +
(
i − N

2

)
h1 for i = N/2 + 1, . . . , 5N/8,

(1 + β1) +
(
i − 5N

8

)
h2 for i = 5N/8 + 1, . . . , 7N/8,

(2 − β2) +
(
i − 7N

8

)
h3 for i = 7N/8 + 1, . . . ,N,

where

hi =


h1 =

4β1

N
for i = 1, . . . ,N/8,N/2 + 1, . . . , 5N/8,

h2 =
4
N

(1 − β1 − β2) for i = N/8 + 1, . . . , 3N/8, 5N/8 + 1, . . . , 7N/8,

h3 =
8β2

N
for i = 3N/8 + 1, . . . ,N/2, 7N/8 + 1, . . . ,N.

The fully discrete problem on D̄N
x × Tt

M thus reads

L̂nŨ(xi, tk+1) = Ĝn(xi, tk+1), n = 1, 2, (5.61)

where

L̂1Ũi,k+1 = εδ2
xŨi,k+1 + µpi,k+1D+

x Ũi,k+1 − li,k+1Ũi,k+1 for i = 1, . . . ,N/2 − 1,

L̂2Ũi,k+1 = εδ2
xŨi,k+1 + µpi,k+1D+

x Ũi,k+1 − li,k+1Ũi,k+1 + ri,k+1Ũi−N/2,k+1 for i = N/2, . . . ,N − 1

and

Ĝ1(xi, tk+1) = −εδ2
xŨi,k − µpi,kD+

x Ũi,k + mi,kŨi,k − ri,kψ1(xi − 1, tk) − ri,k+1ψ1(xi − 1, tk+1)

+ gi,k+1 + gi,k for i = 1, . . . ,N/2 − 1,

Ĝ2(xi, tk+1) = −εδ2
xŨi,k − µpi,kD+

x Ũi,k + mi,kŨi,k − ri,kŨ(xi − 1, tk) + gi,k+1 + gi,k

for i = N/2, . . . ,N − 1

with 
Ũ(xi, tk+1) = ψ1(xi − 1, tk+1) for i = 0, 1, . . .N/2, k = 0, . . . ,M − 1,

Ũ(xi, t0) = ψ2(xi, 0) for i = 0, 1, . . . ,N,

Ũ(xN , tk+1) = ψ3(xN , tk+1) for k = 0, . . . ,M − 1.

The operator L̂n satisfies the following discrete minimum principle.
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Lemma 5.4.1. Let Zi,k+1 be a mesh function such that Zi,k+1 ≥ 0 for i = {0,N}, L̂1Zi,k+1 ≤ 0

for i = 1, . . . ,N/2 − 1 and L̂2Zi,k+1 ≤ 0 for i = N/2, . . . ,N − 1. Then Zi,k+1 ≥ 0 for

i = 0, 1, . . . ,N.

Proof. Choose q∗ ∈ {0, 1, . . . ,N} such that Zq∗,k+1 = min
D̄N

x ×Tt
M

Zi,k+1. Suppose Zq∗,k+1 < 0 and

it follows that q∗ < {0,N}, Zq∗+1,k+1 − Zq∗,k+1 ≥ 0 and Zq∗,k+1 − Zq∗−1,k+1 ≤ 0.

Case I: For q∗ ∈ {1, 2, . . . ,N/2 − 1}

L̂1Zq∗,k+1 = εδ2
xZq∗,k+1 + µpq∗,k+1D+

x Zq∗,k+1 − lq∗,k+1Zq∗,k+1

=
2ε

hq∗ + hq∗+1

{
Zq∗+1,k+1 − Zq∗,k+1

hq∗+1
−

Zq∗,k+1 − Zq∗−1,k+1

hq∗

}
+µpq∗,k+1

{
Zq∗+1,k+1 − Zq∗,k+1

hq∗+1

}
− lq∗,k+1Zq∗,k+1

> 0.

Case II: For q∗ ∈ {N/2, . . . ,N − 1}

L̂2Zq∗,k+1 = εδ2
xZq∗,k+1 + µpq∗,k+1D+

x Zq∗,k+1 − lq∗,k+1Zq∗,k+1 + rq∗,k+1Zq∗−N/2,k+1

≥ (rq∗,k+1 − lq∗,k+1)Zq∗,k+1

> 0.

The required result follows from a contradiction. �

Consequently, we can prove the following stability estimate for discrete operator L̂n.

Lemma 5.4.2. Let Zi,k+1 be the solution of (5.61). Then

|Zi,k+1| ≤ max
{
|Z0,k+1|, |ZN,k+1|, ‖L̂1Zi,k+1‖, ‖L̂2Zi,k+1‖

}
.

Proof. For proof, see [260]. �

5.5 Error Estimates

Let us decompose Ũi,k+1 into smooth and singular components to obtain parameter uni-

form error estimates. We write Ũi,k+1 := X̃i,k+1 + Z̃i,k+1, where

X̃(xi, tk+1) =


X̃1(xi, tk+1) for 0 ≤ i ≤ N/2 − 1,

X̃2(xi, tk+1) for N/2 ≤ i ≤ N,

and

Z̃(xi, tk+1) =


Z̃1(xi, tk+1) for 0 ≤ i ≤ N/2 − 1,

Z̃2(xi, tk+1) for N/2 ≤ i ≤ N.
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The smooth component X̃ satisfies

L̂1X̃1(xi, tk+1) = Ĝ1(xi, tk+1) for i ∈ {1, 2, . . . ,N/2 − 1} ,

X̃1(x0, tk+1) = b(0, tk+1), X̃1(xN/2, tk+1) = b(1, tk+1),

L̂2X̃2(xi, tk+1) = Ĝ2(xi, tk+1) for i ∈ {N/2 + 1, . . . ,N − 1} ,

X̃2(xN/2, tk+1) = c(1, tk+1), X̃2(xN , tk+1) = c(2, tk+1),

X̃2(xi − 1, tk+1) = X̃1(xi−N/2, tk+1), for i ∈ {N/2, . . . ,N − 1} ,


(5.62)

and the singular component Z̃ satisfies

L̂1Z̃1(xi, tk+1) = 0 for i ∈ {1, 2, . . . ,N/2 − 1} ,

Z̃1(x0, tk+1) = z1(0, tk+1), Z̃1(xN/2, tk+1) = Z1(1, tk+1),

L̂2Z̃2(xi, tk+1) = 0 for i ∈ {N/2 + 1, . . . ,N − 1} ,

Z̃2(xN/2, tk+1) = z2(1, tk+1), Z̃2(xN , tk+1) = z2(2, tk+1).


(5.63)

Moreover, the error ei,k+1 is given by

ei,k+1 = Ũi,k+1 − Ui,k+1 = (X̃i,k+1 − Xi,k+1) + (Z̃i,k+1 − Zi,k+1).

Lemma 5.5.1. Let X(xi, tk+1) and X̃i,k+1 be the solutions of (5.14), (5.16), (5.17) and

(5.62), respectively. Then

|X̃i,k+1 − X(xi, tk+1)| ≤ CN−1, 0 ≤ i ≤ N.

Proof. Consider

|X̃(xi, tk+1) − X(xi, tk+1)| = |(X̃1 + X̃2)(xi, tk+1) − (b + c)(xi, tk+1)|

= |(X̃1 − b)(xi, tk+1) + (X̃2 − c)(xi, tk+1)|

≤ |(X̃1 − b)(xi, tk+1)| + |(X̃2 − c)(xi, tk+1)|. (5.64)

For i = 1, . . . ,N/2 − 1

|L̂1(X̃1 − b)(xi, tk+1)| = |L̂1X̃1(xi, tk+1) − L̂1b(xi, tk+1)|

≤ ε

∣∣∣∣∣∣
(
δ2

x −
d2

dx2

)
b(xi, tk+1)

∣∣∣∣∣∣ + µ|p(xi, tk+1)|

∣∣∣∣∣∣
(
D+

x −
d
dx

)
b(xi, tk+1)

∣∣∣∣∣∣
≤ C max

1≤i≤ N
2 −1

hi(ε‖b‖3 + µ‖b‖2).

Case I: For p0µ
2 ≤ γε. Lemma 5.3.5 leads to

|L̂1(X̃1 − b)(xi, tk+1)| ≤ CN−1.
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Case II: For p0µ
2 ≥ γε. Lemma 5.3.7 leads to

|L̂1(X̃1 − b)(xi, tk+1)| ≤ CN−1.

Define ψ±(xi, tk+1) = CN−1 ± (X̃1 − b)(xi, tk+1), 0 ≤ i ≤ N/2 − 1 for sufficiently large C.

Then ψ±(x0, tk+1) ≥ 0, ψ±(xN/2, tk+1) ≥ 0 and L̂1ψ
±(xi, tk+1) ≤ 0. Now, using Lemma 5.4.1,

we obtain

|(X̃1 − b)(xi, tk+1)| ≤ CN−1, 0 ≤ i ≤ N/2.

A similar argument for (X̃2 − c) leads us to the following estimates

|(X̃2 − c)(xi, tk+1)| ≤ CN−1, N/2 ≤ i ≤ N.

Therefore, from (5.64), it follows that |X̃(xi, tk+1) − X(xi, tk+1)| ≤ CN−1, 0 ≤ i ≤ N. �

Let us decompose Z̃1(x, tk+1) and Z̃2(x, tk+1) further as Z̃1(xi, tk+1) := (Z̃L
1 +Z̃R

1 )(xi, tk+1)

and Z̃2(xi, tk+1) := (Z̃L
2 + Z̃R

2 )(xi, tk+1), where Z̃L
1 and Z̃L

2 satisfy

L̂1Z̃L
1 (xi, tk+1) = 0, 0 < i < N/2,

Z̃L
1 (x0, tk+1) = zL

1(0, tk+1), Z̃L
1 (xN/2, tk+1) = 0,

L̂2Z̃L
2 (xi, tk+1) = 0, N/2 < i < N,

Z̃L
2 (xN/2, tk+1) = zL

2(1, tk+1), Z̃L
2 (xN , tk+1) = 0,

Z̃L
2 (xN/2 − 1, tk+1) = Z̃L

1 (xi−N/2, tk+1), N/2 ≤ i < N,


(5.65)

and Z̃R
1 and Z̃R

2 satisfy

L̂1Z̃R
1 (xi, tk+1) = 0, 0 < i < N/2,

Z̃R
1 (x0, tk+1) = zR

1 (0, tk+1), Z̃R
1 (xN/2, tk+1) = zR

1 (1, tk+1),

L̂2Z̃R
2 (xi, tk+1) = 0, N/2 < i < N,

Z̃R
2 (xN/2, tk+1) = zR

2 (1, tk+1), Z̃R
2 (xN , tk+1) = zR

2 (2, tk+1),

Z̃R
2 (xi − 1, tk+1) = Z̃R

1 (xi−N/2, tk+1), 0 ≤ i < N/2.


(5.66)

Define the mesh functions

I1,i =


i∏

j=1
(1 + θ1h j)−1, 1 < i ≤ N/2,

1, i = 0,
and I2,i =


N/2∏

j=i+1
(1 + θ2h j)−1, 0 ≤ i < N/2,

1, i = N/2,
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where θ1 and θ2 are defined in Lemma 5.3.10. For i = N/8, . . . ,N/2

I1,i ≤ I1,N/8

=

N/8∏
j=1

(1 + θ1hN/8)−1

= (1 + θ1hN/8)−N/8

=

(
1 + θ1

8β1

N

)−N/8

≤ (1 + 8N−1 ln N)−N/8 ≤ CN−1, (5.67)

and for i = 0, . . . , 3N/8

I2,i ≤ I2,3N/8

=

(
1 + θ2

8β2

N

)−N/8

≤ (1 + 8N−1 ln N)−N/8

≤ CN−1. (5.68)

Lemma 5.5.2. Let Z̃L
1 , Z̃L

2 , Z̃R
1 and Z̃R

2 be the solutions of (5.65) and (5.66). Then

|Z̃L
1 (xi, tk+1)| ≤ CI1,i, |Z̃R

1 (xi, tk+1)| ≤ CI2,i, 0 ≤ i ≤ N/2 and

|Z̃L
2 (xi, tk+1)| ≤ CI1,i− N

2
, |Z̃R

2 (xi, tk+1)| ≤ CI2,i− N
2
, N/2 ≤ i ≤ N.

Proof. For i = 0, . . .N/2, define Q±(xi, tk+1) = |Z̃L
1 (x0, tk+1)|I1,i ± Z̃L

1 (xi, tk+1). Then,

Q±(x0, tk+1) = |Z̃L
1 (x0, tk+1)| ± Z̃L

1 (x0, tk+1) ≥ 0 and Q±(xN/2, tk+1) ≥ 0. Also, note that

L̂1I1,i = (εδ2
s + µpD+

s − l)I1,i ≤ 0 which implies L̂1Q
±(xi, tk+1) ≤ 0. Using Lemma 5.4.1,

we have

|Z̃L
1 (xi, tk+1)| ≤ CI1,i, 0 ≤ i ≤ N/2.

A similar argument for Z̃R
1 , Z̃L

2 and Z̃R
2 leads to the following estimates

|Z̃R
1 (xi, tk+1)| ≤ CI2,i, 0 ≤ i ≤ N/2,

|Z̃L
2 (xi, tk+1)| ≤ CI1,i−N/2, N/2 ≤ i ≤ N,

|Z̃R
2 (xi, tk+1)| ≤ CI2,i−N/2, N/2 ≤ i ≤ N.

�

To estimate the error bound for (Z̃ − Z) = (Z̃L − ZL) + (Z̃R − ZR), we compute the

error bound for (Z̃L − ZL) and (Z̃R − ZR), separately. For this, define Z̃L and Z̃R as

Z̃L(xi, tk+1) =


Z̃L

1 , 0 ≤ i ≤ N/2 − 1,

Z̃L
2 , N/2 ≤ i ≤ N,

and Z̃R(xi, tk+1) =


Z̃R

1 , 0 ≤ i ≤ N/2 − 1,

Z̃R
2 , N/2 ≤ i ≤ N.
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Therefore

(Z̃L − ZL)(xi, tk+1) =


(Z̃L

1 − zL
1)(xi, tk+1), 0 ≤ i ≤ N/2 − 1,

(Z̃L
2 − zL

2)(xi, tk+1), N/2 ≤ i ≤ N,

and

(Z̃R − ZR)(xi, tk+1) =


(Z̃R

1 − zR
1 )(xi, tk+1), 0 ≤ i ≤ N/2 − 1,

(Z̃R
2 − zR

2 )(xi, tk+1), N/2 ≤ i ≤ N.

Lemma 5.5.3. Let ZL, ZR be the solutions of (5.41)-(5.44) and Z̃L, Z̃R be the solutions of

(5.65)-(5.66), respectively. Then

|(Z̃L − ZL)(xi, tk+1)| ≤


CN−1 ln N if p0µ

2 ≤ γε,

CN−1(ln N)2 if p0µ
2 ≥ γε,

|(Z̃R − ZR)(xi, tk+1)| ≤


CN−1 ln N if p0µ

2 ≤ γε,

CN−1 ln N if p0µ
2 ≥ γε.

Proof. Using (5.67), (5.68) and Lemma 5.5.2, we have

|Z̃L
1 (xi, tk+1)| ≤ CN−1, for N/8 ≤ i ≤ N/2, (5.69)

|Z̃R
1 (xi, tk+1)| ≤ CN−1, for 0 ≤ i ≤ 3N/8, (5.70)

|Z̃L
2 (xi, tk+1)| ≤ CN−1, for 5N/8 ≤ i ≤ N, (5.71)

|Z̃R
2 (xi, tk+1)| ≤ CN−1, for N/2 ≤ i ≤ 7N/8. (5.72)

Case I: For p0µ
2 ≤ γε and 1 ≤ i ≤ N/8 − 1

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| = |L̂1Z̃L
1 (xi, tk+1) − L̂zL

1(xi, tk+1)|

= |L̂1Z̃L
1 (xi, tk+1) − L̃1zL

1(xi, tk+1)|

≤ ε

(
δ2

x −
d2

dx2

)
|zL

1(xi, tk+1)| + µ

(
D+

x −
d
dx

)
|zL

1(xi, tk+1)|

≤ Chi

(
ε|zL

1 |3 + µ|zL
1 |2

)
≤ Chi

(
1
√
ε

+
µ
√
ε

)
≤

Chi
√
ε
.

In case β1 =
1
4

, we have
1
4
≤

2
√
ε

√
γp0

ln N, which implies
1
√
ε
≤ C ln N. Thus

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| ≤ CN−1 ln N.
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In case β1 =
2
√
ε

√
γp0

ln N, we compute

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| ≤
Chi
√
ε
≤

C
√
ε

8β1

N
≤ CN−1 ln N.

Let us next consider φ±(xi, tk+1) = CN−1 ln N ± (Z̃L
1 − zL

1)(xi, tk+1) for 0 ≤ i ≤ N/8.

Then φ±(xi, tk+1) ≥ 0 for i = {0,N/8} and L̂1φ
±(xi, tk+1) ≤ 0. Using Lemma 5.4.1,

we get

|(Z̃L
1 − zL

1)(xi, tk+1)| ≤ CN−1 ln N, 0 ≤ i ≤ N/8. (5.73)

For N/8 ≤ i ≤ N/2 − 1, using (5.69) and Lemma 5.3.10, we calculate that

|(Z̃L
1 − zL

1)(xi, tk+1) ≤ |Z̃L
1 (xi, tk+1)| + |zL

1(xi, tk+1)| ≤ CN−1. (5.74)

Thus from (5.73) and (5.74), we get

|(Z̃L
1 − zL

1)(xi, tk+1) ≤ CN−1 ln N, 0 ≤ i ≤ N/2 − 1.

Similarly, we can compute that

|(Z̃L
2 − zL

2)(xi, tk+1)| ≤ CN−1 ln N, N/2 ≤ i ≤ N.

Case II: For p0µ
2 ≥ γε and 1 ≤ i ≤ N/8 − 1

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| = |L̂1Z̃L
1 (xi, tk+1) − L̃1zL

1(xi, tk+1)|

≤ Chi

(
ε|zL

1 |3 + µ|zL
1 |2

)
≤ Chi

(
µ3

ε2 +
µ3

ε2

)
≤ Chiµ

(
µ

ε

)2
.

In case β1 =
1
4

, we have
1
4
≤

2ε
p0µ

ln N, which implies
µ

ε
≤ C ln N. Thus

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| ≤ CN−1(ln N)2.

If β1 =
2ε
p0µ

ln N, then we compute

|L̂1(Z̃L
1 − zL

1)(xi, tk+1)| ≤ Chiµ
(
µ

ε

)2
≤ C

µ2

ε
N−1 ln N.

Consider,

φ±(xi, tk+1) = CN−1 + CN−1 ln N(β1 − xi)
µ

ε
± (Z̃L

1 − zL
1)(xi, tk+1), 0 ≤ i ≤ N/8.
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Then, L̂1φ
±(xi, tk+1) ≤ 0 for 1 ≤ i ≤ N/8 − 1 and φ±(xi, tk+1) ≥ 0 for i = {0,N/8}.

Using Lemma 5.4.1 to get

|(Z̃L
1 − zL

1)(xi, tk+1)| ≤ CN−1 + CN−1 ln Nβ1
µ

ε
≤ CN−1(ln N)2, 0 ≤ i ≤ N/8. (5.75)

For N/8 ≤ i ≤ N/2 − 1, it follows from (5.69) and Lemma 5.3.10 that

|(Z̃L
1 − zL

1)(xi, tk+1) ≤ CN−1. (5.76)

Thus, from (5.75) and (5.76)

|(Z̃L
1 − zL

1)(xi, tk+1) ≤ CN−1(ln N)2, 0 ≤ i ≤ N/2 − 1. (5.77)

Similarly, for N/2 ≤ i ≤ N, we obtain

|(Z̃L
2 − zL

2)(xi, tk+1)| ≤ CN−1(ln N)2.

Thus,

|(Z̃L − ZL)(xi, tk+1)| ≤


CN−1 ln N if p0µ

2 ≤ γε,

CN−1(ln N)2 if p0µ
2 ≥ γε.

Following the similar steps and argument for (Z̃R − ZR), it is straightforward to

establish that for p0µ
2 ≤ γε and p0µ

2 ≥ γε,

|(Z̃R − ZR)(xi, tk+1)| ≤ CN−1 ln N, 0 ≤ i ≤ N.

�

Theorem 5.5.4. Let Ũ(xi, tk+1) and U(xi, tk+1) be the solutions of (5.61) and (5.10), re-

spectively. Then for 0 ≤ i ≤ N

∣∣∣(Ũ − U)(xi, tk+1)
∣∣∣ ≤ C


N−1 ln N if p0µ

2 ≤ γε

N−1(ln N)2 if p0µ
2 ≥ γε.

Proof. The proof follows from Lemma 5.5.1 and Lemma 5.5.3. �

Finally, we combine (5.13) and Theorem 5.5.4 to obtain the principle convergence

estimate that reads.

Theorem 5.5.5. Let u and Ũ be the solutions of the continuous problem (5.1) and the

discrete problem (5.61), respectively. Then

∣∣∣Ũ(xi, tk+1) − u(xi, tk+1)
∣∣∣ ≤ C


(∆t2 + N−1 ln N) if p0µ

2 ≤ γε

(∆t2 + N−1(ln N)2) if p0µ
2 ≥ γε

for 0 ≤ i ≤ N and 0 ≤ k ≤ M.
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5.6 Numerical Illustrations

In this section, we consider two model problems, present numerical results using the

proposed method, and verify the theoretical estimates numerically.

Example 5.6.1. Consider the following two-parameter singularly perturbed problem:

[εuxx + µ(1 + x)ux − (4 + sin x)u − ut](x, t) + u(x − 1, t) = −ex, (x, t) ∈ (0, 2) × (0, 2],

u(x, t) = 5 + t2, (x, t) ∈ Γ1,

u(x, t) = 5, (x, t) ∈ Γ2,

u(x, t) = 5, (x, t) ∈ Γ3.

Example 5.6.2. Consider the following two-parameter singularly perturbed problem:

[εuxx + µ(2 + x + t)ux − (2 + xt)u − ut](x, t) + u(x − 1, t) = (et2 − 1)(1 + xt),

(x, t) ∈ (0, 2) × (0, 2],

u(x, t) = 0, (x, t) ∈ Γ1,

u(x, t) = 0, (x, t) ∈ Γ2,

u(x, t) = 0, (x, t) ∈ Γ3.

The exact solutions of the above examples are not known for comparison. Therefore,

the double mesh principle [173] is used to estimate the maximum absolute error and rate

of convergence. The maximum absolute error (EN,4t
ε ) and order of convergence (RN,4t

ε ) are

defined as

EN,4t
ε := max

∣∣∣UN,4t(xi, tk+1) − Ũ2N,4t/2(xi, tk+1)
∣∣∣ and RN,4t

ε := log2

(
EN,4t
ε

E2N,4t/2
ε

)
.

Here, UN,4t(xi, tk+1) and Ũ2N,4t/2(xi, tk+1) denotes the numerical solutions on D̄N
x × Tt

M and

D̄2N
x × Tt

2M, respectively.

The maximum absolute error (EN,4t
ε ) and corresponding order of convergence (RN,4t

ε )

for Example 5.6.1 and Example 5.6.2 are tabulated for different values of ε, µ, M, and N

in Tables 5.1-5.4. Moreover, the log-log plot of the maximum absolute error can be had

from Figures 5.5-5.8. It is evident that the errors decrease monotonically as N increases.

The presence of both interior and boundary layers is apparent from the surface plots

of the numerical solution of Examples 5.6.1 and 5.6.2 are displayed in Figures 5.1-5.4,

for different values of ε and µ.
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Figure 5.1: Numerical solution of Example 5.6.1 with M = N = 128, µ = 2−22 and

ε = 2−17.
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Figure 5.2: Numerical solution of Example 5.6.1 with M = N = 128, µ = 2−6 and

ε = 2−14.
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Figure 5.3: Numerical solution of Example 5.6.2 with M = N = 128, µ = 2−18 and

ε = 2−20.
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Figure 5.4: Numerical solution of Example 5.6.2 with M = N = 128, µ = 2−8 and

ε = 2−18.
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Figure 5.5: Error plot for Example 5.6.1 for Case 1 when ε = 2−10.
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Figure 5.6: Error plot for Example 5.6.1 for Case 2 when µ = 2−6.
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Figure 5.7: Error plot for Example 5.6.2 for Case 1 when ε = 2−20.
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Figure 5.8: Error plot for Example 5.6.2 for Case 2 when µ = 2−8.
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Table 5.1: Maximum absolute error and order of convergence for Example 5.6.1 for dif-

ferent values of µ, M and N when ε = 2−10.

µ M = N = 32 64 128 256 512 1024

2−11 2.8356e-03 1.3289e-03 5.8495e-04 2.2566e-04 7.5573e-05 2.4680e-05

1.0934 1.1838 1.3742 1.5782 1.6145 1.6390

2−13 2.8186e-03 1.3309e-03 5.8587e-04 2.2603e-04 7.5589e-05 2.4635e-05

1.0826 1.1837 1.3741 1.5803 1.6175 1.6422

2−15 2.8143e-03 1.3314e-03 5.8611e-04 2.2612e-04 7.5593e-05 2.4624e-05

1.0798 1.1837 1.3741 1.5808 1.6182 1.6487

2−17 2.8133e-03 1.3315e-03 5.8617e-04 2.2615e-04 7.5594e-05 2.4621e-05

1.0792 1.1837 1.3740 1.5809 1.6184 1.6525

2−19 2.8130e-03 1.3315e-03 5.8618e-04 2.2615e-04 7.5595e-05 2.4620e-05

1.0791 1.1836 1.3741 1.5809 1.6185 1.6588

2−21 2.8129e-03 1.3315e-03 5.8618e-04 2.2616e-04 7.5595e-05 2.4620e-05

1.0789 1.1836 1.3740 1.5810 1.6185 1.6588

2−23 2.8129e-03 1.3315e-03 5.8619e-04 2.2616e-04 7.5595e-05 2.4620e-05

1.0789 1.1836 1.3740 1.5810 1.6185 1.6588

2−25 2.8129e-03 1.3315e-03 5.8619e-04 2.2616e-04 7.5595e-05 2.4620e-05

1.0789 1.1836 1.3740 1.5810 1.6185 1.6588
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Table 5.2: Maximum absolute error and order of convergence for Example 5.6.1 for dif-

ferent values of ε, M and N when µ = 2−6.

ε M = N = 32 64 128 256 512 1024

2−14 5.8061e-03 4.6143e-03 3.2823e-03 2.0873e-03 1.2587e-03 7.3043e-04

0.3315 0.4914 0.6530 0.7297 0.7851 0.8412

2−16 6.9481e-03 5.2511e-03 3.5537e-03 2.3566e-03 1.4543e-03 8.5388e-04

0.4040 0.5632 0.5926 0.6963 0.7682 0.8403

2−18 7.1592e-03 5.7505e-03 4.0863e-03 2.6675e-03 1.6513e-03 9.5415e-04

0.3161 0.4928 0.6153 0.7094 0.7913 0.8577

2−20 7.4927e-03 5.9608e-03 4.2997e-03 2.7905e-03 1.7028e-03 9.0641e-04

0.3299 0.4712 0.6236 0.7126 0.7730 0.8524

2−22 7.5787e-03 6.0219e-03 4.3625e-03 2.8267e-03 1.7237e-03 1.0087e-03

0.3317 0.4650 0.6260 0.7136 0.7730 0.8571

2−24 7.5956e-03 6.0352e-03 4.3788e-03 2.8362e-03 1.7291e-03 1.0120e-03

0.3317 0.4628 0.6265 0.7139 0.7728 0.8592

2−26 7.6080e-03 6.0390e-03 4.3822e-03 2.8385e-03 1.7305e-03 1.0129e-03

0.3332 0.4626 0.6265 0.7139 0.7726 0.8611

2−28 7.6156e-03 6.0421e-03 4.3830e-03 2.8389e-03 1.7308e-03 1.0131e-03

0.3339 0.4631 0.6266 0.7138 0.7726 0.8583
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Table 5.3: Maximum absolute error and order of convergence for Example 5.6.2 for dif-

ferent values of µ, M and N when ε = 2−20.

µ M = N = 32 64 128 256 512 1024

2−18 1.024e-02 5.3320e-03 1.9856e-03 6.7329e-04 2.1566e-04 6.4616e-05

1.0478 1.4250 1.5602 1.6424 1.7388 1.8226

2−20 1.0914e-02 5.2812e-03 1.9729e-03 6.6492e-04 2.1370e-04 6.4556e-05

1.0471 1.4205 1.5690 1.6375 1.7270 1.8192

2−22 1.0887e-02 5.2688e-03 1.9697e-03 6.6289e-04 2.1332e-04 6.4510e-05

1.0470 1.4195 1.5711 1.6357 1.7254 1.8093

2−24 1.0880e-02 5.2657e-03 1.9689e-03 6.6238e-04 2.1323e-04 6.4506e-05

1.0470 1.4192 1.5716 1.6352 1.7249 1.8046

2−26 1.0878e-02 5.2649e-03 1.9687e-03 6.6225e-04 2.1320e-04 6.4489e-05

1.0469 1.4191 1.5717 1.6351 1.7251 1.7963

2−28 1.0878e-02 5.2647e-03 1.9686e-03 6.6222e-04 2.1320e-04 6.4489e-05

1.0469 1.4191 1.5718 1.6351 1.7251 1.7963

2−30 1.0878e-02 5.2647e-03 1.9686e-03 6.6221e-04 2.1320e-04 6.4489e-05

1.0469 1.4191 1.5718 1.6350 1.7251 1.7963

2−32 1.0878e-02 5.2646e-03 1.9686e-03 6.6221e-04 2.1320e-04 6.4489e-05

1.0469 1.4191 1.5718 1.6350 1.7251 1.7963
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Table 5.4: Maximum absolute error and order of convergence for Example 5.6.2 for dif-

ferent values of ε, M and N when µ = 2−8.

ε M = N = 32 64 128 256 512 1024

2−16 1.2594e-02 7.7325e-03 3.7780e-03 1.5195e-03 6.0382e-04 2.2666e-04

0.7037 1.0333 1.3140 1.3314 1.4135 1.5628

2−18 1.3692e-02 8.3363e-03 3.8621e-03 1.5195e-03 6.0025e-04 2.2632e-04

0.7158 1.1096 1.3462 1.3321 1.4072 1.5646

2−20 1.4047e-02 8.5373e-03 3.8621e-03 1.5182e-03 5.0182e-04 2.2602e-04

0.7184 1.1444 1.3470 1.3350 1.4129 1.5673

2−22 1.4143e-02 8.5913e-03 3.8622e-03 1.5467e-03 6.0154e-04 2.2583e-04

0.7191 1.1535 1.3467 1.3351 1.4134 1.5771

2−24 1.4167e-02 8.6051e-03 3.8633e-03 1.5172e-03 6.0131e-04 2.2566e-04

0.7127 1.1554 1.3484 1.3352 1.4140 1.5842

2−26 1.4174e-02 8.6086e-03 3.8531e-03 1.5119e-03 5.9672e-04 2.2322e-04

0.7193 1.1598 1.3497 1.3412 1.4186 1.5886

2−28 1.4175e-02 8.6096e-03 3.8526e-03 1.5112e-03 5.9626e-04 2.2209e-04

0.7193 1.1601 1.3501 1.3417 1.4248 1.5904

2−30 1.4175e-02 8.6096e-03 3.8526e-03 1.5112e-03 5.9626e-04 2.2209e-04

0.7193 1.1601 1.3501 1.3417 1.4248 1.5904
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5.7 Concluding Remark

A convergent numerical method is presented for a two-parameter singularly perturbed

parabolic problem with a large spatial delay. In general, the solution of this kind of prob-

lem has both boundary and interior layers, which makes the numerical analysis different.

Here, we provide a convergent solution by discretizing the continuous problem with the

Crank-Nicolson method for the time variable on a uniform mesh and an upwind scheme

on a piecewise uniform mesh for the spatial variable. The theoretical analysis shows that

the numerical method is almost first-order accurate in space and second-order in time,

which is also validated by several numerical experiments. Note that boundary layers ap-

pear because of the presence of perturbation parameters. However, it is observed that the

interior layers can appear because of the presence of a large delay in reaction term.



Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

Many problems in applied mathematics lead to questions of the type: Given is a differen-

tial equation with a small parameter ε. This parameter occurs so that the corresponding

degenerate differential equation is of lower order than the original one. What happens

then to the solution of a boundary value problem of the original differential equation if

ε tends to zero in that solution? It is by no means obvious as it sounds and not even

always true, as we have seen that the solution of such a boundary value problem tends

to a solution of the limiting problem. But even when this is the case, the question arises

what are the boundary conditions satisfied by the limiting function. As a solution of a

differential equation of lower order than the original one, it cannot, in general, satisfies

all the boundary conditions prescribed. In those cases, the solution of the problem shows

a peculiar behaviour for very small values of ε. Some of the solution derivatives assume

very large values in a narrow region near the boundary. In the most important applica-

tions of phenomena of this type the first derivative of the solution and, of course, all the

higher derivatives diverge at parts of the boundary, as ε tends to zero. In the physical

interpretations, this means the occurrence of “Boundary layers" in which the quantity to

be investigated increases or decreases very rapidly.

The systems/problems in which the suppression of a small parameter is responsible

for the degeneration (or reduction) of dimension (or order) of the problem are labelled

as singularly perturbed systems/problems, which are a special representation of the gen-

eral class of time scale systems. In many situations, these systems take into account not

just the present state of the physical system but also its past history. These models are

described by a certain class of functional differential equations. In most applications, a

delay is introduced when there are some hidden variables and processes which are not

147
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well understood but are known to cause a time-lag. Time delays are natural components

of dynamic processes in physics, mechanics, biology, ecology, economics, physiology,

population dynamics, and aeronautics, to name a few. Even if the process does not in-

clude delay phenomena, the actuators or sensors that are involved in its automatic control

usually introduce time-lags. In fact, the majority of the applications lead to complicated

equations for which a complete mathematical treatment has not yet been attempted. How-

ever, a variety of asymptotic and numerical methods have been developed. But, there are

known difficulties linked with these methods. For example, finding the correct asymp-

totic expansion is not a routine exercise. Moreover, a high degree of compatibility and

sufficiently smooth boundary data are required. This is too restraining because engineers

often encounter problems that, in general, do not satisfy these smoothness assumptions.

Also, numerical discretization of such systems for small ε is burdened with difficulties;

for example, FDM and FEM necessitate a mesh to sustain approximations, which is not a

routine exercise in higher dimensions or in regions with crooked boundaries. In fact, the

discrete solutions obtained using standard Galerkin or centered finite differences methods

demonstrate oscillatory behaviour for small discretization parameters. Moreover, when

streamline diffusion finite element methods are applied to singular perturbation problems

using nonconforming trial spaces, it is observed that stability and convergence problems

may occur. However, nonconforming finite element approximations are appropriate, for

they have the outstanding practical benefit that each degree of freedom belongs to at most

two elements. This results in reasonable local communication, and the method can be

parallelized in a highly efficient manner on MIMD-machines. But, singular perturbation

problems have local features which make them ripe for adaptive refinement algorithms

based on local error indicators, although there remain some dazzling issues: first, the role

of stabilization, e.g., using streamline upwind discretizations, and second, the fact that

local error estimation may be very inaccurate if critical features like boundary layers are

not adequately resolved by the underlying mesh. The layer adapted meshes seem promis-

ing in the discretization of such systems. But, they do have associated limitations; the

chief among them is the extension of these methods to multi-dimensions or over complex

domains. One way is to use a fairly simple discretization in concurrence with a rightfully

chosen non-uniform grid. It is correct that the appearance and dimensions of boundary

layers are often a-priori unknown. However, in the first step, a mesh can be chosen ac-

cording to experiences with similar problems which should be adjusted in a recursive

manner.

This thesis presents numerical methods for solving singularly perturbed parabolic

partial differential equations with discontinuous coefficients and delays. Chapter 1 recalls
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the definitions of regular and singular perturbation problems and provides a brief literature

survey.

Chapter 2 presents and analyses an adaptive finite difference method to solve a class

of singularly perturbed parabolic delay differential equations with discontinuous convec-

tion coefficient and source. The numerical method involves an upwind finite difference

scheme on a layer-adapted Shishkin mesh in space and a backward Euler method in time

on a uniform mesh. The proposed numerical method is analysed for consistency, stability,

and convergence. Extensive theoretical analysis is performed to obtain consistency and

error estimates. The proposed method is unconditionally stable, and the obtained conver-

gence is parameter-uniform with first-order convergence in space and time. Numerical

results are presented for model problems, demonstrating the effectiveness of the proposed

technique. Chapter 3 extends the idea and presents a higher-order hybrid finite differ-

ence method to solve the model problem. The proposed hybrid difference method is a

composition of a central difference scheme and a midpoint upwind scheme on a specially

generated mesh. Moreover, the time variable is discretised using an implicit finite differ-

ence method. The error estimates of the proposed numerical method satisfy parameter-

uniform second-order convergence in space and first-order convergence in time. The rig-

orous numerical analysis of the proposed method on a Shishkin class mesh establishes the

supremacy of the proposed scheme.

Chapter 4 proposes a robust higher-order accurate numerical method on a specially

designed non-uniform mesh for solving singularly perturbed convection-diffusion prob-

lems with delay and integral boundary conditions. An upwind finite difference scheme

is used on a non-uniform mesh in space, while a Crank-Nicolson scheme is used on a

uniform mesh in the time variable. The proposed method is unconditionally stable and

converges uniformly, independent of the perturbation parameter. The error analysis indi-

cates that the numerical solution is parameter-uniform second-order convergence in time

and first-order convergence in space.

Chapter 5 presents a robust computational technique to solve a class of two-

parameter parabolic convection-diffusion problems with delay. The method involves a

Crank-Nicolson scheme for the time variable on a uniform mesh and an upwind scheme

on a piecewise uniform mesh for the spatial variable. The proposed scheme gives pa-

rameter uniform second-order convergence in time and almost first-order convergence in

space.
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6.2 Future Work

In this section, we outline some of the interesting problems to which the approach/idea

presented in the thesis can be extended. It would be interesting to consider the following

problems for future work.

1. Consider a parabolic partial functional differential equation of type

∂u(x, t)
∂t

− ε
∂2u(x, t)
∂x2 + b(x, t)u(x, t) + a(x, t)u(x, t − τ) = f (x, t), (x, t) ∈ D

u(x, s) = ϕ(x, s); x ∈ Ω ≡]0, 1[, s ∈ [−τ, 0[,

u(x, 0) = ϕ(x, 0) = ϕ(x); x ∈ Ω ≡]0, 1[,

u(0, t) = Φ, u(1, t) = Ψ; t ∈]0,T ],

where 0 < ε � 1, D = (0, 1) × (0,T ], Φ = Φ(t) and Ψ = Ψ(t) are smooth functions

defined on the left and right side of the domain corresponding to x = 0 and x = 1.

For simplicity one may consider T = nτ for some integer n > 1. The coefficients

b(x, t) and a(x, t) of reaction terms are sufficiently smooth functions satisfying

b(x, t) ≥ β > 0 and a(x, t) ≥ α > 0.

For sufficiently small ε, it is clear that the problem exhibits boundary layers on the

left and right end of the outflow boundary region. Moreover, the characteristics

of the reduced problems being vertical lines x = η and the boundary layers are of

parabolic type. The existence of a unique solution for the said problem is shown

in [161] with the assumption that given data is sufficiently smooth and satisfies

appropriate compatibility conditions at the corners. However, for hybrid weighted

schemes, we may need more regularity.

2. Consider the following class of two parameter singularly perturbed parabolic prob-

lems posed on the domain G = Ω × (0,T ], Ω = (0, 1), Γ = G̃\G

ε
∂2u(x, t)
∂x2 + µa

∂u(x, t)
∂x

+ bu(x, t − τ) + cu(x, t) −
∂u(x, t)
∂t

= f (x, t),

u(x, s) = S (x, s); x ∈ Ω ≡ (0, 1) = Γb, s ∈ [−τ, 0),

u = q(t); on Γl

⋃
Γr,

where Γb = (x, 0) : 0 ≤ x ≤ 1, Γl = (0, t) : 0 ≤ t ≤ T , and Γl = (1, t) : 0 ≤ t ≤ T .

Note that 0 < ε ≤ 1 and 0 < µ ≤ 1 are perturbation parameters. We assume

sufficient regularity and compatibility at the corners so that the solution and its
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regular component are sufficiently smooth for our analysis. Our interest lies in

constructing parameter uniform numerical methods [144] for this class of singularly

perturbed problems. By this we mean numerical methods whose solutions converge

uniformly with respect to the singular perturbation parameters. When the parameter

µ = 1, the problem is the well-studied parabolic convection diffusion problem [147]

and in this case a boundary layer of width O(ε) appears in the neighbourhood of the

edge x = 0. When µ = 0 we have a parabolic reaction-diffusion problem [190] and

boundary layers of width O(
√
ε) appear in the neighbourhood of both x = 0 and

x = 1.

Among others problems of interest is a characteristic example from numerical control

given by the equation

∂u(x, t)
∂t

− ε
∂2u(x, t)
∂x2 = ν(g(u(x, t − τ)))

∂u(x, t)
∂x

+ c[ f (u(x, t − τ)) − u(x, t)]

which models a furnace used to process metal sheets. Here, u(x, t) is the temperature

distribution in a metal sheet, moving at a velocity ν and heated by a source specified

by the function f . Here, both ν and f are dynamically adapted by a controlling device

monitoring the current temperature distribution. The finite speed of the controller, how-

ever, introduces a fixed delay of length τ. Another problem of particular interest is from

population dynamics, the so-called Britton-model,

∂u(x, t)
∂t

= ε∆u + u(1 − g ∗ u) with g ∗ u =

t∫
t−τ

∫
Ω

g(x − y, t − s)u(y, s)dy ds.

Here, u(x, t) denotes a population density, which evolves through random migration (mod-

elled by the diffusion term) and reproduction (modelled by the nonlinear reaction term).

The latter involves a convolution operator with a kernel g(x, t), which models the dis-

tributed age-structure dependence of the evolution and its dependence on the population

levels in the neighbourhood.
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[276] Stojanović, M., 2003, “A uniformly accurate finite elements method for singular

perturbation problems,” Glasnik Matematički 38, 185–197.
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