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Abstract

W ITH the growing cognizance of environmental concerns and global warm-

ing related to communication technologies, researchers have been seeking

some solutions to minimize the consumption of energy in the telecommunication indus-

try. There is a remarkable advancement in mobile communication from simple voice-

based devices to ubiquitous data-hungry smart phones. The telecommunication indus-

try expressions a serious energy consumption challenge. The existing static spectrum

allocation-based technologies are not in a position to fulfill this extra spectrum require-

ment and handle this future traffic load. This volatile evolution of global traffic data

urges research attention globally and can be handled by future cognitive radio networks

(CRNs). This directed to the development of the idea of inclusion of CR technology

with green networking. The Green Cognitive Radio Networks (GCRNs) are able to re-

move this limitation related to spectrum scarcity. The application of CR technology will

be utilized to make the green (radiation free) environment in order to increase the spec-

trum resource opportunities available for next generation (6G) networking. We analyse

that the energy- efficient green communication and seamless networking are very im-

portant pillars of smart city construction, and connect the different essential elements

of smart cities. Emerging technologies such as green communication, artificial intelli-

gence, cognitive technology, Internet of Things, machine learning and cloud computing

are now being used in a significant manner to convert cities into ”smart cities”.

As a consequence, the main objective of the thesis is to investigate the schemes

to allocate the resources/power efficiently in cognitive radio technology-enabled green

networks to support intelligent telecommunication systems.

To start with, this thesis provides an introduction, subsequently by a overview of

CRNs, spectrum management, energy efficiency measurement and power allocation. A

detailed review of the current literature on the concerned has been presented.
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The first objective of the thesis is to investigate various next generation green wire-

less communication networking techniques, with consideration of energy-efficient trans-

mission. The futuristic technologies like cognitive radio, carrier aggregation, Terahertz

communication, Internet of Things (IoT), massive MIMO (multiple-input multiple-output)

and mm wavelength are briefly reviewed to prepare for advancing recent research con-

tributions. It is followed by a discussion on the green CRN architecture and cognitive

cycle. Further, the challenges related to green CRN and spectrum management are also

reviewed.

The second objective examines two proposed channel selection strategies: probability-

based and sensing-based channel selection strategies. The proposed channel selection

methods evenly allocate the CU’s traffic load among various applicant channels. Re-

sults of the work present that in the circumstances of huge traffic, SCSS reduces the

total network time, while in the situation of low traffic, PCSS gives better results. These

observations offer a vital perception in designing of traffic-adaptive channel selection

strategy in the existence of PU’s interruptions and sensing errors. The proposed strate-

gies can minimize the total network time by 60% as compared to non-load balancing

strategy for λcu = 0.05. Next, we calculate the total energy consumption at various op-

erational modes in GCRN. The results indicate that the arrival rate of the CUs and the

time spent on channel scanning affect the energy consumption of the network. The pro-

posed channel selection strategies reduce energy consumption by 75% as compared to

non-load balancing strategy.

The third objective analyzes the benefits of cooperation between SUs for detecting

the PU’s spectrum, through which the rapidity of the network can be improved. Two

cases (having a distinct level of cooperation) have been exploited to reduce the sensing

time. The first one is non-cooperative, in which all SUs independently sense the PU,

and the first user who senses first, informs the presence of the PU to the other SUs via

a central controller. The second is cooperative, in which SUs follow the protocols of

Amplify-and-Forward cooperation to minimize the sensing time. The results show that

the proposed joint cooperation spectrum sensing (JCSS) scheme increases the sensing

probability for a vacant spectrum by as much as 34%. After this, we propose two distinct

spectrum sensing schemes preset spectrum sensing (PSS) and viscous spectrum sensing

(VSS) that presents the energy savings percentage in GCRNs under specific conditions.
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These results conclude that the energy consumed by the user’s contention increases due

to the increase in sensing time. The proposed schemes are better in terms of scalability

because it is not essential to sense all spectrums in these schemes.

The fourth objective has analysed a cooperation-based energy-efficient scheme for

cognitive users in GCRN to improve the energy efficiency of CU. The proposed cooperation-

based energy-aware reward (CEAR) scheme supports CUs to actively cooperate by uti-

lizing temporal and antenna diversity to improve energy efficiency. The proposed CEAR

scheme is compared with other existing schemes, and it is presented that the CEAR

scheme provides up to 28% improvement in energy efficiency. In this work, the optimal

stopping protocol is used for problem formulation, and the backward induction method

is employed for solving the decision problem. This chapter has contributed significant

insight in terms of energy efficiency, spectral efficiency, throughput, and consumed en-

ergy, which motivates the design of future green communications systems.

In the final objective,a real-time learning-based scheme has been proposed to con-

trol transmission power and decrease the overall network power consumption while

supporting QoS for multilayers. The reinforcement learning method takes into account

the influence of cognitive transmitters’ actions on the transmission power policy that

has been chosen. In addition to this, the proposed ROPC scheme is based on the upgra-

dation method for the Q-value. This feature of scheme helps to decrease the state/action

pair and improves convergence speed. The suggested scheme’s performance is proved

by simulation, which shows that it achieves faster convergence and higher EE, SNIR,

and SE than existing schemes.

In the end, the thesis briefs the research objective findings and come up with the

proposal for the future aspect of the research work.
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Chapter 1

Introduction

This chapter briefly explained the overview of the thesis followed by motivation, re-

search gap, objectives and research methodology.

1.1 Motivation

W ITH the growing cognizance of environmental concerns and global warming

related to communication technologies, researchers have been seeking some

solutions to minimize the energy consumption in the telecommunication industry. There

is a remarkable advancement in mobile communication from simple voice-based de-

vices to ubiquitous data-hungry smartphones. The telecommunication industry expres-

sions a serious energy consumption challenge. The existing static spectrum allocation-

based technologies are not in a position to fulfill the extra spectrum requirement and

handle this future traffic load. This volatile evolution of global traffic data urges re-

search attention globally and can be handled by future cognitive radio networks (CRNs).

Thus, CR technology and green networking can be combined for designing of next gen-

eration networks. The Green Cognitive Radio Networks (GCRNs) are able to remove

this limitation related to spectrum scarcity. The application of CR technology will be

utilized to make the green (radiation free) environment in order to increase the spec-

trum resource opportunities available for next generation (5G and beyond) networking.

We analyse that the energy-efficient green communication and seamless networking are

very important pillars of smart city construction. Emerging technologies such as green

communication, artificial intelligence, cognitive technology and Internet of Things are

now being used in a significant manner to convert cities into ”smart cities”.
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1.2 Objectives

The key objective of the thesis is to develop and analyses the schemes to support en-

ergy efficient transmission and management of the spectrum in GCRN to support next

generation (5G and beyond) wireless networks.

To achieve this, the given sub-objectives are framed as follows:

1. To analyse the various energy efficient transmission schemes and develop the im-

proved schemes to solve the issues like traffic imbalance problem, blocking prob-

ability, power management and also improve the energy efficiency for 5G green

cognitive radio network.

2. To propose a scheme based on resource management to solve the traffic imbalance

problem for 5G green cognitive radio network.

3. To develop a scheme based on cooperative cognitive radio which can reduce the

blocking probability and improve the energy efficiency of 5G green cognitive

radio network.

4. To develop a scheme based on heterogeneous network architecture to solve the

issue of adaptive power management for 5G green cognitive radio network.

5. To propose a machine learning based spectrum management scheme for 5G green

cognitive radio network.

1.3 Challenges

1. The surge of EE at a single stage of the communication system might be the

reason for the decline at another stage of the system. For instance, the usage of

a cognitive radio system may decrease the transmission energy by using proper

bandwidth but drain additional power in the process of sensing the spectrum hole

of the second network.

2. A trade-off between EE and QoS.

3. A traffic imbalance (load balancing) problem in heterogeneous networks.
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4. Analysis of spectrum/power allocation issues in GCRN.

5. How to minimize the blocking probability arises due to the resource’s unavail-

ability in the network?

6. What is the minimum and maximum permissible power to the SUs to avoid inter-

ference?

7. A trade-off between flexibility and EE.

1.4 Major Contributions

The major contributions of this thesis are summarized below:

• The futuristic technologies like cognitive radio, carrier aggregation, Terahertz

communication, Internet of Things (IoT), massive MIMO (multiple-input multiple-

output) and mm wavelength are briefly reviewed to prepare for advancing recent

research contributions. This chapter also covers challenges, applications, and re-

search directions for next generation communication system, which contribute

an overview of the active research initiatives in the area of green networks and

encourage future studies and research activities.

• In the direction of next generation network, two channel selection strategies are

proposed with multiuser channel decision framework. In the probability-based

channel selection strategy, optimum distribution probability and busy channel

probability have been derived. These calculations show the distribution of CU’s

traffic load among the various applicant channels. In the sensing-based strat-

egy, the optimum number of applicant channels has been estimated, which helps

to minimize the sensing time. The energy consumption is analysed in a GCRN

for various operational modes like transmission mode, collision mode, receiv-

ing mode, sleep mode, channel sensing mode, and propose a channel scanning

scheme, with the consideration of various parameters (like energy consumption,

scanning time, and the number of PUs in a channel) as a metric.

• The advantages of cooperative communication are introduced, and a joint coop-

eration spectrum sensing (JCSS) scheme is proposed for GCRNs. The amplitude-
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and-forward (AF) cooperative technique and the network’s inherent asymmetry

property are considered, which results in faster spectrum sensing with coopera-

tion. The total sensing time and rapidity gain under the proposed cooperation

scheme is investigated. The results show a significant reduction in sensing time

for PU’s spectrum. Based on energy harvesting, two spectrum sensing schemes

are proposed named as preset spectrum sensing (PSS) and viscous spectrum sens-

ing (VSS). These schemes are based on different parameters (i.e., energy-saving

percentage and number of contending users in any spectrum).

• A novel cooperation-based energy-aware reward (CEAR) scheme has been pro-

posed for CUs that takes antennae diversity and temporal diversity into account

for improving the EE in CRNs. In antenna diversity, the PU that one has the least

traffic load is selected by the CU. In temporal diversity, the CUs select a specific

time slot when an immediate incentive is higher than anticipated in terms of EE.

Two different cases have been considered for the analysis of the proposed CEAR

scheme. In the first case, the CUs contain a fixed amount of packets to transmit.

In second, the CUs contain continuously new incoming packets throughout the

data transmission and decision process. In this case, the data transmission time

limit is considered dynamic in nature and depends on the CUs’ buffer overflow

probability. For both cases, the optimal stopping protocol is implemented for

decision problem analysis, and the backward induction method is exploited for

determining the optimal solution.

• A reinforcement learning-based optimal power control (ROPC) scheme is pro-

posed to address the complex power-related issues in multilayer GCRNs. The

real-time learning feature is exploited in the proposed ROPC scheme. Real-time

learning requires complete knowledge about all the learning agents present in

dynamic environment, and this process is challenging in the context of the hetero-

geneous environment.In a heterogeneous CRN environment, each cognitive trans-

mitter (CT) updates its learning information by interacting with the environment

and exploiting its previous experience, without cooperating with other CTs. This

feature of the proposed scheme minimizes the cooperation overhead and helps to

design the energy-efficient GCRNs. A concise representation of the Q-values is

considered to minimize the network’s computational complexity.
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1.5 Thesis Outline

The thesis is outlined as follows:

Chapter 2 (Literature Review) discussed about available literature and background

related to advanced wireless networks. At the beginning, a brief idea about CR technol-

ogy is explained. This chapter also provides the key concept of various next generation

green wireless communication networking techniques, with consideration of energy-

efficient transmission. The futuristic technologies like cognitive radio, carrier aggre-

gation, Terahertz communication, Internet of Things (IoT), massive MIMO (multiple-

input multiple-output) and mm wavelength are briefly reviewed to prepare for advancing

recent research contributions. Further, the challenges related to green CRN and spec-

trum management are also reviewed.

Chapter 3, (Resource Management for Traffic Imbalance Problem in Green

Cognitive Radio Network) deals with the unbalanced traffic load of CUs (when mul-

tiple CUs try to approach the same channel and their time and energy are wasted due

to congestion). The channel decision model is proposed that is based on queuing pri-

ority for two different channel selection strategies, first probability-based channel se-

lection strategy (PCSS) and second sensing-based channel selection strategy (SCSS).

This model helps to calculate the optimum channel selection probability in PCSS and

the optimum number of channels in the SCSS. By these parameters, the total network

time of CUs can be minimized, and their traffic load can be distributed among multiple

applicant channels. The proposed strategies minimize the total network time over 60%

and energy consumption over 75% compared to the non-load balancing strategy.

Chapter 4 (Cooperation and Energy Harvesting based Spectrum Sensing Schemes

for Green Cognitive Radio Networks) deals with multilayer heterogeneous GCRNs.

The secondary users (micro users and femto users) are exploited the resources of pri-

mary users (macro users) in an underlay manner. In a multilayer heterogeneous network,

efficient power control with improved quality of service (QoS) is a critical challenge. In

this work total sensing time and rapidity gain under the proposed cooperation scheme is

investigated. The results show a significant reduction in sensing time for PU’s spectrum.

Chapter 5 (CEAR: A Cooperation based Energy Aware Reward Scheme for

Next Generation Green Cognitive Radio Networks) studies a proposed CEAR scheme
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that is based on the antenna and temporal diversity of the primary users (PUs). For pro-

viding the service to the PUs, the users of another network called cognitive users (CUs)

work as a cooperative relay node, and, in return, they get more spectrum access oppor-

tunities as a reward from the primary network. The CUs with delay-tolerant data pack-

ets take a cooperative decision by recognizing the availability and traffic load of PUs,

channel state information, and data transmission requirements. We utilized the optimal

stopping protocol for solving the decision-making problem and use the backward induc-

tion method to obtain the optimal cooperative solution. The proposed CEAR scheme is

more energy-efficient for ultra-dense network deployment because results show that the

CUs EE, spectral efficiency (SE), and throughput improved with the increase of PUs.

Chapter 6 (Machine Learning based Optimal Power Control Scheme for Next

Generation Multi-layer Green Cognitive Radio Networks) is the final contributory

chapter that deals with a real-time learning-based scheme to control transmission power

and decrease the overall network power consumption while supporting QoS for multi-

layers. The reinforcement learning method takes into account the influence of cognitive

transmitters’ actions on the transmission power policy that has been chosen. In addition

to this, the proposed ROPC scheme is based on the upgradation method for the Q-value.

This feature of scheme helps to decrease the state/action pair and improves convergence

speed. The suggested scheme’s performance is proved by simulation, which shows that

it achieves faster convergence and higher EE, SNIR, and SE than existing schemes.

The final chapter 7 (Conclusions and Future Direction) highlights the important

conclusions drawn from these research objectives and gives the details of future scope

of work.

1.6 Conclusions

In this chapter, a brief summary of the thesis followed by motivation, research gaps,

challenges, objectives, contributions and research methodology are presented. In this

thesis, green network is designed and analyzed to support intelligent telecommunication

system for next generation wireless networks. The main results obtained in the work

and how they contribute to the designing of energy efficient green communication are

discussed.
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Chapter 2

Literature Review

IN the last few years, the mobile telecommunication industry has increased expo-

nentially. The call for wireless applications is growing because of the astronomical

boom of mobile subscribers, multimedia applications, and data applications. In this the-

sis, the word green cognitive radio (CR) communication is used to express an efficient

method of the congregation of energy-efficient technologies at different levels to reduce

the unfavorable effects of technology on the environment. Globally, by the year 2022,

the internet user population will be increased from 45.3% to 59.7% [1]. In addition to

this, Fig. 2.1 depicts the growth rate of different parameters from 2018 to 2025 [2]. The

nuts and bolts of a telecommunication network are a mobile node, access network and a

backbone core network. Base Stations (BSs) are the key component of the radio access

network that connects mobile phone devices to a core network. So, with a growth rate

in the number of mobile subscribers per day, the growth rate of BSs is also increasing.

According to [3] it is expected that during period 2017−2021, the BS market of Long

Term Evaluation (LTE) system will increase by more than 17 percent compound annual

growth rate (CAGR).

2.1 Green Communication Networks

Available literature work centering on improving both quality of service (QoS) and qual-

ity of experience (QoE), while ignoring the increased demand for energy for the mobile

communication system. This increasing energy demand has motivated us to work on the

subject of cognitive-based green communication with the objective of energy-efficient
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Figure 2.1: Breakthrough in the field of telecommunication industry

wireless communication. Based on our studies, we found two major goals of the green

communication network. The first is to reduce the CO2 emission from the system and

second is to save energy by reducing transmitting power which will lead to reducing the

operational expenditures (OPEX). The off-grid sites (to serve in remote areas) are the

main cause of CO2 emission. Mostly diesel-power generators are required for working

on such sites. Presently, as the number of mobile subscribers is increasing, nearly 43%

of the total CO2 emission is contributed by the mobile communication system and this

value will increase by 51% of the total in 2020 [4]. Due to the different segments of

the mobile communication system, the CO2 level is continuously increasing in the at-

mosphere. The electrical energy consumption by the ICT will be increased from 611

to 1,752 Tera-watt hours by 2030 [5]. This rapid energy consumption rate by wireless

communication networks will cause a serious problem in the future if no steps are taken

to change the existing trend.

The telecommunication industry expressions a serious energy consumption chal-

lenge. This industry is growing rapidly to serve the smartphone user anywhere, anytime

and anyone. The simple reason is that every human is using dual a SIM card enabled

phone. At the end of 2019, in the Asia Pacific there were 2.9 billion (nearly the world’s

half population) mobile subscribers [6]. India and China are the most populous coun-

tries, which jointly covers nearly two-thirds of total mobile users. Nearly, 71.9 million

mobile users are expected to be added in China by 2025, which is nearly 1.2 billion

8



(85%) of the total population [7]. On the other hand, in India, it is expected to be nearly

207.9 million (22% of total Asia Pacific) by 2025. So, this makes a remarkable improve-

ment in digital literacy and advanced mobile phones. In 2018, Indonesia was developed

as a third-largest mobile phone market in the world (behind India and China) [8]. The

smartphone adoption rate is to be expected very high (nearly 90% of total connections)

for Indonesia by the end of 2025. Fig. 2.2 depicts the technology penetration of the

four fastest-growing countries. Fig shows the percentage of the population which was

using the different wireless generation (2G, 3G, 4G and 5G) in 2018 and how much this

percentage value will be changed when we will reach 2025. In China and Japan, the 2G

population will completely remove till 2025, on the other hand, some populations will

present in India and Indonesia.
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Figure 2.2: Technology penetration of different countries from year 2018 to 2025
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Figure 2.3: Current global scenario of data hungry devices

In addition to this, Fig. 2.3a represents the addition of new mobile users globally

till June 2019 in million [9] and Fig. 2.3b shows the mobile broadband adoption rate

for different countries from 2015 to 2020. The wireless communication networks have

experienced a prodigious evolution from 1G to 5G networks. Nowadays 4G is effec-

tively in use and 5G on the way of testing and launching. Recently, during the testing of

the 5G network, 100s of birds dropped from the sky at Hague in the Netherlands [10].

The 5G antenna was situated at the Dutch railway station, to examine how large the 5G

range was. At once, birds fell dead from the sky and the ducks that were swimming in

nearby ponds seemed to respond very strangely. To escape from radiation, they were

instantaneously inserting their heads inside water whereas some flew away. If they all

had a healthy body, healthy blood, no effect of any virus and bacterial infection then the

reasonable explanation behind this incident is using of microwaves in 5G having a seri-

ous impact on birds’ hearts. It highly resonates with erratic pulsed microwaves (millions

per second) which harm body organs [11]. Table 2.1 represents the upgradation of the

various generation of wireless networks. This table reflects different characteristics, to

discuss a tangible contrast among the generations of wireless networks. In 5G a drastic

growth in the CO2 emissions is presented.

To overcome this problem a pathway is designed in Fig. 2.4 which represents green-

house gas (GHG) deductions across different sectors to reach 2030. Fig. 2.4 shows that

the amount of CO2 was present almost 440 MMT in 2015 and the target is to reduce this

value to 261 MMT till 2030. To curb such enormous emissions, various technologies

have been discussed in this work.
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Table 2.1: Upgradation and contrast among various generations of wireless networks
in green communication aspect

Technology 1G 2G 3G 4G 5G

Frequency band 800 Mhz 900/1800
Mhz

1900/2100
Mhz

1.8/2.6 Ghz 30-300 Ghz

Power density
(W att/meter2)

4 4.5-9 4.5-10 10 10

Power level of
MS

Low GSM 900:35
dBm GSM
1800:22-37
dBm

20-32 dBm 23 dBm High

Power level of
BS

Low Macro 46
dBm, Micro
13-30 dBm

32-38 dBm 44-49 dBm High

CO2 emission 23 Mt CO2 30 Mt CO2 85 Mt CO2 171 Mt CO2 236 Mt CO2

Carbon foot-
print per mobile

10kg 15kg 20kg 24kg 30kg

Date rate 2.4 Kbps 100 Kbps 2.4-30 Mbps 100-200
Mbps

10-50 Gbps

Access technol-
ogy

AMPS GSM-GPRS WCDMA,
UMTS

LTE-A,
WiMAX

BDMA,
FBMC

Spectral effi-
ciency (bps/Hz)

0.46 1.4 2.7 4.27 10.6

MIMO/Massive
MIMO

SISO SISO SIMO, MISO MIMO Massive
MIMO

WLAN Tech-
nology

802.11 802.11b 802.11ag,
802.11n

802.11ac,
802.11an

802.11ad

BS density per
square km

Very low Low 4-5 BSs 8-10 BSs 40-50 BSs

OPEX - - Low High High

SAR value - - High Higher Expected to
reduce

Used antenna Low fre-
quency
antenna

High fre-
quency
antenna

High gain and
clip antenna

Slot and Patch
antenna

Phased array
antennas

2.1.1 Preliminaries

As we know, the cellular system is the largest component of ICT sector. So, energy

efficiency measurement (EEM) statistics have encouraged both academia and industry

researchers to evolve methods to cut down the energy expenditure of cellular system and
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Figure 2.4: Aim to reduce GHG across various sectors to reach 2030

make the wireless network system greener. The primary goals of energy-aware green

CRNs are:

• Improving EE.

• Improvement in the tradeoff between energy-saving and seamless connectivity.

• Reducing unnecessary GHG emission.

• Proper utilization of resources.

2.1.1.1 Energy Efficiency Measurement (EEM)

The number of BSs are continuously increasing to provide better QoE expected by mo-

bile users. Thus, energy consumption will also increase proportionally. Fig. 2.5 rep-

resents that in a wireless communication network BS consumes the maximum amount

of energy as compared to the other component of the network [12]. Nowadays this is a

very crucial subject for research to find out some effective methods to minimize energy

consumption by fixed and dynamic components of BS while maintaining the QoS. The

internal components like digital signal processors, power amplifier (PA), feeder cables

and cooling system of BS are considered under the fixed components while network

planning, deployment and management based on proper load balancing are under the

dynamic components. For the conversion of a base station into a green base station,

several schemes have been suggested in [13]. A game theory-based scheme considers
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Figure 2.5: Energy consumption w.r.t. different components of communication system

heterogeneous networks for the reduction of power consumption at the base station level

is discussed in [14]. A novel network architecture having energy-efficient techniques

based on the physical layer and cross-layer of cellular networks is represented in [15].

Different research activities and projects based on energy- efficient communication has

been considered in [16].

The various components in wireless networks consume different amounts of en-

ergy. So, for calculating and comparing the amount of energy which is consumed by

the various components and a communication system as a whole, EE metrics are used.

Researchers have been proposed different levels (facility, component, and system) for

measuring EE metrics [17]. The high-level systems such as data centers are considered

under the facility level [18]. Presently, with the upsurge in research activities on green

energy efficient wireless networks, some standard organizations like European Techni-

cal Standards Institute (ETSI) and Alliance for Telecommunications Industry Solutions

(ATIS) are making efforts to describe diverse EE metrics for wireless networks. The EE

metrics consist of three major metrics as follows:

2.1.1.2 Energy Efficiency

EE is a very essential metric to measure in green wireless CRN [19]. This can be

obtained by dividing network output energy to network input energy consumption [20]
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and expressed as

η =
Network output energy

Network input energy consumption
(2.1)

here η represent EE. The best EE can be achieved by minimizing total power consump-

tion and maximizing the data rate.

2.1.1.3 Secrecy Energy Efficiency

This is another important metric consider under the system level. The high value of this

metric provides better security in the CRN [21] [22]. This is given by

SEE =
Secrecy rate

Power consumption at network
(2.2)

here secrecy rate (SR) is defined as the difference of data transmission rate of the

transmitter-receiver link to the transmitter-eavesdropper link and SEE represents secrecy

energy efficiency.

2.1.1.4 Area Energy Efficiency

The AEE metric is considering for a dense deployment [14]. This can be obtained by

dividing overall energy efficiency to the macro cell area and given by

AEE =
Energy efficiency

Total area of macrocell
(2.3)

here AEE is area energy efficiency.

The readers can discover different taxonomy of green communication metrics which

are summarized in Table 2.2.

2.1.2 Challenges and Existing Practical Implementations of Green

Communication Networks

The framework to enhance the EE of telecommunication the system has a holistic view

which considers possibly all facts and figures of an ecosystem for green communication.

The several challenges related to green communication are listed as:-

• For estimating any energy efficient solution, the required energy for manufactur-

ing of a communication system (called embodied energy) has a significant role.
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Table 2.2: Summary for several EE metrics evaluation in green communication net-
works

Level Metric Remark Unit Reference

Facility
level

Power usage
efficiency

It gives the ratio of total power con-
sumption at facility level to the total
power consumption at equipment
level.

PUE ≥1
[23, 24]

Facility
level

Data center ef-
ficiency

Reciprocal of PUE DCE in
percentage

[23]

Element
level

Energy con-
sumption
rating (ECR)

Ratio of energy consumed to the ad-
equate system capacity.

W/Gbps [17]

Element
level

ECR-
weighted
(ECRW)

Evaluated in the similar man-
ner as ECR but energy consump-
tion is in ECRW is calculated as
0.25Ei+0.4Eh+0.35E f here Ei, Eh
and E f represents energy consump-
tion in idle mode, half and full load.

W/Gbps [17]

Access
point level

Energy con-
sumption
rate

Energy used to transmit a piece of
information.

J/bit
[14, 25]

Access
point level

Spectral
efficiency

For a communication system, the
transmitted information rate to a
given frequency

b/s/Hz
[26, 27]

System
level

Power per bit
per area

The average power used in terms
of the average transmission rate and
the coverage area.

W/bps/m2

[28, 29]

System
level

Energy per bit
per unit area

The energy consumed for transfer-
ring the bits for a particular cover-
age area.

J/bit/m2 [24]

System
level

The power
consumed per
unit area

Ratio of power consumed to unit
area

W/km2 [30]

• The surge of EE at a single stage of the communication system might be the

reason for the decline at another stage of the system. For instance, the usage of

a cognitive radio system may decrease the transmission energy by using proper

bandwidth but drain additional power in the process of sensing the spectrum hole

of the second network.
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Figure 2.6: Tradeoff between flexibility and EE

• There should be a respectable trade-off between EE and QoS. Like the aforemen-

tioned usage of BS sleep modes technique, more energy can be saved during off

mode of some cells. But, it is compulsory to stipulate the cell waking time in

advance as well otherwise, the QoS may degrade.

• There should be also a proper trade-off between flexibility and EE which depicts

in Fig. 2.6.

The energy-efficient solution depends on certain guidelines, concepts, parameters,

energy consumption models and considerations. The energy consumption of the telecom-

munication system is load-dependent and implementation-dependent. These are the

challenges for modeling the energy- efficient system. The EE metric for a green telecom-

munication system is generally expressed in the form of performance per unit of energy.

The performance usually measured in terms of efficiency and throughput for the energy-

efficient communication system. Other key challenges for designing the green energy-

efficient system are cross-layer adaptation, system reconfiguration, load balancing, and

multi-domain scheduling. It is necessary to gauge EE from a new perspective for de-

signing and developing novel energy-efficient architecture.

The pathway represented in Fig. 2.7 to implement in the real world for making

communication green is also having several challenges that need to be paid considera-

tion too in this research area. Several challenges, related to green communication for
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next generation networks are represented in Fig. 2.7.
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Figure 2.7: Green communication related challenges

2.2 Related Work for Proposed Objectives

In this section, several traditional and recent advanced energy efficient communica-

tion approaches for future GCRNs (5G and beyond) are considered with their detailed

overview in an informational manner.

2.2.1 Related Work on Different Energy Efficient Transmission Schemes

Various energy-efficient communication approaches are highlighted in a classification

tree as shown in Fig. 2.8. These different approaches are introduced by researches to

handle various inspiring topics allied with GCRNs.

2.2.2 Related Work on Resource and Traffic Management in Cog-

nitive Radio Network

In the literature, the investigations have been concentrated on various energy-related

challenges of CRNs, but they are less focused on analyzing the energy consumption at

different operational modes. In [31], the sensing time of CU is calculated, but with the
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Figure 2.8: A classification tree of different energy efficient communication approaches

consideration that throughout the CU’s transmission, the PU does not resume the chan-

nel. The channel assignment problem in CRN has been investigated via various opti-

mization techniques in [32], but not consider the traffic load balancing of CUs. There

are numerous issues are arisen in the non-load balancing method like, when more than

one CUs approach the same channel then the confliction happens in the channel, the

total network time of the CU is increased, the delay involves in the PU’s transmission,

no proper utilization of resources, etc. In the non-load balancing strategy, the CUs scru-

tinize various parameters for selecting the operating channel such as expected delay

time, data traffic load, channel busy probability, channel idle time, but they avoid the re-

quirement of sharing channels with other CUs. In [33], the authors calculate the energy

consumption during the channel sensing and determine the optimal sensing interval,

through which the throughput of CU’s can be maximized. In [34], a joint optimization-

based technique has been developed for intelligent spectrum allocation. This technique

enhances the CU’s throughput in a heterogeneous network. The frequency and power-

based sensing techniques have been suggested in [35] but, the effects of sensing errors

on CU’s total network time CRN have not been discussed. A reinforcement learning

based energy-efficient channel switching scheme for CUs is proposed in [36]. The au-

thors have been presented a framework that aims to save energy the time of channel

switching. In [37], authors have been focused on spectrum handoff schemes for opti-

mum channel selection, but not consider the green communication aspect. Table 2.3

represents the comparison of various existing load-balancing channel selection strate-
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gies, where ”×” and ”
√

” symbolizes that the proposed schemes ”do not” and ”do”

examine the corresponding characteristic, respectively.

Table 2.3: Comparison of several load-balancing channel selection strategies in CRN

Channel Selection Strategies and Mod-
els

False Alarm
Error

Missed
Detection Error

Multiple
Interruptions

Game theory based Deterministic Pro-
cess [38]

× × ×

Game theory-based M/M/1 Model [39] × ×
√

Two-state Markov Chain Process [40] × × ×

Markov Chain Theory based Model [41] × ×
√

Packet Probability based Bernoulli Pro-
cess [42]

×
√

×

Learning Automata based General Dis-
tribution Approach [43]

√
× ×

Our M/G/1 based Proposed Model
√ √ √

2.2.3 Related Work on Energy Efficient Cooperative Cognitive Ra-

dio Network

Extensive studies are being carried out to maximize the sensing probability and save

energy in GCRNs. We have surveyed various literature focusing on the spectrum sens-

ing aspect of GCRNs. The sensing time of SU has been calculated in [44], but in the

proposed work, there is an assumption that during the SU’s transmission, the PU did

not use the channel. The suggested scheme is based on orthogonal frequency division

multiplexing (OFDM). In [45], authors have discussed the channel sensing technique

but did not analyze the cooperative protocols like DF and AF techniques. In [46], the

authors have estimated the consumption of energy at several channel decision states,

but the energy dissipated in the channel sensing has not been investigated. The work

presented in [38] mainly considers the different coding and modulation techniques for

reducing the power consumption. In [47], a framework is proposed to calculate the en-

ergy consumption in the spectrum sensing process. They have divided the spectrum into

various frequency bands. In [48], the authors proposed a receiver detection approach by

utilizing the oscillator power of the PU.
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In [49], the authors have presented a novel spectrum sensing energy harvesting

(SSEH) scheme that is based on opportunistic relay selection (ORS) protocol. The pro-

posed scheme is exploited cooperative communication for designing the CRNs. In [50],

authors have presented frequency and time domain-based energy harvesting cognitive

radio networks with the multichannel (EH-CRNsM) technique. In the suggested tech-

nique, the SUs consume harvested energy to access licensed subchannels opportunis-

tically. An energy-efficient game-based power allocation (EGPA) scheme is suggested

in [51]. The proposed scheme considers SU clustering and power allocation to improve

the detection of PU’s vacant spectrum in CRNs. In [52], the authors have presented

an auction framework and Stackelberg game-oriented optimal network’s resource selec-

tion (AFSOS) scheme to attain the acceptable interference power constraints and highest

payoff in CRNs. The work presented in [53] suggests a preference relation game (PRG)

scheme using a cooperative coalitional game (CCG) in hybrid NOMA (HNOMA) to

maximize the energy efficiency in CRNs. In [54], authors have presented a network-

assisted networks’ resource selection (NANS) technique to ensure the guaranteed QoS

and maintain mobility in GCRNs.

2.2.4 Related Work on Heterogeneous Green Cognitive Radio Net-

work

In this chapter, we review the current literature based on spectrum management tech-

niques for data communication and differentiate the proposed work from the existing

works. Numerous works on energy-efficient CRNs for dissimilar networking technolo-

gies such as non-orthogonal multiple access (NOMA) assisted networks, ultra-dense

networks, and cloud networks have been analyzed in several aspects. In [55], the au-

thors presented a scheme to minimize the energy consumption of CUs from radio fre-

quency signals. A packet error probability of CRNs is estimated considering the energy

harvesting factor. The energy-harvesting-aided data transmission and channel sensing

schemes are discussed in [56]. The results show that the schemes achieve high detec-

tion probability with sufficient energy harvested from the cognitive relay’s RF signals.

In [57], a multi-objective resource allocation problem is formulated to optimize the SE

and EE in heterogeneous CRNs.

A probability-based dynamic model (PBDM) has been presented in [58], illustrat-
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ing the analytical techniques for average throughput and energy harvesting. In [59],

authors have proposed a novel multichannel protocol for CRNs to harvest the energy.

The suggested protocol depends on the multiple channel states and intelligently selects

whether to enter energy harvesting or data transmission modes. In [60], the authors

have presented a joint optimization problem to maximize the sum rate of D2D users and

cellular. The authors have considered channel assignment, transmission time allocation,

user pairing, and power allocation for the analysis. An energy-efficient game-based

power allocation (EGPA) scheme is suggested in [51]. The proposed scheme considers

secondary user clustering and power allocation to improve the throughput of CRNs. A

power-based pricing algorithm (PBPA) scheme is proposed in [61], which limits the

PU’s interference to acceptable levels and minimizes the computational complexity in

down link CRNs.

2.2.5 Related Work on Different Machine Learning based Spec-

trum Management

In [55], the authors have proposed a power control scheme relying on BS traffic fore-

casting. The outcomes demonstrate the trade-off between energy usage and network

rate with considering the backhaul constraint. Authors in [62], addressed an adaptive

power control strategy based on the game theory technique for reducing the interfer-

ence effect in heterogeneous networks. Markov decision process (MDP) based on a

multi-agent distributed model has been proposed in [63]. This model optimizes the

power control issue in the heterogeneous network. In [64], the authors have presented

a multi-objective-based joint power and admission control (JPAC) optimization tech-

nique. The proposed technique aims to improve throughput of the network and reduce

power consumption in underlay mode of operation in CRNs. In [65], authors proposed

a reinforcement learning-based technique to optimize the sensing probability (SPORL).

The suggested scheme enhances the EE of the system and maintains system coverage

and capacity. A distributed utility function-based power control scheme (DUFPC) has

been proposed in [66] to decrease the transmission power of the femtocell BS. This

work aimed to maximize the utility function via regulating the transmission power of

the femtocell BSs. A modified greedy algorithm (MGA) has been presented in [67]

to mitigate the interference among secondary nodes while maintaining the network ca-
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pacity. In [68], the authors presented a combined optimization algorithm for subcarrier

allocation and power control, which minimizes cross-tier interference and maximizes

the utility function of femtocell and macrocell. In addition to these works, Table 2.4

represents a comparison of existing power control schemes, models and protocols.

Table 2.4: Comparison of existing surveys

Type of ma-
chine learning

Structure Power
con-
trol

Energy
effi-
ciency

Spectral
effi-
ciency

Approach Dynamic
environ-
ment

Ref.

Supervised
learning

SVM Yes No No Design SVM &
DBN based learn-
ing system

Yes
[69]

Reinforcement
learning

Q-
learning

No Yes No Q-learning based
data dissemina-
tion method

Yes
[70]

Supervised
learning

FNN No Yes Yes Taxonomy of
feed forward
neural network

Yes
[71]

Deep-learning Q-
learning

No Yes No Q-learning based
data dissemina-
tion method

Yes
[72]

Unsupervised
Learning

K-
means
cluster-
ing

No Yes Yes Joint genetic al-
gorithm and un-
supervised learn-
ing

Yes
[73]

Supervised
learning

ANN No No No Hierarchical sup-
port vector ma-
chines

Yes
[74]

2.3 Conclusions

This chapter discussed the trends of the telecommunication system in the last decade

which visualize a move towards following energy efficient green communication for the

purpose of designing next-generation (5G and beyond) networks. For each energy effi-

cient technique, an outline of the existing state of the art research, merits, demerits, open

issues, challenges, and possible forward way research direction has been investigated.
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Chapter 3

Resource Management for Traffic

Imbalance Problem in Green Cognitive

Radio Networks

THE trend of minimizing energy consumption in the field of telecommunication

system encourages researchers to look for novel technologies to attain ”Green

communication”. In GCRN, the cognitive user (CUs) can utilize the PU’s channel op-

portunistically until the PU is not present at that particular geographic area and specific

time slot. But, when the PU decides to send the information through the frequency band

utilized by the CU, the CU should immediately leave the frequency band to avert a col-

lision with the PU. The CUs again start the sensing of the vacant channel to complete

their unfinished data transmission, at other channels, or the same channel after the end

of the PU’s communication. This process increases the energy consumption and total

network time of CUs (defined as the entire period starts when the call for information

transmission appears at the network by CU until their entire data transmission). Vari-

ous parameters like multiple spectrum handoffs due to the interruptions of PUs, sensing

errors like false alarm and missed detection, and different data transmission rates and

capacity of the channels affect total network time. These parameters increase the total

network time of CUs, which results in the wastage of network energy and increment in

queue waiting time of other CUs for accessing the network services. So, it is essential

to bring down the effects of these parameters. The reduced network time preserves the

network’s energy and increases the serving rate of the network.
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By allocating the traffic load of CUs among all the applicant primary channels, the

total network time of CUs can be minimized. In this chapter, two channel selection

strategies are proposed and total network time of the CUs is calculated. The two strate-

gies are, the first one is a probability-based channel selection strategy (PCSS), and the

second is a sensing-based channel selection strategy (SCSS). In PCSS, the operating

channel selection depends on predetermined probabilities taken from the long-term ob-

servations of the traffic statistics, while in SCSS, channel selection is based on instan-

taneous sensing outcomes, which are received after the wideband spectrum scanning.

The proposed channel selection strategies have some design challenges like in PCSS;

the main precaution is to forbid the CUs from selecting the busy channel, and in SCSS;

scanning of all the applicant’s channels increases the overall network time of CUs. One

side where the narrowband sensing (less number of applicant channels) decreases the

sensing time, but due to this the problem of finding a vacant channel among a small set

of applicant channels is appeared. Hence, to find out the optimum number of applicants

channel to reduce the total network time is one of the critical challenges. Therefore, in

this chapter, we calculate the optimum channel selection probability in PCSS and the

optimum number of channels in the SCSS with the consideration of the various inter-

ruptions from the PU, data rate, channel capacity, and sensing errors.

The energy required to transmit the CU’s data via PU’s vacant channels needs to

be reduced under the high quality of service (QoS) demand for both primary and cog-

nitive users. So, it requires analyzing the amount of energy used by the CUs in the

network. We proposed a multiuser channel decision framework, which is enabled be-

fore the preemptive resume priority (PRP) M/G/1 based queueing model. With the help

of the proposed framework, the traffic load of CUs can be evenly allocated among the

multiple channels, unlike the non-load balancing strategy where different CUs approach

for the same channel and waste their energy and time. The significant contributions of

the work are highlighted as follows:

• Two channel selection strategies are proposed and design the multiuser channel

decision framework for both strategies.

• In the probability-based channel selection strategy, optimum distribution proba-

bility and busy channel probability have been derived. These calculations show

the distribution of CU’s traffic load among the various applicant channels.
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• In the sensing-based strategy, the optimum number of applicant channels has been

estimated, which helps to minimize the sensing time.

• We compare the probability-based and sensing-based strategies and present their

performances in terms of total network time for different arrival rates of CUs and

other parameters.

• The energy consumption in a CRN is analyzed at various operational modes like

transmission mode, collision mode, receiving mode, sleep mode, channel sensing

mode, and propose a channel scanning scheme, with the consideration of various

parameters (like energy consumption, scanning time, and the number of PUs in a

channel) as a metric.

3.1 Network system model

In this section, we first, discuss some assumptions which are considered in this chapter.

Then, the channel decision model is described. This model is adopted for evaluating the

total network time of CUs in various channel selection strategies. After that, the sensing

errors are discussed, and due to these sensing errors, the actual service time of CUs and

PUs extends.

3.1.1 Assumption

In this chapter, a time-slotted cognitive radio network is considered, in which to detect

and preserve the PU’s channel. At the starting of every time slot the channel sensing

must be performed by the CUs. If the detected channel is vacant, the CU sends its

data (information) in the same time slot. On the other hand, if the detected channel

is engaged, the CU may wait till the channel free, or it may sense the other channel.

This listen-before-talk (LBT) method is followed in most of the wireless networks,

like IEEE 802.11 standard-based clear channel assessment (CCA) and IEEE 802.22

standard-based quiet period [75].
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3.1.2 Description of Channel Decision Model and Sensing Errors

The channel decision model is presented in Fig. 3.1, which is adopted for evaluating the

total network time of CUs in various channel selection strategies. It is assumed that the

traffic arrival rate for primary and cognitive users is Poisson. There is an assumption

that the values of λpu
( j), λcu, mpu

( j)(l), and ms(l) are known by all CUs and calculated

by [76]. Hence, the service time is Xpu
( j) ,

Bpu
(j)

Dpu
(j) and Xcu

( j) , Bcu

Dcu
(j) for PU and CUs

at channel j, respectively. Based on Fig. 3.1, one of the K applicant channels is se-

lected by each CU and according to our proposed model, for proper traffic load balanc-

ing of CUs in multiple channels, all the CUs can dynamically obtain their functioning

channels with appropriate probability. The probability distribution vector (written as

p = (p(1), p(2), ......p(K)) denotes the probabilities set for identifying the applicant chan-

nels, where p( j) represents the probability of CU obtaining channel j as its functioning

channel. However, at channel j the effective arrival rate of the CU is λcu
( j) = p( j)λcu.

Note that the probability distribution vectors are different for different channel selec-

tion algorithms. The two types of sensing errors (i) missed detection (occur due to the

Channel 2Channel 
selection 
technique

λpu
(2)and mpu

(2)(l)

λcu

mcu(l) p(2) λcu

p(K) λcu

p(1) λcu

Channel K

λpu
(K)and mpu

(K)(l)

Channel 1
λpu

(1)and mpu
(1)(l)

Figure 3.1: Channel decision model

interruption of cognitive connection, hence the PU has to resend the contaminated data

frames in the upcoming slots) extends PU’s service time from Xpu
( j) to X̂pu

( j)
and (ii)

false alarm (when occur CU does not send data even the channel is idle) extends the

service time of CU from Xcu
( j) to X̂cu

( j)
.
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3.2 Proposed Probability-based Channel Selection Strat-

egy and Sensing-based Channel Selection Strategy

In this section, first, the total network time of CU in a network is formulated. Then, the

optimum probability distribution vector in PCSS and the optimum number of applicant

channels in SCSS are calculated for reducing the total network time. After this, the

proposed framework for both strategies has been discussed and sensing error effects on

service time of CUs and PUs have been presented. At the last, the energy consumption

at different stages is analyzed.

3.2.1 Total Network Time

The total network time (indicated by A) is a significant performance metric for CU’s

connection-based service, and it consists of request time (R) and data transmission time

(T), as represented in Fig. 3.2. The total network time in terms of expectation function

is,

E[A] = E[R] + E[T] (3.1)

Here, E[R] and E[T] represent the expected value of request time and data transmission

time. The E[R] is the time duration, starts from the moment when the data sending

petition reaches the network till the time of the beginning of data transmission. The

request time interval depends on the channel selection strategy. The data transmission

time (E[T]) starts at the moment of the beginning of data transmission in the initial time

slot to the complete data transmission at the last slot. The data transmission time is

affected by various handoffs performed in the system.

3.2.1.1 PCSS for Reducing Total Network Time

In probability-based strategy, every CU selects their communicating channel from the

K applicant channels which depends on a predetermined probability distribution vector

ppbc. So, for this case the time minimization is formulated as, the given set of applicant

channels is δ = {1,2,3......K }, our objective is to find out the optimum probability distri-

bution vector (denoted as p̂) to reduce the average total network time (E[Apbc]) of CU.
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Figure 3.2: Total network time of cognitive user in CRN

Formally,

p̂ = arg
∀

min
ppbc

E[Apbc(ppbc)] (3.2)

s.t.

0 ≤ ppbc
( j) ≤ 1,∀ j ∈ δ, (3.3)

∑
j∈δ

ppbc
( j) =

K∑
j=1

ppbc
( j) = 1, (3.4)

ϕ( j) = ϕpu
( j) +ϕcu

( j) < 1, (3.5)

where ϕ( j) shows the busy probability of j channel. Moreover, ϕpu
( j) and ϕcu

( j) are rep-

resenting the busy probabilities obtained from the connections of PU and CUs at channel

j when sensing errors are taken into the consideration. So, ϕpu
( j) = λpu

( j)E[X̂pu
( j)

] and

ϕcu
( j) = λcu

( j)E[X̂cu
( j)

].

3.2.1.2 SCSS for Reducing Total Network Time

In sensing based strategy, wideband sensing is performed by the CUs to search out the

vacant channel from the list of all available applicant channels. To minimize the total

time of sensing, the CU scans only the best of n channels from K channels. Here, it is

assumed that the lexicographic manner is followed by CUs for channel selection which

is represented as if i > m, then i channel is not better than m channel. Let the total

number of applicant channels are K and the set of applicant channels is δ = {1,2,3......n}

where n = |δ | ≤ K . Now for minimizing the total network time (E[Apbc]) in this strategy,

28



the objective is to search out the optimum number of applicant channels (given as n̂)

n̂ = arg
1≤n≤K

min E[Asbc(n)] (3.6)

3.2.2 Proposed Model and Total Network Time Calculation

For evaluating the total network time, the presented channel selection model is de-

signed by including the PRP based M/G/1 queueing systems in both the channel se-

lection strategies. Fig. 3.3 represents the probability-based model in which the CU’s

traffic load is immediately linked with the selected channel with the help of the pre-

determined probability distribution vector, while Fig. 3.4 expresses the sensing-based

model in which the CU executes the spectrum sensing to search out the idle channels

when CU’s traffic arrives. A tapped delay circuit [[A]] is adopted to illustrate the total

sensing time, and this circuit is observed as a server with constant service time. The CU

can be directly served at once the idle channel is found. The proposed model describes

the consequences of various sensing errors and interruptions on the total network time.

Few key characteristics of this proposed queueing model are listed below.

Queuing Model based on PRP M/G/1

Low-priority queue

1

Low-priority queue

2

Probability-
based 

channel 
selection 
strategy

λcu

mcu(l)

p(1) λcu

p(2) λcu

p(K) λcu

λpu
(1)

λpu
(2)

K

λpu
(K)

K

λpu
(K)

Low-priority queue

Figure 3.3: Proposed framework enabled with PRP based M/G/1 queuing theory for
probability-based channel selection strategy

• The users are categorized into two types in every channel. The PUs are linked

with the high priority queue, and CUs are linked with low priority queue.
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• If PU interrupts the CU’s transmission. Then the interrupted CU places the spare

data traffic in front of the low-priority queue of current working channel. After

this, when this current channel becomes idle, the CU completes its spare data

transmission.

• The proposed model depicts the effects of various spectrum handoffs that may be

experienced by CU during its transmission, from PU. Furthermore, the channels

that have similar channel access priorities are served on the basis of first-come-

first-served.

By using this proposed channel models, the total network time for both channel selection

strategies is compared empirically for different traffic frameworks and sensing time.

Each CU wisely selects the best strategy to reduce its total network time. Now the

optimum total network time is written as-

Â = min
(
E[Apbc],E[Asbc]

)
(3.7)

The total network time is obtained from request time and data transmission time as

mentioned in (3.7). Let Rpbc and Rsbc are average request time in case of PCSS and

SCSS, respectively. Furthermore, Tpbc and Tsbc are data transmission time in case of

PCSS and SCSS respectively, then the total network time is

E[Apbc] = E[Rpbc] + E[Tpbc] (3.8)

E[Asbc] = E[Rsbc] + E[Tsbc] (3.9)

Now, we illustrate the calculation of the average request time and average data trans-

mission time.

3.2.2.1 Request Time Calculation

• Probability-based Channel Selection Strategy- This strategy suggests that the op-

erating channel is selected on the basis of predetermined probability. In this case,

a newly arrived CU is connected with the low priority queue of the channel, and

this CU will be served only after providing the service to the PU, CUs of the high

priority queue, and already existing users at low priority queue of that channel.
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Queuing Model based on PRP M/G/1
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Figure 3.4: Proposed framework enabled with PRP based M/G/1 queuing theory for
sensing-based channel selection strategy

Therefore, for a CU, we can define the request time as the period starts from the

moment when a CU reaches the selected channel’s low-priority queue until the

selected channel becomes free. Hence, the request time of CU at channel j is,

E[Rpbc] =
K∑

j=1
ppbc

( j)E[Rpbc
( j)] (3.10)

Now apply the PRP based M/G/1 queuing theory [77]. It can be written as,

E[Rpbc
( j)] =

E[S( j)]
(1−ϕpu

( j))(1−ϕpu
( j)−ϕcu

( j))
(3.11)

where E[S( j)] shows the average residual time required to finish the service. Con-

sidering the [77] we get,

E[S( j)] =
1
2
λpu

( j)E[(X̂pu
( j)

)
2
] +

1
2

ppbc
( j)λcuE[(X̂cu

( j)
)
2
] (3.12)

Put (3.11) and (3.12) into (3.10) and get E[Rpbc].

• Sensing-based Channel Selection Strategy- In SCSS the request time Rsbc is ob-

tained from the total sensing time and queue waiting time (Wsbc). Let sensing time
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_

θ scan is required to scan one applicant channel, then for scanning the n channels,

the total scanning time required is n
_

θ scan. If the CU does not find any channel

idle after the wideband sensing, then it does not send its data immediately and

puts the data on low priority queue of selected channel. Therefore,

E[Rsbc] = n
_

θ scan + Pr{αc} ×E[Wsbc] (3.13)

Here, α represents the occurrence of finding at least one channel idle after sensing

and its complement is represented by αc. Now for deriving the Pr{α} and Pr{αc},

two observations are considered. The first one is, the channel is actually unoccu-

pied if (i) there is no PU in the channel, and (ii) there is empty low priority queue

in the channel, and the second one is, a channel is evaluated as an idle channel

only if a false alarm does not happen. Therefore, it may be written by (3.14),

Pr[α] =
n∑

j=1
[Pr{α | j channels are actually idle} Pr( j)]

=
n∑

j=1

[
1− (PF A) j

]
×

∑
ξ⊆δ,|ξ |= j



∏
i∈ξ

(1−ϕ(i))
∏

m∈δ−ξ

ϕ(m)


. (3.14)

where ϕ( j) = ϕpu
( j) +ϕcu

( j), false alarm probability is PF A and complement of α is

represented by αc.

Pr{αc} = 1−Pr{α} (3.15)

When all applicant channels are busy, then 1/n is the probability of selecting each

channel by the CU. Hence, for this case, according to PRP based M/G/1 queueing

theory, the average queueing waiting time is written as [78],

E[Wsbc] =
n∑

j=1

[
1
n
·

E[S( j)]
(1−ϕpu

( j))(1−ϕpu
( j)−ϕcu

( j))

]
(3.16)

3.2.2.2 Data Transmission Time

We can calculate the CU’s data transmission time by using the PRP-based M/G/1 queue-

ing model. Let the number of interruptions are denoted by the N ( j) for a CU on channel

j. Furthermore, the busy time period (denoted by Ypu
( j)) appears from transmissions of
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PU at channel j. This period is defined as the duration that starts from when channel j

is engaged by PU to the time when the high priority queue is vacant. The CU of channel

j has to wait for the span of E[Ypu
( j)] for retransmitting its data after interruption from

PU. Let T ( j) shows the data transmission time of CU on channel j then,

E[T ( j)] = E[X̂cu
( j)

] + E[N ( j)]E[Ypu
( j)] (3.17)

where E[N ( j)] = λpu
( j)E[X̂cu

( j)
] and E[Ypu

( j)] = E[X̂pu
(j)

]

1−λpu
(j)E[X̂pu

(j)
]
. The average data trans-

mission time in both these strategies is written as:

E[Tpbc] =
K∑

j=1
ppbc

( j)E[T ( j)] (3.18)

E[Tsbc] =
n∑

j=1
psbc

( j)E[T ( j)] (3.19)

By evaluating the total network time minimization problem in (3.2), the probability

distribution vector ppbc can be calculated in PCSS while in SCSS, the calculation of

probability distribution vector psbc depends on the specified data traffic statistics. Ap-

pendix B discussed the evaluation of psbc by the given traffic pattern. Note that after

spectrum sensing, the CUs prefer to approach the channels which have a higher idle

probability.

Finally, by substituting (3.10) and (3.18) in (3.8), the relationship between probabil-

ity distribution vector ppbc and average total network time in PCSS is obtained. After

this, by evaluating the total network time minimization problem by (3.2), the optimum

probability distribution vector p̂ can be obtained. In the same way, by substituting (3.13)

and (3.19) in (3.9), the relationship between the number of applicant channels n and av-

erage total network time can be obtained. By this scheme we can minimize the total

sensing time nµ by considering the smaller number of channels in (3.13) but it results

higher value of Pr(αc) in (3.13). Now after evaluating the total network time minimiza-

tion problem defined in (3.6), the optimum number of channels n̂ can be obtained in

SCSS.
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3.2.3 Possession of Sensing Errors

Under this subsection the performance of real service time of PU and CU is investigated,

which is caused by the false alarm and missed detection errors. Particularly, we present

that how to determine the first and the second moments of X̂pu
( j)

and X̂cu
( j)

.

3.2.3.1 False Alarm Error

In false alarm error, CU does not send data even in a empty channel. So, the real service

time of CU extends up to X̂cu
( j)

from Xcu
( j). Hence, the first and the second moments

of X̂cu
( j)

are represented as

E[X̂cu
( j)

] =
∞∑

z=1
E[X̂cu

( j) ���Xcu
( j) = z]Pr{Xcu

( j) = z} (3.20)

and

E[(X̂cu
( j)

)
2
] =

∞∑
z=1

E[(X̂cu
( j)

)
2 ���Xcu

( j) = z]Pr{Xcu
( j) = z} (3.21)

The false alarm slot is observed as a busy slot because it cannot be used by PU and CUs.

E[X̂cu
( j) ���Xcu

( j) = z] =
∞∑

i=0
(z + i)

(
z + i−1
i

)
(1−PF A)z(PF A)i (3.22)

E[(X̂cu
( j)

)
2 ���Xcu

( j) = z] =
∞∑

i=0
(z + i)2

(
z + i−1
i

)
(1−PF A)z(PF A)i (3.23)

Hence ϕcu
( j) = λcu

( j)E[X̂cu
( j)

] and the data transmission is adjourned to succeeding time

slots when a false alarm takes place. Hence, in the case of z slots, for a user, the real

service time is extended up to z + i slots if the false alarm takes place at i slots from

the first z + i − 1 slot and not take place in (z + i)th slot. So for real service time, the

conditional expectation follows negative binomial distribution with PF A (Probability of

false alarm).

Here, mcu(l) provides the value of Pr{Xcu
( j) = z}, so the value of E[X̂cu

( j)
] and

E[(X̂cu
( j)

)
2
] is obtained by substituting (3.22) into (3.20) and (3.23) into (3.21). Like, if

mcu(l) is geometric distribution then,

mcu(l) =
(
1−

1
E[Bcu]

) z−1 (
1

E[Bcu]

)
(3.24)
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E[X̂cu
( j)

] =
E[Xcu

( j)]
1−PF A

(3.25)

E
[
(X̂cu

( j)
)
2

]
=

E
[
Xcu

( j)
] (

2E[Xcu
( j)]−1 + PF A

)
(1−PF A)2 (3.26)

where E[Xcu
( j)] = E[Bcu]/Dcu

( j).

3.2.3.2 Missed Detection

Due to the missed detection error, the transmitting data of PU is interrupted by the CU.

Thus, the PU resends its interrupted data in the next time slot. Thus, the PU’s real

service time is extended from Xpu
( j) to X̂pu

( j)
. So, the first and second moments of

X̂pu
( j)

are written as:

E[X̂pu
( j)

] =
∞∑

z=1
E[X̂pu

( j) ���Xpu
( j) = z] Pr{Xpu

( j) = z} (3.27)

E[(X̂pu
( j)

)
2
] =

∞∑
z=1

E[(X̂pu
( j)

)
2 ���Xpu

( j) = z] Pr{Xpu
( j) = z} (3.28)

Next, in this case, we consider the possibility when in the transmission slot of PU,

more than one CU arrives with the probability of 1− e−λcu
(j)τ

, where τ is slot duration.

For these CU’s arrivals, every CU accesses this busy slot as a vacant slot and missed

detection error takes place. At channel j, let Lcu
( j) represents the low-priority queue

length. Therefore, in the considered slot the first arrival provides an error channel es-

timation with probability PMD Pr{Lcu
( j) = 0} where the missed detection probability is

PMD. Now in the considered slot the remaining arrivals are Pr
{
Lcu

( j) = 0
}

= 0 because

the initial arrival is placed at the low-priority queue of j channels. By considering these

observations, the conclusion is that the PU’s transmission slot is interrupted by CU’s

arrivals with probability

PI
( j) =

(
1− e−λcu

(j)τ )
PMD Pr

{
Lcu

( j) = 0
}

(3.29)

In the same way, in false alarm error, we observe that the random variables X̂pu
( j)

and

(X̂pu
( j)

)
2
, follows negative binomial distribution with value PI

( j) if Xpu
( j) = z. After

this, because Pr{Xpu
( j) = z} can be evaluated with the help of mpu

( j)(l), and the value of

E[X̂pu
( j)

] and E[(X̂pu
( j)

)
2
] can be calculated by (3.27) and (3.28), respectively. If the
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geometric distribution is mpu
( j)(l), then,

mpu
( j)(l) = *

,
1−

1
E[Bpu

( j)]
+
-

z−1

*
,

1
E[Bpu

( j)]
+
-

(3.30)

we can get

E[X̂pu
( j)

] =
E[Xpu

( j)]
1−PI

( j) (3.31)

and

E
[
(X̂pu

( j)
)
2

]
=

E
[
Xpu

( j)
] (

2E[Xpu
( j)]−1 + PI

( j)
)

(
1−PI

( j))2 (3.32)

where E[Xpu
( j)] = E[Bpu

( j)]/Dpu
( j).

3.2.4 Analysis of Energy Consumption

This subsection represents the energy consumption analyses in CRN, which is modeled

as the addition of the energy required to scan a new channel, and energy required to

deliver a packet on this newly detected channel. It is assumed that the various mobile

nodes are scan and select the channel simultaneously for a summary of notations used).

Fig. 3.5 represents the periodic scanning with two mobile nodes. The expected energy

consumption per-packet of the CU can be modeled as:

_

Ecu =
_

E
b

pkt +
_

Escan

θ/
_

θ
b

pkt

(3.33)

For calculating the
_

Ecu in (3.33), energy consumed by the CU at various operation

modes is calculated. Therefore, first of all, we compute
_

E
b

pkt , and afterward, suggest a

channel scanning scheme and investigate the
_

Escan. Fig. 3.6, which describes the various

frames involved in the communication is considered for calculating the
_

E
b

pkt . Fig. 3.6

reveals the timing and performance of a CU that is receiving, transmitting, and simply

listening to the medium with the help of a basic access mechanism without request-to-

send/ clear-to-send. The short period
_

θ si f s is neglected for analysis simplicity.
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scan
scan scan

Mobile node 2

Figure 3.5: Communication model and periodic scanning with two mobile node

3.2.4.1 Transmission Mode Energy

The energy consumed in a successful packet transmission can be written as:

_

Etr x =
_

Ptr x
_

θdata +
_

Prcx
_

θack +
_

Pidle
_

θdi f s (3.34)

When a packet collision acquires due to false alarm error of the idle channel, then the

energy consumed CU can be given as:

_

Ecoll =
_

Ptr x
_

θdata +
_

Pidle

(
_

θack +
_

θdi f s

)
(3.35)

sifs difs

ack

sifs

d a ta

slot

Figure 3.6: Packet Transmission Mode in the IEEE 802.11

3.2.4.2 Receiving Mode Energy

When a packet is received, then the consumed energy can be analyzed in three cases (i)

packet has been received to the assigned CU (ii) packet has been jammed because of

collision and (iii) packet has not been received to the assigned CU and required to be

rejected. In first case energy consumed is:

_

Ercx =
_

Prcx
_

θdata +
_

Ptr x
_

θack +
_

Pidle
_

θdi f s (3.36)
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In the second case, the received packet is rejected because of a collision. Thus the

consumed energy is expressed as:

_

Er xcol =
_

Prcx
_

θ pkt.hdr +
_

Pidle

(
_

θcoll +
_

θdi f s −
_

θ pkt.hdr

)
(3.37)

In the third case, when packet has to be rejected, then the energy consumed is:

_

Er jt =
_

Prcx
_

θ pkt.hdr +
_

Pidle
_

θdi f s +
_

Psleep
_

θnav (3.38)

where
_

θnav =
_

θdata −
_

θ pkt.hdr +
_

θack

3.2.4.3 Energy Consumption during Backoff

We consider [79], [80] for our analysis, which presents the idea of a tick rather than

a slot to interpret the IEEE 802.11 based distributed coordination function (DCF). The

energy consumed during a tick period is equal to the energy consumed between two

consecutive decrements of a user’s backoff counter. A user observes the tick period in

the backoff mode. There are r −1 other possible transmitting users, where r represents

the total number of CUs on the current channel. If no other user endeavors a trans-

mission, then the backoff counters are decreased by one in each time slot. But if the

channel is occupied, then the backoff counters are stopped, and it again continues when

the channel is free. A couple of situations arise if a user attempts to communicate in an

assigned tick time with r −1 different transmitters. (i) when the given user transmits, in

this situation, the probability can be given as:

M∆ = (r −1)℘(1−℘)r−2 (3.39)

where ℘ indicates the probability that a user transmits at an assigned tick time [81], [82].

(ii) when more than one user intends to communicate, then the probability is given as:

M∆∆ = 1− (1−℘)r − r℘(1−℘)r−1 (3.40)

Furthermore, per tick average energy consumption is given by (3.41),

_

Etik = (1−M∆−M∆∆)
_

Pidle
_

θ slot + M∆

{
pg

_

Ercx +
(
1− pg

) _

Er jt

}
+ M∆∆

_

Er xcol (3.41)
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where pg shows the probability; that on the channel, the packet is destined to the as-

signed user.

3.2.4.4 Energy Consumption during Communicate through a Channel

On the basis of (3.33) and by analyzing the [83], the energy consumed to send a packet,

when a total b number users contending for the same channel, can be given as,

_

E
b

pkt =
_

Etr x +
pb

1− pb

_

Ecoll +V
(
pb

) _

Etik (3.42)

where pb is the probability with which a collision happens when there is b number of

contending users. Moreover, V
(
pb

)
indicates the slots number required to be counted

down before a packet is sent. It is interpreted as V
(
pb

)
=

[
W̃ (1−pb)−pb (2pb)x

(1−2pb) −1
]
, here

the initial contention window size is W̃ , and x represents the number of times the backoff

window increases before it approaches the maximum allotted size. Importantly, V
(
pb

)
depends on the number of contending CUs b, which defines all significant values of pb.

3.2.4.5 Energy Consumption during Channel Scanning

In this chapter, an optimum scanning scheme is proposed. Let us assumed that there is

J number of channels to scan including the current channel. According to this scanning

scheme, CU scans all the channels, and an optimum channel (channel on which the

least number of users are contending) is selected. Hence, the energy consumption in the

scanning process
_

Escan is expressed as:

_

Escan =
_

Psw
_

θ sw (J −1) +
_

Psw
_

θ swpsw + J
_

E
ch

scan (3.43)

where
_

E
ch

scan is the expected energy consumption for a single channel scanning,
_

Psw is

the average power consumed during channels switching, and psw indicates the proba-

bility of observing a more reliable channel than the current one. When a better channel

is observed, the user will switch the channels, and (3.44) express the total energy con-

sumption to switch between channels.

_

E
ch

scan =
_

θ scan
_

θ tik

{
(1−M∆−M∆∆)

_

Pidle
_

θ slot + M∆
_

Er jt + M∆∆
_

Er xcol

}
(3.44)
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3.3 Performance Evaluation

The proposed traffic load balancing strategies have been verified using the MatLab soft-

ware. This software is used to analyze the system metric like total network time, proba-

bility distribution vector, optimum number of channels, and energy consumed at various

stages of communication in CRN. In this chapter, the IEEE 802.11 standard protocols,

and parameters are used for the simulation purpose. Table 3.1 represents the list of sim-

ulation parameters. In the proposed framework, it is considered that the service time

length of the PU and CUs is geometrically distributed because this work emphasizes

latency-delicate traffic.

Table 3.1: Simulation Parameters

Name of Parameter Parameters value
False alarm probabilities (PF A) 0, 0.1, 0.5
Missed detection probability (PMD) 0, 0.1
Data rates of PU and CU 1
Total number of channels 4
Average arrival rate of the PUs in PCSS λpu

(1) = 0.02, λpu
(2) = 0.02,

λpu
(3) = 0.01, λpu

(4) = 0.01
Average service time of PU in PCSS E[Xpu

(1)]=25, E[Xpu
(2)]= 30,

E[Xpu
(3)]=25, E[Xpu

(4)]=20
Average arrival rate of the PUs in SCSS λpu

(1) = 0.02, λpu
(2) = 0.25,

λpu
(3) = 0.01, λpu

(4) = 0.15
Average service time in SCSS for any j E[Xpu

( j)]= 20
Average service time of CU in SCSS E[Xcu] = 10,15,20

3.3.1 Probability-based Channel Selection Strategy

Three different scenarios are examined for the performance evaluation of the proposed

strategy as follows:

3.3.1.1 Scenario 1

In this scenario a four-applicant channel system is considered with following traffic pa-

rameters: λpu
(1) = 0.02, λpu

(2) = 0.02, λpu
(3) = 0.01, λpu

(4) = 0.01 and E[Xpu
(1)]= 25,

E[Xpu
(2)]= 30, E[Xpu

(3)]= 25, E[Xpu
(4)]= 20 as well as PF A = 0.1 and PMD = 0.1. The

optimum probability distribution vector is affected by arrival rates of the CUs, which
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Figure 3.7: Optimum probability distribution vector in PCSS
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Figure 3.8: Probability of busy channel in PCSS for (PF A = 0.1) and (PMD = 0.1)

is presented by Fig. 3.7. It represents that at a low λcu, channel 4 has maximum se-

lection probability but with the increase in traffic rate, the probability of this channel

is decreasing, but still high than other channels. The CUs select channel 4 for commu-

nication due to its lowest traffic load. As the rate of arrival increases, other channel’s

selection probability also starts increasing to balance the traffic among four channels.

All four channels come in the selection list when λcu > 0.04 for balancing the traffic

loads in each channel. Table 3.2 shows the various values of optimum probability dis-

tribution vector at different channels for multiple values of CU’s average traffic arrival
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Figure 3.9: Probability of busy channel in PCSS for (PF A = 0) and (PMD = 0)

rate. This result shows that the queuing model for load balancing in the PCSS performs

well. Fig. 3.8 shows that the busy channel probability increases with an increase in the

λcu. When λcu = 0, channel 4 has the smallest busy probability, but for λcu ≥ 0.06,

channel 4 has the maximum busy probability. The reason behind this is; all CUs wish to

select channel 4. Table 3.3 shows various values of busy channel probability at different

channels for multiple values of CU’s average traffic arrival rate.

Table 3.2: Optimum probability distribution vector for different channels in scenario 1

Optimum probability distribution vector

λcu Channel 1 Channel 2 Channel 3 Channel 4

0.01 0 0 0.030 0.970
0.02 0 0 0.059 0.941
0.03 0 0.029 0.242 0.728
0.04 0.003 0.067 0.299 0.631
0.05 0.010 0.094 0.384 0.512
0.06 0.028 0.190 0.340 0.442
0.07 0.017 0.141 0.412 0.430
0.08 0.033 0.209 0.309 0.449
0.09 0.044 0.238 0.278 0.440
0.10 0.070 0.204 0.299 0.427
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Table 3.3: Busy channel probability at different channels for scenario 1

Busy channel probability

λcu Channel 1 Channel 2 Channel 3 Channel 4

0 0.470 0.39 0.320 0.200
0.01 0.495 0.41 0.300 0.320
0.02 0.524 0.512 0.458 0.410
0.03 0.535 0.530 0.485 0.450
0.04 0.543 0.539 0.536 0.490
0.05 0.548 0.539 0.535 0.527
0.06 0.564 0.540 0.539 0.566
0.07 0.566 0.524 0.531 0.601
0.08 0.583 0.560 0.540 0.634
0.09 0.625 0.642 0.590 0.658
0.10 0.650 0.693 0.660 0.723
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Figure 3.10: Total network time in SCSS

3.3.1.2 Scenario 2

In this scenario, the following traffic parameters are considered: λpu
(1) = 0.06, λpu

(2) =

0.04, λpu
(3) = 0.02, λpu

(4) = 0.01 and E[Xpu
(1)] = 5, E[Xpu

(2)] = 15, E[Xpu
(3)] = 20,

E[Xpu
(4)] = 30 as well as PF A = 0 and PMD = 0. Fig. 3.9 indicates that most of the CUs

approach a channel which has the highest arrival rate and smallest PU’s service time.

By (3.10) and (3.11), it is clear that due to the lowest value of E[S( j)], channel 1 has

the smaller average request time. Therefore, channel 1 has the largest busy probability

because most of the CUs select channel 1 when λcu > 0. Table 3.4 shows various values

of busy channel probability at different channels for multiple values of CU’s average

traffic arrival rate in this scenario.
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3.3.1.3 Scenario 3

In this scenario the following traffic parameters are considered: λpu
(1) = 0.05, λpu

(2) =

0.03, λpu
(3) = 0.02, λpu

(4) = 0.01 and E[Xpu
(1)] = 10, E[Xpu

(2)] = 15, E[Xpu
(3)] = 20,

E[Xpu
(4)] = 25,PMD = 0.1 and varying value of PF A = 0.05,0.1,0.15,0.2,0.25,0.3,0.35.

Fig. 3.11 illustrations the variation in optimum distribution probability vector and presents

the comparison for different values of the false alarm probability. We can observe that

there are only 3 applicant channels for PF A = 0.05. But, when PF A ≥ 0.1, all the 4

channels are considered as the applicant channels. The reason for this phenomenon is

as follows: for high value of PF A, E[X̂cu] increases because of the higher false alarms.

Therefore, the real traffic load ϕcu = λcuE[X̂cu] of the CUs become large. Then, CUs

must allocate total traffic loads to more channels for avoiding channel contention. Ta-

ble 3.5 shows the various values of optimum probability distribution vector at different

channels for multiple values of false alarm probability.
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Figure 3.11: Optimum probability distribution vector in PCSS

3.3.2 Sensing-based Channel Selection Strategy

The impact of E[Xcu] and PF A on optimum number of applicants channels (n̂) can be

seen by Figs. 3.10a and 3.10b, respectively. A four channels system is considered with

(
_

θ scan = 3) and λcu = 0.03. The other parameters value shown in Table 5.1. Fig. 3.10a

shows that for PF A = 0.1, n̂ = 1,2,1 for E[Xcu] = 10,15,20, respectively. From Fig. 3.10b
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Table 3.4: Busy channel probability at different channels for scenario 2

Busy channel probability

λcu Channel 1 Channel 2 Channel 3 Channel 4

0 0.500 0.500 0.500 0.500
0.01 0.540 0.530 0.520 0.500
0.02 0.580 0.560 0.550 0.500
0.03 0.620 0.590 0.570 0.500
0.04 0.650 0.630 0.590 0.500
0.05 0.680 0.660 0.580 0.500
0.06 0.720 0.680 0.620 0.500

Table 3.5: Optimum probability distribution vector (p̂) at different channels for scenario
3

Optimum probability distribution vector

PF A Channel 1 Channel 2 Channel 3 Channel 4

0.05 0.460 0.360 0.180 0
0.01 0.440 0.350 0.160 0.050
0.15 0.400 0.380 0.160 0.060
0.20 0.380 0.340 0.200 0.080
0.25 0.370 0.310 0.230 0.090
0.30 0.360 0.310 0.230 0.100
0.35 0.340 0.290 0.260 0.110

it is observed that for E[Xcu] = 10, n̂ = 1,2 for PF A = 0.1,0.5, respectively. The optimum

value of channels rises as E[Xcu] or PF A increases because according to (3.25), a higher

value of E[Xcu] or PF A provides a high value of E[X̂cu
( j)

].

3.3.3 Comparison among Various Channel Selection Strategies

Fig. 3.12 shows the performance comparison of three distinct channel selection strate-

gies (1) non-load-balancing strategy; (2) probability-based strategy; (3) sensing-based

strategy and presents the outcomes of λcu on the average total network time. A frame-

work of three-channel system is considered with following arrival rates: λpu
(1) = 0.01,

λpu
(2) = 0.02, λpu

(3) = 0.03, E[Xpu
(1)] = 15, E[Xpu

(2)] = 20, E[Xpu
(3)] = 25 and E[Xcu] =

15. It is observed that for a high value of λcu, both the channel selection strategies can

decrease the average total network time as compared to the non-load balancing strategy.
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In a non-load balancing strategy, all the CUs selects channel 4, due to smallest busy

probability of this channel. By using (3.8) and (3.9), the total network time is calculated

for PCSS and SCSS. For a small value (
_

θ scan = 6), the SCSS results in the shortest total

network time. But when (
_

θ scan = 14) and λcu < 0.03, the PCSS performs better than the

SCSS, because this strategy selects the channels which have low interrupted probabil-

ity. In contrast, when λcu > 0.03, the SCSS results in shorter total network time because

with the help of wideband sensing this strategy potentially minimizes the request time.

Table 3.6 shows total network time in different channel selection strategies. The two

channels selection strategies can reduce the total network time over 60% compared to

the present non-load balancing strategy for λcu = 0.05.
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Figure 3.12: Comparison among channel selection strategies

Table 3.6: Total network time in different channel selection strategies

Total network time

λcu
Non load
balancing PCSS SCSS

(θscan = 14)
SCSS

(θscan = 10)
SCSS

(θscan = 6)

0.01 56 55 59 45 37
0.02 71 62 67 49 39
0.03 90 72 72 53 41
0.04 120 79 75 57 43
0.05 146 90 79 60 45
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Figure 3.14: Total network time v/s Busy time period

Fig. 3.13 and Fig. 3.14 represent the performance comparison of three distinct

channel selection strategies and show the effects of N ( j) and Ypu
( j) on the average total

network time, respectively. According to (3.17) the value of data transmission time

depends on N ( j) and Ypu
( j). High value of N ( j) shows more PU’s interruption during the

CU’s transmission, which leads the extended service time of CUs. Therefore, the total

network time of CU have been increased in both the strategies. Fig 3.13 shows that the

by varying the value N ( j), the PCSS performs better as compared to SCSS, because this

strategy selects the channels which have low interrupted probability. Fig 3.14 shows
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Figure 3.15: Energy consumption in channel selection strategies

Table 3.7: Energy consumption in channel selection strategies

Total energy consumption

λcu Non load balancing PCSS SCSS

0.01 402 190 161
0.02 428 221 192
0.03 476 249 248
0.04 540 298 320
0.05 589 344 373
0.06 681 390 411

that by varying the value of Ypu
( j), SCSS gives better results as compared to the others

till Ypu
( j) < 26, because for high value of Ypu

( j), there is a high queue waiting time in this

strategy. So, for Ypu
( j) > 26, PCSS performs better than the others.

In a non-load balancing strategy, all the CUs try to approach the same channel which

has the smallest busy probability. In this case, there is a large number of contending CUs

for a channel, which increases the packet collisions and packet transmission time. Ac-

cording to (3.35) a large amount of energy is wasted due to collision. On the other hand

with the help of traffic load balancing strategies, CU’s traffic load is distributed among

all the applicants channel, therefore packet collisions and transmission time are reduced,

thus energy can be saved. By using (3.33) total energy consumption is calculated for

various strategies. The following parameter values are considered for the calculation:

48



0 0.05 0.1 0.15 0.2 0.25 0.3

Traffic arrival rate of the cognitive users

0

5

10

15

20

25

30

35

40

E
n

e
rg

y
 s

a
v
in

g
 %

Number of PUs = 15

Number of PUs = 12

Number of PUs = 9

Number of PUs = 6

Number of PUs = 3
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Figure 3.17: Impact of scanning time on energy consumption at various number of PUs

_

Ptr x = 800,
_

Prcx = 800,
_

Pidle = 500,
_

Psleep = 20,
_

Psw = 700,
_

θdata = 0.22,
_

θack =

0.004,
_

θdi f s = 0.05,
_

θ pkt.hdr = 0.003,
_

θ pkt.hdr = 0.008,
_

θ sw = 0.008,
_

θ slot = 0.004. Fig. 3.15

shows that for λcu < 0.03, SCSS performs better but for λcu > 0.03, PCSS gives improve

result because when λcu increases, scanning energy is also increase for traffic balancing

of CUs. Table 3.7 shows energy consumption in channel selection strategies. Fig 3.16,

shows that the energy-saving percentage of CUs improve by increasing the number of

PUs, but output performance is diminished when λcu increases. High traffic arrival rate

makes more packets to be transferred of the CU, which appears in a high transmission
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time for the CU. From Fig. 3.17, it is observed that the total energy consumption in-

creases with an increase in
_

θ scan. With the help of (3.43), energy consumption can be

calculated for different values of J.

3.4 Conclusions

In this chapter, a multiuser channel decision framework is designed, which is incor-

porated with the preemptive resume priority (PRP) based M/G/1 queue model. The

proposed model helps to calculate the various parameters in two proposed channel se-

lection strategies: probability-based and sensing-based channel selection strategies. The

proposed channel selection methods evenly allocate the CU’s traffic load among various

applicant channels. We have considered the PU’s interruption effects and sensing errors

in our calculation. Results of the work present that in the circumstances of huge traffic,

SCSS reduces the total network time, while in the situation of low traffic, PCSS gives

better results. These observations offer a vital perception in designing of traffic-adaptive

channel selection strategy in the existence of PU’s interruptions and sensing errors. The

proposed strategies can minimize the total network time by 60% as compared to non-

load balancing strategy for λcu = 0.05. Next, we calculate the total energy consumption

at various operational modes in GCRN. The results indicate that the arrival rate of the

CUs and the time spent on channel scanning affect the energy consumption of the net-

work. The proposed channel selection strategies reduce energy consumption by 75% as

compared to non-load balancing strategy.

50



Chapter 4

Cooperation and Energy Harvesting

based Spectrum Sensing Schemes for

Green Cognitive Radio Networks

TO fulfill the demand for the next-generation wireless system, the efficient uti-

lization of the spectrum is essential. The principle of cognitive radio networks

(CRNs) is to use the available spectrum band intelligently, and this approach can greatly

diminish the spectrum scarcity problem. Proper spectrum sensing is crucial for observ-

ing the vacant spectrum, and SUs perform this continuously to preserve the PU’s trans-

mission. Cooperative communication can be categorized into two types i) cooperation

among SUs, which supports the improvement in spectrum sensing and data transmis-

sion rate of SUs, and ii) cooperation between PU and SU, which supports enhancing

the spectrum’s opportunities for SU. In this chapter, the amplify-and-forward (AF) co-

operation protocol effect and the network’s inherent asymmetry property are considered

between SUs to improve the sensing probability of the SUs. In GCRNs, most SUs are

mobile devices, so they must be more energy efficient because they exploit extra bat-

tery power. Due to the longer sensing time, a huge amount of energy is wasted in the

connection setup, and the time required for complete data transmission is also reduced.

It indicates that an energy-efficient network should have a proper trade-off between

sensing time and data delivery time. Therefore, in the proposed work, the total energy

consumption in CRNs is examined and two different spectrum sensing schemes, preset

spectrum sensing (PSS) and viscous spectrum sensing (VSS) are proposed, to consider
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energy saving. For the SUs, the total energy consumption is the sum of the required

energy for sensing a vacant spectrum and the energy spent to transmit a packet through

an obtained spectrum.

In the present scenario, efficiently utilizing the available spectrum has become a

critical challenge. In the practical scenario of GCRNs, both homogeneous and het-

erogeneous PUs are located, so the major concern of SUs is to sense the PU’s vacant

spectrum carefully. Therefore, in this chapter, the SUs explore the licensed spectrum

collaboratively to find more spectrum opportunities. This chapter presents the analy-

sis of many significant parameters of GCRNs, such as; spectrum sensing time, sensing

probability, number of contending users on the medium, number of spectrum in the

system, and energy consumption. In this chapter, these issues are addressed by examin-

ing the cooperative behavior of SUs and proposing a cooperation-based sensing scheme

to improve the sensing probability and minimize the sensing time. Furthermore, two

energy harvesting-based sensing schemes are also suggested with the aim of energy-

saving. The significant contributions of this chapter are outlined as follows;

• The advantages of cooperative communication are discussed, and a joint cooper-

ation spectrum sensing (JCSS) scheme is proposed for CRNs. We consider the

amplitude-and-forward (AF) cooperative technique and the network’s inherent

asymmetry property, which results in faster spectrum sensing with cooperation.

• The total sensing time and rapidity gain under the proposed cooperation scheme

is investigated. The results show a significant reduction in sensing time for PU’s

spectrum.

• Energy harvesting based two spectrum sensing schemes, preset spectrum sens-

ing (PSS) and viscous spectrum sensing (VSS), are proposed. These schemes

are based on different parameters (i.e., total energy consumption, sensing time,

energy-saving percentage, and number of contending users in any spectrum).

4.1 A System Model

In this chapter, the JCSS scheme is proposed between two SUs and calculate the sens-

ing probability for two different cases (cooperation and non-cooperation). After this, the
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total sensing probability, total sensing time, and rapidity gain (rapidity gain is defined

as the network’s hardware and software capacity to automatically manage and config-

ure other network resources among any number of connected devices) are analyzed.

The sensing time is an important parameter in CRNs; therefore, we consider the inher-

ent asymmetry (in the wireless network’s user node mobility, various radio technology,

variations in radio ranges, and data packet loss patterns all contribute to asymmetry and

in these networks, heterogeneity is inherent; each user node contains distinct protocols,

properties, and characteristics) of the system that encourages faster PU’s detection. It

is assumed that all the channels undergo Rayleigh fading, and the channels communi-

cating with various SUs are independent. Let the input signal h is transmitted, then the

received signal ’g’ is,

g = f ch + n∗ (4.1)

here n∗ (additive noise) and f c (fading coefficient) are designed as independent complex

gaussian random variables. Apart from this, the other assumptions are: first, the noise

has a unit variance and zero mean; second, there is a centralized controller (adequate

to transmit and receive) with which all the SUs communicate. Each SU can access its

channel state information (CSI).

The major necessity of a CRNs is to discover the idle PU’s spectrum rapidly. There-

fore, the SUs constantly sense the spectrum. The SUs must leave the band immediately

when the PU returns to its frequency band. Hence, if the distance between PU and any

SU (SU2 in this work) is large, then the sensing of PU will be affected, and the sensing

time taken by the SU2 is having high value because the signal received by the PU is

weak due to a significant distance. To solve this problem, cooperative communication

is the most promising solution. Cooperation between the SUs improves the system’s

rapidity and minimizes the sensing time.

In this chapter, the secondary users, SU1 and SU2 cooperate, and SU1 works as a

relay for SU2. Fig. 4.1 shows that there are two SUs, represented as SU1 and SU2

transmitting the data to a common receiver by using the TDMA mode operation. Based

on the amplify-and-forward protocol, slotted communication is used where SU1 and

SU2 communicate in consecutive slots represented in Fig. 4.2. In time slot T S1, SU2

transmits, and SU1 listens, while in the next slot T S2, SU1 transmits the same data

which it has been obtained in the previous slot. But the PU has the highest priority to
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occupy the spectrum. In time slot T S1, the signal transmitted by the SU2 and received

by the SU1 is written as,

g1 = ∆qpu1 + aq21 + n1
∗ (4.2)

The instantaneous channel gain between PU and SUi is qpui, and between SU2 and

SU1 is q21. The additive Gaussian noise is represented by n1
∗. Some assumptions are

considered here as the channel gain qpu1, q21, and noise n1
∗ are zero mean complex

Gaussian random variables; it means that these are pairwise independent, and channels
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are following reciprocal property, i.e., q21 = q12. a is the signal sent from SU2, and ∆

denotes the presence and absence of PU.

If ∆ = 0, it shows the PU’s absence, and if ∆ = 1, it shows the PU’s presence. Let the

transmitter power constraint of SU2 is S then,

E
{
|aq21 |

2
}

= SM21 (4.3)

where M21 = E
{
|q21 |

2
}

shows the channel gain between SU2 and SU1 and qpu1, q21, n1
∗

are independent which has already mentioned, then from (4.2)

E
{
|g1 |

2
}

= ∆2S1 + SM21 + 1 (4.4)

here Si = E
{���qpui

���
2}

shows the received signal power at SUi due to the PU. In the du-

ration of time slot, T S2, SU1 (which works as a relay user) relays the information from

SU2 to the common receiver. The maximum power constraint of the relay user is S̃. SU1

(relay user) calculates the average received power of the signal and estimates it prop-

erly for satisfying its power constraint S̃. When user SU1 relays the information of user

SU2 to the common receiver, at that time SU2 also listens to its own information. This

process takes place in slot T S2. The signal transmitted by the SU1 to SU2 is,

g2 =
√

Ω2g1q12 + ∆qpu2 + n2
∗ (4.5)

put the value of g1 from (6.32) to (4.5)

g2 =
√

Ω2
(
∆qpu1 + aq21 + n1

∗
)

q12 + ∆qpu2 + n2
∗ (4.6)

where n2
∗ represents the additive Gaussian noise [84] and the scaling factor is repre-

sented by Ω2 which is used by the SU1 for relaying the message signal to the receiver.

Now Ω2 can be written as [85].

Ω2 =
S̃

E{|g1 |
2}

=
S̃

∆2S1 + SM21 + 1
(4.7)
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After the cancellation of the message signal component, SU2 remains with the signal,

G = ∆Q + N∗ (4.8)

where Q = qpu2 +
√

Ω2q12qpu1 and N∗ = n2
∗+
√

Ω2q12n1
∗. Now the detection problem is:

Given observations are

G = ∆Q + N∗, (4.9)

The detector decision is:

H1 : ∆ = 1

H0 : ∆ = 0

4.1.1 Energy Detector Method

The energy detection method is exploited to illustrate the proposed cooperation method’s

benefits and is an optimal method [86]. It is given that q12 = q21 and from (4.9) the

random variables Q and N∗ are complex gaussian distributed and have zero-mean and

variances.

σ2
Q = S2 + ΩS1q (4.10)

σ2
N∗ = 1 + Ωq (4.11)

where

q =
|q12 |

2

E{|q12 |
2}

=
|q12 |

2

M12
(4.12)

Ω =
S̃M12

∆2S1 + SM21 + 1
(4.13)

here, channel state q21 is accessed by SU2, and this is possible because of the transmis-

sion of pilot symbols at regular intervals. Because q21 is a complex Gaussian function

so, the probability density function of q can write as,

f (q) =



e−q q > 0

0 q ≤ 0
(4.14)
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The energy detection makes the statistics-

V (G) = |G |2 (4.15)

and this decision statistics are compared with a threshold (ζ , i.e., calculated by a pre-

specified false alarm probability (PF A)):

β (v; a,c) =
∞∫

0

e−q− v
a+cq dq (4.16)

for the positive value of v, a and c. Let the cumulative density function of random

variable V (G) is written by Fi(v) under the hypothesis Hi,i = 0,1. Because q is the

complex gaussian provided by the G, It is obvious that V (G) given q is exponential,

now from (4.11)

E{V (G) |H0 ,q} = E{��N∗��2 ��q,∆ = 0 } = 1 +
S̃M21

SM21 + 1
q (4.17)

For H0(∆ = 0)

F0(v) = S(V (G) > v |η0 ) =
∞∫

0

S(V (G) > v |η0 ,q) f (q)dq = β(v;1,
S̃M12

SM21 + 1
) (4.18)

In the same way,

F1(v) = β (v; S2 + 1,Ω(S1 + 1)) (4.19)

where Ω has taken from (4.13). The calculation of threshold ζ , is required for the

false alarm probability (PF A), such that

β

(
ζ ;1,

S̃M21
SM21 + 1

)
= PF A (4.20)

ζ can be uniquely calculated since the value of β in (4.16) is strictly decline in v. Now,

with the cooperation of SU1, the sensing probability (psc) given by SU2, is written as,

psc
(2) = β

(
ζ ; S2 + 1,Ω(S1 + 1)

)
(4.21)

In the case of non-cooperation between SU1 and SU2, Ω2 is zero in (4.6). Let psnc
(1) and
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psnc
(2) represent the sensing probability in the case of non-cooperation, and according

to the system model these are written as,

psnc
(1) = PF A

1
S1+1 (4.22)

and

psnc
(2) = PF A

1
S2+1 (4.23)

Now, we discuss the total sensing probability (probability to sense the PU by the SU1

and SU2) in CRNs. The total sensing probability of two users (when they independently

detect the PU) is given by,

psnc
(1) + psnc

(2)− psnc
(1)psnc

(2) (4.24)

The value of psnc
(1) and psnc

(2) can be obtained by equation (4.22) and (4.23), respec-

tively. In the same way, the total sensing probability in the JCSS scheme is given by,

psc
(2) + psnc

(1)− psc
(2)psnc

(1) (4.25)

The value of psc
(2) is given by (4.21).

4.1.2 Rapidity and Sensing Time for Two Secondary Users

In this subsection, the total sensing time is minimized with the help of the proposed

JCSS scheme. Note that, in complex networks, the sensing probability and sensing time

do not obey the strict inverse relationship. Two cases are considered to represent the

cooperation effect in total sensing time, operating at distinct levels of cooperation. In

addition, there is a central controller through which all the SUs are interconnected.

Non-Cooperation case: All the SUs independently detect the PU; when the first user

detects the PU presence, it informs other users with the help of the central controller.

Cooperation case: This case is based on the JCSS scheme. In this, if two SUs

function in the identical carrier and are situated sufficiently close to each other, they

cooperate in searching for PU’s presence. As soon as the first SU detects the PU, it

informs other SUs with the help of the central controller.

In Fig. 4.1, there are two SUs, SU1 and SU2, cooperating in finding the PU presence,
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and SU1 works as a relay for SU2. In the non-cooperation case, let the number of slots

occupied by SU2 to sense the PU’s presence is τs. Then τs is

Pr{τs = d} = (1− psnc
(2))d−1

psnc
(2) (4.26)

where psnc
(2) indicates the sensing probability of SU2 in one slot under the non-cooperative

models and is given by (4.23). Let the sensing time involved in the cooperation and non-

cooperation case mentioned above is Tsc and Tsnc, respectively.

Tsc =
2− psc (2)+psnc (1)

2
psc

(2) + psnc
(1)− psc

(2)psnc
(1) (4.27)

Tsnc =
2− psnc (2)+psnc (1)

2
psnc

(1) + psnc
(2)− psnc

(1)psnc
(2) (4.28)

For the two users, the rapidity gain of the cooperation protocol over the non-cooperation

protocol is written as

= nc
c

(1) ,
Tsnc

Tsc
(4.29)

Rapidity gain is the function of S1 and S2.

4.2 Energy Consumption during Spectrum Sensing

After analyzing the sensing time and sensing probability, in this section, the total energy

consumption is investigated. The energy consumption in the sensing process depends

on the applied sensing scheme. In this chapter, two sensing schemes are proposed and

examine the consumed energy when these schemes are used for sensing.

• Preset spectrum sensing scheme (PSS)- In the PSS scheme, a user senses each

spectrum in a preset order and selects a spectrum that has less contention as com-

pared to the pre-defined threshold (α) selected by the user.

Let ’d’ represent the probability that the next detected spectrum is better than

the current spectrum by a threshold (α). The number of the spectrum that would

require to be sensed is denoted by the Q; here, Q contains the values from 1 to

J −1. In this context, J shows the total number of available spectrum, including

the current spectrum. For the first J − 2 spectrum, the probability distribution of
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Q, which is based on the geometric distribution, is given as:

Pr (Q = b) = d(1− d)b−1,∀b = 1 to J −2 (4.30)

Sensing probability of the last spectrum is,

Pr (Q = J −1) = 1−
J−2∑
b=1

d(1− d)b−1 (4.31)

Based on (4.30), the probability of the user switch from the current spectrum to

others can be calculated as:

psw =
J−1∑
b=1

d(1− d)b−1, (4.32)

Hence, by (4.30) and (4.31), we estimate the expected value of sensed spectrums,

EQ =

[
1− (1− d)J−2

]2

d
+ (J −1) (1− d)J−2 (4.33)

Therefore, the sensing energy can be given as:

Ẽsense = EQ
[
P̃sw θ̃sw + Ẽch

sense

]
+ psw P̃sw θ̃sw (4.34)

where Ẽch
sense is calculated by [87] and the value of d, can be determined as

follows. Suppose K indicates a random variable denoting the number of users

present in the sensed spectrum, and FK (.) represents the CDF of the number of

users in each spectrum. Thus,

d = Pr (K < r − rα) = FK (r − rα)−Pr (K = r − rα) (4.35)

• Viscous spectrum sensing scheme (VSS)- According to this scheme, a SU holds a

spectrum till the expected energy consumption reaches more than a certain thresh-

old. The consumption of energy depends on the number of contending users.

Therefore, we can say that a user searches another spectrum when the contending

users reach over a specified number, suppose i. But the user must periodically
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sense its spectrum to get the information regarding the number of contending

users, r , on the current spectrum.

Let m represent the probability for a user to stay on its current spectrum, and Z

show the average number of spectrums that require to be sensed. In the context

of the adhesive sensing scheme, Z has a value from 1 to J (where 1 shows the

current spectrum). We have,

Pr (Z = 1) = m (4.36)

Let d represent the probability that on sensing, the next detected spectrum has

contending nodes less than i. Thus based on (4.32) and (4.36) the probability to

sense spectrums 2 to J −1 expressed as similarity to previous scheme:

Pr (Z = b) = (1−m) d(1− d)b−2,∀b = 2 to J −2 (4.37)

Therefore, the probability to sensed Jth spectrum is,

Pr (Z = J) =

1−m− (1−m)

J−1∑
b=2

d(1− d)b−2


(4.38)

Hence, by (4.35), (4.36) and (4.37), we can estimate the expected average number

of spectrums are sensed:

EZ = m + (1−m)
[
1 +

1− (1− d)J−2

d
+ (3− J) (1− d)J−2

]
(4.39)

Suppose K indicates a random variable denoting the number of users present in

the sensed spectrum, and FK (.) represents the CDF of the number of users in each

spectrum. Thus,

m = Pr (K ≤ i) = FK (i) (4.40)

In this sensing scheme, if r ≤ i, a user senses only its own spectrum. Otherwise, it

starts sensing other spectrums until it finds r ≤ i; when it obtains such a spectrum,

it consumes energy to switch to the new spectrum. Therefore, the sensing is:

Ẽsense = EZ Ẽch
sense + (EZ −1) P̃sw θ̃sw + (1−m) P̃sw θ̃sw (4.41)
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4.3 Performance Evaluation

4.3.1 Testbed Environment

A real-time hardware testbed is utilized to analyze the performance of the proposed

schemes. A testbed consists of the two Universal Software Radio Peripherals (US-

RPs) that contain software and hardware composition provided by National Instruments

(NI). The USRP-2922 of Ettus Research is equipped with filters, wide-band RF con-

verters, a general-purpose processor to manage signal processing, Digital-to-Analog

Converter (DAC), and an Analog-to-digital Converter (ADC) and Voltage Controlled

Oscillator (VCO) to improve frequency accuracy and synchronization capabilities [88].

Each USRP consists of Rx/Tx ports that can be programmed with the help of LabVIEW

Communication System Design Suite (CSDS) software. Table 4.1 shows the specifica-

tions and parameters of USRP-2922 used for implementing the testbed.

Table 4.1: Real time setup parameters

Real time setup parameters and values
Parameter Value Parameter Value
Gain step 0.5 dB Frequency range 400 MHz-4.4 GHz
Peak I/Q sample rate 25MS/s Noise figure 5 dB-7 dB
Frequency step ¡1 kHz Gain range 0 dB-31 dB
DAC 16 bit Power requirement 6 V

 

Figure 4.3: A testbed SDR platform for cognitive radio networks
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4.3.2 Simulation Results

The proposed sensing schemes have been verified using MATLAB. The system metrics

like sensing probabilities, sensing time, rapidity gain, energy consumption, and energy

saving percentage are analyzed.
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Figure 4.4: Improvement in sensing probability by cooperation technique.

Fig. 4.4, represents the plot of sensing probability in case of cooperation (psc
(2)) and

non-cooperation (psnc
(2)). psc

(2) is determined by (4.21) and psnc
(2) is determined by

(4.23) as a function of S1, in the case for S̃ = S = 0. We consider the value of PF A is 0.1.

In Fig. 4.4 the plot of psc
(2) and psnc

(2) is plotted for three values of S2 : S2 = 8.5 dB,

3.5 dB and 0 dB. From Fig. 4.4, it is observed that the proposed JCSS scheme presents

better outcomes in comparison to the non-cooperation scheme (psc
(2) > psnc

(2)) for each

value of S2 and for higher values of S1.

The total sensing probability under the proposed JCSS scheme is indicated in Fig.

4.5. This probability is estimated and plotted the (4.25) by considering the network

asymmetry function S1 for S2 = 0 dB and PF A = 0.1. Fig. 4.5 shows that the cooperation

between two SUs increases the total sensing probability.

For integrity’s sake, the plot in Fig. 4.6 presents the actual sensing time in the num-

ber of slots required to detect the PU. This result indicates the reduction in sensing time

in the process of PU’s detections with the help of the proposed JCSS technique. For

analyzing the exact savings, either in the form of sensing time or rapidity, the signal
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Figure 4.5: Total sensing probability under joint cooperation spectrum sensing scheme

power obtained from the PU at the SU is very significant.

In Fig. 4.7, the rapidity gain (= nc
c

) is plotted based on the JCSS scheme by consid-

ering the network asymmetry function S1 for S2 = 0 dB and PF A = 0.1. The maximum

rapidity gain for this scenario is 1.35. An increase in rapidity gain is advantageous for

the long-term case since the SUs need to monitor the spectrum for the PU’s existence.
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Figure 4.6: Sensing time under joint cooperation spectrum sensing scheme (S2 = 0dB).

The following values are considered for the analysis of total energy consumption:

P̃tr x = 800 mW, P̃rcx = 750 mW, P̃idl = 500 mW, P̃slp = 20 mW, P̃sw = 700 mW, θ̃data =
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Figure 4.8: Preset spectrum sensing scheme: a) Total energy consumption, b) Energy
saving percentage

0.22 ms, θ̃ack .pkt = 0.004 ms, θ̃di f s = 0.05 ms, θ̃hdr .pkt = 0.003 ms, θ̃pkt.hdr = 0.008 ms,

θ̃sw = 0.007 ms, θ̃slot = 0.004 ms.

Fig. 4.8a, shows the total energy consumption for different values of number of

available spectrum (J). According to the result, the energy consumption of SU increases

with an increase in sensing time, and it has a maximum value when the number of

the available spectrum is high. The explanation is as follows when the number of the

available spectrum is high; then the SU takes more time to sense each spectrum. It stops

the sensing process when it gets a spectrum with fewer contending users compared to

the pre-defined threshold value.
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Figure 4.9: Viscous spectrum sensing scheme: a) Total energy consumption, b) Energy
saving percentage.

Fig. 4.8b, shows that the energy-saving percentage increases with the threshold value

increase. The reason is that by increasing the threshold value (α), more spectrum will

come into the range of the qualified spectrum. Therefore, the SU can get a more ap-

propriate spectrum in less time because the options have been increased. Hence, this

scheme saves energy, and the energy-saving percentage is increased.

Fig. 4.9a, shows the total energy consumption of SU for different values of contend-

ing users (r) in the current spectrum. The result reveals that with an increase in the

available spectrum (J), the SUs have more options to select an appropriate spectrum.

According to the proposed scheme, a SU searches another spectrum when the contend-

ing users in the current spectrum are increased over a specified value. Due to more

spectrum availability, the number of contending users in any spectrum will be below the

specified value. So, each SUs can complete its transmission in a single spectrum, and

there is no need to switch to another spectrum. Therefore the energy consumption in the

scheme is decreased when the value of J increases.

The proposed VSS scheme is used to get an optimum value of i. According to the

proposed scheme, the SU tries to obtain a spectrum with low contending users. A small

value of i leads to a lower contention on the spectrum, but detecting a spectrum with

a lower value of i might demand extra sensing. On the other hand, for the low value

of r , the energy-saving percentage will be maximum. The reason is as follows when

the value of r increases, then the SU has to spend energy not only to sense another

low contending spectrum but also to switch on them. Hence, Fig. 4.9b shows that the
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energy-saving percentage decreases with the increase in the value of r . It is observed

from Fig. 4.9b that for the value J = 10 and θ̃sense = 150 ms, i = 2 is the smallest possible

value for which the energy-saving percentage is highest due to less contention.
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Figure 4.10: Sensing probability comparison of proposed JCSS scheme with other ex-
isting schemes

Fig. 4.10, demonstrates the variation in sensing probability w.r.t. the received signal

power. It can be surveyed from the graph that the proposed JCSS scheme achieves

maximum sensing probability as compared to the other existing sensing schemes.
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Figure 4.11: Sensing time comparison of proposed JCSS scheme with other schemes

Fig. 4.11, shows the comparison among various sensing schemes with the proposed
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JCSS scheme regarding total sensing time. Fig. 4.11 shows that the proposed JCSS

scheme requires minimum sensing time to sense a vacant spectrum.
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Figure 4.12: Energy consumption variation for different number of available spectrum

Variation in energy consumption for different schemes w.r.t. the available number

of spectrum is presented in Fig. 4.12. From the result, we can conclude that with an

increase in the number of available spectrum, the energy consumption increase, but the

proposed PSS scheme presents the lowest energy consumption with the other scheme.

The reason behind this is; in the proposed PSS scheme, the user selects a spectrum with

less contention than the pre-defined threshold (α) selected by the user. This property of

the proposed PSS scheme reduces energy consumption.

4.4 Conclusions

This chapter analyzes the benefits of cooperation between SUs for detecting the PU’s

spectrum, through which the rapidity of the network can be improved. Two cases (hav-

ing a distinct level of cooperation) have been exploited to reduce the sensing time. The

first one is non-cooperative, in which all SUs independently sense the PU, and the first

user who senses first, informs the presence of the PU to the other SUs via a central con-

troller. The second is cooperative, in which SUs follow the protocols of Amplify-and-

Forward cooperation to minimize the sensing time. The results show that the proposed

joint cooperation spectrum sensing (JCSS) scheme increases the sensing probability for
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a vacant spectrum by as much as 34%. After this, we propose two distinct spectrum

sensing schemes preset spectrum sensing (PSS) and viscous spectrum sensing (VSS)

that presents the energy savings percentage in GCRNs under specific conditions. These

conditions depend on various factors like total contending users in the current spectrum,

the time required to sense a spectrum, and the total number of the considered spectrum.

These results conclude that the energy consumed by the user’s contention increases due

to the increase in sensing time. The proposed schemes are better in terms of scalability.
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Chapter 5

CEAR: A Cooperation based Energy

Aware Reward Scheme for Next

Generation Green Cognitive Radio

Networks

IN recent years, energy-efficient green communications have been gaining much at-

tention in the field of advanced wireless networks. The reason is that information

and communication technologies (ICT) are responsible for 3% of greenhouse gas emis-

sions and 4% to 8% of overall global energy consumption. This problem arises due

to inappropriate spectrum management, improper traffic load balancing, and inefficient

resource utilization. The major issue in existing wireless networking is that the data

transmission of PU experiences attenuation and interference because of the multi-path

fading in the practical scenario of the wireless system. The multi-path fading dimin-

ishes the network performance and disrupts the two different networks’ coexistence.

For solving this issue, cooperative communication (CopCom) is recognized as the most

promising solution in which a direct path is divided into many shorter paths. The other

advantage of the CopCom is that it works on the principle of antenna diversity, and a

lower power signal is used for transmission between source and relays. In this chap-

ter, the CopCom in green CRN is considered and categorized in two parts: the first is

CopCom between CUs, and the second is CopCom between CUs and PUs. Initially, the

CUs work as cooperative relays and finish the transmission of PUs, and then CUs get
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the PU’s spectrum as a reward for completing their data transmission. In this way, this

proposed cooperation-based CEAR (Cooperation based Energy Aware Reward) scheme

provides mutual benefit to both CUs as well as to the PUs, and also it helps to improve

the EE and SE of CUs in the CRNs.

The rapid increment of new mobile subscribers having extra demand for bandwidth

cannot be controlled. Thus, we have to focus on designing advanced energy-efficient

wireless communication systems to handle this problem related to spectrum manage-

ment. Therefore, in the context of CRNs, more analyses are required for investigating

the EE and SE for efficient spectrum management. Nowadays, the number of cognitive

wireless devices plays a significant role in the ICT industry, and the goal of these de-

vices is to work at a low energy dissipation rate. Therefore, in this chapter, we focus

on addressing this issue by examining the cooperative behavior of CUs and propose a

CEAR scheme to improve EE and SE in GCRN. We considered a time-slotted frame-

work where the CUs observe and sense the state of PN and perform the decision-making

process to complete the data transmission. The key objective of this work is to design

an analytical model for improving the SE and EE metrics. The significant contributions

of this work are outlined as follows:

• A novel CEAR scheme has been proposed for CUs that takes antennae diversity

and temporal diversity into account for improving the EE in CRNs.

• Two different cases have been considered for the analysis of proposed CEAR

scheme. In the first case, the CUs contain a fixed amount of packets to transmit. In

second, the CUs contain continuously new incoming packets throughout the data

transmission and decision process. The data transmission time limit is considered

dynamic in nature and depends on the CUs’ buffer overflow probability.

• For both cases, the optimal stopping protocol is implemented for decision problem

analysis, and the backward induction method is exploited for determining the

optimal solution.

• We investigate an optimal cooperative solution for CUs in both the diversity (an-

tennae and temporal). In antenna diversity, the PU that one has the least traffic

load is selected by the CU. In temporal diversity, the CUs select a specific time

slot when an immediate incentive is higher than anticipated in terms of EE.
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5.1 A System Model

The CUs with delay-tolerant packets and light data traffic load does not involve in coop-

eration until CUs get rewards. This approach allows directly utilizing the PU’s vacant

spectrum. We consider an example in Fig. 5.1 to explain the cooperation approach be-

tween CUs in CRNs. There is N PUs that utilize various spectrum bands in CRNs. The

CUs make a decision about the selection of cooperation and when and with which PU

they will cooperate. This decision depends upon the time-varying attributes of PUs’

traffic load and spectrum availability. For example, at time t1, a CU may select PU1 for

CopCom and can receive PU1’s spectrum for its transmissions as a reward for coopera-

tion. Additionally, a CU can wait till t2 to immediately utilize the PU2’s spectrum band.

These different selections of PU’s unused channel result in different data rates, delays,

energy consumption, and throughput.
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Figure 5.1: PU’s time-varying properties for different traffic load

Fig. 5.2 represents the proposed framework, where a centralized control cognitive

router (CCCR), a PN, a SN, a group of CUs, and PUs are present in the heterogeneous

network area. The users associated with PN and SN are PUs and CUs, respectively. The

CCCR collects the traffic load situation, CSI, and spectrum availability of PUs. It is

assumed that the PUs occupy the orthogonal primary channels of the same bandwidth

B. The cooperation among these components is illustrated as follows:
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Figure 5.2: A system model of cooperative cognitive radio networks.

• Step 1: Initially, the PUs with data for transmission; convey their data traffic

information to CCCR and try to find the possible CU for cooperation. On the

other hand, PUs with no data for transmission lives in silent mode.

• Step 2: After getting the request from PUs, the CCCR estimates the CSI and then

transmits the PU’s request to all available CUs existing within the coverage range.

• Step 3: Based on the request from CCCR and the awareness about its power

budget and traffic data, CUs (that require access to primary channel) evaluate the

EE and send back the decision (cooperate/ non-cooperate) to CCCR.

• Step 4: The CCCR receives the decisions from CUs obtained after step 3 and

informs a particular PU for creating a radio link with CUs.

In this chapter, a time-slotted structure has been considered for CUs and PUs. In each

time slot k for k ∈ {1,2, ...M }, it is assumed that every PUs has distinct traffic load and

channel state availability as shown in Fig. 5.1. The cooperative decisions are executed
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Figure 5.3: Cognitive user’s multi-phase time slot.

in each time slot with a proper synchronization between PU and CUs. The media access

control (MAC) layer coordination is provided by the CCCR between PU and CUs.

Fig. 5.3 represents the time slot for CUs with length L and is divided into four stages

as follows:

Connection time (δ)- It is the time taken for wireless link setup to be established

between CU and PU.

First section of cooperation time (ξk
txn,relay)- It is the time taken by PU to deliver its

data traffic to the CU.

Second section of cooperation time (ψk
relay,r xn)- It is the time taken for CU to receive

data traffic from the PU’s transmitter and transfer it either by the DF/AF method to PU’s

receiver.

Cognitive transmission time (ζ k
n )- It is the time taken for CU sends its data traffic by

utilizing the associated PUs channel as a reward.

In some environments, these stages can be changed. These environments are (i)

there is no cooperation time stage when a CU finds a vacant channel and decides not

to cooperate, so the entire time slot is used for cognitive activities. (ii) If there is no

vacant channel and the CU decides on no cooperation, then the CU stays in the silent

state throughout the cooperation time and cognitive transmission time and waits for the

next time slot. Moreover, there is an assumption that a PU can only be connected with

a single CU during the cooperation. The CCCR performs the coordination within the

connection time to avoid interference among CUs.
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5.1.1 Power control mechanism

The signal propagation model P̂r x = θ · d−σ · P̂t x is considered in the proposed frame-

work, where θ is a constant associated with various parameters (i.e., gain, frequency, and

radiation pattern) of antenna. Using Shannon’s theorem, the capacity of the transmitter-

receiver link can be estimated as:

Ct x,r x = Blog2
*
,
1 +

θ · d
−σ

tx,rx
· P̂t x

B · N0
+
-

(5.1)

here B · N0 is received noise power, and N0 represents power spectrum density. The

PU’s transmitting power (P̂ptx) and various states of CU’s power are assumed constant.

The various states of CU’s power are as follows: P̂empty in empty state, P̂cr x in receiving

state, P̂cop in cooperation state, and P̂ctx in cognitive transmission state.

5.1.2 Traffic Load of Primary User

It is assumed that the PUs have delay-sensitive data traffic, i.e., the data traffic should

be sent in the same time slot at which it reaches. β indicates the number of arriving

packets in every time interval. The packet arrival supports probability distribution with

PMF f β
(
φ
)
. It is assumed that the PU’s packet arrival is independent of PU’s arrival

process and follows an identically distributed random sequence. There are two possi-

bilities for channel availability; first, when φ = 0 (i.e., PU has zero traffic load and is

considered in an empty state), at this time slot, the CU can obtain the empty channel

of PU immediately. On the other hand, when φ 6= 0 (i.e., PU has a non-zero traffic load

and its channel is in an occupied state), at this time slot, CU can cooperate with PU and

receive an opportunity to access the channel as a reward. Furthermore, the probability

of the empty channel and the occupied channel is represented as,

pempty = f β
(
φ = 0

)
(5.2)

poccupied =
∞∑
φ>0

f β
(
φ 6= 0

)
(5.3)
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5.1.3 Traffic Load of Cognitive Users

In this subsection, the two cases are elaborated for CU’s cooperative strategy. In the first

case, it is assumed that CU has h packets for transmission, and the data size of these

packets is A = h ·m, where m represents per-packet data size. In the second case, packets

frequently arrive at the CU when CU performs the decision-making process. In the sec-

ond case, j k denotes the CU’s queued packets at kth time slot. The data size of packets

is Rk = j k ·m, and a finite-size buffer is considered for CU. The proposed cooperation

strategy is designed for a single CU, and the data packets of the CU are delay tolerant.

Moreover, It is assumed that at the start of the time slot, packets arrive. It is expressed

by a vector γ =
[
γ0, γ1, ....., γS

]
, where γα shows α packets arriving probability here

α ∈ {0,1,2......, S}. Therefore, the average arrival rate is represented as,

λCU =
S∑
α=0

αγα (5.4)

5.2 Problem Formulation for Proposed CEAR Scheme

The objective is to optimize the energy efficiency (EE) and spectral efficiency (SE) of

the CRNs, which operate in limited power conditions while maintaining the interfer-

ence of PU not exceeding their specified thresholds. To attain the maximum EE, the

CU decides with which PU and at what time slot it will cooperate because the CU can

obtain only present knowledge, not future knowledge of the PU’s network. The CU

sequentially examines the PN in the proposed time-slotted framework. Therefore, opti-

mal stopping theory is considered, which helps the CU to get the optimal stopping time

for maximizing its EE. In this chapter, initially, the cooperation scheme is developed

for the temporal diversity, and after that implemented, the optimal stopping rule for the

decision problem. In the proposed scheme, at a particular time slot, an adequate PU

channel with a lower traffic load is selected by CU. This analysis is stopped when the

value of the instantaneous utility function is higher than the expected one; otherwise,

this process is repeated by CU. The maximum EE obtained by the CU when it observes

the kth time slot is denoted Vk and it is calculated as:
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Vk = max {Gk,E [Vk+1]} (5.5)

s.t.

C.1 : log2
(
1 + SN Rt xn,r xn

)
≤ min




ξk
txn,relay

L
· log2

(
1 + SN Rt xn,relay

)
,

ψk
relay,r xn

L
· log2

(
1 + SN Rrelay,r xn

)



(5.6)

C.2 : ξk
txn,relay ·Blog2

*.
,
1 +

θ · d−σt xn,relay · P̂ptx

B · N0

+/
-

= ψk
relay,r xn ·Blog2

*.
,
1 +

θ · d−σrelay,r xn · P̂cop

B · N0

+/
-

(5.7)

C.3 : δ+ ξk
txn,relay +ψk

relay,r xn + ζ k
n ≤ L (5.8)

C.4 : p
(
Rk > Rmax

)
< r (5.9)

C.5 : N > 0 (5.10)

In (5.5), Gk indicates the value of instantaneous utility function at time kth, and Vk+1

shows the expected value of EE observe in next time slot. According to CEAR scheme,

if Vk = Gk at the kth time slot, then the CU stops and if Gk = E [Vk+1] then CU skips the

present time slot. To obtain an optimal solution of proposed CEAR scheme for CRNs,

the following practical conditions are considered as constraints expressed as.

• C.1: Cooperation Reward Constraint- The CEAR scheme is very beneficial for

the networks because it improves the EE and SE of CU for a large number of

PUs. The PUs can achieve a more reliable data transmission rate by leveraging

CUs, and in return, CUs can get access to PU’s channels. A situation is consid-

ered when the channel of CU is congested and it has data packets to send. The

cooperation reward for CU to obtain the PUs channel has been satisfied. There-

fore, the inequality described in (5.6) represents the incentive for the PUs. The

RHS of inequality expresses the rate of cooperative transmission per unit band-

width. A direct connection is not considered by the cooperation rate and we can

write SN Rt xn,r xn = θ·d−σtxn,rxn·P̂ptx

B·N0
, SN Rt xn,relay =

θ·d−σ
txn,relay

·P̂ptx

B·N0
and SN Rrelay,r xn =

θ·d−σ
relay,rxn

·P̂cop

B·N0
. The constraint mentioned above ensures that the transmission rate

of PU is not less in the case of cooperation as compared to non-cooperation.
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• C.2 : Packet relay constraint- Packet relay: For efficient cooperation, it is required

that the entire data packets obtained by the CU from the nth PU in the second

stage must be forwarded to the nth PU’s address by the CU in the third stage.

Hence, the packet relay constraint is represented by (5.7). If (5.7) exists, then

the cooperation reward inequality can be represented as, log2
(
1 + SN Rt xn,r xn

)
≤

ξk
txn,relay

L · log2
(
1 + SN Rt xn,relay

)
.

• C.3 : Time slot constraint- Based on the time slot frame structure represented in

Fig. 5.3, the other conditions represented in (5.8) should also be satisfied as well,

where, ξk
txn,relay and ψk

relay,r xn can be estimated as:

ξk
txn,relay =

φ

Blog2

(
1 +

θ·d−σ
txn,relay

·P̂ptx

B·N0

) (5.11)

ψk
relay,r xn =

φ

Blog2

(
1 +

θ·d−σ
relay,rxn

·P̂cop

B·N0

) (5.12)

There is an assumption that the time slot has a fixed length L and constant con-

nection time δ. The parameter ζ k
n will be discussed later for the two different

situations, and it depends upon the channel capacity.

• C.4 : The proposed CEAR scheme depends on the principle that the probability

of packet loss should be under a definite limit during the sensing and decision-

making operation. Let Rmax and r represent maximum data size (manageable by

buffer) and pre-defined threshold packet loss probability, respectively.

• C.5 : The available resources must be greater than zero, i.e., for taking the CU’s

cooperative decision, the network’s available PUs must be greater than zero.

Spectral efficiency is defined as the network throughput per unit of bandwidth. It is

denoted as QSE .

max
PN ,<N

{QSE } (5.13)

s.t.

C.1 : PN ≥ 0 (5.14)

C.2 :<N ∈ {0,1} ,∀N (5.15)
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• C.1: PN is the transmission power of CU on the N th PU.

• C.2: <N can be valued as 0 and 1. If it is 0 means the N th PU is not used by the

CU and If it is 1 means the PU is used by the CU.

5.3 CEAR Scheme under Antenna Diversity

In this section, initially, we propose CU’s antenna cooperation scheme to pick the PU

with a low traffic load. This traffic load lies under a specified threshold considered by

CU’s data transmission fulfillment at each time slot. After this, we describe the utility

function at the present slot as an immediate reward (i.e., EE).

Based on the obtained CSI from CCCR and according to their own data traffic load

information, the CU determines a threshold value to decide on an adequate PU. There-

fore, the CEAR scheme facilitates the CU to select adequate PU, which has lower metric

value traffic load. It has been discussed above that the packet arrivals of PUs are inde-

pendent of other PUs’ packet arrivals and follow a random process. First, the random

variables are arranged in ascending manner of magnitude, i.e., β(1) ≤ β(2) ≤ ......... ≤

β(N ) where β(i) is the ith smallest number among the N PUs. Now, by using the concept

of order statistics [89], we can calculate the probability mass function of the smallest

traffic load as follows:

We assumed that the traffic load of ath PU is a random variable βa and for a given

time slot it is i.i.d. from other PUs that follows probability mass function f β
(
φ
)

here

φ ≥ 0. At a given time slot, we will calculate the probability distribution of the minimum

βa. Initially, we arrange these N random variables in ascending manner of magnitude,

i.e. β(1) ≤ β(2) ≤ ..... ≤ β(i) ≤ .... ≤ β(N ), where β(i) is the ith order least number in

collection. The probability mass function of β(i) is estimated as:

f β (i)

(
φ
)

= p
(
β(i) = φ

)
=

p
*..
,

z o f the β < φ, b o f the β > φ,

(N − z− b) o f the β = φ

+//
-

(5.16)

=
i−1∑
z=0

N−i∑
b=0

*.
,

N

z

+/
-

*.
,

N − z

b

+/
-

p
(
β < φ

) z p
(
β > φ

)bp
(
β = φ

)N−z−b (5.17)
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=
i−1∑
z=0

N−i∑
b=0

*.
,

N

z

+/
-

*.
,

N − z

b

+/
-

[
F

(
φ
)] z [1−F

(
φ
)]b f

(
φ
)N−z−b (5.18)

Basically, it is required the probability mass function of 1st order statistic, i.e., β(1) =

min
(
β1, β2, .... βN

)
. Next, we set i = 1 and let z = 0; then, the probability mass function

can be written as,

f β (1)

(
φ
)

= p
(
β(1) = φ

)
=

N−1∑
b=0

*.
,

N

b

+/
-

[
1−F

(
φ
)]b
· f

(
φ
)N−b (5.19)

f β(1)

(
φ
)

=
N∑

h=1

N!
h! (N − h) !

[
f β

(
φ
)] h
·

[
1−Fβ

(
φ
)] N−h

(5.20)

where the CDF of the random variable β is Fβ
(
φ
)
.

5.3.1 Threshold Selection for Two Cases

5.3.1.1 Case 1: Without newly incoming packets at CU

For such a case, the CU has data packets to send, and in the duration of the sensing

and decision-making process, no new packets arrived. Now, substituting the value of

ξk
txn,relay from (5.11) and ψk

relay,r xn from (5.12) in (5.8),

δ+
φ

Blog2

(
1 +

θ·d−σ
txn,relay

·P̂ptx

B·N0

) +
φ

Blog2

(
1 +

θ·d−σ
relay,rxn

·P̂cop

B·N0

) + ζ k
n = L (5.21)

Here ζ k
n = A

Blog2

(
1+

θ ·d−σ
relay,relay

·P̂ctx

B ·N0

) shows the cognitive transmission time.

Let Crelay,relay = Blog2

(
1 +

θ·d−σ
relay,relay

·P̂ctx

B·N0

)
, Ct xn,relay = Blog2

(
1 +

θ·d−σ
txn,relay

·P̂ptx

B·N0

)
and Crelay,r xn = Blog2

(
1 +

θ·d−σ
relay,rxn

·P̂cop

B·N0

)
.

δ+
φ ·m

Ct xn,relay
+

φ ·m
Crelay,r xn

+
A

Crelay,relay
= L (5.22)

φ

(
1

Ct xn,relay
+

1
Crelay,r xn

)
+ δ+

A
Crelay,relay

= L (5.23)
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φ

(
1

Ct xn,relay
+

1
Crelay,r xn

)
= L− δ−

A
Crelay,relay

(5.24)

φ =
L− δ− A

Crelay,relay(
1

Ctxn,relay
+ 1

Crelay,rxn

) (5.25)

Now the final traffic threshold can be written as:

φn
th =

(
L− δ−

A
Crelay,relay

)
·

(
1

Ct xn,relay
+

1
Crelay,r xn

)−1
(5.26)

It is observed that each PU has a separate traffic threshold limit for a certain time slot due

to the diverse channel situations of PU. Hence, using (5.26), a specific traffic threshold

can be determined for every PU. The traffic threshold provides the CSI of CU’s different

connections and traffic information.

According to the proposed antenna cooperative scheme, cooperation exists till the

lowest traffic load is less than the threshold value. The smallest threshold between all the

PUs is utilized for comparing the lowest traffic load. The operative traffic threshold is

described as φth = min
{
φ1

th, φ
2
th, ..........φ

N
th

}
. In this way, we can estimate the probability

that a selected PU is suitable for establishing a cooperative connection with CU. In a

special case, when PU has no traffic load, the CU directly exploits PU’s channel without

cooperation. The probability is calculated as:

p∗k = p
(
0 < β(1) ≤ φth

)
+ p

(
β(1) = 0

)
=

φth∑
φ=0

f β(1)

(
φ
)

(5.27)

here p∗k shows the overall probability that a CU can communicate either by CopCom

or by direct access.

5.3.1.2 Case 2: Continuously incoming packets at CU

The number of CU’s data packets keeps growing continuously in the buffer if the CU

has incoming data packets at the starting of every time period slot. Hence, substituting

the value of ξk
txn,relay from (5.11) and ψk

relay,r xn from (5.12) in (5.8), and considers the

solving steps as mentioned in previous case, the traffic load threshold is represented by:

φn,k
th =

(
L− δ−

Rk

Crelay,relay

) (
1

Ct xn,relay
+

1
Crelay,r xn

)−1
(5.28)
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where Rk is the queued packets data size at kth time slot. Since the threshold rep-

resented in (5.28) is considered as the selection criterion. At kth time slot, the value of

threshold and Rk can be evaluated similarly as, φk
th = min

{
φ1,k

th , φ
2,k
th , ..........φ

N,k
th

}
. This

metric value is compared with the minimum value of PU’s traffic load at time kth.

The number of incoming packets is described as a random variable and follow the

probability vector γ =
[
γ0, γ1, ....., γS

]
at each time slot. Therefore, the queued packets

j k can obtain the value w ∈ {h, h + 1, .....h + Sk}, at the kth time slot. This indicates the

cardinality of j k is Sk + 1, where k = 1,2, .......M . Hence, the random variable Rk and

φk
th have cardinality same as Sk + 1. The φk

th is determined by (5.28). Now, to find out

the PMF of φk
th, first, the PMF of Rk is calculated as follows:

• Lemma 1. For evaluating the probability mass function of a Rk , we consider

(k −1)th order convolution of probability vector γ’s, and it is represented as:

In every time slot, the incoming packets are considered as the random variable that

supports the vector γ =
[
γ0, γ1, .......γS

]
. Suppose αk ∈ {0,1, ......., S} represents the in-

coming packets in kth time slot. Hence, the queued packets are represented as w =

h +α1 +α2 + .......+αk , till the kth time slot. Then, the PMF is given as,

f Rk (w) = p (h +α1 +α2 + .....+αk = w) (5.29)

=
S∑

α1=0
p (α2 + .....+αk = w− h−α1) · γα1 (5.30)

=
S∑

αk−1=0
....

S∑
α1=0

p (αk = w− ...−αk−1) · γα1 ....γαk−1 (5.31)

=
S∑

αk−1=0
....

S∑
α1=0

γw−...−αk−1 · γα1 ...γαk−1 (5.32)

=
S∑

αk−1=0
γαk−1 ....

S∑
α1=0

γα1 · γw−...−αk−1 (5.33)

f Rk (w) =
S∑

αk−1=0
γαk−1 ...

S∑
α2=0

γα2

S∑
α1=0

γα1 · γw−h−α1−....−αk−1 (5.34)

The PMF of φk
th can be calculated according to the f Rk (w). Thus, in the case of con-

tinuously incoming packets, the probability of effectively selecting an adequate PU for
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cooperation is calculated by same as (5.27), the probability is,

p∗∗k = p
(
0 ≤ β(1) ≤ φ

k
th

)
= p

(
0 ≤ β(1) ≤ d | φk

th = d
)

p
(
φk

th = d
)

=
∞∑

d=0

d∑
φ=0

f β(1)

(
φ
)
· p

(
φk

th = d
) (5.35)

If CU holds the data transmission, the buffer will fill after a fixed time slot due to

the continuous incoming data packets. In this situation, the newly incoming packets

are lost. The proposed CEAR scheme depends on the principle that the probability of

packet loss should be under a definite limit during the sensing and decision-making

operation. The inequality mentioned in (5.9) must be fulfilled. With an increase in the

time slots, if inequality (5.9) is satisfied at time kth then Rk is non-decreasing. While it

is not satisfied at time (k + 1)th, the sequential time slots up to M contain greater packet

loss probabilities than the threshold. Hence, the novel decision and observation limit is

up to k and expressed by M̃ .

5.3.2 Utility Function

In this subsection, the energy-efficiency function (EEF) is calculated at every time slot.

The proposed CEAR scheme analyzes the CU’s SE, throughput as well as overall energy

cost. If a CU selects a vacant channel, the cooperation phase consumes zero energy, and

the connection phase shares the only energy cost according to Fig. 5.3. Hence, if the

PU’s channel is accessed by CU at kth time slot, then the overall consumed energy (CE)

can be represented as,

CEk = (k −1) (L− δ) · P̂empty + kδ · P̂cr x + ξk
txn,relay · P̂cr x +ψk

relay,r xn · P̂cop + ζ k
n · P̂ctx

(5.36)

In the RHS of (5.36), the first term shows the consumed energy for being silent in

(k −1)th (i.e., previous) time slot. The next term represents connection phase energy

cost up to the kth time slot. The third and fourth terms indicate the energy cost in the

cooperation phase, and the last term provides the energy cost in CU’s transmission.

Here, ζ k,∗
n = A

Crelay,relay
and ζ k,∗∗

n = Rk

Crelay,relay
indicate the CU’s transmission time for

both the cases, without new incoming packets and for continuously incoming packets,
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respectively. Then for the CU, throughput is calculated as:

T k,∗
CU =

A
kL

T k,∗∗
CU =

Rk

kL

(5.37)

where T k,∗
CU and T k,∗∗

CU indicate the throughput of both the cases, respectively. The

ratio of the CU’s data traffic during the kth time slot to the overall time is expressed as

a throughput. By using this throughput function, the EEF can be derived:

Gk =
T k

CU

CEk (5.38)

where Gk represents the EEF for both cases. To save energy in the cooperation

phase, the CU may wait for a vacant primary channel for direct access, but this waiting

time for the vacant channel may be large. Therefore, according to (5.37), the throughput

of CU will decrease for a large value of k. Thus, to attain maximum EE, the CEAR

scheme carefully maintains the balance between consumed energy and high throughput,

represented in (5.38).

5.4 Backward Induction Method for Solving the Opti-

mal Stopping Problem

In this section, the backward induction method is utilized for solving the CU’s cooper-

ation scheme for both the cases.

5.4.1 Case 1: Usage of Backward Induction Method for without

Newly Incoming Packets at CU

The delay-tolerant packets of the CU have a strict time limit to be sent before M th time

slot in this case. Therefore, the expected value of maximum EE is determined at the

beginning of the procedure at time slot (M −1)th. For explaining backward induction

method we consider U∗M−k , which shows the expected value of E [Vk+1]. There is an as-

sumption that the comparison is stopped by CU at time slot M th for U∗0 = 0 and expected

EE at time slot (M + 1)th for E [VM+1] = 0. When CU observes at kth time slot, U∗M−k
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can be determined as,

U∗M−k = E [Vk+1] = E
[
max

{
Gk+1,U∗M−k−1

}]
(5.39)

=
∑

z

Gk+1� f β(1)

(
φ
)

+
∑

b

U∗M−k−1� f β(1)

(
φ
)

+
∞∑

φ=φth

U∗M−k−1 � f β(1)

(
φ
)

(5.40)

where z ∈
{
φ

���Vk+1 ≥ U∗M−k−1, φ = 0,1, ....., φth
}
, b ∈

{
φ

���Vk+1 <U∗M−k−1, φ = 0,1, ....., φth
}
,

k ∈ {1,2, .....,M } and probability is estimated by substituting the value of f β(1)

(
φ
)

from

(5.20) in (5.27).

5.4.2 Case 2: Usage of Backward Induction Method for Continu-

ously Incoming Packets at CU

In this case, there is no strict time limit. Therefore, after a particular stage like M̂ th

time slot, where M̂ < M , the buffer will be filled because of the continuously incoming

packets. Hence, the CU will dynamically decide the desired time duration so that the

buffer overflow probability is maintained below a specified level, as written in (5.9).

This desired time duration decision depends on the packet arrival rates λCU to fully

transfer each queued packet before the buffer is filled. If the buffer size of CU is Rmax

and the pre-defined overflow probability threshold is r , then the equation for packet

delivery time limit can be based on (5.34) and (5.9).

h+Sk∑
Rmax/m

f Rk (w) < r (5.41)

where, f Rk (w) depends on the packet arrival rate λCU =
S∑
α=0

αγα. Then, M̂ can be

estimated inversely from (5.41).

After finding the desired time duration, the backward induction method is imple-

mented for the optimal stopping problem. Here, we consider (5.5) as the stopping rule

of CU and put E
[
VM̂+1

]
= 0. The reason for this is the buffer overflow. Initially, the

expected EE at
(
M̂ −1

) th
time slot is calculated and next, at

(
M̂ −2

) th
, till the 1st time

slot. For simplicity, the identical symbol U∗∗
M̂−k

is employed to express E [Vk+1]. When
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the CU performs the analysis at kth time slot, then U∗∗
M̂−k

can be estimated as,

U∗∗
M̂−k

= E [Vk+1] = E
[
max

{
Vk+1,U∗∗M̂−k−1

}]
(5.42)

=
∞∑

d=0

∑
z

Vk+1� f β(1)

(
φ
)

p
(
φk

th = d
)

+

∞∑
d=0

∑
b

U∗∗
M̂−k−1� f β(1)

(
φ
)

p
(
φk

th = d
)

+

∞∑
d=0

∞∑
φ=d

U∗∗
M̂−k−1� f β(1)

(
φ
)

p
(
φk

th = d
)

(5.43)

where, z ∈
{
φ

���Vk+1 ≥ U∗∗
M̂−k−1

, φ = 0,1, .....,d
}
, b ∈

{
φ

���Vk+1 <U∗∗
M̂−k−1

, φ = 0,1, .....,d
}
,

k ∈
{
1,2, ....., M̂

}
and by using (5.34)-(5.35) the probability will be evaluated.

5.5 Performance Evaluation

The proposed CEAR scheme is verified using MATLAB software. This software an-

alyzes system metrics like EE, SE, packet loss probability, throughput, and consumed

energy. In this work, a cooperative CRN has been considered. Several CUs and PUs are

spread in the same region, and the total number of PU indicates the PN’s density. There

is an assumption that both the PN and SN use fixed power. In the PN, the traffic arrival

of PUs follows the Poisson process with an average arrival rate λPU and PUs obtain

various primary channels of the same bandwidth B = 180 K Hz. In the SN, we assume

that each CU has an initial packet size A = 80 Kb, which is terminated after M = 18 time

slot. It is assumed that the unit of average arrival rate λCU is bits/second. Table 5.1 rep-

resents the list of simulation parameters. The simulation results are presented for both

considered cases. To indicate an extensive insight into the proposed CEAR scheme for

CUs, we analyze the effects of PU’s traffic load, packet arrival rate of CUs, and number

of PU, on the EE, SE, and the performance of CUs. The performance of the proposed

CEAR scheme is compared with the greedy and sub-greedy schemes.
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Table 5.1: Simulation Parameters

Name of Parameter Parameters value
Distance between PU’s sender and receiver pairs (dtx,rx ) 2500 m
Distance between CU’s transceiver pairs (d

relay,relay
) 150 m

d
tx,relay

1250 m
Path loss exponent (σ) 4
P̂ptx 4 W
P̂empty 0 W
P̂cr x 0.2 W
P̂cop 2 W
P̂ctx 0.4 W
N0 6.85×10−16 W/HZ
Time slot length (L) 1 s
Connection phase time (δ) 1 ms
Buffer size of each CU (Rmax) 0.8 Mb
Packet loss probability (r) 0.01
Per packet data size (m) 40 Kb

5.5.1 Case 1: Without newly incoming packets at CU

For this case, the decision span and analysis are up to the M th time slot, and it is con-

sidered that M = 18. We analyze the optimal stopping protocol’s impact on CU’s SE

for various numbers of PUs. According to (5.37), the A is constant; therefore, the SE of

CU is decided by factor kL. Fig. 5.4 presents the impact of PN’s density (the number

of PUs) on the SE of CU. After analyzing Fig. 5.4, we can see that with an increase

in the number of PUs, CU’s SE is improved while; it reduces when the average traffic

load on PU becomes higher. The reason is that when the density of PNs is high, then at

each time slot, the CU can observe more PUs and has a higher possibility of getting an

adequate PU to cooperate with and can identify the unoccupied channel for communi-

cation. Furthermore, if the average traffic load of PU is high, the CU takes more time to

detect a vacant PU for CopCom. Therefore, the SE of CU is decreased.

The impact of the PN’s density (the number of PUs) on the EE of the CU is examined

in Fig. 5.5. From the figure, it can be observed that the CU gets higher EE if there is

more PUs in the PN because CU has more options to pick a PU’s channel with a smaller

traffic load or directly select a vacant PU’s channel for cooperation. It represents that

the antenna diversity of PN improves when the number of PUs increases. It assists CU

in selecting a better PU for cooperation or provides a direct communication opportunity.
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Figure 5.4: CU’s spectral efficiency for various average traffic load of PUs
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Figure 5.5: CU’s energy efficiency for various average traffic load of PUs

The figure indicates that with an increase in the number of PU in the PN, the EE of CU

also increases for a low value of PU’s traffic load. Because of low PU traffic loads,

the CU spends a low amount of energy on cooperation and can detect an appropriate

PU after a few time slots. It results in a larger EE for the CU. It can be observed

from Fig. 5.6 that, with the increase in the number of CU, the EE of network degrades.

Fig. 5.6 that the network’s EE increases with the number of PU. The explanation is that

when more PUs are in the network, the CUs have more options to select an appropriate

PU. In this case, the CU can directly exploit the PU’s channel without cooperation.
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Figure 5.6: Network’s energy efficiency for variable number of CUs
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Figure 5.7: CU’s energy efficiency comparison for various cooperative schemes

The performance of the proposed CEAR scheme is compared with the sub-greedy

and greedy scheme, and we demonstrate the benefits of the CEAR scheme for enhanc-

ing the EE of the CU. In various existing works, the authors have considered the greedy

scheme. According to this scheme, the CUs (cooperative relays) are expected to fol-

low the PU’s decision for cooperation, and in this, the value of consumed energy and

throughput is assured for CUs. The sub-greedy scheme utilizes antenna diversity of PN

in which CU prefers that PU for cooperation, which one has the smallest traffic load

instead of obeying PU’s decision. Fig. 5.7 reveals that with an increase in the number
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Figure 5.8: CU’s energy efficiency for variable number of PUs
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Figure 5.9: Packet loss probability versus analysis slots

of PUs, the CEAR scheme presents improved results against the other two in terms of

CU’s EE. The reason is that the greedy scheme does not employ the temporal and an-

tenna diversity of PN and blindly considers the decision of PU, while the sub-greedy

scheme uses the antenna diversity but not the temporal diversity of PN. However, the

proposed CEAR scheme exploits the benefits of both antenna and temporal diversity of

PN. It improves the EE of CU and significantly achieves the objective of energy-efficient

green communications.

The performance of the proposed CEAR scheme is compared with other existing
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schemes, like the PBPA scheme, PBDM scheme, EGPA scheme, and AFSOS scheme

in Fig. 5.8. It is observed in Fig. 5.8 that the proposed scheme outperforms other bench-

mark schemes. For more PUs in the PN, the CU gets higher EE because CU has more

options to pick a PU’s channel with a smaller traffic load or directly select a vacant PU’s

channel for cooperation.

5.5.2 Case 2: Continuously incoming packets at CU

In this subsection, the SE and EE of CU are discussed when the CU has continuously

incoming packets. In this case, we set a novel time limit for analysis due to the possible

buffer overflow after a specific time. The CU can find a unique data delivery time limit

according to pre-defined parameters and (5.41). Within this time limit, the transmission

of queued data traffic must be completed. On the other hand, the packet loss proba-

bility exceeds the threshold value after some time. Fig. 5.9 shows that the packet loss

probability rises with the rise in the analysis slots and increases rapidly when the packet

arrival rate of CU grows. According to the figure, the CU can dynamically schedule

an analysis slot based on the parameters like buffer size, threshold, packet arrival rates,

pre-defined overflow probability, etc.
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Figure 5.10: CU’s spectral efficiency versus the total number of PUs

Fig. 5.10 shows that with an increase in the number of the PUs, the SE of CU at

different packet arrival rates also increases. The reasons are as follows, the decision

and observation period are smaller to maintain the packet loss probability under the
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threshold, so the CU selects the PU for cooperation purposes much before the previous

case. Therefore, there is a large number of packets at CU to transmit. According to

the (5.37), the SE of CU will surely increase. In addition, if there are more PUs in

the PN, CU can directly get the vacant PU or has more options to choose a PU with a

smaller traffic load, which leads to higher SE. The simulation result reveals that with an
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Figure 5.11: CU’s energy efficiency versus packet arrival rate

increase in the CU’s packet arrival rate, the EE of CU degrades, as shown in Fig. 5.11.

It can be observed that the EE of CU is increased by increasing the PU’s density in PN,

but system performance is diminished by increasing the packet arrival rate of CU. The

explanation is as follows when the packet arrival rate is high, then the CU has to send

more packets, which produces a larger time for the cognitive transmission. Thus, the

CU follows a more rigorous selection criterion on the traffic load of the PUs, which

results in fewer qualified PUs, and because of the probability of buffer overflow, the CU

selects the PU very soon and does not efficiently employ the temporal diversity of PN.

It decreases the opportunity to choose an appropriate PU for cooperation and extends

its energy expenditure.

The result of the proposed CEAR scheme is compared with the greedy and sub-

greedy schemes in terms of EE performance. From Fig. 5.12, it can be concluded

that the proposed CEAR scheme performs better than the other schemes in the case

of continuously incoming packets. The result shows that the greedy scheme gives a

constant EE curve. Because in this scheme, the antenna diversity is not employed by
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Figure 5.12: Comparison of CU’s energy efficiency for various cooperative schemes

the CU. Although the sub-greedy scheme provides an improved EE for more PUs, it

does not consider temporal diversity for cooperation. Thus, it gives a lower EE than the

proposed CEAR scheme. The result shows that the EE grows up high for an increased

number of PUs. It represents that the CEAR scheme is more energy-efficient for ultra-

dense network deployment. Fig. 5.13 shows that the EE of CU in case 1 is higher than
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Figure 5.13: Comparison of CU’s energy efficiency for two different cases.

in case 2. There are continuously incoming packets at CU in the case of 2. Therefore,

the CU has to transmit more packets. It results in a longer cognitive transmission time.

So, the CU becomes more careful in selecting the adequate PU, and it is also restricted
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from making a decision rapidly. Therefore, the PN’s temporal diversity is not employed

efficiently, and it reduces the number of adequate PU for selection. Hence, the EE, in

this case, is degraded.
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Figure 5.14: Comparison of CU’s throughput for two different cases.

Fig. 5.14 represents that the higher throughput is obtained in case 2 than the case

1. Because of maintaining the packet loss probability below the threshold, the CU

takes the decision regarding cooperation with PU much quicker than in the first case.

Therefore, the CU can transmit more packets for a high packet arrival rate. Furthermore,

the throughput of the CU improves when the number of PUs increases because a CU can

select a vacant channel or a PU with the lowest traffic load. It offers higher throughput

in the second case.

Fig. 5.15 illustrates the consumed energy w.r.t. the average traffic of PU for various

schemes. As seen from the figure, the higher value of the average traffic load of PU, the

lower the energy consumption in the proposed CEAR scheme. The reason behind this

in the proposed scheme is based on the antenna and temporal diversity of PN; therefore,

the CU can obtain a vacant PU’s channel for direct transmission, or it can select an

adequate PU which has a lower metric value traffic load after exploring more PUs.
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Figure 5.15: Variation in consumed energy for different values of average traffic of PU.

5.6 Conclusions

The wireless network infrastructure is extending day by day due to the addition of mo-

bile subscribers, which degrades energy efficiency, spectral efficiency, and system per-

formance. This chapter presents a cooperation-based energy-efficient scheme for cogni-

tive users in CRNs to improve the energy efficiency of CU. The proposed CEAR scheme

supports CUs to actively cooperate by utilizing temporal and antenna diversity to im-

prove energy efficiency. The proposed CEAR scheme is compared with other existing

schemes, and it is presented that the CEAR scheme provides up to 28% improvement

in energy efficiency. In this work, the optimal stopping protocol is used for problem

formulation, and the backward induction method is employed for solving the decision

problem. This chapter has contributed significant insight in terms of energy efficiency,

spectral efficiency, throughput, and consumed energy, which motivates the design of

future green communications systems.
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Chapter 6

Machine Learning based Optimal

Power Control Scheme for Next

Generation Multi-layer Green

Cognitive Radio Networks

NOWADAYS, telecommunication systems provide various important services such

as real-time data transmission, 360◦ video applications, web browsing, online

gaming, etc., with a high number of mobile users. The upcoming applications will re-

quire more data, and it will be challenging for the existing communication systems to

cope with this requirement. This requirement raises energy consumption challenges

in wireless networks. The information and communication technologies (ICT) have

accounted for 2% to 7% of world’s total energy consumption. The vision of the next-

generation networks (NGNs) is to develop a framework that allows existing networks

to link seamlessly. The 5G architecture is the multilayer network having distinct cell

sizes, variable data transmission rates, powers, and numerous heterogeneous wireless

technologies. The interference in 5G networks is arisen due to the heterogeneous net-

working architecture, ultra-dense networks, and transmitters with different transmission

powers, which leads to traffic imbalance problems, licensed and unlicensed network ac-

cess regulations in distinct layers, and the effect of carrier aggregation and M2M com-

munications. Thus, it is required to investigate an intelligent power control schemes to

improve the system performance and reduce signal interference for various layer users.
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This chapter proposes a reinforcement learning-based optimal power control scheme

(ROPC) that utilizes the non-cooperative communication method. According to the

proposed scheme, each CT estimates the other CTs’ power control policies based on

interacting with the environment and exploiting previous experience. ROPC scheme

minimizes the overhead of either information exchange among the CTs or establishing

a central control unit for information broadcasting. It indicates that less size of informa-

tion interchange between CTs and optimal power control is achieved which is necessary

condition for green communication. In addition to this, the proposed framework en-

sures that all users in the network achieve high QoS, which is evaluated in the form

of improved EE, SE, and signal-to-interference-plus-noise ratio (SINR). Reinforcement

learning (RL) is a powerful approach for designing highly adaptable and energy effi-

cient wireless networks. Combining RL into CRNs is being widely studied, and now

it has become an important research area in both industry and academia. Therefore, in

this chapter, the non-cooperative behavior of CTs is examined to address the power is-

sue and propose an ROPC scheme for GCRNs from the perspective of EE and SE. This

work distinguishes itself from available literature as follows:

• A reinforcement learning-based optimal power control (ROPC) scheme is pro-

posed to address the complex power-related issues in multilayer CRNs.

• The real-time learning feature is exploited in the proposed ROPC scheme. Real-

time learning requires complete knowledge about all the learning agents present

in dynamic environment, and this process is challenging in the context of the

heterogeneous environment.

• In a CRNs environment, each CT updates its learning information by interacting

with the environment and exploiting its previous experience, without cooperating

with other CTs. This feature of the proposed scheme minimizes the cooperation

overhead and helps to design the energy-efficient green CRNs.

• A concise representation of the Q-values is considered to minimize the network’s

computational complexity because the network complexity increases with the ex-

tent of the state-action pair. This concise representation feature diminishes the

state space and accelerates the convergence of the algorithm.
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6.1 A System Model

The proposed system model contains two layers of the heterogeneous 5G network: the

layer-1 (primary layer) includes a macro-cell with a primary base station (PBS) and PUs,

and layer-2, contains two different size cells micro-cells and femtocells and M2M com-

munication, as represented in Fig. 6.1. The suggested model considers bandwidth dis-

tribution for down-link transmission. All the layer-2 cells and M2M are uniformly dis-

tributed under the area of layer-1. The group of PUs is represented by L = (1,2, ......., L)

and the group of cognitive base stations (CBSs) situated at layer-2 are indicated by

K = (1,2, .......,K ). Furthermore, the group of the CUs connected with CBSs is repre-

sented by N = (1,2, .......,N ), and the pair of M2M is represented by M = (1,2, .....,M).

The mth pair of M2M (m ∈ M) contains M2M transmitter (mt x) and receiver (mr x), and

in this context mt x ∈ Mt x , Mt x = (1,2, .......,Mt x) and mr x ∈ Mr x , Mr x = (1,2, .......,Mr x).

The group of CUs connected with the kth CBS is indicated as N k with the assumption

that each CU can be connected with a single CBS.

Primary userPrimary user

Primary 
base station

M2M
Micro user

Micro 
base station

Femto user

Femto 
base station

Primary user

Primary 
base station

M2M
Micro user

Micro 
base station

Femto user

Femto 
base station

Figure 6.1: Proposed system model

A binary variable dk
n is used to represent the connection between nth CU with kth

CBS. The value dk
n = 1 shows that the nth CU (n ∈ N) is connected with kth CBS, and

dk
n = 0, otherwise. The kth CBS selects a random level of power denoted as pv from the
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group of discrete power levels to control the transmission power.

pv =



∈
[
1, p̃v

]
, i f a CU get served by kthCBS

0 otherwise




(6.1)

where p̃v is maximum required level of transmission power for CBS. The distributed

power to the kth cognitive base station is represented by pk and it belongs to the group of
[
0, 1

p̃v pk
max,

2
p̃v pk

max, ..,
pv

p̃v pk
max, .., p

k
max

]
, here pk

max is the maximum transmission power for

the kth CBS. Furthermore, the mth pair of M2M selects a power level pm ∈
(
0,1,2, ......, p̃v

)
that fulfill the requirements of minimum transmission power pm

min. It also assures that

the receiver of M2M is situated within the M2M transmitter proximity (Dm), or it can

be written as Dm ≤ Dm
max.

The SINR of mth M2M pair is evaluated as follows

βm =
pmGmtx,mrx

Xg,m + X PBS,m + X K,m +N0
(6.2)

where noise power is indicated by N0 and Gmtx,mrx is power gain between mth M2M

transmitter and receiver. The combined interference from all other M2M transmitters at

mr x
th M2M can be represented as-

Xg,m =
∑

g∈
Mtx
mtx

pgGg,mrx (6.3)

In (6.3) the transmission power of gth M2M transmitter is pg and power gain between

gth M2M transmitter and mr x
th M2M is Gg,mrx .

The interference due to the PBS at mr x
th M2M can be written as,

X PBS,m = pPBSGPBS,mrx (6.4)

where GPBS,mrx is the power gain between the PBS and mr x
th M2M. Thus, the interfer-

ence due to all CBSs (represented by K) at mr x
th M2M is,

X K,m =
∑
k∈K

pkGk,mrx (6.5)

where Gk,mrx is the power gain between CBSs and mr x
th M2M.
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The SINR of the nth CU connected with the kth CBS is,

βk,n =
pkGk,n

X M,n + X y,n + X PBS,n +N0
(6.6)

where Gk,n is the power gain between kth CBS and nth CU. The combined interfer-

ence due to all M2M transmitters at the nth CU is-

X M,n =
∑

mtx∈Mtx

pmGmtx,n (6.7)

where Gmtx,n is power gain between M2M transmitter and nth CU. Furthermore, the

interference due to the all other CBSs y at the nth CU is,

X y,n =
∑
y∈ K

k

pyGy,n (6.8)

where Gy,n and py show the power gain between the other CBSs y and nth CU, and

transmission power of CBS y, respectively. The interference due to the PBS at nth CU

can be written as,

X PBS,n = pPBSGPBS,n (6.9)

where term pPBS and GPBS,n indicate the transmission power of PBS, and power

gain between the PBS and nth CU, respectively.

The SINR of lth PU is defined as follows,

βl =
pPBSGPBS,l∑

k∈K pkGk,l +
∑

mtx∈Mtx
pmGmtx,l +N0

(6.10)

where GPBS,l , Gk,l , Gmtx,l shows the power gains of lth PU with PBS, CBSs k, and M2M

transmitters mt x , respectively.

6.1.1 Problem Formulation with EE Perspective

In this chapter, energy efficiency (η) is considered for analyzing the power control mech-

anism and it can be written as the data transmission rate divided by the power consumed

by the CT.

η j =
W log2

(
1 + β

)
cp + p j (6.11)
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where W shows the bandwidth, and the power consumed by the CT device is repre-

sented by cp . The term j refers for CT device which includes both M2M transmitters

and CBSs. β is the SINR at the cognitive receiver. Hence, the optimization of the power

control mechanism in the heterogeneous CRNs is expressed as follows-

max
pj

{
η j

}
(6.12)

Subjected to:

C.1 :
∑
k∈K

dk
n = 1,∀n ∈ N

C.2 : βl ≥ β̃l,∀l ∈ L

C.3 : βk,n ≥ β̃k,n,∀n ∈ N

C.4 : βm ≥ β̃m,∀mr x ∈ Mr x

C.5 :
∑
n∈N

dk
n ≤ ξ,∀k ∈ K

Constraint C.1 shows that each CU can be connected with a single CBS. The con-

straint C.2 reveals that the SINR of PUs should be above the specified threshold β̃l . The

PBS exchanges the information of the PU’s SINR with M2M transmitter and CBSs. C.3

reveals that the SINR of nth CU should be above the specified threshold β̃k,n. The C.4

illustrate that the SINR of mth M2M should be above the specified threshold β̃m. The

constraint C.5 express that each CBS can operate with maximum ξ CUs.

6.1.2 Power Control Learning Framework

The power management based on real time learning for CT devices is described in this

section. This mechanism can be expressed as δ =
(
K,Mt x, p j, η j

)
. The total available

action space for all CT devices is represented as p =
∏

j∈K∪Mtx
p j . For utilizing the

available spectrum, both layers (layer-1 and layer-2) are considered time-slotted config-

uration for the long-term learning procedure. In this work, the continuous action for-

mat p j =
[
p j

min, p
j
max

]
is discretized to be consistent with the real-time learning structure

based on (6.1). It is specified that a j ∈ A j , here A j =
{
0, 1

p̃v p j
max,

2
p̃v p j

max, ..,
pv

p̃v p j
max, .., p

j
max

}

as the action of CTs, and the action space A =
∏

j∈K∪Mtx
A j for all CTs. Hence, the term
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in discrete format is δ′ =
(
K,Mt x,

{
p j

}
,

{
η j

})
.

The parameters of real-time learning are illustrated as follows:

• Agent: In this work, each CT works as a learning agent, and its objective is to

attain the optimal power control policy at different network states.

• State: The CT j follows the state,

s j
t =

(
j, p j

)
(6.13)

The CTs observe the local information to describe the state of the environment at

a specific t time slot.

• Action: The transmission power of CT can be expressed as the action,
(
a j

)
=

(
p j

)
• Reward: The reward in terms of state/action set R j

(
s j,a j

)
can be estimated as,

R j
(
s j,a j

)
=




R j
(
a j

)
= η j, I f C.1−C.5 satis f ied

0 otherwise
(6.14)

Note that the selection of a j at state s j ensures the achievement of the desired EE

and maintains the required QoS transmission. As the constraints C.1 to C.5 are

fulfilled, the proposed ROPC scheme achieves the reward by maintaining QoS.

• Transition function: The transition of state from s j
t to s j

t+1 represents stochas-

tic performance of CT. The CT independently performs the selection of pol-

icy π j
[
s j

]
, for maximizing its overall expected reward. The probability vector

which describes the policy is, π j
[
s j

]
=

(
π j

[
s j,0

]
, ........., π j

[
s j, p j

max
] )

, where

π j
[
s j,a j

]
shows the probability that at a particular state s j , a CT j selects action

a j . The RL based power control process has been depicted in Fig. 6.2.

In the condition of possessing detailed information about all other CTs policies π− j =
[
π1, ........, π j−1, π j+1, ......., πK

]
, the overall expected discount of CT j over an infinite

time slot can be expressed as,

υ j
(
s j, π j, π− j

)
= E



∞∑
t=0

γtR j
{
s j

t , π
j
(
s j

t

)
, π− j

(
s j

t

)}
, s j

0 = s j


(6.15)
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Figure 6.2: Reinforcement learning model for power control

= E
[
R j

{
s j, π j

(
s j

)
, π− j

(
s j

)}]
+γ

∑
s j∆∈S j

ρs j,s j∆

{
π j

(
s j

)
, π− j

(
s j

t

)}
υ j

(
s j

∆, π
j, π− j

)
(6.16)

where γ is discount factor, ρs j,s j∆
{.} indicates probability of state transition;

E
[
R j

{
s j, π j

(
s j

)
, π− j

(
s j

)}]
=

∑
[a j,a−j]∈A


R j

(
s j,a j,a− j

) ∏
i∈K

πi
(
s j,a j

)
(6.17)

where a− j shows the action taken by the other CTs for state s j . At each state s j , a

CT utilizes the stochastic learning theory for learning the policy associated with optimal

power control π j
∗. To attain the optimal power control policy π j

∗, the following condition

must be fulfilled for each CT j, j ∈ K ∪Mt x ,

υ j
(
s j, π

j
∗, π
− j
∗

)
≥ υ j

(
s j, π j, π

− j
∗

)
,∀π j ∈ Π j (6.18)
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For CT j, the optimal power control policy must satisfied the Bellman’s optimality

equation [90], and it is show as,

υ j
(
s j, π

j
∗, π
− j
∗

)
= max

a j∈Aj


E

{
R j

(
s j,a j, π

− j
∗

(
s j

))}
+γ

∑
s j∆∈S j

ρs j,s j∆

{
a j, π

− j
∗

(
s j

)}
υ j

(
s j

∆, π
j
∗, π
− j
∗

)
(6.19)

here

E
{
R j

(
s j,a j, π

− j
∗

(
s j

))}
=

∑
a−j∈A


R j

(
s j,a j,a− j

) ∏
i∈K/ j

πi
∗

(
si,ai

)
(6.20)

Hence, the optimal Q-value of CT j is the addition of present expected reward and future

discount reward when other CTs follow the optimal policies,

Q
j
∗

(
s j,a j

)
= E

{
R j

(
s j,a j, π

− j
∗

(
s j

))}
+γ

∑
s j∆∈S j

ρs j,s j∆

{
a j, π

− j
∗

(
s j

)}
υ j

(
s j

∆, π
j
∗, π
− j
∗

)
(6.21)

Now by considering (6.20) and (6.21) in a combined manner we can write,

Q
j
∗

(
s j,a j

)
= E

{
R j

(
s j,a j, π

− j
∗

(
s j

))}
+γ

∑
s j∆∈S j

ρs j,s j∆

{
a j, π

− j
∗

(
s j

)}
max
q j∈Aj

Q
j
∗

(
s j

∆,q
j
)

(6.22)

The objective of the considered real-time learning technique is to achieve the optimal

Q-value illustrated in (6.22) recursively. The information
(
a j, s j, s j

∆, π
i
t

)
is used at two

different states, s j = s j
t and s j

∆ = s j
t+1, studied at t and t + 1 time slots, respectively.

Here π j
t is the power control policy and a j shows the action perform at t time slot. To

achieve the optimal Q-value, the update rule for real time learning and it can be written

by (6.23), where the learning rate α ∈ [0,1). Revised the Q-value by adding the latest

Q
j
t+1

(
s j,a j

)
=

(
1−αt

)
Q

j
t

(
s j,a j

)
+αt



∑
a− j ∈A− j



Rj

(
s j,a j,a−j

)
×

∏
i∈K/j

πij

(
si,ai

)


+γ max
q j ∈Aj

Q
j
t

(
s j∆,q

j
)

(6.23)

expected reward with the previous price as soon as the transmission power action (a j)

is selected and CT j gets the expected reward.
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6.2 Proposed Reinforcement Learning based Optimal

Power Control Scheme (ROPC)

In this section, the power control issue for multilayer CRNs is addressed without the

information of other CTs’ power control policies. In Q-values, the problem of slow

convergence is raised due to the large size; therefore, a novel concise representation-

based approach is considered that permits each CT to infer the power control policies of

other CTs without information exchange. Furthermore, it employs a brief representation

of the Q-values in the form of a smaller group of variables. This technique improves

convergence speed and decreases the computation steps of the algorithm.

6.2.1 ROPC based Power Control

Initially, it is assumed that a similar power control policy is followed by the vari-

ous CTs at the same network state. To estimate the other CTs power control poli-

cies π− j
t

(
s j

)
=

{
π1

t

(
s1

)
, ........, π

j−1
t

(
s j−1

)
, π

j+1
t

(
s j+1

)
, ......, πK+M

t

(
sK+M

)}
without ex-

changing the information, we express the learning factor for CT j at t time slot is,

ψ
j
t

(
s j,a− j

)
=

∏
i∈K∪M/ j

πi
t

(
si,ai

)
(6.24)

Learning factor is used to estimate the transition in Q-value, such asQ j
t+1

(
s j,a j

)
for t +1

time slot, when specific policies are followed by the other CTs. There is an assumption

that the learning agent has the only information regarding the ψ j
t

(
s j,a− j

)
of the other

CTs. The probability of receiving a reward R j
(
s j,a j,a− j

)
by CT j is similar to the

probability of CT j experiences environment state st+1, and it can be written as,

χ j = π j
t

(
s j,a j

)
ψ

j
t

(
s j,a− j

)
(6.25)

The probability mentioned in the above equation is similar to the probability that CT j

receives the reward expressed in (6.14). It is assumed that the CT j receives the same

reward in θ consecutive time slots. Therefore, θ has i.i.d. with probability χ j = 1
1+θ ′ ,

here term θ′ shows the mean of θ, and it is calculated by CT j after analyzing the history

of its reward. Consequently, by using (6.25), the learning factor can be calculated as
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ψ
j
t

(
s j,a− j

)
= 1

(1+θ ′)π j
t (s j,a j)

as CT j knows its power control policy π j
t

(
s j,a j

)
. Now the

learning factor in terms of the power control policy of CT j is,

ψ
j
t

(
s j,a− j

)
= ψ j

∆

(
s j,a− j

)
+σ j

{
π

j
t

(
s j,a j

)
− π

j
∆

(
s j,a j

)}
(6.26)

where σ is a positive scalar for linearization, and terms π j
∆

(
s j,a j

)
and ψ j

∆

(
s j,a− j

)
are

reference points for the probability to select a specific action and for specific learn-

ing. For deciding the points of reference, it is assumed that the other CTs can iden-

tify the divergence of CT j from its reference points ψ j
∆

(
s j,a− j

)
and π j

∆

(
s j,a j

)
by an

amount equal to
{
π

j
t

(
s j,a j

)
− π

j
∆

(
s j,a j

)}
. If the points of reference are ψ j

∆

(
s j,a− j

)
=∏

i∈K∪M/ j
πi
∗

(
si,ai

)
and π j

∆

(
s j,a j

)
= π j
∗

(
s j,a j

)
then optimal learning factor is ψ j

∗

(
s j,a− j

)
=∏

i∈K∪M/ j
πi
∗

(
si,ai

)
, which presents an optimal transmission. The CT’s reference points

are continuously updated according to their previous transmission information. For the

improvement of reference points in the t time slot, the following rule is considered for

the learning factor.

ψ
j
t

(
s j,a− j

)
= ψ j

t−1

(
s j,a− j

)
+σ j

{
π

j
t

(
s j,a j

)
− π

j
t−1

(
s j,a j

)}
(6.27)

where ψ j
∆

(
s j,a− j

)
and π j

∆

(
s j,a j

)
are fixed to ψ j

t−1

(
s j,a− j

)
and π j

t−1

(
s j,a j

)
respec-

tively. This shows that any changes in the current policy of any CT will be responsible

for the modifications of other CTs in the next time slot. To observe the other CT’s de-

viation policies; the considered framework is based on the variation of CT j from its

reference points.

ψ
j
t

(
s j,a− j

)
−ψ

j
t−1

(
s j,a− j

)
= σ j

{
π

j
t

(
s j,a j

)
− π

j
t−1

(
s j,a j

)}
(6.28)

The updated rule mentioned in (6.23) can be revised by replacing the power control

policies of other CTs with the learning of CT j.

In the proposed ROPC scheme, the most suitable power value contains the highest

selection probability; on the other hand, other power values are organized on the basis

of their Q-values. The Boltzmann distribution is utilized by the proposed learning algo-

rithm for finding the power control action probability. This satisfies the constraints C.1

to C.5 to maximize the EE. Thus, the probability mentioned in (6.29) shows that at a
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particular time slot t, the action a j is selected by the ST j in the state s j ,

π
j
t

(
s j,a j

)
=

eQ
j
t (s j,a j)/Γ∑

q∈Aj eQ
j
t (s j,q j)/Γ

(6.29)

here, for controlling the selection probability a positive integer Γ is considered. The low

value of Γ indicates a major difference in action probability for various Q-values while

the high value of Γ shows almost equal action probabilities.

6.2.2 Upgraded ROPC based Power Control

In this chapter, a concise description of the Q-values is considered for minimizing the

computational complexity. The reason behind this is the system complexity increases

with the extent of states/action pairs. The Q-values are estimated in terms of the smaller

set of variables and a vector. The concise description of the Q-values using a function

estimator Q̃ = S̃× A, is attained by considering a vector Ψ = [Ψh]H
h . This helps to min-

imize the difference between estimated Q-value Q̃ j
t

(
s j,a j,Ψ

)
and the optimal Q-value

Q∗
(
s j,a j

)
. The estimated Q-value can be represented as

Q̃
j
t

(
s j,a j,Ψ

)
=

H∑
h=1

ΨhΩh
(
s j,a j

)
= ΨΩT

(
s j,a j

)
(6.30)

where scalar Ωh
(
s j,a j

)
is a basis function over Q̃ = S̃ × A and the related weights are

Ψh. The gradient function Ω
(
s j,a j

)
is employed to integrate the real-time learning

framework with a concise description.

Then the concise Q value,

π
j
t

(
s j,a j

)
=

eΨj
t Ωτ (s j,a j)/Γ∑

q∈Aj eΨj
t Ωτ (s j,q j)/Γ

(6.31)

6.2.3 Convergence of Proposed Scheme

The convergence of the proposed ROPC scheme has been discussed in this subsection.

The ordinary differential equations are considered to formulate the essential require-

ments for convergence. There are some assumptions have been followed for the analy-

sis.
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• Definition: Let ζ = E
{
ΩT

(
s j,a j

)
Ω

(
s j,a j

)}
. A vector Ω

(
s j,Ψ

)
=

{
Ωh

(
s j,a j

)}

for h = 1→ H is considered for the specific state s j = S∆ and for vector Ψ. Here,

a j ∈
[
a j = argmaxq j∈AjΨ jΩT

(
s j,q j

)]
represents a set of actions for s j associated

optimal power control. The value of ζ is depend on Ψ and can be expressed as a

function,

ζ̃ = E
{
ΩT

(
s j,Ψ

)
Ω

(
s j,Ψ

)}
(6.32)

• Assumption 1: The following conditions
∑∞

t=1α
t =∞ and

∑∞
t=1

(
αt )2 <∞ are

satisfied by the learning rate.

• Assumption 2: The functions Ωh
(
s j,a j

)
are linearly independent for each value

of
(
s j,a j

)
.

• Assumption 3: All attributes of Q j
t

(
s j,a j

)
can be applied to the dot product for

the vectors Ψ j
t ΩT

(
s j,a j

)
.

• Assumption 4: For all values of h = (1,2, .........H), Ωh
(
s j,a j

)
is bounded, it

shows that E
[
Ω2

h

(
s j,a j

)]
<∞ and E

[
R j 2 (

s j,a j,a− j
)]
<∞.

• Proposition: According to the Definition 1 and assumptions 1− 4, the proposed

algorithm converges at probability 1, if

ζ̃ < ζ,∀Ψ (6.33)

Proof : The convergence proof is based on the calculating the stable fixed points of the

ordinary differential equation (ODE).

According to the learning factor as discussed in (6.27), It can be written as,

∑
a−j∈A−j

[{
ψ

j
t

(
s j,a j

)
−ψ

j
t−1

(
s j,a j

)}
R j

(
s j,a j,a− j

)]
=

∑
a−j∈A−j

[
σ j

{
π j

(
s j,a j

)
− π

j
∆

(
s j,a j

)}
R j

(
s j,a j,a− j

)]
(6.34)

Replacing the π j
(
s j,a j

)
from (6.31) and for large value of Γ, the term will be

eΨj
t ΩT (s j,a j)/Γ = 1 +

Ψ jΩT
(
s j,a j

)
Γ

+ O






Ψ jΩT
(
s j,a j

)
Γ




2
(6.35)
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In (6.35), ℘
{

ΨjΩT (s j,a j)
Γ

}
shows the polynomial of order O

[{
ΨjΩT (s j,a j)

Γ

}2]
term. We

can calculate,

∑
q∈Aj

eΨj
t ΩT (s j,q j)/Γ = z j + 1 + *.

,

Ψ jΩT
(
s j,q j

)
Γ

+℘



Ψ jΩT
(
s j,b j

)
Γ




+/
-

(6.36)

here, z j shows power levels. Hence, we obtain,

π j
(
s j,a j

)
=

1
z j + 1

+
1

z j + 1
·
Ψ jΩT

(
s j,a j

)
Γ

+℘



Ψ jΩT
(
s j,q j

)
Γ




(6.37)

where ℘
{

ΨjΩT (s j,q j)
Γ

}
is the smaller order polynomial than O

[
ΨjΩT (s j,a j)

Γ

]
. By exploit-

ing the optimal historic actions, the reference approach can be estimated as follows,

π
j
∆

(
s j,a j

)
=

1
z j + 1

+
1

z j + 1
·
Ψ jΩT

(
s j,Ψ

)
Γ

+℘



Ψ jΩT
(
s j,q j

)
Γ




(6.38)

By substituting (6.37) and (6.38) in (6.36), we obtain,

∑
a−j∈A−j

[{
ψ

j
t

(
s j,a j

)
−ψ

j
t−1

(
s j,a j

)}
R j

(
s j,a j,a− j

)]
=

∑
a−j∈A−j

σ jR j
(
s j,a j,a− j

)
Γ

·
1

z j + 1
[
Ψ jΩT

(
s j,a j

)
−Ψ jΩτ

(
s j,Ψ

)]
(6.39)

For large value of Γ, we formulate (6.40),

∑
a−j∈A−j

[{
ψ

j
t

(
s j,a j

)
−ψ

j
t−1

(
s j,a j

)}
R j

(
s j,a j,a− j

)]
≤

1−γ
z j + 1

[
Ψ jΩT

(
s j,a j

)
−Ψ jΩT

(
s j,Ψ

)]

(6.40)

Replace 1−γ
z j+1 = = for notation simplification.

Ψ j
t = E

[(
=

[
Ψ jΩT

(
s j,a j

)
−Ψ jΩT

(
s j,Ψ

)]
+ γΨtΩT

(
s j

∆,Ψt
)
−ΨtΩT

(
s j,a j

))
Ω

(
s j,a j

)]

(6.41)

1Ψt and 2Ψt are two trajectories of the ODE and it follows 0Ψt = 1Ψt −
2Ψt . These

trajectories have distinct initial conditions. Then (6.42) shows that,
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∂





0Ψt





2

∂t
= 2

(
1Ψt −

2Ψt
) (

0Ψt
)τ

=

E


(
−2=1ΨtΩT

(
s j, 1Ψt

)
+ 2γ1ΨtΩT

(
s j

∆,
1Ψt

))
Ω

(
s j,a j

) (
0Ψt

)τ
−

(
−2=2ΨtΩT

(
s j, 2Ψt

)
+ 2γ2ΨtΩT

(
s j

∆,
2Ψt

))
Ω

(
s j,a j

) (
0Ψt

)τ
+

(
2=−2

) 0Ψtζ
(

0Ψt
)T

(6.42)

The following equalities can be solved according to the Definition 1.

1ΨtΩT
(
s j

∆,
1Ψt

)
≤ 1ΨtΩT

(
s j

∆,
2Ψt

)
(6.43)

2ΨtΩT
(
s j

∆,
2Ψt

)
≤ 2ΨtΩT

(
s j

∆,
1Ψt

)
(6.44)

In (6.42) the expectation function is obtained over various states and various actions;

hence the two different groups are, Φ+ =
[(

s j,a j
)
∈ S j × A j |0ΨtΩT

(
s j,a j

)
> 0

]
and

Φ− ∈ S j × A j −Φ+. After combining the (6.43) and (6.42) in (6.42), we obtain (6.45),
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(6.45)

After applying the Holder inequality [91] in (6.45),

∂





0Ψt





2

∂t
≤ τ ≤ ε (6.46)

As stated in (6.33), the following can be said that,
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2
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(
−2=+ 2γ

) 0Ψtζ
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0Ψt
)T

+
(
2=−2

) 0Ψtζ
(

0Ψt
)T

=
(
2γ−2

) 0Ψtζ
(

0Ψt
)T
< 0

(6.47)

It shows that ∗Ψ converges to the origin and confirms the existence of a stable point of

the ODE in (6.34). As a result, the proposed scheme converges with probability 1. The
∗Ψ can be calculated as (6.48),
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(6.48)

Therefore, the optimal learning based concise Q-function is expressed as,

Q̃
(
s j,a j, ∗Ψ

)
= ∗ΨΩ

(
s j,a j

)
(6.49)

6.3 Performance Evaluation

The convergence speed, EE, and SE metrics are considered to analyze the performance

of the proposed ROPC scheme.

6.3.1 Experimental Results

As shown in Fig. 6.3, the convergence nature of the proposed scheme is evaluated for

varied values of the learning rate (α). Note that, the α denotes an amount to which novel

Q-values override the present Q-values. However, Fig. 6.3 indicates that the highest α

value decreases the reward. The reason behind this is the local optimization causes

to stuck the algorithm; thus, the reward goes down. Hence, the optimal value of α is

considered to be 0.7.
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Figure 6.3: Convergence and reward for various learning rates α
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Fig. 6.4 illustrates the convergence nature of the ROPC scheme for the distinct values

of the discount factor. It has been observed that the value of the reward increases with

the discount factor. The proposed scheme becomes improvident for γ = 0.1; hence,

the immediate reward is considered for selecting the action. Instead of maximizing

immediate rewards, each CT prefers to maximize future rewards for the high value of

γ. Therefore, we consider the value of discount factor is 0.9. As the discount factor

increases, the future reward become more significant compared to present rewards.
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Figure 6.4: Convergence and reward for various values of discount factor γ

6.3.2 Simulation Results

The simulation results in terms of the EE, SINR, and SE have been presented in this

subsection. The simulation environment contains multilayer heterogeneous CRNs. At

each time t, the service request arrival follows the Poisson distribution having arrival

rate 4λ here λ = 0.2. Next, the comparison of the proposed ROPC scheme with the

non-learning (NL) scheme and other existing schemes has been illustrated. Table 6.1

represents the simulation parameters used for evaluation process.

6.3.2.1 EE Analysis

The network’s EE in terms of reward is analyzed in Fig. 6.5. The convergence of pro-

posed and various schemes is estimated in terms of the different number of epochs. The

proposed scheme converges fast as; compared to the other schemes due to the real-time
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Table 6.1: Simulation Parameters

Evaluation parameters and values
Parameter Value Parameter Value
Bandwidth 20 Mhz No of macro cell 1
No of micro cell 5 No of femto cell 7
No of PUs 9 M2M connection 8
No of micro BS 5 No of femto BS 7
Radius of macro cell 300 m Radius of micro cell 100 m
Radius of femto cell 15 m Macro BS transmission

power
45 dBm

Micro BS transmission
power

15 dBm-
40 dBm

Femto BS transmission
power

12-20
dBm

cp of macro, micro, femto
and M2M transmitter

120W,
20W,
6W,
0.1W

Thermal noise power −120
dBm/Hz

Learning rate 0.7 Discount factor 0.9

analysis feature of the scheme. The other significant feature of the ROPC scheme is

that this scheme can conjecture the policies of other agents. This feature minimizes the

overhead of information exchange between CTs.
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Figure 6.5: Comparison of network’s EE for various schemes.

Fig. 6.6 shows the variation in network EE w.r.t. the number of CTs for the scenario

of 7 Femto BSs, 5 micro-BSs, and 8 M2M connections. It is observed from Fig. 6.6 that

initially, the EE rises with an rise in the number of CTs and then reduces with an rise in

the number of CTs. The rationale behind this is that for a few numbers of CTs, there is
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comparably low inter-cell interference and adequate signal strength to offset its effect.

On the other hand, an inter-cell interference generated by the PBS and CTs increases

with the number of CTs increases in the network. Therefore, more power level is needed

to fulfill the QoS requirement of network, it results in lower EE.
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Figure 6.6: Network’s EE for variable number of CT’s
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Figure 6.7: SINR for each PU vs total number of users

6.3.2.2 SINR Analysis

The achieved SINR of each PUs, femto users, and M2M receiver concerning the total

number of users are indicated by the Fig. 6.7, Fig. 6.8, and Fig. 6.9, respectively. These
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results conclude that the proposed scheme achieves the highest SINR as compared to

the other schemes. Furthermore, despite a large number of users, the ROPC scheme

maintains the minimal SINR needed by each layer. These results also indicate that im-

plementing reinforcement learning in the suggested scheme sustains the QoS constraints

throughout the learning approach. In addition to it, the constraints C.2, C.3, and C.4 are

satisfied by the ROPC scheme for both PUs and CUs.
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Figure 6.8: SINR for each FU vs total number of users
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Figure 6.9: SINR for each M2M receiver vs total number of users
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6.3.2.3 SE Analysis

These results indicate the performance of the proposed scheme in terms of SE metrics.

This simulation part estimates the convergence speed and demonstrates the SE of the

network. Fig. 6.10 shows that the proposed scheme achieves maximum SE in contrast

to other conventional schemes and improve network performance.
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Figure 6.10: Network’s SE for various schemes
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Figure 6.11: SE per each micro BS as a function of total number of micro BS

Additionally, an impact of the total number of specific kinds of CT on the attained

SE per each CT of that kind is presented in Fig. 6.11. The SE per each microcell BS to
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the total number of microcell BSs is plotted for various schemes. It can be observed that

the proposed ROPC scheme achieves maximum SE and decreases with an increment in

microcell BSs.
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Figure 6.12: Network’s SE for variable transmission power of micro BS
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Figure 6.13: SE of PBS as a function of number of CTs

Fig. 6.12 illustrates the achieved network’s SE for various schemes. Microcell BS

is considered to analyze the impact of the transmission power on the netwok’s SE. The

result revels that the proposed ROPC scheme has highest SE with the fastest conver-

gence. Fig. 6.13 indicates the SE of PBS as a function of the number of CTs. The SE

117



of PBS reduces with an increase in the number of CTs, because an increase in the num-

ber of CTs; the interference caused by the CTs is also increases in the network, which

degrades the performance of PBS.

6.4 Conclusions

Energy saving is the key challenging issue in multilayer heterogeneous GCRNs archi-

tecture. This chapter addresses the power control issue for the downlink transmission in

multilayer architecture, where microcells, femtocells, and M2M connections are inside

the macro cell. A real-time learning-based scheme has been proposed to control trans-

mission power and decrease the overall network power consumption while supporting

QoS for multilayers. The reinforcement learning method takes into account the influ-

ence of cognitive transmitters’ actions on the transmission power policy that has been

chosen. In addition to this, the proposed ROPC scheme is based on the upgradation

method for the Q-value. This feature of scheme helps to decrease the state/action pair

and improves convergence speed. The suggested scheme’s performance is proved by

simulation, which shows that it achieves faster convergence and higher EE, SNIR, and

SE than existing schemes.
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Chapter 7

Conclusions and Future Directions

THIS chapter highlights the important conclusions drawn from these research ob-

jectives and gives the details of future scope of work in the field of next genera-

tion networks designing.

7.1 Conclusions

In first objective, various next generation green wireless communication networking

techniques are investigated with consideration of energy-efficient transmission. The

futuristic technologies like cognitive radio, carrier aggregation, Terahertz communica-

tion, Internet of Things (IoT), massive MIMO (multiple-input multiple-output) and mm

wavelength are briefly reviewed to prepare for advancing recent research contributions.

Further, the challenges related to green CRN and spectrum management are also re-

viewed.

The second objective examines two proposed channel selection strategies: probability-

based and sensing-based channel selection strategies. The proposed channel selection

methods evenly allocate the CU’s traffic load among various applicant channels. Re-

sults of the work present that in the circumstances of huge traffic, SCSS reduces the

total network time, while in the situation of low traffic, PCSS gives better results. These

observations offer a vital perception in designing of traffic-adaptive channel selection

strategy in the existence of PU’s interruptions and sensing errors. The proposed strate-

gies can minimize the total network time by 60% as compared to non-load balancing

strategy for λcu = 0.05. Next, we calculate the total energy consumption at various op-
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erational modes in GCRN. The results indicate that the arrival rate of the CUs and the

time spent on channel scanning affect the energy consumption of the network. The pro-

posed channel selection strategies reduce energy consumption by 75% as compared to

non-load balancing strategy.

The third objective analyzes the benefits of cooperation between SUs for detecting

the PU’s spectrum, through which the rapidity of the network can be improved. Two

cases (having a distinct level of cooperation) have been exploited to reduce the sensing

time. The first one is non-cooperative, in which all SUs independently sense the PU,

and the first user who senses first, informs the presence of the PU to the other SUs via

a central controller. The second is cooperative, in which SUs follow the protocols of

Amplify-and-Forward cooperation to minimize the sensing time. The results show that

the proposed joint cooperation spectrum sensing (JCSS) scheme increases the sensing

probability for a vacant spectrum by as much as 34%. After this, we propose two distinct

spectrum sensing schemes preset spectrum sensing (PSS) and viscous spectrum sensing

(VSS) that presents the energy savings percentage in GCRNs under specific conditions.

These results conclude that the energy consumed by the user’s contention increases due

to the increase in sensing time. The proposed schemes are better in terms of scalability

because it is not essential to sense all spectrums in these schemes.

The fourth objective has analysed a cooperation-based energy-efficient scheme for

cognitive users in GCRN to improve the energy efficiency of CU. The proposed CEAR

(cooperation-based energy-aware reward scheme) scheme supports CUs to actively co-

operate by utilizing temporal and antenna diversity to improve energy efficiency. The

proposed CEAR scheme is compared with other existing schemes, and it is presented

that the CEAR scheme provides up to 28% improvement in energy efficiency. In this

work, the optimal stopping protocol is used for problem formulation, and the backward

induction method is employed for solving the decision problem. This chapter has con-

tributed significant insight in terms of energy efficiency, spectral efficiency, throughput,

and consumed energy, which motivates the design of future green communications sys-

tems.

In the final objective,a real-time learning-based scheme has been proposed to con-

trol transmission power and decrease the overall network power consumption while

supporting QoS for multilayers. The reinforcement learning method takes into account
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the influence of cognitive transmitters’ actions on the transmission power policy that

has been chosen. In addition to this, the proposed ROPC scheme is based on the upgra-

dation method for the Q-value. This feature of scheme helps to decrease the state/action

pair and improves convergence speed. The suggested scheme’s performance is proved

by simulation, which shows that it achieves faster convergence and higher EE, SNIR,

and SE than existing schemes.

7.2 Future Directions

There are still new research areas for more effort to be achieved in this field. This

part of the section delivers future research directions that entail the consideration of the

research community. These new directions are discussed as:

7.2.0.1 Cooperative Heterogeneous Network (HetNet) Architecture

The upcoming generation of networks is likely to provision incorporation of various

networks having diverse services and protocols. So, vertical handover, management

of interference, enhancement in network capacity with the attention of energy efficient

communication system is an important research topic. The tradeoff between spectral

and energy efficiency and a tradeoff between network coverage and QoS in HetNet

network also requires more investigation.

7.2.0.2 Green Networks

Energy-efficient approaches are the main prerequisite for the designing of GCRN. Thus,

a new research area to minimize the EMR effect by the green networks is desired to

be investigated. Two key research issues associated with GCRN are (1) decrease in

consumption of power and energy overhead instigated by communication among mobile

nodes and (2) optimization of dynamic spectrum allocation techniques to improve EE

without distressing QoE of mobile subscribers.

7.2.0.3 Experimental Testbeds for Green Networks

For analyzing an impact of suggested energy-efficient approach for green networks, it is

vital to test these approaches on realistic testbeds. In this way, the hardware realization
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issues can be identified and would be able to check the viability of these proposed

approaches. The absence of mature green networks modules in prevailing simulators

offer new research direction to enterprise an experimental testbed to provision green

networks.

7.2.0.4 Security

Auspicious of protected communication in green networks is a significant design objec-

tive for consistent advance next-generation wireless networks. It is a challenge to design

an energy efficient approach for green communication to handle the EMR and GHG ef-

fect jointly with the utilization of RER for saving energy. In the available literature,

energy-efficient approaches are focusing on the security of either network or mobile

nodes. Secured green communication for both networks and mobile nodes, along with

energy-efficient encrypted technique is required in future wireless communication sys-

tems.

7.2.0.5 Green networks Model for LTE/Wi-Fi coexistence

LTE network supports the modern wireless networks like carrier aggregation, massive

MIMO, HetNet, D2D network with multiple cells of small size. The adaptive energy-

efficient approach designed for green networks would be a promising technology in

such advanced wireless networks. For example, HetNet comprises multiple cells of dif-

ferent sizes (termed as femto, pico, and microcells). So, the management of interference

causes more complexity in networks. The coexistence of two different networks with

combining their capabilities and energy- saving proposals would help in the formation

of green networks, which is still an energetic research direction and will receive further

attention.
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