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ABSTRACT 

Inter-individual variability in drug response, broadly including drug efficacy and its 

safety, is an increasing problem globally. Such variability has detrimental effect on patients 

leading to increased financial burden to reduced quality of life. Genomic factors being one of 

the reasons for this variability, and is explored in the field of study called ‘pharmacogenomics’ 

(PGx). A broader definition of PGx, ‘is the study of genomic technologies to enable the 

discovery and development of novel drugs and the optimization of drug dose and choice in 

individual patients to maximize efficacy and minimise toxicity. The efficacy of different drugs 

have been reported to vary from 25% to 80%. It is famously stated that more than 90% of the 

drugs only work in 30 to 50% of the people. And in terms of drug toxicity, adverse drug 

reactions (ADRs) affect about 15% of people in hospital.  The aim of PGx is to define the 

underlying genetic mechanisms and ultimately to implement pharmacogenetic testing to 

improve treatment outcome. Another advantage of understanding the genetic basis of variable 

drug response can be used as a tool to expand the use of existing drugs for new indications as 

well as for identification of new drug targets or drug development.   

After three decades of research in PGx, there are vital gaps in achieving translational 

efficiency when advancing towards clinical implementation. With the enormous amount of 

articles published every year (approximately 6 lakh articles in PubMed so far), less than 1% 

reaches to clinical trials (5491 randomised controlled trials). And among these only 133 genes 

are known with PGx outcome and are included for drug labelling warnings approved by the 

United Stated food and drug administration (FDA) for 363 drugs. This large translational gap 

needs to reduce. Secondly, most of the PGx markers established (163 markers for 118 drugs) 

are used to predict drug toxicity because clear and discrete phenotypic end-points are available 

for assessment like skin rashes, liver toxicity. But only a handful of markers (73 markers for 

20 drugs) are known to predict drug response due to heterogeneous end-points like drug 

clearance rate, drug/metabolite ratio, and metabolizer status. More homogenous patient cohorts 

studying drug response outcomes are required to identify genome-based markers for poor 

response. And lastly, so far after several candidate gene studies, genome-wide association 

(GWAS) are shaping the future of genetic association models and it should attempt to explore 

the genome of patients across different ethnic groups but unfortunately, most of the GWAS are 

confined to western population like American (AMR) and European (EUR). Only a few in East 

Asian (EAS) encompassing Chinese and Japanese ethnicity, and no GWAS in African (AFR) 



3 

 

or South Asian (SAS) group so far. It is inevitable to screen the genome of all global 

populations to identify conclusive markers predicting PGx outcomes. Thus, our study was 

aimed to elucidate PGx markers to prognose therapeutic phenotypes in patients with epilepsy 

(PWE) & develop a platform for evidence-based testing for clinical implications.  

In this study, we first developed a semi-automated text mining approach, using R-

package, pubmed.mineR, to retrieve published articles with PGx information in the form of 

disease–drug–gene- genetic polymorphism relationships to obtain PGx related data for 

epilepsy treatment for easier therapeutic guidelines. Further we evaluated our approach by 

comparing its performance (precision and accuracy) with the other available benchmark 

datasets like PharmGKB and compared the results retrieved with the FDA approved PGx 

markers used for drug labelling to weigh its clinical ability and accuracy. We identified 2304 

PGx relationships pertaining to 1753 disease types and 666 drugs. Our approach showed 

performance precision of 80.6% with benchmark datasets like Pharmacogenomic 

Knowledgebase (PharmGKB) (90.4%), Online Mendelian Inheritance in Man (OMIM) 

(60.0%), and comparative toxicogenomics database (CTD) (72.9%). From a total of 2,304 PGx 

relationships identified, a total of 127 (68%) are coinciding with the 362 US-FDA approved 

362 pharmacogenomic markers used in drug labelling, indicating that our approach has a 

greater precision in data extraction with PGx information for drug response prediction.  

Subsequently, we performed genome-wide genotyping on 789 PWE of North Indian 

origin to identify genetic variants significantly associated with poor response to commonly 

prescribed anti-epileptic drugs (AEDs) like phenytoin (PHT), carbamazepine (CBZ) or 

valproic acid (VPA). This GWAS was performed using commercially available Illumina 

Infinium Global screening array (GSA)-24 v2.0 with psych customization. On performing 

quality control (QC) based on different parameters to exclude out the poor quality single 

nucleotide polymorphisms (SNPs) and samples, we conducted logistic regression using age, 

sex and 2 principal components (PC1, PC2) as covariates in PLINK 1.9 assuming an additive 

model and evaluated the association of each imputed SNP. Our GWAS of AED response 

revealed suggestive evidence for association at 29 genomic loci (p <5.0 x 10-5) but no 

significant association reflecting its limited power. The suggestive associations highlight 

candidate genes that are implicated in metabolism of AEDs are known targets to these drugs. 

The top SNP rs60633642 associated with overall poor response to AED [OR (95% CI) = 

1.98(1.50-2.60), p< 1.185 x10-6] is an intergenic variant (SPTLC3; ISM1) down-regulating the 

expression of SPTLC3 gene in different tissues, most significant at brain caudate basal ganglia 
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tissue (p<0.0003). Functional annotation of these genomic loci based on enrichment analysis 

revealed functions like regulation of K+ transmembrane transport, neuron development, Ca2+ 

transport to be enriched with maximum fold enrichment (12 fold, p< 5.0 x10-6). Likewise, 

genetic variants associated with poor response to phenytoin, carbamazepine, valproic acid 

within the suggestive cut-off were four, thirteen and eleven, respectively. Our study is the first 

of its kind, investigating genetic association of AED response specific to Indian population 

using a genome-wide approach. The findings from this study upon replication and diagnostic 

predictability assessment can be used for upcoming pharmacogenetic studies.  

Lastly, we estimated the diagnostic accuracy of these identified PGx markers for which 

we overlapped our GWAS results with already published markers known with PGx response 

to AEDs as well as our findings from text mining in our study. In conclusion, 88 commercial 

PGx marker are known related to AED response. Among these 19 SNPs overlapped with our 

GWAS findings for overall poor response. Assessing the diagnostic predictability of these 19 

markers showed moderate accuracy (50-60%). These markers are promising candidates for 

PGx application after appropriate validation and replication. Eight out of these 19 genetic 

variants are already in use for drug labelling approved by the FDA. Strengthening the fact that 

genome-based markers can be exploited for application in precision medicine in epilepsy 

treatment. 

In conclusion, our study provides a robust text mining semi-automated R-package for 

retrieving promising PGx variants. These variants were screened in our population specific 

cohort highlighting significant loci associated with poor response to AEDs like phenytoin, 

carbamazepine and valproic acid. Although, further replication in independent sample cohort 

can strengthen statistical power, or functional validation of the associated loci could help 

provide mechanistic insights for biological relevance to pharmaco-response. Eleven out of the 

19 SNPs identified from our GWAS data have moderate diagnostic accuracy are promising 

candidates which upon validation can be used for PGx application in prognosis of poor 

response in epilepsy specific for our population. 
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1.1  Introduction 

Inter-individual variability in drug response, broadly including drug efficacy and its 

safety, is an increasing problem globally. Such variability has detrimental effect on patients 

leading to increased financial burden to reduced quality of life. Genomic factors being one of 

the reasons for this variability, and is explored in the field of study called ‘pharmacogenomics’. 

PGx elaborates how the role of genes or their genetic variants (involved in the pharmacokinetic/ 

pharmacodynamic pathways of the drug) can ultimately impact drug response. However, in 

this new age of high throughput technologies and complex disorders, the research has become 

increasingly multi-dimensional, involving multiple genes (and/or variants). A better 

understanding of the molecular aspect of variability in drug action from the genomic 

perspective can provide important insights into individual genetic determinants of therapeutic 

response (Figure 1.1) and evidence-based tailored treatment or clinical guidelines for epilepsy 

patient management. 

Applications of pharmacogenomics can range from predicting drug dose, improving 

drug efficacy, to minimize drug toxicity. In the past two decades of abundant academic research 

and publications in this field, several success stories have paved their way towards clinical 

testing. The best example being the ‘poster-child’ of pharmacogenomics, warfarin which is 

metabolised by CYP2C9 and VKORC1 which is inhibited by warfarin determines the dose 

requirement of the drug. Patients carrying the loss-of-function variant of CYP2C9, in one copy 

or two, require lower doses to achieve therapeutic response of anti-coagulation (Bourgeois, 

2016). Similar examples for drug efficacy markers are known for drugs like clopidogrel, 

tamoxifen, metformin, codeine, etc. About one-third of patients have reduced enzyme activity 

due to the presence of loss-of-function variants of CYP2C19 (Pereira, 2019), an enzyme that 

metabolises the prodrug, clopidogrel which is given as an anti-platelet agent in patients with 

ischemic heart diseases. As a result, patients show poor efficacy and increased risk of ischemic 

events(Shuldiner, 2009a). Advances in HLA pharmacogenomics have established extensive 

research towards understanding immune mediated adverse drug reactions (ADRs). Some 

classic examples are skin hypersensitivity reactions in response to carbamazepine linked to 

HLA-B*15:02 variant. This variant has been widely replicated globally and is presently used 

in drug labelling information and genetic testing (Ferrell, 2008).   

The gap between such enormous build of published articles in pharmacogenomic, to 

promising markers that can be used in actionable PGx testing is still wide and persistent. 
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Therefore, it is our foremost goal to screen these drug-gene relationships from the literature for 

better characterization of their potential for clinical utility. Analysing such related data from 

the literature, we a robust, fast and accurate platform to retrieve population-specific genetic 

polymorphisms that correlate with drug response. These variants can be crucial for diagnosis, 

treatment, and prevention. Such considerations may benefit clinicians, researchers and most 

importantly the patients.  There are already available databases that demands manual curation 

of biomedical literature to obtain PGx relationships for humans. The gold standard being the 

PharmGKB database, followed by the table of PGx markers used for drug labelling information 

approved by the United States Food and drug administration (US- FDA). Thus to enable 

clinical implementation, all types of evidence should be taken into account and evaluated 

carefully to optimize patient outcomes. Screening through all the biomedical literature 

published so far in pharmacogenomics, the largest part includes drugs administered for 

neoplasms (34%) followed by neurological disorders (14%), mental and behavioural disorders 

(11%), cardiovascular disorder (10.2%), metabolic (7.5%), blood and other related disorders 

(5.5%) and others (including infectious diseases, congenital or autoimmune disorders, pain, 

reproductive, eye, ear, bones- related, hormonal and lymphatic system related disorders)  

(18.5%).  Besides, based on the data of top 200 drugs prescribed in the US (in year 2020), 20% 

of them are for neurological disorders (ClinCalc). Thus, we decided to take up neurological 

disorders for our pharmacogenomic work. Additionally, the recent world health organization 

(WHO) report (2013), reveals that of the one billion people affected with neurological disorder 

worldwide, 65 million suffer from epilepsy and 24 million from Alzheimer’s disease and other 

dementias (WHO, 2022). Thus we considered epilepsy for our study. 

Epilepsy (G40) is an umbrella term, included under ‘diseases of nervous system’ in 

international classification of diseases (ICD-10 version 2019) that comprises of a spectrum of 

complex neurological disorders with a ranging symptom of seizure occurrence in common 

(Organisation, 2010). It includes localisation-related or generalised seizures, special epileptic 

syndromes, and status epilepticus. The treatment of epilepsy, most commonly includes 

prescription of anti-epileptic drugs. They primarily function to control seizures. The treatment 

outcome vary considerably among patients with same epilepsy symptoms when administered 

with the same dose of the AED.  

Even after 40 years of the discovery of genetic variability playing a role in the treatment 

of phenytoin for epilepsy, there are several crossroads for PGx to make its way through the 

clinics. Researches done so far on association of particular genes and its variants with seizure 
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control and adverse drug reactions have not provided unifying conclusions. This reflects 

limitation in methodology or study design in the past. The quality of evidence is lessened due 

to lack of an accurate phenotype definition for pharmacogenomic studies, inadequate sample 

sizes and also replicability. 

 Apart from this, implementation of this scientific knowledge for clinical use is another 

major setback.  Patients carrying CYP2C9*2 or *3 allele have been known to reduce the 

metabolism of phenytoin in European population, however it is still not routinely used to screen 

patients (Franco V, 2015). May be due to limited availability of genetic testing, patients’ 

willingness to perform the test, financial constraints and other socio-economic factors alike. 

This gap is beyond the reach of this study to be addressed therefore, focussing on the robustness 

of the scientific evidences achieved so far the field of PGx in epilepsy has been suggested to 

be one of the favourable areas to have consistency, large amount of genetic data available, 

greater degree of in vitro and in vivo evidences to substantiate the functional importance 

(Leschziner GD, 2007). One of the prominent advancement in this field has been the US Food 

and drug administration (FDA) approval of HLA- B*1502 allele for carbamazepine induced 

skin reactions as ADR of the drug used for drug labelling (FDA, 2018; P Brent Ferrell, 2008).   

 One further issue is that identifying an ‘associated’ genetic variant do not necessarily 

imply causation of the phenotype. Therefore, more direct evidences of the functional relevance 

of that variant is needed to accept that factor contributing to pharmacoresistance of AEDs. 

Several attempts in such direction have been made to correlate the multifaceted challenge of 

AED pharmacoresistance with single nucleotide polymorphisms (SNPs) in genes like CYP2C9, 

CYP2C19, CYP3A4, CYP1A1, EPHX1, UGT1A4, UGT2B7, ABCB1, ABCC2 and SCN1A have 

multiple evidences to alter the pharmacokinetic or pharmacodynamic of the commonly 

prescribed AEDs like CBZ, PHT, lamotrigine (LTG) and so on.  
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Figure 1.1: Profile of variable drug response as influenced by single gene variant (in bars) or multiple 

variants (in grey) in a sample cohort. Genetically determined variability in drug response often involve single 

gene variant common in a population and associated with relatively large effect sizes and distinct 

pharmacogenomic phenotypes like metabolizer phenotype (poor metabolizer,  normal metabolizer and ultrarapid 

metabolizer), therapeutic level (below therapeutic level, optimum therapeutic level, above therapeutic), response 

to drug therapy (good responder, poor responder).    

 

1.2  Rationale and Hypothesis 

Despite the availability of more than 25 antiepileptic drugs, around 30% of people with 

epilepsy do not respond to its therapy, thereby being refractory, a medically intractable 

condition wherein patient does not respond to even multidrug therapy (S., 2010). A critically 

high percentage that has not changed in decades, in spite of all the genetic or molecular 

information available. This can be primarily because all the current pharmaceutical agent can 

merely reduce the incidence of seizures (“anti-ictogenic”), and they do not interfere with the 

natural course of the disease. Failure to respond to AEDs results in long-term negative effects 

on health care as well as social domains such as education, employment, marriage etc. (Jennum 

P, 2016). This non-responsiveness to AEDs encouraged researchers to adopt the approach of 

pharmacogenetics (Pirmohamed., 2001). From a pharmacogenetic perspective, there are few 

robust genetic findings with established evidence in epilepsy. For example that Asian patients 

with a particular HLA allele, HLA-B*1502, are at a higher risk for Stevens-Johnson syndrome 

when using carbamazepine, are helpful to increase our knowledge how genetic variation affects 

the treatment of epilepsy, or for CYP2C9 genotyping to identify individuals at risk for serious 

skin reactions from phenytoin is less compelling. The FDA has a list of 517 gene-drug 

associations that are currently used for drug labelling (FDA., 2022b) and its table of 
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pharmacogenomic associations lists 121 drug-gene interactions (FDA., 2022a). Based on the 

factual so far, there are approximately 136 FDA-approved drugs with PGx information in their 

labelling. Among these several biomarkers are available for adverse drug reactions of AEDs 

and none of the biomarker for drug efficacy. Apart from this the available PGx markers are 

broadly classify into markers predicting ADRs and drug response. From literature that discrete 

ADR markers are available but there are inconclusive and a very few markers available to 

predict drug response. Thus, discrete genetic variants identifying drug response outcome for 

specific drugs are elusive. Lastly, most of the genome wide studies published till date include 

the western population, American and European. No studies in African and Asian population 

are published till date, Thus, our study is an attempt to bridge these gaps in order to identifying 

the population specific markers predicting drug response in epilepsy. This would help the 

clinicians/ medical practitioners make efficient decision regarding prognosis, diagnosis, and 

treatment.  

PGx markers has potential to prognose therapeutic phenotypes in patients with epilepsy and 

thus can be used for evidence-based testing for clinical applications in predicting drug-

specific outcomes prior treatment. Hence, we aim to identify such markers specific for our 

population which can be used for epilepsy patient management in India. 

1.3    Objectives: 

1. To screen pharmacogenetic (PGx) markers from global literature and build a 

resource of drug response genes for clinical implementation. 

In this objective we aim to develop a semi-automated text mining approach to retrieve 

the complete PGx resource integrating disease–drug–gene-polymorphism relationships 

to derive a global perspective of epilepsy for ease in therapeutic approaches. Further 

we evaluated our approach by comparing its performance (precision and accuracy) with 

the other available benchmark datasets like PharmGKB, etc. We, then extended our 

effort to compare the results retrieved with the FDA approved PGx markers used for 

drug labelling to weigh its clinical ability and accuracy. This approach is a scalable and 

state-of-art approach in curation for PGx clinical utility.  

 

2.  Identification of these PGx markers in north Indian population to assess their 

correlation with anti-epileptic drug response using high throughput genome-

wide screening. 
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Using the genome-wide genotyping approach to find the genetic markers we adopted 

global screening array (GSA), a genome wide approach which is a next-generation 

genotyping array used for population scale genetics, variant screening, precision 

medicine and pharmacogenomics. It contains 7,60,502 markers and 44,877 customized 

markers. GSA contains all clinically relevant variations which are associated with at 

least one trait and somehow involved in regulating human physiology, we have opted 

this platform. Hence, it is a good approach to find genome wide susceptibility loci for 

epilepsy. It is a three day protocol in which firstly, DNA having concentration 50 ng/µl 

is amplified, fragmented using enzymatic processes, precipitated, re-suspended using 

specific reagents and then hybridised with the bead chip probes. After hybridisation, 

single base extension occurred and staining is performed. At the final step of experiment 

imaging is done using iScan. Then data is generated in “.idat” files. A comprehensive 

genome-wide association analysis was performed which broadly include (i) data pre-

processing and QC check (ii) statistical and association analysis using tools like 

Genome studio and PLINK/R software. Further, Post-GWAS analysis was also 

performed for identification annotation of independent associations within our data 

using functional mapping and annotation of genetic associations (FUMA). 

3.  Development of PGx panel with efficacy/ toxicity marker for pharmacogenetic 

testing towards pilot implementation. 

This objective is committed to identify potential translating PGx markers into 

actionable prescribing guidelines, standardize PGx testing and thereby improve patient 

treatment outcomes. For this we estimated the diagnostic accuracy of the identified 

markers which would be essential for developing PGx panel.  
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2.1  Pharmacogenomics: a brief introduction 

Inter-individual variability in drug response, broadly including drug efficacy and its 

safety, is an increasing problem globally. Such variability has detrimental effect on patients 

leading to increased financial burden to reduced quality of life. Genomic factors being one of 

the reasons for this variability, and is explored in the field of study called ‘pharmacogenomics’. 

A broader definition of pharmacogenomics, ‘is the study of genomic technologies to enable the 

discovery and development of novel drugs and the optimization of drug dose and choice in 

individual patients to maximize efficacy and minimise toxicity. The efficacy of different drugs 

have been reported to vary from 25% to 80%. Allen Roses in 2003 famously stated that more 

than 90% of the drugs only work in 30 to 50% of the people (Connor, 2003). And in terms of 

drug toxicity, ADRs affect about 15% of people in hospital.  The aim of pharmacogenomics is 

to define the underlying genetic mechanisms and ultimately to implement pharmacogenetic 

testing to improve treatment outcome. From a clinical perspective, pharmacogenomics targets 

to shift from the conventional notion of ‘one-drug-fits-all’ towards a more individualised 

choice, based on the patients’ details like demographics (age, sex, body mass index (BMI), 

ethnicity, diet, etc), clinical parameters like (comorbidity, disease type, duration, family 

history, and so on), pharmacological (including the pharmacokinetic parameters), and of 

course, the genetic construct of the individual.  

The substantial progress made in genotyping and sequencing technologies, statistical 

genomic analysis, better clinical trial designs, as well as collaborative research efforts have 

driven the discovery of genetic variants associated with drug response. Advancing towards the 

foremost application of pharmacogenomics, which is in predicting drug dose, improving drug 

efficacy, predicting the activation of pro-drug and preventing adverse drug reactions by 

prospectively genotyping individuals for at-risk alleles. Another advantage of understanding 

the genetic basis of variable drug response can be its use as a tool to expand the application of 

existing drugs for new indications as well as for identification of new drug targets or drug 

development (Figure 2.1).    

Conceptually, there are two pathways by which an individual respond towards an 

administered drug. The pharmacokinetics (PK), i.e. factors that influence the concentration of 

the drug that reaches the therapeutic site. Pharmacodynamics (PD) describes the variability in 

drug action not directly attributed to the concentration of the drug, but may reflect the 

variability in interaction of the drug or its metabolite with other molecules. Earlier studies 
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determined the clinical implications of drug response within gene families encoding drug 

metabolising  

 

Figure 2.1: Scope of pharmacogenomics. Pharmacogenomics is important for predicting drug response, 

improving drug efficacy, predicting activation of prodrug molecules, for targeted drug development (for diseases 

like cancer), evidence-based drug discovery or development and in minimizing adverse effects of drugs.  Two 

examples in each category are represented (Pirmohamed, 2023).  

 

enzymes (DMEs), drug transporters (DTs) and drug targets. This can be because of simpler 

measurable phenotype, like serum drug concentration, drug-to-metabolite ratio, contributing to 

variable clinical response and easier identification of PK outliers from the population in whom 

higher or lower drug concentrations were correlated to drug efficacy or adverse drug response. 

Genetic variants within or near genes that encode that enzymes are known with phenotypes 

based on the enzyme activity.  For example, the thiopurine methyltransferases (TPMT) 

enzymes catalyses methylation of thiopurine drugs like azathioprine. The most common variant 

allele of this enzyme, TPMT*3A with minor allele frequency of 5%, making one out of every 

300 European individual, a homozygous carrier of this variant (Szumlanski C, 1996) . This 

variant includes two non-synonymous alterations in TPMT gene, which when translated forms 

misfolded TPMT protein and thus rapidly degraded. As a consequence, a homozygous carrier 

subject when given thiopurine drugs at the conventional dose, leads to ten-fold overdose due 

to enzyme inactivity causes cytotoxicity like myelosuppression. (Tai HL, 1999) (Wang L, 

2003) (Wang L, 2005).  

The other scenario where genetic variants in PK gene have large effect is with 

administration of pro-drugs. Prodrugs are pharmacologically inactive compounds that are bio-
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activated by enzymes to show therapeutic effect. The most popular example is clopidogrel, an 

antiplatelet drug. This is metabolised into active drug by CYP2C19. Patients harbouring the 

loss-of-function variant CYP2C19*2 or CYP2C19*3 (Pereira, 2019) show high reactivity and 

increased risk of ischemic effects (Shuldiner, 2009b).There is a large spectrum of these 

pharmacogenomic effects. Thus, an increased dose showed therapeutic effect in heterozygous 

carriers of the variant, CYP2C19*2. Contrastingly, a dose increase in homozygous carriers 

showed no anti-platelet activity due to complete loss of enzyme activity(Mega JL, 2011). 

Hence, dose determination for drugs can be based on enzyme activity to control the efficacy of 

the drugs. Carriers of loss-of-function variants, heterozygous or homozygous, requires a lower 

dose administration to achieve overexposure. A dew gain-of-function variants are also known 

which are associated with excess drug response. For example, CYP2C19*17 has been 

associated with excessive bleeding on clopidogrel therapy (Sibbing D, 2010). 

Pharmacodynamic variations also influence drug response. The classic example 

identified are the loss-of-function variants in VKORC1 associated with warfarin resistance, an 

absence of rise in international normalised ratio (INR) even on large dose of warfarin 

administration.  Of the earliest known evidence of drug response with PD mechanisms are 

variants reducing G6PD function caused a high incidence of haemolytic anaemia in African-

American soldiers during World War II, when given Rasburicase (Relling MV, 2014a).  Most 

other PD variants are studied with respect to drug safety and toxicity.  

ADRs are mainly of two types, Type A ADRs are caused due to pharmacological 

consequences of the drug and are dose dependent, with reduction of dose leading to 

improvement in ADR (Rawlins, 1991). The type B are mostly idiosyncratic reactions which 

are not directly related to the pharmacological consequences. Many of these are immune-

mediated response and substantial progress has been made in regard to HLA 

pharmacogenomics. The cytotoxicity in regard to TPMT gene variant that we discussed 

previously is a type A ADR. Haemolytic anaemia caused due to G6PD deficiency is another 

such example. The most common type B ADR are those associated with drug hypersensitivity 

reactions, including Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), 

hypersensitivity syndrome (HSS) and drug-induced liver injury (DILI). For example, HLA-

B*5701 with abacavir-induced drug hypersensitivity, HLA-B*1502 in carbamazepine (CBZ)-

induced SJS/TEN, allopurinol associated severe cutaneous adverse reactions (SCAR) with 

HLA-B*5801 (Chun-Yu Wei, 2012). Novel findings suggest that drugs and their metabolites 
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interact with specific HLA molecules and T cell receptors leading to clonal T cell proliferation 

and cytokine secretion resulting in tissue injury (White, 2015) (Jaruthamsophon, 2021) 

Over the decades, we have now progressed towards agonistic genome-wide association 

studies (GWAS), to decode the entire spectrum of drug response enabling the identifation of 

novel variants, new biological/ molecular mechanisms and explain the genomic component of 

drug response in a specific population. Rigorous efforts in this field have highlighted the 

importance of ancestry in drug response phenotypes. However, <10% GWAS published so far 

investigated drug response (McInnes, 2021) due to shortcomings like poor sample size, lack of 

clear definition of pharmacogenomic phenotypes, and replicability. Nonetheless, GWAS have 

been able to successfully identify predisposing genetic loci due to large effect size (Maranville, 

2016). A review article by McInnes G et al (2021) has meticulous captures the different aspects 

covered in the GWAS of PGx studies so far (McInnes G, 2021). Association from GWAS only 

serves as the beginning of our journey in understanding the role of genomics in drug response 

(Lavertu, 2018). The discovered associations are often not causal, rather in linkage 

disequilibrium (LD) with the causal variant. Hence, fine mapping of GWAS findings in pivotal, 

such that they can be used for diagnostic applications. More importantly, findings must be 

replicated by subsequent studies in external cohort to confirm such association (Schaid, 2018). 

Many collaborative efforts, and guidelines have been formed to fulfil the goals of PGx into the 

clinic. 

2.2  Pharmacogenomics: from discovery to clinical applications 

Much progress has been made from identifying pharmacogenes with variable drug 

response, characterising them based on the specific phenotype and determining their clinical 

utility (like diagnostic accuracy, cost effectiveness, robust association, and risk assessment). 

Although implementation should be accompanied by continuous monitoring with real 

situations for constant improvement in optimizing the tests. To facilitate clinical 

implementation of pharmacogenomics, a few key points are: usage in all healthcare settings 

focussing on drugs with actionable information, appropriate funding, modifiable testing and 

recommendations with time, investment in infrastructure for education and training of 

clinicians, policymakers, patients and researchers, efficient research in other fields like ethical, 

legal and social issues, outlay clear prescription guidelines to minimize error and maximize 

cost effectiveness (Society., 2022).  
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 To date, several successful attempts have been made to facilitate clinical 

implementation of pharmacogenomics. With the collaborative efforts of the US National 

Institute of Health (NIH) along with the pharmacogenomic research network (PGRN) (Relling, 

2017), formed the first pharmacogenomic database, PharmGKB, with manual curation of such 

evidence from biomedical literature (Gong, 2021).  At the foremost drive, the FDA 

incorporated pharmacogenomic drug labelling for over 250 drugs, mentioning the impact of 

genotype with severe or life threatening response outcomes (FDA., 2022b) (Table 2.1). In early 

2020, the FDA updated this information and released a table of pharmacogenetic associations 

listing associations in three groups: i) support therapeutic management recommendations, ii) 

indicate a potential impact on safety and response, and iii) potential impact on PK properties.    

 The Clinical pharmacogenetic implementation consortium (CPIC) (Relling MV, 

2014a) was formed to form the clinical recommendation guidelines for interpretation and 

translation of genotype results into prescribing decision for 450 drug-gene interactions. Eighty 

three of these (22 genes with 63 drugs) are annotated with highest level of evidence and have 

prescription guidelines. These 63 drugs for a large proportion of prescribed drugs (Alshabeeb, 

2019; Dunnenberger, 2015) thus, around 35-65% of the population is exposed to at least one 

of these prescribed drugs with PGx indication (Chanfreau-Coffinier, 2019; Krebs, 2019)  

Implementation of pharmacogenomics has been a far-fetched dream in the past decade. 

The main reasons being perceived lack of clinical utility, inability to access genotyping tests, 

cost effectiveness, interpretation of test results, prescribing actions for patients carrying variant 

allele, issues of data confidentiality, regulatory guidelines. To address these concerns, 

numerous PGx initiatives have been undertaken. The Canadian Pharmacogenomics Network 

for Drug Safety (CPNDS), the Dutch Pharmacogenetics Working Group (DPWG) and the 

French National Network (Réseau) of Pharmacogenetics (RNPGx). The European Ubiquitous 

Pharmacogenomics (U-PGx) consortium has undertaken a prospective study in seven European 

centres with almost 7,000 patients randomly allocated to either standard care or genotype-

guided care (van der Wouden, 2017).This study include a panel of 44 variants encompassing 

12 genes for 42 drugs (van der Wouden, 2020). A striking outcome of this study, showed that 

genotype-guided care reduced ADRs by 30%, establishing the first randomised evidence for 

PGx panel based testing (Swen, 2023).  

The clinical use of PGx testing has been primarily adopted by two approaches: point-

of-care testing or pre-emptive testing. The point-of-care testing includes an alert signal from 
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electronic health record (EHR) when patient is administered a drug. Rapid turnaround testing 

is performed and results and dose recommendations are provided accordingly. A consensus to 

embrace the pre-emptive genotyping strategy was adopted by all these participating 

organisations. This practically means, a patient requiring a PGx testing which undergo 

genotyping on a commercial panel containing a number of genetic variants. This data would 

be then stored in EHR for future use if the patient require anther drug for which response is 

influenced by PGx variants. This strategy has been widely opted by including St Jude 

Children’s Research Hospital (Hoffman, 2014), Vanderbilt University Medical Center (Van 

Driest, 2014) and the Mayo Clinic (Matey, 2022). 

Several clinical trials to assess the outcome of pharmacogenomic testing. TAILOR-PCI 

(NCT01742117) and POPular Genetics (NCT01761786) are comparing the effect of a 

pharmacogenomically informed strategy to conventional strategies in the use of clopidogrel 

and other antiplatelet therapies. A large trial, dal-GenE (NCT02525939), is underway to screen 

approximately 35 000 patients to identify around 6000 with the predicted response allele, and 

to then randomly assign these patients to dalcetrapib or placebo. The largest multi-centric RCT 

so far designed by the European U-PGx group, the PREemptive Pharmacogenomic Testing for 

Preventing Adverse Drug Reactions (PREPARE) is evaluating a pre-emptive 

pharmacogenomic testing strategy in 12 genes to reduce the incidence of ADRs related to 43 

target drugs (C.-T. A. van der Wouden CH, Cecchin E, et al., 2017). IGNITE is currently 

planning an evaluation of panel-based testing for management of depression, chronic pain, and 

acute postoperative pain  (Orlando, 2019). The whole genome programmes include Genome 

England, aiming to sequence up to 5 000 000 whole genomes, and the US All of Us Program, 

recruiting 1 000 000 participants (investigators, 2019). 

Execution of pharmacogenomics into hospital settings is likely to be a major driver of 

introduction of genetic testing into clinical practice. This is just one of the components 

progressing towards precision medicine. Several multimodal algorithms (incorporating clinical 

and genetic aspects), integration of multi-omics data, cross-border collaborative research and 

clinical networks, improved financial and regulatory infrastructure and most importantly, the 

conglomeration of all these into digital therapeutic applications are insurmountable. Such 

opportunities can revolutionize the human health metrics.     
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Figure 2.2: Major milestones of pharmacogenomics (UA, 2004).  

 

2.3  Application of pharmacogenomics in different diseases/disorders 

With the gradual evolution of genomic medicine and extensive research in broad areas 

of disease pathogenesis, its diagnosis and treatment with the implementation of 

pharmacogenomic protocol in personalised therapeutics.  Cardiovascular disorders (25%-

30%), cancer (20%-25%) and brain disorders (10%-15%) represent over 70% of morbidity and 

mortality in developed countries. Individuals with such chronic disorders require treatments 

for long period of time. Thus, determining markers for therapeutic response and minimize risk 

of ADR and apply this knowledge in a clinical context are the ongoing scenario of 

pharmacogenomic research. A brief background of the pharmacogenomic story so far from 

each disease perspective is elaborated below.  

 

2.3.1  Cancer 

Oncology is considered to be the field of medicine in which pharmacogenomics and 

personalised medicine is perhaps most established. A significant number of pre-emptive 

genetic tests are now routinely undertaken prior to anticancer drug administration. Quite 

invariably, oncology indications represent 126/364 (35%) of all Food and Drug Administration 

drug label warnings related to pharmacogenomic markers (FDA., 2022b). Examples where 

there is clinical utility include genotyping or phenotyping for G6PD to prevent rasburicase-

induced red blood cells (RBC) haemolysis, and TPMT to prevent thiopurine-induced bone 

marrow  
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Figure 2.3: Clinical implementation of pharmacogenomics across different disease categories. Commonly 

prescribed drugs in each disease category and their clinical implementation according to CPIC guidelines used 

for genotype-guided testing to manage treatment outcomes.  Most of these recommendations belong to the 

category of ‘testing required’ or ‘testing recommended’.  

 

suppression. Other associations such as CYP2D6 status in determining the efficacy of 

tamoxifen are more controversial because of contradictory evidence leading to variability in 

clinical implementation (Carr DF, 2021).  

6-Mercaptopurine is used in the treatment of acute lymphoblastic leukaemia (ALL), 

metabolised by TPMT to an inactive methylmercapturine resulting in less parent drug available 

and toxic metabolites. Variant alleles of TPMT (*2,*3A and *3C) are associated with low 

enzyme activity thus, individuals carrying 2 loss-of-function alleles are at significantly 

increased risk of life-threatening myelosuppression as a result of increased metabolite exposure 

(WE., 2004). More recently, GWAS identified variants in NUDT15 that strongly influence 

thiopurine intolerance in ALL patients (Yang JJ, 2015). NUDT15 catalyses the conversion of 

thiopurine metabolite to the less toxic metabolite. Defect in NUDT15 gene lead to risk of 

myelosuppression. The SNP, rs116855232 (p.R139C), causes a complete loss of enzymatic 

activity and ultimately severe myelosuppression. Whilst the influence of inherited TPMT 

dysfunction on thiopurine-induced intolerance is of greater importance in European or African 

ancestry, NUDT15 risk alleles seem to be more important in those of Asian and Hispanic 

ethnicity. 5-fluorouracil (5-FU), a prodrug indicated for the treatment of colorectal cancer, 

breast cancer and other gastrointestinal tract cancers. The rate-limiting enzyme for 5-FU 
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catabolism is dihydropyrimidine dehydrogenase (DPYD). DPYD*2A and DPYD*13 have the 

most deleterious impact on DPYD activity heterozygous carriers are designated an activity 

score (AS) of 1, and homozygotes with AS of 0, when wild type carriers have AS 2. Variants 

rs75017182 and rs67376798 are thought to moderately reduce DPYD activity and so 

heterozygotes are given an AS of 1.5 (Lunenburg CATC, 2020). Approximately ~7% of 

Europeans carry at least 1 reduced function DPYD variant (Amstutz U, 2018b). CPIC 

guidelines for Fluoropyrimidine recommends a 50% reduction in starting dose in patients with 

a DPYD AS of 1–1.5 (heterozygous intermediate metabolisers) and avoiding fluoropyrimidine 

therapy when possible in those with an AS of 0–0.5 (poor metabolisers)(Amstutz U, 2018a). 

Other such indications for pharmacogenetic testing are well established for variants of G6PD 

causing enzyme deficiency manifesting haemolytic anaemia when patients are given 

rasburicase (Relling MV, 2014b). Irinotecan and UGT1A1*28 predisposing patients towards 

severe ADR like neutropenia (Innocenti F, 2004).Tamoxifen and poor metaboliser genotype of 

CYP2D6  have been shown to have reduced efficacy and therefore alternate therapy or 

increased dose is recommended (Goetz MP, 2018) (Zembutsu H, 2017). This observations have 

contributed towards several initiatives utilizing PGx testing, the European U- PGx consortium, 

the PREPARE clinical trial (C.-T. A. van der Wouden CH, Cecchin E, et al. , 2017). eMERGE 

(Gottesman O, 2013), IGNITE (Orlando, 2019), PG4KDS (Hoffman JM, 2014) and 

ACCOuNT (Program., 2018).   

Table 2.1 List of clinically validated PGx biomarkers in oncology and their level of recommendation by 

different PGx- regulatory bodies for related drugs 

Variant Gene Drug 
CPIC 

Level 

PharmGK

B Level of 

Evidence 

FDA EMA 
Swiss 

Medic 
HCSC PMDA Ref 

rs3918290, 

rs55886062 
DPYD 

capecitabin

e 
A 1A      

(Caudle et al., 

2013); (Amstutz 

et al., 2018) 

rs3918290, 

rs55886062, 

rs67376798 

DPYD fluorouracil A 1A      

(Caudle et al., 

2013); (Amstutz 

et al., 2018) 

UGT1A1*28 UGT1A1 irinotecan A 1A       

rs116855232 NUDT15 
mercaptopu

rine 
A 1A      

(Caudle et al., 

2013; Relling et 

al., 2011); 

(Relling et al., 

2019) 

TPMT*2, 

*3A, *3C 
TPMT 

mercaptopu

rine 
A 1A      

(Relling et al., 

2011); (Caudle 

et al., 

2013);(Relling 

et al., 2019) 

Class II and 

III variants 
G6PD rasburicase A 1A      

(Relling et al., 

2014);(Gammal 

et al., 2023) 
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CYP2D6 PM CYP2D6 tamoxifen A 1A      
(Goetz et al., 

2018) 

rs116855232 NUDT15 thioguanine A 3      
21270794;2342

2873;30447069 

TPMT*2,*3A

,3C 
TPMT thioguanine A 3      

21270794;2342

2873;30447069 

UGT1A1*60, 

UGT1A1*28 
UGT1A1 belinostat B        

CYP2C19 PM CYP2C9 erdafitinib B/C        

rs121434568 CYP2D6 gefitinib B/C 3       

HLA-

DRB1*15:02,  

HLA-

DRB1 
lapatinib B/C 3       

UGT1A1*6, 

UGT1A1*27, 

UGT1A1*28,

UGT1A1*1, 

UGT1A1*6 

UGT1A1 nilotinib B/C 3       

HLA-B*57:01  HLA-B pazopanib B/C        

 UGT1A1*28  UGT1A1 pazopanib B/C 3       

rs113488022 G6PD dabrafenib C       
(Gammal et al., 

2023) 

rs9272105, 

HLA-

DQA1*01:03,

HLA-

DQA1*02:01  

HLA-

DQA1 
lapatinib C 3       

DPYD 

c.1129-

5923C>G 

DPYD tegafur C 1A      
23988873;2915

2729 

rs113488022 G6PD trametinib C       36049896 

 ITPA 

interferon 

alfa-2b, 

recombinan

t 

C/D 3       

rs45445694,rs

11280056,rs6

99517 

TYMS 
capecitabin

e 
D 3       

rs4444903 EGF cetuximab D 3       

rs1872328 ACYP2 cisplatin D 3       

rs3212986,rs3

212986.rs116

15,rs11615,rs

735482,rs116

15, 

ERCC1 cisplatin D 3       

rs3754446 GSTM1 cisplatin D 3       

rs10517, 

rs1800566,  

NQO1 cisplatin D        

rs2228001,rs2

228001,rs222

8000,rs22280

01 

XPC cisplatin D 3       

rs1695 GSTP1 fluorouracil D 3       

rs1800566 NQO1 fluorouracil D 3       

rs11280056 TYMS fluorouracil D 3       

rs3772809,rs3

772810,rs229

1078, 

UMPS fluorouracil D 3       

UGT1A1*28  C8orf34 irinotecan D 3       

UGT1A1*28  SEMA3C irinotecan D 3       

https://www.pharmgkb.org/variant/PA166157527
https://www.pharmgkb.org/haplotype/PA165951320
https://www.pharmgkb.org/haplotype/PA165951320
https://www.pharmgkb.org/haplotype/PA165987830
https://www.pharmgkb.org/haplotype/PA166115842
https://www.pharmgkb.org/variant/PA166157522
https://www.pharmgkb.org/variant/PA166157134
https://www.pharmgkb.org/variant/PA166157134
https://www.pharmgkb.org/variant/PA166157134
https://www.pharmgkb.org/variant/PA166157134
https://www.pharmgkb.org/variant/PA166157134
https://www.pharmgkb.org/variant/PA166157522
https://www.pharmgkb.org/variant/PA166155331
https://www.pharmgkb.org/variant/PA166155331
https://www.pharmgkb.org/variant/PA166155331
https://www.pharmgkb.org/variant/PA166156588
https://www.pharmgkb.org/variant/PA166155651
https://www.pharmgkb.org/variant/PA166154980
https://www.pharmgkb.org/variant/PA166154980
https://www.pharmgkb.org/variant/PA166154249
https://www.pharmgkb.org/variant/PA166155017
https://www.pharmgkb.org/variant/PA166180936
https://www.pharmgkb.org/haplotype/PA166115842
https://www.pharmgkb.org/haplotype/PA166115842
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rs396991 FCGR3A rituximab D 2B       

EMA: European medical association, HCSC: PMDA: Pharmaceuticals and Medical Devices Agency Red- Testing required; Yellow-

Testing recommended; Green- Actionable PGx; Blue-Informative PGx 

 

2.3.2  Cardiovascular disease 

Over the past decade, multiple pharmacogenomic evidence is accumulating from 

observational studies and randomised controlled trials (RCTs). A few genotype-guided 

pharmacogenetic testing has also emerged recently. The most common among them being 

CYP2C19 genotyping for clopidogrel response, CYP2C9 and VKORC1 for warfarin dosing, 

SLCO1B1 variants for statin prescribing. These variants are FDA approved for drug labelling 

and CPIC guidelines are available for each of these drug-gene pairs, and a number of healthcare 

centres are implementing these into clinical practice (Z., 2020).  

The CYP2C9 gene involved in the metabolism of warfarin and VKORC1 gene 

regulating the oxidation state of vitamin K is associated with different sensitivity to warfarin. 

Pharmacogenomic recommendations for systemic concentration of the drug and dosage 

requirement. Patients with CYP2C9 genotype leading to decreased drug clearance and 

VKORC1 genotype resulting in increased drug sensitivity. These patients are recommended to 

receive lower than typical warfarin dosage (Johnson JA, 2011). Clopidogrel, a prodrug, is 

metabolised by CYP2C19. Variants of this gene result in enzyme deficiency leading to 

decreased circulating concentrations of active metabolite, and subsequently suppressed 

inhibition of platelet activation and aggregation. This report eventually led to FDA labelling 

and CPIC recommending alternative antiplatelet therapy is recommends for poor metabolizers 

(Scott SA, 2013).  

 Apart from the above two drugs, statins are the major lipid lowering drugs with higher 

efficacy and minimal ADRs. The only common side effect is myopathy which limits its usage. 

Risk factors for myopathy include higher statin doses, interaction with other drugs, renal or 

liver dysfunction, and SLCO1B1 genotypes. Early studies of statin pharmacokinetics 

demonstrated that the transporter, SLCO1B1, regulates liver uptake of the drug, and variants 

in SLCO1B1, were associated with higher simvastatin concentrations (Pasanen MK, 2006). 

The 521T>C (p. Val174Ala) polymorphism was found to be related to myopathy caused by 

statins. Simvastatin has the most data on its association with genetic testing result (Ramsey LB, 

2014). Thus, patients with CT or CC genotypes are recommended a lower dose of simvastatin 

or use of other statins such as pravastatin or rosuvastatin (Roden DM, 2018). β- Blockers are 

widely used for hypertension, cardiac arrhythmia, and myocardial infarction, have been 

https://www.pharmgkb.org/variant/PA166153571
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associated with variable response due to CYP2D6, ADBR1, and ADBR2 genes. Loss-of-

function variants in CYP2D6 are associated with phenotypes of poor metabolizers for β-

blockers, which is reflected in FDA label warning.  

Table 2.2: List of clinically validated PGx biomarkers in cardiovascular and their level of recommendation by 

different PGx- regulatory bodies for related drugs 

Variant Gene Drug 
CPIC 

Level 

PharmGKB 

Level of 

Evidence 

FDA EMA 
Swiss

Medic 
HCSC PMDA Ref 

rs4149056 SLCO1B1 atorvastatin A 1A      
(Cooper-DeHoff et 

al., 2022) 

CYP2C19 PM CYP2C19 clopidogrel A 1A      

(Scott et al., 2011); 

(Scott et al., 2013); 

(Lee et al., 2022) 

rs4149056 SLCO1B1 pitavastatin A 1A      
(Cooper-DeHoff et 

al., 2022) 

rs4149056 SLCO1B1 pravastatin A 1A      
(Cooper-DeHoff et 

al., 2022) 

rs4149056 ABCG2 rosuvastatin A 1A      
(Cooper-DeHoff et 

al., 2022) 

rs4149056 SLCO1B1 rosuvastatin A 1A      
(Cooper-DeHoff et 

al., 2022) 

rs4149056 SLCO1B1 simvastatin A 1A      

(Wilke et al., 2012); 

(Ramsey et al., 2014); 

(Cooper-DeHoff et 

al., 2022) 

CYP2C19 PM CYP2C9 
avatrombop

ag 
B/C        

rs1801252 

rs1801253  

ADRB1 carvedilol B/C 3       

CYP2D6 PM CYP2D6 carvedilol B/C 3       

rs11198893 

rs4752292 

rs915120 

rs10787959 

rs2230345 

rs3740563 

rs2230345 

GRK5 carvedilol B/C        

CYP2D6 PM CYP2D6 lofexidine B/C        

CYP2D6 PM  ADRB1 metoprolol B/C 3       

CYP2D6 PM CYP2D6 metoprolol B/C 1A       

 CYP2D6*2, C

YP2D6*3 
GRK5 metoprolol B/C        

CYP2D6 PM CYP2D6 nebivolol B/C        

NAT2*4 NAT2 
procainamid

e 
B/C        

CYP2D6 PM CYP2D6 propafenone B/C 1A       

CYP2D6 PM CYP2D6 propranolol B/C 4       

CYP2C19 PM CYP2C9 aspirin C       (Theken et al., 2020) 

G6PD A- 

202A_376G 
G6PD aspirin C 3      (Gammal et al., 2023) 

G6PD A- 

202A_376G,  
HLA-DPB1 aspirin C 2B       

CYP3A4*20, 

CYP3A4*22 
CYP3A4 atorvastatin C        

https://www.pharmgkb.org/variant/PA166154579
https://www.pharmgkb.org/variant/PA166154579
https://www.pharmgkb.org/variant/PA166153976
https://www.pharmgkb.org/variant/PA166153976
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
https://www.pharmgkb.org/variant/PA166274203
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 CYP3A5*3,  CYP3A5 atorvastatin C        

CYP3A4*20, 

CYP3A4*22 
HMGCR atorvastatin C        

G6PD A- 

202A_376G,  
G6PD nicorandil C       (Gammal et al., 2023) 

CYP3A4*20, 

CYP3A4*22 
CYP3A4 pravastatin C        

CYP3A5*3, *6

, *7 
CYP3A5 pravastatin C        

CYP2D6 PM CYP2D6 quinidine C        

 CYP3A4 rosuvastatin C        

 CYP3A5 rosuvastatin C        

 HMGCR rosuvastatin C        

rs1045642 ABCB1 simvastatin C 3       

CYP3A4*20, 

CYP3A4*22 
CYP3A4 simvastatin C        

CYP3A5*3, 

*6, *7 
CYP3A5 simvastatin C        

rs6065 GP1BA aspirin D 3       

rs730012, 

rs730012 

LTC4S aspirin D 3       

rs7412 APOE atorvastatin D 2B       

rs20455 KIF6 pravastatin D 2B       

rs10455872, 

rs10455872,

rs10455872 

LPA pravastatin D        

rs4149056 COQ2 rosuvastatin D 3       

rs4149056 LPA rosuvastatin D 3       

rs5882 CETP simvastatin D 3       

rs17244841 HMGCR simvastatin D 3       

rs10455872, 

rs10455872, 

rs10455872 

LPA simvastatin D        

 ADD1 
spironolacto

ne 
D 3       

Data obtained from CPIC and PharmGKB annotations accessed as on 18 march 2023. Recommendations are: Red- Testing 

required; Yellow-Testing recommended; Green- Actionable PGx; Blue-Informative PGx 

 

2.3.3  Metabolic disorder and gastrointestinal disorders 

 Not much have been explore in this field with respect to PGx research. Diabetes 

mellitus being the third most prevalent disorder, is poorly explored through the lens of PGx 

response. Previous candidate approaches were mainly focused on the DMEs and DTs 

responsible for the PK of the drugs. Genetic variations in genes like SLC22A1 and SLC47A1 

are widely studied with metformin PK, with low transport activity and no consistent effect on 

glycaemic control.  Sulfonylureas are mainly metabolised by CYP2C9. Patient carrying LOF 

variants of CYP2C9 have higher drug exposure leading to consistent observations of greater 

glycaemic response (Zhou K, 2016). Some other antidiabetic agents including α-glucosidase 

https://www.pharmgkb.org/variant/PA166157284
https://www.pharmgkb.org/variant/PA166155153
https://www.pharmgkb.org/variant/PA166156740
https://www.pharmgkb.org/variant/PA166156740
https://www.pharmgkb.org/variant/PA166155341
https://www.pharmgkb.org/variant/PA166156905
https://www.pharmgkb.org/variant/PA166157168
https://www.pharmgkb.org/variant/PA166157168
https://www.pharmgkb.org/variant/PA166157168
https://www.pharmgkb.org/variant/PA166154579
https://www.pharmgkb.org/variant/PA166154579
https://www.pharmgkb.org/variant/PA166154975
https://www.pharmgkb.org/variant/PA166156886
https://www.pharmgkb.org/variant/PA166157168
https://www.pharmgkb.org/variant/PA166157168
https://www.pharmgkb.org/variant/PA166157168
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inhibitors, GLP-1 receptor agonists, DPP4 inhibitors, and SGLT2 inhibitors have not shown 

strong pharmacogenomic evidence and inconsistent findings (Zeng, 2020).  

 Within gastroenterology and hepatology, there has been little clinical application of 

pharmacogenomics. Patients with relapsing ulcerative colitis or Crohn’s disease are treated 

with azathioprine (AZA) or 6-mercaptopurine (6-MP), with are primarily metabolised by 

TPMT and follows the genotype-guided administration (as discussed under section 2.3.1 

cancers). There are numerous well known genetic variants used for guided treatment a few 

approved by the US-FDA for proton pump inhibitor used in acid-related gastrointestinal 

disease like omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole. CYP2C19 

is the main enzyme responsible for elimination of these drugs. The Poor metaboliser genotype 

of CYP2C19 (*2 and *3) are commonly used for drug labelling for dose adjustment of these 

drugs (Saito, 2006). Ethnic differences are observed with respect to these alleles *2 and *3 and 

genotype frequency. Poor metabolisers are seen in 13 – 23% of Asian populations, and 2 – 5% 

of Caucasian populations. Thus, genotyping may only be relevant for Asian origin people, in 

whom ≤ 20% may be slow metabolisers (OMIM, 2021). 

Table 2.3: List of clinically validated PGx biomarkers in metabolic and gastrointestinal diseases their level of 

recommendation by different PGx- regulatory bodies for related drugs 

Variant Gene Drug 
CPIC 

Level 

PharmGK

B Level of 

Evidence 

FDA EMA 
Swiss 

Medic 
HCSC PMDA Ref 

CYP2C19 PM CYP2C19 lansoprazole A 1A 
 

    32770672 

CYP2C19 PM CYP2C19 omeprazole A 1A 
 

    32770672 

CYP2C19 PM CYP2C19 pantoprazole A 1A 
 

    32770672 

NA NAGS carglumic acid B 
 

      

CYP2C19 PM CYP2C19 dexlansoprazole B 1A 
 

    32770672 

CYP2C19 PM CYP2C9 lesinurad B/C 
 

      

CYP2D6 PM CYP2D6 metoclopramide B/C 
 

      

CYP2D6 PM CYP2D6 mirabegron B/C 
 

      

NAT2*4 NAT2 sulfasalazine B/C 
 

      

CYP2D6 PM CYP2D6 tamsulosin B/C 
 

      

G6PD A- 202A_376G G6PD chlorpropamide C 
 

     36049896 

CYP2D6 PM CYP2D6 darifenacin C 
 

      

CYP2C19 PM CYP2C19 esomeprazole C 3 
 

    32770672 

G6PD A- 202A_376G G6PD gliclazide C 
 

     36049896 

G6PD A- 202A_376G G6PD glimepiride C 
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G6PD A- 202A_376G G6PD glipizide C 
 

     36049896 

G6PD A- 202A_376G G6PD glyburide C 3 
 

    36049896 

CYP2C19 PM CYP2C19 rabeprazole C 2A 
 

    32770672 

 
CYP2C8 rosiglitazone C 3 

 
     

A- 202A_376G 

haplotype 
G6PD sulfasalazine C 3 

 
    36049896 

CYP2D6*2,  

CYP2D6*10 
CYB5R1 metoclopramide D 

 
      

CYP2D6*2,  
CYP2D6*10 

CYB5R2 metoclopramide D 
 

      

CYP2D6*2,  

CYP2D6*10 
CYB5R3 metoclopramide D 

 
      

CYP2D6*2,  

CYP2D6*10 
CYB5R4 metoclopramide D 

 
      

Data obtained from CPIC and PharmGKB annotations accessed as on 18 march 2023. Recommendations are: Red- Testing required; 

Yellow-Testing recommended; Green- Actionable PGx; Blue-Informative PGx 

 

 

2.3.4  Mental and behavioural disorder 

One out of every four individual worldwide experience a mental health condition during 

their lifetime. Healthcare professionals routinely observe challenges related to such drug 

prescriptions. The most common one being non-adherence. The high risk of ADR and poor 

therapeutic response from psychiatric medicines are factors driving poor adherence. Since 2008 

when pharmacogenomics was at its forefront, in psychiatric treatment management for clinical 

purposes (de Leon, 2009). However, due to low clinical utility and contrasting outcomes, the 

use of pharmacogenetic testing were discontinued (de Leon, 2016). Since then, there has been 

substantial progress made in pharmacogenomics of antidepressants. The International Society 

of Psychiatric Genetics (McMahon, 2019) has recognized a stance supported by a recent 

systematic review of CYP2C19 and CYP2D6 enzyme activity for these classes of medication 

(Milosavljevic F, 2021). These genes are implicated in the metabolism of 80% of psychiatric 

medications and are increasingly recognized in regulator- approved drug labels (M€uller, 2013; 

van Schaik, 2020). This has introduced the FDA approval for drug labelling for the some allelic 

variants of these genes for drugs like Venlaflaxine, Vortioxetine, Risperidone, Imipramine and 

others (Pardiñas AF, 2021). A detailed table for pharmacogenetic markers used for clinical 

purposes is tabulated in Table 2.4. 

 

Table 2.4: List of clinically validated PGx biomarkers in psychiatry and their level of recommendation by 

different PGx- regulatory bodies for related drugs 

Variant Gene Drug 
CPIC 

Level 

PharmGK

B Level of 

Evidence 

FDA EMA 
SwissM

edic 
HCSC PMDA Ref 
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CYP2C19 PM CYP2C19 amitriptyline A 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 amitriptyline A 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 atomoxetine A 1A 
 

    30801677 

CYP2C19 PM CYP2C19 citalopram A 1A 
 

    25974703 

CYP2C19 PM CYP2C19 escitalopram A 1A 
 

    25974703 

CYP2D6 PM CYP2D6 nortriptyline A 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 paroxetine A 1A 
 

    25974703 

CYP2D6 PM CYP2D6 pitolisant A 
 

      

CYP2D6 PM CYP2D6 pimozide A/B 
 

      

CYP2D6 PM CYP2D6 venlafaxine A/B 1A 
 

     

CYP2D6 PM CYP2D6 vortioxetine A/B 3 
 

     

CYP2D6 PM CYP2D6 aripiprazole B 1A 
 

     

CYP2C19 PM CYP2C19 clomipramine B 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 clomipramine B 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 desipramine B 1A 
 

    23486447;27
997040 

CYP2C19 PM CYP2C19 doxepin B 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 doxepin B 1A 
 

    23486447;27
997040 

CYP2D6 PM CYP2D6 fluvoxamine B 1A 
 

    25974703 

CYP2C19 PM CYP2C19 imipramine B 1A 
 

    23486447;27
997040 

CYP2D6 PM CYP2D6 imipramine B 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 risperidone B 1A 
 

     

CYP2C19 PM CYP2C19 trimipramine B 1A 
 

    23486447;27
997040 

CYP2D6 PM CYP2D6 trimipramine B 1A 
 

    23486447;27

997040 

CYP2D6 PM CYP2D6 amoxapine B/C 
 

      

CYP2D6 PM CYP2D6 
aripiprazole 

lauroxil 
B/C 

 
      

CYP2B6*6, *2, 
*3 

CYP2B6 bupropion B/C 2A 
 

     

5-HTTLPR SLC6A4 citalopram B/C 3 
 

     

CYP2D6 PM CYP2D6 clozapine B/C 
 

      

 HTTLPR SLC6A4 escitalopram B/C 3 
 

     

CYP2D6 PM CYP2D6 iloperidone B/C 3 
 

     

CYP2D6 PM CYP2D6 perphenazine B/C 
 

      

https://www.pharmgkb.org/variant/PA166155409
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CYP2D6 PM CYP2D6 protriptyline B/C 
 

      

CYP2D6 PM CYP2D6 thioridazine B/C 3 
 

     

CYP2D6 PM CYP2D6 zuclopenthixol B/C 1A 
 

     

rs489693 MC4R aripiprazole C 3 
 

     

rs6311  HTR2A citalopram C 3 
 

     

rs3813929 HTR2C clozapine C 3 
 

     

rs11872992 MC4R clozapine C 3 
 

     

CYP2D6 PM CYP2D6 duloxetine C 
 

      

rs4608 COMT escitalopram C 
 

      

rs1954787, 
rs12800734 

GRIK4 escitalopram C 
 

      

CYP2D6 PM CYP2D6 fluoxetine C 3 
 

     

G6PD A- 
202A_376G 

G6PD 
hydroxychloro

quine 
C 

 
     36049896 

CYP2D6 PM CYP2D6 modafinil C 
 

      

rs3813929 HTR2C olanzapine C 3 
 

     

rs11872992 MC4R olanzapine C 3 
 

     

rs17782313, 
rs489693 

MC4R paliperidone C 3 
 

     

rs12800734, 
rs1954787 

GRIK4 paroxetine C 
 

      

rs1800497 DRD2 risperidone C 3 
 

     

rs3813929 HTR2C risperidone C 3 
 

     

rs489693 MC4R risperidone C 3 
 

     

rs12800734, 
rs1954787 

GRIK4 venlafaxine C 
 

      

rs9380524, 

rs1360780 
FKBP5 citalopram D 3 

 
     

rs4713916 FKBP5 fluoxetine D 3 
 

     

rs1800497 ANKK1 olanzapine D 3 
 

     

rs1360780 FKBP5 paroxetine D 3 
 

     

rs6295 HTR1A paroxetine D 3 
 

     

rs1800497 ANKK1 risperidone D 3 
 

     

CYP2D6 PM FKBP5 venlafaxine D 3 
 

     

Data obtained from CPIC and PharmGKB annotations accessed as on 18 march 2023. Recommendations are: Red- Testing required; 

Yellow-Testing recommended; Green- Actionable PGx; Blue-Informative PGx 

 

 

2.3.5  Neurological disorders 
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In neurology, as in any other clinical specialty, there is a need to develop treatment 

strategies that allow stratification of therapies to optimize efficacy and minimize toxicity. To 

date, however, only few genetic variants have been incorporated into clinical algorithms (Table 

2.5). With respect to drug efficacy and ADRs related to dopaminergic antiparkinsonian 

medications,  significant associations between polymorphisms in dopamine transporters (DAT) 

or monoamine degradation enzymes (COMT and MAOB) and response to levodopa, Tan and 

colleagues, reported association between low-activity COMT homozygotes and response to 

pyridoxine as adjunct therapy to levodopa (Tan EK, 2005). Our previous systematic review 

identified CA repeats in DRD2 was found to be most significantly associated with dyskinesia, 

followed by rs1801133 in MTHFR with hyper-homocysteinemia, and rs474559 HOMER1 

with hallucination. Accordingly for levodopa efficacy rs28363170, rs3836790 (SLC6A3) and 

rs4680 (COMT), were important. Individuals with rs3836790 6/6 or rs28363170 10/10 

(SLC6A3) genotypes have higher transporter expression leading to lower dopamine levels at 

the synapse. The COMT haplotype (rs6269-rs4633-rs4818-rs4680) characterises low (ACCG) 

to high (GCGG) enzyme activity ultimately affecting levodopa metabolism and the synaptic 

dopamine concentration (Guin, 2017). Another study investigated the DRD2 and DRD3 

dopamine receptor polymorphisms and response to the non-ergot dopamine receptor agonist 

pramipexole, and observed higher response rates in Ser/Ser homozygotes for the DRD3 

Ser9Gly polymorphism (Tan EK, 2005). Several genetic association have been explored much 

it is yet to reach clinical applications due to contrasting findings.  

 The apolipoprotein-E (APOE) alleles have been the mainstay in Alzheimer’s disease 

genetics. Early work with tacrine suggested reduced drug efficacy in patients carrying APOE 

ε4 carriers, but later studies observed either no differences or even higher responses in APOE 

ε4 carriers. Discrepant data also exist for donepezil and differential treatment response in 

APOE ε4 carriers, while responses to galantamine and rivastigmine appear to be similar 

between APOE ε4 carriers and non-carriers. Other positive associations have been reported 

between ACHE polymorphisms (rs2571598) and response to rivastigmine, CHAT (rs733722) 

and response to donepezil, galantamine and rivastigmine; and CYP2D6 (rs1080985) and 

response to donepezil. Pharmacogenetic studies investigating ADR suggested genetic variants 

in ABCB4 may influence tacrine-induced elevation of liver transaminases. Likewise, Studies 

mu and theta null variants (GSTM1, GSTT1) associated with tacrine-induced liver toxicity 

have resulted in conflicting results. Despite the inconsistent results observed for most therapies, 
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APOE genotyping is routinely incorporated into new clinical trials for Alzheimer’s disease to 

evaluate drug efficacy in carriers and non-carriers of the APOE ε4 allele (Chan et al., 2011). 

 Current literature on PGx of multiple sclerosis (MS), suggests that approximately 30-

50% of patients do not respond well to first-line therapies which is hypothesized to be in part 

attributed to inter-individual genetic variability. MS is clinically heterogeneous and patients 

suffer from a wide range of symptoms such as muscle weakness, sensory change, pain, ataxia, 

depression, ataxia, and visual loss. Consequently, responses to several kinds of MS therapies 

are also heterogeneous. There have been many attempts to identify interferon β therapy-

responsive genes(M, 2008). These studies genotyped polymorphisms located in genes that are 

part of the type I IFN pathway, such as the IFN receptors 1 and 2 (IFNAR1 and IFNAR2), or 

genes known to be induced by IFN-β. Other studies elucidated the response to IFN-β of HLA 

class II (DRB1, DQA1 and DQB1) alleles or the HLA-DR2 haplotype was analysed 

(Cunningham S, 2005; Leyva L, 2005; Weinstock-Guttman B, 2007). Overall, results from 

these studies revealed either lack of association or weak and poor replicability of candidate 

associations with the response to IFN-β. So far only one GWAS is published in this regard, 

which identified genetic loci involved in neuronal repair and growth, and over-representation 

of genes related to ion channels and signal transduction pathways such as γ-aminobutyric or 

glutamate receptor genes (Byun E, 2008). In spite of several attempts, none of the markers 

reached up to clinical applications. 

Table 2.5 List of clinically validated PGx biomarkers in neurology and their level of recommendation by different PGx- 

regulatory bodies for related drugs 

Variant Gene Drug 
CPIC 

Level 

PharmGKB 

Level of 

Evidence 

FDA EMA 
Swiss 

Medic 
HCSC PMDA Ref 

HLA-A*31:01 HLA-A carbamazepine A 1A 
 

    23695185;29392710 

HLA-B*15:02 HLA-B carbamazepine A 1A 
 

    23695185;29392710 

CYP2C9*3 CYP2C9 fosphenytoin A 
 

     25099164;32779747 

HLA-B*15:02 HLA-B fosphenytoin A 
 

     25099164;32779747 

HLA-B*15:02 HLA-B oxcarbazepine A 1A 
 

    29392710 

CYP2C9*3 CYP2C9 phenytoin A 1A 
 

    25099164;32779747 

HLA-B*15:02 HLA-B phenytoin A 1A 
 

    25099164;32779747 

CYP2C9*2, CY

P2C9*3 
CYP2C9 siponimod A 1A 

 
     

rs3087374 POLG divalproex sodium A/B 
 

      

CYP2D6 PM CYP2D6 tetrabenazine A/B 
 

      

rs3087374 POLG valproic acid A/B 3 
 

     

https://www.pharmgkb.org/haplotype/PA165954769
https://www.pharmgkb.org/variant/PA166154900
https://www.pharmgkb.org/variant/PA166154900
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CYP2C19 PM CYP2C19 brivaracetam B 3 
 

     

rs3812718 SCN1A carbamazepine B 2B 
 

     

rs3812718 SCN1A phenytoin B 3 
 

     

rs1047891 CPS1 valproic acid B 
 

     31151073 

 OTC valproic acid B 
 

      

CYP2D6 PM CYP2D6 amphetamine B/C 
 

      

CYP2D6 PM CYP2D6 brexpiprazole B/C 
 

      

CYP2D6 PM CYP2D6 cevimeline B/C 
 

      

CYP2C19 PM CYP2C19 clobazam B/C 3 
 

     

CYP2D6 PM CYP2D6 deutetrabenazine B/C 
 

      

CYP2D6 PM CYP2D6 dextromethorphan B/C 3 
 

     

CYP2C19 PM CYP2C19 diazepam B/C 3 
 

     

CYP2D6 PM CYP2D6 donepezil B/C 3 
 

     

rs28933389 BCHE mivacurium B/C 
 

      

CYP2D6 PM CYP2D6 valbenazine B/C 
 

      

CYP2D6 PM CYP2D6 galantamine C 3 
 

     

HLA-B*15:02 HLA-A oxcarbazepine C 3 
 

    29392710 

rs2234922 EPHX1 carbamazepine D 3 
 

     

Data obtained from CPIC and PharmGKB annotations accessed as on 18 march 2023. Recommendations are: Red- Testing required; 

Yellow-Testing recommended; Green- Actionable PGx; Blue-Informative PGx 

 

2.4  Pharmacogenomics in epilepsy 

Apart from the above diseases, the treatment of epilepsy has been one of the model 

disease for pharmacogenomic studies considering the high prevalence of the disease (Heaney 

DC, 2002) (JW., 2003) (Banerjee PN, 2009), large inter-individual difference in response to 

AEDs (S.L. Moshé, 2015), easily measurable outcomes of seizure control and availability of 

assessment scales to drug response or its related ADRs (Aldenkamp AP, 1997; Baker GA, 

1994). There is much heterogeneity in the clinical manifestation of the disease. It includes a 

number of medical conditions with recurrent seizures being the common characteristic feature. 

The large number of different syndromes and seizure types as well as highly variable inter-

individual response to therapies makes management of this condition often challenging (Striano 

P, 2020).  

https://www.pharmgkb.org/variant/PA166155715
https://www.pharmgkb.org/haplotype/PA165954769
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Treatment of epilepsy begins with the initial administration of anti-epileptic drugs 

(AED) based on three level of diagnosis, starting with seizure type, followed by epilepsy type 

and then epilepsy syndrome classification, considering some other clinical parameters like 

electroencephalogram (EEG) patterns (Scheffer IE, 2017). In case of failure of initial treatment 

regime, the physician subsequently move to other drugs or additional poly-therapy. Epilepsy 

treatment outcome is often characterized by inconsistent  drug efficacy, adverse drug response, 

and dose optimization in  patients(Löscher W, 2009). There are several factors contributing to 

variable treatment response like individual drug metabolism, lifestyle, environmental factors 

and genetics. Predominantly, variation in response to AED arise from genetic variation in genes 

involved in drug disposition. These genes affect the pharmacokinetics, or pharmacodynamics 

of the drug (Madian AG, 2012; Spear, 2001; Wang L, 2011). The current studies associating 

these genes and their genetic variants with seizure control or adverse events are often limited 

to specific individualised setting, small study size, inconsistent drug prescription and dosage 

administration guideline, and difficulties in the validation of findings. Thus, such outcomes 

have not provided unifying conclusions, specifically for drug efficacy outcomes and hence 

lacking clinical translation. In contrast, studies in the past identified numerous HLA alleles with 

a range of ADR mostly affecting skin and liver. HLA screening and PGx-based prescription 

guidelines are already available for HLA-B*15:02 with carbamazepine induced SJS/TEN 

establishing clear roadmap for HLA-screening into clinical translation. The identification and 

validation of genetic factors that reliably predict the efficacy and toxicity of specific drugs for 

individual patients would significantly improve the current treatment of patients with epilepsy. 

Even with the introduction of almost thirty AEDs in the market, the rate of seizure 

remission remains poor, i.e., approximately 30% patients exhibiting pharmaco-resistance (MJ, 

2017; Pohlmann-Eden B, 2013). Though there is marked difference in safety and tolerability of 

these drugs with time, it is clear that we need an optimised framework to determine the choice 

of therapy in patients with epilepsy (Marson AG, 2007). The key to improving treatment 

outcome is certainly to invoke high chances of seizure remission in patients and precision 

medicine can at best provide clues about prognostication. Like, in case of refractory epilepsy 

or epilepsy with neuro-developmental deficits, precision medicine may direct them to surgical 

treatment rather than adhering to pharmacotherapy. Additionally, the identification and 

validation of genetic factors that reliably predict the efficacy and toxicity of specific drugs for 

individual patients may allow physicians to predict an accurate treatment or seizure 

management strategies based on the heterogeneous syndromes of epilepsy. A timeline of 



34 

 

pharmacogenomic improvements for AEDs towards clinical practice is represented in Figure 

2.4.  

 

 

 

 

 

Figure 2.4: Evolution of pharmacogenomics in epilepsy and their way into clinical applications. PHT, 

phenytoin; PK, pharmacokinetics; CBZ, carbamazepine; VPA, valproic acid; AED,;CYP, cytochrome P450 

enzyme; PharmGKB, The pharmacogenomic knowledgebase; NIHPRN, National institute of health 

Pharmacogenomics Research Network; PGx, pharmacogenomics; FDA, Food and drug administration; CPIC, 

Clinical Pharmacogenetics Implementation Consortium; PWE, patient with epilepsy; EPIPGX, epilepsy 

pharmacogenomics consortium; CPNDS, The Canadian Pharmacogenomics Network for Drug Safety ; DPWG, 

The Dutch Pharmacogenetics Working Group;  SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis 

 

2.4.1  Anti-epileptic drugs (AEDs) - Evolution, their mode of action, pharmacokinetic 

and pharmacodynamics of AED 

 Treatment of epilepsy begins with the initial administration of anti-epileptic drugs (AED) 

based on three level of diagnosis, starting with seizure type, followed by epilepsy type and then 

epilepsy syndrome classification, considering some other clinical parameters like EEG patterns 

(Scheffer IE, 2017). In case of failure of initial treatment regime, the physician subsequently 

move to other drugs or additional poly-therapy. Patients who do not respond to pharmacotherapy, 

become drug resistant/ refractory. Such patients are treated with ketogenic diet or surgical 

interventions (resective surgery of localized seizure-related tissue, vagus nerve stimulation). 

Epilepsy treatment outcome is often characterized by inconsistent drug efficacy, adverse drug 

response, and dose optimization in patients (Löscher W, 2009). There are several factors 

contributing to variable treatment response like individual drug metabolism, lifestyle, 

environmental factors and genetics. Predominantly, variation in response to AED arise from 
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genetic variation in genes involved in drug disposition. These genes affect the pharmacokinetics, 

or pharmacodynamics of the drug (Madian AG, 2012; Spear, 2001; Wang L, 2011). 

Currently, a total of 24 AEDs are available in the market (Figure 2.7). The serendipitous 

discovery of first line conventional AEDs and exploration of their mode of action led to discovery 

of targeted-based newer AEDs since the 1990s. The first effective AEDs in use were the 

bromides which were discovered in 1857. Bromides were mainly available as sedatives but were 

later also used for treating epilepsy, however, were discontinued as they cause impotence in men. 

The discovery of phenobarbital (PB) was a landmark in AED development which started the era 

of animal model testing for drug discovery. AEDs can be classified into two groups based on their 

entry in the market, 1) conventional, and 2) newer AEDs. The conventional AEDs may be considered 

as those which were introduced into the market before 1980s (Krall et al., 1978; Shorvon, 2009a) 

while the newer ones were introduced after 1990s and are still adding. 

Figure 2.5: Evolution of pharmacogenomics of anti-epileptic drugs according to their year of FDA 

approval for administration in epilepsy (Cavalleri GL, 2011). 

 

 

2.4.1.1 Conventional AEDs 

AEDs in this group were discovered serendipitously before the 1980s. The drugs were 

relatively toxic causing wide variety of adverse drug reactions (ADRs) in some patients. The 

anticonvulsive effect of PB came into existence in the year 1912 when Alfred Hauptmann, a 

physician discovered that the seizures of PWE are susceptible to this drug (Porter et al., 1992). 

He noted that PB is more effective and less toxic than the bromides. After PB, experimental 
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evaluation of promising anticonvulsant chemicals started. Researchers started the use of animal 

models for the drug development by the means of electroshock technique for producing 

convulsions in animals (Spiegel, 1936). Merritt and Putnam screened a group of compounds and 

discovered the anticonvulsant properties of diphenylhydantoin, now called PHT. Later, Food 

and Drug Administration (FDA) approved the use of PHT as an AED in 1953. CBZ, another 

AED, was first produced by chemist Walter Schindler at Geigy. It was first tested as a drug for 

depression, pyschosis and trigeminal neuralgia. Later in the year 1968, FDA approved the use of 

CBZ as an AED. In 1962, Pierre Eymard serendipitously discovered the anticonvulsant 

properties of VA while using it as a solvent for a number of other compounds that were being 

screened for anticonvulsive activity. VA was found to prevent the pentylenetetrazol (PTZ)-

induced convulsions in rats. FDA approved this drug in the year 1972.  

2.4.1.2 Newer AEDs 

The AEDs of this generation are an outcome of extraordinary advances in the basic science of 

pharmacology. This era marked the introduction of many new AEDs as well as second and third 

generation AEDs for epilepsy treatment after the 1990s. These drugs were based on the concept of 

selectively targeting one of the possible seizure generation mechanism (Loscher et al., 1994). 

Despite the encouraging and welcoming advantages in terms of ADRs of new AEDs, the concern 

of efficacy could not be improved and they were prescribed in combination with the conventional 

ones (Shorvon, 2009b). This category includes AEDs such as gabapentin, lamotrigine, 

topiramate, levetiracetam, oxcarbazepine, etc. 

Table 2.6: Characteristics of clinically approved AEDs in different generations of their discovery 

Sl. 

No. 

Drug (Year of 

FDA approval) 

Active 

metabo- 

lite 

Mode of 

action 

Mode of 

administr

ation 

FDA 

indications 

Genes 
Efficacy 

(≥50% 

seizure 

reduction) 

ADRs 

Targets DMEs DTs 

1 
Potassium 

bromide^ (1857) 

Not 

metabolised 

Activation of 

GABA 

receptor(Lös

cher W, 

2013) 

Adjuvant 

GTCS, 

myoclonic 

seizure(Lösc

her W, 2013) 

GABA 

receptor gene 

family 

- - 

31% (in 

childhood 

patients 

with severe 

epilepsy and 

generalized 

tonic-clonic 

seizures, at 

45 mg/kg) 

(Korinthenb

erg R, 2007) 

Acts as sedative 

(Löscher W, 

2013) 

2 
Phenobarbital^ 

(1912) 

p-Hydroxy 

pheno 

barbital 

Increase 

amount of 

time Cl- 

channels 

open, 

activation of 

GABA 

receptor 

Mono 

Partial 

seizures 

(Löscher W, 

2013) 

GABRA1, 

CHRNA4, 

CHRNA7, 

GRIA2, 

GRIK2, 

Glutamate 

receptor 

ionotropic 

CYP2C19, 

CYP2C9, 

CYP2B6, 

CYP2C8, 

CYP3A4, 

CYP1A2, 

CYP2A6, 

CYP2E1, 

ABCB1, 

ABCC3, 

ABCB11, 

ABCC1, 

SLCO2A1, 

ABCC2 

73.6% 

(mean 

efficacy) 

(Yasiry Z, 

2014) 

Somnolence, skin 

hypersensitivity, 

depression, 

behavioural 

problem, 

leukopenia, 

aplastic anemia, 

Megaloblastic 
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(Löscher W, 

2013) 

(NMDA) 

gene family, 

NR1I2 

CYP3A5, 

CYP1A1, 

CYP2C18, 

CYP3A7, 

CYP4B1, 

UGT1A1, 

UGT2B7 

anemia, 

Osteoporosis, 

Cognition 

impaired 

(Löscher W, 

2013) 

3 Phenytoin (1938) 

Hydroxy-

phenytoin 

(Parke- 

Davis, 

2009a) 

Na+, Ca2+ 

channel 

inhibitor, 

potentiate 

GABA 

receptor 

(Löscher W, 

2013; Parke- 

Davis, 

2009a) 

Mono 

generalized 

tonic-clonic 

(grand mal) 

and complex 

partial 

(psychomoto

r, temporal 

lobe) 

seizures 

SCN5A, 

SCN1A, 

NR1I2, 

SCN1B, 

SCN3A, 

KCNH2, 

Voltage-

dependent L-

type calcium 

channel gene 

family, 

SCN2A, 

SCN8A, 

GABA 

receptor gene 

family 

CYP2C19, 

CYP2C9, 

CYP2C8, 

CYP2B6, 

CYP3A4, 

CYP3A5, 

CYP3A7, 

CYP11B1, 

UGT1A1, 

UGT1A6, 

UGT1A9, 

CYP1A2, 

CYP2A6, 

CYP2D6, 

CYP2E1, 

EPHX1, 

UGT1A4, 

COMT, 

NQO1, 

CYP2C18 

SLCO1C1, 

ABCB1, 

ABCC2 

50.2% 

(mean 

efficacy of 

patients 

receiving 

phenytoin) 

(Yasiry Z, 

2014) 

Dizziness, 

Seizure 

aggravation, skin 

hypersensitivit

y, 

Encephalopat

hy, 

Depression, 

Behavioral 

problems, 

leukopenia, 

aplastic 

anemia, 

Megaloblastic 

anemia, 

Osteoporosis, 

Cognition 

impaired 

(Parke- Davis, 

2009a) 

4 
Trimetha-dione* 

(1946) 

Dimetha-

dione 

(Laboratories

, 1999) 

Ca2+ channel 

inhibitor 

(Löscher W, 

2013) 

Mono 

petit mal 

seizures that 

are refractory 

(Laboratories

, 1999) 

CACNA1G 

CYP2E1, 

CYP3A4, 

CYP2C8, 

CYP2C9, 

CYP2C19, 

- - 

Teratogenic, 

skin rashes, 

Blood 

Dyscrasias, 

renal and ocular 

dysfunction, 

Lupus-and 

Myasthenia-like 

Syndromes 

(Laboratories, 

1999) 

5 
Primidone 

(1954) 

phenobarbital 

and phenyl-

ethyl-

malonamide(

Pharmaceutic

als, 2009) 

bind 

centrally 

with voltage-

gated Na+ 

channels, 

Activates 

GABA -A 

receptor 

complex with 

chloride 

ionophore 

(Lenkapothul

a N, 2022; 

Löscher W, 

2013) 

Mono, 

Adjuvant 

grand mal, 

psychomotor, 

and partial 

epileptic 

seizures 

(Pharmaceuti

cals, 2009) 

GABRA1, 

GABRA2, 

GABRA3, 

GABRA4, 

GABRA5, 

GABRA6, 

CHRNA4, 

CHRNA7, 

GRIA2, 

GRIK2, 

GABA 

receptor gene 

family 

CYP2C9, 

CYP2C19, 

CYP2E1, 

CYP3A4, 

CYP1A2, 

UGT family 

TRPM3 

80% (at 25 

mg/kg/day 

within 

5days) 

(Sapin JI, 

1988) 

Sedation, 

drowsiness, 

Ataxia, 

diplopia, and 

nystagmus, 

dizziness, 

vertigo, 

epigastric pain, 

megaloblastic 

anemia, 

respiratory 

depression, 

polyuria, skin 

rash, facial 

edema 

(Lenkapothula 

N, 2022; 

Pharmaceutical

s, 2009) 

6 
Peganone/ 

Ethotoin  (1957) 

N-deethyl 

and p-

hydroxyl-

ethotoin (Inc, 

2010) 

Na+, Ca2+ 

channel 

inhibitor, 

potentiate 

GABA 

receptor(Lös

cher W, 

2013) 

Adjuvant 

tonic-clonic 

(grand mal) 

and complex 

partial 

(psychomoto

r) seizures 

(Inc, 2010) 

SCN5A, 

NR1I2 
- - 

83% (initial 

dose of 

100mg/day 

increased by 

50mg per 

week, till 

maintenance 

dose)(LIVI

NGSTON 

S, 1961) 

chest pain, 

nystagmus, 

diplopia, fever, 

dizziness, 

diarrhea, 

headache, 

insomnia, 

fatigue, 

numbness, skin 

rash, and 
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Stevens-

Johnson 

syndrome 

(Löscher W, 

2013) 

7 
Ethosuximide 

(1958) 

Mono-

hydroxy-

ethosuximide

s 

T-type Ca2+ 

channel 

inhibitor 

(Hanrahan B, 

2022; 

Löscher W, 

2013) 

Mono, 

Adjuvant 

(in other 

forms of 

epilepsy 

coexist 

with 

absence 

epilepsy) 

(MM., 

2010) 

absence 

(petit mal) 

epilepsy 

(Parke- 

Davis, 

2009b) 

CACNA1G 

CYP2E1, 

CYP3A4, 

CYP3A 

subfamily 

- - 

nausea, 

vomiting, 

diarrhea, and 

anorexia, 

drowsiness, 

lethargy, 

insomnia, and 

hiccups (Parke- 

Davis, 2009b) 

8 Diazepam (1963) 

N-

desmethyldia

zepam, 

Temazepam(

Hoffmann-La 

Roche, 2016) 

GABA 

potentiation(

Hoffmann-La 

Roche, 2016; 

Löscher W, 

2013) 

Adjuvant 

Status 

epilepticus, 

partial and  

generalised 

seizure 

(Löscher W, 

2013) 

GABA 

receptor gene 

family 

CYP2C9, 

CYP3A7, 

CYP3A4, 

CYP2C19, 

CYP3A5, 

CYP2B6, 

PTGS1, 

CYP2C18, 

CYP2C8, 

CYP2E1 

 

ABCB1 

90% 

(patients 

stopped 

having 

seizures in 

acute 

repetitive 

seizures 

given 

diazepam 

rectal 

gel)(Fakhou

ry T, 2007) 

drowsiness, 

fatigue, muscle 

weakness, and 

ataxia 

(Hoffmann-La 

Roche, 2016) 

9 
Carbamazepine 

(1964) 

carbamazepi

ne-10,11-

epoxide 

(Corporation, 

2009b) 

Na+, Ca2+ 

channel 

inhibitor, 

increase 

GABA 

transmission 

(Löscher W, 

2013) 

Mono, 

adjuvant 

(Corporati

on, 2009b) 

Partial 

seizure, 

generalised 

tonic-clonic 

seizure, 

mixed 

seizure(Corp

oration, 

2009b) 

Voltage-gated 

sodium 

channel gene 

family, 

CHRNA4, 

NR1I2 

CYP3A4, 

CYP2C8, 

CYP1A2, 

CYP2C9, 

CYP2C19, 

CYP2B6, 

CYP3A5, 

UGT2B7, 

UGT1A1, 

UGT1A6, 

UGT1A7 

ABCB1, 

RALBP1, 

ABCC2 

39% 

(complete 

freedom 

from 

seizure) and 

36% (>50% 

seizure 

reduction) at 

600mg/ day 

given o 

patients 

with 

generalised 

seizures 

(Callaghan 

N, 1985) 

Seizure 

aggravation, 

gastrointestinal 

distress, skin 

Hypersensitivit

y, Aplastic 

anemia, 

Cognition 

impaired, 

weight gain 

(Corporation, 

2009b) 

10 
Valproic acid 

(1967) 

4-ene-

Valproic acid 

(Inc., 1978) 

Na+, Ca2+ 

channel 

inhibitor, 

potentiate 

GABA 

receptor, 

Glutamate 

(NMDA) 

inhibitor 

(Löscher W, 

2013) 

Mono, 

Adjuvant(

Inc., 

1978) 

GTCS 

(primary and 

secondary), 

absence, 

atonic and 

myoclonic 

seizure, 

complex 

partial 

seizure(Inc., 

1978) 

ACADSB, 

HDAC9, 

OGDH, 

ALDH5A1, 

Sodium 

channel 

protein gene 

family, 

HDAC2, 

PPARA, 

PPARD, 

PPARG 

CYP2A6, 

CYP2B6, 

CYP2C9, 

CYP3A5, 

PTGS1, 

CYP1A2, 

CYP2C19, 

CYP3A4, 

UGT1A4, 

UGT1A8, 

UGT1A10, 

UGT1A6, 

UGT1A3, 

UGT2B7, 

UGT2B15, 

UGT1A9, 

UGT1A1 

SLC22A6, 

SLC22A8, 

SLC22A5, 

SLC16A1, 

SLC22A7, 

SLCO2B1 

45% (drug 

vs placebo 

in 

monotherap

y to 

complex 

partial 

seizure 

patients) 

(Inc., 1978) 

Gastrointestinal 

distress, 

encephalopathy, 

teratogenicity; 

weight gain, 

Thrombocytope

nia, 

Pancreatitis, 

retinal 

dysfunction 

(Inc., 1978) 

11 
Clonazepam 

(1968) 

7-amino-

clonazepam(I

nc, 2013) 

GABA 

potentiation(I

nc, 2013) 

Mono, 

Adjuvant 

Lennox-

Gastaut 

syndrome 

(petit mal 

variant), 

GABA 

receptor gene 

family, NR1I2 

CYP3A4, 

CYP2E1, 

NAT2 

- 

23% (drug 

vs placebo, 

primarily as 

treatment in 

partial 

Somnolence, 

dizziness, 

coordination 

abnormal, 

ataxia, 
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akinetic and 

myoclonic 

seizures (Inc, 

2013) 

complex 

seizures) 

(G.L., 1990) 

Dysarthria, 

psychiatric, 

respiratory and 

other 

gastrointestinal 

problems (Inc, 

2013) 

12 Clobazam (1975) 

N-

desmethylclo

bazam, 4'-

hydroxycloba

zam 

(Lundbeck, 

2011) 

GABA 

potentiation(

Lundbeck, 

2011) 

Adjuvant 

Lennox–

Gastaut 

Syndrome 

(Lundbeck, 

2011) 

GABA 

receptor gene 

family 

CYP3A4, 

CYP2C19, 

CYP2B6, 

CYP2C18, 

CYP2D6 

(Lundbeck, 

2011) 

SLC6A1, 

SLC6A11, 

ABCB1 

52% (drug 

vs placebo 

with 

1mg/kg/day)

(Gauthier 

AC, 2015) 

constipation, 

somnolence or 

sedation, 

pyrexia, 

lethargy, and 

drooling 

(Lundbeck, 

2011) 

13 
Progabide^ 

(1985) 

GABA, 

gabamide 

GABA 

potentiation(

G., 1984) 

Adjuvant(

Löscher 

W, 2013) 

Partial and 

generalised 

seizure, 

Lennox–

Gastaut 

syndrome, 

myoclonic 

seizures 

(Löscher W, 

2013) 

 

GABBR1 
CYP3A4 ABCB1 

63.9% in 

partial 

epilepsy, 

62.2% in 

primary 

generalised 

and 57.1% 

with 

secondary 

generalized 

epilepsy 

(Drug vs 

placebo at 

mean daily 

dose of 30.5 

mg/kg/day) 

(Musch B, 

1987) 

Clinical 

hepatotoxicity(

Löscher W, 

2013) 

14 
Vigabatrin 

(1989) 

Not 

metabolised 

irreversible 

inhibitor of 

γ- amino 

butyric acid 

transaminase 

(GABA-T) 

(Lundbeck, 

2009) 

Mono, 

Adjuvant 

Infantile 

spasm, 

Refractory 

Complex 

Partial 

Seizures 

(Lundbeck, 

2009) 

 

ABAT 
CYP2C9 SLC36A1 

53% (drug 

vs placebo 

at 6g/day) 

(Lundbeck, 

2009) 

permanent 

vision loss, 

fatigue, 

somnolence, 

nystagmus, 

tremor, vision 

blurred, 

memory 

impairment, 

weight gain, 

arthralgia, 

abnormal 

coordination, 

and confusional 

state 

(Lundbeck, 

2009) 

15 
Lamotrigine 

(1990) 

2-N-

glucuronide 

(inactive) 

(GlaxoSmith

Kline, 2015) 

Na+ channel 

inhibitor 

(GlaxoSmith

Kline, 2015) 

Mono, 

Adjuvant 

Lennox–

Gastaut 

syndrome, 

partial-onset 

seizures, 

primary 

generalized 

tonic-clonic 

seizures 

(GlaxoSmith

Kline, 2015) 

 

 

CACNA1E, 

Voltage-gated 

sodium 

channel gene 

family, 

ADORA1, 

ADORA2A, 

ADRA1A, 

ADRA2A, 

ADRB1, 

DRD1, 

DRD5, 

DRD2,  

GABA 

receptor gene 

family, 

UGT protein 

group, 

DHFR 

ABCB1, 

SLC22A2 

72% (drug 

vs placebo, 

with 

lamotrigine 

add –on 

with one or 

two other 

AED, at 

maintenance 

phase) 

(Biton V, 

2005) 

Dizziness, 

headache, 

diplopia, ataxia, 

nausea, blurred 

vision, 

somnolence, 

rhinitis, 

pharyngitis, and 

rash.(GlaxoSmi

thKline, 2015) 
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HRH1, 

OPRK1, 

CHRNA1, 

HTR2A, 

HTR3A, 

GRIA1 

16 
Oxcarbazepine 

(1990) 

10,11-

dihydro-10-

hydroxy-

carbazepine(

Corporation, 

2000) 

Voltage 

sensitive Na+ 

channel 

inhibitor 

(Corporation, 

2000) 

Mono, 

Adjuvant 

partial 

seizures 

(Corporation, 

2000) 

Voltage-gated 

sodium 

channel gene 

family 

AKR1C1, 

AKR1C2, 

AKR1C3, 

AKR1C4,  

CBR1, 

CBR3, 

CYP3A4, 

CYP2C19, 

CYP3A5 

ABCB1 

32% (J.A.P. 

Van Parys, 

1994) 

Dizziness, 

somnolence, 

diplopia, 

fatigue, nausea, 

vomiting, 

ataxia, 

abnormal 

vision, 

headache, 

nystagmus, 

tremor,and 

abnormal gait 

(Corporation, 

2000). 

17 
Felbamate 

(1993) 

p-hydroxy, 

and 2-

hydroxy 

metabolitesm

onocarbamat

e 

GABA 

potentiation, 

Glutamate 

receptor 

(NMDA) 

inhibitor, 

Na+, Ca2+ 

channel 

inhibitor 

(Inc, 1993) 

Mono, 

Adjuvant 

partial-onset 

seizures, 

Lennox–

Gastaut 

syndrome 

(Inc, 1993) 

 

GRIN2B, 

GRIN2A 

CYP3A4, 

CYP2C19, 

CYP2E1, 

CYP2C9 

- 

23%*(drug 

vs placebo 

starting 

dosage 

starting 

dosage of 

1400  

mg/day 

increased to 

2600mg/day

, drug 

administere

d as add-

on)(Inc, 

1993) 

anorexia, 

vomiting, 

insomnia, 

nausea, 

dizziness, 

somnolence, 

and headache 

18 
Gabapentin 

(1993) 

Not 

metabolised(

MJ., 1994) 

Ca2+ channel 

inhibitor 

(Pfizer) 

Adjuvant 

partial onset 

seizures 

(Pfizer) 

CACNA2D1, 

CACNA2D2, 

CACNA1B, 

ADORA1, 

KCNQ3, 

KCNQ5 

BCAT1 SLC7A5 

18.4% (drug 

vs placebo 

at 1200 

mg/day) 

Somnolence, 

Dizziness, 

Seizure 

aggravation, 

psychotic 

episodes, 

weight gain 

(Pfizer) 

19 
Topiramate 

(1995) 

2,3-

desisopropyli

dene 

topiramate 

Na+, Ca2+ 

channel 

inhibitor, 

potentiate 

GABA 

receptor, 

Glutamate 

(AMPA) 

inhibitor(Jans

sen 

Pharmaceutic

als, 1996) 

Mono, 

Adjuvant(

Janssen 

Pharmace

uticals, 

1996) 

Partial and 

generalised 

seizure, 

Lennox–

Gastaut 

Syndrome. 

(Janssen 

Pharmaceutic

als, 1996) 

GABRA1, 

Voltage-gated 

sodium 

channel gene 

family, 

Glutamate 

receptor 

ionotropic 

(NMDA) 

gene family, 

CA4, 

CA1, CA3, 

Voltage-

dependent L-

type calcium 

channel gene 

family 

CYP2C19, 

CYP3A4 

 

ABCB1, 

Tau-protein 

kinase 

activity 

gene family 

44.7% (drug 

vs placebo, 

at 

600mg/day)

(Janssen 

Pharmaceuti

cals, 1996) 

paresthesia, 

anorexia, 

weight 

decrease, 

fatigue, 

dizziness, 

somnolence, 

nervousness, 

psychomotor 

slowing, 

difficulty with 

memory, 

difficulty with 

concentration/at

tention, 

cognitive 

problems, 

confusion, 

mood problems, 

fever, infection, 

and 

flushing.(Jansse

n 
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Pharmaceutical

s, 1996) 

20 Tiagabine (1996) 
5-oxo-

tiagabine 

GABA 

potentiation(

Cephalon, 

2009) 

Adjuvant 
Partial 

seizure. 
SLC6A1 

CYP3A4, 

UGT1A1 
- 

33-46% 

(drug vs 

placebo, 

TGB 26–36 

mg dose 

study period 

of 6 months) 

(Bauer J, 

1995) 

dizziness 

somnolence, 

depression, 

confusion 

asthenia 

21 
Acetazolamide 

(1997) 

Not 

metabolised 

Carbonic 

anhydrase 

inhibitor 

(Anne T., 

2007; 

Ciccone L, 

2021) 

Adjuvant(

Ciccone 

L, 2021) 

partial, 

myoclonic, 

absence and 

primary 

generalized 

tonic–clonic 

seizures 

(Anne T., 

2007), 

catamenial 

epilepsy 

(Rivera C., 

2005) 

CA1, CA2 

CA3, CA4, 

CA7, CA12, 

CA14, AQP1 

CYP3A4 SLC22A6 

44% (when 

administere

d in adjunct 

with CBZ, 

at 22 

mg/kg/day 

maximum 

dose)(Millic

hap, 1989) 

Paraesthesias, 

dysgeusia, fatigue 

and 

gastrointestinal 

symptoms 

(Schmickl CN, 

2020) 

22 
Zonisamide 

(2000) 

N-acetyl 

zonisamide(P

harmaceutica

l, 2011) 

Na+ channel 

inhibitor, 

reduces 

voltage-

dependent, 

transient 

inward 

currents (T-

type Ca2+ 

currents) 

(Pharmaceuti

cal, 2011) 

Adjuvant(

Pharmace

utical, 

2011) 

partial 

seizures 

SCN1A, 

SCN2A, 

SCN3A, 

SCN4A, 

SCN5A, 

SCN9A, 

SCN11A, 

SCN1B, 

SCN2B, 

SCN3B, 

SCN4B, 

CACNA1G, 

CACNA1H, 

CACNA1I, 

CA1, CA2, 

CA3, CA4, 

CA5A, CA5B, 

CA6, CA7, 

CA8, CA9, 

CA10, CA11, 

CA12, CA13, 

CA14, 

MAOB, 

MAOA 

 

CYP3A4, 

AOX1, 

CYP2C19, 

UGT1A1, 

CYP3A5 

ABCB1 

41.8% (drug 

vs placebo, 

400 mg 

administere

d and 

primary 

comparison 

after 8-12 

weeks) 

(Pharmaceut

ical, 2011) 

Somnolence, 

Dizziness, 

gastrointestinal 

distress, skin 

hypersensitivit

y, behavioural 

problem, 

Nephrolithiasis

, weight loss, 

cognition 

impaired 

23 
Levetiracetam 

(2000) 

carboxylic 

acid 

metabolite 

(ucb L057) 

(inactive) 

(UCB, 1999) 

Synaptic 

vesicle 

(SV2A) 

modulator 

(UCB, 1999) 

Adjuvant 

Partial Onset 

Seizures, 

Myoclonic 

Seizures, 

Primary 

Generalized 

Tonic-Clonic 

Seizures 

SV2A, 

Voltage-gated 

sodium 

channel gene 

family (B., 

2008) 

- 
 

ABCB1 

39.8% (drug 

vs placebo, 

over the 

entire 

randomized 

treatment 

period at 

3000 

mg/day)(Cer

eghino JJ, 

2000) 

somnolence, 

asthenia, 

infection and 

dizziness (in 

adults)(UCB, 

1999) 

24 
Stiripentol 

(2002) 

13 

metabolites 

Potentiate 

GABA 

receptor 

(BIOCODEX

, 2018) 

Adjuvant 

Dravet 

syndrome 

(BIOCODEX

, 2018) 

GABA 

receptor gene 

family, 

LDHA, 

LDHB 

CYP2C19, 

CYP2D6, 

CYP3A4, 

CYP1A2, 

CYP2C9 

(BIOCODE

X, 2018) 

- 

71% (drug 

vs placebo, 

responder 

rate)(Inoue 

Y, 2014) 

(BIOCODE

X, 2018) 

anorexia, loss 

of appetite, 

nausea, 

vomiting, 

weight loss, 

reversible 

neutropenia, 

insomnia, 
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drowsiness, 

ataxia, 

dystonia, 

hyperkinesia, 

hypotonia 

(BIOCODEX, 

2018) 

26 

 

Pregabaline 

(2004) 

Not 

metabolised 

Ca2+ channel 

inhibitor 

(Pfizer, 

2004) 

Adjuvant(

Pfizer, 

2004) 

Partial Onset 

Seizures 

 

CACNA2D1 
- 

 

SLC1A1, 

SLC7A5 

40.6% (drug 

vs placebo 

with 10 

mg/kg/day 

dose) 

(Pfizer, 

2004) 

dizziness, 

somnolence, 

dry mouth, 

edema, blurred 

vision, weight 

gain, and 

thinking 

abnormal(Pfizer

, 2004) 

27 
Rufinamide 

(2004) 

Carboxylami

de (inactive) 

Na+ channel 

inhibitor 

(Eisai, 2008) 

Adjuvant 

Lennox–

Gastaut 

Syndrome 

(Eisai, 2008) 

GRM5, 

SCN9A 

CES1, 

CYP3A4 

CYP2E1, 

- 

32.7% (drug 

vs placebo 

Median 

percent 

change in 

total seizure 

frequency 

per 28 

days)(Glaus

er T, 2008) 

headache, 

dizziness, 

fatigue, 

somnolence, 

and 

nausea(Eisai, 

2008) 

28 
Carisbamate 

(2008) 

O-

carisbamate 

glucoronide  

metabolite, 

(R)-

carisbamate, 

two minor 

mercapturic 

acid 

metabolites 

(minor) 

Na+ channel 

inhibitor 

(Whalley BJ, 

2009) 

Adjuvant 

Partial onset 

seizures 

(Whalley BJ, 

2009) 

Voltage-gated 

sodium 

channel gene 

family(Zanni

kos P, 2009) 

CYP2A6, 

CYP2C9, 

CYP2C19, 

ADH1B, 

ALDH2, 

UGT1A1, 

UGT1A9 

GAT1, CLC 

gene family 

(Whalley 

BJ, 2009) 

36% (drug 

vs placebo 

median 

percent 

reduction 

from 

baseline to 

the double-

blind phase 

in seizure 

frequency) 

(Halford JJ, 

2011) 

dizziness, 

headache, 

somnolence and 

nausea (Kulig 

K, 2007) 

29 
Lacosamide 

(2009) 

O-desmethyl 

metabolite 

(inactive) 

(UCB, 2008) 

Enhanced 

slow 

inactivation 

of  Na+ 

channel(UCB

, 2008) 

Mono, 

Adjuvant 

Partial-onset 

seizures. 

SCN9A, 

SCN3A, 

SCN10A 

CYP3A4, 

CYP2C19, 

CYP2C9 

- 

38.1–41.2% 

(drug vs 

placebo at 

600 mg/day) 

(Bauer S, 

2017) 

diplopia, 

headache, 

dizziness, 

nausea 

30 
Eslicarbazepine 

acetate (2009) 

Eslicarbazepi

ne (ESL) 

Na+ channel 

inhibitor 

(Sunovion, 

2013) 

Mono, 

Adjuvant(

Sunovion, 

2013) 

Partial-onset 

seizures. 

 

P2RX4 

CYP3A4, 

CYP2C19, 

UGT1A1 

- 

34% and 

43% (drug 

vs placebo 

at ESL 800 

and 1200 

mg) (Gil-

Nagel A., 

2009) 

Dizziness, 

somnolence, 

nausea, 

headache, 

diplopia, 

vomiting, 

fatigue, vertigo, 

ataxia, blurred 

vision, and 

tremor(Sunovio

n, 2013). 

31 
Everolimus 

(2010) 

24 

metabolites 

Rapamycin 

(mTOR) 

inhibitor 

(Corporation, 

2009a) 

Adjuvant 

Tuberous 

sclerosis 

complex 

associated 

partial onset 

seizure(Corp

oration, 

2009a) 

mTOR, 

FKBP12 

VEGF 

CYP3A4, 

CYP3A5, 

CYP2C8, 

CYP2D6 

(Kirchner 

GI, 2004) 

SLCO1B1, 

SLCO1B3, 

SLCO1A2, 

ABCB1 

64.8% 

(Drug vs 

placebo 

after 12 

week in 

PEP)(Franz 

DN, 2021) 

Stomatitis, 

infections, 

asthenia, 

fatigue, cough, 

and diarrhea 

(Corporation, 

2009a) 

32 

Retigabine/ 

Ezogabine* 

(2011) 

N-acetyl 

ezogabine 

K+ channel 

activator 

Adjuvant(

GlaxoSmi

Partial-onset 

seizures 

KCNQ2, 

KCNQ3, 

KCNQ4, 

UGT1A1, 

UGT1A3, 
- 

44.3% (drug 

vs placebo 

with 1200 

Neuro-

psychiatric 

symptoms, QT 
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(GlaxoSmith

Kline, 2012) 

thKline, 

2012) 

(GlaxoSmith

Kline, 2012) 

KCNQ5 (MY., 

2013) 

UGT1A4, 

UGT1A9, 

NAT2 

mg/day 

based on 

median % 

reduction in 

seizure 

frequency in 

28 days) 

(Brodie MJ; 

MY., 2013) 

prolongation, 

suicide 

ideation(Glaxo

SmithKline, 

2012) 

33 
Perampanel 

(2012) 

dihydrodiol 

metabolite, 

N-acetyl 

cysteine 

(inactive) 

Glutamate 

(AMPA) 

agonist (Co, 

2012) 

Adjuvant 

Partial 

seizure, 

GTCS (Co, 

2012) 

GRIA1 

CYP3A4, 

CYP3A5, 

CYP1A2, 

CYP2B6 

- 

64.2% (drug 

vs placebo 

at 8 mg or 

highest 

tolerated 

dose of 

perampanel 

in 28 

days)(Frenc

h JA, 2015) 

dizziness, 

somnolence, 

fatigue, 

irritability, 

falls, nausea, 

weight gain, 

vertigo, ataxia, 

headache, 

vomiting, 

contusion, 

abdominal pain, 

and anxiety 

(Co, 2012) 

34 
Talampanel^ 

(2012) 
- 

allosteric 

antagonist of 

the AMPA 

receptor 

(Howes et 

al., 2007) 

Mono 

(Langan 

YM, 

2003), 

Adjuvant 

(Chappell 

et al., 

2002; 

Howes & 

Bell, 

2007) 

refractory 

epilepsy 

(Langan YM, 

2003), partial 

complex 

seizures 

(Chappell et 

al., 2002; 

Howes & 

Bell, 2007) 

 

GRIA1 

GRIA2, 

GRIA3, 

GRIA4 

- - - 

Fatigue, 

dizziness, 

ataxia, nausea 

(Iwamoto FM, 

2010) 

35 
Brivaracetam 

(2016) 

carboxylic 

acid 

metabolite 

Synaptic 

vesicle 

(SV2A) 

modulator 

(Smyrna, 

2018) 

Mono, 

Adjuvant(

Smyrna, 

2018) 

Partial onset 

seizure 

SV2A, 

Voltage-gated 

sodium 

channel gene 

family 

CYP1A2, 

CYP2B6, 

CYP2C9, 

CYP2C19, 

CYP3A4,  

EPH 

- 

25.2% (drug 

vs placebo, 

with 

100mg/day, 

based on 

28day 

seizure freq) 

(SA, 2009) 

somnolence, 

dizziness, 

fatigue, and 

nausea 

(Smyrna, 2018) 

36 Sulthiame^ Unknown 

Carbonic 

anhydrase 

inhibitor 

Mono, 

Adjuvant 

benign 

epilepsy of 

childhood 

with central 

temporal 

spikes, 

refractory 

seizure 

 

CA2 
- - 

81% (drug 

vs placebo 

with 5 

mg/kg/day 

(Rating D, 

2000) 

hyperpnea, 

paresthesias, 

and anorexia 

(Fejerman N, 

2012) 

37 
Cannabidiol 

(2018) 

11-carboxy-

CBD 
unknown 

Adjuvant(

Raucci U, 

2020) 

Dravet 

syndrome, 

Lennox–

Gastaut 

Syndrome 

(Pharmaceuti

cals, 2018) 

CNR1, 

CNR2, 

GPR12, 

GLRA1, 

GLRA1, 

GLRB, 

GLRA3, 

GPR18, 

GPR55, 

HTR1A, 

HTR2A, 

CHRNA7, 

OPRD1, 

OPRM1, 

PPARG, 

TRPV1, 

CACNA1G, 

 

CYP2C19, 

CYP3A4, 

UGT1A7, 

UGT1A9, 

and 

UGT2B7 

(Pharmaceut

icals, 2018) 

ABCB1, 

ABCG2, 

ABCB11 

(Pharmaceu

ticals, 

2018) 

39% 

(patients 

administere

d with 

15.0mg/kg ) 

(Pamplona 

FA, 2018; 

Raucci U, 

2020) 

somnolence; 

decreased 

appetite; 

diarrhea; 

transaminase 

elevations; 

fatigue, 

malaise, and 

asthenia; rash; 

insomnia, sleep 

disorder, and 

poor quality 

sleep; and 

infections 

(Pharmaceutical

s, 2018) 
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CACNA1H, 

CACNA1I, 

TRPA1, 

TRPM8, 

TRPV2, 

TRPV3, 

TRPV4, 

VDAC1, 

HTR3A, 

ADORA1, 

PTGS1, 

PTGS2, 

ACAT1, 

HMGCR, 

GSR, 

GPX1, IDO1, 

CYP1B1, 

NQO1, CAT, 

SOD1, 

AANAT, 

NAAA 

38 
Cenobamate 

(2019) 
Not known 

Inhibit 

voltage-gated 

sodium 

channel 

currents, 

modulator 

GABAA 

receptors 

(Co.; Zaccara 

G, 2021) 

Adjuvant 

(Steinhoff, 

2021) 

Partial onset 

seizure(Stein

hoff, 2021) 

Voltage-

gated sodium 

channel gene 

family, 

GABAA 

receptors 

(Co.) 

CYP2C19, 

CYP3A4, 

CYP3A5, 

CYP2B6, 

CYP2E1, 

CYP2A6, 

UGT2B4, 

UGT2B7, 

CYP2C8 

(A., 2022) 

- 

55.6% (drug 

vs placebo 

(SK Life 

Science, 

2022) 

hypersensitivit

y, suicidal 

ideation, and 

QT shortening 

(A., 2022) 

39 
Fenfluramine 

(2020) 
 

serotonergic 

5-HT2 

receptor 

agonist and 

σ1 receptor 

antagonist 

(Martin P, 

2020; 

Rodriguez-

Munoz M, 

2018) 

Adjuvant 

Dravet 

Syndrome 

(T., 2019), 

Lennox-

Gastaut 

syndrome 

(Knupp KG, 

2022) 

SLC6A4, 

HTR1D, 

HTR2C, 

SIGMAR1, 

HTR2A, 

HTR2B, 

HTR1A 

CYP1A2, 

CYP2B6, 

CYP2C9, 

CYP2C19, 

CYP3A4, 

CYP3A5, 

CYP2D6 

(Zogenix, 

2020) 

SLC6A4 

70% (drug 

vs placebo 

at 0.7 

mg/kg/day) 

("A Trial of 

Two Fixed 

Doses of 

ZX008 

(Fenflurami

ne HCl) as 

an 

Adjunctive 

Therapy in 

Children 

and Young 

Adults With 

Dravet 

Syndrome," 

; Zogenix 

International 

Limited et 

al., 2016) 

23.7% ( 

drug vs 

placebo at 

0.7 

mg/kg/day)(

Knupp KG, 

2022) 

diarrhea, 

decreased 

appetite, 

fatigue, 

somnolence, 

and vomiting 

(Zogenix, 

2020) 

40 
Ganaxolone 

(2022) 

16-OH 

ganaxolone 

positive 

allosteric 

modulators 

GABAA 

receptors 

(Marinus 

Mono, 

adjuvant 

seizures 

associated 

with CDD 

(Marinus 

Pharmaceutic

als, 2022) 

GABAA 

Receptor 

(Monaghan 

EP, 1997) 

CYP3A4, 

CYP3A5, 

CYP2B6, 

CYP2C19, 

CYP2D6 

(Nohria V, 

2007) 

 

27·1% (drug 

vs placebo) 

(Knight 

EMP, 2022) 

somnolence, 

pyrexia, 

salivary 

hypersecretion

, and seasonal 

allergy 

(Marinus 
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Pharmaceutic

als, 2022) 

Pharmaceutica

ls, 2022) 

AEDs represented in the chronological order of the FDA approval as for anti-epileptic/ anti-seizure administration. AED, anti-epileptic drug; 

DME, drug metabolising enzymes, DT, drug transporters; ADR, Adverse drug reactions; Efficacy data is obtained from FDA drug datasheet 

and for seizure type/ epilepsy syndrome for which FDA administration is approved. All the DMEs, DTs and Drug target data was obtained from 

https://go.drugbank.com/ as on August 23, 2022. Efficacy is defined as percentage of patients with ≥ 50% decrease in seizure frequency from 

baseline data in respective study assessed after a given time (and dose) are marked with #. All the efficacy data for drugs are assessed for the 

specific epilepsy/seizure type for which they are FDA approved for administration. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid; GTCS, generalized tonic–clonic seizures; JME, juvenile myoclonic epilepsy; NMDA, N-methyl-d-aspartate; SV2A, synaptic vesicle 

glycoprotein 2A; URTI, Upper respiratory tract infection; The year of approval indicates the year in which the drug was first approved or 

marketed in the United States or Europe. ̂  not FDA approved; CDD, CDKL5 deficiency disorder; PEP, Post extension phase: Patients benefitted 

from continued everolimus treatment at the end of extension phase continued treatment 105 * Percentage seizure frequency reduction 

 

2.4.2  Genetic factors and response to AEDs 

More than 24 AEDs are available in the market with newer drugs also developing 

constantly, however conventional AEDs such as CBZ, PHT and VPA still remain as the major 

prescriptions (Sirven et al., 2012). These AEDs are more often accompanied by ADRs than 

newer AEDs, however, their cost-effectiveness is the major reason behind their preference over 

the newer ones. Despite advancements in drug therapy management approaches and discovery 

of newer AEDs many epilepsy patients struggle to achieve seizure control (Piana et al., 2014). It 

is widely reported that 30% of the PWE fail to respond to AED polytherapy making the disease 

refractory (Brodie et al., 2000). Inadequate patient response has majorly been because of the 

large inter-individual genetic variability of patients. There is variability in efficacy and ADRs in 

patients who were on similar dosages of same medications. This uncertainty in therapy 

management comprising drug and dose selection, along with managing range of ADRs in each 

individual patient has highlighted the urgent need to understand the individual genetic profile and 

develop predictive test for prescribing drugs and dosages in a personalized manner (Cavalleri et 

al., 2011). An earliest report of 1968 provided evidence of involvement of genetic factors 

(congenital enzyme deficiency) in response to AEDs (Kutt et al., 1968). Since then, role of 

number of genes involved in metabolism, transport and target of AEDs have been elucidated in 

pharmacogenetic studies. Despite many studies results have been inconclusive and conflicting 

with no recommendations available to date for prediction of antiepileptic dose, drug level and 

drug response (efficacy) by means of genetic markers/genotypes of individual patients (Dlugos 

et al., 2006). This hints towards the need for further exploration of AED mechanisms and the 

hidden facts behind. 

2.4.2.1  Drug metabolizing enzymes (DMEs) 

The genes involved in metabolism of AEDs (pharmacokinetics) are mainly from 

Cytochrome P450 (CYP450) superfamily and Microsomal Epoxides (mEH). Of the CYP450, 
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CYP2C9 is known to be a major metabolizer of PHT and PB followed by CYP2C19 with 

comparatively low but significant contribution in VPA metabolism (Anderson, 1998; Jiang et al., 

2009; Mehendale, 1995; Riva et al., 1996; Veronese et al., 1991). Another CYP450 CYP3A4 

contributes to the metabolism of CBZ (Kerr et al., 1994; Tomson et al., 1983). Other than 

CYP3A4, CYP3A5 has also been reported to play role in CBZ metabolism (Park et al., 2009). As 

there exist a considerable overlap in substrate specificity of CYP3A subfamily gene, therefore 

CYP3A7 the third largely expressed enzyme of the CYP3A gene cluster at chromosome 7 after 

CYP3A4 and CYP3A5, was also prioritized for the present study. Further, of the Microsomal 

Epoxides, EPHX1 known to metabolize CBZ was also prioritized (Kerr et al., 1994; Tomson et 

al., 1983). While conducting pharmacogenetic studies, majority focus has been on AED 

pharmacokinetic genes (Dlugos et al., 2006). Several functional variants of DME’s are known to 

have significant influence on drug metabolism and drug dosing which ultimately may influence 

their drug response. Based on the in vitro studies it has been reported that CYP2C9*3 allele 

exhibits decreased enzyme activity leading to reduced PHT metabolism (Takanashi et al., 2000). 

Further in an in vitro study on S-warfarin it was observed that individuals having minor allele of 

CYP2C9*2 (R144C) will have decreased clearance of S-warfarinn than the wild type allele 

(Rettie et al., 1994). It was further observed that patients with CYP2C9*2 exhibited significant 

reduction in maximum tolerated doses (Dlugos et al., 2006).  Later Tate et al performed the 

genetic association study of CYP2C9 variants with phenytoin pharmacokinetic parameters, 

which revealed significantly reduced enzyme activity of CYP2C9*3 allele leading to lower 

phenytoin dose requirement (Tate et al., 2004). (Tate & Goldstein, 2004). Other than the *2 and 

*3 polymorphisms CYP2C9*5, *6, *8, *11, *1B have also shown impaired phenytoin 

metabolism leading to increased plasma levels (Allabi et al., 2003; Chaudhry et al., 2010; 

McCluggage et al., 2009; Ramasamy et al., 2007). Other than phenytoin CYP2C9 and CYP2C19 

are known to metabolism of Phenobarbital. The influence of CYP2C19 polymorphism on 

pharmacokinetic (PK) of Phenobarbital was observed in Japanese population (Yukawa et al., 

2006) in case of Asian patients it has been observed that CYP2C19*1/*3 heterozygous 

significantly decreases the body clearance of Phenobarbital as compared to CYP2C19*1/*1 and 

CYP2C19*1/*2 (Goto et al., 2007). Based on the in vitro and in vivo studies exploring functional 

role of various CYP3A4 gene variants CY3A4*1G (rs2242480) is known to effect CYP3A4 

activity by influencing the metabolism of its substrates, however no significant influence has 

been observed for CBZ response as well as maintenance doses and adjusted plasma 

concentrations of CBZ (Dong et al., 2012; Miura et al., 2011; Yun et al., 2013). Another report 

on Korean ethnicity patients by Park et al reported the influence of CYP3A5*3 (rs4986910) 



47 

 

variant on steady state serum concentration of CBZ (Piana et al., 2014). Further two common 

variants of EPHX1 rs1051740 (c.337T>C) and rs2234922 (c.416A>G) have been demonstrated 

to influence the metabolic capacity of EPHX1 both in vitro as well in vivo. Other than phase I 

DME’s, phase II DME’s play significant role in metabolism of selective first line AEDs. UGT’s 

are considered to be the major metabolizers for valproic acid. For example UGT1A3*5 as 

reported in Chinese population could act as significant determinant of  PK variability of valproic 

acid as these patients require higher doses of valproic acid in order to achieve therapeutic levels 

(Chu et al., 2012). 

2.4.2.2  Drug Transporters 

Other than DME’s, drug transporters have also been well explored for their possible role in 

inter-individual variability in AED efficacy. Several in vitro reports of first-line AEDs have 

demonstrated PHT, CBZ, VPA and PB as substrates of ABCB1 (P-gp) (Luna-Tortos et al., 2008; 

Potschka et al., 2001; Weiss et al., 2003). Further evidences have also indicated that PHT and CBZ 

may also be substrate to another drug efflux transporter ABCC2 whereas regarding VPA substrate 

specificity, reports have been controversial (Potschka et al., 2003). It has been hypothesized that 

over-expression of the drug efflux transporters at the blood brain barrier (BBB) may be the main 

reason behind drug resistance phenotype in drug refractory epilepsy patients (Lazarowski et al., 

2011). For ABCB1 the majorly studied variants in terms of AED efficacy are rs1128503 (c1236C>T), 

rs2032582 (c2677T>A) and rs1045642 (c3435C>T). However, the results have been inconsistent 

but their possible role in response variability may not be undermined (Kwan et al., 2007; Seo et al., 

2006; Siddiqui et al., 2003; Zimprich et al., 2004). A recent meta-analysis of 23 studies evaluating 

the role of ABCB1 C1236T, G2677T/A and C3435T polymorphisms confirmed these inconsistence 

(Haerian et al., 2011). In case of ABCC2 recent reports have highlighted the role of variants c-24C>T 

and c3972C>T in drug response of Indian and Chinese ethnicity patients (Grover et al., 2012; Qu et 

al., 2012). The results from other studies have however been inconsistent in case of ABCC2 with 

various reports being unable to replicate the findings (Hilger et al., 2012; Kim et al., 2009; Kwan et 

al., 2011; Seo et al., 2008). However, most recently a meta-analysis of eight studies exploring 

commonly studied ABCC2 variants with AED response in 2823 epilepsy cases suggested borderline 

association of c-24C>T with drug response in Caucasians (Grover et al., 2013). 

2.4.2.3 Targets 

A common polymorphism in the α1 subunit (SCN1A) IVS5-91 G>A has been reported by various 

studies for association with drug response. It was observed to be significantly associated with 
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maximal dose or concentration at maintenance dose in PHT and CBZ patients (Tate et al., 2005; 

Tate & Goldstein, 2004). Same SNP was further reported to be associated with CBZ resistance (Abe 

et al., 2008). Various studies also failed to replicate the associations (Kumari et al., 2013; Manna et 

al., 2011; Zimprich et al., 2008). Other than SCN1A, studies were also performed for other isoforms 

of sodium channels such as SCN2A, SCN1B etc. A recent report by Ma chun et al studied the role of 

SCN1A and SCN2A variants with drug resistance in epilepsy patients however, significant 

association was only observed for SCN1A IVS5-91 G>A variant with no significant association for 

any SCN2A variant (Ma et al., 2014). Other than sodium channels gamma aminobutyric acid 

(GABA) receptor and GABA transporters have also been well studied with epilepsy drug response. 

Significant association of GABRA1 rs2279020 (c.1059+15G>A) with drug resistance was observed 

for patients on treatment with CBZ, PHT or VPA (Kumari et al., 2011). Additionally, a recent study 

has reported the combined effect of GABRA1, GABRA2 and GABRA3 SNPs on epilepsy treatment 

outcome when no single SNP associations could withstand multiple corrections (Hung et al., 2013). 

Other than GABA receptors glutamate receptors have also been considered as potential 

candidates/targets for effective therapy management in epilepsy patients (Bialer et al., 2010; Brodie 

& French, 2000).  Further, as levetiracetam story has provided important implications for future drug 

discovery as well as in reviewing the mode of actions of already existing first line AEDs (Bialer & 

White, 2010; Brodie & French, 2000). The mode of action of the common AEDs are represented in 

Figure 2.6 

 

       Figure 2.6 Mechanism of action of clinically approved anti-seizure drugs. Drugs marked with asterisks 

indicate that these compounds act by multiple mechanims (not all mechanisms shown here). GABA-T GABA 

aminotransferase, GAT GABA transporter, SV2A synaptic vesicle protein 2A, GABA gamma-aminobutyric acid, 
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NMDA N-methyl-D-aspartate, AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, KCNQ a family of 

voltage-gated potassium channels (also known as the Kv7 family). 

2.4.3  Gap in present knowledge 

 In spite of such enormous corpus of pharmacogenomic literature available, data from less 

than 10% of such articles are used for clinical applications. Establishing an association between 

a gene or its variants with a drug-related phenotype is merely the first step of biomarker 

discovery. This lack of progress can be attributed to the common issues of failure to partially 

or fully replicate research identifying genetic biomarker associations, overestimation of effect 

of the variants in an underpowered study, inconsistent findings across different study cohorts 

(M., 2010). Drug response phenotypes are complex to assess, more commonly influenced by a 

complex interplay between environmental, genetic, and gene–environment interactions. In fact, 

multiple genes can also have an impact on the predictive value of a genetic biomarker. A further 

complication is the lengthy and extensive investigation that is required to clinically verify 

genetic risk factors that are suspected of affecting drug pharmacokinetics and 

pharmacodynamics (Gervasini G, 2010).With only 3% of published clinical data in this field 

focusing on phase 2 studies and beyond, there is a lack of evidence-based guidelines for many 

pharmacogenetic applications(Vijverberg SJ, 2010). In addition, some biomarker tests are in 

need of phase 3 and 4 research to evaluate whether recommended guidelines have been 

successful in reducing the burden. 

 With respect to epilepsy, the challenges in clinical implementation of 

pharmacogenomics is in multitude. The World health organization (WHO)’s Global Burden of 

Disease reports epilepsy to have the second most highest burden of all neurological disorders 

worldwide, in terms of disability of adjusted life years (Murray CJ, 2012). Due to the complex 

etiology of the disease, seizure occurrence can be sporadic, because of some structural brain 

lesions, infection,   

 Despite the availability of many anti-epileptic drugs (AEDs) acting via different 

modes of action, the overall treatment outcome have not improved. Most patients who attain 

seizure freedom generally do so with first or second AED administration. Otherwise, the 

likelihood of achieving seizure freedom reduces substantially with increased disease duration1. 

More than one-third of patients with epilepsy (PWE) experience seizure recurrent in spite of 

AED treatment. Such patients are often classified as patients with drug resistant epilepsy 

(DRE). DRE is a major challenge in epilepsy treatment. Since these patients have minimal 

chances of seizure freedom based on additional medication trials 2 and they suffer repetitive 
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seizures leading to neuro-biochemical changes, poor cognitive response and psychological 

problems which increase the disease burden 3. Therefore, the efficacy of drugs in the early 

stages of the disease is particularly important because determining efficacy is closely related 

to the long-term prognosis. Additionally, most of the markers available for clinical translation 

are related to ADR of AEDs, a few markers for efficacy are known but they lack unifying 

conclusions. With the advancement in genomic technologies, researchers have moved from the 

conventional candidate gene approach towards a more holistic genome-wide screening to 

identify associated genomic loci. So far, ten GWAS are published that are retrieved from the 

GWAS Catalog as on March 24, 2023 with keyword ‘response to anticonvulsant’ comprising 

of 11,872 samples (Table 2.7). Limited sample size in PGx studies is a major limitation in 

exploring the genetic associations. Seven of these includes patients with European ancestry and 

only three includes East Asian samples. Since genetic architecture is ethnicity- specific, 

elucidating the genetic landscape with respect to the phenotypic response in very crucial. Like 

the strong association of HLA variants (HLA-B*15:02, HLA-A*) with carbamazepine induced 

skin hypersensitivity in South Asian population, GWAS is warranted in different populations 

to establish population specific markers as well as drug response outcomes. Out of the ten 

studies, eight of them discusses ADR outcome when treated with any AED, and two discuss 

drug response which failed to identify SNPs with GWAS significance threshold and none of 

these loci are currently in clinical use.  
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Table 2.7: GWAS published till date associated with response to anti-epileptic drugs.  

Title 

Discovery sample 

number and 

ancestry 

Variant and 

risk allele 
P-value OR[95% CI] Mapped gene Reported trait Trait(s) Study accession 

A genome-wide association study of 

sodium levels and drug metabolism 

in an epilepsy cohort treated with 

carbamazepine and oxcarbazepine 

(Berghuis et al., 2019). 

1252 European rs9833158 1 x 10-6 1.56[1.32-1.89] 
PLCL2, 

CDYLP1 
Carbamazepine- or 

oxcarbazepine-induced 

hyponatremia in epilepsy 

carbamazepine-

induced 

hyponatremia, 

response to 

oxcarbazepine, 

oxcarbazepine-

induced 

hyponatremia, 

response to 

carbamazepine 

GCST007809 

1252 European rs4895178 
1 x 10-6 

1.55[1.30-1.85] RPL23AP44 GCST007809 

1252 European rs148646711 
1 x 10-6 

1.96[1.48-2.59] 
ANKRD55, 

FLJ31104 
GCST007809 

804 European rs1394074 
1 x 10-6 7.75[3.41-

17.61] 
OLFML3 

Severe carbamazepine- or 

oxcarbazepine-induced 

hyponatremia in epilepsy 

GCST007810 

804 European rs7300380 1 x 10-6 3.07[1.93-4.87] SSPN, ITPR2 GCST007810 

804 European rs72894781 7 x 10-6 3.43[2.01-5.87] TEAD3 GCST007810 

Role of Common Genetic Variants 

for Drug-Resistance to Specific 

Anti-Seizure Medications (Wolking 

et al., 2021). 

289 European rs12038219 6 x 10-8 - - 

Response to phenytoin in focal 

epilepsy 

response to 

phenytoin 

GCST90020117 

289 European rs28740860 9 x 10-7 - - GCST90020117 

289 European rs188002 5 x 10-7 - - GCST90020117 

289 European rs16945236 8 x 10-7 - - GCST90020117 

394 European rs6552076 6 x 10-6 - - 

Response to oxcarbazepine in 

focal epilepsy 

response to 

oxcarbazepine 

GCST90020116 

394 European rs1816237 1 x 10-6 - - GCST90020116 

394 European rs2944715 3 x 10-6 - - GCST90020116 

394 European rs34744859 4 x 10-6 - - GCST90020116 

1014 European rs7811069 2 x 10-6 - - 

Response to lamotrigine in focal 

epilepsy 

response to 

lamotrigine 

GCST90020114 

1014 European rs1859577 5 x 10-7 - - GCST90020114 

1014 European rs2028234 7 x 10-7 - - GCST90020114 

1400 European rs12468936 3 x 10-6 - - 

Response to lamotrigine in 

epilepsy 

response to 

lamotrigine 

GCST90020121 

1400 European rs7811069 8 x 10-7 - - GCST90020121 

1400 European rs7859863 5 x 10-6 - - GCST90020121 

1400 European rs28776624 4 x 10-6 - - GCST90020121 

943 European rs4078065 4 x 10-6 - - 
Response to carbamazepine in 

focal epilepsy 

response to 

carbamazepine 

GCST90020115 

943 European rs13150739 9 x 10-7 - - GCST90020115 

943 European rs4243569 5 x 10-6 - - GCST90020115 
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Genome-wide association study 

identifies HLA-A*3101 allele as a 

genetic risk factor for 

carbamazepine-induced cutaneous 

adverse drug reactions in Japanese 

population (Ozeki T, 2011). 

934 East Asian HLA-A*3101 1 x 10-16 9.5[5.6-16.3] - 
Adverse response to 

carbamazepine 

response to 

anticonvulsant 
GCST000912 

HLA-A*3101 and carbamazepine-

induced hypersensitivity reactions in 

Europeans (McCormack et al., 

2011). 

4052 European rs1061235 1 x 10-7 
9.12[4.03-

20.65] 
HLA-A 

Adverse response to 

carbamazepine 

response to 

anticonvulsant 
GCST001014 

Genome-wide mapping for 

clinically relevant predictors of 

lamotrigine- and phenytoin-induced 

hypersensitivity 

reactions(McCormack et al., 2012). 

1372 European rs10510829 7 x 10-7 - FHIT 

Adverse response to lamotrigine 

and phenytoin 

response to 

anticonvulsant 

GCST001431 

1372 European rs275380 1 x 10-6 - ADAMTS20 GCST001431 

1372 European rs6990917 2 x 10-6 - 
PREX2, 

NDUFS5P6 
GCST001431 

1372 European rs285406 5 x 10-6 - ATP6V0D2 GCST001431 

1372 European rs183266 5 x 10-6 - 
IRF2BPL, 

LINC02288 
GCST001431 

1372 European rs12230440 3 x 10-6 - ADIPOR2 GCST001431 

1372 European rs8083432 6 x 10-6 - ZNF521 GCST001431 

1372 European rs7798500 6 x 10-6 - PRKAR2B GCST001431 

1372 European rs17002253 7 x 10-6 - 

SOWAHB, 

SHROOM3-

AS1 

GCST001431 

1372 European rs3853240 1 x 10-6 - LINC01947 GCST001431 

1372 European rs9919839 2 x 10-6 - DACH1 GCST001431 
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1372 European rs4569005 5 x 10-6 - NELL1 GCST001431 

Pharmacoresponse in genetic 

generalized epilepsy: a genome-

wide association study (Wolking S, 

2020). 

886 European rs6871559 5 x 10-6 - RNU1-76P 

Response to antiepileptic drugs 

in genetic generalized epilepsy 

response to 

anticonvulsant 

GCST010296 

886 European rs13179734 9 x 10-6 - LINC02064 GCST010296 

886 European rs7457112 9 x 10-6 - CNTNAP2 GCST010296 

886 European rs1277731 9 x 10-6 - CACNB2 GCST010296 

565 European rs78269837 5 x 10-6 - WDR41 

Response to valproic acid in 

genetic generalized epilepsy 

GCST010295 

565 European rs4292046 5 x 10-6 - 
EXOC6B, 

COL6A3 
GCST010295 

565 European rs6046489 7 x 10-6 - RIN2 GCST010295 

387 European rs17650998 9 x 10-7 - 
KCNMB2-AS1, 

KCNMB2 

Response to lamotrigine in 

genetic generalized epilepsy 

GCST010294 

387 European rs10206521 3 x 10-6 - TDRD15 GCST010294 

387 European rs1291861 6 x 10-6 - CELF2 GCST010294 

387 European rs11794033 8 x 10-6 - RN7SKP120 GCST010294 

209 European rs17676256 1 x 10-7 - ANK2 GCST010293 

209 European rs12320526 2 x 10-6 - NAV3 GCST010293 

209 European rs12734159 3 x 10-6 - 
LEPR, 

RN7SL854P 
GCST010293 

209 European rs7956831 3 x 10-6 - 
CLECL1, 

CD69 
GCST010293 

209 European rs1014085 4 x 10-6 -  GCST010293 

209 European rs3756744 4 x 10-6 - 
SLC27A6, 

ISOC1 
GCST010293 

209 European rs7515154 4 x 10-6 - 
SYDE2, 

C1orf52 
GCST010293 

209 European rs72765466 6 x 10-6 - NID1 GCST010293 

209 European rs17124115 7 x 10-6 - 
LINC02396, 

LINC02395 
GCST010293 
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104 European rs1922809 8 x 10-7 - LRRTM4 

Response to lamotrigine and 

valproic acid in genetic 

generalized epilepsy 

GCST010292 

104 European rs4751538 8 x 10-7 - 
BUB1P1, 

FOXI2 
GCST010292 

104 European rs78723182 2 x 10-6 - MAGI2 GCST010292 

104 European rs4416719 2 x 10-6 - F13A1 GCST010292 

104 European rs1479876 4 x 10-6 - CLSTN2 GCST010292 

104 European rs7705566 4 x 10-6 - CDH6 GCST010292 

104 European rs8003775 6 x 10-6 - LINC00639 GCST010292 

Role of Common Genetic Variants 

for Drug-Resistance to Specific 

Anti-Seizure Medications (Wolking 

S, 2021). 

936 European rs10191428 2 x 10-6 - 
TMEM17, 

RN7SL18P 
Response to levetiracetam in 

focal epilepsy 

 

GCST90020112 

936 European rs6455984 3 x 10-6 -  GCST90020112 

936 European rs10786411 4 x 10-6 -  GCST90020112 

2196 European rs2600151 3 x 10-6 -  Response to sodium channel-

Active anticonvulsant in focal 

epilepsy 

GCST90020113 

2196 European rs60350499 7 x 10-8 -  GCST90020113 

624 European rs11125398 3 x 10-6 -  
Response to calcium-channel-

Active anticonvulsants in focal 

epilepsy 

GCST90020118 

624 European rs73104283 4 x 10-6 -  GCST90020118 

624 European rs7092992 4 x 10-6 -  GCST90020118 

730 European rs2700204 5 x 10-6 -  

Response to valproic acid in 

focal epilepsy 

GCST90020119 

730 European rs1952670 9 x 10-7 -  GCST90020119 

730 European rs7092992 4 x 10-6 -  GCST90020119 

1238 European rs10191428 2 x 10-6 - 
TMEM17, 

RN7SL18P 

Response to levetiracetam in 

epilepsy 
GCST90020120 

1238 European rs9390556 5 x 10-6 -  
Response to levetiracetam in 

epilepsy 
GCST90020120 

1538 European rs73104283 1 x 10-6 -  

Response to calcium-channel-

Active anticonvulsants in 

epilepsy 

GCST90020122 

1302 European rs3936663 4 x 10-6 -  
Response to valproic acid in 

epilepsy 
GCST90020123 
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Genetic variation in CFH predicts 

phenytoin-induced maculopapular 

exanthema in European-descent 

patients (McCormack et al., 2018). 

524 European 80 

East Asian 
rs78239784 5 x 10-11 7[3.2-16] CFHR4 

Phenytoin-induced 

maculopapular exanthema 

maculopapular 

eruption, 

response to 

phenytoin 

GCST005200 

A genome-wide association study of 

sodium levels and drug metabolism 

in an epilepsy cohort treated with 

carbamazepine and oxcarbazepine 

(Berghuis et al., 2019). 

297 European rs1718641 6 x 10-6 2.5[1.69-3.70] LINC01808 

Oxcarbazepine-induced 

hyponatremia in epilepsy 

response to 

oxcarbazepine, 

oxcarbazepine-

induced 

hyponatremia 

GCST007812 

1031 European rs9833158 1 x 10-6 1.63[1.35-2.04] 
PLCL2, 

CDYLP1 
GCST007811 

1031 European rs57143981 2 x 10-6 1.98[1.50-2.62] BTBD11 GCST007811 

1031 European rs4817405 2 x 10-6 1.61[1.33-1.96] 
TIAM1, 

FBXW11P1 
GCST007811 

1031 European rs11817796 4 x 10-6 1.74[1.37-2.19]  GCST007811 

1031 European rs35648408 4 x 10-6 1.78[1.39-2.27] RUNDC3B GCST007811 

1031 European rs12743242 6 x 10-6 1.68[1.34-2.11] LINC01141 GCST007811 

1031 European rs6033092 7 x 10-6 1.55[1.28-1.87] RPS11P1 GCST007811 

Genetic variation in CFH predicts 

phenytoin-induced maculopapular 

exanthema in European-descent 

patients (McCormack et al., 2018). 

282 East Asian 964 

European 
HLA-A*31:01 1 x 10-10 5.5[3.0-10] - 

Carbamazepine-induced 

maculopapular exanthema 

maculopapular 

eruption, 

response to 

carbamazepine 

GCST005198 

Shared genetic risk factors across 

carbamazepine-induced 

hypersensitivity reactions (Nicoletti 

et al., 2019). 

10726 European HLA-A*31:01 2 x 10-9 
12.9[5.58-

29.78] 
- 

Carbamazepine-induced 

reaction with eosinophilia and 

systemic symptoms 

drug 

hypersensitivity 

syndrome, 

response to 

carbamazepine 

GCST008384 

10726 European HLA-B*51:01 6 x 10-6 
5.72[2.69-

12.16] 
- GCST008384 

10726 European rs187926838 1 x 10-6 18.2[5.2-63.72] ALK GCST008384 

10744 European rs116071718 2 x 10-6 3.99[2.25-7.05] MUC22 

Carbamazepine-induced serious 

cutaneous adverse reaction 

severe 

cutaneous 

adverse 

reaction, 

response to 

carbamazepine 

GCST008386 

10744 European rs192543598 2 x 10-12 
18.11[8.03-

40.88] 
MICD, HLA-W GCST008386 

10744 European rs187926838 5 x 10-8 12.1[4.94-29.8] ALK GCST008386 

GWAS identifies two susceptibility 

loci for lamotrigine-induced skin 

1114 East Asian rs141860749 4 x 10-7 8.9[NR] SYT2 response to 

lamotrigine, 

GCST002949 

1114 East Asian rs62270313 1 x 10-7 4.6[NR] EPHB1 GCST002949 
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rash in patients with epilepsy (Jang 

et al., 2015). 

1114 East Asian rs631844 7 x 10-8 4.9[NR] LINC02109 

Epilepsy and lamotrigine-

induced maculopapular 

eruptions 

maculopapular 

eruption, 

epilepsy 

GCST002949 

1114 East Asian rs71568191 3 x 10-9 8.9[NR] HCG27 GCST002949 

1114 East Asian rs1178326 2 x 10-7 8.1[NR] HDAC9 GCST002949 

1114 East Asian rs12668095 5 x 10-7 3.4[NR] MRPL42P4 GCST002949 

1114 East Asian rs7461897 5 x 10-7 4.1[NR] MIR548H4 GCST002949 

1114 East Asian rs13287547 7 x 10-7 4.8[NR] C9orf92 GCST002949 

1114 East Asian rs74912790 1 x 10-9 10.7[NR] 
IFNA13, 

IFNA6 
GCST002949 

1114 East Asian rs75078187 2 x 10-7 8.1[NR]  GCST002949 

1114 East Asian rs74308953 2 x 10-10 4.6[NR] LINC02578 GCST002949 

1114 East Asian rs146173241 1 x 10-7 7.3[NR] 
GFRA1, 

CCDC172 
GCST002949 

1114 East Asian rs139427007 4 x 10-7 11[NR] LINC02409 GCST002949 

1114 East Asian rs7328626 8 x 10-9 9.7[NR] - GCST002949 

1114 East Asian rs9596837 4 x 10-9 10.1[NR] - GCST002949 

1114 East Asian rs9596863 8 x 10-11 15.2[NR] LINC00558 GCST002949 

1114 East Asian rs118166657 1 x 10-7 7.2[NR] 
PPP2R5E, 

GCATP1 
GCST002949 

1114 East Asian rs7495694 1 x 10-9 7.6[NR] 
ADPGK-AS1, 

NPM1P42 
GCST002949 

1114 East Asian rs79007183 3 x 10-10 14[NR] CRAMP1 GCST002949 

1114 East Asian rs1429264 9 x 10-7 8.4[NR] COTL1 GCST002949 

1114 East Asian rs11663316 6 x 10-7 4.2[NR] 
NDUFV2, 

RPS4XP19 
GCST002949 

1114 East Asian rs17084405 1 x 10-7 12.1[NR] LINC01541 GCST002949 

1114 East Asian rs970510 7 x 10-7 6.5[NR] LINC01899 GCST002949 

1114 East Asian rs150435906 6 x 10-7 8.6[NR] DNAJC5B GCST002949 

1114 East Asian rs2930491 5 x 10-7 4[NR] ABRA GCST002949 

1114 East Asian rs143543475 4 x 10-7 11[NR] 
RAB18, 

PTCHD3 
GCST002949 

1114 East Asian rs55949311 8 x 10-9 9.7[NR]  GCST002949 

Potential role of regulatory DNA 

variants in modifying the risk of 
162 East Asian rs4471527 1 x 10-8 5.8[3.0-11.0] 

LINC02414, 

LINC02370 

Carbamazepine-induced 

Stevens-Johnson syndrome or 

Stevens-

Johnson 
GCST90103803 
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severe cutaneous reactions induced 

by aromatic anti-seizure medications 

(Mullan et al., 2022). 

toxic epidermal necrolysis 

(SJS/TEN) 

syndrome, 

toxic epidermal 

necrolysis, 

response to 

carbamazepine 

197 East Asian rs4471527 2 x 10-9 5.7[3.1-10.5] 
LINC02414, 

LINC02370 

Aromatic antiseizure 

medication-induced Stevens-

Johnson syndrome or toxic 

epidermal necrolysis 

GCST90103802 

197 East Asian 
rs199755581-

CA 
6 x 10-9 4[2.5-6.5] NIPAL2 GCST90103802 

197 East Asian rs1297852527 9 x 10-9 5.4[2.9-9.9] SLC9B1P3 GCST90103802 

197 East Asian rs77491650 1 x 10-8 0.3[0.2-0.4] DDX12P GCST90103802 

197 East Asian chr4:820728 1 x 10-8 0.3[0.2-0.5]  GCST90103802 

197 East Asian rs77542827 3 x 10-8 6.5[3.1-13.6] FRG1JP GCST90103802 

197 East Asian rs778096762 3 x 10-8 3.2[2.1-4.9] 
LINC02153, 

GFRA2 
GCST90103802 

197 East Asian rs374138762 4 x 10-8 5.2[2.8-9.9] 
LINC02005, 

Metazoa_SRP 
GCST90103802 

197 East Asian rs879656274 4 x 10-8 4.9[2.7-8.9] SLC9B1P3 GCST90103802 

88 East Asian rs1562468327 6 x 10-10 9.7[4.4-21.1] 
TAB2, 

ZC3H12D 

Aromatic antiseizure 

medication-induced Stevens-

Johnson syndrome or toxic 

epidermal necrolysis in HLA-

B*15:02 non-carriers 

GCST90103804 

88 East Asian 
rs199755581-

CA 
7 x 10-10 9.7[4.4-21.3] NIPAL2 GCST90103804 

88 East Asian chr21:9790175 4 x 10-9 7.4[3.7-15.0]  GCST90103804 

88 East Asian rs77542827 1 x 10-8 17.9[5.1-62.5] FRG1JP GCST90103804 

88 East Asian rs1286845082 2 x 10-8 23.8[5.4-105.5] 
PDLIM1P3, 

MTCO3P13 
GCST90103804 

88 East Asian rs1597607761 3 x 10-8 42[5.5-321.8] 
PDLIM1P3, 

MTCO3P13 
GCST90103804 

88 East Asian rs1391213386 3 x 10-8 11.9[4.3-33.1] YEATS2 GCST90103804 

88 East Asian 
rs1211926109-

AAT 
4 x 10-8 0.1[0.03-0.2] 

SMIM14-DT, 

UBE2K 
GCST90103804 

Source GWAS catalog as accessed on March 24, 2023. The associated loci are mentioned till suggestive p value (p< 1x 10-6). The study title, ethnicity and sample size, associated variants 

with risk alleles (if known), their p value and OR (95% CI), the mapped genes, the associated phenotype and their GWAS accession number are mentioned in the table. 
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Chapter 3 

Development of an algorithm to 
screen pharmacogenetic variations 
from global literature and build a 

resource for anti-epileptic drug 
response genes 
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3.1  Introduction 

With development of in high-throughput genomic technologies, the focus of PGx 

research has moved from candidate gene approach to large-scale genome-wide screening 

focussing on unbiased clinical PGx applications. Identifying genes involved in the absorption, 

distribution, metabolism and excretion (ADME) of drugs is critical in PGx. Such genes also 

known as pharmacogenes— are important for its pharmacology—that are involved in 

pharmacokinetic or pharmacodynamics actions (Walker, 2004). Abundant articles are 

published in various perspectives in this regard. To critically evaluate such data from published 

articles in labour intensive and time consuming. This delay impedes our ability to identify, 

evaluate, and use genetics to optimize drug selection and dosing with minimal toxicity 

(Ventola, 2013).  

Generally, we explore the answers to such questions in publications describing the 

disease–drug–gene relationships of interest in a particular population. Such relationships of 

clinical importance for drug dosing and administration must be interpreted as a priority. 

Analyzing such related data from the literature, we need to rapidly identify and develop high-

throughput, accurate, and population-specific genetic polymorphisms that correlate with drug 

response. Such genetic considerations can be expected to be important in diagnosis, treatment, 

and prevention. Both clinical and research communities have placed emphasis on identifying 

PGx relationships. Several databases employ manual curation of biomedical literature to 

provide comprehensive coverage of such disease or drug-related genetic association 

relationships in humans. Some of them OMIM (Amberger et al., 2009), Human Gene Mutation 

Database (HGMD) (Stenson et al., 2009), CTD (Davis et al., 2016), Genetics Home Reference 

(GHR) (http://ghr.nlm. nih.gov/) (National Library of Medicine (US), Genetics Home 

Reference 2013), and the gold standard database in PGx, the Pharmacogenomics 

Knowledgebase (PharmGKB) (Whirl-Carrillo et al., 2012).  

A fully automated PGx relationship curation system to retrieve clinically relevant 

information is still far-fetched (Singhal et al., 2016). Several advanced computational 

approaches with statistical evaluation are known which can reduce manual efforts to curate 

important PGx relationships from available literature. Experimental noise from different 

sources reported in different articles, result in a number of important genes or polymorphisms 

causing heterogeneity in data. Therefore, the recent efforts in (semi-)automated approaches 

facilitate automated extraction with manual curation of relationships for high quality are critical 

(Garten et al., 2010). Thus in this objective, we propose to develop an end-to-end semi-
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automated pipeline for the extraction of PGx relationships in the form of disease– drug–gene–

polymorphism from literature published in different populations. If an article mentions a drug 

and a genetic association, these articles are screened for their relevance in PGx in context to 

any drug response. The biological entities like disease, drug, gene, genetic variant obtained by 

automated extraction were normalized with available up-to-date well curated datasets to 

exclude the ambiguities. Additionally, we compared our developed pipeline with databases like 

OMIM (Amberger et al., 2009), CTD (Davis et al., 2016), and PharmGKB (Whirl-Carrillo et 

al., 2012) to assess the sensitivity and specificity of the thus obtained PGx data. We also 

calculated the accuracy of each relationship obtained and compared their occurrence within the 

three datasets. We also performed a validation study by comparing our result with 

commercially used FDA-approved drug labeling biomarkers 

(https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-

drug-labeling) (FDA, 2018). The final PGx relations extracted were also prioritized for 

significance in clinical application. The key feature of the study is the use of text mining to 

tabulate the most important PGx information related to disease or given drugs by studying its 

variability and impact on individuals, which can be used for future clinical administration. 

3.2  Materials & Methods 

The schematic representation of the study framework is shown in Figure 3.1. It is 

divided into five broad steps: (1) build a corpus of PGx and related abstracts fetched from 

PubMed using the Medical Subject Headings (MeSH) query; (2) identify all biological entities 

in PubMed abstracts (diseases, genes, drugs, polymorphisms, and populations); (3) 

normalization of the obtained entities from standard databases; (4) validation with available 

dataset(s) in global context; and (5), evaluation of extracted data and ranking of PGx 

relationships. This process results in a list of all PMIDs aligned PGx relationships of the form 

< disease–drug–gene–polymorphism>. We used an in-house built R package, called pubmed. 

mineR (Rani J, 2015), which was used for pilot phase application for extracting PGx 

information from all the published articles in PubMed. This package was aimed to text mine 

data from published literature without dependency on other packages.  

3.2.1. Information retrieval  

Our search query was formed using MeSH terms: “inter-individual variability,” 

“pharmacogenomics,” “pharmacogenetics,” and “drug response” specifically for human. All 

the articles with available abstract were downloaded   using the “e-utilities” interface in a .csv 

format. This corpus now contains articles with PGx information published till date. 
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3.2.2. Entity recognition 

For each PMID, the annotation results of all the biomedical entities mentioned in the 

abstract, i.e., disease, drugs, gene, and mutation, were obtained using PubTator (K. H. Wei CH, 

Lu Z, 2013). In PubTator, the four biological entities— disease, chemical, gene, and related 

mutation annotations—were extracted by DNorm (Leaman R, 2013), DrugBank data, 

GNormPlus (Wei CH, 2015), and tmVar (H. B. Wei CH, Kao HY, Lu Z., 2013), respectively. 

Using a dictionary-based content search by the pubmed.mineR package, all the relevant 

population data was obtained.  

 

3.2.3. Normalization 

The annotated articles were then filtered using different criteria, with each entity were 

normalized to reduce false positives and ambiguity. Gene mentioning normalization was 

initially assessed with GNormPlus.  The annotated genes retrieved were further matched to 

Human gene nomenclature committee (HGNC) gene names (Yates B, 2017). Unmatched 

entities were ruled out, based on abbreviated names, unconventional names, unspecified names, 

and other disambiguation. The baseline system implemented for disease normalization used 

dictionary lookup method using parent disease terms from International Classification of 

Diseases (ICD-10): version 2016 (Organisation., 2004). All the arbitrary terms referring to a 

symptom or any consequence of a disease/ syndrome were excluded, as they resulted in a high 

error percentage. Drugs were matched with DrugBank IDs for unique drugs (Wishart DS, 

2008). In case any other names of the drug like chemical name, brand name or the drug 

metabolite, were consequently excluded. Finally, the genetic polymorphisms related to the 

selected genes were retrieved in the final sub-corpus and were matched according to their 

annotation in dbSNP IDs, for human (ftp 

site:ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/ genotype_by_gene/). 

 

3.2.4. Validation 

The validation of the retrieved PGx data from the pipeline was assessed at the entity 

level as well as based on the PGx relationships obtained.It was carried out independently in 

two steps. Firstly, all the biological entities obtained were validated for their presence in any 

of the three benchmark datasets. Secondly, the PGx relationships obtained were cross-validated 

with the gold standard, PharmGKB. To evaluate this, we compared the performance of the 

system to that obtained from OMIM, CTD, and PharmGKB and measured the concordance of 
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the data obtained. A circumstantial error analysis was carried out in terms of specificity, 

sensitivity, accuracy, precision, recall, and F measure. Test data was data extracted from the 

developed pipeline and gold standard was that of PharmGKB. A data was considered true 

positive (TP) data if it is present in gold standard and test data, both and true negative (TN) if 

data is absent in both gold standard and test dataset. False positive (FP) is absent in gold 

standard and present in test data, and false negative (FN) is the number of correct, incorrect, 

and missed associations extracted by the system in comparison with the gold standard, 

respectively. 

 

3.2.5. Ranking of the PGx relationships 

We estimated specificity, sensitivity, accuracy, precision, recall, and F measure for all 

our observations. Let TP, FP, and FN be the number of correct, incorrect, and missed 

associations extracted by the system in comparison with the gold standard, respectively. All 

relationships with a frequency greater than 10 (f > 10) that occurred only in our framework 

were appended directly to the end of the consolidated list. By doing so, the genes extracted 

from these datasets were assumed to be more relevant than those extracted from our pipeline. 

This is based on our observation that these datasets are manually curated and annotated with 

validated results with low noise, hence minimal FP genes. The gene names that overlapped 

between the developed pipeline and that of these datasets were of prime importance, and their 

ranks need to be aggregated. We simply raised their rank order for such genes based on the 

number of occurrence in these three datasets. Ultimately, 2,304 PGx relationships were 

obtained from our pipeline. These relationships were compared with commercially used FDA-

approved drug labelling biomarkers. Of the 2304 markers obtained and validated, 127 were 

common with the already available 363 FDA-approved pharmacogenomic markers in current 

use. This marked the reliability of the outcome of our pipeline. In addition, the remaining PGx 

relationships suggest that although they are not included in PharmGKB, they are of prime 

clinically importance. 

 

3.3. Results 

After PGx related data extraction through pubmed.mineR and critically assessing intrinsic 

performances of our approach and rigorous error analysis at each step of entity detection, 

entities absent in text, failure to detect entities, entity normalization error we created a resource 

for PGx evaluation. 
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Figure 3.1: Overview of the semi-automated approach developed for PGx test mining. The process of 

retrieving evidence based sentences from PubMed abstracts using pubmed.mineR which includes information 

retrieval, entity recognition, normalization, validation, and data integration and ranking.  

 

 

A total of 180,088 pharmacogenetically relevant articles were identified by our scanning 

method after stringent exclusion based on our pre-defined inclusion and exclusion criteria. The 

result were obtained as 2,304 PGx relationships as disease–drug–gene with their frequency of 

co-occurrences detected in those articles. An example of a few PGx markers with their 

diagnostic value and predictability has been tabulated in Table 1. This can be queried by 

disease or drug or gene, and it summarizes gene (or its variant)–drug relationships, categories 

of evidence, and supporting literature. Ultimately, Figure 3.2 shows these additional PGx 

relationships pertaining to global PGx literature that are of promising candidates with clinical 

importance. The nodes in the left represent disease, the middle nodes the drugs, and the right 

nodes are genes pertaining the PGx relationship. Each colour of the edges represents a 

relationship (disease–drug and/or drug–gene) for distinct visualization. The width of the edges 

represents the number of evidence present. Thus, a thorough categorization with relevance in 

PGx applications are obtained from the source corpus. This growing resource needs to be 

tapped for clinical benefits, for drugs of pharmacogenetics significance, and is a core 

component of pharmacogenetic screening. 

 

3.4. Discussion 
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New advancements were coming up from creating algorithms to developing 

computational packages to dig of the deeper details of DNA like associating variations of the 

genes with clinically relevant phenotypes-disease risk, therapeutic response, adverse effects of 

drugs (Hansen, Brunak et al. 2009). This study attempts to measure the capability of an R-

package based semi-automated text mining system extracting database level annotations from 

PubMed abstracts for its precision in retrieval of clinically valuable information. Our 

evaluation of the proposed system pipeline against gold standard annotations extracted from 

curated database provides insight of the clinical applicability to lay efficient treatment 

guidelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A glimpse of few PGx-specific enriched markers obtained from 2304 PGx relations. Disease 

ontology (left), FDA-approved drug (middle), and pharmacogenes (right) known (i.e., statistical association in 

clinical-genetics studies) to alter drug response or efficacy or lead to adverse drug response. 

 

 

Table 3.1: Estimating performance precision of the obtained PGx relationships from our pipeline and comparing them 

with other benchmark datasets (OMIM, CTD and PharmGKB) 
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Context type TP TN FP FN Sensitivity Specificity Efficacy  Precision Recall 
F-

measure 
Accuracy  

Our pipeline 

with 

‘PharmGKB’ 

1509 208 254 78 82.6 86.9 88.2 0.904 0.930 0.923 89.1 

Our pipeline 

with ‘OMIM’ 
2225 - 79 - 78.0 77.5 81.8 0.600 0.681 0.764 59.3 

Our pipeline 

with ‘CTD’ 
1776 153 375 - 70.7 65.5 72.2 0.729 0.803 0.801 79.7 

Our pipeline 

with ( 

‘PharmGKB’ 

AND ‘OMIM’ 

AND ‘CTD’) 

1875 102 275 75 82.3 84.4 93.3 0.896 0.852 0.828 94.7 

PGx corpus from PharmGKB, OMIM and CTD compared to that of our pipeline and the articles extracted in these datasets.TP: 

True positive, TN: True negative, FP: False positive, FN: False negative 

 

From text mining perspective, this is the first attempt to effectively combine information from 

multiple sentences to extract quaternary relations between disease, drugs, genes and 

polymorphism data in the global pharmacogenomic context. Our approach to link association 

across sentences using entity identity words resulted in substantial performance improvement. 

Achieving a performance of 89·1 % of overall accuracy when compared with PharmGKB, 

which when further revised to 94·7 % after detailed comparing it with all the three curated 

databases. This demonstrates that our approach to some extent addressed the linguistic 

inference challenge faced by the use of text mining for database curation (Ravikumar 

Wagholikar et al. 2015).  

First of all, even though our algorithm has improved precision when compared with 

PharmGKB and also ranking of PGx relationships of drug–gene pairs , overall precision is still 

lower than the gold standard (Rubin, Thorn et al. 2005). Starting from a PGx-specific seed, the 

algorithm implicitly classifies sentences into PGx-related or non-related. However, if n drugs 

and m genes co-occur in any PGx article, the algorithm will automatically extracts all n and m 

possible drug–gene pairs. Extraction algorithm used was probabilistic and do not consider the 

syntactic relationships between drug entities and gene entities, independently in sentences. Our 

extraction pipeline cannot extract readymade PGx relationships from the literature, but it can 

find the sentences with PGx relevant information excluding the several non-specific 

associations. (Xu 839 and Wang 2013). Therefore, the emphasis on semi-automated approach 

has been established to construct the exact and complete knowledge resource of PGx specific 

disease-drug–gene associations from published literature.  
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Secondly, the results presented in the previous section show the effectiveness of the 

proposed approach by performance comparison when extracted using our semi-automated 

method and OMIM. CTD and PharmGKB for extracting correct data string forming disease-

drug-gene-mutations. Therefore, we demonstrate an independent comprehensive resource to 

curate important disease-related PGx relationships. We also analyse our drug-gene pair 

predictions for known errors and false negatives. Known errors are PGx relationships obtained 

from our approach but are unrelated or non-specific to the disease, however they are presently 

associated in any of the 3 datasets. Such cases could be avoided by increasing the weight of 

target drugs, administered in a particular disease type/category, frequency in comparison to 

other disease mentions. In a few cases, the documents were not directly related to the target 

disease. This can be improved by more comprehensive extraction of documents related to the 

target disease. In other situations, DNorm (Leaman, Islamaj Dogan et al. 2013) tool identifies 

a non-disease mention as a disease, and the feature set is disturbed due to close proximity of 

the mutation with the false disease identification. These errors occur due to ambiguous 

abbreviations or non-standard notations mentioned by authors that resemble biological entity 

names.  

Third, the entire PGx relationship extraction algorithm started with 1753 disease types, 

666 drugs, associated with 4132 genes and 33942 polymorphisms collated from 180088 

publications filtered out from 60 lakh abstracts. Ultimately, we can rank the 2304 human PGx 

relationships according to their PGx specificity, we can further improve the precision of the 

relationship extraction algorithm. We validated comparing the results of our approach with 

commercially used FDA approved drug labelling biomarkers. Of the 228 FDA approved 

pharmacogenomic markers, 127 were common with the 2304 markers obtained from our 

proposed approach. This observation is taken forward for clinical development with 

therapeutic applications aiming for targeted therapy or drug repurposing. With the keen interest 

of researchers and clinicians on patient care, like developing new diagnostics techniques, 

prognostics, prevention strategies/guidelines, and therapies based on pharmacogenomic 

discoveries for precision medicine. The emergence of translational bioinformatics spans into 

development of algorithms and computational tools to derive the actual basis of molecular and 

cellular data with an explicit goal of affecting clinical care. This promise of translational 

clinical medicine, is progressing with the vision of genome guided medicine (Hauser, Chavali 

et al.2018). 
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Chapter 4 

 Identification of the PGx markers 
in north Indian population to 

assess their correlation with anti-
epileptic drug response using high 
throughput genome-wide screening 
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4.1 Introduction  

The predominant mode of treatment in case of all epilepsies are anti-epileptic drug 

(AED) administration, among individuals with different seizure types, epilepsy syndromes or 

any other clinical manifestations. Approximately 60% of patients with epilepsy achieve seizure 

remission, after administration of the first AED at an optimum dose, while 20–30% have a 

chronic disorder without experiencing significant periods of remission [Annegers, J.F., Hauser, 

W.A. and Elverback, L.R. (1979) Remission of seizures and relapse in patients with epilepsy. 

Epilepsia, 20, 729–737.]. Thus, seizure remission is the key concern in epilepsy treatment, 

minimizing the risk of death and improving quality of life in PWE. While, recent studies have 

highlighted the role of common SNP variants [1] as well as the enrichment of rare deleterious 

missense variants in known epilepsy genes in treatment outcomes in epilepsy, very little is 

known about genetic influences on the prognosis of epilepsy, and to date, genetic effects on 

epilepsy prognosis are unexplored at the genome-wide level.  

Previous genome-wide investigations of AED response associated with ADR, for AED 

response status, pharmacogenetic findings remain scarce and controversial. Pharmacogenetic 

findings in childhood absence epilepsy (CAE) showed an association of common variants in 

the ABCB1 drug transporter as well as in CACNA1H and CACNA1I, subunits of T-type 

calcium channels, with responder status for the drugs ethosuximide and lamotrigine (LTG) 

[22]. Genes involved in drug absorption, distribution, metabolism and excretion (ADME) have 

been in the focus of pharmacogenetic research of AEDs for some time [23–25]. Influence of 

variants in genes-encoding drug transporters have been shown to influence pharmacokinetic 

parameters of LTG or VPA [26–28]. Therefore, ADME genes represent prospective locations 

of genome-wide association. 

This study aimed to test whether common genetic variants predict drug response to 

carbamazepine, phenytoin and valproic acid  or overall drug response in a cohort of 789 people 

with epilepsy that were deeply phenotype regarding clinical presentation and 

pharmacoresponse. Larger cohorts are vital for increasing sensitivity to detect new genetic 

associations of small effect. 

 

4.2 Materials and Methods  

4.2.1 Ethics Statement:  
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All the study participants provided written informed consent for inclusion in this research work. 

The local institutional review boards reviewed and approved the study protocols at each 

contributing site. 

4.2.2.      Study population and phenotype definition: 

Patients with epilepsy (PWE) were recruited from Outpatient department of Neurology, 

Institute of Human Behaviour and Allied Sciences (IHBAS), New Delhi, India between 2005 

and 2015 after obtaining a complete informed consent (Figure 4.1). The sample has previously 

been described in detail (Rawat et al., 2018) and genetic profile of a subset of this cohort has 

been previously described in our other papers (Grover et al., 2010; Talwar P, 2017). All the 

patients were diagnosed and prescribed treatment by an experienced neurologist, based on the 

latest guidelines of the International league against Epilepsy (ILAE) (Scheffer IE, 2017). Our 

cohort consisted exclusively of individuals of North Indian origin. All the patients were 

administered with widely prescribed conventional AEDs [PB, PHT, CBZ, VPA and LEV] and 

were prescribed for oral administration at a dose within the therapeutic range, that is, 150–1200 

mg/day for PHT, 800–1600 mg/day for CBZ, 250–3000 mg/day for VPA, and 30–200 mg/day 

for PB, 500-1000mg/day. The study was approved by the institutional biomedical research 

ethics committee. The demographic and seizure-type information was collected by 

administering a standardized questionnaire including drug‑dose information, and other 

investigations such as the EEG profiling and neuroimaging. Subsequent follow up at 2nd, 4th, 

8th, and 12th month within a course of 1 year were evaluated for the drugs being administered 

and their dosage, the serum drug levels, the frequency of seizure control, the ADRs, and their 

compliance to AEDs. Patients who did not comply with the treatment regimen or who switched 

to a second line AED or multi-therapy (MT) in between the course of the study were included 

in the study but their genetic profile were not analysed. After a year of enrolment in the study, 

patients were assessed based on their response to the treatment regimen. Patients were 

categorised into ‘good responder’ including patients who attained complete freedom from 

seizures during the past 1 year and ‘poor responder’ included those patients who experienced 

≥ 1 seizure/s during the same period.  
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Figure 4.1: Schematic representation of patient enrolment and follow-up at the Outpatient Department of 

Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS). 

Such classification were made based on the number of seizure over the study duration, 

excluding the initial two months period required for achieving steady‑state levels of the AEDs 

being administered. Based on serum AED levels assessed (discussed in our previous report), 

patients were classified into therapeutic, below and above therapeutic. The distribution of total 

enrolled PWE (n=789) during 2005-2015 and their demographic and clinical characteristics are 

represented in table 4.1. 

Table 4.1: Demographic and clinical characteristics of total enrolled patients with epilepsy (PWE) 

Demographic 

& clinical 

characteristics 
PHT CBZ VPA PB LEV MT Total p value 

Total PWE (n 

%) 
161 (20.4) 283 (35.9) 205 (26.0) 37 (4.7) 3 (0.4) 100 (12.7) 789 (100) - 

 Sex 

Male, n (%) 132 (16.7) 116 (14.7) 138 (17.5) 21 (2.7) 0 68 (8.6) 475 (60.2) <0.0001 
(b) Female, n (%) 29 (4.9) 167 (21.2) 67 (8.5) 16 (2.0) 3 (0.4) 32 (4.1) 314 (39.8) 

 Age (in year) 

Mean ± SD 22.4±9.5 21.2±8.7 21.3±8.4 25.9±12.1 22.7±8.1 25.1±9.6 22.2±9.2 
<0.001(

a) 
Range 5-55 7-56 5-59 12-62 10-46 5-62 18-32 

Median 21 18 20 21 22 20 18 

 Age at onset (in year) 

Mean ± SD 16±10.0 15.3±8.3 15.4±8.2 16.5±11.5 8.3±2.5 15.4±9.2 15.5±8.9 

0.40 (a) Range 0.08-54 0.25-48 1-56 4-52 6-11 0-45 0-56 

Median 15 14.25 14 13 9 14 14 

 Seizure type, 789 (100%) 

Focal/ partial, 

n (%) 
57 (7.2) 144 (18.3) 48 (6.1) 7 (0.9) 0 46 (5.8) 302 (38.3) 

0.03 (b) 
Generalised, n 

(%) 
98 (12.4) 131 (16.6) 153 (19.4) 30 (3.8) 3 (0.4) 48 (6.1) 463 (58.7) 

Mixed and 

others, n (%) 
6 (0.7) 8 (1.0) 5 (0.6) 0 0 5 (0.6) 24 (30.0) 

 Epilepsy type, 503 (63.8%) 

Idiopathic 18 (2.3) 24 (3.0) 69 (8.8) 4 (0.5) 3 (0.9) 20 (2.5) 138 (17.5) 

0.50(b) Symptomatic 37 (4.7) 101 (12.8) 46 (5.8) 8 (1.0) 0 41 (5.2) 233 (29.5) 

Crytogenic 33 (4.2) 53 (6.7) 24 (3.0) 5 (0.3) 0 17 (2.2) 132 (16.7) 

 Drug response, 789 (100%) 
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No seizure 

(GR) 
94(12) 177(22.4) 134(16.9) 24(3.0) 2 (0.3) 45 (5.8) 476 (60.5) 

0.61 
Recurrent 

seizure (PR) 
67(18.3) 106 (13.4) 72(9.1) 13(1.6) 1 (0.1) 54 (6.8) 313 (39.5) 

 Male, 475 (60.2%) 

No seizure 

(GR) 
74(56.1) 73 (62.9) 94(67.6) 15(62.5) - 30(44.8) 286(60.2) 

0.53 
Recurrent 

seizure (PR) 
58(43.9) 43(37.1) 45(32.4) 6(25) - 37(55.2) 189(39.8) 

 Female, 314 (39.8%) 

No seizure 

(GR) 
20(69.0) 104(62.3) 40(59.7) 9    (56.3) 2 (66.7) 15(46.9) 190 (60.5) 

0.77 
Recurrent 

seizure (PR) 
9    (31.0) 63(37.7) 27(40.3) 7(43.7) 1(33.3) 17(53.1) 124(39.5) 

ADR, n (%) 13(1.6) 15(1.9) 23(2.9) 1(0.1) - 7(0.9) 59(7.5) - 

(a) One-way Anova test;   (b) Chi-square test. n: Number of individuals; SD: Standard Deviation. PHT: Phenytoin; 

CBZ: Carbamazepine; VPA: Valproic Acid; PB: Phenobarbital; LEV: Levetiracetam; MT: Multitherapy. p<0.05 

[values in bold font]; PWE = People with epilepsy, GR= Good responder; PR = Poor Responder. 

 

4.2.3.  Genome-wide genotyping:  

We tested whether common genetic variants were significantly associated with drug 

response to one of the prescribed AEDs. Genomic DNA was isolated from blood samples using 

a modified protocol of the salting out technique. DNA concentrations were measure using 

Infinite 200 Pro NanoQuant plate readerTM (Tecan). Genome-wide genotyping was performed 

for 805379 variants using Illumina Infinium Global Screening Array-24+ v2.0 Kit (multi 

disease array with psych array- 24 v1-1 customisation) and the chip-wise fluorescent intensity 

was measured using Illumina iScanTM system. Genotypes were called from the array intensity 

data, using a custom genotype-calling pipeline using the Illumina proprietary software Genome 

Studio v2.0.   

4.2.4.  Genome-wide quality control procedures: 

Illumina Genome Studio v2.0 was used to call genotypes, normalize signal intensity 

data and establish the norm R and norm theta values to cluster A and B allele frequency at every 

SNP. Quality control filtering of genome-wide genotype data was performed using PLINK v1.9 

(Purcell S, 2007) and R v3.4.2. We initially removed all SNPs with a call rate <90%, accounting 

for the genotyping platform used. We initially performed SNP level QC in Genome Studio2.0 

by manually adjusting SNPs that deviated from haploid genome, have GenTrain score <0.6, 

cluster separation <0.4, and all the SNPs with call frequency ‘zero’ were excluded. Other QC 

measures based on AA, AB and BB frequency calls were manually adjusted and finally the 

samples were again filtered based on call rate >0.95 and .ped/.map files were created with the 
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remaining sample and SNPs. In PLINK 1.9, the DNA strands calls were reversed as required. 

Array-specific maps retrieved at the website of Will Rayner at the Wellcome Trust 

(http://www.well.ox.ac.uk/~wrayner/strand/) were used to update all SNPs positions and 

chromosome numbers to the Genome Reference consortium human build 37 (GRCh37), and 

remove all A/T and C/G SNPs to avoid strand issues. We then performed sample-level and 

SNP-level QC based on the following criteria: (1) we checked for gender mismatch, (2) we 

removed samples based on race mismatch calculated using a principal component analysis 

(PCA) plot (figure 4.2), (3) a subset of markers independent of each other with respect to LD 

was created using a window size of 100 markers shifting by 25 markers at a time and removing 

one half of every SNP pair with genotypic r2 > 0.1 (4) Using this subset of markers, 

heterozygosity (HET) and (5) identity by state (IBS) was calculated in order to remove all 

samples with outlying HET values (±4 standard deviations from the median of the whole 

sample) and one half of all sample pairs with lower call rate (4) an HWE cut-off threshold of p 

< 1 x 10-5 per marker was applied. Post QC PLINK binary files (.bed, .bim, .fam) containing 

the sample and marker details were generated for further analysis. We removed the samples 

and SNPs using MAF filter (>0.01), genotype frequency in SNPs (--geno) and genotype 

frequency in samples (--mind).   

 

Figure 4.2: The principal component analysis plot of the 746 GWAS samples. The Y and X axes 

are the first and second dimensions from principal component analysis based on the genome-wide 

IBS pairwise distances among the 746 GWAS subjects. Grey points represent good response and 

blue points poor response to AED. The two axes correspond to a reduced representation of 3000 

ancestry informative markers (AIMs) SNPs into two dimensions. No clustering pattern was found, 

indicating that neither substantial population stratification nor cryptic relationship among the 746 

subjects was found. 
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4.2.5. Trans-ancestry genetic correlation analysis:  

We estimated the trans-ethnic genetic correlation between North Indian and 

1000Genome SAS (figure 4.3). We downloaded the vcf file for 1000Genome phase3 data from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. All the autosomes and bi-allelic 

data was retained. This data was converted into PLINK binary files and this data (2504samples) 

was merged with North Indian (1821samples) using the PLINK command --merge list 

command. The rare variants were removed using –maf 0.05 and genotype frequency of 0.1 was 

applied. This analysis was performed on non-imputed North Indian data. On obtaining the 

.eigenvec and .eigenval data from PLINK, the PCA was plotted in Excel 2013 using PC1 and 

PC2.  

 

Figure 4.3: PCA comparison to all 1000 Genomes Project super-populations (n case=2504) with our cohort (n 

case= 1281), unrelated genotyped individuals merged across cohorts and with 1000 Genomes Project⁶⁹ population 

reference samples (AFR: African; AMR: Admixed American; EAS: East Asian; EUR: European, SAS: South 

Asian). Our samples (NI: North Indian) show complete overlap with 1000G SAS population. Results confirm that 

the NI and SAS cohorts are consistent with the expected population ancestries. 

 

4.2.6.  Genome-wide imputation:  

The post QC binary files were split up according to chromosomes for all autosomes and 

haploid chromosomes (X, Y and mitochondrial). We applied pre-imputation checks according 

to the scripts available on conform-gt Beagle platform. We used the Michigan imputation server 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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to perform genome-wide imputation, where we used Eagle 2.4 to pre-phase genotype to 

produce best guess haplotypes and then perform imputation using minimac4 algorithm and the 

1000Genomes project phase 3 integrated variant set 5 (GrCh37/hg19) SAS population as 

reference panel. All the chromosome-wise .dose files were merged into .pgen files in PLINK 

2.0. Post-imputation quality control filters were applied to remove imputed variants with 

imputation score <0.8, a minimum MAF ≤ 0.01 and without significant (p> 1 x 10-5) deviation 

from HWE were used in the final analysis, which included 2767974 autosome variants. The 

detailed inclusion of samples per analysis is described in table 4.2. 

Table 4.2 Number of samples and SNPs included in each step of the GWAS analysis. 

Step 
Number of 

participants 

Number of 

SNPs 

Total sample recruited 789 805379 

Removing samples based on DNA quality  746 805379 

Removing independent samples based on call rate (Call 

rate<0.90) 
716 805379 

Removing non autosomal variants 716 799003 

Remove SNPs based on SNPs calling quality (GenTrain 

score <0.7) 
716 794052 

Cluster separation (<0.50) 716 690260 

Removing independent samples based on call rate (Call 

rate<0.90) and variants based on (Call frequency <0.80) 
713 717204 

Removing SNPs with strand ambiguous A/T, C/G, gender 

mismatch, race mismatch  
713 717204 

LD pruning (50-5-0.5) 713 399189 

Exclude related samples & duplicates (relatedness (pi-

hat>0.25)) 
697 399189 

HWE (P>1x10-5) 697 398177 

Check heterozygosity/homozygosity (for sample mix-

up/contamination/inbreeding) ( Hetrozygosity Mean ± 4SD) 
691 398177 

Remove SNPs with Missingness > 20% 691 398031 

Imputation with imputation score (R2>0.3) 691 14938481 

Remove SNPs with R2<0.8 691 2767979 

Post imputation QC : Genotype frequency >0.2, mind >0.2, 

MAF >0.01, HWE outliers (P>1x10-5) 
691 2197401 

 

4.2.7.  Study power  

We estimated the study power using Genetic Association study (GAS) power calculator 

(https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/), an online tool presented by 

the University of Michigan. Considering an additive model of genetic association, with a 

https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
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prevalence of 0.10 for our phenotype, our study had 81.3% power to detect a marker with allele 

frequency >20% and an alpha level of 5x10-7 with relative risks (approximated to odds ratio) 

≥2 for overall poor response to AED. 

4.2.8. Association analysis/ Statistical analysis: 

The detailed pipeline opted for the genome-wide analysis is as represented in figure 

4.4. We conducted additive logistic regression using age, sex and 2 principal components (PC1, 

PC2) as covariates in PLINK 1.9 assuming an additive model and evaluated the association of 

each imputed SNP. The p value 5 x 10-8 or 10-5 were considered significant or suggestive, 

respectively. Likewise, we performed logistic regression using the same covariates to evaluate 

the association of each SNP for each drug type, Phenytoin, Carbamazepine, and Valproic acid. 

Given the exploratory approach of this GWAS analysis, we did not perform multiple testing 

for AED response traits- accepting a slightly higher false positive rate in order to present a 

comprehensive list of candidate loci for each AED response traits.  Manhattan and quantile-

quantile plots were created using R package qqman. Genomic inflation factors were calculated 

using. Regional plots were created using LocusZoom webtool (http://locuszoom.org/) based on 

the GRCh37/ 1000Genomes SAS reference data.   

4.2.9. Gene mapping and biological prioritization:  

To test whether genes involved in pharmacokinetic or pharmacodynamic of AEDs, were 

associated as a group with pharmaco-response, we created a set of 256 genes (as mentioned in 

our previous paper (Guin D, 2019b). We applied MAGMA v1.04 using entire summary 

statistics for each group and GWAS p values to run the gene-set and gene-level analysis.  

4.2.10. Functional annotation of SNPs: 

Genomic loci were defined from the SNP-based association results. Functional 

annotation was carried out in FUMA. Annotations were done for SNP-based and gene-based 

analysis, with annotations including the ANNOVAR categories, CADD scores, RegulomeDB 

scores, and 15-core chromatin states and tissue specific eQTL evidence from GTEx v8.0 

database. Functionally annotated SNPs were mapped to genes based on the physical position 

in the genome (FUMA positional mapping), resulting in 25 mapped genes at 12 of the 16 

associated loci. 
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Figure 4.4: The detailed workflow for the GWAS analysis pipeline opted in our study 

 

4.3 Results  

4.3.1.  Cohort description: 

The full dataset included 477 (286 males, 191 females) participants given AED 

treatment with no seizure recurrence in past l0 months (cases) and 312 (189 males, 123 females) 

participants with one or more seizures in 10 months after drug administration (controls). 
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Participants were aged 5 years or over (mean ages of good and poor responders were 22.2 years 

(S.D. 9.1) and 22.2 years (S.D. 9.4), respectively). After individual level QC, 746 patients were 

included in the GWAS analysis. The GWAS analysis was majorly divided into four groups, (1) 

comparing overall poor responders with good responders, (2) poor vs good response in PWE 

on phenytoin therapy alone, (3) poor vs good response in PWE on carbamazepine therapy 

alone, (4) poor vs good response in PWE on valproic acid therapy alone. The breakdown at 

each level of QC for overall group is shown in figure 4.4. Comparing the ratio of good to poor 

responder for different groups, we saw more good responders than poor. Regarding the seizure 

frequency before treatment with respective AED, we saw PHT and CBZ, a higher frequency 

of seizure other than generalised tonic clonic seizures (GTCS) in poor responders as compared 

to good responders. We did not observe this effect for VPA. 

4.3.2 Genome-wide association study analysis 

The sample cohort and demographics for each phenotype definition are detailed in table 

4.1. After quality control, table 4.2 tabulates the details of exclusion of samples and SNPs in 

each step), 2174963 variants remained for analysis. The detailed pipeline for the GWAS 

analysis is given in figure 4.4. We only considered autosomal SNPs in our analyses. The 

variance between the PCs were calculated using the .eigenval file. The PCA plot of PC1 versus 

PC2 is shown in figure 4.3 with study subjects (in green) overlaid on 1000G SAS ancestral 

populations, thus we chose 1000G SAS to be the reference population for imputation analysis. 

To test for hypothesis for poor response to AEDs, logistic regression analyses were performed 

for four groups, overall poor vs good responder and between these for PWE on PHT, CBZ and 

VPA. Although we did not observe any GWAS significant (p < 5.0 x 10-8) loci for any of the 

groups, several crossed the suggestive loci. The strongest association was found in VPA 

response group for rs4659128, an intronic SNP in TBX15 gene (p= 2.03 x 10-7). Most of the 

lead loci were either intergenic or intronic which the nearest gene mapped to 1Mb region 

according to the NCBI RefSeq, represented in Manhattan plots. We obtained 4 SNPs in the 

overall group, 1, 5 and 1 with PHT, CBZ and VPA poor response, respectively.  

The gene-set analysis was performed for each group, using MAGMA on the significant 

association (p < 1x 10-5) for 54 tissue specific expression and gene function was identified 

using gene ontology (GO) analysis for biological processes, molecular functions and cellular 

components. These genes were prioritised based on a p-value cut-off of 5.0 x 10-3 after false 

discovery rate (FDR) correction. Other biological evidence for genotype specific tissue-wise 
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expression was obtained from GTEx v8 and 15-core chromatin state for regulatory potential of 

non-coding variants. All the results are presented with unadjusted p value cut-off of 1 x 10-3. 

The detailed results for each group are discussed in the following sections. 

Among the lead loci several represented genes involved in target or transporter for 

different AEDs administered. Other loci have known functions in neuronal development or 

associated with neurodevelopmental disorders: CBLN2 and FBXO33 for the overall response, 

C12orf42 or SLC9A9 for PHT response, TBX15, and SLC25A24 for CBZ response, and 

PACRG and SYN3 to VPA response. The regional genomic plots of the top results for all 

GWASs are depicted in locus zoom plots in figure 4.6.  

4.3.2.1.  Overall Good Responder vs Poor Responder:  

In the GWAS for overall response (420 Good responders, GR vs 272 Poor responders, 

PR), no variant passed genome-wide significance. We observed no evidence for a substantial 

GWAS p value inflation (λ median =1.00745) (Figure 4.5). There were 5 SNPs that crossed the 

suggestive p value threshold. Four of them are intergenic and one intronic. The top genomic 

locus (lead SNP rs6033642, p = 1.185 x 10-6, OR (95%CI) = 1.98(1.51-2.61) is an intergenic 

variant lying near SPTLC3 and ISM1 gene (Table 4.3). This SNP is an eQTL variant –down-

regulating the expression of SPTLC3 gene in different tissues, most significant at Brain 

Caudate basal ganglia tissue (p<0.0003). This SNP is also known to be at weak transcription 

site (Tx/Wk) in liver, blood and breast. Another SNP, rs71330293, in complete LD (r2>0.9) 

with the lead SNP lies in the active transcription start site (TSS) in tissues like Blood (all 

tissues), Brain (Angular Gyrate, Inferior Temporal Lobe, Substantia nigra), Oesophagus, 

Duodenum, Stomach. The most significant pathway in gene-set analysis of this group is the 

biological process regulation of potassium ion transmembrane transport (fold enrichment=15, 

p<10 x 10-3), followed by neuron development (fold enrichment = 7, p<0.0001), calcium ion 

transport (fold enrichment=5, p<0.00001). The gene within the suggestive GWAS threshold, 

shows exclusive differential expression in brain. There are other 14 loci that cross the 

suggestive p value threshold. Three of them are intronic and rest intergenic and are mapped to 

protein coding genes like FBXO33, CBLN2, SORBS1, ERGIC2, ERO1B, ZMIZ1-AS1, FGF12, 

PLPP3, CDH2, FERMT1, and CASC20. These genes were differentially expressed in most 

brain tissues. 

 



79 

 

Figure 4.5: Manhattan and QQ plots of genome-wide association analyses for overall AED response. Genomic 

inflation factors (λ) for the four genome-wide association study analyses. Negative log10 transformed p-values (Y 

axis) are plotted against chromosomal positions (x-axis).The line represent the suggestive genome-wide 

significance threshold (p< 1x 10-5). 

 

 

 

4.3.2.2.  Good Responder vs Poor Responder on patient with Phenytoin: 

In this group, 72 PR and 133 GR were compared were no variants passed GWAS 

threshold, with no genomic inflation (λ median =1.06036) (Figure 4.6). Only one SNP crossed 

the suggestive threshold, rs10134329, [p = 1.004 x 10-5, OR (95% CI) = 9.34 (3.48-25.1)] 

which is an intronic variant in TTYH3 gene. The Tweety homologs (TTYH) gene family are 

known to form Ca2+ and regulating anion channels with potential role in cell adhesion, 

migration, and developmental signalling (Li B, 2021). According to BRAINEAC database, this 

SNP show differential expression in brain tissues (cerebellar cortex, occipital cortex, putamen, 

substantia nigra and intralocular white matter), which is highly correlated with the expression 

of CARD11 gene (p=0.003) in substantia nigra. This variant is predicted to be present in the 

strong transcription site (Tx) in most of the tissues. The tissue expression analysis performed 

by MAGMA for 53 tissue types, supports highest differential expression in brain cerebellar 

hemisphere and cerebellum. The gene-set enrichment analysis revealed neuron recognition 

(fold enrichment =45, p< 0.001), followed by cyclic adenosine monophosphate (cAMP) 

catabolic process (fold enrichment = 42, p<0.001) and its activity to be most significant in this 
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group. There are other 11 loci that cross the suggestive p value threshold. Three of them are 

intronic and rest intergenic and are mapped to protein coding genes like FOXG1-AS1, 

C12orf42, MIR6078, ANKRD22, STAMBPL1, ARHGEF37, PPARGC1B, SLC9A9, LUZP2A.

  

 
Figure 4.6: Manhattan and QQ plots of genome-wide association analyses for poor response to PHT. Genomic 

inflation factors (λ) for the four genome-wide association study analyses. Negative log10 transformed p-values (Y 

axis) are plotted against chromosomal positions (x-axis).The line represent the suggestive genome-wide 

significance threshold (p< 1x 10-5).
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Table 4.3: Top genome-wide associated loci crossing suggestive threshold (p < 5 × 10–5) for overall AED poor responder 

rsID chr pos 

Non 

effect 

allele 

Effect 

allele 
MAF GWAS p OR (95%CI) Function CADD RDB Adjusted p Nearby Genes  

rs6033642 20 13199755 G C 0.2076 8 x 10-7 1.98(1.50-2.60) intergenic 11.04 5 1.19 x 10-6 SPTLC3;ISM1 

rs970635 14 40123072 T C 0.3088 3.19 x 10-6 1.73(1.37-2.19) intergenic 0.346 6 3.98 x 10-6 FBXO33;LINC02315 

rs4891466 18 70017821 T C 0.2628 5.60 x 10-6 1.79(1.39-2.30) intergenic 1.115 NA 4.07 x 10-6 LINC01899;CBLN2 

rs76487654 10 97262755 A AACAC 0.2955 4.24 x 10-6 1.74(1.37-2.2) intronic 0.86 NA 4.83 x 10-6 SORBS1 

rs1037515723 6 164059731 C CTT 0.4724 5.05 x 10-6 1.66(1.34-2.07) intergenic 0.033 NA 4.94 x 10-6 QKI; LOC102724152 

rs1836861 12 29536060 T C 0.2587 6.47 x 10-6 0.57(0.45-0.73) intergenic 5.415 NA 1.10 x 10-5 ERGIC2; OVCH1-AS1 

rs6809135 3 153123142 T C 0.4622 4.85 x 10-6 1.66(1.33-2.06) 
ncRNA 

intronic 
1.12 6 1.28 x 10-5 LINC02006 

rs1284129705 12 74562414 G GA 0.2965 2.57 x 10-6 0.53(0.41-0.70) 
ncRNA 

intronic 
1.35 NA 1.47 x 10-5 LOC100507377 

rs61774288 1 57102639 T C 0.2955 7.99 x 10-6 1.72(1.35-2.18) intergenic 2.184 6 1.57 x 10-5 LOC101929935 

rs6700066 1 236535458 A G 0.2853 8.25 x 10-6 1.80(1.39-2.32) intronic 1.413 7 1.68 x 10-5 ERO1B;EDARADD 

rs1448274664 10 80763023 C CA 0.2883 4.32 x 10-6 0.50(0.37-0.68) 
ncRNA 

intronic 
1.797 NA 1.76 x 10-5 ZMIZ1-AS1 

rs10937534 3 191873224 C T 0.319 8.75 x 10-6 0.58(0.45-0.74) intronic 1.091 5 1.88 x 10-5 FGF12 

rs79324826 1 57061340 T C 0.1329 8.86 x 10-6 0.40(0.26-0.61) intergenic 5.195 7 1.89 x 10-5 PLPP3;LOC101929935 

rs963788068 18 27610868 A AT 0.1564 6.69 x 10-6 1.96(1.46-2.64) intergenic 0.312 NA 2.14 x 10-5 CDH2;MIR302F 

rs6038406 20 6265860 C T 0.1513 8.99 x 10-6 2.08(1.49-2.89) intergenic 2.973 6 2.32 x 10-5 FERMT1;CASC20 

rs13001411 2 7821182 T C 0.226 7.94 x 10-6 1.77(1.38-2.28) intergenic 0.195 7 5.48 x 10-5 
LOC100506274; 

LOC101929551 

rs1655645 15 29692680 C T 0.3691 8.93 x 10-6 1.67(1.33-2.10) intronic 6.852 NA 7.11 x 10-5 FAM189A1 

Chr: chromosome, Pos: position, MAF: minor allele frequency, GWAS p: unadjusted p value calculated using chi-square analysis considering additive genetic model, OR: 

Odds ratio calculated with respect to effect allele, CI: confidence interval, CADD:  Combined Annotation Dependent Depletion, RDB: RegulomeDB, adjusted p: calculated 

using logistic regression with age, sex and PC1, PC2 as covariates, Nearby Genes annotated by ANNOVAR.  
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Table 4.4: Top genome-wide associated loci crossing suggestive threshold (p < 5 × 10–5) for poor responder to PHT 

rsID chr pos 

Non 

effect 

allele 

Effect 

allele 
MAF gwasP OR (95%CI) Function CADD RDB Adjusted p Nearby Genes  

rs6461508 7 2696940 C T 0.3078 8.09 x 10-6 0.23(0.1-0.45) intronic 1.104 4 1.00 x 10-5 TTYH3 

rs7971098 14 28154882 C T 0.456 5.09 x 10-6 0.32(0.20-0.53) 
ncRNA 

intronic 
0.196 6 3.77 x 10-5 

LOC728755; 

FOXG1-AS1 

rs1590739488 14 46300328 A C 0.2137 2.48 x 10-7 9.34(3.48-25.1) intergenic 3.642 7 4.98 x 10-5 
LINC02303; 

LINC00871 

rs10904170 12 103845157 C 
CCATG 

CCCAG 
0.4356 8.36 x 10-7 3.73(2.18-6.40) intronic 1.314 NA 5.04 x 10-5 C12orf42 

rs7704756 11 122007806 G A 0.3374 8.17 x 10-6 3.06(1.86-5.04) intergenic 12.96 4 5.92 x 10-5 MIR100HG 

rs2877849 1 190595160 T C 0.06851 8.23 x 10-6 8.59(2.87-25.76) 
ncRNA 

intronic 
1.071 6 6.13 x 10-5 LINC01720 

rs7897571 10 4061453 G T 0.273 3.45 x 10-6 3.86(2.14-6.96) intergenic 0.097 6 8.66 x 10-5 
MIR6078; 

LOC101927964 

rs6461508 7 2696940 C T 0.3078 8.09 x 10-6 0.23(0.1-0.45) intronic 1.104 4 1.00 x 10-5 TTYH3 

rs7971098 14 28154882 C T 0.456 5.09 x 10-6 0.32(0.20-0.53) 
ncRNA 

intronic 
0.196 6 3.77 x 10-4 

LOC728755; 

FOXG1-AS1 

rs1590739488 14 46300328 A C 0.2137 2.48 x 10-7 9.34(3.48-25.1) intergenic 3.642 7 4.98 x 10-4 
LINC02303; 

LINC00871 

rs10904170 12 103845157 C 
CCATG 

CCCAG 
0.4356 8.36 x 10-7 3.73(2.18-6.40) intronic 1.314 NA 5.04 x 10-4 C12orf42 

rs7704756 11 122007806 G A 0.3374 8.17 x 10-6 3.06(1.86-5.04) intergenic 12.96 4 5.92 x 10-4 MIR100HG 

Chr: chromosome, Pos: position, MAF: minor allele frequency, GWAS p: unadjusted p value calculated using chi-square analysis considering additive genetic model, OR: Odds ratio 

calculated with respect to effect allele, CI: confidence interval, CADD:  Combined Annotation Dependent Depletion, RDB: RegulomeDB, adjusted p: calculated using logistic regression 

with age, sex and PC1, PC2 as covariates, Nearby Genes annotated by ANNOVAR.  
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.4.3.2.3.  Good Responder vs Poor Responder on patient with Carbamazepine: 

This analysis was performed between 92 poor and 156 good responder of patients with 

CBZ with no significant genomic inflation (λ median =1.00823) (Figure 4.7). The highest GWAS 

signal for rs4659128 [p= 2.033 x 10-7, OR (95% CI) = 4.82(2.64-8.79)] which is an intronic 

variant in TBX15 gene. These are a class of transcription factors that are known to regulate a 

variety of developmental processes (Yan, 2023). Substantiating the functional relevance of this 

SNP, with a RegulomeDB score of 1f, this variant show significant eQTL evidence in almost 

all tissue. This variant mostly upregulate WARS2 gene in all tissues. This variant is putatively 

present at the actively transcribed state (Tx or Tx/Wk) in several tissues like skeletal, muscle, 

adipose, bone marrow and Enhancer like properties in ESC and iPSC. Another SNP [p= 6.848 

x 10-6, OR (95%CI) = 0.361(0.23-0.55)] an intergenic variant near SLC25A28, this gene is 

predicted to be involved in iron import into the mitochondrion. This variant has known to 

downregulate ABCC2 in Nucleus accumbens basal ganglia (p=0.023), an important membrane 

bound transporter of broadly all anti-epileptic drugs and is most in the weak transcription site 

in blood and epithelial, digestive and foetal brain tissue. The most significant curated biological 

process in this group is hydrogen peroxide catabolic process (fold enrichment =70, p<0.00001), 

intracellular signal transduction (fold enrichment= 25, p<0.0001).  The other loci associated 

with poor response to CBZ are annotated in genes like MBL2, PCDH15, SLC25A24, NYNRIN. 
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Table 4.5: Top genome-wide associated loci crossing suggestive threshold (p < 5 × 10–5) for poor responder to CBZ 

rsID chr pos 

Non 

effect 

allele 

Effect 

allele 
MAF gwasP OR (95%CI) Function CADD RDB Adjusted p Nearby Genes  

rs4659128 1 119464710 C T 0.1442 3.90 x 10-8 4.82(2.64-8.79) intronic 1.666 1f 2.03 x 10-7 TBX15 

rs201566762 2 85175660 TA T 0.4131 1.64 x 10-6 0.41(0.28-0.59) intergenic 1.709 NA 3.25 x 10-6   

rs73085150 7 22532638 G C 0.1851 1.56 x10-6 3.50(2.05-5.96) intronic 11.13 6 4.48 x 10-6 STEAP1B 

  11 74068812 AG A 0.4284 6.25 x 10-6 0.41(0.28-0.61) intronic 1.235 NA 5.11 x 10-6   

rs6584298 10 101364049 C T 0.3395 2.47 x 10-6 0.36(0.23-0.56) intergenic 4.144 7 6.88 x 10-6 NKX2-3;SLC25A28 

rs6601485 8 10408070 G C 0.3231 8.60 x 10-6 0.37(0.24-0.58) intronic 0.747 4 1.24 x10-5 PRSS55 

rs61889377 11 32543005 A C 0.3364 9.70 x 10-6 2.47(1.65-3.72) intergenic 0.025 5 1.59 x 10-5 WT1-AS;EIF3M 

rs374777871 2 228866000 TATAA T 0.318 4.41 x 10-6 0.36(0.23-0.56) intronic 0.268 NA 1.72 x10-5   

rs6601485 10 54988100 A T 0.2188 2.70 x 10-6 2.68(1.76-4.07) intergenic 11.63 6 1.85 x10-5 MBL2;PCDH15 

rs12498262 4 150177249 T C 0.1554 7.63 x 10-6 3.02(1.83-4.98) ncRNA splicing 21.6 5 2.80 x10-5 LINC02355 

rs962752548  4 154257268 TTA T 0.2812 8.24 x 10-6 2.32(1.60-3.36) UTR3 9.484 NA 2.86 x10-5   

rs543063  1 108732235 G A 0.3108 6.65 x 10-6 2.47(1.66-3.68) intronic 0.63 6 3.21 x10-5 SLC25A24 

rs10169628 2 121135375 G A 0.1176 7.94 x 10-6 3.62(2.00-6.55) intergenic 2.234 5 4.56 x10-5 INHBB;LINC01101 

Chr: chromosome, Pos: position, MAF: minor allele frequency, GWAS pP: unadjusted p value calculated using chi-square analysis considering additive genetic model, OR: Odds ratio 

calculated with respect to effect allele, CI: confidence interval, CADD:  Combined Annotation Dependent Depletion, RDB: RegulomeDB, adjusted p: calculated using logistic regression 

with age, sex and PC1, PC2 as covariates, Nearby Genes annotated by ANNOVAR.  
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Figure 4.7: Manhanttan and QQ plots of genome-wide association analyses for poor response to CBZ. Genomic 

inflation factors (λ) for the four genome-wide association study analyses. Negative log10 transformed p-values (Y 

axis) are plotted against chromosomal positions (x-axis).The red line represent the suggestive genome-wide 

significance threshold (p< 1x 10-5). 

 

4.3.2.4.  Good Responder vs Poor Responder on patient with Valproic acid 

This analysis was performed between 61 poor and 116 good responder of patients with 

VPA therapy with no significant genomic inflation (λ median =1.03372) (Figure 4.8). The top 

hit in this group is an intronic SNP (rs11569839/ TNFRSF8) [p= 9.498 x 10-6, OR (95%CI) = 

3.72(2.04-6.79)]. This gene belongs to the TNF receptor superfamily, predicted to enable 

transmembrane signalling receptor activity by positive regulation of NF-kappa β transcription 

factor activity, differentially regulating gene expression in brain tissues (most significant in 

downregulation of PLOD1 in cerebellar hemisphere (p=0.0018) (table 4.6). Interestingly, this 

variant is correlated with regulation of one of the most important candidate epilepsy gene, 

MTHFR (p=0.0079) and MTOR (an AED target gene) (p= 0.043) in temporal cortex and 

MTHFR in cerebellum (p=0.039). This variant is putatively lying in Tx/Wk or Enhancer region 

in heart and muscle tissues.  The other loci is an intergenic variant near synapsin 3 (SYN3) 

gene. Deficiency of this protein is known to cause epileptic seizures (Schwark R, 2022). Also 

this is a neuron-specific synaptic vesicle–associated phosphoprotein that has been implicated 

in synaptogenesis and in the modulation of neurotransmitter release (Morales-Corraliza J, 
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2010). This SNP is present in the active (TssA) in several tissues. The most important function 

molecular functions carried out by the associated genes of this group is CCR7 chemokine 

receptor binding (fold enrichment= 100, p= 0.01).  

Figure 4.8: Manhanttan and QQ plots of genome-wide association analyses for overall AED response. Genomic 

inflation factors (λ) for the four genome-wide association study analyses. Negative log10 transformed p-values (Y 

axis) are plotted against chromosomal positions (x-axis).The line represent the suggestive genome-wide 

significance threshold (p< 1x 10-5). 

 

4.3.3  Replication analysis with other GWAS published with AED response 

There are only two GWAS published so far establishing AED response (apart from 

AED related ADRs) (Wolking et al., 2021; Wolking et al., 2020).We aimed to test whether the 

SNPs described in previous published GWAS on AED response that reportedly associated with 

overall AED response and drug-wise response for PHT, CBZ and VPA is present in our cohort. 

Among the genome-wide significant variants identified by (Wolking et al., 2020), a total of 

181481 variants were found common with our overall cohort, where rs970635, an intergenic 

variant present near FBXO33 and LINC02315 gene was at highest significance [p=3.98x 10-6, 

OR (95%CI) = 1.73(1.37-2.18)]. Likewise, in the VPA group, 296926 variants were common 

between the two. An intronic variant, rs242076 (between SYN3 and TIMP3 gene was the top 

hit [p= 1.031 x 10-5, OR (95%CI) = 0.35(0.22-0.55)]. The significant loci and the LD SNPs  
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Table 4.6: Top genome-wide associated loci crossing suggestive threshold (p < 5 × 10–5) for poor responder to VPA 

rsID chr pos 

Non 

effect 

allele 

Effect 

allele 
MAF GWAS p OR (95%CI) Function CADD RDB Adjusted p Nearby Genes  

rs11569839 1 12157881 G A 0.1534 7.61 x 10-6 3.72(2.04-6.79) intronic 3.239 5 9.50x 10-6 TNFRSF8 

rs242076 22 33229830 A G 0.4601 5.93 x 10-6 0.35(0.22-0.55) intronic 5.047 NA 1.03 x 10-5 SYN3;TIMP3 

rs933406127  6 163140575 GA G 0.3098 5.68 x 10-8 4.06(2.40-6.87) intronic 1.111 NA 1.19 x 10-5 PACRG 

rs1413065  13 63679702 T C 0.2812 1.09 x 10-6 3.33(2.03-5.48) intergenic 5.436 NA 1.22 x 10-5 LINC00448;LINC00376 

rs7192067 13 68829521 T C 0.407 4.12 x10-6 0.33(0.21-0.54) intergenic 0.148 7 1.33 x 10-5 LINC00364;LINC00550 

rs921412  7 138495985 T A 0.4898 4.17 x 10-6 0.33(0.21-0.54) intronic 1.025 6 2.43 x 10-5 TMEM213;KIAA1549 

rs1270275 19 35107163 G T 0.2526 9.86 x 10-6 3.01(1.83-4.95) NA 0.82 NA 2.83 x10-5 SCGB1B2P 

rs7192067  16 78864773 T C 0.1564 4.87 x 10-6 4.05(2.17-7.61) intronic 3.516 7 3.06 x10-5 WWOX 

rs7240119 18 57568601 T C 0.3875 6.25 x 10-6 2.80(1.78-4.40) intronic 5.114 4 3.16 x10-5 PMAIP1 

rs12701950 7 42232068 G A 0.0818 3.14 x 10-6 5.43(2.51-11.8) intronic 3.559 6 3.35 x 10-5 GLI3 

rs1399610  8 78321942 T A 0.3875 6.25 x 10-6 2.80(1.78-4.40) 
ncRNA 

intronic 
0.09 6 3.87 x 10-5 PEX2;LOC102724874 

rs11850195  14 93326861 C T 0.2853 3.86x 10-6 3.13(1.91-5.13) intergenic 1.596 6 5.18 x 10-5 GOLGA5;LINC02287 

rs112703963 1 859913 G A 0.09611 7.19 x 10-6 
5.82(2.49-

13.59) 
upstream 12.3 3a 8.36 x 10-5 LINC02593;SAMD11 

rs11850195 1 116879341 C T 0.1503 5.91 x 10-6 4.21(2.18-8.12) intergenic 0.136 5 8.78 x 10-5 MAB21L3;ATP1A1 

rs67838640  13 34647926 T G 0.1503 6.41 x 10-6 4.30(2.2-8.44) intergenic 1.849 7 9.06 x 10-5 RFC3;LINC02343 

Chr: chromosome, Pos: position, MAF: minor allele frequency, GWAS p: unadjusted p value calculated using chi-square analysis considering additive genetic model, OR: Odds ratio 

calculated with respect to effect allele, CI: confidence interval, CADD:  Combined Annotation Dependent Depletion, RDB: RegulomeDB, adjusted p: calculated using logistic regression 

with age, sex and PC1, PC2 as covariates, Nearby Genes annotated by ANNOVAR.  
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Figure 4.9: The gene set enrichment analysis using input genes from summary statistics with GWAS p threshold 

p < 5 x 10-5 for GO analysis. Here A. overall AED poor response, B. poor response to PHT, C. poor response to 

CBZ, D. poor response to VPA. 

 

(r2>0.8) mentioned in the other GWAS (Wolking S et al. (2021), were tested in our cohort, 

where rs7092992 (near MIR4675 and NEBL) showed nominal significance in our VPA cohort 

but the directionality was opposite [p= 0.036, OR (95%CI) = 0.44(0.21-0.97)].Apart from this, 

we additionally compared our summary statistics with the list of candidate genes prioritised 

from literature associated with different anti-seizure drugs (Guin D, 2023). 

4.4  Discussion 

In all the published GWAS so far, no pharmacogenetic marker has been identified for 

drug response to specific AEDs that crossed the genome-wide significance threshold. In this 

study we attempted to identify common variants associated with drug response to anti-epileptic 

drugs, in general, as well as, specific to three commonly prescribed AEDs- PHT, CBZ and 
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VPA. They are the most frequently used AEDs in epilepsy, particularly in India, and are 

considered as the first line of treatment (Haroon A, 2012). In our recruited cohort of 789 

patients, 39.55% participants were poor responders and 60.45% were good responders. The 

ratio of good responders to poor responders was higher in the VPA group (35.12%) as 

compared to CBZ (37.32%) and PHT (40.99%). This observation reflects the superiority of 

VPA in the treatment of epilepsy. Besides, poor responders had a higher seizure frequency 

before treatment initiation shows the common clinical observation that individuals with severe 

epilepsies are less likely to achieve seizure freedom – the cornerstone of the intrinsic severity 

hypothesis of pharmacoresistance (Rogawski MA, 2013). 

Our GWAS results did not reveal strong genetic association with large effect size 

contributing to genetic variance of overall poor response to AED treatment. Nonetheless, our 

results show top genomic loci, rs4659128/TBX15 [OR (95% CI) = 4.82(2.64-8.79), p<2.033 x 

10-7] and rs11569839/TNFRSF8 [OR (95% CI) = 3.72(2.04-6.79), p< 9.498 x 10-6] to be 

associated with poor responders to CBZ and VPA treatment respectively. However, these 

associations did not cross the GWAS significance threshold like previously reported (Wolking 

S, 2021; Wolking S, 2020). This lack of significant association to drug response outcome 

underlines the fact that poor response or pharmacoresistance, at large, are complex traits which 

may or may not be largely controlled by genetics (Balestrini S, 2018). Though, there is some 

evidence that enrichment of ultra-rare variants in genes associated with pharmacodynamics and 

pharmacokinetics can modify AED response, but further replication of these results is needed. 

Other non-genetic risk factors like early onset, abnormal EEG (both slow wave and 

epileptiform discharges), status epilepticus, symptomatic etiology, febrile seizures, and 

multiple seizure types, have been proposed for development of non-response (Xue-Ping W, 

2019). 

Assuming response to AEDs a complex genetic trait, multiple loci with small effect 

size may be associated with it. Due to limited sample size, our study was underpowered to 

detect such variants with small effect sizes, though we identified several suggestive loci. 

Among them, in the overall poor responder group, we identified intergenic SNPs near genes 

like SPTLC3 and ISM1.SPTLC3 codes for palmitoyl-transferase enzyme which is involved in 

sphingolipid biosynthesis. Sphingolipids are crucial for proper brain development and 

functions (Olsen ASB, 2017). Structural variants in this gene are known to be associated with 

childhood absence epilepsy (Addis L, 2016). The other gene, ISM1, are secretory are pro-

apoptotic protein that functions through cell surface high affinity G protein receptors, known 
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to be associated with intellectual disability and neuronal development (Osório L, 2014). Other 

SNPs, rs970635 near FBXO33 gene have been identified as a novel susceptibility gene for the 

Attention-Deficit Hyperactivity Disorder (Sánchez-Mora C, 2015). A study by Flood WD et al 

(2004) identified this gene to be one of the novel genes responsive to seizure (Flood et al., 

2004). Another SNP, rs4891466 near CBLN2 have been previously reported in other GWAS 

is known to have tissue specific expression in brain, six times higher as compared to other 

tissues (Jang et al., 2015). 

Likewise, for poor response specific to PHT, the top loci associated was an intronic 

SNP (rs6461508) in TTYH3 gene. This gene encodes for protein that functions as a Ca2+ 

activated large conductance Cl- channel (Li et al., 2021). They are highly expressed in nervous 

system, and this gene is upregulated following epileptic events in central neurons and glial cells 

(Stefaniuk et al., 2010; Wiernasz et al., 2014). The intronic SNP, rs4659128 in TBX15 gene is 

an important transcription factor regulating a variety of developmental processes crucial for 

normal brain functioning (Ayata et al., 2018). For VPA poor response, another intronic variant 

(rs11569839) located in TNFRSF8 gene regulates very important DMEs for AEDs- MTHFR 

& mTOR. A recent study suggest selective inhibition of TNF-TNFRSF signalling may decrease 

acute seizures and potentially suppress the development of epilepsy (Patel DC, 2017). Thus, 

considering the nature of GWAS findings for a complex trait, these findings should not be 

considered causal, rather regions of top genomic loci can be important for drug action in 

different brain tissues in epilepsy. Interestingly, several of the top associated loci belong to 

different brain physiology or neurological development, none of them were ADME genes. But 

some of these SNPs have evidence of regulating important drug targets or DMEs of AEDs.  

Additionally, GO analysis results showed the highest fold enrichment for functions like 

regulation of potassium ion transmembrane transport, neuron development, Ca2+ ion transport, 

regulation of ion transmembrane transport, brain development, voltage-gated Ca2+ channel 

complex, voltage-gated K+ channel complex, neuron recognition, post synaptic density 

membrane and so on. These functions are crucial molecular processes carried out during the 

action of AEDs thereby reducing seizure occurrence. Our findings suggesting that although the 

top loci were not direct AED related genes, but further functional validation may shed light 

into the molecular mechanistic insights related to AED response.     

In spite of being the first GWAS study to explore the distribution of genetic variants 

associated with poor response to AEDs specific for Indian population, our study has some 

inherent limitations. Due to limited sample size, our study could not detect genetic variants 
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with small effect sizes, though we identified several suggestive loci. Specifically for the drug-

wise stratified analysis, the sample size was too small. Further, we choose a definition of poor 

response to be ≥2 seizures in ten month, had we considered one seizure at the end of a year 

follow up compared to baseline data, we would have obtained larger sample size, but we 

assume that a less rigorous definition would have blurred potential genetic association. Apart 

from genetic factors, other clinical factors should also be considered to identify the best fit 

prediction model for poor response. Our study lacks validation in an independent cohort to gain 

power of statistical findings.  

4.5 5. Conclusion 

This is the first GWAS study on AED response in an Indian cohort for individual AED 

response. While our study did not reveal any genome-wide significant association for drug 

response in any of the groups, we identified several suggestive loci. Future similar studies 

should attempt to reproduce our findings, apart from the GWAS threshold (p < 5 x 10-8). Our 

study mainly explored the common variants, future hypothesis-driven research focusing on rare 

or structural variants, similar to such studies in epilepsy disease risk loci may provide clues 

towards improving AED treatment outcome. More studies with similar study design are 

required to replicate the findings and functional assays to elucidate the role of common variants 

in future analysis.      
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Chapter 5 

Development of PGx panel with 

efficacy/ toxicity marker for 

pharmacogenetic testing towards 

pilot implementation. 
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5.1 Introduction 

Clinical validity is indicated by measures of discriminative accuracy and predictive 

value. The diagnostic accuracy refers to the ability of a test to discriminate between the 

presence and absence of poor response and is indicated by the sensitivity and specificity. 

Sensitivity is the probability that the genetic variant associated with a higher risk of poor 

response to an administered drug (from here referred to as the genetic variant) is present in 

individuals with the adverse event while specificity is the probability that the genetic variant is 

absent in individuals with favourable response. Contingency tables can be constructed using 

empirical data or using hypothetical data calculated from summary statistics and association 

measures, such as odds ratios derived from observational studies with a case–control design in 

combination with the frequencies of the genetic variant and the adverse event. To indicate the 

diagnostic accuracy both sensitivity and specificity need to be reported. Optimizing the 

predictability of the efficiency of the PGx marker, to determine its accuracy, specificity and 

sensitivity in a population specific cohort thereby minimizing the chances of false positive 

prediction. A pharmacogenetic test that has high sensitivity (80%), but low specificity (10%) 

will be able to predict 80% of the individuals who will develop have a poor outcome of drug 

but it will misclassify 90% of the individuals who will not have a poor outcome. Measures of 

clinical validity can be calculated from a 2 × 2 contingency table for each variant identified. 

Predictive value measures are sensitive to the prevalence of the poor response and PPV remains 

generally low for rare drug outcomes even if the pharmacogenetic associations (ORs) are high. 

The current work aims to identify if the associated variants overlap with that of the 

evidence from available literature including the 80 pharmacogenetic variants identified from 

objective 1. And also estimate if these variants associated with drug response phenotype can 

be used formulate clinically actionable pharmacogenetic tests for targeted therapy specific to 

Indian patients. The clinical validity of a pharmacogenetic markers is essential to indicate the 

ability of the associated genetic variant to predict the occurrence of poor response on 

prescription of a specific drug, in our study, an anti-seizure drug. It is determined by the 

strength of association between the genetic variant and the phenotype. In a case control study 

design, this is calculated by odd ratio along with 95% confidence interval with a statistical 

significance. A strong association is essential but not always sufficient condition to ensure the 

accuracy of estimating the accuracy of diagnosis. Thus, it is crucial to evaluate the diagnostic 

ability to correctly identify or predict an outcome of interest, which, in pharmacogenetics, 

indicates the ability of the test to predict poor response or lack of treatment efficacy.  
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5.2. Material & method 

We performed a replication analysis where we obtained pharmacogenomic data 

predicting poor response to anti-epileptic drugs from four different data sources- PharmGKB, 

GWAS Catalog (https://www.ebi.ac.uk/gwas/), EpiGAD and our previous published article 

from objective 1 (Guin D, 2019b). From PharmGKB, using ‘epilepsy’ disease keyword, all the 

curated variant annotations were retrieved. A total of 522 variant information was obtained, of 

which 230 were significant associations. These were retained for our analysis, and the star 

allele variants were annotated using the standard nomenclature system for respective genes/ 

alleles and removing the duplicate variants, the remaining 113 variants across 17 genes were 

retained. Likewise, from GWAS Catalog, using the keyword, ‘response to anti-convulsant’, a 

total of 151 variants (in 134 genes) from 13 GWAS were obtained. A unique epilepsy genetic 

association database, EpiGAD enlists all the disease associated genetic variants known so far 

as well as that for drug response. We extracted the data for drug response from this database, 

which resulted in 211 associated variants. Retaining only the significant associations and 

annotating the star variants, we were left with 62 SNPs ranging in 30 genes. And finally, from 

our previous published literature 80 SNPs were obtained. We compared our results obtained 

from our high throughput genome analysis for overall poor response predicting to prescribed 

AEDs (figure 5.2), we found an overlap of 19 SNPs as enlisted in Table 5.1. We then estimated 

the diagnostic accuracy of these markers to identify if they qualify to be used for clinical 

applications to predict poor response to AED. The diagnostic predictability was calculated 

using the formula (Tonk ECM, 2017) as shown in figure 5.1. If the patient carrying the 

alternate allele associated with poor response are poor responders as recruited in our cohort, 

they are regarded as true positive and if the patient do not carry the allele but are poor 

responders, they are false positive. Likewise, true positive and true negatives are defined in this 

case. Specificity, sensitivity and diagnostic accuracy was calculated for predicting poor 

response from our GWAS summary statistics for overall poor response. These markers which 

sufficient efficiency may be beneficial for population specific diagnostic applications although 

it requires replication in independent cohort as well. Additionally, we identified 88 PGx 

variants from the literature which are approved by FDA, CPIC, SwissMedic, EMA and others 

and are currently used for commercial purposes. These are overlapping with the data obtained 

from the different sources in literature. We observed of the 19 SNPs, 8 are already in 

commercial use (figure 5.2).  We also estimated the area under the curve for true predictability 

using ROC curve analysis performed in STATA 16.0.  
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Figure 5.1: Formulae used for calculation of diagnostic accuracy using 2 × 2 contingency tables. 

 

5.3 Results 

We observed a gene and SNP level overlap between the four datasets and our summary 

statistics. Quite obviously, we observed a narrow SNP overlap like in most published GWAS. 

Only 19 SNPs overlapped from a total of ~4 lakh SNPs associated with poor response to AED.  

However, a substantial overlap of genes were observed. A total of 144 genes overlapped from 

around 34,000 genes. Most of these genes were ADME genes and commonly studied in 

previous candidate associations with AED outcomes. Interestingly, among the 19 overlapping 

variants, 8 of them are already used for commercial purpose to diagnose/ predict poor response 

in epilepsy treatment with common first line drugs.   

 

The diagnostic accuracy of the 19 SNPs are as shown in table 5.1. Most these 

overlapping variants show moderate to low effect size in our study cohort suggesting either 

genetic variants cannot be considered solely responsible for predicting drug outcomes, 

suggesting that PGx traits are complex and polygenic basis may be involved.  The statistical 

significance of these variants are also low p<0.05. This indicate may be functional validation 

of the associated variant or the genes involved may be crucial to decipher the biological 

mechanism by which they show association. Further substantiating that statistical association 

might not always hold relevance in a GWAS finding to direct a true biological association. 

Such future studies may strengthen PGx GWAS.   
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The specificity of the variants ranges from 55% to 98% suggesting a moderate to high 

specificity of these variants in predicting poor response. However, the sensitivity ranges from 

3% to 48%. This shows low to moderate sensitivity of these variants with larger false negative 

results prediction rate.  Although, it is critical to note that all these predictability analysis is 

based on our GWAS data, its cohort specific genotype calling. Identifying these associations 

in an independent, larger cohort would validation these diagnostic tests and that would help us 

identify true markers which can be taken forward for applications in precision medicine.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The overlap of GWAS findings (at SNP and gene level) with PharmGKB, GWAS Catalog, 

EpiGAD and our previous publication(Guin D, 2019a) 

 

Table 5.1 tabulates the diagnostic accuracy and the predictive outcome of each of the 

19 variants. We also performed receiver operating characteristics (ROC) analyses using 

STATA 16.0 (Support) for PGx variants that qualifies a marginal threshold for specificity and 

sensitivity (>30%). The area under the ROC curve (AUCROC) was used as a model quality, for 

the marker with highest AUCROC is the best performing PGx variant. Figure 5.3 shows the 

ROC curve for the 19 SNPs overlapping with the four datasets. The ROC analysis results 

showed a low AUC for most of the overlapping variants which suggest that there can be other 

variables confounding with AED response. In PWE.  
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    Figure 5.2: The ROC for risk allele count on pharmacogenetic SNPs used to measure AUC in PWE. 

 

 

5.4 Discussion 

Understanding the genetic variants in inter-individual drug response, in terms of drug 

efficacy, and safety profiles, may help us in determining the global spectrum of PGx diversity 

across populations. The pharmacological treatment of epilepsy has been largely empirical 

based on trial-and-error altering the dose of administered AED or changing the drug or 

prescribing in combination until seizure remission is achieved (Schmidt, 2014). Therapeutic 

response is a phenotype with continuous distribution. Patients genotyped at the extreme ends 

of this distribution either show full response or no response, while genotyping patients with 

‘in-between’ response cannot be discretely divided into response or non-response group. Thus, 

accurate estimation of effect size comparable to sample size is still challenging. However, 

correlating the relationship between serum drug concentration, seizure control frequency, and 

presence of risk allele, may be useful in determining therapeutic recommendations of AED for 

each patient, thereby individualising treatment.  

This study demonstrate how clinical validity and effect of pharmacogenetic tests may 

vary with population and setting in which test are used. The effect size, commonly estimated 

by ORs with 95% CI range, variant frequencies and drug non-response frequencies often differ 

across populations, for example, according to ethnic background and gender. Also, changes in 

the definition and measurement of the drug related phenotype may impact the observed 
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performance of genetic tests, as the different classification of individuals with and without the 

drug related event may lead to different adverse event frequencies and ORs (Gurwitz D, 2010).  

In order to translate genomic findings for clinical utility, we characterised all the PGx 

evidence available so far with respect to poor response to AED, i.e. recurrent seizures even 

after AED administration to assess which markers have higher potential for clinical 

consideration. This directive analysis highlights that although eight of the nineteen variants 

(42%) are already in clinical use the other variants are promising candidates for future clinical 

applications with further validation. Although it is not yet possible to make general 

recommendations for incorporating this genetic data into decision- making process for AED 

therapy, recent studies are beginning to provide a foundation for future establishment of 

treatment guidelines(Glauser T, 2013). 

While the AUCROC is an important measure for clinical validity it does not tell the whole 

story as it does not differentiate between the accuracy with which the genomic profile predicts 

the true genetic risk of individuals and the accuracy with which true genetic risk predicts drug-

related outcomes, which is not under our control. We believe that the ability to differentiate 

between these components, prediction of genotype and phenotype, is important for 

interpretation of the value of genomic profile, particularly as the use of genomic profiles is 

very much in its infancy at present. Thus, genomic profiles should judge on the basis of their 

analytic validity as predictors of genetic rather than absolute risk. Other factors combined with 

genotypes, like environmental risk factors may be essential in predicting absolute. In this work, 

we provide insight into the genetic interpretation of AUC. Therefore, ROC curves for genomic 

profiles cannot be considered as a sole parameter to estimate diagnostic predictability without 

prior knowledge of the phenotype. 

5.5 Conclusion 

This study attempts to describe the landscape of clinically relevant PGx interactions in 

ASM response, contemplating previous efforts to provide useful information for optimization 

of population-specific PGx applications. In conclusion, 88 commercial PGx marker are known 

related to AED response. Among these nineteen SNPs overlapped with our GWAS findings 

for overall poor response. Assessing the diagnostic predictability of these nineteen markers 

showed moderate accuracy (50-60%). These markers are promising candidates for PGx 

application after appropriate validation and replication. Eight out of these nineteen markers are 
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already in use for drug labelling approved by the FDA. Strengthening the fact that genome-

based markets can be exploited for application in precision medicine in epilepsy treatment. 
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Table 5.1: Diagnostic predictability estimate of the 19 replicated variants with the available literature. 

Chr 
Base 

position 
SNP 

Effect 

Allele 

Non-

Effect 

Allele 
OR (95%CI) P value Function Gene Sensitivity Specificity PPV NPV 

Commercial 

Use 

2 166152389 rs17183814 A G 1.63(1.21-2.19) 0.0006515 exonic SCN2A 0.19 0.87 0.50 0.63  

10 101604207 rs3740066 T C 0.66(0.52-0.84) 0.0009844 exonic ABCC2 0.34 0.59 0.35 0.58  

10 101603781 rs3740067 G C 0.66(0.52-0.84) 0.001088 intronic ABCC2 0.32 0.61 0.35 0.58 
 

7 87160618 rs2032582 T A 2.60(1.32-5.10) 0.00441 exonic ABCB1 0.51 0.55 0.42 0.63  

4 120241902 rs1799883 T C 0.72(0.57-0.92) 0.01003 exonic FABP2 
0.37 0.69 0.43 0.63  

10 96541616 rs4244285 A G 0.73(0.58-0.91) 0.01256 exonic CYP2C19 0.34 0.59 0.35 0.58  

10 101548468 rs4148386 G A 0.74(0.59-0.93) 0.01479 intronic ABCC2 0.32 0.62 0.35 0.58  

8 57643998 rs1014085 C T 0.71(0.54-0.93) 0.01975 intergenic 
LINC00968; 

IMPAD1 

0.26 0.66 0.33 0.58  

1 226026406 rs2234922 G A 1.36(1.05-1.76) 0.02106 exonic EPHX1 
0.26 0.66 0.33 0.58  

10 96695351 rs12782374 A G 0.75(0.59-0.94) 0.02335 intergenic 
CYP2C19; 

CYP2C9 
0.32 0.66 0.38 0.60  

3 10967712 rs2272394 A G 0.51(0.30-0.89) 0.02587 exonic SLC6A11 
0.04 0.98 0.62 0.61  

10 101558634 rs2804398 T A 0.76(0.60-0.95) 0.0298 intronic ABCC2 
0.28 0.65 0.34 0.58  

16 16123048 rs875740 A C 1.29(1.03-1.60) 0.03049 intronic ABCC1 
0.18 0.76 0.33 0.59  

15 75041917 rs762551 C A 0.79(0.64-0.99) 0.04502 intronic CYP1A2 0.25 0.80 0.45 0.62  

10 96697252 rs4918758 T C 1.26(1.02-1.57) 0.04721 intergenic 
CYP2C19; 

CYP2C9 

0.03 0.94 0.26 0.60  

10 96748495 rs1934969 A T 1.25(1.00-1.58) 0.04735 intronic CYP2C9 0.14 0.90 0.47 0.62  

16 84623484 rs1429264 C T 1.26(1.01-1.59) 0.04737 intronic COTL1 
0.48 0.58 0.43 0.63  

The overlapping genetic variants from our GWAS overall GR-PR data with that of PharmGKB, GWAS Catalog, EpiGAD database as well as the published article (Guin D, 

2019a). The markers presently in clinical use are also indicated. 
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6.1 Summary 

Evidence continues to accumulate suggesting that genetic factors are responsible for 

inter-individual variability in clinical response to largely all classes of drugs, including those 

used in epilepsy treatment. Most of the studies performed to date investigated candidate genes 

and their relevance to drug outcomes. GWAS technologies empowers hypothesis-free 

comprehensive screening of genetic variations across the genome. The findings from previous 

GWAS also have had little impact on clinical practice so far. With this, the prime aim of this 

study was framed to elucidate PGx markers has potential to prognose therapeutic phenotypes 

in patients with epilepsy and thus can be used for evidence-based testing for clinical 

applications in predicting drug-specific outcomes prior treatment. Hence, we aim to identify 

such markers specific for our population which can be used for epilepsy patient management 

in India. While majority of the GWAS published comprises the Western population, our study 

was an attempt to identify genetic variants across the genome specific to Indian population. 

Therefore, screening the genome of PWE specific to Indian population with PGx relevance in 

epilepsy, considering all the clinical and demographic variables may signal if true genetic 

associations are possible.  

PGx literature publication is growing at an exponential pace. But we are still far to 

achieve clinical application which emphasises the need to tailor therapeutic options to 

individualize and optimize drug therapy, this merger of genomic-evidence based therapeutic 

administration is rarely used in clinical practice today. For example, considering the US-FDA 

approved genome-based evidence for drug label warnings for toxic ADR or drug-interactions 

or poor drug metabolism, only 133 such drugs are available in the market with 363 gene/variant 

drug labelling information. After approximately six lakh publications on pharmacogenomics, 

we have only 5491 successful RCTs completion. Our first objective in this study was to screen 

the global literature to build a resource of PGx markers of drug response genes for clinical 

implementation. For this we developed a semi-automated approach using and in-house build R 

package called pubmed.mineR, for test-mining the PGx literature. From this literature corpus, 

we aim to extract PGx relationship which is defined as a ‘Disease-Drug-Gene/Variant’ co-

occurrence where a particular drug is prescribed for the treatment of a disease, and if this drug 

related outcomes are studied with any gene or its variants. Such PGx relationships were 

extracted, screened and manually curated based on certain inclusion and exclusion criteria 

followed by their performance evaluation comparing the output of text-mining pipeline with 

other robust databases like OMIM, CTD and PharmGKB to assess the sensitivity and 
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specificity of the disease-drug–gene– polymorphism relationships. We also calculated the 

accuracy of each relationship obtained and compared their occurrence within the three datasets. 

We conducted a validation study by comparing our result with commercially used FDA-

approved drug labelling biomarkers. Finally curating PGx relationships pertaining to 1,753 

disease types, and 666 drugs, comprising 4,132 genes and their 33,942 polymorphisms collated 

from 180,088 publications. A total of 2304 PGx relationships were obtained from our pipeline. 

With the performance (precision = 0.806) with benchmark datasets like PharmGKB (0.904), 

OMIM (0.600), and CTD (0.729), 127 PGx relationships (among the 2304) belonged to the 

FDA list of 362 approved markers, indicating that our semi-automated text mining approach 

may reveal significant PGx information with markers for drug response prediction. In 

conclusion we can state that this pipeline can strengthen retrieval of additional PGx markers 

with robust evidence that can be validated for future PGx-based clinical utility thereby 

narrowing the translational gap from publications to clinical translation. Additionally, from the 

2304 PGx relationships we identified 458 relationships among 11 neurological disease classes 

with 67 drugs prescribed across 235 genes and 443 genetic variants. Keeping in mind the focus 

of this study in epilepsy, we extracted 80 genetic variants across 36 genes associated with 11 

different drugs for epilepsy (Table 6.1). These markers were then validated in the following 

part of the study in north Indian patients with epilepsy prescribed with common first line AEDs. 

 

Table 6.1: PGx relationships obtained from semi-automated approach developed in objective 1 of this study 

 PGx relationships Diseases Drugs Genes PGx variants 

Total 2304 84 383 926 2226 

Neurological 458 11 67 235 443 

Epilepsy/ Seizure 72 - 11 36 80 

 

 

Table 6.2: 80 PGx variants identified using the semi-automated approach developed in objective 1 

Genetic variant Gene Drug Disease 

HLA-B*59:01:01:01 HLA-B acetazolamide Seizures, Epilepsy 

rs3789243 ABCB1 antiepileptics Seizures, Epilepsy 

rs717620 ABCC2 antiepileptics Seizures, Epilepsy 

rs3740066 ABCC2 antiepileptics Seizures, Epilepsy 

rs17183814 SCN2A antiepileptics Seizures, Epilepsy 

rs2304016 SCN2A antiepileptics Seizures, Epilepsy 

rs2804398 ABCC2 antiepileptics Seizures, Epilepsy 
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rs487750 KCNT1 antiepileptics Seizures, Epilepsy 

rs717620 ABCC2 antiepileptics Seizures, Epilepsy 

rs1047891 CPS1 antiepileptics Seizures, Epilepsy 

rs2606345 CYP1A1 antiepileptics Seizures, Epilepsy 

rs1186745 ABCB1 antiepileptics Seizures, Epilepsy 

rs717620 ABCC2 antiepileptics Seizures, Epilepsy 

rs2279020 GABRA1 carbamazepine Seizures, Epilepsy 

rs211037 GABRG2 carbamazepine Seizures, Epilepsy 

HLA-A*02:01:01:01 HLA-A carbamazepine Seizures, Epilepsy 

rs2290732 GABRA1 carbamazepine Seizures, Epilepsy 

rs1051740 EPHX1 carbamazepine Seizures, Epilepsy 

HLA-B*15:11:01 HLA-B carbamazepine Seizures, Epilepsy 

rs2234922 EPHX1 carbamazepine Seizures, Epilepsy 

rs211037 GABRG2 carbamazepine Seizures, Epilepsy 

rs2071197 HNF4A carbamazepine Seizures, Epilepsy 

HLA-B*15:21 HLA-B carbamazepine Seizures, Epilepsy 

rs28365062 UGT2B7 carbamazepine Seizures, Epilepsy 

rs4688040 NR1I2 carbamazepine Seizures, Epilepsy 

rs4828696 GABRA3 carbamazepine Seizures, Epilepsy 

HLA-A*74:01 HLA-A carbamazepine Seizures, Epilepsy 

HLA-DRB1*03:01:01:01 HLA-DRB1 carbamazepine Seizures, Epilepsy 

rs506770 HSPA1A carbamazepine Seizures, Epilepsy 

rs1043620 HSPA1A carbamazepine Seizures, Epilepsy 

rs3130690 HLA-B carbamazepine Seizures, Epilepsy 

rs2687116 CYP3A4 carbamazepine Seizures, Epilepsy 

rs3738046 EPHX1 carbamazepine Seizures, Epilepsy 

rs4646440 CYP3A4 carbamazepine Seizures, Epilepsy 

rs3219151 GABRA6 carbamazepine Seizures, Epilepsy 

rs3740067 ABCC2 carbamazepine Seizures, Epilepsy 

rs2290732 GABRA1 carbamazepine Seizures, Epilepsy 

rs1633021 - carbamazepine Seizures, Epilepsy 

HLA-C*07:04:01 HLA-C carbamazepine Seizures, Epilepsy 

rs2298771 SCN1A clobazam Seizures, Epilepsy 

rs2298771 SCN1A clobazam Seizures, Epilepsy 

rs1057868 POR clobazam Seizures, Epilepsy 

HLA-C*07:18 HLA-C lamotrigine Seizures, Epilepsy 

rs6755571 UGT1A4 lamotrigine Seizures, Epilepsy 

HLA-A*68:01:01:01 HLA-A lamotrigine Seizures, Epilepsy 

HLA-A*23:01:01 HLA-A lamotrigine Seizures, Epilepsy 

rs6755571 UGT1A4 lamotrigine Seizures, Epilepsy 

rs2011425 UGT1A4 lamotrigine Seizures, Epilepsy 

rs41291556 CYP2C19 mephenytoin Seizures, Epilepsy 

rs370803989 CYP2C19 mephenytoin Seizures, Epilepsy 

rs3758581 CYP2C19 mephenytoin Seizures, Epilepsy 

rs55948420 CYP2C19 mephenytoin Seizures, Epilepsy 

HLA-B*27:09 HLA-B oxcarbazepine Seizures, Epilepsy 

HLA-DRB1*04:03:01 HLA-DRB1 oxcarbazepine Seizures, Epilepsy 

HLA-A*24:20 HLA-A phenobarbital Seizures, Epilepsy 

HLA-B*56:02 HLA-B phenytoin Seizures, Epilepsy 

rs12248560 CYP2C9 phenytoin Seizures, Epilepsy 

rs3758581 CYP2C9 phenytoin Seizures, Epilepsy 
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rs774607211 CYP2C9 phenytoin Seizures, Epilepsy 

rs71486745 CYP2C9 phenytoin Seizures, Epilepsy 

rs7900194 CYP2C9 phenytoin Seizures, Epilepsy 

rs544027339 CYP2C9 phenytoin Seizures, Epilepsy 

HLA-B*15:13:01 HLA-B phenytoin Seizures, Epilepsy 

HLA-DRB1*16:02:01 HLA-DRB1 phenytoin Seizures, Epilepsy 

rs2832407 GRIK1 topiramate Seizures, Epilepsy 

rs2396185 INSR topiramate Seizures, Epilepsy 

rs2832407 GRIK1 topiramate Seizures, Epilepsy 

rs4984241 CA12 topiramate Seizures, Epilepsy 

rs1731017 ABAT valproic acid Seizures, Epilepsy 

rs10445704 UGT1A6 valproic acid Seizures, Epilepsy 

rs6759892 UGT1A6 valproic acid Seizures, Epilepsy 

rs13015720 UGT1A6 valproic acid Seizures, Epilepsy 

rs12623271 UGT1A6 valproic acid Seizures, Epilepsy 

rs2307441 POLG valproic acid Seizures, Epilepsy 

rs3816877 APEH valproic acid Seizures, Epilepsy 

rs226957 XBP1 valproic acid Seizures, Epilepsy 

rs28898617 UGT1A6 valproic acid Seizures, Epilepsy 

rs6731242 UGT1A10 valproic acid Seizures, Epilepsy 

rs1799883 FABP2 valproic acid Seizures, Epilepsy 

rs1731017 ABAT valproic acid Seizures, Epilepsy 

 

Pharmacogenomics bear the potential to guide the choice of most suitable AED for the 

treatment of epilepsy subtype considering the other factors like age, sex, seizure type, onset 

age, co-morbidities, imaging patterns and others [Löscher et al., 2009]. However, for 

epilepsies, reproducible PGx findings are limited to cutaneous ADR caused by aromatic AEDs 

[(Chung et al., 2004; McCormack et al., 2011; McCormack et al., 2018)]. Neurologists and 

clinicians are still keen and striving for robust genetic markers which can help them make better 

choices prior AED administration, and also if such markers can prognose patients with 

intractable epilepsy prior treatment initiation. The primary a-priori hypothesis of this study was 

that common polymorphisms would be associated with poor response to AED. Therefore, 

assessed the role of common genetic variants for drug response to commonly prescribed AEDs 

monotherapy using a GWAS approach in a cohort of 789 individuals from North India with 

detailed clinical and demographic profiling. The patients were followed-up at different time 

interval till 12th month to evaluate their change in seizure frequency after respective AED 

therapy. All the patients were broadly classified into- “No-seizure or Good responder” if they 

remained seizure free in the previous 10 months of the study duration, and “Recurrent-seizures 

or Poor responder” groups if they had one or more seizures during the same period. In our 
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cohort, we obtained the highest poor response rate to be in patients on PHT (40.99%) and 

lowest in that on VPA (35.12%). 

 

For the GWAS analysis we used a commercial genome-wide genotyping chip called 

Illumina Infinium GSA- 34-v2.0 with psych customization. After following several QC steps 

to exclude poor quality samples and SNPs and performing genome-wide imputation 

considering 1000G SAS population as reference, we performed genetic association assuming 

additive genetic model using logistic regression with age, sex and PC1, PC2 as covariates. 

Likewise, we performed logistic regression using the same covariates to evaluate the 

association of each SNP for each drug type, Phenytoin, Carbamazepine, and Valproic acid. 

Functionally annotation of the summary statistics was additionally performed to deduce 

biological relevance of the SNPs/ genomic loci with respect to the phenotype. Annotations 

were done for SNP-based and gene-based analysis, with annotations including the ANNOVAR 

categories, CADD, and RegulomeDB scores. Tissue specific gene set enrichment and GO 

analysis were performed to identify top functions for each group. Other biological evidence for 

genotype specific tissue-wise expression was obtained from GTEx v8 and 15-core chromatin 

state for regulatory potential of non-coding variants. After quality control 691 samples and 

2174963 imputed genetic variants remained for statistical analysis. We only considered 

autosomal SNPs in our analyses. Although we did not observe any GWAS significant (p < 5 × 

10-8) loci for any of the groups, several crossed the suggestive loci (p < 5 × 10-5). In the GWAS 

for overall response, we observed five SNPs (rs6033642, rs970635, rs4891466, rs76487654, 

rs1037515723) that crossed the suggestive p value threshold (Table 6.3) with various eQTL 

evidence in different brain. The most significant function GO analysis revealed regulation of 

potassium ion transmembrane transport with highest fold enrichment (p < 1.0 x 10-3). In PHT 

poor response group, one SNP crossed the suggestive threshold, rs10134329, which is an 

intronic variant in TTYH3 gene (Table 6.3). This gene family are known to form Ca2+ and 

regulating anion channels with potential role in cell adhesion, migration, and developmental 

signalling. According to BRAINEAC data, this SNP show differential expression in brain 

tissues. This variant is predicted to be present in the strong transcription site (Tx) in most of 

the brain tissues. The tissue expression analysis supports highest differential expression in 

Brain cerebellar hemisphere and cerebellum. The top GO term was neuron recognition, with 

60 fold enrichment (p< 0.01). For CBZ poor response, the highest GWAS signal for rs4659128 

which is an intronic variant in TBX15 gene (Table 6.3). These are a class of transcription 

factors that are known to regulate a variety of developmental processes. The most significant 



107 

 

curated GO biological process in this group is intracellular signal transduction (p=0.001). The 

top genomic loci associated with VPA poor response is an intronic SNP (rs11569839/ 

TNFRSF8) (Table 6.3). This gene belongs to the TNF receptor superfamily, predicted to 

enable transmembrane signalling receptor activity by positive regulation of NF-kappa β 

transcription factor activity, differentially regulating gene expression in brain issues. 

Interestingly, this variant is correlated with regulation of one of the most important DME or 

AED target, MTHFR (p=0.0079) and MTOR (p= 0.043) in temporal cortex and MTHFR in 

cerebellum (p=0.039). This variant is putatively lying in Tx/Wk or Enhancer region in heart 

and muscle tissues.  The most important function carried out by the associated genes of this 

group is involved in layer formation in cerebral cortex (p= 3.74 x10-5). 

Summarising the GWAS findings, our study is the first GWAS investigating poor 

response to AEDs in South Asian population, particularly India. We can say that though our 

study did not reveal strong genetic association with large effect size contributing to genetic 

variance of poor response to AED treatment possibly due to limited sample size or suggesting 

that drug response is a complex trait where multiple loci with small effect size may be 

associated with it. Thus, our findings should not be considered causal, rather regions of top 

genomic loci can be important for drug action in different brain tissues in epilepsy. However, 

interestingly, the top associated loci either regulate other genes that are involved in ADME of 

AEDs or carry out crucial brain functions or they are differentially expressed in during seizure 

recurrence. Additionally, GO analysis results showed the highest fold enrichment for functions 

like regulation of K+ ion transmembrane transport, neuron development, brain development, 

voltage-gated Ca2+ channel complex, neuron recognition, and so on. These functions are crucial 

molecular processes carried out during the action of AEDs thereby reducing seizure 

occurrence. Functional validation of such genes in future may shed light into the molecular 

mechanistic insights related to AED response.     

 

Table 6.3: Genome-wide association study lead SNPs (p ≤ 1x10-5) associated with response to respective AED or overall 

response 

rsID Chr Pos 

Non 

effect 

allele 

Effect 

allele 
MAF OR (95%CI) Function 

Adjusted p 

value 
Genes 

GR_PR_Overall 

rs6033642 20 13199755 G C 0.208 1.98(1.50-2.60) intergenic 1.185x 10-6 SPTLC3;ISM1 

rs970635 14 40123072 T C 0.309 1.73(1.37-2.18) intergenic 3.975 x 10-6 FBXO33;LINC02315 

rs4891466 18 70017821 T C 0.263 1.78(1.38-2.29) intergenic 4.072 x 10-6 LINC01899;CBLN2 
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rs76487654 10 97262755 A AACAC 0.2955 1.74(1.37-2.2) intronic 4.829 x 10-6 SORBS1 

rs1037515723 6 164059731 C CTT 0.4724 1.67(1.33-2.07) intergenic 4.94 x 10-5 QKI;LOC102724152 

GR_PR_PHT 

rs6461508 7 2696940 C T 0.3078 0.23(0.17-0.46) intronic 1.00 x 10-5 TTYH3 

GR_PR_CBZ 

rs4659128 1 119464710 C T 0.1442 4.82(2.64-8.79) intronic 2.033 x 10-7 TBX15 

rs543063 2 85175660 TA T 0.4131 0.40(0.27-0.58) intergenic 3.25 x 10-6 KCMF1 

rs73085150 7 22532638 G C 0.1851 3.50(2.05-5.96) intronic 4.48 x 10-6 STEAP1B 

rs201566762 11 74068812 AG A 0.4284 0.40(0.27-0.60) intronic 5.106 x 10-6 PGM2L1 

rs6584298 10 101364049 C T 0.3395 0.36(0.23-0.55) intergenic 6.848 x 10-6 NKX2-3;SLC25A28 

GR_PR_VPA 

rs933406127 1 12157881 G A 0.1534 3.72(2.04-6.79) intronic 
0.00000949

8 
TNFRSF8 

Chr: chromosome, Pos: position, MAF: minor allele frequency, OR: odds ratio, CI: confidence interval, Top loci and their 

annotations including SNP position (GRCh37/hg19 assembly) and gene for genic markers. For SNPs in linkage disequilibrium, 

only the SNP with the lowest p-value are depicted. Nearby genes are annotated by ANNOVAR. OR is calculated with respect to 

effect allele. Adjusted p value is calculated by logistic regression using age, sex PC1, PC2 as covariates for binary response trait. 

 

Lastly, in this study we aimed to identify if the associated variants overlap with that of the 

evidence from available literature including the 80 pharmacogenetic variants identified from 

objective 1. A strong association is essential but not always sufficient condition to ensure the 

accuracy of estimating the accuracy of diagnosis. Thus, it is crucial to evaluate the diagnostic 

ability to correctly identify or predict an outcome of interest, which, in pharmacogenetics, 

indicates the ability of the test to predict poor response or lack of treatment efficacy. We 

performed a replication analysis where we obtained pharmacogenomic data predicting poor 

response to anti-epileptic drugs from four different data sources- PharmGKB, GWAS Catalog, 

EpiGAD and our previous published article from objective 1(Guin D, 2019a). We compared 

our results obtained from our high throughput genome analysis for overall poor response 

predicting to prescribed AEDSs, we found an overlap of 19 SNPs as enlisted in Table 5. We 

then estimated the diagnostic accuracy of these markers to identify if they qualify to be used 

for clinical applications to predict poor response to AEDS. These markers which sufficient 

efficiency may be beneficial for population specific diagnostic applications although it requires 

replication in independent cohort as well. Additionally, we identified 88 PGx variants from the 

literature which are approved by FDA, CPIC, SwissMedic, EMA and others and are currently 

used for commercial purposes. These are overlapping with the data obtained from the different 

sources in literature. We observed of the 19 SNPs, 8 are already in commercial use. Assessing 

the diagnostic predictability of these 19 markers showed moderate accuracy (50-60%). 

Although, these markers are promising candidates for PGx application after appropriate 

validation and replication, suggesting that although they cannot be solely considered for 
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predicting response outcomes, other clinical or biochemical variables can improve the 

diagnostic accuracy. Eight out of these 19 markers are already in use for drug labelling 

approved by the FDA. Strengthening the fact that genome-based markets can be exploited for 

application in precision medicine in epilepsy treatment. 

6.2 Future Direction 

GWAS findings are no endpoint results which can be used readily at clinical settings. 

Several future perspectives can strengthen the results. Firstly, GWAS findings from our study 

require replication in an independent patient cohort as well as functional characterization of the 

genetic variations identified are still required to assess the biological relevance of the associated 

genes in modulating the risk of poor response to AED therapy. If these genes are regulating 

other genes which are involved in the ADME or mode of action of AEDs or if other secondary 

signalling molecules are triggered by these genes and how the differential regulation of these 

genes in specific brain tissues needs to be addressed to decipher the exact biological 

mechanisms behind the observed associations. Secondly, combining studies or homogenous 

larger data from publically available biobanks are powerful statistical approach to gain power 

in statistical analysis. Thirdly, identifying the polygenic basis of drug response from GWAS 

data in one of the new avenue to be explored in PGx studies. And lastly, association studies 

targeted to identify rare variants and structural variants can be crucial to assess the true 

biological function in PGx response. 

6.3 Conclusion 

Recent advances hold promise that pharmacogenomics will positively impact treatment 

for any epilepsy patient in the near future, towards implementation of an evidenced-based 

strategy for improving the use of AEDs, thereby providing a cornerstone for precision 

medicine. Thus, we identified 2304 PGx relationships pertaining to 1753 disease types and 666 

drugs. Our semi-automated text mining pipeline can be exploited to generate PGx relationships 

published for medications administered among different types of diseases. Thus, apply broadly 

to a variety of diseases and their respective drugs administered. On comparative analysis with 

currently used FDA approved PGx drug label biomarkers commercially available, a 68% 

overlap (127 markers) of our approach confirms the accuracy of our approach and demonstrates 

that these text-mined results are potentially useful for clinical value addition and widening the 

spectrum of clinical curation and improving therapeutic services. Further our GWAS study on 

AEDs response in an Indian cohort for individual AEDs response did not reveal any genome-
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wide significant association for drug response in any of the groups, we identified several 

suggestive loci. Future similar studies should attempt to reproduce our findings, apart from the 

GWAS threshold (p < 5 x 10-8). Our study mainly explored the common variants, future 

hypothesis-driven research focusing on rare or structural variants, similar to such studies may 

provide clues towards improving AEDs treatment outcome. More studies with similar study 

design are required to replicate the findings and functional assays to elucidate the role of 

common variants in future analysis. Lastly, on overlapping findings from objective 1 and 2, 88 

commercial PGx marker are known related to AED response. Among these 19 SNPs 

overlapped with our GWAS findings for overall poor response. Assessing the diagnostic 

predictability of these 19 markers showed moderate accuracy (50-60%). These markers are 

promising candidates for PGx application after appropriate validation and replication. Eight 

out of these 19 markers are already in use for drug labelling approved by the FDA. 

Strengthening the fact that genome-based markets can be exploited for application in precision 

medicine in epilepsy treatment. 
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