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ABSTRACT 
 

Many large and small rivers in Uttar Pradesh (India) pass through many cities and 

provide for the needs of their residents. However, the growing industrialization and 

urbanization in UP have resulted in a rapid deterioration of river conditions. River water 

quality is continuously declining, which has prompted numerous government agencies, 

NGOs, and researchers to conduct studies to address the issue. Some of the rivers, 

including Gomti, in UP, are among the most polluted rivers in India. The Gomti River 

routinely conveys pollutants from point and nonpoint sources throughout the river basin, 

including agriculture waste, sewage from households and offices, wastewater from 

industries, and other sources. Over the past few decades, the river Gomti has witnessed 

a surge in human activities, leading to a reduction in the flow of the river and a 

significant deterioration in its water quality. 

The objective of this study was to formulate a water quality management plan by 

assessing the existing condition and anticipated future state of water quality of the 

Gomti River, which flows through Lucknow, UP (India). The research was conducted 

to manage water quality in relation to assimilative capacity and climate change (effect 

of rising temperatures) by identifying, quantifying, and characterizing a subset of 

selected pollutants of river Gomti. This study is based on the physicochemical and 

biological monthly data from 2013-2017 for seven sampling stations collected from the 

Uttar Pradesh Pollution Control Board (UPPCB), Lucknow (UP), which monitors the 

water quality along the Gomti River in Lucknow. The data sets were further investigated 

using descriptive statistics and multivariate statistical techniques (PCA and CA). One-

way ANOVA was used to assess seasonal and spatial variation. The Gomti River's 

water quality was evaluated using four distinct water quality indices (Arithmetic WQI, 

CPI, SPI, and CPCB-WQI). The results were integrated with GIS to delineate several 

zones based on the severity of pollution. Four WQIs (Arithmetic WQI, CPI, SPI, and 

CPCB-WQI) for the river Gomti were forecasted using statistical modeling to help with 

future water quality conditions and identification of the most appropriate WQI through 

model performance indicators or metrics. The assimilative capacity of the river was 

evaluated using DO and BOD, and statistical modeling was used to predict assimilative 

capacity for future scenarios. 
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The assessment of physical, chemical, and biological characteristics of the river water 

samples revealed significant parameter ranges exceeding the prescribed limits (BIS, 

2012/WHO, 2011), including those for DO, BOD, COD, EC, TA, TC, and FC. It is 

abundantly apparent from these findings that the water is unsafe for human 

consumption. It was established that the entire river stretch was severely polluted, and 

pollution levels increased from upstream to downstream (S1 to S7),  demonstrating the 

impact of Lucknow’s rapid industrialization and urbanization. One-way ANOVA 

analysis concluded all parameters increase from S1 to S7 except for pH and DO, which 

exhibit steady declines from S1 to S7. All parameters show temporal and spatial 

variation, although only a few parameters, including EC, TDS, Ca, Mg, and Cl, also 

show annual variation. 

The main principal components contributing to the decline in water quality throughout 

the study were pH, Cl, DO, BOD, COD, TC, and FC, with a total variance of 54.65% in 

the dataset. These elements reflected sewage contamination and organic pollutants from 

residential wastewater. To prioritize control efforts concerning different pollution 

sources, the PCA helped locate the study area's point and nonpoint sources of pollution., 

Cluster analysis of the river Gomti identified three distinct clusters representing areas 

with moderate (S1, S2, S3, and S4), high (S5 and S6), and very high (S7) levels of 

pollution. This categorization can reduce monitoring stations, with one per cluster, 

cutting river sampling costs in resource-limited countries like India. 

To help policymakers and stakeholders understand how various policy initiatives affect 

the water quality of a water body, WQIs simplify complex data. All of the water 

samples fell into category E (>100), which is unsuitable for drinking and fish culture 

except at S1, S2, and S3 during the monsoon season, which falls under category D (75-

100), according to the results of the Arithmetic WQIs. At all sampling sites, the SPI 

value indicated very poor (1-3) status and could only be used for irrigation. The CPI 

value was found in three categories: qualified (0.41-0.8), basically qualified (0.81-1.0), 

and polluted (1.01-2.0) at different locations and months. The mean values of CPCB-

WQI at S1 and S2 lie under the category medium to good, Class - B (50-63), S3 and S4 

under the category bad, Class - C (38-50), S5, S6, and S7 under category bad to very 

bad, Class - D & E (<38). It was also noticed that the river Gomti water was found in 

all categories classified by CPCB-WQI for different sampling stations. Station S7 

recorded the highest value for all estimated WQIs. Statistical analysis further 
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corroborated that the WQIs increased from S1 to S7. PCA investigation further 

confirms that anthropogenic activities primarily contribute to the deterioration of this 

region's water quality. As a result, it can be argued that apart from S1 and S2, WQIs are 

high at all sampling stations. 

Statistical modeling for the period of 10 years (2018-2027) based on calculated data of 

WQIs (Arithmetic WQI, SPI, CPI and CPCB-WQI) reveals similar results as the 

baseline period (2013-2017). In the case of all four projected WQIs, the maximum value 

was observed at station S7, followed by the minimum value at S1, and it rose from S1 

to S7. RMSE, MAPE, MAE, MaxAPE, and MaxAE were employed as model 

performance indicators or metrics to track the model's effectiveness. SPI and CPI were 

determined to be the most appropriate WQIs out of the four based on model performance 

indicators or metrics values. 

Gomti River has an average daily flow of 1,500 MLD, rising to 55,000 MLD after rains 

and dropping to 500 MLD during the summer, resulting in a reduction of assimilative 

capacity. The minimum DO concentration at all sampling stations was below the 

reference limit (4 mg/l), while the maximum DO concentration was well above it. The 

sampling station S7 had a lower minimum and maximum DO concentration than the 

reference limit. According to the CPCB’s best-use criteria (IS 2296: 1992), river water 

at selected sampling stations was inappropriate for all purposes in respect of BOD. DO 

concentrations at S5, S6, and S7 are excessively low for the predicted period (2018-

2027). At S1, DO concentrations are higher than the reference limit for the predicted 

period, whereas at S2, S3, and S4, higher in the wet season and lower in the dry season. 

BOD exceeds the reference level (2 mg/l) at all sample locations over the predicted 

period. 

The water quality profile of BWQI for the four different climate change scenarios, RCP 

4.5 (2040-2069), RCP 4.5 (2070-2099), RCP 8.5 (2040-2069), and RCP 8.5 (2070-

2099) are 38.79, 37.90, 37.75, and 34.83 respectively. It reveals that the BWQI is not 

significantly different from the previous scenario (2014-2017) as it lies in the bad (26-

50) category in the water quality classification; however, a slight decrease in BWQI is 

expected in the future under all scenarios. 

The selected WQIs have been studied through the GIS method. The maps of WQIs 

showed that 28 drains highly polluted the study area, discharging approximately 461.33 
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MLD wastewater. Therefore, the Gomti River water should not be used due to its high 

physicochemical and biological load. Prior treatment should be considered to meet 

water quality regulations, public expectations, environmental and public health 

concerns. Direct discharge of industrial and domestic wastewater into river through 

drains is the leading cause of the significantly polluted water quality. 

As a result, management alternatives are suggested to lessen pollution. A sufficient 

sewage treatment facility should be set up between S2 and S7. It is imperative to remove 

solid waste and to maintain adequate discharge at all times, particularly during the dry 

or non-monsoon seasons, to maintain its self-purification capacity.  
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CHAPTER - 1  

INTRODUCTION 

 

1.1 General 

For the ecosystems to function properly and for socioeconomic development, a safe and 

sufficient freshwater supply is required (Matta et al., 2018; Iqbal et al., 2019; Khan et 

al., 2020). Rivers and lakes are significant freshwater resources essential to civilizations 

because they deliver consistent water for domestic uses and diverse agricultural, 

transportation, and industrial activities. River water offered industrial, agricultural, and 

economic wealth; therefore, many civilizations thrived there (Tyagi et al., 2013; Tangri 

et al., 2018). Freshwater resources are crucial for a nation's growth and development 

because of their socioeconomic and ecological significance. Water quality is negatively 

affected by accelerated industrialization, fast urbanization, and the resettlement of 

towns (Wang et al., 2013; Dutta et al., 2018a; Kumar et al., 2020a). Seasonal variations 

in precipitation, surface runoff, groundwater flow, water interception, and abstraction 

all have an impact on the quantity and quality of water (Zhao et al., 2011). 

Surface water sources are increasingly becoming a pathway via which a wide variety of 

biotic species are exposed to hazardous components that originate from anthropogenic 

activity or geological processes. The monitoring of surface water sources is crucial for 

the generation of trustworthy information on water quality, which will ultimately have 

a significant impact on preventing and regulating the pollution of surface water (Singh 

et al., 2004; Varol et al., 2012; Kumar et al., 2022a). To effectively manage the water 

quality over the long term in the water bodies, one needs to have a comprehensive grasp 

of the water's physical, chemical, and biological features. 

Earth's surface contains about 1.4 billion km3 of water. Less than 3% of the total volume 

(about 35 million km3), or glaciers and ice caps, contain roughly 24 million km3 of 

frozen fresh water, making it inaccessible (Kamboj et al., 2020). This demonstrates that 

although there is a lot of water on the Earth, fresh water only makes up a small 

percentage. The remaining water (96.5%), known as “salt water,” is found in oceans 

and contains salts and minerals. While desalination techniques like thermal or reverse 

osmosis can remove these salts and minerals from salt water, they are not commercially 

viable (Greenlee et al., 2009). As a result, the management of water resources affects 

practically every element of society and the economy, particularly in health, food 
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production, house water supply, sanitation, energy, industry, and urban ecosystems 

(Kumar et al., 2022b). 

Six hundred million Indians face extreme to high water stress, according to the NITI 

Aayog, a think tank run by the government, and the continued absence of necessary 

actions might lead to an enduring water disaster (Jadeja et al., 2022). The growing urban 

population, which has grown by 17% over the past ten years, is largely to blame for the 

demand and water pollution caused by home and wastewater discharges from the 

industries (Census, 2011). Groundwater has been overused due to widespread migration 

from rural to urban areas and an increase in utility services. In addition to the growing 

population, industrialization is responsible for an annual rise in water demand of around 

4%, significantly increasing industrial wastewater volume (World Bank, 1998). The 

combined water demand for the household, industrial, as well as agricultural sectors is 

anticipated to increase, reaching 103 BCM in 2025 and 1447 BCM in 2050 (World 

Bank, 1998). Water management in India is made more difficult by the unequal 

distribution of natural water resources, the ongoing deterioration of surface and 

groundwater quality, various geographies, climate change, erratic monsoons, trade, and 

commerce (Jadeja et al., 2022). 

 

1.2 Global distribution of water resources on Earth 

Oceans hold a significant quantity, about 96.5%, of the total amount of water in non-

consumable or non-potable form. Saline water, found in lakes or groundwater, makes 

up an additional 1% of all water on Earth. Only 2.5% of the water on Earth is freshwater, 

and not all of it is suitable for human use (Kamboj et al., 2020). Approximately 68.7% 

of all freshwater is found in groundwater reserves, which are deeper aquifers, glaciers, 

and ice caps. Therefore, it is clear that surface water and other freshwater resources 

comprise just around 2.5% of the entire amount of fresh water on the Earth. The frigid 

climate stores 68.7% of this water as ice and snow, which hinders the functioning of 

several biosphere components and prevents it from being directly available for human 

consumption (Pekel et al., 2016). Over 20.1% of the world's surface water is found in 

lakes, with the remainder of water being found in rivers (0.46%), swamps including 

marshes (2.53%), soil moisture (3.52%), biological water (0.22%), and atmospheric 

water (0.22%) (Kamboj et al., 2020) (Figure 1.1). 
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Figure 1.1: Distribution of total water on planet Earth 

(Source: Kamboj et al., 2020) 

 

1.3 Water Resources of India 

The size of India landmass is 3.29 million km2, 2.4% of the world's total area. Estimates 

place the nation's total usable water resources at 1086 km3 (Kumar et al., 2005). India 

is lucky to receive a lot of rain, which falls evenly throughout five to six months of the 

year. The primary source of all water resources is rainfall, and in 2011–12, India got a 

total of 3669 BCM through rains. The typical annual precipitation in the nation is 1170 

mm, but there can be variances of up to 10,000 mm in Cherapunji and 100 mm in 

Rajasthan's driest parts. The nation's total annual sweet water supply is 4000 BCM. The 

overall amount of available and usable water is 1953 BCM and 1123 BCM, 

individually, after more than 1047 BCM of water is gone through evaporation, 

transpiration, and surface runoff (Rakhecha, 2020). It is alarming to learn that just 18% 

of rainfall is efficiently used, while 48% enters rivers, most of which end up in the 

ocean. 728 BCM of the entire useable water comes from surface water, while 395 BCM 

comes from replenishable ground water. According to estimates from the Indian 

government, water consumption in India in 2006 was 829 BCM, compared to the 

aforementioned supply, which is anticipated to increase to 1093 BCM in 2025 and 1447 

BCM in 2050. Rivers, canals, reservoirs, tanks, lakes, ponds, brackish water, and 

abandoned water bodies comprise the nation's water resources (Mall et al., 2007). India 
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has a total water spread area of 7.4 MH, of which 2.9 MH are reservoirs and 2.4 MH 

are lakes, tanks, and ponds. The country has estimated static fresh groundwater reserves 

of 10812 BCM (i.e., aquifer zones). Each year, the dynamic component, estimated to 

be 432 BCM, is replenished. River basins comprise the country's total potential water 

resources as of 1869 BCM (Mall et al., 2007). 

Water for irrigation is just as important as water for drinking, as both are necessary to 

boost food output and livestock care and provide food security for the growing 

population. Everyone is alert that an increasing population poses a severe risk to the 

water supply per person in the future. It was estimated that each person per year in 1951 

had access to 5177 m3 of water when there were only 361 million people in India. When 

the population reached 1027 million in 2001, the water consumed by each person 

dropped dramatically to 1820 m3 per year. The amount of water available per person 

will decline by 2025, falling to 1341 m3 and reaching 1140 m3 by 2050. According to 

the average amount of water needed for several uses, a scenario is deemed to be under 

water stress when the annual water availability is between 1000 and 1700 m3/person, 

and it is deemed to be under water shortage when it falls below 1000 m3. Due to the 

large variations in water availability across the nation caused by rainfall, groundwater 

reserves, and the vicinity of river basins, by 2020, almost all Indian States will have 

water stress, and by 2025, there will be water scarcity. As a result of the direct effect of 

water scarcity on agricultural production, this would further jeopardize global food 

security (Rakhecha, 2020). 

 

1.4 Rivers: a vital water resource 

Rivers are bodies of water that flow in a specific path in a channelized form and affect 

our civilization and culture. Water was only available from rivers in the early stages of 

human evolution (Kaushik et al., 2009). Due to this, every ancient civilization 

developed along the river's bank, such as the Indus Valley Civilization (located near the 

Indus), Egypt (located near the Nile), Babylon (located near the Tigris), and 

Mesopotamia (located between the Euphrates and the Tigris) (Singh et al., 2018). 

Ancient towns also grew up alongside rivers. Many cities such as Haridwar, Rishikesh, 

Ayodhya, Varanasi, Patna, Delhi, Agra, Lucknow, and others have gained prominence 

due to the presence of rivers coursing through their urban landscapes. As time passed, 

people began interacting and holding celebrations, fairs, and other social and religious 

events along the banks of rivers. Even if the weather is terrible, many ceremonies are 
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not considered to be completed until the participants have taken a dip or bath in a sacred 

river. Bathing in rivers during festivals like the Kumbh Mela and Makar Sankranti is 

much more than a celebration. It is also a way for regular people to uphold a tradition 

and protect the rivers, which are vital to human existence (Tyagi et al., 2013). Over 

time, humans established a deep and lasting relationship with rivers, converting them 

into a fundamental part of our daily existence and significant symbols of our society. 

Consequently, they are revered as our nurturing sources of life. (Singh et al., 2018). 

The population, urbanization, industrialization, and farming/agriculture were all in 

harmony with the environment and waterways during the primary stages of human 

evolution. Rapid population growth, urbanization, and industry are out of harmony with 

the river and its surroundings, negatively impacting society and the life-giving river 

(De Stefano et al., 2017; Kumar et al., 2018). In this manner, once considered a blessing, 

the river is now a curse on civilization. Indian rivers are distinguished by their narrow 

waterways enclosed by large valleys (Singh and Awasthi, 2011a). The development of 

settlement even inside the floodplain and vast river valley results from the pressure that 

population growth is placing on the land. Man's interference with a river's natural cycle 

has resulted in water pollution, ecosystem disruption, altered transport capabilities, and 

increased sediment load, ultimately leading to changes in the river's dynamics. Rivers 

consequently result in the loss of lives and property due to human meddling with their 

natural cycle (Singh and Awasthi, 2011b). Despite the terrible state they are in right 

now, rivers are a naturally replenishable resource.  

Since the beginning of time till the present, rivers and streams have been a crucial part 

of the hydrological cycle that has contributed to the continuous and eternal water flow 

on Earth (Phiri et al., 2005). Rivers are used for navigation, tourism, and providing 

freshwater for domestic use, subsistence, and commercial production (agricultural, 

cattle, and fisheries) (Venkatramanan et al., 2014). The river ecology is crucial for 

controlling environmental processes, transporting nutrients, assimilating industrial and 

municipal waste, and controlling floods and droughts. These functions are inextricably 

linked to elements that indicate the health of rivers, including water quality, ecological 

condition, and flow (Markandeya et al., 2021; Pandey et al., 2021). 

 

1.5 River water resources in India  

There are many rivers and mountains in India. Many small and large rivers, some of 

which rank among the largest rivers in the world, flow across about 329 MH of land. 
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Most prehistoric civilizations developed along these rivers’ banks (Singh et al., 2018). 

Millions of people still reside in the cities built along riverbanks and rely on the rivers 

for their survival today. India is blessed with a vast river system and abundant rainfall. 

The southwestern monsoon contributes roughly 75% of the country's yearly rainfall 

(Ghosh and Mistri, 2015). 

Our nation is fortunate to have 14 major river basins, which together occupy an area of 

more than 20,000 km2, accounting for 82.4% of the country's drainage basin and 85% 

of its total surface flow. About 80% of the nation's population lives in these river basins. 

Major river basins in the country include the Brahmaputra, Ganga (including the 

Yamuna Sub Basin), Indus (including the Satluj and Beas Sub Basins), Godavari, 

Cauvery, Krishna, Narmada, Mahanadi, Brahmini (including the Baitarni Sub Basin), 

Tapi, Mahi, Pennar, and Sabarmati (Singh et al., 2018). Based on the size of the 

catchment area, India's 113 river basins are categorized into three groups (Table 1.1).  

 

Table 1.1: Classification of river basins in India 

River basins Catchment area (km2 / percent) No. of basin 

Group 1 - Major More than 20,000 (82.4) 14 

Group 2 - Medium Between 2000-20,000 (8) 44 

Group 3 - Minor Less than 2000 (9.6) 55 

 

1.6 River pollution 

Human activities often result in environmental devastation. Domestic, industrial, and 

agricultural activity typically falls under this category of human activity. Megacities 

are expanding due to the fast industrialization and urbanization of some regions. This 

development has put the surrounding cities’ natural ecosystems under strain (Palmer et 

al., 2008; Fuller et al., 2015). Mass rural-urban migration is a result of rapid 

industrialization. These people go from small towns or villages to megacities in search 

of better opportunities to raise their standard of living. Freshwater bodies are 

particularly under strain from these developments because they are crucial to the growth 

of any metropolis. The prevention and reduction of pollution and any residential or 

industrial activities that damage the local ecosystem are essential for successful city 

governance. More than a billion people are thought to live without access to clean 

drinking water, mostly in emerging and poor countries. The water is utilized for 
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industrial and commercial purposes, and the garbage from these operations is dumped 

straight into the natural water bodies without adequate or effective treatment. The 

majority of rivers in India are treated like exposed drains (Singare et al., 2012; Kamboj 

and Choudhary, 2013).  

Approximately 70% of India's river water is polluted due to elevated levels of pollutants 

(ICMR, 1975; CPCB, 2000; WHO, 2011; BIS, 2012). Consequently, the water quality 

standard directly impacts both the health of human civilization and the health of aquatic 

and environmental organisms (Kamboj and Kamboj, 2020). Due to that,  the water 

quality is very poor for human use and agricultural purposes and even harmful for 

animal intake (Jindal and Sharma, 2011).  

There are requirements for water quality set by various national and international 

organizations (ICMR, 1975; CPCB, 2000; WHO, 2011; BIS, 2012). If the water quality 

in rivers and other bodies of water meets these standards, it is suitable for human eating 

and drinking. Since water is a necessary component of daily life, it is crucial to 

guarantee a consistent water supply of the right quantity and quality for home and 

agricultural usage (Khan et al., 2021a). The availability of sufficient water for domestic 

as well as industrial use is essential for the sustainable progress and improvement of 

human civilization.  

Both point sources and non-point sources of water pollution have been identified. Point 

sources are characterized by the Environmental Protection Agency (EPA) as a single, 

recognizable source of water pollution, while non-point sources are described as 

scattered sources that cannot be linked to a single or point source (Sutadian et al., 2016; 

Jadeja et al., 2022). The discharges from wastewater treatment facilities in 

municipalities and industries are considered to be the point sources of wastewater 

pollution. On the other hand, urban runoffs, agricultural runoffs, and livestock runoffs 

are considered substantial non-point sources (Khan et al., 2021b). The current 

government standard concentrates on treating wastewater from point sources, while 

discharges from non-point sources are commonly ignored. Urban and rural runoffs, 

atmospheric depositions, and agricultural runoffs all considerably contribute to water 

pollution but are not yet taken into account in the wastewater management plan 

(Chakraborty et al., 2021; Maity et al., 2022). 

Anthropogenic activities have a greater effect on the physical, chemical, and biological 

characteristics of river water quality than natural forces. Without talking about the 

exchanges and reciprocal relationships between man and nature, the environmental 
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study of the river basin would be lacking. Agricultural activities, urban development, 

mining, power production, deforestation, industrial pollution, sewage issues, and 

tourism that outpaces available resources are some of the anthropogenic factors 

affecting river water quality (Maity et al., 2022). 

Any natural water body can somewhat remove pollutants from wastewater. Every water 

system has the ability to degrade pollutants with the aid of naturally occurring aquatic 

creatures and plants, as well as chemical, physical, and biological reactions (El-Jabi et 

al., 2014). However, the effectiveness of the water bodies’ natural cleansing mechanism 

is limited, and they cannot manage significant amounts of pollutants on their own (Egbe 

et al., 2018; Chapra et al., 2021). The water cycle and the equilibrium of the 

environmental water cycle are changing as a result of the expansion and growth of 

industry, as well as numerous human activities like deforestation, global warming, 

climate change, and other ones, as well as growing population (Danladi Bello et al., 

2017; Abeysingha et al., 2020; Rajesh and Rehana, 2022). Water suitable for drinking 

and cooking is accessible in tiny quantities in all of India’s several states. Only a small 

percentage of the population in India has access to clean, safe water. The remaining 

Indian population consumes tainted or chlorinated drinking water, which can lead to 

various health issues (Khan et al., 2021a). 

Various domestic and commercial operations, such as sewage, wastewater, effluent 

discharge, rubbish, etc., are poured into rivers either directly or improperly treated 

wastewater (Sunar et al., 2020). This negatively impacts the physiochemical 

characteristics of river waters. BOD, COD, DO, TDS, TC, WT, TA, Cl, TH, pH, etc., 

are among the physiochemical characteristics of river water that have the most impact. 

These physiochemical characteristics determine the water quality and how well the 

aquatic ecosystem is doing (Gazzaz et al., 2012). 

Due to limited resources and the need for increased farming due to the growing 

population, a significant portion of the world’s forests are being cleared, which causes 

land degradation. Increased use of pesticides and fertilizers harms the quality of 

drinkable water and adds to the direct discharge of harmful substances, increasing the 

amount of nitrates and phosphorus on the water surface (Solangi et al., 2018; Lkr et al., 

2020). The concentration of various nutrients, coliforms, and sediment loads is 

increased by grazing, forestry practices, and poor agricultural practices, which harm the 

aquatic ecology significantly by generating the eutrophication of waterbodies (Roy et 

al., 2021). Increased sediment load causes issues for marine life. As a result, spawning 
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grounds are harmed, and dissolved nutrients like nitrates and phosphates, which 

encourage the growth of aquatic plants and stress DO, are increased (Somura et al., 

2012). Farmers are forced to use filthy river water that hasn't been cleaned for farming 

uses like irrigation. Water availability for agricultural needs is decreased globally due 

to inefficient water management and unequal water distribution (Khan et al., 2021b). 

Feces, urine, laundry waste, and oxygen-depleting organic chemicals are among the 

untreated municipal trash produced by home activities and poisonous and unstable 

inorganic materials (Goel et al., 2018). The increase in phosphate and nitrates caused 

by this untreated residential sewage and organic waste is hazardous to water bodies and 

negatively impacts rivers' ecosystems and water quality (Norah et al., 2015). It has been 

acknowledged that non-point sources of water pollution frequently have a higher effect 

than point sources, especially in rural catchments. 

Waste produced by industry, such as effluences or garbage, is significant. The main 

sources of industrial wastewater are mines and quarries, iron and steel industries, food 

industries, chemical, nuclear, and radioactive industries, tanneries, and the cleanup of 

petroleum and chemically polluted sites. Due to authorities' dwindling and fraudulent 

actions, these industrial effluences contain substantial chemical and inorganic pollution 

that enters the river (Jadeja et al., 2022). 

Another factor affecting river water quality is mining. Sulphuric acid is created when 

the sulfide mineral in rocks combines with oxygen and enters the water drainage 

system. Similar to how arsenic, cobalt, cadmium, lead, silver, and zinc react with water, 

harming human health and waterways (Florea and Busselberg, 2006; Jaishankar et al., 

2014). Mining businesses utilize chemicals like cyanide and sulfuric acid to remove the 

desired mineral from their ores. Due to the failure to follow regulations when building 

and maintaining roads, garbage impoundments, holes, and pits degrade the land and 

add a significant quantity of silt to the river, clogging the riverbeds and disrupting the 

aquatic ecosystem and species in the watershed (Kamboj and Kamboj, 2019). 

Using artificial flow control, advanced hydroelectric projects and dams disrupt the 

river’s physical and biological components and lessen its natural flow. Hydropower 

plants alter the flow of water downstream. While run-of-river operations are used for 

small projects, increasing the state's hydropower capacity promotes economic growth 

and harms the environment. These activities alter the WT and DO content, upsetting 

the river’s aquatic life (Rajesh and Rehana, 2022). 

The quickest and least expensive way to dispose of garbage produced by industries is 
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to dump it in rivers or other aquatic bodies. However, this effluent dumped into the 

river negatively impacts the health of people and aquatic species. Both developing and 

developed countries today are dealing with the problem of wastewater disposal. A 

significant issue is presented by disposing of wastewater from the home and industrial 

sources (Jadeja et al., 2022). 

A pristine, unpolluted river guarantees a great crop and a healthy country. However, 

paradoxically, this foundation of human civilization has been savagely attacked for the 

sake of senseless economic gain. Unplanned modernization and industrialization, 

disregard for religious beliefs, overuse of natural resources, a lack of ecological 

education, and population explosion have all contributed to the global degradation of 

aquatic ecosystems (Jadeja et al., 2022).  

 

1.7 River pollution in India 

The foundation of India's agricultural economy has always been its rivers. The main 

elements that substantially impact surface water quality are human activities, chemical 

fertilizer use, and land use changes (Hussain et al., 2008; Azhar et al., 2015). Rivers 

provide water for home, industrial, and agricultural purposes. India is fortunate to have 

many rivers, but the current situation is on the verge of declension due to pollution and 

overuse. Rivers' identity and existence are in danger due to heavy pollution load. In 

India, open defecation, holy bathing, and other religious practices are among the leading 

causes that affect and directly impair river water quality (Matta et al., 2020). 

One of India's major problems is river water pollution. The river water quality gradually 

deteriorates due to hazardous compounds (heavy metals, pesticides, and 

polychlorinated biphenyls) and organic substances. The degree of degradation has 

grown to the point where it is now dangerous for use in agriculture, industry, and even 

human intake. In India, CPCB has acknowledged significantly polluted sections of 18 

key rivers, mostly in and around the country's major urban and industrial hubs. Due to 

the extreme pollution throughout urban areas, it may be concluded that home and 

industrial water pollution is more detrimental to India's economy than its respective 

importance and advantages. Additionally, agricultural practices significantly harm the 

overall river water quality (Goel et al., 2018; Iqbal et al., 2019). 

The capacity of sewage treatment, according to CPCB (2015) statistics, was 66% of its 

total urban sewage discharge in 2013, but that capacity has reduced to 38% due to rising 

municipal sewage and a shortage of sewage treatment facilities. It suggests that a 
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significant volume of untreated waste-roughly 38 billion liters was entering waterways, 

with a substantial portion coming from industrial sources. There is yet no data available 

regarding untreated sewage from rural regions, which is also a major concern (Table 

1.2).  

 

Table 1.2: Mean annual surface runoff and wastewater generation of the 

major river basins of India 

Name of the 

river basin 

Basin 

area 

(km2) 

Mean 

annual 

runoff 

(km3) 

No. of 

class I 

cities 

Wastewater 

generation 

(MLD) 

No. of 

class 

II 

cities 

Wastewater 

generation 

(MLD) 

Indus 3,21,290 80 15 624 20 142 

Ganga 8,61,404 550 103 5812 119 628 

Brahmaputra 1,87,110 591 7 179 9 54 

Sabarmati 21,674 4 7 652 6 32 

Mahi 34,842 41 3 161 4 19 

Narmada 98,796 40 4 44 5 25 

Tapi 65,145 20 8 275 5 18 

Subarnarekha 19,300 12 2 280 2 7 

Brahmani 39,033 29 1 17 1 3 

Mahanadi 1,41,600 67 9 413 9 35 

Godavari 3,12,812 116 25 635 37 168 

Krishna 2,58,948 68 27 1314 22 90 

Pennar 55,213 7 6 61 5 15 

Cauvery 87,900 21 16 727 18 51 

 

To stop untreated sewage from entering the waterways, the CPCB issued directives to 

the nation's SPCB and pollution control commissions in April 2015, leading them to 

establish sewage treatment facilities (STPs) in their respective states. In October 2015, 

the CPCB issued directives to all 69 local authorities of major cities and metropolitan 

areas about reducing pollution. The water quality of the river has not changed much, 

though. Based on BOD, there are approximately 302 polluted stretches on 275 rivers. 

Additional priority classes were assigned to these filthy river segments. Three hundred 
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two (302) river segments were divided into five priority segments, i.e., 34 into I priority, 

17 into II priority, 36 into III priority, 57 into IV priority, and 158 into V priority river 

segments (CPCB, 2017). 

Over 12,000 km of riverine areas are polluted, which is nearly five times the length of 

the river Ganga. There is no evidence to support any improvement in these 4-5 years, 

as the CWC reports reporting the maximum BOD of river water between 2012–2013 

and 2016–17. Sixty-seven (67) places' water quality is deemed to be dangerously low. 

Out of 67 sites, 14 had BOD values over 30 mg/l (extremely polluted), 12 had levels 

between 10-30 mg/l, and 30 had levels between 3-10 mg/l, indicating extremely high 

levels of pollution (CPCB, 2017). Eleven additional locations are likewise moving into 

a serious situation. The organic and bacterial pollution brought on by untreated 

industrial and domestic effluent is critical for water bodies, according to CPCB data. 

It is time for India to take the problem of river water pollution seriously. Due to rising 

industrial activity, unplanned urban growth, and agricultural activity, several cities have 

been experiencing groundwater scarcity (Deshmukh, 2013). This scarcity, which 

severely impacts the temperature and hydrological cycle, is made worse by population 

growth and irrigation. To protect the public's health and priceless yet delicate 

freshwater resources like rivers, there is a need for assurance and sustainable 

development of rivers with proper waste management and complete river water quality 

management strategies and plans (Parmar and Bhardwaj, 2015; Dutta et al., 2018a). 

Globally, there is a greater need for non-conventional water resources because of the 

scarcity of fresh water. India has moved up to position 13 on the list of water-stressed 

nations, with 21 big cities on the verge of running out of water and numerous cities 

experiencing water supply cuts (Jadeja et al., 2022). With 1.3 billion inhabitants and 

wastewater generation ranging from 15-135 l/person/day, this second-most populous 

nation provides significant hurdles to creating economic wastewater treatment systems 

that adhere to current discharge regulations (Ministry of Water Resources, 2000; 

MoEF&CC, 2020). 

Domestic and commercial wastewater discharge into waterways causes health 

concerns, ecological harm, and monetary loss. Wastewater is dumped into water bodies 

indirectly in around 118 Indian towns, and it is routed into rivers in 41 cities (CPCB, 

2000). MoEF&CC, the ENVIS Centre on Hygiene, Sanitation, Sewage Treatment 

Systems, and Technology, collects and compiles information regarding the current 

national status of wastewater generation as well as wastewater treatment in all of India's 
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states (ENVIS, 2021). Our nation's marine water bodies get about 25% of the industrial 

effluent dumped there. According to reports, 6614 MLD of wastewater, or 426 TPD of 

organic pollutants, are thrown into the Ganga River (CPCB ENVIS, 2008). Due to a 

capacity deficit for sewage treatment, there is currently a discharge of 38791 MLD of 

untreated sewage into aquatic bodies. This accounts for 62% of the total sewage (CPCB, 

2021). According to the CPCB's most recent National Inventory Report (2019), more 

than 55,000 industrial facilities produced 7.17 MT of hazardous garbage between 2016 

and 2017, the vast bulk of which was liquid trash (CPCB, 2019). 

 

1.8 River pollution in Uttar Pradesh 

Uttar Pradesh is home to several of the nation's largest rivers, including the Betwa, 

Chambal, Dhasan, Gandak, Ganga, Ghaghara, Gomti, Ken, Ramganga, Son, Tons, and 

Yamuna (UP). Along with these big rivers, smaller rivers like Kali, Krishni, Dhamola, 

and Hindon also flow around UP's largest cities and meet the needs of those living there. 

However, the UP's growing industrialization and urbanization have led to an alarming 

pace of decline in river status (Singh et al., 2005; Tiwari and Kisku, 2016; Kumar et 

al., 2020b; Khan et al., 2021a, b, c; Kumar et al., 2022a). River water quality is 

continuously declining, which has prompted numerous government agencies, NGOs, 

and scholars to conduct numerous studies to address the issue. As per CPCB (2017), 

the most polluted rivers in India are some of the rivers in Uttar Pradesh. The Gomti, 

Hindon, Kali, Krishni, Dhamola, and Yamuna rivers' water quality is considered to be 

gravely worrying. Thirteen detected polluted river sections are near 37 of the main UP 

towns and cities (CPCB, 2017). 

The Gomti River is an example of a river in India that routinely transports garbage from 

agriculture, sewage from homes and offices, wastewater from industrial facilities, and 

other sources from both point sources and non-point sources across the river basin 

(Singh et al., 2005; Kumar et al., 2020b; Kumar et al., 2022a). Traditional religious 

processes, for instance, idol immersion at festivals, the disposal of pathogenic 

biomedical waste and fecal matter, the release of surfactants and color from nearby 

chikankari, the release of oil and grease from auto repair shops, and agricultural runoff 

from farmlands all negatively affect water quality and pose a serious hazard to the fauna 

and flora of the river system (Tiwari and Kisku, 2016; Chakravarty and Gupta, 2021). 

Based on the last three years (2017-2019) of monitoring data of water quality of river 

Gomti in the identified polluted stretch, the river water quality analysis shows that the 
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average DO was found to be 5.05 mg/l and BOD lies in the range of 2.25 mg/l to 17.33 

mg/l (UPPCB, 2019). This falls under category E as per water quality standards IS 

2296-1982. The river's water quality degrades due to the large volumes of wastewater 

discharged daily from the businesses and sewage systems that run from Lucknow, 

Sitapur, Hardoi, Barabanki, Sultanpur, Jaunpur, and Kerakat (Jaunpur). 

 

1.9 Need of the study 

The need to study the water quality of river Gomti is identified in the background of its 

continuously deteriorating water quality. Although many studies to evaluate the state 

of the river Gomti’s water quality are available in the literature, but no studies have 

been found that provide prior knowledge of integrated GIS, WQIs, Assimilative 

Capacity, and Climate Change on the efficacy of its water quality management plan.  

Since there are many studies about the river Gomti, this study is a pioneer in terms of 

determining the river’s vulnerability using a cutting-edge methodology. In addition, 

there is no prior work done on the Gomti water quality modeling. In order to facilitate 

a water quality management plan, the current work uses an integrated strategy by using 

MSTs, WQIs, GIS, and Statistical Modeling in reference to assimilative capacity and 

climate change (impact of rising temperature). The combined use of these techniques 

is anticipated to provide a first thorough picture of the current conditions affecting the 

water quality of the Gomti River in Lucknow (UP). The study's findings will be of 

significant use to academics and those who determine policy. 

 

1.10 Statement of problem 

An increase in anthropogenic activity due to economic growth and decreased river 

releases over the past few decades have multiplied pollution loads in Indian rivers, 

which adversely affected the water quality. Numerous research has been conducted to 

assess the water quality in various Indian rivers (Singh et al., 2005; Jindal and Sharma, 

2011; Katyal et al., 2012; Rajkumar and Sharma, 2013; Kumarasamy et al., 2014; 

Kumar et al., 2015; Bhutiani et al., 2016; Bora and Goswami, 2017; Dutta et al., 2018a, 

b; Jaiswal et al., 2019; Matta et al., 2020; Lkr et al., 2020; Ali et al., 2021; Kumar et 

al., 2022a). According to the CPCB (2017), some of the most polluted rivers in India 

are in Uttar Pradesh. The Gomti, Hindon, Kali, and Yamuna rivers' water quality is 

considered to be gravely worrying. Gomti stretch from Sitapur to Varanasi is classified 

as Priority Class – I (Sitapur, Lucknow, Sultanpur) according to CPCB (2017). 
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Based on the aforementioned justification, the primary objective of this study is to 

evaluate the current status of Gomti river water quality and to predict the future 

condition of overall water quality that flows through Lucknow, UP (India). This study 

has also developed long-term water quality management strategies and plans for the 

region. Being the nation’s largest state and fastest growing economic center, Lucknow 

(capital of Uttar Pradesh) has been selected as a study location. The capital city is seeing 

fast urban and economic growth. Unhealthy water environments result from significant 

economic growth combined with unplanned, rapid urbanization, especially in areas 

surrounding water bodies such as the Gomti River basin. Despite its significance, 

relatively little information is available regarding its current state and management 

plans for the future. 

 

1.11 Objectives of the study 

This research aims to determine the most appropriate strategy for administering a 

program to control water quality and to analyze data sets collected to deliver valuable 

and accurate information. This research study has the following objectives: 

1. To identify and quantify the point and non-point sources of pollution. 

2. To study the effects of future temperature change scenario on river water 

quality. 

3. Modeling and simulation of water quality and prediction of pollution status in 

the river. 

4. To estimate the assimilative capacity of the river for different seasons. 

5. Formulation of river water quality management strategies and plan. 

 

1.12 Organization of the Thesis 

There are six chapters in the thesis. Each chapter covered distinct research 

objectives and defined features of those objectives: 

 

Chapter 1: The introduction provides background information with the primary goal 

of introducing the relationships between human civilizations and the significance of 

river water in their growth. The chapter discusses concerns over river water quality and 

its causes. It is crucial to discuss anthropogenic activities and how they affect the river 

basin's environment. The chapter covers the need for the study, the problem statement, 

and the objectives. 



 

1-16  

Chapter 2: The study area provides specific information about the physiology, 

drainage, climate, geology, land use, and pollution sources. To comprehend 

anthropogenic activities in the watershed, the Gomti River and its major urban centers 

are described in detail in this chapter. 

 

Chapter 3: A thorough review of the pertinent literature is provided for determining 

the state of knowledge on MSTs, different WQI types, assimilative ability, climate 

change (effect of rising temperature), and statistical modeling. This chapter also 

examines how the results of the WQIs were included in the river water quality 

management plan and GIS, highlighting the gap that this study aims to fill. 

 

Chapter 4: Materials and techniques provide a comprehensive research framework that 

was employed to accomplish the thesis’ goals. It also details the study area, sampling 

sites, and data analysis. It offers a thorough methodology for descriptive statistics, 

multivariate statistical approaches, the evaluation of WQIs and their integration with 

GIS, statistical modeling of WQIs, the effect of climate change (rising temperatures), 

and the evaluation of the assimilative capacity of water quality variables in rivers. 

 

Chapter 5: Results and discussion include a description and analytical discussion of 

the physiochemical study, descriptive statistics, multivariate statistical analysis, 

specifics of the WQIs analysis, data visualization using GIS maps, the effect of climate 

change, and the assimilative capacity of rivers. Figures and tabular representations of 

all the results have been provided. The chapter outlines the recommendations for the 

management strategy for river water quality. 

 

Chapter 6: The current research results are summarised in the section under 

“Conclusion, Significance and Scope.” The chapter also highlights the present study's 

key contributions and potential scope. With a few comments about the limitations of 

the current work, the chapter and thesis come to a close.
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CHAPTER - 2  

STUDY AREA 

 

2.1 Gomti river basin 

According to Census 2011 data, Uttar Pradesh, which has a geographical area of 24.12 

MH and a population of roughly 199.81 million, is India's fourth-largest state by area. 

However, it is the most populous (Census of India, 2011). It is also blessed with 

abundant water resources, fertile land, and a favorable climate. Agriculture dominates 

its eight most important river basins: Yamuna, Ganga, Ramganga, Gomti, Ghaghra, 

Rapti, Gandak, and Sone (Figure 2.1), contributing to 27% of the state's GDP and 63% 

of employment (Abeysingha et al., 2015). 

 

 

Figure 2.1: River basins of Uttar Pradesh 
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The Gomti, an important Ganga tributary and an alluvial river of the Ganga plain, rises 

at an elevation of 190 m in Madhotanda, approximately 30 km to the east of Pilibhit in 

UP, near Mainkot (55 km to the south of the foothills of the Himalayas) (Dutta et al., 

2011, 2015, 2018a). The river completely flows within the UP and drains the region 

between the Ramganga and Ghaghara systems (Krishan et al., 2022a). The Gomti basin, 

which encloses an area of 31,433.67 km2 in UP, is located between the East longitudes 

of 79°57' and 83°11' and the North latitudes of 25°23' and 28°42' (Figure 2.2) (Khan et 

al., 2021a, b, c). It is bordered on the north and west by the Ramganga Basin, the north 

and east by the Ghaghara Basin, and the south and east by the Ganga Basin. Lower 

Gomti, Sai, and Upper Gomti are the names of the three sub-basins that are 

identified within the Gomti basin. These sub-basins drain portions of UP that are 

5,659.16 km2 (18%), 12,188.39 km2 (39%), and 13,586.12 km2 (43%), respectively 

(Dutta et al., 2011). 

 

 

Figure 2.2: Location map of the Gomti basin 
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This river basin, which flows through both rural and urban regions, largely or entirely 

comprises 14 districts (Table 2.1). The river travels approximately 960 km in a south-

southeast direction, passing through or bordering the districts of Pilibhit, Shahjahanpur, 

Kheri, Hardoi, Sitapur, Lucknow, Barabanki, Faizabad, Amethi, Sultanpur, Pratapgarh, 

and Jaunpur before coming together with the Ganga River near Kaithi village, Varanasi 

district bordering Ghazipur district (located 61 m above sea level) (Sharma et al., 

2021a). The three largest urban areas on the river's banks are Lucknow, Sultanpur, and 

Jaunpur (Singh et al., 2004; Dutta et al., 2011). All major and minor tributaries of river 

Gomti confluence points are given in Table 2.2. 

 

Table 2.1: The Gomti River's length by district 

District (s) 
Length of the 

river (km) 
Area falling in Gomti Basin (km2) 

Pilibhit 30.03 894 

Shahjahanpur 68.18 974 

Kheri 85.12 2230 

Hardoi & Sitapur 160.82 3572 (Hardoi) & 3076 (Sitapur) 

Unnao 0 1856 

Lucknow 98.75 2538 

Barabanki 129.67 2960 

Raibareli 0 3577 

Faizabad 57.87 228 

Sultanpur & Pratapgarh 163.18 3466 (Sultanpur) & 2878 (Pratapgarh) 

Jaunpur 112.5 2230 

Varanasi 10.39 492 

Ghazipur 24.98 38 

Total 960 31009 

 

Recently, the Gomti riverfront neighborhood in Lucknow city has been built. The 

Lucknow Development Authority is developing recreational amenities here (Dutta et 

al., 2018a; Khan et al., 2022). The Gomti River has traditionally been revered. 

Nemsharanya Tirth, which, according to Hindu mythology, serves as a residence for 

saints and rishis, is located on the river's bank in Sitapur district, some 80 km southwest 

of Lucknow. Hindus hold this location in the highest regard and bathe in the river on 

holy days (Dutta et al., 2011).
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Table 2.2: Confluence points of all major and minor tributaries of river Gomti 

S. No. Tributary Name District Length (km) Place of Confluence 

1 Gachai River Pilibhit 14.9 28°29'42.16"N, 80°5'15.91"E 

2 Joknai River Shahjahanpur 52 28°12'22.09"N, 80°10'14.99"E 

3 Bhainsi River Shahjahanpur 41 28°5'17.69"N, 80°12'10.10"E 

4 Chuha Nala Kheri 44 27°44'30.64"N, 80°16'0.14"E 

5 Andi Nala Hardoi 10 27°30'53.23"N, 80°20'18.79"E 

6 Kathina River Sitapur 176 27°28'23.89"N, 80°23'29.62"E 

7 Chitwa Nala Sitapur 12 27°24'12.75"N, 80°26'52.56"E 

8 Gharera Nala Hardoi 18 27°21'34.27"N, 80°27'12.27"E 

9 Sarayan River Sitapur 274 27°11'58.67"N, 80°47'20.88"E 

10 Nakha Nala Lucknow 10 27°3'5.23"N, 80°50'39.06"E 

11 Akraddi Nala Lucknow 19 27°1'0.81"N, 80°49'12.53"E 

12 Behta River Lucknow 134 26°56'8.03"N, 80°51'25.45"E 

13 Kukrail River Lucknow 20 26°51'34.00"N, 80°58'0.75"E 

14 Loni River Lucknow 2 26°48'59.66"N, 81°0'30.53"E 

15 Asaina Nala Lucknow 6 26°50'15.02"N, 81°5'36.15"E 

16 Reth River Barabanki 103 26°46'5.03"N, 81°11'20.70"E 

17 Kalyani River Barabanki 190 26°41'33.77"N, 81°35'49.73"E 
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S. No. Tributary Name District Length (km) Place of Confluence 

18 Arahi Nala Amethi 28 26°35'0.70"N, 81°39'10.61"E 

19 Betwa River Barabanki and Faizabad border 19 26°35'17.18"N, 81°42'9.59"E 

20 Kandu Nala Amethi 69 26°25'26.41"N, 81°49'29.95"E 

21 Gobaria Nala Sultanpur 23 26°17'2.04"N, 82°3'48.71"E 

22 Sewai Nala Jaunpur 31 25°57'46.55"N, 82°32'23.89"E 

23 Pili River Jaunpur 95 25°51'6.47"N, 82°35'24.40"E 

24 Sewai Nala Jaunpur 31 25°42'9.36"N, 82°46'33.88"E 

25 Balohi Nadi Jaunpur 11 25°40'42.38"N, 82°48'20.82"E 

26 Sai River Jaunpur 695 25°39'7.76"N, 82°48'7.69"E 

27 Nand River Varanasi 47 25°37'21.43"N, 82°57'15.65"E 
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Groundwater provides domestic water supply in the Gomti basin (Sharma et al., 2021a). 

However, water from the Gomti River is being used to meet Lucknow's rising water 

demand (Abeysingha et al., 2016). The river almost completely dries up throughout the 

summer. Therefore, during the months of May and June, 4.25 m³/s of water are made 

available from the Lucknow branch of the Sarda canal system through the Mahdoiya 

escape into the Gomti river to meet the residential water supply needs of Lucknow city. 

To lift this water and provide it to the ancient city area, a pumping station was 

constructed at Gaughat on the Gomti River. 1.42 m3/s of water are pumped from Sharda 

Sahayak Feeder to Kathauta Jheel for the trans-Gomti area of Lucknow city. Water is 

delivered to this area from this location (Tangri et al., 2018). In addition to Lucknow, 

the Gomti River also delivers domestic water to the nearby town of Jaunpur. 

Groundwater is mainly used for industrial water supplies (Dutta et al., 2018a). 

 

2.2 Basin morphology and sub-surface geology 

The Indian subcontinent is home to the Ganga-Brahmaputra-Meghna (GBM), one of 

the biggest fluvial sedimentary basins in the world. The two regions of the world with 

the most tectonic activity are the Himalayas to the north and the stable Indian Craton to 

the south. The GBM, which dates back to the Pleistocene and Holocene, is traversed by 

the Gomti River, which also redistributes the GBM's weathered sediments from the 

Himalayas (Dutta et al., 2011; Sharma et al., 2021a). The most notable geomorphic 

features displayed by the GBM's active rivers are those involving fluvial incision (Dutta 

et al., 2015). Rainfall collected by the GRB and river discharge in the GBM are both 

regulated by the monsoon. The river travels 960 km southeast before joining the Ganga 

River near Kaithi, Ghazipur, adjoining Varanasi (located 62 m above sea level) (Dutta 

et al., 2011). With an altitude range of 200 to 62 m AMSL, most of the GRB's surface 

area is fairly flat and slopes toward the south and southeast. Before encountering the 

Ganga in the city of Kaithi in Ghazapur, which is close to Varanasi, it travels through 

the districts of Sitapur, Lucknow, Barabanki, Sultanpur, and Jaunpur as it makes its way 

south (UPPCB, 2019; Sharma et al., 2021a). Based on changes in the river's slope and 

its tributaries, the GRB is separated into upper and lower portions. The variation in 

height for 450 km from the starting point is around 100 m AMSL. There is a 25 m 

variation in height for the next 805 km (Dutta et al., 2015). 

According to Plate 1(b), the Gomti River's valley edges have noticeable escarpments or 

bluffs, which are also known as banks. The height of the escarpment is essentially the 
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elevation of the vertical cliff that outlines the river channel and valley. The Ganga 

River's base level being lowered is principally responsible for controlling the increasing 

downstream tendency of the cliff heights of both river borders. The Gomti River's 

longitudinal profile spans from 200 m to 62 m AMSL and has three breaks in the slope. 

The profile's noticeable convexity, situated above the subsurface Faizabad ridge, might 

be connected to movement over this ridge (Dutta et al., 2015). 

The upper segment of the Gomti River has a highly sinuous active channel. The middle 

segment has river valley edges with a disconnected and steep escarpment. Before 

joining the Ganga at Kaithi, the lower segment had a meandering river valley with a 

10–12 m–deep incision on the Ganga plain (Plate 1(d)). The effects of tectonics and 

climate change are notable and significant, and in the past, they may have caused river 

channel incisions and the renewal of the entire drainage network (Dutta et al., 2011, 

2015). 

According to the observation of the authors, groundwater and surface runoff 

contributed to a rise in the Gomti River's downstream discharge. The Gomti River's top 

part experiences little incision when experiencing high rainfall; in contrast, the middle 

and lower segments have high incision while experiencing low rainfall. Water output 

is lower in the middle segment than in the lower portion, yet the incision is at its 

greatest. Furthermore, the Gomti River's incision pattern is wave-like, indicating that 

rainfall is insufficient to account for it (Dutta et al., 2011, 2015). 

The groundwater in the GRB is connected to the surface of the local uplands, rivers, 

and lakes, forming an integrated groundwater flow system (Singh et al., 2013). The 

quaternary alluvium strata include large aquifers at different depths. The hydraulic 

slope in the plain alluvial region is 2.5–3.5 m/km, whereas, in the river valley region, it 

is 6.5–7.5 m/km. The Gomti River valley has a groundwater depression, and 

groundwater flows from the valley edges to the active river channel toward this 

depression (Singh et al., 2013).  

 

2.3 Sediment profile of Gomti river 

The entire GRB sits atop thick alluvial sediment that dates back to the quaternary 

period. The alluvial deposits are made up of boulders, pebbles, gravel, sand, silt, clay, 

and occasionally kankar bands. Younger alluvium may be separated from the 

unconsolidated unit. The younger alluvium is found on the current floodplains, while 

the older alluvium is found in elevated areas, primarily the doab areas. The deeper 
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kankar nodules in the older alluvium set it apart from the younger alluvium. Maximum 

sediments are carried during the monsoon season when rivers are discharging heavily. 

Sandbeds have a large aquifer system due to their structure and thickness (Dutta et al., 

2015). Sand bars and sinuous-crested dunes deposit sets of trough cross-beds floor the 

waterways of the Gomti—inadequately defined trough cross-bedding results from the 

fast migration of sinuous-crested dunes with a coarse bed-load. During flood 

occurrences, coarse sediments are conveyed in the channels as depth and flow velocity 

rise significantly. Therefore, the deep channel deposits are composed of coarse 

sandstones with trough cross-bedding comparable to what is seen beneath the Siwalik 

sequences (Dutta et al., 2015). 

Due in large part to the homogeneous distribution of alluvium dun gravels spread across 

the entirety of the basin, an almost monotonous spatial distribution of different chemical 

species is seen in the sediments. The river yearly conveys 3.0x106 tonnes of total 

dissolved solids and 0.34x106 tonnes of total suspended material, of which only 

bicarbonate ions account for 69%. A significant amount of anthropogenic loadings were 

detected in river water in samples taken downstream of Lucknow city. Concentrations 

of Na+, Cl-, and SO4
2- increase downstream. With detrital quartz accounting for around 

74% of the mineral composition of the bed sediments in the river, Si (36%) dominates 

the bed sediment chemistry. The percentage of organic stuff that can be found in the 

sediments was indirectly inferred by the average Kjeldahl nitrogen concentration (234 

g/g). The Hg concentration in sediments has been found to be greater than background 

levels (on average, 904 µg/l). The Gomti River flows at a low energy level, as evidenced 

by the well-sorted, very leptokurtic, and finely skewed suspended sediments (Dutta et 

al., 2015). 

 

2.4 Climate 

Koppen classified the whole Indo-Gangetic Plain into the humid subtropical climate 

(Cwa system). The Cwa system is a unique classification, and it is applicable for Indo-

Gangetic Plain only (Tangri et al., 2018). Winter, summer, and monsoon are the three 

main seasons the river basin experiences yearly. Beginning in November and lasting 

until February, winter brings temperatures down from 2°C to 22°C. Siberian-born frigid 

winds and relatively little precipitation are characteristics of the winter season. Most of 

the rainfall during this season is caused solely by westerlies or cyclonic disturbances. 

Erosion and chemical or mechanical weathering are slowed down by the winter season. 
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The summer season begins at the beginning of March and lasts until mid-June. The 

temperature in the summer varies between 28°C and 44°C, and most of the basin is 

subject to the loo, a hot local breeze. Humans in the summer receive some relief from 

cyclonic rain. At this time, the wind's action primarily controls the processes of 

weathering and erosion. June begins the monsoon season, which lasts until September 

(Das et al., 2019). The humidity is extremely high at this time, and the majority of the 

basin sees severe rain. Most of the geomorphic characteristics of the basin are 

developed and altered by weathering and erosion, influenced by heavy rain and increase 

the river's velocity and sediment supply. 

The basin experiences annual rainfall ranging from 850 to 1,100 mm, with the 

southwest monsoon responsible for around 75% of the total precipitation falling 

between June and September (Abeysingha et al., 2015). The strength and duration of 

the monsoon rainfall significantly impact the Gomti River's flow (Abeysingha et al., 

2020). 

 

2.5 Land use cover in the Gomti river basin 

In the Gomti watershed, declining wetlands and forest cover are key concerning causes. 

Due to rising demand and urbanization, forest cover has significantly declined during 

the past 100 years. This has negatively impacted the Gomti River's water flow. A 

decrease in their density has reduced the amount of water available in the river, as most 

tributaries come from woods and water sources. The majority of the woods in the river 

basin are open-type and less thick (Dutta et al., 2011). All of the districts within the 

basin, except for Pilibhit and Kheri, have insufficient greenery. The overall quantity of 

forest cover in the river basin is only 4.10%, compared to 9.01% of the geographical 

area in UP. In the Gomti basin, it is visible that 64.35% of the area is under agriculture, 

and harvesting intensity is 163.12% (Dutta et al., 2011). Surface and groundwater 

sources are used to irrigate about 88.7% of the gross planted area. According to data 

from the agriculture department for 2014–2015, the yearly per capita food output 

(cereal and pulses) in the Gomti basin is 170 kg/person (Sharma et al., 2021a). The land 

use and cover pattern of the river basin were studied to identify the kinds of land use in 

the basin. A land use and land cover pattern in the GRB has been shown in Table 2.3 

(Dutta et al., 2011, 2015). 
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Table 2.3:  Land use and land cover pattern in the Gomti river basin 

Field Area in km2 Percentage share in the basin 

Built-up 1743.014 5.62 

Kharif crop only 1828.539 5.9 

Rabi crop only 2527.707 8.15 

Zaid crop only 8.799616 0.03 

Double/triple crop 17384.9 56.06 

Current fallow 833.6241 2.69 

Plantation 2119.563 6.84 

Evergreen forest 2.119936 0.01 

Deciduous forest 1068.777 3.45 

Degraded/ Scrub forest 21.97709 0.07 

Wasteland 2489.783 8.03 

Deep water bodies 970.5042 3.13 

Shallow water bodies 9.696512 0.03 

 

2.6 Socio-economic status 

According to the 2011 Census, there are 27.71 million people living in the Gomti basin, 

of which 22.59 million (81.5%) live in rural areas and 5.13 million  (8.5%) live in urban 

areas. The population comprises 14.33 million males and 13.39 million females. 

According to statistics from 2012, 43% of the basin's population lives in poverty 

(Census of India, 2011). 

Most of the land in the Gomti basins is owned by marginal laborers, who have 

agricultural fields with a total area of less than 1 Ha. According to the agriculture census 

2010–11, of the total operational holdings in the Gomti basin, marginal land holdings 

(<1.00 Ha) are made up of 84.58%, which was followed by small (1 to 2 Ha), semi-

medium (2 to 4 Ha), medium (4 to 10 Ha), and large (above 10 Ha) land holdings 

(10.59%, 3.96%, 0.85%, and 0.03%), respectively. In comparison to the national 

average (67.10%) and the state average (13.01%), the fraction of marginal land holdings 

in the Gomti basin is higher (79.48%) and lower (17.91%), respectively (Census of 

India, 2011). This shows that the region has a huge number of minor agricultural fields, 

which has led to a low level of crop intensification, crop diversity, agricultural 

mechanization, and low economic growth. The repeated rice-wheat cycles may also 
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have additional unfavorable effects, such as low farmer income, agriculture focused on 

subsistence, loss of soil health, and many others. According to the 2011 census, of the 

total number of workers in the Gomti basin, 31.8% are agricultural laborers, and 30.7% 

are cultivators, making up 62.5% of the working population in the region (Abeysingha 

et al., 2016).  

 

2.7 Water availability in the river 

The Gomti River's water is annually released into the Ganga River at about 7390 x 106 

m3. The monsoon season sees about 80% of the discharge flow (Tangri et al., 2018). 

According to research, the Gomti basin's average annual water output from rainfall is 

7390 million cubic meters, with a specific yield and discharge of 244,000 m3/km2 and 

234 m3/sec (Abeysingha et al., 2020). Individual basin runoff might vary significantly 

from the national average. For instance, the runoff in the upper Gandak is about 1600 

mm/yr compared to about 250 mm/yr in the Gomti basin. According to estimates, the 

river has an average daily flow of 1,500 MLD. It rises to 45,000 MLD after rains and 

drops to 500 MLD during the summer (Dutta et al., 2018a; Khan et al., 2022; Krishan 

et al., 2022a). In fact, there have been instances during the dry season when it has been 

necessary to ask the state irrigation department to increase supply in order to fulfill 

drinking water demand. The river is known for its slow flow year-round, except for the 

monsoon season, when excessive rainfall produces a manifold spike (20 to 50 times) in 

the discharge (Singh et al., 2013). The 75% predicted flow in September was recorded 

as 450 m³/s in Maighat (after the Sai-Gomti confluence), and 125 m³/s. were recorded at 

Hanuman Setu, Lucknow (Abeysingha et al., 2020). 

For Lucknow, Jaunpur, and other communities downstream, including many farmers, 

the Gomti River is their primary water source. Many tube wells have been drilled close 

to the riverbed to access groundwater. Around 250 MLD of water is taken out of the 

Gomti river daily for Lucknow, while 300 MLD is taken out of the groundwater. There 

is practically little recreational use of rivers and waterways. Another barrier to the 

construction of recreational amenities is low river discharge (Dutta et al., 2018a; Goel 

et al., 2018). 

Through escapes to 2.83 m3/s the Sharda canal system occasionally increases Gomti 

flows through the Kheri branch, which is on the left, and the Lucknow branch is on the 

right. According to the roaster, the branches in Lucknow and Kheri operate concurrently 

and alternately. In the highest reaches, Sharda flows can be pushed into Gomti. 
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However, as all flows are channeled into the Sharda canal at Banbasa during non-

monsoon, there won’t be enough flow in the Shards during that time (Tangri et al., 

2018).  

In the Gomti basin region, neither thermal nor hydroelectric power is produced. 

Intracoastal navigation is not possible because of low discharges. However, at its 

confluence with the Ganga River close to Varanasi, the river serves as a platform for 

inland shipping. There are 111 officially notified Inland National Waterways (NW) in 

India identified for the purposes of inland water transport, as per The National 

Waterways Act, 2016. Out of 111 NW, 106 were created in 2016. The 518 km long 

Gomti River (NW42) is one of the 106 newly designated NW. 

 

2.8 Major canal network in the Gomti river basin 

The Sharda River's water accumulated at the Banbasa barrage in the Uttarakhand region 

of Nainital, where the main Sharda canal begins. In the district of Pilibhit, the main 

Sharda canal is divided into three additional branches (Tangri et al., 2018). 

 Main Hardoi branch 

 Kheri branch 

 Feeder channel which feeds the Sharda Sagar 

Water from the Sharda River is held in the Sharda Sagar, and Hardoi, a branch canal, 

is pulled out of the Sharda Sagar's zero point. The Sharda Sagar reservoir's "Zero Point" 

is where the feeder canal meets the reservoir, and the subsidiary Hardoi branch emerges. 

The tail end of the Sharda Sagar reservoir is its upstream side. A second feeder channel 

is drawn out from the main Sharda canal's tail point, feeding water into the Sharda Sagar 

reservoir. The Sharda Canal's branches, such as Hardoi, Kheri, Sitapur, Sandila, 

Sultanpur, Jaunpur, Lucknow, and Mariyahau, make up most of the Gomti river basin's 

primary canal network. These branches are divided into a variety of distributaries, 

including the Maholi distributaries, Misrikh distributaries, Banaura distributaries, 

Bharawan distributaries, Jindana distributaries, Nawabganj distributaries, Chilbila 

distributaries, Chanda distributaries, Ramganj distributaries, Peng distributaries, Pihani 

distributaries, Bhadaicha distributaries, Pandarwa distributaries (Dutta et al., 2011; 

Tangri et al., 2018). The entire Gomti river basin is drained in addition to these large 

canal networks by numerous lesser ones. As a result, the vast system of canals, along 

with its distributaries and minors, completely encloses the basin of the Gomti River.  
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2.9 Flood and Drainage Management 

The Gomti River and Sai, its principal tributary, serve as the basin's primary drainage 

systems. The river runs over 960 km in a south-southeast direction. The river's overall 

drainage area is 31,434 km2, whereas Sai River's drainage area is 12,188 km2 or 39% 

of the Gomti basin's total catchment area. The Gomti basin's surface area is primarily 

flat and slopes south and southeast, with elevations ranging from 200 m to 61 m AMSL. 

The height difference is around 90 m for the first 425 km from the starting point and 49 

m for the final 500 km. Due to drainage congestion, the lower, flatter slope causes 

occasional flooding in Jaunpur and some areas of the Pratapgarh district. In Jaunpur 

town, several low-lying regions experience brief flooding during the monsoon season. 

Flooding of the Gomti River has no effect on the population (Dutta et al., 2011; Tangri 

et al., 2018). The Gomti River caused flooding in Lucknow city in the 1980s. 

Embankments were built to protect the city from the intensity of the Gomti floods. 

These are: 

 U/s of Hardinge bridge on the left bank 

 U/s of a confluence of Kukrail Nala and Gomti River, along Kukrail Nala on 

both banks. 

 Gomti barrage to the railway bridge in the d/s, on both banks, to save La 

Martiniere College and Gomti Nagar. 

 

2.10 Water quality deterioration 

Surface runoff is a seasonal occurrence strongly influenced by the basin’s climate, 

whereas human discharges are a continuous polluting source. Domestic sewage from 

Class-I cities, Class-II cities, and many towns, effluents from various industries, are 

discharged into the river Gomti throughout its length. About 78% of the pollution is 

caused by raw sewage, effluents, and sludge disposal. The major sources of river Gomti 

pollution are given below: 

 Small and major drains carrying sewage from adjoining areas. 

 Untreated industrial effluents. 

 Chemical fertilizers, pesticides, and insecticides as surface runoff from nearby 

agricultural fields. 

 Surface runoff from areas on which urban solid wastes are dumped. 

 Disposal of dead animal bodies. 
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A total of 865 MLD of sewage has been dumped into the river Gomti through 68 major 

drains. In the river's catchment region, there are seven major towns – Sitapur, Sandila, 

Lucknow, Barabanki, Jagdishpur, Sultanpur, and Jaunpur town – as well as one smaller 

town—Kerakat (Jaunpur). The sewage and other industrial effluent produced by these 

cities increase the organic load on the river. Given that the installed capacity of the 

sewage treatment plants is 443 MLD and that they are operating at 100% of their 

capacity. Sewage treatment is a major source of concern. About 422 MLD of untreated 

sewage enters the river Gomti each year. This suggests that the available treatment 

facility is insufficient. The river Gomti and the 345 MLD Bharwara STP's treated 

sewage meet just downstream of Lucknow city, close to Khaledeoria. Upstream of 

Lucknow city, close to Kudiyaghat, the river Gomti is where the 56 MLD treated 

sewage from Daulatganj STP meets (UPPCB, 2019; Krishan et al., 2022 a, b). 

Within the catchment region of the Gomti River's pollution section, there are 30 water-

polluting enterprises. These businesses have wastewater treatment facilities, and the 

processed wastewater is released through 10 mixed drains, where the treated industrial 

wastewater is mixed with sewage. The industries related to sugar, distilleries, textiles, 

electroplating, slaughterhouses, and other unrelated businesses are extremely polluting 

(UPPCB, 2019). 

According to CPCB river water quality monitoring, the river Gomti is not appropriate 

for drinking purposes or outdoor bathing between Kudiaghat and Jagdishpur due to the 

detected polluted length of the river between Sitapur and Jaunpur. It can only be used 

for controlled waste disposal, industrial cooling, or irrigation (Class-E, specified as per 

IS 2296-1982) (UPPCB, 2019). 

 

2.11 Gomti River in Lucknow 

The Gomti River approaches Lucknow after traveling 240 km from its source. Here, it 

meanders. Lucknow is located at 26°52′ N latitude, 80°56′ E longitude; it is situated 

above mean sea level at the height of 124 m (Tangri et al., 2018). The city experiences 

a hot, humid subtropical climate from April to June, with chilly, dry winters from 

December to February. The extreme temperature ranged from 1.67OC in the winter to 

48.9OC in the summer. About 900 mm of rain falls on the city each year, primarily from 

the southwest monsoon in July, August, and September (Goel et al., 2018). The city is 

between 100 and 130 m above mean sea level and slopes east (Khan et al., 2020). With 

a projected population increase from 2.8 million in 2011 to 4.7 million in 2031, 
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Lucknow is one of the cities in the nation that is expanding very fast (LDA, 2016; 

Kumar, 2018). The urban core has a surface area of around 250 km2, growing each year 

exponentially. As it enters Lucknow, water is drawn from the Gomti River at the 

Gaughat pumping station for the city's water supply. In the Lucknow region, up to 28 

city drains discharge untreated sewage water into the Gomti, severely polluting it. The 

Gomti barrage impounds the river, turning it into a still lake at Gomti's downstream end 

in Lucknow city (Tangri et al., 2018). 

Due to the daily release of millions of gallons of untreated residential garbage, the 

Lucknow population's primary source of drinking water, the river, is the filthiest. The 

river not only feeds water to Lucknow but also to 14 other towns that are located along 

its banks, such as Lakhimpur Kheri, Sultanpur, and Jaunpur (Krishan et al., 2022a, b). 

The Lucknow urban center receives the majority of its water from the Gomti River. At 

Lucknow, the Gomti River's available discharge ranges from 500 MLD during the lean 

season to 55,000 MLD during the monsoon season. The typical discharge for most of 

the year is only about 1500 MLD. The urban region of Lucknow has about 407 tube 

wells. About 190 MLD of water is produced by these 407 tube wells. Several private 

colonies and organizations have set up about 100 tube wells to meet their water needs. 

Due to low water discharge, the post-monsoon season is connected to the river's 

depositional phase (Tangri et al., 2018). 

Lucknow had its highest flood level in 1960 at 113.2 m, with significant portions of the 

city submerging. Earthen embankments have been built up to a high level of 114.4 m 

along the riverbank and atop Kukrail nala to safeguard the homes. To avoid water 

logging in the city during flooding and severe rain, pumping stations transport 

stormwater across an embankment and into a river. The Gomti Nagar settlement, a 

component of the Lucknow urban area, is located on the flood plain of the Gomti river; 

as a result, water logging happens in various places during rainy seasons. The Gomti 

does not create any problems unless there is hefty rainfall; however, harm is frequently 

brought on by floods and their aftereffects (Tangri et al., 2018). 

There are 28 important drains in Lucknow; 14 are in the Cis-Gomti area, which is the 

southern half, and 14 are in the Trans-Gomti area, the northern section (Figure 2.3). 

Some of these large drains can discharge up to 78 MLD of sludge, whereas the smaller 

drains can only discharge 0.5 MLD (Table 2.4) (Krishan et al., 2022a, b).  
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Figure 2.3: Map showing the sewerage network joining the right and left banks of 

the Gomti River at Lucknow 

 

A few of the major polluting industries that significantly contribute to the Gomti River 

are M/s. Hindustan Aeronautics Ltd., Tata Motors, Railway Carriage and Wagon Shop, 

battery industry, many small/medium scale industries, bakeries, vehicle workshops, 

dairy farms. In spite of these industries, other notable polluters are vegetable waste, oil 

and grease, surfactants used for cloth washing at river sites, biomedical/animal waste, 

fish/meat markets, and cattle sheds along the river banks that considerably contribute 

to the Gomti River. Between 1993 and 2019, Lucknow city's built-up area increased by 

43.8%, along with the city's population growth, which had an even greater influence on 

the river's water quality. Newly built structures and infrastructural growth have also 

influenced the water quality (Kumar et al., 2022a). 
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Table 2.4: Wastewater load at different outfall drains, Lucknow 

S. No. Name of the drain Cis-Gomti (right bank) Discharge (MLD) 

1 Nagariya drain 10 

2 Sarkata drain 34.57 

3 Pata drain 18.54 

4 Drain downstream of NER 1 

5 Wazirganj drain 75.6 

6 Ghasiyari mandi drain 19.53 

7 China bazar drain 7.01 

8 La-place drain 3 

9 Cis-Gomati Pumping Station 19.64 

10 Joppling road drain 3 

11 G. H. canal 106.2 

12 Jiamau drain 3 

13 Lamartenier 1 

14 Drain upstream of rail bridge 3 

Total 305.09 

S. No. Name of the drain Trans-Gomti (left bank) Discharge (MLD) 

1 Maheshganj drain 4.57 

2 Rooppur drain 0.66 

3 Mohan meakins drain 5.19 

4 Daliganj drain I 12.28 

5 Daliganj drain II 6.95 

6 Arts college drain 8.89 

7 Hanuman setu drain 0.83 

8 Trans-Gomti Pumping Station 1.64 

9 Kedernath drain 3.4 

10 Nishatganj drain 1.7 

11 Babapurwa drain 0.65 

12 Kukrail drain 50 

13 Weeping sewers of city 34.5 

14 Gomti N. drainage 25 

Total 156.24 

Grand total: 461.33 MLD  
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CHAPTER - 3  

LITERATURE REVIEW 

 

3.1 General 

A review of every facet of this research project is presented in this chapter. The first 

part reviews the management of water quality and the river water quality conditions in 

India and the rest of the world. The use of multivariate statistical analysis, the water 

quality index, assimilative capacity, water quality modeling, and the impact of rising 

temperatures on water quality, as well as the integration of GIS with WQIs, are covered 

in this section. 

 

3.2 River water quality management 

All life depends on water, an essential natural resource (Semy and Singh, 2021; Kumar 

et al., 2022a). The two categories of natural water resources are surface water and 

groundwater. Rivers, lakes, ponds, and oceans are surface water resources (Markandeya 

et al., 2021; Pandey et al., 2021). Rivers are a significant part of the natural 

environment, and their quality must be preserved for various water uses (Arora and 

Keshari, 2021; Kumar et al., 2022b). A measurement of the water status concerning the 

needs of one or more aquatic biota and/or any human need is known as water quality 

(Singh et al., 2019). The primary water quality metrics include temperature, pH, 

sediment load, BOD, TDS, DO, nitrogen, phosphorus, heavy metals, radionuclides, and 

pathogenic microbes (Kumar et al., 2022b). To maintain water quality, several 

strategies have been used nationally and worldwide (Parmar and Bhardwaj, 2014, 2015; 

Kumar, 2018; Ali et al., 2021). To keep water quality at an acceptable level for the 

intended use, water quality management comprises monitoring, evaluating, identifying, 

and controlling potential sources of pollution (Kumar, 2018; Arora and Keshari, 2021). 

Since the turn of the century, efforts have been made in Germany to manage and 

regulate surface water quality. For the German Emscher River basin, an institution 

responsible for basin-wide water quality control was established in the middle of 1900. 

Later, six more river basin authorities were founded in Germany's highly industrialized 

and urbanized Ruhr region. An innovative project to measure rivers’ ability to absorb 

garbage was initiated on the Ohio River in the 1920s. No effort was made after World 

War II to regulate wastewater discharge and improve river water quality. A complete 
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sewerage system had been built in the USA and Europe by the middle of the 1880s 

(Council, 2002). Later, a global network of STPs was set up to enhance the wastewater's 

quality before disposal in surface water bodies. 

Several environmental laws have been created and put into effect around the globe to 

preserve the purity of water. The Water (Prevention and Control) Act of 1974 was 

passed by the Indian government. The CPCB and SPCB were given significant duties 

and powers under the act, which was focused on maintaining the water quality of 

aquatic resources. Each SPCB is required by this legislation to establish a water and 

wastewater laboratory in cooperation with the CPCB. Both SPCB and CPCB contribute 

to the nationwide monitoring of water quality. 

Recent decades have seen a significant decline in the ecological health of the Ganga 

River due to unchecked and unplanned rapid urbanization, discharge of both partially 

treated wastewater and untreated wastewater, inappropriate patterns of land use, 

excessive numbers of people participating in religious bathing, and the dumping of solid 

waste along the river stretch (Nandi et al., 2016; Singh et al., 2020). The government 

of India has implemented a number of mitigating measures as part of GAP- I and II 

with the primary goal of reducing the pollution load into the national river Ganga 

(Ching and Mukherjee, 2015; Kumar et al., 2021a). 

The Indian government initiated the GAP-I in 1985 and collaborated technologically 

with local and foreign (United Kingdom, Netherlands, and other) non-profit 

organizations (Chaudhary et al., 2017). The GAP-I mainly concentrated on building 

bands to control nonpoint pollution inputs from agricultural runoff, a new electric 

crematorium to prevent the mixing of partially and fully burned dead bodies at river 

banks, STPs to prevent untreated urban discharge of wastewater in rivers, diverting 

drains that directly discharge wastewater, and developing sewerage systems in the 

surrounding areas (Birol and Das, 2010; Matta et al., 2020). GAP-I had a significant 

role in the significant decrease of wastewater discharged directly, which improved the 

quality of the Ganga River's water (Trombadore et al., 2020). Nevertheless, despite 

significant enhancement, river water quality was unfit for various uses, including 

human bathing (Kumar et al., 2021a). Based on this information, the Indian government 

implemented GAP-II in 1993 with the assistance of indigenous and Japanese 

environmental organizations. The main goal of GAP-II was to reduce the pollution load 

in the three major tributaries (Yamuna, Damodar and Gomti) of the river Ganga, which 

was not taken into account in GAP-I (Das and Tamminga, 2012; Kumar et al., 2021a). 
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Despite being a top priority for the government and involving governing authorities, 

specialists, and regulatory systems, the river's water quality has not improved but rather 

deteriorated and has become inadequate for supporting biodiversity (Tripathi and 

Singal, 2019; Kumar et al., 2020a). 

Several researchers have restored riverine environments in the UK, US, and Europe 

(Helfield et al., 2007; Newson, 2010; Raven et al., 2010). The main points are that these 

initiatives are long-term, technically sound, depend on separate financing for habitat 

changes, and use river segments with designated special protection areas for wildlife as 

a "springboard for a systematic approach to river restoration" (Philip and Paul, 2012). 

Restoration initiatives also focus on a river system's geomorphic structure, purpose, and 

historical development (Brierley et al., 2010). For the Gomti River, there is a need to 

implement a restoration plan that is technically and scientifically sound, extensive, 

long-term, and economically sustainable (Dutta et al., 2018a). 

For the preservation of desired water quality, a variety of water quality management 

systems have been created to date (Sharma and Kansal, 2011; Gupta et al., 2014; Parmar 

and Bhardwaj, 2014, 2015; Kumar et al., 2015; Kumar, 2018; Ali et al., 2021). 

Traditionally, water quality regulation is used to assess the quality of tested surface 

water for various parameters (Debels et al., 2005; Zhang et al., 2010; Arora and Keshari, 

2021; Kumar et al., 2022b). Monitoring does not determine how one parameter affects 

another, but it does lay the groundwork for using MSTs, WQIs, assimilative capacity, 

and water quality models (WQMs) to improve management and comprehend 

underlying concerns and issues. The development of contemporary computational 

approaches such as WQIs and WQMs for evaluation and management of water quality 

can be applied to the data on water quality (Parmar and Bhardwaj, 2014, 2015; Kumar 

et al., 2015; Arora and Keshari, 2021).  

Water quality monitoring, water quality assessment using MSTs, WQIs, assimilative 

capacity, and design of pollution control plans using WQMs are the primary 

components of surface water quality management. The following sections describe and 

evaluate essential aspects of surface water quality management systems. 

 

3.3 Water quality monitoring 

The main method for gathering initial data and evaluating the water quality of any body 

of water is water quality monitoring. Primary monitoring is essential for determining 

the water quality of the bodies. For this objective, several primary monitoring studies 
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have been conducted globally (Sargaonkar and Deshpande, 2003; Nikoo et al., 2011; 

Rizvi et al., 2016; Bora and Goswami, 2017; Chabuk et al., 2020; Lkr et al., 2020; 

Kharake and Raut, 2021; Kumar et al., 2022a). 

Numerous water quality management studies have been conducted on various water 

bodies in India and overseas to evaluate the water quality (Meme et al., 2014; Kumar 

et al., 2015; Jaiswal et al., 2019; Kumar et al., 2020a; Khan et al., 2021d; Kumar et al., 

2022b). It has been discovered that the presence of industrial operations close to water 

bodies, the discharge of untreated sewage, and runoff from agricultural fields are the 

leading causes of these water bodies declining water quality (Jaiswal et al., 2019; 

Kumar et al., 2020a; Khan et al., 2021d). In India, the CPCB, SPCB, and CWC have 

already established monitoring stations on rivers nationwide for water quality 

assessment (Arora and Keshari, 2021; Kumar et al., 2021a). 

Apart from these, various researchers and scholars (Suthar et al., 2010; Gupta et al., 

2011; Tyagi et al., 2013; Bhutiani et al., 2016; Singh et al., 2018; Kamboj and Kamboj, 

2019; Sharma et al., 2020; Ali et al., 2021; Kumar et al., 2021a; Khan et al., 2022a; 

Kumar et al., 2022b) have examined the water samples taken from several Indian rivers 

physiochemically and microbiologically. Untreated sewage disposal, urban runoff, 

fertilizers, industrial effluent, and the use of both agricultural and forest land for 

development are the primary factors identified as degrading the water quality of various 

rivers in India, including the Ganga, Cauvery, Hindon, Chambal, Mahanadi, Yamuna, 

Narmada, Gomti, Brahmaputra, Godavari, and Krishna. 

Designing different implementation techniques to improve water quality and allocate 

water distribution schemes requires regular and ongoing monitoring procedures (Singh 

et al., 2004; Shrestha and Kazama, 2007; Pati et al., 2014; Arora and Keshari, 2021). 

Designing, establishing, and planning a water quality system based on the goals of the 

water monitoring program is one of its key components (Arora and Keshari, 2021). In 

order to preserve the quality of surface water, many water quality networks exist all 

around the world. 

Numerous water-quality networks were established in the USA in the 1970s due to the 

growing public concern over the condition of aquatic ecosystems and conventional 

public health worries. NASQAN was developed by the USGS in 1973. The network 

aids in identifying the factors contributing to the spatiotemporal variability in water 

bodies. The NASQAN continuously updates information on the water quality of bodies 

present inside or beyond borders. In New York, water quality is routinely checked in 
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smaller streams and rivers in southern New York and northern Pennsylvania by the 

Remote Water Quality Monitoring Network (RWQMN) under the Susquehanna River 

Basin Commission (SRBC). This network aids in alerting water management about the 

current state of water quality while also foretelling changes that may occur in that 

quality (<http://mdw.srbc.net/ remotewaterquality/>). River water quality is regularly 

monitored in Hong Kong. This program has 82 monitoring sites and covers 30 major 

rivers and streams. The Environmental Protection Department (EPD) oversees the 

initiative (<http://wqrc.epd. gov.hk/en/water-quality/river-1.aspx>).  

The National Water Research Center and Egypt's Ministry of Water Resources and 

Irrigation monitored the water quality at 69 sites along the Nile River. Every two years, 

the water quality is monitored (Abdel-Gawad and Khalil, 2003). The Chinese national 

monitoring network comprises 759 surface water stations, 45 international river stations 

that traverse international borders, and 149 involuntary monitoring stations. This 

network includes China's ten largest watersheds (Wang et al., 2014). 

The CPCB in India has already established monitoring stations on rivers nationwide 

(Bhargava, 2006). The CPCB monitors hazardous metals As, Cu, Cd, Cr, Ni, Hg, and 

Pb in 120 rivers in addition to water quality in 206 rivers. The BIS on Drinking Water 

standards (http://wqaa.gov.in/Content/SWQStatus.aspx) has determined that the metal 

levels in various rivers, except for Cr, Cu, and Cd, are within allowed limits. 

With the help of the National Water Quality Monitoring Program, CPCB India is in 

charge of eliminating water pollution in rivers (CPCB, 1980-1981; CPCB, 1982-1983; 

CPCB, 1999-2000; CPCB, 2003, 2006). The CPCB of India seeks to assess 

environmental problems relating to water and restore and preserve aquatic resources' 

health. The Indian government created plans to determine the optimal use for each class 

after classifying the country's water bodies according to their quality and pollution 

status (Arora and Keshari, 2021). Additionally, to determine if water is suitable for 

drinking, the BIS has set the acceptable and desirable limits of several water quality 

criteria (IS: 10500:2012). In addition, according to IS: 2296:1992, a number of 

classifications have been established, including classes A, B, C, D, and E, to designate 

distinct applications of water resources. These guidelines have been applied to outline 

sampling techniques and evaluate the water quality in Indian rivers (Arora and Keshari, 

2021).  

The monitoring network for inland water quality in India is run through a three-tier 

program called Yamuna Action Plan (YAP), Monitoring of Indian National Aquatic 
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Resources System (MINARS), and GEMS (Bhargava, 2006; Kumar et al., 2021a). 

According to the CPCB, monitoring water quality helps determine trends in water 

quality, which in turn aids in determining the order of importance of pollution 

management initiatives. The CPCB has created a network of monitoring stations for 

efficient river water quality monitoring. CPCB, under the auspices of a World Bank-

funded initiative, is developing a network of 113 real-time monitoring facilities on the 

Ganga across Uttarakhand, Uttar Pradesh, Bihar, Jharkhand, and West Bengal in order 

to have a clear image of river water quality. Additionally, several prestigious 

organizations, including the CWC, CGWB, and SWARDA, independently monitor the 

quality of river water through their extensive and pricey networks of monitoring stations 

(<http://cwc.gov.in/main/HP/>). 

Since 1963, the CWC has been a significant player in monitoring river water quality. 

As of January 2021, 764 sites along significant rivers in India are being monitored by 

CWC for river water quality. In August 2011, the first edition of “REPORT ON 

WATER QUALITY HOTSPOTS IN RIVERS OF INDIA” was released. Data on water 

quality for ten years (2001–2010) was collected at 371 CWC water quality monitoring 

sites. A report titled “WATER QUALITY HOTSPOTS IN RIVERS OF INDIA 

OTHER THAN GANGA, INDUS & BRAHMAPUTRA BASIN” was released in 

November 2017. The only parameter BOD, the most often used criterion for measuring 

the amount of pollution caused by organic material present in river water and 

determining the overall health of the river, was considered for this study. The analysis 

was conducted using BOD data from 429 CWC water quality stations from 2012 to 

2017 for all Indian river basins other than the Ganga, Brahmaputra, and Indus basins. 

This report was created to evaluate the potential of STPs. This third version of the study 

on “WATER QUALITY HOTSPOTS IN RIVERS OF INDIA” is based on data from 

10 different water quality metrics that were observed between 2010 and 2020 at 588 of 

the CWC’s 764 water quality monitoring stations. 

Early indicators of declining water quality are identified so that subsequent corrective 

measures can be taken to manage its quality through water quality monitoring, 

providing the necessary baseline data. As a result, any program for managing water 

quality must have water quality monitoring as a key component. 

 

3.4 Multivariate statistical techniques 

To gather reliable water quality statistics, routine and continuous monitoring programs 
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are required (Singh et al., 2004; Shrestha and Kazama, 2007; Pati et al., 2014; Arora 

and Keshari, 2021). These programmes generate enormous amounts of complex data. 

These data include unpublished information on the area as well as behavioral 

characteristics of the surface water body. Interpreting this concealed information is 

crucial for managing water quality (Saha and Paul, 2019; Ali et al., 2021). Advanced 

and complex analytical tools and procedures, such as MSTs, are required to analyze 

these data (Singh et al., 2005). The MSTs, such as PCA and CA, aid in exposing the 

concealed information found in sizable matrices of high-quality data. The usage of 

MSTs is necessary for the assessment of river water quality in order to increase the 

scope of the evaluation and accuracy based on the vast amount of data inputs 

(Chakravarty and Gupta, 2021). Since the past decade, MSTs have been employed to 

analyze and characterize surface water quality (Kumarasamy et al., 2014; Sharma et al., 

2015; Pandey and Dikshit, 2016; Bonansea et al., 2018; Shil et al., 2019; Gyimah et al., 

2021; Arora and Keshari, 2021; Maity et al., 2022). Below is a brief summary of the 

literature on using several relevant MSTs, including CA, PCA/FA, DA, MANOVA, 

and MLR, in determining surface water quality. 

Unsupervised pattern recognition techniques, such as CA, group samples into clusters 

where the items are similar to one another but distinct from other clusters. Many 

researchers and scholars (Kazi et al., 2009; Li et al., 2014; Barakat et al., 2016) have 

employed CA to comprehend the temporal and spatial pattern of water quality changes 

brought on by anthropogenic or natural sources. CA was utilized to evaluate the 

chemical water types and their geographical variations in Queens lands streams in 2005 

(McNeil et al., 2005). Li et al. (2007) considered twelve lakes on the Yunnan plateau 

(China) and used CA to evaluate the water quality. CA categorized lake water quality 

into low, medium, and high-polluted. The differences in these plateau lakes' water 

quality were caused by their basin sources, morphometry, and human perturbations. 

Gupta et al. (2009), Gazzaz et al. (2012), and Khan et al. (2017), based on the level of 

pollution, the hierarchical CA has been utilized to categorize the water quality 

characteristics of various sampling locations. By combining the information that 

appears to be similar, the CA aids in constructing the best sampling approach. 

Additionally, it lowers the cost of sampling by reducing the number of sampling 

locations without losing any relevant data (Gholikandi et al., 2011; Gazzaz et al., 2012; 

Ling et al., 2017). 

Surface water quality variation has been characterized spatially, and potential sources 
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of variance have been categorized using CA based on a relatively small and short-term 

dataset (Zhang et al., 2010; Haque et al., 2016). Only a few studies have combined 

ANOVA and CA to identify statistically significant factors driving data variability and 

enhance the studies' overall results (Noori et al., 2010; Varol et al., 2012; Bu et al., 

2014). 

It has proven quite challenging to reduce the dimensionality of a dataset without losing 

intrinsic information. Multivariate statistical methods like PCA, FA, and CA have been 

used to address this problem. Using PCA and FA to reduce the dimensionality of big 

datasets without sacrificing information has become increasingly common in assessing 

water quality. Many researchers have used PCA approaches to find fewer hidden factors 

associated with pollution sources that affect the hydrochemistry and quality of water 

resources. These elements are further distinguished and attributed to sources of 

pollution (Juahir et al., 2011; Ayeni and Soneye, 2013; Li et al., 2014; Voza et al., 

2015). A statistical model based on the PCA was created by Iyer et al. (2003) to evaluate 

the water quality of coastal areas. This model shows the connections between the many 

physicochemical variables under observation and the environmental factors that affect 

the quality of the coastal waters. 

Contrary to traditional PCA, Praus (2005) used PCA based on singular value 

decomposition (SVD) to analyze the quality of the water. It was discovered that SV-

based PCA is a highly useful method for evaluating water quality since it aids in 

obtaining an objective understanding of the water's composition. Despite the claimed 

benefits, researchers have not yet applied SV-based PCA. Felipe-Sotelo et al. (2007) 

used physicochemical parameters and chemometric techniques to characterize the 

temporal characteristics of river waters in urban and semi-urban regions, applying three 

models: PCA, MA-PCA, and PARAFAC (PARAllel FACtor analysis). It was later 

determined that MA-PCA outperformed the other two models. Compared to the 

individual PCA, the MA-refolding PCA's scores offered a more accurate and direct 

perspective of the sample's temporal and geographic fluctuations. It has been 

discovered that MA-PCA is more adaptable and versatile to environmental 

investigations than PARAFAC. 

Zhang et al. (2010), to determine the virtual contribution of spatiotemporal variation to 

every PC, combined PCA with ANOVA. To distinguish the leading causes of pollution 

in the Jakara Basin, Nigeria, Mustapha and Abdu (2012) employed Pearson's product 

moment of the correlation matrix and PCA. It was discovered that home wastewater is 
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to blame for the deterioration of the water quality in this area. 

Zeinalzadeh and Rezaei (2017) used PCA to analyze the temporal and spatial variations 

in surface water quality in the Shahr Chai River. It was discovered that rural and 

agricultural have an impact on the river's water quality. 

The PCA and FA cannot provide quantifiable contributions of sources to each variable 

and only provide qualitative information about the sources of pollution (Pekey et al., 

2004). However, this issue can be resolved by utilizing a receptor-based model, such as 

APCS-MLR (Singh et al., 2005). This technique was initially applied to the air 

environment to locate and allocate pollution sources (Miller et al., 2002). Later, because 

it is least dependent on the kind and quantity of sources, many researchers began to 

utilize the APCS-MLR technique for apportioning the causes of pollution in water 

bodies (Singh et al., 2005; Su et al., 2011; Chen et al., 2015; Gholizadeh et al., 2016). 

While this happened, multiple studies looked into the spatio-temporal variations in 

several surface water bodies using three-way PCA (Singh et al., 2004; Giussani et al., 

2008; Pardo et al., 2008; Dong et al., 2010). By discovering and extracting the hidden 

data structure and its linkages, three-way PCA aids in demonstrating the multi-

dimensional nature of water quality data. 

Canonical correlation analysis (CCA), an extension of PCA, was created to determine 

how one set of measurements relates to another and which specific trait is responsible 

for this association. This method was initially used in an atmospheric setting to forecast 

air temperature using sea level pressure and temperature. CCA has been utilized by 

Noori et al. (2010), Chan et al. (2013), and Sakelarieva and Varadinova (2013) to 

determine the link between several physicochemical characteristics of the quality of 

surface water.  

DA is a crucial prediction tool for determining the reasons behind spatiotemporal 

variations in the quality of surface water (Boyacioglu and Boyacioglu, 2010; Varol et 

al., 2012; Gholizadeh et al., 2016). The DA also assists in creating a proper pollution 

abatement plan for preserving water quality. Canonical discriminant analysis (CDA), a 

kind of DA, was employed in 2008 to locate the source of pollution in nearby rivers 

beyond the Tapeng Lagoon (Liao et al., 2008). The CDA aids in identifying crucial 

distinctions between the predetermined groups while considering the intricate link 

between several features, which is not achievable using univariate statistical techniques. 

To begin with, the researchers used CDA to comprehend how bio assemblages with 

various environmental characteristics are distributed spatially (Comber et al., 2005). 



 

3-43  
 

The DA was applied to data on water quality to determine the impact of the most 

important factors for differentiating water qualities. The water quality data gathered 

from Yliki Lake, Athens, was recently subjected to DA, classification, and regression 

tree applications by Smeti et al. (2016). This method assisted in identifying the variables 

that were most effective at differentiating between clusters. Stepwise DA has only been 

employed by Bhat and Pandit (2014) and Hajigholizadeh and Melesse (2017) to 

determine the reason behind spatial changes in surface water bodies. 

MRA/MLR is a predictive tool that has frequently been used to forecast the dependent 

variable, which is typically a parameter of water quality, as well as to study the 

relationship between a dependent variable and a group of independent variables. For 

example, Singh et al. (2005) employed MRA to examine the link between landscape 

features and water quality metrics (physical, chemical, and biological). MRA was 

utilized by Mallin et al. (2000) and Crowther et al. (2001) to show the connection 

between pathogen indicators and water quality. Later researchers Simeonov et al. 

(2003) and Mustapha and Abdu (2012) employed PCA and MLR to identify the most 

important factor causing water quality variations in Malaysia's Tunggak River. To 

recognize the complicated correlations between the water quality metrics in the Klang 

River in Malaysia, Nasir et al. (2011) coupled multivariate linear regression (MLR) 

with PCA. They concluded that PCA aids model prediction by bringing the complexity 

of the parameters down. Additionally, Isiyaka and Juahir (2015) used MLR and PCA 

to apportion the mass source category in the Kinta River, Malaysia. The river's water 

quality has been deteriorating recently and was determined to be caused by weathering 

of rock, wastewater, waste discharge by a point source, surface runoff, feces, erosion, 

and weathering. 

MANOVA, a common MST, aids in identifying the existence of any significant 

differences across several groups of multivariate data (Garizi et al., 2011). MANOVA 

was used by Salih et al. (2013) to assess surface water quality. Tanty et al. (2014) 

utilized MANOVA to examine inorganic chemicals in groundwater in Indonesia. To 

analyze the health effects of river water pollution, Basu and Lokesh (2014) utilized 

MLR and MANOVA to data on the water quality of the Cauvery River gathered from 

the Srirangapatna section. In order to evaluate the interrelationships between the various 

analyzed environmental factors and their seasonal change, Banerjee et al. (2015) 

performed correlation coupled with MANOVA. 

Geographical information systems (GIS) and MSTs have been combined in some 
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studies to regulate water quality because GIS tools can govern the multivariate analysis 

process by giving an understanding of the underlying components (Li et al., 2004; 

Arslan, 2009; Zhao et al., 2011). 

Several researchers in India have employed MSTs (PCA, CA, and DA) to determine 

the reasons for spatiotemporal variation in water quality and to allocate sources (Kaur 

and Dua, 2012; Hema et al., 2014; Sharma et al., 2015; Chaturvedi et al., 2016; Herojeet 

et al., 2017; Dutta et al., 2018b; Shil et al., 2019; Gupta et al., 2020; Pramanik et al., 

2020; Ali et al., 2021; Maity et al., 2022). Kaur and Dua (2012) performed PCA and 

CA on samples of surface water taken from the Chamera I reservoir near the river Ravi. 

While domestic sewage and naturally occurring soluble salts were indicated to be the 

main causes of fluctuation in most water quality measures, CA divided sample seasons 

into two clusters based on inorganic runoff. Hema et al. (2014) used FA on water 

samples taken from the Cauvery River in Tamil Nadu, India. They found that point 

sources, specifically surface runoff from catchment areas, were to blame for the 

decrease in water quality. To detect the spatial-temporal changes in the water quality of 

the Taizi River in Northeast China, Bu et al. (2014) divided the river into three clusters 

based on the wet and dry seasons of mainstem rivers and their tributaries. They then 

examined 67 sampling locations. In their study, Kumar and Padhy (2014) employed 

multivariate statistical methods to manage river basins and measure water quality. To 

categorize the sampling stations and estimate the sources contributing to the decline in 

water quality of the Hindon River, Rizvi et al. (2015) used PCA and CA. Sharma et al. 

(2015) used CA and PCA to analyze surface water quality data from the Uttarakhand-

based rivers Ganga and Yamuna. It was discovered that the decline in water quality was 

caused by both anthropogenic (the discharge of home and industrial wastewater, runoff 

from agricultural land, and corrosion byproducts of abandoned hydroelectricity 

installations) and natural (surface runoff) reasons. Chaturvedi et al. (2016) used CA, 

FA, and DA on the surface water of Balipara in the Sonitpur district of Assam, India's 

North Brahmaputra River basin. While FA assisted in identifying the factors bringing 

about variation in surface water and DA assisted in determining the relative contribution 

of each water quality parameter towards the recognized sources, CA assisted in 

classifying the pollutants and depicting the interrelationships between them. Herojeet 

et al. (2017) used PCA and CA to analyze surface water quality data gathered in India's 

Himachal Pradesh region's Nalagarh Valley. The mineral weathering, ion exchange, 

runoff from agricultural land, and industrial and domestic wastewater discharge caused 
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the variance in surface water quality. 

Bonansea et al. (2018) used PCA to identify differences between the sites and applied 

CA to the reservoir sample sites to classify the sites. Dutta et al. (2018b) used 

multivariate statistics to examine the geographic variance in the Nag River's water 

quality and to pinpoint the causes of the river's pollution. Using PCA, fewer latent 

variables and varifactors were found, each contributing to a hydro-chemical meaning: 

fecal contamination for varifactor 6, pollution caused by heavy metals for factor 2, 

pollution caused by organic matter for factor 3, and pollution caused by minerals and 

nutrients for factor 1. PCA and cluster analysis assisted in identifying and evaluating 

geographical variations in the types of river pollution. Municipal wastewater dumping 

into rivers is the main cause of such degraded water quality. However, other elements 

contributing to declining water quality include livestock activity near the river, solid 

waste disposal, wastewater discharge from industry, and low river flow rates. Jaiswal 

et al. (2019) proved the value of multivariate statistical methods for assessing the 

Yamuna River's water quality in both monsoon and other seasons. The PCA result 

showed that dissolved salts and minerals had the greatest impact on the river, followed 

by organic and nutritional materials. The physicochemical characteristics' geographical 

fluctuation suggested that the river may be divided into four categories (going from 

upstream to downstream): (a) Group 1, which included Paonta, Kalanaur, Mawi, and 

Palla, was appropriate for drinking purposes, irrigation purposes, and survival of 

aquatic life; (b) Group 2, which included Delhi, Mohana, and Mathura, was adversely 

affected by a higher concentration of organic loads from many drains, including 

Najafgarh and Shahdara; (c) Group 3, which included Agra and Etawah, was adversely 

affected by severe pollution load from domestic sewage, runoff from agricultural fields, 

and pesticide; and (d) group 4, consisting of Auraiya, Hamirpur, and Pratappur, had 

worked on the betterment on the condition of the water. 

Gyimah et al. (2021) used PCA to assess 16 water quality metrics and categorized the 

various monitoring locations according to the degree of pollution. According to the 

literature, multivariate statistical techniques assist in developing active management 

strategies that take advantage of optimal flow and enable water resource management 

plans to reach their desired levels. The research makes it clear that those nonlinear 

interactions between the crucial factors and variations in the geographical and temporal 

scales make categorization a laborious task. Gupta et al. (2020) worked on 17 distinct 

sampling locations along the Narmada River's stretch between Amarkantak and 
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Hoshangabad, analyzing the river's physicochemical properties. In addition, PCA 

described three and two PCs, respectively, for the pre- and post-monsoon seasons. For 

the pre- and post-monsoon seasons, respectively, HCA generated three and two groups 

based on comparable water quality parameters. These groups visually depicted the 

seasonal variation in water quality in space and time and showed that urban pressure is 

primarily responsible for the change in water quality. 

Ali et al. (2021) studied multivariate statistical analysis (FA and FCA), which revealed 

that seawater incursion is to blame for the occurrence of boron. He has taken into 

consideration that turbidity generated from the weathering of silicate from the Gangetic 

plains' alluvium deposits as well as human activities in the eastern Ganga river (flowing 

through the state of West Bengal).  

Maity et al. (2022), by taking into account 24 parameters at 11 monitoring sites based 

on the six-year projection of the pollutant sources, multivariate statistical techniques 

(FA, CA, and DA) were used to assess the spatial and temporal variation of Damodar 

River water quality (2014–2019). Stepwise, DA removes ammonia, DO, potassium, 

temperature, TC, TFS, and turbidity, the important parameters mainly for seasonal 

variation in the water quality. FA extracts the most significant seasonal parameters. CA 

divides sampling locations into three categories, allowing for the identification of water 

quality's geographical variance. 

The interaction between water's various (physicochemical and biological) elements and 

the environment is complex and cannot be inferred using a straightforward statistical 

method. The MSTs have become a crucial data analysis tool for investigating data in 

complex data matrices. The CA produced the best sampling strategy by grouping 

similar sampling stations into a single cluster. While DA recognizes the specific 

parameter that brings spatiotemporal variance in various groups, PCA/FA assists in 

identifying the factors that are responsible for the deterioration of water quality and 

further helps in the source distribution. The development and creation of appropriate 

strategies following identifying the elements accountable for water quality decline 

showed that MSTs are effective in managing water resources. 

 

3.5 Water quality index 

WQI was established to inform concerned citizens and policymakers about the general 

quality of water (including surface and groundwater) (Kamboj and Kamboj, 2019; 

Kamboj et al., 2020). By converting the water quality characteristics into a 
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dimensionless number, the WQI aids in a better understanding of the water quality of a 

body of water (Shah and Joshi, 2017; Kamboj et al., 2020; Semy and Singh, 2021). The 

WQI is used to forecast the water quality for different uses, including drinking water, 

irrigation water for livestock and agriculture, recreation, and aesthetics (Naubi et al., 

2016; Bora and Goswami, 2017; Sener et al., 2017; Iqbal et al., 2019; Khan et al., 2020; 

Roy et al., 2021; Ali et al., 2021). The WQI assesses any management plan's success or 

failure to preserve the water quality (Rickwood and Carr, 2009; Naubi et al., 2016; Shah 

and Joshi, 2017; Bora and Goswami, 2017; Dutta et al., 2018b; Iqbal et al., 2019; Lkr 

et al., 2020; Roy et al., 2021; Maity et al., 2022). WQI can generally be constructed in 

four steps, as shown in Figure 3.1. 

 

Figure 3.1: Steps for developing WQI 

 

The original WQI, also known as the weighted arithmetic WQI, was created by Horton 

(1965). This instrument has been used to assess the water quality of rivers, lakes, and 

groundwater. Numerous WQIs have since been created and used in diverse surface and 

groundwater habitats across the globe. The creation of Horton's index inspired scholars 

all over the world to create WQIs to describe water quality. The Munich technique of 

evaluating water quality was created in Europe in 1969 and was founded on chemical 

and biological factors. 

Liebman (1969) proposed the Munich method of evaluating water quality. Using this 

technique, color-coded water quality index maps were created for the German state of 

Bavaria. Although the idea behind this system was similar to Horton's Index, grades 

and weights were assigned based on subjective judgment. The NSF WQI, which is 



 

3-48  
 

widely used in many countries, was subsequently developed in 1970 based on the 

recommendations of experts (Brown et al., 1970; Abrahao et al., 2007; Effendi et al., 

2015; Bhutiani et al., 2016; Ewaid, 2017; Misaghi et al., 2017; Gupta et al., 2017; 

Dewata, 2019). Both additive and multiplicative processes underlie the NSF WQI. One 

of Horton's index's flaws was the selection of the parameters, which Brown et al. (1972) 

addressed by using a floating survey built using the Delphi method developed by the 

Rand Corporation. However, this index cannot address the subjectivity and ambiguity 

inherent in the challenging environmental concerns (Tyagi et al., 2013; Kamboj et al., 

2020). 

Prati et al. (1971) started a project in the US to create an index for water pollution. This 

index was created based on research into the water quality categorization systems 

already in place in nations like New Zealand, Germany, England, Czechoslovakia, 

various US states, Poland, and the Soviet Union. This index was primarily created to 

determine the level of surface water pollution. This index was used to assess the water 

quality information gathered in the Italian region of Ferrara. 

During this time, McDuffie and Haney (1973) proposed an index known as River 

Pollution Index (RPI). Eight pollution variables, including biodegradable organic 

matter, coliform count, nonvolatile suspended particles, percent oxygen deficit, average 

nutritional surplus, dissolved salts, temperature, and refractory organic matter, were 

used to formulate this index, which is reasonably valid.  

At about the same time, Walski and Parker (1974) developed a significant index that 

was specially created concerning water recreation usage. This index was created using 

the geometric mean and indicators of water quality. Parameters such as suspended 

particles, turbidity, nutrients, grease, color, pH, temperature, coliform, etc., were used 

to formulate this index. 

The index created by Brown et al. (1970, 1973) had many serious flaws, including its 

lack of objectivity. This index was developed using the Delphi approach, in which 

various expert panels rated the same water quality indicators differently. Harkins (1974) 

offered an index based on nonparametric multivariate ranking to solve this issue. The 

fact that this index's value must be computed every time new data is made available is 

one of its primary limitations because comparisons can only be made when the 

combined dataset of interest of all values is updated. This index cannot accurately 

represent the water quality at the regional and national levels regularly. 

In 1976, SRDD developed an index known as SRDD WQI (SRDD, 1976). It is 
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frequently referred to as Scottish WQI. The water quality parameters for this index were 

chosen using the Delphi approach. The SRDD WQI was created expressly for Scotland, 

although a modified version was later applied to many river basins in many nations 

(Thailand, Spain, Portugal and Iran). This index's creation was comparable to that of 

the NSF WQI. 

The Ross Index was created by Ross in 1977. BOD, ammonia, DO, and suspended 

particles were identified as the leading causes of differences in water quality when data 

for rivers in the Clyde basin in Greater Britain were examined. Making this index into 

a weighted additive model was further pushed to be utilized in England. The general 

water quality index, the potable water supply index, the aquatic toxicity index, and the 

potable sapidity index are the four indices that make up this index. On a worldwide 

basis, these indicators are not widely used (Abrahao et al., 2007). 

The Bascaron index was created in Spain in 1979. This index was initially used to 

evaluate the general water quality, but a modified version was later used to assess the 

surface water quality for particular uses, such as aquaculture. The parameters can be 

removed or chosen with flexibility using the Bascaron index. Twenty-six water quality 

factors were used to create this index. Scottish WQI is frequently used in conjunction 

with this index. According to Pesce and Wunderlin (2000) and Debels et al. (2005), the 

indicator has gained popularity in Latin American nations (Argentina and Chile). 

Dunnette (1979) subsequently developed OWQI, and later Cude (2001) established the 

OWQI for the River Oregon utilizing eight water quality parameters. The harmonic 

averaging notion is essential to the OWQI. However, it was only applicable to the 

Oregon River. It was only used to assess the water quality for recreational purposes 

despite the fact that the OWQI assesses changes in water quality and effects on it 

significantly (Darvishi et al., 2016). Furthermore, the Idaho Department of 

Environment Quality (IDEQ) uses this index to evaluate the river water quality in Idaho.  

Karr (1981) created the Index of Biotic Integrity (IBI) to evaluate the biological health 

of aquatic bodies. This index may be used alone, in combination with other indices, or 

as part of an aggregate index. Benthic ecologists frequently use this indicator to evaluate 

the biological health of surface water (Lunde and Resh, 2012; Mazor et al., 2014). 

Smith (1990) significantly contributed to New Zealand's WQI sector. This index 

represented four applications of water: water supply, fish spawning, bathing, and 

general purposes. The addition and subtraction of water quality parameters were 

considerably simpler tasks. Currently, many water organizations are using this index as 
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a planning tool. It is a straightforward method of disseminating data about water quality 

in New Zealand. A few modifications to the Brown WQI's mathematical foundation 

were made in 1994 by Dojlido et al. (1994). The Polish Vistula River has shown 

promise when using the upgraded WQI. 

British Columbia Water Quality Index (BCWQI) was created in the middle of the 20th 

century by the Canadian Ministry of Environment. It compared the measured 

parameters of the water quality with the allowed limits and assisted in determining the 

water quality. The WQI's disadvantage is that it does not reveal the water quality trend 

until it has deviated most from the norm. To analyze water quality and provide data to 

water quality executives and locals, the CCME created the CCME WQI in 2001 

(CCME, 2001). The CCME WQI is simple to calculate, flexible in the parameter 

choices, and also applicable to legal requirements. Researchers widely utilized CCME 

WQI to assess water quality (Khan et al., 2003; Sharma and Kansal, 2011; Mostafaei, 

2014; Gupta et al., 2017; Jaiswal et al., 2019; Maity et al., 2022). However, this index 

exaggerates factor F1 (i.e., scope), making it simple to sway the outcome. This is simple 

to accomplish during index development by focusing on the criteria that are most and 

least helpful for defining a class of water, and it is something that cannot be applied to 

every ecosystem (Tyagi et al., 2013). 

A measure of stream water quality was created and named the Florida Stream Water 

Quality Index (FWQI) as part of the Strategic Assessment of Florida's Environment 

Indicator Project. The three categories for this indicator are good, middling, and poor 

water quality. Later, the Metal Pollution Index (MPI) was created to assess the level of 

heavy metal pollution in groundwater and surface water bodies (Mohan et al., 1996). 

Several researchers have utilized this index to assess the quality of rivers, the sea, and 

drinking water (Amadi, 2011; Onojake et al., 2017; Ewaid, 2017; Khan et al., 2020; 

Khan et al., 2021a, c). This method is beneficial for determining the combined impact 

of all the metals on overall pollution and rates the aggregate impact of specific heavy 

metals on the entire water quality. Further research by Amadi (2011) revealed that the 

lowest water quality occurs when metal concentrations exceed their maximum 

permitted levels. This index uses both standard values as well as ideal values to 

calculate sub-indices. 

Hebert (2005) made another outstanding addition to the field of WQI by creating an 

index called the Indice de Quallite Bacteriologique et Physicochimique (IQBP). It 

underwent extensive testing in the Canadian province of Quebec. This index was first 
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designed to evaluate the water quality for swimming and other recreational activities, 

as well as the preservation of aquatic life. This index was also used in the 2000s to 

evaluate the water quality of all the major rivers in Quebec, Canada. The Dalmatian 

index, created in 1999 for the water bodies in Dalmatia utilizing nine water quality 

factors, assisted in determining Serbia's overall water quality (Stambuk–Gilianovic, 

1999). A new WQI was created by Liou et al. (2004) based on the geometric average 

of the standardized scores of nine chosen parameters. Based on established evaluation 

curves, the standardized score was calculated. Kim and Cardone (2005) also developed 

a scatter score index. This index was initially created to trail changes in water quality 

near mining sites in the United States, but it was later used in areas that had not been 

affected. This indicator assesses how the quality of the water has changed over time 

and space. To calculate this index, any number of parameters may have been utilized. 

Standards and recommendations for water quality have no bearing on this index's 

calculation. With information acquired from 18 distinct streams, Tsegay et al. (2006) 

suggested a chemical WQI to evaluate the water of the Wheeler Lake Basin (Northern 

Alabama). After normalizing each observation to the parameter's highest concentration, 

this index combines the data from the seven different parameters. Boyacioglu (2007) 

created a basic index, i.e., the Universal Water Quality Index (UWQI). It was developed 

to evaluate the water's suitability for drinking. Most water quality work done globally 

is related to the UN Millennium Development Goals (UNEP GEMS, 2007), which calls 

for providing all people access to clean drinking water by 2015. As a result, Rickwood 

and Carr (2009) created the Global Drinking Water Quality Index (GDWQI), an index 

based on the CCME WQI. 

A lot of researchers and scholars have adopted the Arithmetic WQI method (Bhutiani 

et al., 2016; Shah and Joshi, 2017; Ewaid, 2017; Gupta et al., 2017; Lkr et al., 2018; 

Dutta et al., 2018b; Chaudhary et al., 2019; Iqbal et al., 2019; Sharma et al., 2020; Gupta 

et al., 2020; Pramanik et al., 2020; Chabuk et al., 2020; Ali et al., 2021; Semy and 

Singh; 2021; Kumar et al., 2022a). The comprehensive pollution index (CPI) is a key 

tool for evaluating the water quality of aquatic bodies (Sidabutar et al., 2017; Wang et 

al., 2018; Matta et al., 2018; Kumar et al., 2020a; Pramanik et al., 2020; Roy et al., 

2021; Kumar et al., 2021b). CPI can be used to access the total pollution loads of water 

bodies. BIS (2012) and WHO (2011) recommendations for drinking water quality were 

utilized to determine the WQI. 

The introduction of MSTs in recent years has marked a significant advancement that 
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helps determine the most crucial aspects of water quality to measure the WQI 

(Mostafaei, 2014). 

Remote sensing has been used in WQIs to assess the caliber of water sources (Katyal 

et al., 2012; Alsaqqar et al., 2015; Jayalakshmi and Velappan, 2015; Sener et al., 2017; 

Shil et al., 2019; Chabuk et al., 2020; Ali et al., 2021; Oseke et al., 2021) because it 

facilitates the creation of raster maps and the distribution of water quality measurements 

in space. 

A hybrid probabilistic WQI has been created to address the general drawbacks of the 

existing WQIs. By merging the Fuzzy Interference System (FIS), Bayesian Networks 

(BNs), and Probabilistic Neural Networks (PNNs), Nikoo et al. (2011) developed this 

index. The PMF of the water body quality is provided by this type of index based on 

the data on the current water quality. 

For the vulnerability evaluation of surface water quality, Sikder et al. (2015) employed 

the IMWQI. This novel indicator effectively measures both the geographical and 

temporal aspects of water quality. IMWQI is employed in developing nations to help 

create pollution prevention plans. The IMWQI is simple for the general public to 

understand and aids in understanding regional water pollution in general. Despite these 

benefits, this indicator lacks scientific integrity; consequently, more synoptic tests in 

the rivers of developing nations have been suggested to achieve a practical 

characteristic. 

Naubi et al. (2016) evaluated the efficacy of employing the Department of Education 

(DOE) WQI to monitor the water quality of Malaysian rivers. It was discovered that the 

crucial water quality criteria were missing from the existing WQI (phosphorus, 

nitrogen, iron, zinc, and E. coli). Therefore, some modifications to the current WQI are 

advised, such as adding important water quality criteria that aid in a more precise 

assessment of water quality. 

The first water quality index (WQI) was created by Bhargava (1983) for the Ganga 

River in India to evaluate the water's suitability for human consumption. This index 

examined the water quality using four categories of characteristics, including the 

number of coliforms, toxicants, heavy metals, color, odor, turbidity, sulfide, and 

chloride. To analyze and verify the water quality parameters for various categories of 

practices based on the standards specified by the CPCB, India, Ved Prakash et al. (1990) 

modified Brown's NSF WQI to create the River Ganga Index (Abbasi and Abbasi, 

2012). Many academics and researchers used this index (Bhutiani et al., 2016; Singh et 
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al., 2018; Kharake and Raut, 2021). An OIP was developed by Sargaonkar and 

Deshpande (2003) to assess the state of the river. In this index, a number of water 

quality factors were classified and evaluated, as well as compared to Indian standards 

and other widely accepted WHO recommendations. Several researchers used this 

particular index (Katyal et. al., 2012; Kamboj and Kamboj, 2019). 

In 2018 (Bhatti et al., 2018), grab sampling was used to gather 29 samples from 

Nagarparkar, Pakistan. Eighteen physicochemical characteristics were used to evaluate 

the quality using the WAWQI. According to the study, just 35% of the measures fell 

within the established WHO criteria, while the remaining 65% were outside of what is 

considered to be acceptable for water quality.  

Pesce and Wunderlin (2000) utilized 13 physicochemical parameters to evaluate the 

water quality using the WQI and WQI min techniques. The quality was at its highest in 

the autumn and at its lowest in the winter. 

In 2019 (Golbaz et al., 2019), a special swimming pool WQI (SPWQI) based on 13 

physicochemical and biological parameters was created to monitor the quality of 

swimming pools. The SPWQI has modified the WAWQI approach. This index helped 

control and improve water quality. In some other studies in 2019 (Gupta et al., 2019), 

creating an international WQI based on WHO guidelines involved using artificial neural 

networks (ANN). Using five physicochemical parameters, including turbidity, pH, EC, 

DO, and FC, the study found that ANN based on cascade forward architecture 

effectively predicted the WQI. Extensive research is necessary to acquire the desired 

results due to the ANN method's restriction, which can alter as parameters change. In 

2019 (Abbasnia et al., 2019), the WAWQI method was used to examine the quality of 

654 excavated wells in Sistan and Baluchistan, Iran. The drinking quality of the mined 

wells was rated as outstanding and good overall. 

In 2021, grab sampling was used by Karunanidhi et al. (2021) and gathered 61 samples 

using the WAWQI method from the Shanmuganadhi River basin in India, containing 

eight physicochemical parameters like calcium, sodium, sulfate, and fluoride. 

According to the WQI results, 52% of the samples were deemed unfit for human 

consumption, while 48% were deemed OK. The researchers recommended treating or 

recharging the groundwater samples for drinking water using artificial means to lower 

fluoride levels. In another study in 2020 (Chabuk et al., 2020), using the WAWQI 

method and GIS software, data for the water of the Tigris River in Iraq was evaluated 

for the rainy and dry seasons in 2016. The findings showed that potassium, 
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conductivity, TDS, and bicarbonate concentrations were higher in the dry season than 

in the rainy season. The calculated WQI revealed that the river's water quality was low 

due to nearby human activities. The study also showed that applying WQI was only 

effective after the water had been cured because of the high concentrations that could 

be present in untreated water. In 2020 (Ustaoglu et al., 2020), utilizing information from 

February 2017 to January 2018 and the WAWQI methodology, the quality of the 

Turnasuyu Basin in Turkey was assessed. The basin's water quality was rated suitable 

for usage by the general population. The physicochemical parameters were measured 

throughout the year and found within acceptable WHO standards. However, human 

activity may affect the basin's quality downstream. In 2020 (Seifi et al., 2020), the 

researchers changed the WAWQI index by adding a Monte-Carlo simulation for weight 

distribution. Iran's Kerman aquifer was studied by taking 1189 samples both during the 

dry and wet seasons. Based on the calculated WQI, the aquifer's water quality was poor. 

The results demonstrated that the WQI evaluation could benefit from the Monte-Carlo 

method. 

Ali et al. (2021) used the Water Quality Index (WQI) and Synthetic Pollution Index 

(SPI). The lower section of the Ganga River that flows through West Bengal was 

evaluated for its suitability for human consumption. Eleven characteristics were 

considered for this study over nine years (2011-2019) at ten different locations from 

Beharampur to Diamond Harbour. In nine years, the eastern Ganga showed variations 

in WQI from 55 to 416 and SPI from 0.59 to 3.68. A reasonable association between 

WQI and SPI supported the outcome. The whole river stretches in 2011, 2012, and 

2019, and locations close to the coast for nine years were significantly polluted, 

according to the map interpolated by GIS. SPI was built by Ma et al. (2009), and due 

to its simplicity, it was later used in several studies to determine how pollutants affect 

water quality (Solangi et al., 2018, 2020; Hui et al., 2020; Sunar et al., 2020). 

Maity et al. (2022) employed the WQI developed by the CCME to assess the water 

quality of the Damodar River in West Bengal on a temporal and spatial scale. Poor 

water quality is typical at all sample locations and during all seasons. Due to the input 

from both point and nonpoint sources, the monsoon season exhibits a greater pollution 

level. The middle class is increasingly polluted due to dense urban areas and massive 

industries. 

According to a study of prior studies, the CCME-WQI and WAWQI methodologies 

were primarily employed to gauge water quality. The physical, chemical, and biological 
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water parameters are the most typical inputs utilized to create these indices. However, 

given that these water quality indices are unpredictable in complicated environmental 

circumstances, some degree of uncertainty was found in their application (Ahmed et 

al., 2021). Due to the use of a small number of factors and development for a particular 

location, these indices are mostly biased. The creation and assessment of the WQIs 

were accompanied by these uncertainties. For instance, the water quality may differ 

between two distinct lake points at a certain time of day. Due to the water bodies' 

dynamic nature, the physicochemical characteristics can alter throughout a single day, 

from sunrise to nightfall (Ahmed et al., 2021). As a result, the following are some 

causes for why the majority of these indices misclassify water quality: First and 

foremost, each standard's sensitivity to the kind of predetermined parameters used for 

development, followed by the usage of a constrained number of variables or parameters 

and the weighting of each parameter. The WQI value can be manipulated to change the 

category of water quality when a single parameter is present in high concentration. 

There is a need to examine and compare these indices to remove the uncertainties and 

biases in these standards since all have recognized no index. 

Four appropriate water quality indices were used in this investigation based on the 

available dataset. Statistical modeling was done on all four water quality indices to 

determine the most accurate indicator to predict the state of water quality and create a 

water quality management plan. 

 

3.6 GIS application in river water quality 

A major problem of the 21st century is guaranteeing everyone access to sufficient clean 

water for domestic usage. However, despite a steady increase in water demand, 

anthropogenic activities are degrading the quality of the Earth's unevenly distributed 

water supplies (Khouni et al., 2021). 

Wastewater treatment facilities, excessive fertilizer, and pesticide usage in all 

anthropogenic activities produce wastewater that comprises physical, chemical, and 

microbiological pollutants (Ali et al., 2021). These pollutants deteriorate water purity, 

which could lead to major environmental issues that endanger aquatic communities' 

general health. In many less developed nations where infrastructure for assessing water 

quality and sanitation did not expand with population development and industrial 

advancements, rivers serve as the principal water source for household, industrial, and 

agricultural outputs (Ahmed et al., 2010). Untreated water is frequently discharged 
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directly into the watershed, causing serious degradation to rivers and the environment. 

As a result, there has been an increase in public awareness of the value of surface water 

quality to both public health and the ecosystem. Numerous research studies have 

focused on evaluating surface water quality and mitigating its consequences from 

pollution and environmental contamination. Therefore, a fundamental grasp of the 

physical, chemical, and microbiological features considered the indicators of water 

quality is necessary to accurately assess the quality of river water (Khouni et al., 2021). 

However, integrating the massive amounts of data that need to be acquired to regulate 

a natural resource at such a level is always challenging due to the size and complexity 

of a watershed's hydrological, geological, and environmental characteristics (Mtetwa et 

al., 2003). 

Additionally, the expense of producing these data has become a problem, which has 

prevented governments, particularly in developing nations, from implementing 

comprehensive and trustworthy river management techniques. However, the primary 

strategy for addressing sustainable management of natural resources in general and 

water resources, in particular must be integrated management of variables at the 

watershed scale. The Integrated Water Resources Management principles have made 

this evident (Usali and Ismail, 2010). Thus, the use of space data is a suitable method 

to estimate and fulfill the required large computational supplies (Gowri et al., 2008). 

The GIS is acknowledged as a potent tool for managing geographic figures holistically 

without sacrificing the spatiotemporal variability that is frequently essential in 

determining water quality (Mtetwa et al., 2003; Gowri et al., 2008; Sharma et al., 

2021b). This technology combines standard database operations, statistical analyses, 

and the distinct geographic analysis and visualization advantages provided by maps and 

spatial databases, allowing us to investigate the cause-and-effect relationship using 

visual interpretation (Arslan, 2001). It has evolved into a tool for researchers and 

managers of natural resources because it also can evaluate and model this complicated 

phenomenon (Sharma et al., 2021b). In addition, GIS techniques and the 

hydrogeochemical NETPATH software package were frequently used in 

hydrogeochemical modeling to establish baseline data for surface and groundwater (El 

Osta et al., 2020). 

Spatial interpolation techniques in GIS are used to generate spatially continuous data 

by forecasting the values of a characteristic at unsampled sites (Sener et al., 2017). 

These techniques fall into deterministic interpolation methods and geostatistical 
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interpolation methods (Qu et al., 2017). Among the interpolation techniques, inverse 

distance weighted, kriging, spline, trend, and cokriging interpolations are often 

employed (Mirzaei and Sakizadeh, 2016). 

Additionally, this helps authorities or decision-makers rank zones for mitigation plans 

in order of importance. The potential technologies for managing water resources are 

GIS and remote sensing. These technologies can be applied to various issues relating to 

water resources, including water supply, water quality, and forecasting floods. These 

methods are useful for comprehending the natural environment at various global, 

national, and regional scales (Gowri et al., 2008; Ali et al., 2021). 

The specific objectives of the study and the characteristics of the research objects must 

guide the selection of the interpolation models (Qiao et al., 2018). However, it has not 

always been clear whether one interpolation technique is better than another (Gong et 

al., 2014). Thus, interpolation techniques like IDW and kriging have been widely 

applied to water quality evaluation and pollution mapping (Mirzaei and Sakizadeh, 

2016; Panhalkar and Jarag, 2015). In reality, kriging and IDW interpolation have been 

used for various backdrops. Panhalakr and Jarag (2015) stated that the IDW is even 

more accurate and superior to kriging (El-Zeiny and Elbeih, 2019; Paul et al., 2019). 

Additionally, a study by Gong et al. (2014) demonstrated that the IDW method had a 

higher level of accuracy than the Kriging approach in forecasting the levels of various 

pollutants in groundwater.  

The word "inverse" refers to the fact that when compared to sample points that are far 

away, points that are close have larger weights and more effect in calculating unknown 

points. This method uses a linear combination of data (Ali et al., 2021). Based on this 

idea, IDW could improve the monitoring of management systems and its evaluation 

capabilities to monitor and control pollution (Arslan, 2001; Sener et al., 2017; Chabuk 

et al., 2020; Ali et al., 2021). 

Water quality managers can identify possible sensitive zones for water pollution by 

using the water quality index in conjunction with GIS (Srivastava et al., 2011; Katyal 

et al., 2012; Rawat and Singh, 2018; Madhloom and Alansari, 2018; Zhang, 2019). It 

is acknowledged that GIS can map the spatial allocation of specific water quality 

metrics and delineate acceptable pollution zones (Rawat and Singh, 2018; Singh et al., 

2022). Information on water resources can be easily understood through the maps 

produced by GIS. The public has become more informed, and authorities are more 

inclined to use precautionary measures to reduce the pollution of water resources due 
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to the freely accessible information (Usali and Ismail, 2010). 

It has been found that integrating GIS with indices is a well-established method for 

groundwater vulnerability and suitability evaluation (Rawat and Singh, 2018; Hussain 

and Abed, 2019), but very little research is available for surface water. The work by 

Srivastava et al. (2011) showed how to use WQI combined with GIS to identify the 

various pollution zones in river Mahi (Gujarat). The study done by Katyal et al. (2012) 

on river Yamuna (Delhi) is to determine its vulnerability utilizing a combined strategy 

of WQI and GIS, which is also mentioned in the literature. Remote sensing has been 

utilized in WQIs to evaluate the water quality (Alsaqqar et al., 2015; Jayalakshmi and 

Velappan, 2015; Sener et al., 2017; Chabuk et al., 2020; Ali et al., 2021). It aids in the 

spatial allocation of the water quality metrics and creates raster map classes that can be 

used to make suitable managerial action plans by authorities. 

 

3.7 Water quality modeling 

In light of major environmental situations like resource depletion, climate change, 

population boom, and growing public awareness, water pollution control and water 

quality management measures have become increasingly important (Kumar, 2018). 

Though researchers worldwide are cooperating with the government, the quality of the 

world's water is still declining in many regions (Vishnuradhan et al., 2012; Jadeja et al., 

2022). According to UNICEF (2008), 3.4 million deaths yearly are caused by 

unsatisfactory sanitation and hygiene practices, insufficient water supply, and water-

related diseases, primarily among children. Water is vital for a country's growth since 

access to safe water falls under fundamental human rights (Kumar et al., 2022b). 

It would be ideal for constructing a WQM to forecast changes in land use, population 

growth, effluent discharge, and climatic conditions. A WQM helps fill the data gaps 

that frequently prevent accurate water quality evaluation and management (Parmar and 

Bhardwaj, 2014, 2015). The WQMs assist us in recognizing the sources of pollution 

and many biogeochemical phenomena in the water bodies that are otherwise 

challenging to assess with field monitoring alone (Arya and Zhang, 2015). They also 

help anticipate potential future events in specific water bodies (Vishnuradhan et al., 

2012; Luo et al., 2019). 

One of the challenges in evaluating the water quality in developing nations like India is 

the dearth of data on water quality. Therefore, WQMs are crucial in bridging the data 

gaps that frequently obstruct the evaluation and water quality management.  The WQMs 
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are affordable tools for simulating the fate and movement of pollutants in water bodies 

(Wang et al., 2013; Luo et al., 2019).  

Most stream flow and water quality studies aim to identify the data and knowledge 

required to manage water resources, including their use, regulation, and development. 

Through these evaluations, time and money can both be saved, and future water 

resource development becomes affordable (Taheri Tizro et al., 2014). The primary 

goals of water quality modeling could be to (i) proceed with a cause-and-effect 

relationship, (ii) identify the effects of pollutant sources, (iii) assess the level of 

monitoring that is required, (iv) assess alternative planning and management strategies, 

(v) concentrate on additional monitoring and management goals, and (vi) evaluate 

current and expected water quality conditions (Rehana and Mujumdar, 2012; 

Ghashghaie et al., 2018; Das et al., 2021). 

The investigation and forecasting of water quality include a variety of techniques and 

strategies. Additionally, most water-related software, including SWAT, QUAL2K, 

MIKE-11, etc. (Rehana and Mujumdar, 2012; Ghashghaie et al., 2018; Santy et al., 

2020; Cely-Calixto et al., 2021; Das et al., 2021) benefit from specialized tools to 

evaluate the stream quality. One of the essential techniques used in water quality 

modeling and forecasting is time series analysis. Time series studies are now employed 

in various scientific fields, including physics, economics, and engineering (Huang et 

al., 2015; Valeriy et al., 2015; Huang et al., 2017). This topic includes water resources 

engineering since lakes, oceans, streams, and groundwater resources all have various 

properties that can be characterized using time series data. This approach aids in 

understanding and simulating the process by which a phenomenon generates previous 

observations (Parmar and Bhardwaj, 2015; Ghashghaie et al., 2018; Luo et al., 2019). 

It helps predict future values based on historical data as well. A time series is a 

collection of data collected over a period of time with equal gaps between each data 

point. The interval can be defined as the time steps taken daily, weekly, monthly, and 

yearly (Ghashghaie et al., 2018). Participation in decision-making across various 

hydrological processes and operating systems uses time series analysis. Time series 

analysis in hydrology has two primary purposes: first, it helps to understand and model 

the stochastic mechanism underlying the phenomenon, and second, it helps to predict 

future values of the phenomenon (Arya and Zhang, 2015; Ghashghaie et al., 2018; Luo 

et al., 2019). 

Using time series analysis, the modeling of hydrological components has been the 
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subject of numerous publications. It is also possible to use this strategy to forecast water 

quality. Additionally, a key stage in integrated water resources management might be 

the assessment of current water resources, which includes figuring out the quantity and 

quality of discharge, recognizing its volatility on a watershed scale, and predicting these 

variables (Yurekli and Kurunc, 2005; Kurunc et al., 2005). The stochastic nature of 

hydrological phenomena also encourages water resource engineers and hydrologists to 

take advantage of time series modeling and forecasting techniques (Taheri Tizro et al., 

2014). 

 

3.7.1 Time-series analysis  

ARIMA models could reproduce the main statistical properties of a hydrologic time 

series. ARIMA models have been put to use to examine both runoff and river discharge 

(Yurekli and Kurunc, 2005; Kurunc et al., 2005), lake water levels (Sheng and Chen, 

2011), sediment yield (Hanh et al., 2010) and quality of water (Papamichail et al., 2000; 

Ahmad et al., 2001; Hanh et al., 2010; Parmar and Bhardwaj, 2014, 2015; Arya and 

Zhang, 2015; Ghashghaie et al., 2018; Luo et al., 2019). 

The primary statistical features of a hydrologic or environmental time series can be 

replicated using ARIMA models. In their work on stream analysis, Thomas and Fiering 

(1962) employed auto-correlated models. Chow and Kareliotis examined the univariate 

time series of rainfall and temperature in 1970. They found periodic components in time 

series that were strictly yearly and leniently six months apart. Using Autoregressive 

Integrated Moving Average, McKerchar and Delleur (1974) defined the fundamental 

procedure for applying time series in hydrology. They also applied seasonal modeling 

to examine the seasonal features of stream parameters. Stream pattern identification and 

forecasting using time series modeling are effective for integrated water resources 

management. It has been extensively utilized to forecast hydrologic variables, including 

rainfall, outflow, and flood (Komornık et al., 2006; Damle and Yalcin, 2007). 

Zhang (2003) used a hybrid ARIMA/ANN model to benefit from both models' linear 

and nonlinear modeling advantages. According to the results, the combined model 

performed better at forecasting actual data sets than ANN or ARIMA when used 

independently. 

Komornık et al. (2006) investigated the Czech hydrological time series, demonstrating 

the great predicting accuracy of this type of model. In order to predict the flood values 

in the Mississippi River, Dalme and Yalcin (2007) used time series analysis. The 
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findings of their investigation demonstrated the validity of forecasting as well as the 

applicability of time series modeling in generating daily discharge.  

 

3.7.2 Applied time series analysis of groundwater quality 

Time series analysis has been used to model groundwater quality in many places. To 

match the water loss series using a stochastic process, Chang (1988) devised a modeling 

method that includes the homogeneity test of the data and the best model selection. 

Using a time series study of well water quality data for 1964 and 1965, Wilson et al. 

(1992) identified variations in groundwater quality brought on by anthropogenic 

activities. Loftis (1996) included a few glimpses of national assessments of different 

waste investigations in evaluating international studies on regional and localized 

groundwater quality. In an industrial area in Seoul, Korea, Lee and Lee (2003) assessed 

and calculated the possibility of groundwater naturally being reduced. The time series 

of water temperature has been the subject of various investigations. Time series analysis 

was utilized by Kim et al. (2005) in a study that looked at the impact of the tide on 

groundwater quality in a coastal area in Korea. Additionally, the lower Mekong River's 

temporal variations in turbidity, dissolved oxygen, conductivity, temperature, and 

fluorescence were examined using time series analysis (Irvine et al., 2011). Water 

quality modeling is crucial to maintaining and conserving water quality (Singh et al., 

2004; Su et al., 2011; Seth et al., 2013; Prasad et al., 2014; Parmar and Bhardwaj, 2014). 

 

3.7.3 Applied time series analysis of surface water quality 

Hirsch et al. (1982) employed new techniques to look for monotonic trends in monthly 

water quality data.  Additionally, utilizing data sets from Niagara, it has been researched 

how water quality indicators such as pH, alkalinity, total phosphorus, and nitrate 

concentrations change over time (El-Shaarawi et al., 1983). Yu et al. (1993) used four 

different nonparametric techniques. Surface water quality data from the Arkansas, 

Verdigris, Neosho, and Walnut River basins were studied to study trends in 17 key 

elements. 

The seasonal Kendall test was used to analyze the trend of water quality data from 

Plynlimon, mid-Wales (Robson and Neal, 1996), which studied the time series of the 

Strymon River's discharge and water quality indicators in Greece from 1980 to 1997. 

Using the turning point test and Kendall's rank correlation test, Gangyan et al. (2002) 

examined the temporal sediment load features of the Yangtze River. In Lake Tahoe, 
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USA, Jassby et al. (2003) created a time series model for Secchi depth. Panda et al. 

(2011) investigated the trends in the sediment load of an Indian tropical river basin.  

Hirsch et al. (1982) presented methods for looking for monotonic trends in monthly 

data on water quality. For seasonal time series, the first approach is a nonparametric 

test to identify the trend. The second seasonal Kendall estimator method calculates 

trend magnitude. The third approach provides a tool to examine temporal variations in 

the association between constituent concentration and stream flow. Additionally, El-

Shaarawi et al. (1983), employing a 5-year data set of Niagara, researchers examined 

temporal variations in water quality indicators (on Ontario Lake). The findings showed 

that pH and alkalinity were falling while nitrate was rising. Yu et al. (1993) studied 

trends in 17 key elements using four distinct nonparametric approaches by examining 

surface water quality data from the Arkansas, Verdigris, and Neosho basins, as well as 

the Walnut River basin.  Robson and Neal (1996), through a seasonal Kendall test and 

analysis of 10 years' worth of upland stream and bulk deposition water quality data from 

Plynlimon, mid-wales, discovered that the dissolved organic carbon in the stream water 

had been rising over time. However, there was no evidence of a pH increase. It was 

suggested that multi-decade long-term monitoring programs could be used. In work 

done by Turner et al. (1996), The results of simulations over extended periods of Lake 

Bosumtwi (Ghana) demonstrated that stochastic climatic variations that were quite 

comparable to those seen this century could cause the whole range of lake levels seen 

in terrace deposits. The low salinity of only 1% shows that Lake Overflow eliminated 

dissolved solutes recently in the geological past.  

Data on river water quality have been analyzed for trends and specific time changes, 

mostly using graphical and statistical time series techniques. The information gathered 

may be connected to some socio-economic factors, such as urbanization, agricultural or 

industrial expansion, and wastewater discharge in the vicinity or upstream of the 

measurement site. Such a study can be extended to more rural sites to analyze water 

quality development and assess the seasonal effect on annual patterns (Cun and 

Vilagines, 1997).  

Papamichail et al. (2000), to lessen the negative effects sustained by interests exploiting 

the river, stochastic models were studied to improve our grasp of monthly flow and 

some aspects of water quality metrics and the ability to forecast them of the Strymon 

River (Greek section). Specifically, they used a time series of monthly flow 

measurements and a few water quality metrics to create seasonal and nonseasonal 
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ARIMA models for the Strymon River. Forecasting monthly values for one or more 

periods in the future can be done using the models that were chosen for each parameter 

data collection. 

Antonopoulos et al. (2001) analyzed Greece's Strymon River discharge and water 

quality parameters time series data from 1980 to 1997. Trends in the following variables 

were found using the nonparametric Spearman's criterion: discharge, ECW, DO, SO4
2-, 

Na+, K, and NO3
3-. The Kolmogorov-Smirnov and two tests were used to verify the 

best-fitted models. Investigations were also conducted to examine the connections 

between constituent concentration, load, and discharge. Although loads and discharge 

have a positive association (r>0.9), concentrations and discharge have a poor 

correlation (r<0.59). Ahmad et al. (2001) completed a study to evaluate information on 

water quality gathered from the Ganges River in India. Three stochastic modeling 

techniques were used to model the observed time series of water quality: multiplicative 

ARIMA model, deseasonalized model, and Thomas-Fiering model. We identified the 

multiplicative ARIMA model with nonseasonal and seasonal components as a practical 

model. It was advised to forecast the river's water quality indicators using 

deseasonalized modeling. 

With the help of a water quality monitoring program in New Zealand, Stansfield (2001) 

used the nonparametric seasonal Kendall test and Sen Slope test to analyze trends in 

water quality time series. It was possible to demonstrate the significance of considering 

the detection limits of variables and sample frequencies. The results showed less trend 

detection occurred when the sampling frequency increased from monthly to quarterly.  

Results also revealed that, compared to monthly data, the quarterly data come with a 

distinct magnitude in terms of a slope. Gangyan et al. (2002) examined through the 

turning point test, Kendall's rank correlation test, and Anderson correlogram test to 

analyze the temporal sediment load characteristics of the Yangtze River to establish 

randomness and identify the trend. They used the monthly sediment load data from 

1950 to 1969 as well as the annual sediment load data for the years 1950 to 1990. An 

autoregressive model was used to model the stochastic component. One hundred years 

of monthly sediment data were produced and well-matched with observed data. 

Jassby et al. (2003) created a time series model for Lake Tahoe (USA), considering 

interannual variability. Although the mean annual Secchi disc depth has decreased by 

roughly 10 m since 1967, the Secchi depth was occasionally found to be over 40 m, 

which prompted a massive restoration effort. High annual fluctuation obscured 
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restoration efforts and compliance with water quality regulations. The model suggested 

a tool to assess compliance with water quality criteria in cases when precipitation 

abnormalities may last for years. Additionally, other research has concentrated on time 

series of water temperature, such as Webb et al. (2003), who demonstrated a strong 

association between air and water temperature when discharge is below the yearly 

median. Kurunc et al. (2005) performed a time series analysis of the Yesxilirmak 

River's stream flow and water quality elements at the monitoring station of Durucasu. 

In this work, the ARIMA and Thomas-Fiering modeling techniques were compared. 

The best models of each component of water quality and stream flow with both 

modeling methodologies were obtained using a 13-year monthly time series of records. 

The study's findings indicated that, of the two techniques, the Thomas-Fiering model 

provides more accurate predictions of the components of water quality and stream flow 

for the Yesxilirmak River than the ARIMA model. 

Panda et al. (2011) examined changes in the tropical river basin’s (India) sediment load 

and investigated how climate and human forcing processes affect the land ocean fluvial 

system. Analysis was done on sediment time series collected from 133 gauging stations 

during 1986–1987 and 2005–2006 on various timescales. The results demonstrated that 

the sediment load has significantly decreased. It was discovered that most river basins' 

reduced sediment loads because of non-significant declining trends in rainfall and 

numerous years of drought. Additionally, among tropical rivers, the Narmada River 

demonstrated the greatest reduction in sediment loads (2.07x106 t/yr) due to the dam's 

construction. Furthermore, Irvine et al. (2011) completed a study on the lower Mekong 

River's temporal variations in selected parameters. The findings indicated that a 

substantially developed vertical variation in turbidity, DO, and conductivity in 

inundated forest fringe may be attributed to a number of variables, counting dissolved 

material release from bed silt and a floating organic-rich particle layer near the lake's 

bottom. 

Halliday et al. (2012) examined two hydrochemical time series that were created from 

stream samples collected in Wales' Upper Hafren catchment. Determinants were 

selected in a nonstationary time-series analysis framework to find determinant trends, 

seasonality, and short-term dynamics. The findings show that long-term and frequent 

monitoring can better understand a catchment's hydrochemistry. This ongoing research 

shows the necessity of long-term and high-frequency monitoring to comprehend 

hydrochemical catchment dynamics completely.  
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Parmar and Bhardwaj (2014) studied water quality management through a time-series 

prediction model and statistical analysis. The statistical mean, median, mode, standard 

deviation, kurtosis, skewness, and coefficient of variation of Yamuna River have been 

compared using the monthly variance of water quality standards. R-squared, root mean 

square error, mean absolute error, maximum absolute error, normalized Bayesian 

information criteria, Ljung-Box analysis, projected value, and confidence intervals 

were used to validate the model. Future values for water quality parameters have been 

predicted using an auto-regressive integrated moving average model. The pH, free 

ammonia, total Kjeldahl nitrogen, dissolved oxygen, and WT curves are platykurtic and 

leptokurtic, respectively. It is noted that the predictive model is useful at 95% 

confidence limits. 

Arya and Zhang (2015) worked on the four water quality measurement stations along 

the Stillaguamish River (Washington). They used the time series analytic approach to 

model and predict univariate DO and temperature. The normality assumption for 

modeling the univariate time series was satisfied using the order series method. The 

Auto-Regressive Fractionally Integrated Moving Average model was then employed to 

examine the time series with a long memory, while the ARIMA models were used to 

research stationary and nonstationary time series. 

Parmar and Bhardwaj (2015) analyzed the trend and predicted the water quality through 

regression, correlation coefficient, ARIMA, box-Jenkins, ACF, PACF, lag, fractal, 

Hurst exponent, and predictability index. The predictive model is useful at 95% 

confidence levels, and all WT show a platykurtic curve. Different locations for BOD, 

AMM, and TKN exhibit Brownian motion (true random walk) behavior. Water quality 

along the Yamuna River is good in Hathnikund, deteriorates in Nizamuddin, Mazawali, 

and Agra D/S, and then improves again in Juhikha. 

Ghashghaie et al. (2018) utilized time series analysis to examine Madian Rood River's 

quality at Baraftab station. Nine water quality metrics were investigated. A review of 

the observed time series reveals that, except Na+ and SAR, all parameters have a 

consistent upward tendency. Using the ACF and PACF of time series, the order of 

models for each parameter was established. The quality of stream flows was generated 

and anticipated using the ARIMA model. To assess the generation and validation 

outcomes, the Akaike Information Criterion (AIC), Determination Coefficient (R2), 

Root Mean Square Error (RMSE), and Volume Error in Percent (VE%) criteria were 

used. 
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Luo et al. (2019) used the time series method in the Guidu Fu section of the Qingyi 

River to create the ARMA model for concentrations of DO, BOD5, COD, Cr, NH3-N, 

and TN. The projected concentrations were examined and verified using the measured 

values. 

The promising techniques for forecasting and simulating water quality variables are 

WQMs. As said above, there is plenty of literature on using WQM to forecast pollutants 

in rivers around the world. Since the river system is extremely large, it is necessary to 

predict how pollutants would behave. This study has developed an economic river 

management plan for river Gomti to help decision-makers.  

 

3.8 Assimilative capacity 

Several years ago, there was an increase in the relevance of the water quality issue, 

mainly because water pollution in lakes and rivers is becoming increasingly 

problematic (Yuceer and Coskun, 2016). About 80% of all wastewater, as per the 

wastewater report (2018) from the IWA, is released into rivers throughout the world, 

where it poses threats to human health, the environment, and climate and can alter the 

waterways' assimilative capacity (AC) (Torres-Bejarano et al., 2022). For water 

resources to be managed effectively, it is crucial to understand the effects of wastewater 

discharges on them. Hydrodynamics and WQM are crucial tools for understanding 

these consequences, often based on water sources' absorption capacity (Villota-Lopez 

et al., 2021). The term "assimilative capacity" describes a water body's innate capability 

to self-cleanse and/or self-repair through the dilution and/or dispersion of waste and 

pollution without endangering the aquatic environment. Additionally, it can show the 

maximum amount of pollutants that can accumulate, be destroyed, changed, and 

transmitted outside of the ecosystem's volume without interfering with its regular 

activity or the amount of controllable pollutants that can be added to each water flow 

in a river (Kulikova et al., 2018). The loss of an aquatic ecosystem's natural potential 

for self-purification and self-restoration, which translates into a reduction in 

assimilative capacity because this capacity enables the natural treatment of wastewater 

in rivers, is a detrimental effect of polluting activities (Lee et al., 2017). 

The 1972 Stockholm conference introduced the first representation of the environment's 

ability for assimilation. The term "assimilative capacity" has been appropriated in the 

context of marine pollution to describe the inherent power of waterways to dilute and 

distribute pollutants and pollution without harming the aquatic environment. The idea 
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behind using the concept of assimilative capacity in different environmental 

management processes was typically founded on creating a necessary framework for 

the later design of suitable environmental standards and regulations (Torres-Bejarano 

et al., 2022). 

Assimilative capacity is defined differently worldwide, with the United States' total 

maximum daily load (TMDL) being the most often used definition for regulatory 

purposes. The maximum pollutant that can exist in a water system is impaired, 

independent of the source of the pollutants (Landis, 2008). It is a division of the object-

oriented methodology created to analyze river basin point-source pollution reduction. 

Additionally, assimilative capacity, a byproduct of the stressor-based monitoring 

strategy, has been employed in numerous projects to demonstrate how biomonitoring 

approaches can be used to measure biological states across time (Maruya et al., 2014). 

It is significant to remember that the same notion has been employed in numerous 

research in addition to these various definitions. Numerous governments have used 

multiple techniques to lessen the negative impact of non-point source pollution entry, 

including nutrient loads in the Xiangxi watershed in China. The eco-hydrological model 

and the water evaluation tool are two options that can be used to combat these 

detrimental impacts and to lessen the risks in earlier research (Strehmel et al., 2016). 

Additionally, assimilative capacity must guarantee a reference minimum flow condition 

linked to a specific danger level (Abbasi and Abbasi, 2012). Investigated is a 

probabilistic assessment of the harm to human health from the danger of metal pollution 

entering a river (Saha et al., 2017). When dealing with dangerous compounds, the 

assimilative ability is often relatively constrained, meaning that toxic substances have 

a considerably lower assimilation capacity (Abbasi and Abbasi, 2012). Two studies 

conducted in 1994 demonstrated the ability of paper mills to generate effluents by 

utilizing chlorine dioxide in their bleaching process, after being diluted realistically in 

the receiving water, either had no adverse effects on the aquatic ecosystem or had only 

minor ones (Landner et al., 1994). The effective method of inspection in pioneer mills, 

avoiding excessive chemical dosage, unstable production conditions, and unintentional 

spills are likely the main causes of this minimal impact (Landner et al., 1994). 

Additionally, when dealing with dangerous resistant substances that tend to condense 

in the environment and assemble in aquatic biota, the assimilative capacity is typically 

quite constrained (Hashemi Monfared et al., 2017). Many researchers have decided on 

a strategy for managing water quality experimentally because of the significant function 
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that absorption capacity plays as a water quality metric (Hashemi Monfared et al., 

2017). 

A practical element of water quality indices is adjusting water flow to lessen the harm 

caused by unpermitted pollutant entrances. This is a corrective step in pollution crisis 

management in actual circumstances. To identify proper effluent ranges for a promotion 

to the Brockville Water Pollution Control Center (WPCC), which releases treated 

effluent into the St. Lawrence River, an examination of the St. Lawrence River's 

assimilative capability was conducted (Brockville Water Pollution Control Center, 

2004). Additionally, two useful ideas are applied in various water quality management 

contexts: absorption capacity and dilution flow. Regarding pollution, an inexpensive 

drainage design aims to balance the impacts of continuous and irregular discharges 

against the water's capacity for assimilation (Loucks and Van beek, 2005). The San 

Joaquin Basin (SJR) used real-time water quality management to evaluate the safe 

discharge of pollutant loads (Nigel and Quinn, 2005). The Nottawasaga Valley and the 

area around Lake Simcoe have been protected through the funding provided by the 

Province of Ontario through the Ministry of the Environment for Assimilative Capacity 

Studies (ACS). As defined by oceanographers, assimilative capacity is the potential of 

natural waters to dilute, disseminate, and absorb industrial pollutants without 

endangering lucrative commercial fish species (Keeling, 2007). 

Various studies have been developed to simulate the assimilation capacity, which needs 

the solution of the pollutant transport equation. The extension and evaluation of an 

analytical framework for a model of pollution transfer in the convective region of rivers 

(Schmalle and Rehmann, 2014). Additionally, numerous analytical and numerical 

research looked for the most practical way to describe how dissolved and suspended 

particles are transported and transformed by the advection-dispersion formulas that are 

used to calculate water quality indicators (assimilative capacity and dilution flow) 

(Hashemi Monfared and Dehghani Darmian, 2016; Hashemi Monfared et al., 2017). 

Given that different rivers have varied capacities for assimilation (Abbasi and Abbasi, 

2012), researchers attempted to propose a practical model to establish water quality 

management tools, as the significance of a credible simulation model (Assimilative 

capacity and dilution flow) was noted. Wen and Lee (1998) devised a multi-objective 

neural network optimization method for controlling river water quality. The model was 

then used in Taiwan's Tou-Chen basin. A sequential dynamic genetic algorithm was 

used as an optimization model to regulate the water quality of the Karoon River (Iran) 
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(Karamouz et al., 2003). De Smedt et al. (2005) explored modeling and optimization 

methods to assess temporal and geographical pollution utilizing an injected tracer. 

Chile's Chilla'n River was the first place where the process was effectively used. Their 

findings showed that the observed data and the modeling conclusions were in good 

accord. Gillibrand's report (2006) detailed steps to build modeling methods that will 

enhance estimates of the water bodies' capacity for assimilation, which is used in marine 

aquaculture. Yandamuri et al. (2006) studied the reasons as follows: (1) the overall 

treatment cost, (2) the equality of those who release pollutants, and (3) the DO content 

for a multi-objective optimization framework was presented to determine the ideal 

pollution load in rivers. Monitoring and controlling strategies are used to evaluate the 

efficiency of the quality management of water networks. The ability of an ecosystem to 

ingest and absorb pollutants is determined by its hydrodynamic and biological 

properties, which reduce the danger of pollution and maintain the quality of the 

environment and water. Chen et al. (2012) worked on Northeast China's Heilongjiang 

River's water network to implement their strategy, which recognized monitoring 

networks and data on water quality as crucial components in pollution management 

methods. 

A method was expanded using a volume-equivalent equation to identify aluminum 

dilution, find sources of aluminum in surface water, groundwater, and wastewater from 

filter backwash, as well as losses brought on by spill discharge, sedimentation, and 

water discharge from the reservoir. The technique was applied to 13 reservoirs, and 

information on the concentrations of aluminum and Dissolved organic carbon (DOC) 

in the reservoirs' influent water was examined (Colman et al., 2011). De Andrade et al. 

(2013) framed the Simulated Annealing (SA) method and the Raised Flow Water 

Quality Simulation Model (QUAL2E) to present a model for river pollution reduction. 

This method was used in the Brazilian Santa Maria da Vitoria River basin to calculate 

the necessary oxygen content for biological activity. The CE-QUAL-W2 simulation 

model completed drinking and agricultural water allocation for the Karaj Dam in Iran. 

The findings demonstrated that the established quality-quantity model was better suited 

for abrupt pollution scenarios, including water allocation (Haddad et al., 2014; 

Mahmoudi et al., 2016). 

Assimilation capacity was calculated using a nonlinear programming model (NLP) in 

one of the most recent modeling studies (Farhadian et al., 2014), Although this model 

encountered two challenges in determining assimilation capacity: (1) High runtime; (2) 
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In some instances, the challenge was insurmountable. Additionally, in their research, 

when the pollutant input concentration exceeds the assimilative capacity, it was handled 

by enhancing the dilution flow using defined goal functions, mean unallowable 

concentration, and length of contact (T). 

Dehghani et al. (2020) used a one-dimensional pollutant transport model to determine 

a river's ability to absorb pollutants. Hashemi Monfared et al. (2017) found the 

assimilative capacity and dilution flux using a one-dimensional model with two 

objective functions (pollutant concentrations and the pollutant's distance from the river 

water). It was discovered that the river flow variation during different seasons could 

change the assimilative capacity by 97%. Obin et al. (2021) used the WASP (Water 

Quality Analysis Simulation Program) model to calculate the water environmental 

capacity of the Lushui River (China) in all atmospheric conditions. Cely-Calixto et al. 

(2021) worked on the Magdalena River (Colombia water) quality parameters, simulated 

using the mathematical model QUAL2K, demonstrating the river's propensity to purify 

due to its high flow. Establishing monitoring programs in water bodies where river and 

outflow volumes are statistically analyzed along with water quality metrics is one of 

the most popular techniques for assimilative capacity assessments. Configuring a 

simulation model for concentration and water quality to determine assimilative capacity 

is a popular technique (Gurjar and Tare, 2019; Quinn et al., 2021). The simulation of 

scenarios where specified water quality restrictions are violated is another popular 

technique (Novo, 2017; Villota-Lopez et al., 2021). This approach, which involves 

using a two-dimensional hydrodynamic and WQM, was primarily taken into account in 

this study since it can serve as a springboard for the creation of robust water quality 

objectives that are essential to the management of water resources. 

Using hydrodynamic and water quality modeling, Feria Diaz et al. (2017) examined a 

segment of the Sin River in Colombia to identify its deoxygenation and reaeration rates. 

This analysis evaluated the Sin River's capability to assimilate wastewater discharges. 

The most significant human water resources are rivers and surface water.  

Unfortunately, pollutants from untreated domestic, agricultural, and industrial 

wastewater disposal decrease the quality of these vital human resources' water and can 

cause the environment to suffer permanent harm (Hashemi Monfared et al., 2017). In 

these situations, meeting the minimum acceptable quality standards for drinking water 

and other uses is frequently impossible due to the high water treatment expenses.  

Considering the water flow modification, pollution can be reduced through one of the 
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most affordable methods. Assimilative capacity and dilution flow are crucial for 

controlling water pollution in a river (Farhadian et al., 2014). For each water flow in 

the river, assimilative capacity is defined as the entrance of controllable pollution, and 

dilution flow is considered for uncontrollable entering pollution, which is larger than 

assimilative capacity. However, a practical and cost-effective method of managing 

water quality is to estimate the amount of allowable pollutant concentration entering a 

river while considering water flow (Farhadian et al., 2014). 

Zainudin et al. (2015) evaluated the possible risk of pollution in the rivers, specifically 

the Terumpah, Che Minah, Semangar, Beluntu, Penawar Besar, and Mertang Besar 

Rivers, which are situated in the center of the development region. Water quality and 

hydraulic data were taken at these rivers to create a numerical model. BOD5 and NH3-

N levels in the Semangar River declined by up to 4.0 mg/dm3 and 0.34 mg/dm3, 

respectively, according to the model results. With 14.0 mg/dm3 of BOD5 and 0.8 

mg/dm3 of NH3-N, the Beluntu River underwent the greatest degradation. The class III 

BOD5 limits for the Matang Besar, Che Minah, and Beluntu Rivers' waste assimilative 

capacity (WAC) were 15, 43, and 10 kg/day, respectively. In contrast, the Terumpah 

River cannot receive any BOD load without exceeding the same limit. 

Munfarida et al. (2020) evaluated the water quality in accordance with government 

regulations and computed the pollution load-carrying capacity of the Cibatarua River 

in the Pamulihan district following regulatory requirements of the environmental 

agency. The water quality indicators are the TDS, BOD5, COD, pH, oil and grease, and 

DO. Based on the findings, Government Law No. 82/2001's standards for BOD5 and 

oil and grease were exceeded.  

Nurseitova et al. (2021) demonstrated the usefulness of using the Nelder-Mead method 

and the gradient approach in a detailed comparative analysis of optimization methods 

for addressing the defined inverse issue. The assimilation potential of the Kazakhstani 

portion of the Ili River basin might be evaluated. Since the BOD calculations were done 

at k = 0:23/day, the resulting estimate establishes the upper limit of the basin's 

assimilation capacity (the greatest seasonal value of the maximum permitted load). This 

figure translates to a 20°C water temperature often seen during the summertime low 

water period. The predicted value of the maximum permitted load would drop in the 

winter when the rate of breakdown of pollutants is substantially lower. Additionally, 

the results can be used to forecast changes in pollutant concentration if river inflow into 

Kazakhstan's territory declines. 



 

3-72  
 

Chapra et al. (2021) determined the greatest or "critical" DO deficit that can be 

computed analytically as a function of the BOD concentration at the mixing point, DO 

saturation, and the self-purification rate using the traditional Streeter-Phelps model. 

According to the findings, high-velocity streams will be particularly vulnerable to 

temperature increases. This is important because such systems generally develop in 

hilly areas, where they are more vulnerable to lower oxygen saturation due to lower 

oxygen partial pressure. Such systems often display high self-purification constants 

because of their fast reaeration rates, which leads to higher absorption capacities than 

slower-moving lowland rivers. Saturation decreases mostly determine the overall 

sustainable mixing-point concentration for CBOD in slow-moving rivers. For faster-

moving streams, the temperature-regulated reductions in saturation and self-

purification have an equal impact on the total sustainable load. 

Torres-Bejarano et al. (2022) discovered that the changes in discharge flows have a 

more significant impact on a Sin River's sensitivity than discharge concentration 

changes; the river was primarily affected by a halving of its flow and a 400% increase 

in current point source flows. This idea can affect the river's planning and prevention 

programs in terms of the wastewater flows that the river can support without exhausting 

its assimilative capacity; this aspect is not yet considered for the river's planning and 

prevention programs. Sin River water quality modeling provides the competent 

environmental authorities with a starting point for assessing the river's capacity for self-

purification under the present condition of discharge and predicting which conditions 

will affect this natural process. 

According to the literature review, assimilative capacity and dilution flow are two 

crucial tools for controlling water pollution in a river. Assessment of assimilative 

capacity is helpful for policymakers and stakeholders as a cost-effective solution for 

water quality management. 

 

3.9 Impact of rising temperatures on water quality  

One of the most critical environmental problems is climate change, which results from 

global warming. Freshwater ecosystems and the world's water resources are now being 

impacted by it (Das et al., 2021; Santy et al., 2022). Some of the reasons contributing 

to the increase in temperature include an increase in the rate of CO2 emissions and 

GHGs, including CH4, nitrous oxide, and Chlorofluorocarbons (CFCs) (Abeysingha et 

al., 2020; Santy et al., 2022). As per the National Oceanic and Atmospheric 
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Administration (NOAA, 2019), almost 414.7 ppm of carbon dioxide is present in the 

world's atmosphere.  The global temperature has risen by 0.85°C between 1880 and 

2012 (IPCC, 2013) and is considered as frequently the main element changing 

precipitation's amount, kind, and intensity. This impacts the hydrological cycle (Islam 

et al., 2012). The extent of this influence is impacted by both anthropogenic activities 

and industrial growth (Santy et al., 2022).  

According to the various Representative Concentration Pathways (RCPs), warming of 

1.5-4.30C has been predicted for India for the 2080s (2071-2100) compared to the 1961-

1990 baseline period (Krishnan et al., 2020; Das et al., 2021; Santy et al., 2022). Similar 

to this, with the exception of a few locations, short-term estimates indicate that 

precipitation will increase across India by the 2030s. According to various RCPs, from 

the baseline of 1961–1990, the 2080s are expected to see a rise in annual precipitation 

of 6–14% across India (Abeysingha et al., 2020; Krishnan et al., 2020). Such a shift in 

temperature and precipitation would majorly affect water availability for several 

industries, especially agriculture, and threaten the security of livelihoods. Thus, it is 

essential to quantify the effects of climate change on the geographical and temporal 

variability of water resource availability in various river basins to comprehend possible 

water resource issues and create basin-specific adaptation plans (Unger-Shayesteh et 

al., 2013). 

Since regional hydrological circumstances differ, so will the effects of climate change 

on the availability of regional water resources in each river basin. Therefore, it is crucial 

to comprehend how a river basin will respond hydrologically to climate change in order 

to prepare local adaptation plans (Bisht et al., 2018; Abeysingha et al., 2020). 

WT and DO in the water serve as crucial indicators of the ecosystem's health in a river 

water body (Chapra et al., 2021). Various climatological defining variables, most 

notably AT, have negatively impacted WT in warming climates (Webb et al., 2003; 

Van Vliet et al., 2013). When WT is intensified, river DO saturation levels will decline, 

which will have a negative effect because most river water quality is predicted on such 

saturation levels (Van Vliet et al., 2013). In particular, saturation DO is a notable marker 

of river water quality and is considered as a standard pollution indicator (CWC, 2019). 

Water quality degradation and ecological distortion may result from the impact of 

climate change on DO with WT (El-Jabi et al., 2014; Svendsen et al., 2016; Danladi 

Bello et al., 2017). Since WT and DO concentration are inversely connected, changes 

in WT impact the river's capacity to self-purify by reducing the quantity of oxygen used 
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for biodegradation (Khan et al., 2017; Kauffman, 2018). It is important to comprehend 

future river water quality and potential changes in quality standards under climate 

change warming signals and its impacts on WT and DO concentration (Rajesh and 

Rehana, 2022).  

DO depletion was projected by water quality modeling studies for several basins across 

the world under changing streamflow, WT, and land use (Rehana and Mujumdar, 2011, 

2012; Ficklin et al., 2013; Danladi Bello et al., 2017; Du et al., 2019; Santy et al., 2020; 

Chapra et al., 2021). Regression models were used in these investigations to model WT 

(Rehana and Mujumdar, 2011) and process-based stream temperature models (Ficklin 

et al., 2013; Du et al., 2019) and the quality of river water models such as QUAL2K 

(Rehana and Mujumdar, 2012; Santy et al., 2020). Such studies, however, focus on 

simulating DO levels with streamflow, WT, and land use, which limits their 

applicability to data-scarce and ungauged sites (Rehana and Mujumdar, 2011, 2012; 

Ficklin et al., 2013; Danladi Bello et al., 2017; Du et al., 2019; Santy et al., 2020). 

However, the DO saturation level, which establishes a baseline for evaluating the 

oxygen content of water based on salinity, oxygen partial pressure, and WT, determines 

the oxygen concentration of unpolluted water (Chapra et al., 2021). Therefore, this is 

significant in establishing the upper limits and minimum requirements for diverse river 

usage (CPCB, 2019). Still, it has not been evaluated concerning climate change (Rajesh 

and Rehana, 2022).  

The link between WT and DO concentrations in tropical rivers is impacted by climate 

change (Danladi Bello et al., 2017). Tropical rivers have higher WTs and are prone to 

more solar radiation (Taniwaki et al., 2017). For instance, Indian tropical river systems 

experience low flow during the non-monsoon and summer seasons, having the highest 

WTs (Santy et al., 2020). 

Some studies (Ficklin et al., 2013; Javadinejad et al., 2021) projected that poor water 

quality in terms of DO, EC, and silt concentration could result from a rise in stream 

temperature and a decrease in stream flow during the dry season due to climate change. 

Land use and cover changes, particularly the growth of agricultural land, which might 

result in an increased nutrient concentration, have an impact on the water quality 

estimates as well (Gyawali et al., 2013; Ostad-Ali-Askari et al., 2017; Santy et al., 

2020). The increasing water quality and sewage damage could be because of the 

increased growth of population and industrial activities (Khattiyavong and Lee, 2019; 

Ostad-Ali-Askari, 2022) and as a consequence, the degradation of the quality of water 
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(Khan et al., 2017). 

Such investigations used regression models to model WT (Jain and Singh, 2020; Saha 

and Ghosh, 2020). In a prior study (Santy et al., 2020), a standalone WQM revealed 

that DO and microbiological pollution decreased due to warming and a reduction in low 

flows, whereas organic and nutrient pollution increased in the Ganga River. 

Eutrophication and fish kills are possible outcomes of growing nutrient pollution and 

declining DO. In contrast, several Ganga River studies have revealed increased 

monsoon flows and improved water quality for sustainable socio-economic situations 

with climate change (Jin et al., 2015). El-Jabi et al. (2014) evaluated the surface water 

quality of 15 rivers in New Brunswick, Canada, based on nine factors under climate 

change. The weighted method and the CCME method were applied to evaluate the 

water quality for all rivers individually under the current and projected climatic 

conditions. The information collected from this study will help engineers and managers 

of water resources better understand the thermal regimes of rivers and the effects of 

climate change on water quality in relation to drinking surface water. 

The literature review reveals that the impact of climate change on river WT is highly 

dependent on AT and other parameters. Since AT is the characteristic that is anticipated 

to alter the most due to climate change, river WT is also a crucial component. So, 

assessing the impact of rising temperatures on water quality is an important prospect to 

consider by stakeholders and policymakers for formulating a water quality management 

plan.  

 

3.10 Conclusions and research gaps 

According to a literature review, the Gomti River is considered one of India's most 

polluted rivers. The use of solely primary monitoring was one of the key limitations 

noted in the earlier research (Srivastava et al., 2011; Malik et al., 2011; Shah et al., 

2015; Tangri et al., 2018; Singh et al., 2018; Kumar et al., 2022a). Additionally, most 

of these investigations conclude by comparing the observed data to the requirements 

for water quality. This has proven insufficient to identify the causes of water quality 

decline, understand spatiotemporal variation in various segments of the river Gomti, 

and develop a strategy and plan for managing water quality. The usage of MSTs has 

recently been documented in various research investigations conducted on the River 

Gomti of Lucknow, Uttar Pradesh, India (Singh et al., 2005; Dutta et al., 2018a; Goel 

et al., 2018; Iqbal et al., 2019; Kumar et al., 2020b; Khan et al., 2020; Kumar et al., 
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2021c; Khan et al., 2022; Kumar et al., 2022a). Additionally, no studies have used SPI 

or CPI as water quality indicators. 

The current work uses an integrated method to analyze the surface water quality of the 

Gomti River, which flows through Lucknow (UP), India, employing MSTs, WQIs, GIS, 

statistical modeling, assimilative capacity, and climate change (effect of rising 

temperature). The combined use of these technologies is anticipated to provide a first 

thorough assessment of the current settings of the water quality in the Gomti River in 

Lucknow (UP).  Academics and policymakers are anticipated to benefit significantly 

from the study's findings. 
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CHAPTER - 4  

MATERIALS AND METHODS 

 

4.1 General 

The research work embodied in this thesis has been carried out with the aim of water 

quality management with reference to assimilative capacity and climate change (impact 

of rising temperature) by identifying, quantifying, and characterizing selected 

pollutants of an important river Gomti which is the lifeline of Lucknow. The 

methodology adopted to achieve objectives includes various steps, as depicted in Figure 

4.1.  

 

 

Figure 4.1: Flow diagram for the detailed methodology of the research plan 

 

This study is based on the data collected by the Uttar Pradesh Pollution Control Board 

(UPPCB), Lucknow (UP), which monitors the water quality along the Gomti River in 

Lucknow. First, the monitored data for physicochemical and biological parameters 

from 2013 to 2017 was acquired from the UPPCB database. Descriptive statistics and 

multivariate statistical approaches were used to investigate further the multifarious 
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nature of the data sets gathered from the UPPCB database. Seasonal and spatial 

variation in the dataset was analyzed using one-way Analysis of Variance (ANOVA). 

Simultaneously, an extensive literature review was carried out to finalize the four most 

suitable WQIs based on the data received. These indices were used to assess the water 

quality of river Gomti, followed by its integration with GIS to mark out different zones 

based on the magnitude of pollution. Statistical modeling was used to forecast or to 

predict these four indices for river Gomti, which would facilitate future predictions of 

WQIs and assessment of the Assimilative capacity of water quality variables in the 

river. 

 

4.2 Data collection and sampling stations 

Based on the possible sources of pollution, sampling stations are chosen by UPPCB 

(Lucknow). The majority of the locations are located near industrial or urban regions. 

All seven sampling stations' data from 2013 to 2017 were collected monthly. The 

changes in water quality are assessed using 14 water quality analysis measures. Table 

4.1 lists the measured water quality parameters. 

 

Table 4.1: Measured water quality parameters, abbreviations and units 

S. No. Parameter Abbreviation Unit 

1 Water Temperature WT OC 

2 pH pH Units 

3 Electrical conductivity EC µS/cm 

4 Total dissolved solids TDS mg/l 

5 Total alkalinity (as CaCO3) TA mg/l 

6 Total hardness (as CaCO3) TH mg/l 

7 Calcium Ca mg/l 

8 Magnesium Mg mg/l 

9 Chloride Cl mg/l 

10 Dissolved oxygen DO mg/l 

11 Biochemical oxygen demand BOD mg/l 

12 Chemical oxygen demand COD mg/l 

13 Total Coliform TC MPN/100 ml 

14 Fecal Coliform FC MPN/100 ml 
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The UPPCB, Lucknow, collected monthly data on all the aforementioned water quality 

parameters at seven sampling stations, namely S1 - Manjhi Ghat, S2 - Up Stream water 

intake, S3 - Kuriyaghat, S4 - Downstream Mohan Meakins, S5 - Nishat Ganj Bridge, 

S6 - Upstream Barrage, and S7 - Downstream STP Nala Bharwara junction 

(ANNEXURE – I). The first sampling station (S1) is located in a low-pollution area on 

the upstream side of Lucknow city. The remaining five stations (S2, S3, S4, S5, and 

S6) are located in the middle of the route, with high pollution levels. The last sample 

station (S7) is situated in the moderately polluted downstream zone. Table 4.2 and 

Figure 4.2 give the specifics of the sampling stations. By taking into account the 

contributions from diverse pollution sources that affect the water quality, the sampling 

strategy used by the UPPCB, Lucknow, was created to comprehend the broad pollution 

causes at significant sites that characterize the river water quality (Dutta et al., 2018a). 

 

 

Figure 4.2: Map showing sampling stations in the river Gomti at Lucknow 
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Table 4.2: Location of the sampling stations and their geo-coordinates of the Gomti River at Lucknow 

Sampling 

station 

Station 

code 
Landmark of sampling location Latitude Longitude Elevation 

Distance between 

sampling stations 

Station 1 S 1 Manjhi Ghat 27°01'37.10"N 80°50'19.20"E 111 m 0 

Station 2 S 2 U/S water intake  26°53'14.58"N 80°53'59.86"E 111 m 32.5 Km 

Station 3 S 3 Kuriyaghat  26°52'29.30"N 80°54'42.14"E 102 m 3.2 Km 

Station 4 S 4 Downstream Mohan Meakins  26°52'07.67"N 80°55'25.46"E 109 m 1.4 Km 

Station 5 S 5 Nishat Ganj Bridge  26°51'44.19"N 80°57'11.94"E 112 m 3.5 Km 

Station 6 S 6 U/S Barrage  26°51'25.22"N 80°58'07.32"E 110 m 1.8 Km 

Station 7 S 7 D/S of STP Nala Bharwara 

junction 

 26°49'47.34"N  81° 3'35.56"E    108 m 16.0 Km 
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4.3 Statistical analysis of water quality data 

When biological and physicochemical analysis of surface water resources is conducted, 

the resulting data sets are frequently found complex or multifarious due to fluctuations 

in the observed values over time and space. On the other hand, water quality data sets 

exhibit some characteristics that are particular to them. Such data sets also frequently 

contain “outliers," or observations that are much higher or much lower than most of the 

other observations in the whole data set. As a result, the distribution of most data sets 

on water quality on both temporal and spatial scales is skewed. It is vital to keep in 

mind that the presence of outliers could indicate measurement, instrument, or recording 

error, but most often, outliers could indicate significant data points that need additional 

research. Therefore, outliers cannot be entirely excluded while evaluating the water 

quality. When analyzing such data sets, statistical approaches, also known as non-

parametric methods, that are resistant to these “strange values," such as employing the 

mode -the value that appears in the data set the most frequently, instead of the mean 

should be used. Since the data sets for water quality generated for this research were 

not normally distributed, the transformation was required before parametric tests. The 

modification helped to normalize the distribution of the data. Microsoft Excel 2016 and 

IBM SPSS Statics 26 software were used for all statistical analysis.  

 

4.3.1 Descriptive statistics 

For each water quality measure, statistical data analysis was performed to determine 

the mean, median, mode, standard deviation, kurtosis, skewness, coefficient of 

variation, and correlation coefficient. The statistical measures mean, median, and mode, 

respectively, describe the average value, the midway values of an ordered sequence, 

and the value that occurs the most frequently. The standard deviation is a measure that 

explains the sample’s dispersion or variability. Kurtosis describes the amount of 

flatness or peaking in the area surrounding a frequency curve’s mode. The term 

“skewness” refers to data symmetry. The coefficient of variation (CV) provides the 

sample's relative measurement (Parmar and Bhardwaj, 2013; Rawat et al., 2017). 

 

4.3.2 Analysis of variance 

Analysis of variance (ANOVA) is a statistical technique that uses the F test to look at 

how the means of a set of variables or data differ from one another (Eq. 4.1). 
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𝐹 =
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                                  4.1 

 

The population means are assumed to be equal for the F-test null hypothesis. Low F 

values indicate no substantial difference between the sample means and that the null 

hypothesis is correct. Contrarily, a high value of F indicates statistically significant 

variation among the sample means and rejects the null hypothesis. In the current study, 

a one-way ANOVA was conducted to find differences for each of the water quality 

metrics between the seasons, the seven sampling sites, and the years of sampling. The 

identification of water quality characteristics that caused appreciable differences in 

river water quality was made easier by the resulting ANOVA values. Statistics were 

deemed to be significant at a probability level of (p≤ 0.05), where p is the chance that 

the test statistics would have been more extreme by chance if the null hypothesis were 

true. To lessen the likelihood of a false positive, sometimes referred to as a type I error, 

a low alpha value of 0.001 was employed (incorrect rejection of a true null hypothesis) 

(Rizvi et al., 2016; Pujar et al., 2020; Kumar et al., 2022a). 

 

4.3.3 Coefficient of correlation 

The correlation coefficient (r) calculates the strength of association between two 

relevant variables. It shows how one variable's value varies when another's value 

increases or decreases. Dimension lessness and a scaled range of -1< or < 1 are two 

properties of correlation measures. The correlation becomes a test for temporal or 

spatial trends when one variable is a measure of time or location. Pearson's r is the most 

often used correlation metric. Because ‘r’ quantifies the linear relationship between two 

variables, it is also known as the linear correlation coefficient. r = 1 if the data are 

perfectly linear and have a positive slope (Roy et al., 2021). Eq. 4.2 provides the 

correlation coefficient ‘r’ between the variables X and Y if X and Y are two variables. 

 

𝑟 =  
𝑛Ʃ(௫௬) − Ʃ(௫)Ʃ(௬)

ඥ(𝑛Ʃ௫మ
− Ʃ௫మඥ(𝑛Ʃ௬మ

− (Ʃ௬మ
)

                                                                          4.2    

 

Where n is the number of data, and the sample means are denoted by x and y. If the 

value of the correlation coefficient r between two variables, X and Y, is relatively high, 

this indicates that the two variables are significantly connected. 
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4.3.4 Regression analysis 

Regression analysis (RA) is a mathematical technique for separating variables without 

a significant statistical relationship between the dependent and independent variables 

(Rawat et al., 2017). The formula for defining the regression line of the dependent 

variable Y on the independent variable X is as follows: 

 

𝑌 = 𝑚𝑋 + 𝐶                                                                                                                         4.3 

 

Where, m = slope 

C = intercept 

 

Equation 4.4 illustrates a linear regression, which describes a linear line and the linear 

relationship between X and Y. It has been determined using the equation of the 

regression coefficient. 

 

𝑚 = 𝑟 × 
𝑆𝐷௬

𝑆𝐷௫
                                                                                                                     4.4 

 

Where, m = regression coefficient 

r = correlation coefficient 

SDy = standard deviation of Y series 

SDx = standard deviation of X series 

 

This demonstrates that the regression line's slope for the standardized data points is r, 

and this line passes through the origin. Sometimes, it is helpful to independently 

compute rxy from the data using equation 4.5. 

 

𝑟௫௬ =  
𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

ඥ(𝐸(𝑋ଶ) − 𝐸(𝑋ଶ)(𝐸(𝑌ଶ) − 𝐸(𝑌)ଶ)
                                                                4.5 

 

Where, rx,y = correlation coefficient 

E (XY), E(Y), E(X) = expected value of variables XY, Y, and X, respectively. 
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4.3.5 Multivariate statistical techniques 

A statistical technique known as multivariate analysis allows for the simultaneous 

examination of observational data pertaining to two or more variables (Singh et al., 

2005; Pati et al., 2014; Arora and Keshari, 2021). Finding patterns among complex 

components in an environmental system is a useful strategy for simplifying complicated 

phenomena and extracting crucial information for assessing test findings (Chakravarty 

and Gupta, 2021). The information gathered can be utilized to suggest management and 

control strategies that are efficient and flexible (Saha and Paul, 2019; Ali et al., 2021). 

Therefore, the river water quality data was submitted to two multivariate approaches, 

namely Principal Component Analysis (PCA) and Cluster Analysis (CA) to identify the 

most likely sources of pollution and to isolate the factors that caused a significant 

variation in the water quality (Kumarasamy et al., 2014; Pandey and Dikshit, 2016; 

Gyimah et al., 2021; Arora and Keshari, 2021; Maity et al., 2022). 

 

4.3.5.1 Principal component analysis 

Principal component analysis (PCA) aims to create new, uncorrelated variables called 

principal components (PCs) from the original ones. The original variables are combined 

linearly to form the principal components (Herojeet et al., 2017; Ali et al., 2021). The 

standardized linear combination makes it possible to compare different linear 

combinations meaningfully (Dutta et al., 2018b; Gupta et al., 2020). PCA isolates the 

collection of linear combinations, or PCs that together account for all variance in the 

initial data set. In order to describe the entire data set into defined variables with large 

data reduction and little loss of original information, PCA gives information on the 

most important parameters (Chaturvedi et al., 2016; Pramanik et al., 2020). It is a 

successful pattern recognition technique that aims to reduce a vast range of highly 

correlated variables into a more manageable number of independent (uncorrelated) 

variables (PCs) (Singh et al., 2005; Sharma et al., 2015; Maity et al., 2022). 

The normalized variables in the current study were subjected to PCA to extract 

significant PCs and minimize the contribution of variables of low importance. These 

PCs underwent varimax rotation, producing Varifactors (VFs) (Love et al., 2004; Shil 

et al., 2019). The Varimax rotation was carried out to alter the PCA coordinates. Given 

that all the coefficients will be either big or near zero, with few intermediate values, it 

maximized the sum of the variances of the squared loadings. Because of this, a smaller 

set of variables typically explains roughly the same amount of information as a larger 
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set of initial observations (Kaur and Dua, 2012; Hema et al., 2014). 

Kaiser-Mayer-Olkin (KMO) and Barlett's test of sphericity were used to evaluate 

appropriateness of the data for use in PCA. KMO calculates sample adequacy and 

identifies the percentage of variables with common variation (Maity et al., 2022). KMO 

values greater than 0.5 are often regarded as satisfactory for PCA. The KMO score of 

0.809 in the current investigation suggested that the data set was suitable for PCA. The 

correlation matrix was an identity matrix, indicating that the variables were unrelated 

and it was determined by Bartlett's test of sphericity. This study's significance level of 

0.000 (Table 4.3) (less than 0.05) revealed that the variables had substantial associations 

and could be grouped together. 

 

Table 4.3: Kaiser-Meyer-Olkin measures and Barlett's test of sphericity 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.809 

Bartlett's Test of Sphericity Approx. Chi-Square 9123.19 

df* 91 

Sig.* 0.000 

*df - degrees of freedom; Sig. - significance 

 

4.3.5.2 Cluster analysis 

The fundamental goal of Cluster analysis (CA), a technique, is to group items according 

to a given selection criterion, producing high levels of internal homogeneity (inside 

clusters) and exterior heterogeneity (between clusters) (Li et al., 2014; Barakat et al., 

2016). The hierarchical agglomerative clustering technique shows relationships of 

similarity between any of the samples and the complete data set. Typically, a 

dendrogram (tree diagram) is used to illustrate it (Gupta et al., 2020). The Euclidean 

distance often indicates how similar two samples are, and a distance can be represented 

by the variance between the samples' analytical values (Jaiswal et al., 2019). 

Using squared Euclidean distances as a similarity measure, Hierarchical Agglomerative 

CA was carried out on the normalized data set in this work using Ward's approach. 

Ward's method evaluated the distances between clusters using an analysis of variance 

approach to reduce the Sum of Squares (SS) of any two clusters that could develop at 

each phase (Arora and Keshari, 2021; Maity et al., 2022).  
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4.4 Water quality indices 

The tools known as "Water Quality Indices" (WQIs) were developed to offer concise 

data on water quality (Kamboj and Kamboj, 2019; Kamboj et al., 2020). It is a method 

for displaying a numerical expression that defines a specific level of water quality and 

is obtained cumulatively (Shah and Joshi, 2017; Semy and Singh, 2021). In other words, 

WQIs condense a lot of data about water quality into manageable chunks (such as 

excellent, good, bad, etc.) for consistent reporting to management authorities and the 

general public (Lkr et al., 2020; Roy et al., 2021; Maity et al., 2022). Chapter 3 

discusses the applicability, flexibility, and growth of WQIs internationally. 

Four WQIs that best capture the water quality of the river Gomti were chosen based on 

the thorough literature review and the available data. Generally, the most used and 

accepted approach of WQIs, the Arithmetic water quality index (Arithmetic WQI) and 

the Ved Prakash water quality index (CPCB-WQI), were taken into consideration for 

this study due to the extensive literature on their applicability worldwide for the 

assessment of water resources. On the other hand, the Synthetic Pollution Index (SPI) 

and Comprehensive Pollution Index (CPI) were used, which had never been applied to 

the river Gomti. 

 

4.4.1 Arithmetic water quality index 

The Arithmetic water quality index (Arithmetic WQI) approach was developed by 

Brown et al. in 1970 and later by Cude (2001). It was introduced by Horton in 1965 and 

used in the current study to evaluate water quality. The Gomti River's water quality can 

be assessed using the weighted arithmetic WQI for irrigation, drinking, and other uses. 

These three formulae were used to determine the arithmetic WQI: 

 

𝑄 =
(𝑉𝑜 − 𝑉𝑖)

(𝑉𝑠 − 𝑉𝑖)
 × 100                                                                                                      4.6 

 

Where Qi, Vo, Vi, and Vs are the subindex, actual value, ideal value, and standard value 

for the ith parameter, respectively. pH and DO were set to their ideal levels of 7 and 

14.6 mg/l, respectively, while all other parameters had Vi set to zero. 

 

𝑊𝑖 =
𝐾

𝑉𝑠 
                                                                                                                              4.7 
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Where Wi is the unit weightage for the ith parameter, which was determined by 

inversely relating each observed physicochemical parameter's value to the BIS 

(2012)/WHO (2011) standard value (Vs), however, K is a constant taken as unity for 

all of the reported physicochemical parameters. Then, using Eq. (4.8), an arithmetic 

WQI based on a simple arithmetic average was calculated: 

 

Arithmetic 𝑊𝑄𝐼 = ෍
𝑊𝑖𝑄𝑖

∑ 𝑊𝑖௡
௜ୀଵ

௡

௜ୀଵ

                                                                                    4.8  

 

The computations of unit weightage (Wi) based on the constant (K) and standard values 

(Vs) are summarised in Table 4.4. Based on the calculated arithmetic WQI, Table 4.5 

(Brown et al., 1972) summarizes the water quality grading. 

 

Table 4.4: Unit weightage (Wi) of different parameters and their standards used 

for Arithmetic WQI, SPI, and CPI determination 

S. No. Parameter Standard value (Vs) Unit weightage (Wi) 

1 WT 40 0.034435 

2 pH 6.5-8.5 0.183655 

3 EC 300 0.004591 

4 TDS 500 0.002755 

5 TA 120 0.011478 

6 TH 300 0.004591 

7 Ca 75 0.018365 

8 Ma 30 0.045914 

9 Cl 250 0.005510 

10 DO 5 0.275482 

11 BOD 5 0.275482 

12 COD 10 0.137741 
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Table 4.5: Arithmetic WQI range, category, status, and possible usage of the water 

sample 

Value of 

WQI 

Category of 

Water 

Water Quality Status 

(WQS) 
Possible Usage 

0 – 25 A Excellent 
Drinking, irrigation, and 

industrial 

26 – 50 B Good 
Drinking, irrigation, and 

industrial 

51 – 75 C Poor Irrigation and Industrial 

76 – 100 D Very poor Irrigation 

Above 100 E 
Unsuitable for drinking 

and fish culture 

Proper treatment is 

required before use 

 

4.4.2 Synthetic pollution index (SPI) 

The suitability of the water quality in the Gomti River was assessed using the SPI. The 

index was built using the next three relationships. In the first phase, the proportionality 

constant (K) was calculated using the strategy described below: 

 

𝐾 =
1

ቀ∑
1
𝑆𝑖

௡
௜ୀଵ ቁ 

                                                                                                                   4.9 

 

The number of parameters is n, and the standard value of the ith parameter is Si. The 

weight coefficient (Wi) was calculated in the second stage using the method listed 

below. 

 

𝑊𝑖 =
𝐾

𝑆𝑖 
                                                                                                                            4.10 

 

Finally, the SPI was computed using the following approach: 

 

𝑆𝑃𝐼 = ෍
𝐶𝑖

𝑆𝑖

௡

௜ୀଵ

 × 𝑊𝑖                                                                                                          4.11 
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Where Ci stands for the concentration measured for each identified physicochemical 

water quality parameter, according to the SPI (Gautam et al., 2015; Solangi et al., 2018) 

calculated levels, water quality is categorized into five groups, as illustrated in Table 

4.6. 

 

Table 4.6: SPI range, status, and possible usage of water sample 

SPI 

Range 
Water classification 

Water Quality 

Status (WQS) 
Probable usage 

<0.2 Suitable for drinking Excellent 
Drinking, irrigation, and 

industrial purpose 

0.2-0.5 Slightly polluted Good 
Drinking, irrigation, and 

industrial purpose 

0.5-1.0 Moderately polluted Poor 
Irrigation and industrial 

purpose 

1.0-3.0 Severally polluted Very Poor For irrigation purpose 

>3.0 
Unsuitable for human 

consumption 
Worst 

Proper treatment is 

required for any kind of 

usage 

 

4.4.3 Comprehensive pollution index (CPI) 

Water bodies' overall pollution loads are evaluated using CPI. The calculation is 

performed using the following equation (Wang et al., 2018; Matta et al., 2018; 

Pramanik et al., 2020): 

 

𝐶𝑃𝐼 =
1

𝑁
෍ 𝑃𝐼𝑖                                                                                                                4.12

௡

ூୀଵ

 

 

𝑃𝐼𝑖 =
𝐶𝑖

𝑆𝑖
                                                                                                                             4.13 

 

Where, PIi = pollution index of the ith parameter,  

Ci = measured concentration of the ith parameter 

Si = standard concentration of the ith parameter 
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Table 4.7: CPI, water quality classification, and uses 

CPI Range Status Use 

0.0-0.20 Clean Very good and can be used for drinking purposes 

0.21-0.40 Sub clean Good and can be used for domestic purposes 

0.41-0.8 Qualified 

Some pollutants are detected, but their concentrations 

accord with the standard and can be used in Irrigation 

and Industrial purpose 

0.81-1.0 
Basically 

Qualified 

Concentrations of some pollutants exceed the standard, 

i.e., poor quality, and can be used for irrigation purposes 

only 

1.01-2.0 Polluted 

Concentrations of some pollutants exceed the standard, 

i.e., very poor quality (polluted) can be used restrictedly 

for irrigation 

≥2.01 
Seriously 

Polluted 

Concentrations of some pollutants exceed the standard, 

i.e., very polluted quality and proper treatment required 

before use 

 

4.4.4 Ved Prakash water quality index (CPCB-WQI) 

The index was created to assess the river Ganga's overall water quality profile and to 

pinpoint the sections where the difference between the desired and actual water quality 

is great enough to call for immediate pollution control actions (Bhutiani et al., 2016). 

The index had the weighted multiplication form:  

 

𝐶𝑃𝐶𝐵 − 𝑊𝑄𝐼 = ෍ 𝑊𝑖𝐼𝑖                                                                                               4.14

௉

ூୀଵ

 

 

Ii stands for the ith water quality parameter's subindex, Wi stands for the ith water 

quality parameter's weight, and p stands for the total water quality parameters. 

The index was created using the NSF-WQI (Brown et al., 1970), with a few weighting 

adjustments to match the Central Pollution Control Board (CPCB) of India's water-

quality standards for various types of usage (Sarkar and Abbasi, 2006; Abbasi and 

Abbasi, 2012). Through Delphi, a set of parameters was chosen. As stated in Table 4.8, 

the subindex equation was used to calculate the subindex values. 
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Table 4.8: Subindex equation of the index (Ved Prakash et al., 1990) 

Parameter Range Applicable Equation 

DO  

(Percent Saturation) 

0-40 % saturation 

40-100 % saturation 

100-140 % saturation 

IDO = 0.18+0.66 (sat %) 

IDO = -13.5+1.17 x (sat %) 

IDO = 263.34-0.62 x (sat %) 

BOD (mg/l) 

 

0-10 

10-30 

>30 

IBOD = 96.67-7 (BOD) 

IBOD = 38.9-1(BOD) 

IBOD = 2 

pH 

 

 

 

 

2-5 

5-7.3 

7.3-10 

10-12 

<2, >12 

IpH =16.1+7.35 x (pH) 

IpH = 142.67+33.5 x (pH) 

IpH = 316.96-29.85 x (pH) 

IpH = 96.17-8.0 x (pH) 

IpH = 0  

Fecal coliform (FC) 

(counts/100 ml) 

 

1-103 

103-105 

105 

Icoli = 97.2-26.60 X log (FC) 

Icoli = 42.33- 7.75 X log (FC) 

Icoli = 2 

 

All of the chosen parameters received significance ratings to assign weights. The 

parameter with the greatest relevance rating earned a temporary weight of 1. All 

additional temporary weights were calculated by dividing each individual mean rating 

by the highest. The ultimate weights were then calculated by dividing each temporary 

weight by the total of all weights. These weights were adjusted to meet the requirements 

for different kinds of users' water quality. Table 4.9 illustrates the process for acquiring 

weights and modified weights. Table 4.10 lists the water classification in relation to the 

final index values. 

 

Table 4.9: Method of obtaining weights and modified weights 

Parameters Mean of all 

significance rating 

Temporary 

weights 

Final 

weights 

Modified 

Weights 

DO 1.4 1.0 0.17 0.31 

FC 1.5 0.9 0.15 0.28 

pH 2.1 0.7 0.12 0.22 

BOD 2.3 0.6 0.1 0.19 

Total   0.54 1.00 
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Table 4.10: Classification of water quality according to CPCB-WQI 

S. No. CPCB-WQI Range Category Class by CPCB 

1 63-100 Good to excellent A 

2 50-63 Medium to good B 

3 38-50 Bad C 

4 <38 Bad to very bad D & E 

 

4.5 Geographical information system (GIS) integration 

All geographic and spatial aspects of the development and management of water 

resources require using GIS with remote sensing and mapping (Rawat and Singh, 2018; 

Hussain and Abed, 2019). These methods offer strong analytical and visualization tools 

that can be used to describe, examine, and simulate the processes and functions of 

natural systems. Additionally, experimenting with satellite image processing and cross-

referencing with field data can produce a different and precise parameter detection 

method. The benefit of merging satellite image analysis with field data concerning 

evaluating the precision of water quality detection has been highlighted by several 

authors (Bouaziz et al., 2011; Morshed et al., 2016). The development of interpolate 

techniques and spatial analysis modeling has been the subject of substantial research. 

These techniques span from analytical to semi-empirical ways of calculating and 

creating quantitative or qualitative water maps (Chabuk et al., 2020). Water quality 

Indices (WQIs) in conjunction with GIS can overcome most of the problems mentioned 

above. They can be used to specify the status of the water, even though mathematical 

modeling of river water quality needs more hydraulics and hydrodynamics data and 

wide validation (i.e., excellent, good, bad, etc.) (Rawat and Singh, 2018; Madhloom 

and Alansari, 2018; Zhang, 2019). Other mathematical models can be connected with 

this application to provide significant outputs relevant to many scientific and 

environmental domains. The GIS has geographical analytic tools to handle vast data 

(Madhloom and Alansari, 2018). 

 

4.5.1 GIS maps using the interpolation method 

The river Gomti's water quality index maps were made using ArcGIS 10.4 software. 

The interpolation map for each water quality metric for 2013 through 2017 for the river 

Gomti was created using the inverse distance weighted (IDW) interpolation method. 
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The interpolation in GIS software was carried out based on the maps of the river Gomti 

in the shapefiles. The IDW is a method that primarily applies Waldo Tobler's first law 

of geography (El-Zeiny and Elbeih, 2019; Paul et al., 2019, Chabuk et al., 2020). The 

accurate local deterministic interpolation approach is the foundation of the IDW 

method. The interpolation method (IDW) calculates the average distance from known 

sites to those near the unknown points to estimate the unknown values at a given place 

(Ali et al., 2021). In the IDW, the projected values will be affected more by the points 

closer to the forecasted site than by the points farthest from it (Panhalkar and Jarag, 

2015). This study used this process to construct interpolation between the chosen points 

or locations within the range of the minimum and maximum values for each parameter. 

IDW is thought to be more appropriate than other approaches (such as kriging and Topo 

to raster), which produce an interpolation for the chosen points with more variance, 

according to Panhalkar and Jarag (2015), El-Zeiny and Elbeih (2019) and Paul et al. 

(2019). The weighted distance between measured and unknown sites is used in ArcGIS 

10.4 IDW's interpolation method to project the values of each. The weights have an 

inverse relationship with the measurement's distance from the power value, p. The 

default value for the ArcGIS platform is 2, which is the parameter p set in this study. 

The following is the mathematical formula used by IDW to forecast an unknowable 

value (Chabuk et al., 2020; Ali et al., 2021): 

 

𝑍𝑝 =

∑
𝑧௜

𝑑௜
௣

௡
௜ୀ଴

∑
1

𝑑௜
௣

௡
௜ୀ଴  

                                                                                                                   4.15 

 

Zi is the value of the measured site, Zp is the value of an unknown point, di is the 

distance from the known position, and p is the chosen exponent. 

 

4.6 Assimilative capacity 

About 80% of all wastewater, according to the 2018 wastewater report from the 

International Water Association (IWA), is released into rivers throughout the world, 

where it poses threats to human health, the environment, and the climate and can alter 

the waterways' Assimilative Capacity (AC). For water resources to be managed 

effectively, it is crucial to understand the effects of wastewater discharges on them. 
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Hydrodynamic and WQMs are crucial tools for studying these impacts, typically based 

on water sources' assimilation capacity (Villota-Lopez et al., 2021). The term 

"Assimilative Capacity" describes a water body's innate capability to self-cleanse 

and/or self-repair, either through the dilution and/or dispersion of waste and pollution 

without endangering the aquatic environment. Additionally, it can show the maximum 

amount of pollutants that can accumulate, be destroyed, changed, and transmitted 

outside of the ecosystem's volume without interfering with its regular activity or the 

amount of controllable pollutants that can be added to each water flow in a river 

(Kulikova et al., 2018). Through this research, it is crucial to comprehend how the 

discharges' volumes and concentrations affect the river Gomti assimilative capacity and 

under what circumstances because this ability enables a natural treatment of wastewater 

in rivers (Egbe et al., 2018). In particular, saturation DO and BOD are well-known 

indicators of river water quality and are regarded as standard indicators of assimilative 

capacity (Rajesh and Rehana, 2022). 

Water quality research and modeling have been utilized for assimilative capacity 

analysis in various water bodies. The creation of monitoring programs in water bodies 

incorporates statistical analysis of river and discharge flows with concentrations of 

water quality parameters. Water quality forecasting is the most widely used technique 

to estimate assimilative capacity (Gurjar and Tare, 2019; Quinn et al., 2021). Another 

popular technique is simulating scenarios where certain water quality thresholds are 

violated (Novo, 2017; Villota-Lopez et al., 2021). This research mostly predicted the 

DO and BOD values for 2018 to 2027 using the time series prediction approach. These 

values have also been compared to the specified designated best use (Source IS 

2296:1992) of water quality for managing the river Gomti's water quality. 

Primary water quality criteria are a few chemical traits that the CPCB has defined as 

the minimum standards for water quality in India. Additionally, the standard IS 

2296:1992 from the Bureau of Indian Standards includes recommendations for water 

quality parameters for various uses (Table 4.11). 

 

Table 4.11: Water quality standards in India (Source IS 2296:1992) 

Characteristics  Designated best use 

A B C D E 

Dissolved Oxygen (DO) mg/l, min. 6 5 4 4 - 

Biochemical Oxygen demand (BOD) mg/l, max.  2 3 3 - - 
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4.7 Statistical modeling (Water quality) 

WQMs can be used to achieve effective and efficient river system management. WQMs 

help validate pollutant load estimates, establish cause-and-effect relationships between 

various polluting sources and water quality, and evaluate how the river system would 

respond to multiple management scenarios (Wang et al., 2021). 

To keep the pollution levels within acceptable ranges, the prediction of river water 

quality is essential for effective basin management. The water quality can be modeled 

utilizing hydrochemical data, linear regression and structural equations, predictability, 

trend, and time-series analysis (Seth et al., 2013; Parmar and Bhardwaj, 2014, 2015). 

Water quality managers employ analytical techniques like regression equations to 

compare present water quality levels with predetermined requirements (Ravikumar et 

al., 2013; Parmar and Bhardwaj, 2014, 2015). The time series prediction method is used 

in the study for the forecasting of all four assessed WQIs. It has two main advantages:  

 It is the simplest method available, and it is based on historical trends in water 

quality change that have followed the same course without structural 

modifications; 

 Predicts water quality without considering variables that affect how it will 

change (Parmar and Bhardwaj, 2014; Ghashghaie et al., 2018). 

R-Squared and Stationary R-Square, Root Mean Square Error, Mean Absolute 

Percentage Error, Mean Absolute Error, Maximum Absolute Percentage Error, 

Maximum Absolute Error, Normalized Bayesian Information Criterion, Ljung-Box 

Q(18), and using Statistical analysis, Time series analysis, Auto-Regressive Integrated 

Moving Average, Autocorrelation Function and Partial Autocorrelation Function has 

been estimated to analyze trend and prediction of water quality. 

 

4.7.1 R-Squared and Stationary R-Squared 

R-squared is the proportion of the variance for a dependent variable that measures how 

much the model can describe the total variance in a series when it is stationary. When 

a pattern follows a trend or a seasonal cycle, the stationary R-squared is favored over 

the ordinary R-squared. This is because the stationary section of the model is compared 

to a basic mean model using the stationary R-squared. Positive, negative, or zero 

stationary R-squared values are possible. Positive values mean the present model 

outperforms the baseline model. In the current model, positive numbers indicate better 
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than the baseline model (Box et al., 2008; Parmar and Bhardwaj, 2014, 2015). 

 

4.7.2 Root Mean Square Error 

The Root Mean Square Error (RMSE) is a commonly used measure of value 

differences. It determines how far a dependent series differs from the predicted level 

(Box et al., 2008; Parmar and Bhardwaj, 2014, 2015). The RMSE of an estimator in 

terms of the estimator parameter is calculated using equation 4.16. 

 

𝑅𝑀𝑆𝐸 (𝜃) = ඥ𝐸[(𝜃 − 𝜃)ଶ]                                                                                          4.16 

 

4.7.3 Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) is a metric for how far a dependent series 

deviates from its modeled level. It does not matter what units are used; therefore, it may 

be used to relate series with different units (Box et al., 2008; Parmar and Bhardwaj, 

2014, 2015). Accuracy is given as a percentage;  

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
 ෍ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖

௡

௜ୀଵ

|                                                                                    4.17 

 

Where, Ai - actual value and  

Fi - predicted value. 

MAPE = zero (for perfect fit), but it has no restrictions at the upper level. 

 

4.7.4 Mean Absolute Error 

The Mean Absolute Error (MAE) is a metric that measures how far a series differs from 

the level that its model anticipated. It is expressed in the same units as the original 

series. In addition, the MAE is a metric for determining how far forecasts or projections 

differ from the final result. It is provided by; 

 

MAE =
1

n
 ෍|F୧ − A୧| =  

1

n

୬

୧ୀଵ

෍|e୧|

୬

୧ୀଵ

                                                                             4.18 

 

The absolute error is ei, the prediction is Fi, and the determined value is Ai. In time-
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series analysis, it is a typical measure of forecast error (Box et al., 2008; Parmar and 

Bhardwaj, 2014, 2015). 

 

4.7.5 Maximum Absolute Percentage Error 

The Maximum Absolute Percentage Error (MaxAPE) measures the highest anticipated 

error. It imagines a forecasted worst-case scenario (Box et al., 2008; Parmar and 

Bhardwaj, 2014, 2015). 

 

4.7.6 Maximum Absolute Error 

The Maximum Absolute Error (MaxAE) is a metric that estimates the biggest 

anticipated error in the same units as the series it relies on. It is possible to imagine the 

worst-case scenario while making forecasts. MaxAE and MaxAPE may occur at 

separate times throughout the series. When a large series value's absolute error is 

marginally higher than a small series value's absolute error, the maximum absolute 

error and maximum absolute percentage error occur at the smaller series value (Box et 

al., 2008; Parmar and Bhardwaj, 2014, 2015). 

 

4.7.7 Normalized Bayesian Information Criterion 

Normalized Bayesian Information Criterion (Normalized BIC) is an overall measure of 

a model's fit that accounts for its complexity. It's a score based on the mean square error 

that considers the model's number of parameters and the length of the series (Box et al., 

2008; Parmar and Bhardwaj, 2014, 2015). 

 

BIC =  χଶ + k. ln(n)                                                                                                        4.19  

 

It is used to assess the constant (k). It considers the performance of a parameterized 

model in terms of its ability to forecast data and penalizes the model's complexity, 

which is defined as the total number of parameters it contains. 

 

4.7.8 Time series analysis 

It collects data points taken at regular intervals and often at successive times. Future 

projection methods are based on known previous events to predict data points before 

they are observed and included in the realm of time-series analysis. The time-series 

model considers that observations closer in time to one another are more tightly 
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connected than those further apart in Time-series models. On the other hand, they are 

typically defined by a natural one-way ordering of time, which means that the values 

for a current period are derived from prior values instead of future values (Lu et al., 

2014; Parmar and Bhardwaj, 2014, 2015; Luo et al., 2019). 

 

4.7.8.1 Auto-Regressive Integrated Moving Average 

Three terms characterize the Auto-Regressive Integrated Moving Average (ARIMA) 

model of a time series (p, d, q). The technique of detecting integer, generally extremely 

small values as 0, 1, or 2 of model patterns p, d, and q in data is known as time series 

identification. When the value is 0, the element in the model is no longer necessary. 

The middle element, d, is studied before p and q. Before settling on the values of p and 

q, the objective is to ascertain whether the process is stationary and, if not, to make it 

stationary. A stationary process has a consistent mean and variation across the research 

period. AR (p) represents the time series of an autoregressive model (Box et al., 2008; 

Parmar and Bhardwaj, 2014, 2015; Luo et al., 2019), and is defined as; 

 

Yt =∝଴+∝ଵ Y୲ିଵ +∝ଶ Y୲ିଶ + ⋯ +∝୮ Y୲ି୮ + ε୲                                                       4.20 

 

Where the term ε୲ is a source of randomness referred to as white noise, αi denotes 

constants. It is supposed that it possesses the following characteristics: 

 

E = [ϵ୲] = 0, 

E = [ε୲
ଶ] = σଶ, 

E[ε୲εୗ] = 0 for all t ≠ s 

 

Because autoregressive and moving average components might coexist in a series, both 

forms of correlations are necessary to model the patterns. To understand this, if both 

elements are present only at lag 1, consider the linear equation; 

 

y୲ = x୲ β + ε୲                                                                                                                     4.21 

ε୲ = ρε୲ିଵ + v୲                                                                                                                  4.22 

 

Where -1< p < 1 and v୲ is dependent and identically distributed (iid) and from 

expectation values; 
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E(v୲, v୲ିଵ) = 0                                                                                                                   4.23 

 

In this approach, the disturbance follows a first-order autoregressive model (AR1) 

process. As a result, the present error mixes the previous error plus some shock. As a 

result, the equation may be rewritten as follows: 

 

y୲ = x୲ β + ρε୲ିଵ + v୲                                                                                                     4.24 

 

Also, we know that 

y୲ିଵ = x୲ିଵβ + ε୲ିଵ                                                                                                         4.25 

ε୲ିଵ =  y୲ିଵ − x୲ିଵβ                                                                                                        4.26 

 

From Eq. (4.24) y୲ = x୲β + ρ(y୲ିଵ − x୲ିଵβ) + v୲ 

y୲ = x୲β + ρy୲ିଵ − ρx୲ିଵβ + v୲                                                                                   4.27 

 

4.7.8.2 Auto Correlation Functions and Partial Auto Correlation Functions 

Auto Correlation Functions (ACF) and Partial Auto Correlation Functions (PACF) 

analysis are necessary to find an appropriate model for a given time series data. The 

link between the data in a time series is reflected in these statistical metrics. Plotting 

the ACF and PACF across consecutive time lags is typically beneficial for modeling 

and forecasting (Parmar and Bhardwaj, 2015; Ghashghaie et al., 2018). The sequence 

of AR and MA phrases can be determined using these plots. This may be represented 

as: 

For a time series {x(t), t=0,1,2, ….} at lag k the autocovariance is defined as; 

 

γk = Cov(xt, xt+k) = E[(xt -µ) (xt+k - µ)]           4.28 

 

at lag k, the autocorrelation coefficient is defined as; 

 

ρ୩ =
γ୩

γ଴
                                                                                                                               4.29 

 

The mean of the time series is µ equal to E [x t]. The time-series variance is the 

autocovariance at lag zero, i.e., γ0. The autocorrelation coefficient k is dimensionless; 
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hence it is unaffected by the measurement scale, -1≤ 𝜌k ≤ 1. Statistics Box and Jenkins 

referred to yk as the theoretical autocovariance function (ACVF), and ρ_k was called 

the theoretical autocorrelation function (ACF). 

After allowing for data at intermediate delays, the partial autocorrelation function 

(PACF) is used to assess the correlation between an observation k periods ago and the 

current observation (i.e., at lags k). PACF (1) and ACF (1) are similar at lag 1. 

The real or theoretical ACF and PACF values cannot be established since the stochastic 

process underlying a time series is unknown. Instead, these values should be derived 

from the training data, the most recent time series available. The sample ACF and 

PACF values are the estimated values of the ACF and PACF, respectively, based on 

the training data. At lag k, the most credible sample estimate for the ACVF is; 

 

c୩ =
1

n
෍(x୲ − µ)(x୲ା୩ − µ)

୬ି୩

୲ୀଵ

                                                                                       4.30 

 

Then the estimate for the sample ACF at lag k is given by; 

 

r୩ =  
c୩

c଴
                                                                                                                              4.31 

 

Here, {x(t), t=0,1,2, ….} is the training series of size n with mean µ. 

 

4.8 Effect of temperature change on river water quality 

River water quality indicators like DO and WT serve as crucial signals for determining 

the ecosystem's health in a river water body (Chapra et al., 2021). Climates that are 

warming up have a negative effect on WT when different defining climatological 

variables, primarily AT, are intensified (Van Vliet et al., 2013). Since most river water 

quality standards depend on such saturation levels, intensifying WT will have negative 

effects in terms of a decline in river DO saturation levels (Van Vliet et al., 2013). In 

particular, saturation DO is a notable indicator of river water quality and is regarded as 

a standard indicator of pollution (Rajesh and Rehana, 2022). Deterioration of water 

quality and ecological distortion may result from the impact of climate change on DO 

in relation to WT (Svendsen et al., 2016; Danladi Bello et al., 2017). Every change in 

WT reduces the river's capacity to self-purify by reducing the quantity of oxygen that 
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can be dissolved and used for biodegradation because WT is inversely related to DO 

concentration (Khani and Rajaee, 2017; Kauffman, 2018). Therefore, knowing the 

expected river water quality and potential changes in quality standards under climate 

change warming signals heavily relies on understanding climate change influences on 

WT and saturation oxygen concentration. 

The climate model employed in the study was the projections by the climate model of 

the Coupled Model Intercomparison Project Phase 5 (CMIP5), which is based on 

several uniform forcing scenarios known as Representative Concentration Pathways 

(RCPs). Each scenario represents a time series of emissions and concentrations of the 

full range of GHGs, aerosols, and chemically active gases throughout the twenty-first 

century, along with changes in Land Use Land Cover (LULC), and is characterized by 

the Radiative Forcing (A measure of an imbalance in the Earth's energy budget brought 

on by natural (such as volcanic eruptions) or human-induced (such as GHG from fossil 

fuel combustion) changes) in the year 2100 (IPCC, 2013). The two most often 

considered scenarios in this study are “RCP 4.5” (an intermediate stabilization route 

that produces a Radiative Forcing of 4.5 W/m2 in 2100) and “RCP 8.5” (a high 

concentration pathway that produces a Radiative Forcing of 8.5 W/m2 in 2100). 

Assessment of climate change over the Indian region (Krishnan et al., 2020) provided 

the simulated daily minimum, mean, and maximum AT for 1970–2100. The averaged 

worldwide and over India temperature and precipitation forecasts from the CMIP5 

models are summarised in Table 4.12. 

 

Table 4.12: Change in surface air temperature (TAS, °C) for the Indian region for 

the historical (1951-2014), near future (2040-2069), and far future (2070-2099) 

periods for the RCP 4.5 and RCP 8.5 scenarios from the CMIP5 models 

Variables Estimates from CMIP5 (base period 1850-1900) 

Indian region estimates 

Historical RCP 4.5 RCP 8.5 

Period 1951-2014 2040-2069 2070-2099 2040-2069 2070-2099 

TAS (0C) 0.72  

(0.47 to 

1.28 

2.67  

(1.72 to 

3.70) 

3.27  

(2.25 to 

4.27) 

3.37  

(2.32 to 

4.68) 

5.33  

(3.70 to 

6.11) 
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4.8.1 Relating air temperature, water temperature, and water quality index 

A relationship between AT, WT, and water quality index is developed to obtain WT 

and water quality index for RCP 4.5 and RCP 8.5 scenarios. Linear regression analysis 

of the past time series data is carried out to relate AT to WT and WT to WQI. Mean 

monthly WT data for 1998-2017 along the Gomti River was obtained from CWC 

(Lucknow) of the sampling station at Lucknow. Based on the latitude and longitude 

information of the CWC (Lucknow) sampling station (Hanuman Setu), the 

corresponding mean monthly AT data for the corresponding years 1998-2017 were 

obtained from the NASA POWER (Prediction of Worldwide Energy Resources) AT 

data (https://power.larc.nasa.gov/). The AT data used for the present study was obtained 

from the Climate of Lucknow-IMD (https://mausam.imd.gov.in/lucknow/mcdata/ 

climatology_lucknow.pdf), i.e., 40OC (Highest mean temperature over Lucknow). 

Linear regression analysis is carried out by fitting the data into different regression 

models available in Microsoft Excel-2016 and IBM SPSS Statistics 26 to determine the 

most reliable relationships of the above data. 

 

4.8.2 Bascaron WQI (BWQI) 

The water quality index is anticipated to alter as river WT rises due to climate change, 

and these changes must be measured (El-Jabi et al., 2014). Bascaron WQI (BWQI) 

originated in Spain (Bascaron, 1979) and is now widely used throughout the 

world (Pesce and Wunderlin, 2000; Debels et al., 2005; Kannel et al., 2007; Massoud, 

2012; Ismail and Robescu, 2019). The overall index is estimated to be a subjective 

water quality index (Eq. 4.32). 

 

BWQI = k
∑ CiPi୬

୧ୀଵ

∑ Pi୬
୧ୀଵ

                                                                                                        4.32 

 

Where, n = the total number of variables,  

Ci = after normalization value given to the variable i,  

Pi = relative weight given to each parameter (value ranged between 1 and 4 

according to its importance and influence on the water quality (4 for 

highest impact and 1 for less impact),  

k = subjective constant, which represents the visual impression of river 

pollution. k could have a value of 0.25, 0.5, 0.75, or 1.  
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Pesce and Wunderlin (2000) provide the fundamental standards by which one of these 

values should be chosen. But in this study, k was set to 1 to only take into consideration 

differences caused by measured factors (Kannel et al., 2007; Pesce and Wunderlin, 

2000; Ismail and Robescu, 2019), (Eq. 4.33): 

 

BWQI =
∑ CiPi୬

୧ୀଵ

∑ Pi୬
୧ୀଵ

                                                                                                           4.33 

 

Pesce and Wunderlin (2000) utilized DO, turbidity, and conductivity to determine the 

water quality using the minimum possible parameters and derived the minimum water 

quality index (Kannel et al., 2007; Massoud, 2012). Three water quality parameters – 

WT (P= 4), DO (P= 1), and BOD (P= 1) were included in the evaluation process in the 

current study because of their significance on the impact of rising temperatures on water 

quality. DO is a key factor for aquatic life and plants and is a barometer for river health. 

WT affects the availability of oxygen concentration in the water, besides its effects on 

rates of chemical and biological processes. BOD include a wide variety of material such 

as decaying plant and animal matter, industrial waste, and sewage, which, after 

decomposition by bacteria, results in oxygen demand.  

The final BWQI was created using the normalization factors and their relative weights 

adopted from various literature for the selected parameters: Pesce and Wunderlin 

(2000), Cude (2001), Debels et al. (2005), Sanchez et al. (2007), Kannel et al. (2007), 

Massoud (2012) and Ismail and Robescu (2019). The classification system used to 

categorize the water quality was proposed by Dojlido et al. (1994) and Pesce and 

Wunderlin (2000). As per this classification system, BWQI is in the range of 0-25 (very 

bad), 26-50 (bad), 51-70 (medium), 71-90 (good) and 91-100 (excellent). 
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CHAPTER - 5  

RESULTS AND DISCUSSION 

 

5.1 General 

Water comprises the main factor governing the processes, functions, and attributes of 

the river ecosystem. Water quality characteristics of rivers arise from a massive amount 

of physical, chemical, and biological interactions. Deterioration in the water quality of 

the river Gomti is attributed to the increasing human pressures for agricultural, 

domestic, and industrial needs. A lot of importance has been given to monitoring the 

water quality of rivers in the country to determine the causative factors responsible for 

their deterioration, as well as identifying the most polluted river stretches in the country.  

The focus of the present study is to formulate a water quality management plan in 

reference to assimilative capacity and climate change (impact of rising temperature) by 

identification, quantification, and characterization of selected pollutants of the river 

Gomti, which passes through Lucknow (UP). Descriptive and multivariate statistical 

approaches were used to investigate further the multifarious nature of the water quality 

data sets. Seasonal and spatial variation in the dataset was analyzed using one-way 

ANOVA. Simultaneously, the four most suitable WQIs based on data received were 

used to assess the water quality of river Gomti, followed by its integration with GIS to 

mark out different zones based on the magnitude of pollution. Statistical modeling was 

used to predict these four indices for river Gomti, which would facilitate future 

predictions of WQIs and assessment of the assimilative capacity of water quality 

variables in the river. 

 

5.2 Water quality assessment (Biological and physicochemical parameters) 

Assessment of the water quality of the river Gomti in the selected study stretch is done 

monthly for five consecutive years (2013-2017) in terms of its biological and 

physicochemical parameters. The term “water quality” is an extensively used 

expression with an enormously wide spectrum of meanings. From the user's 

perspective, this phrase refers to those chemical, physical, and biological qualities we 

use to assess the appropriateness of water. A freshwater body's physical and chemical 

characteristics indicate the climatic, geochemical, geomorphological, and pollution 

conditions (largely), mainly in the drainage basin and the primary aquifer. Therefore, 
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assessing the physical, chemical, and biological parameters of the river water quality is 

essential. Sampling stations wise descriptive statistics of biological and 

physicochemical parameters of the river Gomti during 2013-2017 are presented in 

Table 5.1.  

 

5.2.1 Water temperature (WT) 

It is a measurement of the average kinetic energy of water molecules. WT is one of the 

fundamental physical parameters of water quality assessment because it influences the 

chemical, biochemical, and biological characteristics of the water body (Singh et al., 

2018; Kumar et al., 2022b). It affects the rate of chemical as well as biochemical 

reactions, DO concentrations, and other dissolved gas levels in the water and EC. As 

WT increases, EC and the rate of chemical reactions increase, and the amount of 

dissolved gases decreases (Kumar et al., 2021b). Higher WT increases the solubility of 

harmful substances in water and affects aquatic organisms' tolerance limits. It also 

affects the photosynthesis of aquatic plants. Sunlight, air temperature, runoff, thermal 

pollution, and human activities (dams, weirs) are some factors that affect WT (Singh et 

al., 2018).  

In the present study, the WT was found to be vary from 15.3ºC to 33.8ºC with a mean 

of 26.9ºC at S1, 15.4ºC to 33.8ºC with a mean of 26.9ºC at S2, 15.5ºC to 33.9ºC with a 

mean of 27.0ºC at S3, 15.5ºC to 33.9ºC with a mean of 27.1ºC at S4, 15.6º C to 34.0ºC 

with a mean of 27.2ºC at S5, 15.6ºC to 34.0ºC with a mean of 27.2ºC at S6 and from 

15.7ºC to 34.0ºC with recorded mean value as 27.3ºC at S7 during 2013-2017 which 

lies within the WHO's range (40ºC) (Figure 5.1). No permissible limit of WT has been 

acknowledged by the IS: 2296:1992 and IS: 10500:2012. 

The WT observations revealed minimal spatial variance (p>0.05) between the 

monitoring stations. The limited range of latitude along the Gomti River may have 

contributed to this outcome (Jaiswal et al., 2019). During the study period, June and 

January had the highest and lowest WTs, respectively. Sharma et al. (2020) observed a 

comparable value and trend in the Yamuna River, and Kumar et al. (2021c) and Kumar 

et al. (2022a) in the Gomti River. WT typically varies daily and seasonally with AT. 

Although surface water bodies can function as a temperature buffer, the restricted 

temperature tolerance of aquatic organisms means that even slight changes in WT can 

greatly influence river ecosystems. River WT is significantly affected by high sewage 

flows and religious ceremonies near the riverbed (Singh et al., 2018). 
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Figure 5.1: Variation of WT for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

5.2.2 pH 

The pH of the solution is the negative logarithm of hydrogen ion activity at any given 

temperature. It is the indicator of the acidic and alkaline nature of the water (Sallam 

and Elsayed, 2018; Jaiswal et al., 2019). pH of an aquatic body is a significant indicator 

of the water quality as it influences the biological as well as chemical processes.  
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Table 5.1: Location-wise descriptive statistics of biological and physicochemical parameters 

  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

S1 

Mean 26.85 8.22 384.47 231.37 216.20 196.77 40.17 23.17 13.05 6.81 4.19 14.89 2618 1468 

Median 30.00 8.29 388.40 233.00 228.00 206.00 40.80 23.52 13.00 6.90 3.00 14.80 2600 1400 

Mode 30.00 8.29 336.00 184.00 228.00 228.00 38.40 25.92 13.00 2.80 2.90 15.20 2800 1100 

Minimum 15.30 7.20 172.00 112.00 142.00 120.00 24.80 12.48 8.00 2.80 2.30 12.40 1400 700 

Maximum 33.80 8.89 560.20 332.00 252.00 236.00 49.60 29.28 17.00 11.40 11.00 18.40 4000 2700 

Range 18.50 1.69 388.20 220.00 110.00 116.00 24.80 16.80 9.00 8.60 8.70 6.00 2600 2000 

SD* 5.52 0.36 93.80 47.21 30.07 30.16 6.23 3.89 1.73 2.57 2.57 1.14 587 459 

Kurtosis -0.83 0.86 -0.69 0.11 -0.07 -0.13 -0.47 0.45 0.45 -0.80 2.06 0.50 -0.11 0.79 

Skewness -0.64 -0.77 -0.17 -0.10 -0.90 -0.79 -0.53 -0.74 -0.10 -0.13 1.89 0.48 0.45 0.99 

CoV* 0.21 0.04 0.24 0.20 0.14 0.15 0.16 0.17 0.13 0.38 0.61 0.08 0.22 0.31 

S2 

Mean 26.91 8.12 397.10 240.83 224.20 202.70 41.49 23.97 14.53 7.26 3.41 18.99 4015 2595 

Median 30.00 8.21 413.80 240.00 236.00 212.00 41.60 24.24 14.00 6.70 3.30 18.80 3950 2400 

Mode 30.20 8.54 348.00 192.00 236.00 232.00 49.60 25.92 14.00 6.50 3.30 17.60 3500 2200 
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  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

Minimum 15.40 7.17 180.80 118.00 148.00 128.00 25.60 13.44 11.00 2.90 3.10 13.60 2400 1300 

Maximum 33.80 8.58 582.40 346.00 264.00 244.00 49.60 30.24 19.00 10.90 4.20 24.80 7000 4900 

Range 18.40 1.41 401.60 228.00 116.00 116.00 24.00 16.80 8.00 8.00 1.10 11.20 4600 3600 

SD* 5.51 0.32 98.92 49.84 29.34 31.70 6.24 3.98 1.86 2.13 0.24 2.19 1047 804 

Kurtosis -0.83 1.08 -0.43 0.03 0.36 -0.21 -0.53 0.17 -0.54 -0.77 1.51 0.25 1.42 1.51 

Skewness -0.64 -1.05 -0.26 -0.08 -1.01 -0.80 -0.55 -0.62 0.31 0.23 1.23 0.45 0.92 1.00 

CoV* 0.20 0.04 0.25 0.21 0.13 0.16 0.15 0.17 0.13 0.29 0.07 0.12 0.26 0.31 

S3 

Mean 27.02 7.87 450.83 274.23 233.47 211.97 43.23 25.11 16.72 5.02 5.19 28.14 15953 11710 

Median 30.10 7.83 440.40 255.00 244.00 220.00 44.00 25.68 16.00 5.05 4.60 27.40 9400 4900 

Mode 30.30 7.82 364.00 270.00 258.00 236.00 49.60 26.88 15.00 3.50 4.00 28.80 7000 4900 

Minimum 15.50 7.11 201.00 128.00 156.00 134.00 27.20 14.40 12.00 0.70 3.60 18.80 4900 2600 

Maximum 33.90 8.38 772.50 482.00 272.00 256.00 53.60 32.16 22.00 9.50 9.00 44.80 40000 34000 

Range 18.40 1.27 571.50 354.00 116.00 122.00 26.40 17.76 10.00 8.80 5.40 26.00 35100 31400 

SD* 5.53 0.29 147.98 84.81 30.57 31.90 6.22 4.21 2.39 2.41 1.49 5.94 11643 10009 

Kurtosis -0.84 0.35 -0.20 0.56 0.16 -0.27 -0.33 0.11 -0.59 -0.50 -0.32 0.78 -0.63 -0.41 
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  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

Skewness -0.64 -0.23 0.69 1.08 -0.95 -0.72 -0.64 -0.49 0.25 0.19 0.96 0.96 0.93 1.03 

CoV* 0.20 0.04 0.33 0.31 0.13 0.15 0.14 0.17 0.14 0.48 0.29 0.21 0.73 0.85 

S4 

Mean 27.05 7.80 469.44 286.53 240.33 218.80 44.75 25.82 18.42 4.36 6.39 34.49 30583 22655 

Median 30.10 7.77 454.45 266.00 252.00 228.00 46.40 25.92 18.00 4.20 6.00 35.20 32000 22000 

Mode 30.30 7.71 388.00 232.00 252.00 244.00 50.40 28.32 20.00 4.20 6.00 35.20 22000 22000 

Minimum 15.50 7.04 212.00 136.00 162.00 140.00 28.80 15.36 13.00 1.30 4.50 24.40 13000 7900 

Maximum 33.90 8.26 795.60 496.00 278.00 262.00 55.20 32.64 24.00 8.40 10.00 47.60 58000 43000 

Range 18.40 1.22 583.60 360.00 116.00 122.00 26.40 17.28 11.00 7.10 5.50 23.20 45000 35100 

SD* 5.50 0.25 148.77 85.77 30.75 32.14 6.56 4.14 2.59 1.74 1.48 5.49 10489 9382 

Kurtosis -0.81 1.43 -0.22 0.51 0.32 -0.23 -0.43 0.07 -0.73 -0.03 -0.18 0.37 0.07 -0.71 

Skewness -0.65 -0.53 0.60 1.03 -1.00 -0.78 -0.56 -0.45 0.12 0.55 0.92 0.58 0.62 0.44 

CoV* 0.20 0.03 0.32 0.30 0.13 0.15 0.15 0.16 0.14 0.40 0.23 0.16 0.34 0.41 

S5 

Mean 27.15 7.70 496.19 304.77 250.03 228.47 46.55 27.03 21.33 3.02 8.37 43.74 74933 48983 

Median 30.20 7.70 474.60 282.00 260.00 238.00 47.20 27.36 21.00 2.80 8.50 44.80 70000 49000 
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  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

Mode 30.30 7.69 426.00 274.00 268.00 254.00 53.60 28.32 24.00 3.20 8.50 44.80 70000 49000 

Minimum 15.60 7.00 224.60 152.00 168.00 148.00 30.40 16.32 14.00 1.10 6.00 31.20 32000 22000 

Maximum 34.00 8.15 858.50 538.00 286.00 274.00 56.00 33.60 27.00 6.00 11.50 56.40 110000 79000 

Range 18.40 1.15 633.90 386.00 118.00 126.00 25.60 17.28 13.00 4.90 5.50 25.20 78000 57000 

SD* 5.53 0.22 155.84 88.70 30.88 32.25 6.62 4.16 2.93 1.19 1.49 6.22 15050 13834 

Kurtosis -0.82 1.78 -0.19 0.61 0.45 -0.18 -0.47 0.18 -0.48 0.75 -0.86 -0.81 0.61 -0.22 

Skewness -0.64 -0.80 0.57 1.05 -1.04 -0.80 -0.55 -0.53 -0.16 1.07 0.25 -0.09 -0.09 0.26 

CoV* 0.20 0.03 0.31 0.29 0.12 0.14 0.14 0.15 0.14 0.39 0.18 0.14 0.20 0.28 

S6 

Mean 27.18 7.64 512.50 316.47 256.70 235.87 48.26 27.76 23.33 2.45 9.77 50.12 99450 67800 

Median 30.20 7.64 489.10 293.00 266.00 244.00 48.80 28.32 23.00 2.10 10.00 49.60 94000 70000 

Mode 30.30 7.62 456.00 290.00 282.00 258.00 56.00 28.32 25.00 3.00 10.00 51.60 94000 79000 

Minimum 15.60 6.95 221.60 160.00 172.00 156.00 31.20 16.80 15.00 0.60 6.50 35.60 70000 33000 

Maximum 34.00 8.09 882.60 554.00 298.00 282.00 59.20 34.56 29.00 5.10 12.50 60.80 130000 79000 

Range 18.40 1.14 661.00 394.00 126.00 126.00 28.00 17.76 14.00 4.50 6.00 25.20 60000 46000 

SD* 5.54 0.22 158.38 89.24 31.59 32.24 6.92 4.14 3.23 1.12 1.53 6.10 16377 13577 
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  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

Kurtosis -0.82 2.15 -0.24 0.58 0.46 -0.18 -0.58 0.30 -0.41 0.07 -0.80 -0.91 -0.42 -0.19 

Skewness -0.64 -0.94 0.47 0.97 -1.00 -0.80 -0.43 -0.48 -0.39 0.83 -0.16 -0.18 0.02 -1.04 

CoV* 0.20 0.03 0.31 0.28 0.12 0.14 0.14 0.15 0.14 0.46 0.16 0.12 0.16 0.20 

S7 

Mean 27.27 7.48 559.40 343.73 270.30 248.23 50.53 29.40 27.18 1.52 12.48 61.79 151033 108083 

Median 30.30 7.50 513.50 314.00 278.00 258.00 52.00 29.04 28.00 1.20 13.00 63.60 150000 110000 

Mode 30.80 7.43 489.00 342.00 296.00 258.00 56.00 30.24 29.00 1.00 13.00 63.60 170000 110000 

Minimum 15.70 6.89 240.60 172.00 186.00 170.00 34.40 18.72 18.00 0.30 8.50 48.40 94000 49000 

Maximum 34.00 7.82 984.20 616.00 316.00 294.00 64.00 36.00 33.00 3.80 18.60 70.80 240000 170000 

Range 18.30 0.93 743.60 444.00 130.00 124.00 29.60 17.28 15.00 3.50 10.10 22.40 146000 121000 

SD* 5.52 0.19 179.19 99.63 32.15 32.94 6.85 4.33 3.44 0.86 1.69 6.18 30930 28333 

Kurtosis -0.81 1.60 0.02 0.89 0.24 -0.29 -0.42 -0.22 -0.17 0.73 2.47 -0.33 0.47 -0.31 

Skewness -0.64 -0.92 0.59 1.03 -0.85 -0.75 -0.36 -0.40 -0.62 1.11 -0.07 -0.78 0.39 0.40 

CoV* 0.20 0.03 0.32 0.29 0.12 0.13 0.14 0.15 0.13 0.57 0.14 0.10 0.20 0.26 

*SD - Standard Deviation; CoV - Coefficient of variation 
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The photosynthesis activities in water affect the pH due to the assimilation of carbon 

dioxide and bicarbonates, which are eventually responsible for pH variation (Bhateria 

and Jain, 2016). Most aquatic organisms are extremely sensitive to pH because they 

have a narrow pH range (6.5-8.5) to survive and grow. Low pH (lower than 5) may 

cause the death of aquatic organisms, while a very high pH (greater than 9.5) can cause 

physical damage to the gills, exoskeleton, and fins of fish due to the conversion of 

nontoxic ammonia to toxic ammonia at high pH. Heavy metal (Pb, Cu, Cd etc.) 

solubility increases at low pH, causing more water toxicity. Variations in the pH of 

water within a certain range do not directly impact human consumption but are known 

to control other physicochemical characteristics of water that are attributed to altering 

the biotic composition of the system (Iqbal et al., 2019). 

The pH of water depends on the water's source, soil types, bedrock, types of pollutions 

the water encounters in its path, etc. Water can dissolve geological formations 

(Limestone, calcium silicate, and feldspars), eventually affecting the pH (Jaiswal et al., 

2019). The pH of the river water can be changed due to human activities like effluent 

pollutant discharge from industry, wastewater treatment plants, and mining quarries. 

The pH varies slightly daily due to photosynthetic activity (consumption of CO2) in the 

daytime and respiratory activity at night (Omer, 2019). 

All the sampling stations (S1–S7) recorded pH values ranging from 6.89-8.59, 6.89-

8.86, 7.11-8.59, 7.23-8.59, and 7.23-8.89 for 2013, 2014, 2015, 2016, and 2017 

respectively. The pH of the Gomti River water ranged from 6.89 to 8.89, indicating that 

it is either mildly acidic or alkaline. The pH levels of the Gomti River were reported to 

vary within the range of 6.22 to 8.6, as documented by Iqbal et al. in 2019. During the 

study period, the pH value decreased from S1 to S7. In the whole study period, the 

maximum pH value was recorded in the months of May and June at sampling station 

S1, and a minimum pH value was found in August at S7 (Figure 5.2). The slightly lower 

pH at this site can be attributed to inputs from wastewater in the adjacent areas. 

According to IS: 10500:2012 and WHO (2011), the permissible pH range is 6.5-8.5. 

Additionally, according to Class-C standards (IS: 2296:1992), the pH levels showed 

that the Gomti River water could be used for drinking after disinfection. A similar trend 

for pH was also reported by Kumar et al. (2021c) and Kumar et al. (2022a) while 

studying the Gomti River and by Suthar et al. (2010) while studying the Hindon River.  
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Figure 5.2: Variation of pH for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

5.2.3 Electrical conductivity (EC) 

The EC of the water sample is a measurement of the ability of water to conduct an 

electrical current. It depends on the charged particles' concentration, and more charged 

particles increase the EC of water (Kamboj and Kamboj, 2019; Hamid et al., 2020). 

The EC in the water is determined by the presence of principal cations (Na+, Ca+2, K+, 

and Mg+2) and anions (Cl-, SO4
-, CO3

-2, and HCO3
-) (Jaiswal et al., 2019). Pure or 
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distilled water has a low concentration and, thus, very low conductivity (Kumar et al., 

2022b). The conductivity is prominently affected by the different types of dissolved 

substances in water, temperature, and the concentration of ions. EC is an essential 

indicator of water quality assessment because it directly influences the water used for 

drinking and irrigation purposes (Shah and Joshi, 2017). Water lacking the quality of 

irrigation might impede the growth of plants and may pollutes soil, making it less 

suitable for agriculture. High-conductivity water causes an unpleasant mineral taste and 

adversely impacts human health. Heavy metal ions released from pollutants also 

increase the conductivity of water. However, they make up a small portion of the 

conductivity. Nitrates (NO3
-2) and phosphates (PO4

-3) are extremely important for 

biological activity (Kamboj and Kamboj, 2019). EC is the measure that accounts for 

dissolved solids in the stream. A higher level of conductivity in the stream indicates the 

possible source of dissolved ions in nearby areas. It is thus considered an important 

parameter for locating areas exhibiting water quality problems (Hamid et al., 2020).  

In this study at S1, S2, S3, S4, S5, S6, and S7, the EC was found in the range of 172.0-

560.2 μS/cm, 180.8-582.4 μS/cm, 201.0-772.5 μS/cm, 212.0-795.6 μS/cm, 224.6-858.5 

μS/cm, 221.6-882.6 μS/cm, and 240.6-984.2 μS/cm respectively, while the      

IS:10500:2012 standard is 300 μS/cm. Additionally, all sites that contained permissible 

limits of EC according to Class E (≤ 2250 μS/cm) were applicable for industrial cooling 

and irrigation (IS: 2296:1992). The EC values at station S1 are relatively low in this 

study. This could be owing to the land cover pattern here, which is semi-green, resulting 

in reduced topsoil erosion (Shah and Joshi, 2017). In the summer season, the EC values 

were highest at stations S6 and S7. This could be attributed to sewage discharges and 

anthropogenic activities near these stations' riverbanks. The sampling stations in the 

downstream region have greater EC values than those in the upstream. Iqbal et al. 

(2019), Kumar et al. (2021c), and Kumar et al. (2022a) found that the river Gomti has 

a similar value and trend. River Gomti noted low EC at the first two sampling stations 

(S1 and S2); this trend was maintained for all five consecutive years (2013-2017). A 

gradual increase in the EC concentration was observed in subsequent sampling stations 

and reached the maximum at S7 (Figure 5.3). This could be attributed to the mixing of 

sewage water into the stream as a number of drains, such as Kukrail Drain, G. H. Canal, 

Gomti Nagar Drain, Ghasiyari Mandi Drain, Wazirganj Drain, Nagaria Drain, and 

Sarkata Drain, were observed to fall into the river Gomti in this particular stretch. The 

Maximum value of EC was observed at S7 for the whole study period. 
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Figure 5.3: Variation of EC for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

5.2.4 Total dissolved solids (TDS) 

TDS is a water quality parameter determining the concentration of solid dissolved 

material (organic and inorganic) in water. The values of EC and TDS are correlated. 

EC indirectly indicates the changes in TDS (Lkr et al., 2020). The primary components 

of TDS are carbonates, bicarbonates, chlorides, sulfates, phosphate, and nitrates of 

calcium, magnesium, sodium, potassium, iron, etc. (Kumar et al., 2021b). TDS consists 

of oxygen-demanding waste and disease-causing agents that can cause immense harm 
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to public health as gastrointestinal irritation and the central nervous system, provoking 

paralysis, prickliness, and giddiness, even making it unsuitable for irrigation, mining, 

aquatic life, and industrial purposes (Gupta et al., 2017; Shah and Joshi, 2017). The 

source of TDS in river water can be natural (geological condition, surface runoff, and 

seawater) and anthropogenic (irrigation, wastewater discharge from domestic and 

industry, and sewage treatment plants) (Sallam and Elsayed, 2018). The high content 

of TDS in the water source increases the water density. It influences the osmoregulation 

of aquatic organisms and the BOD and COD, which deplete the DO levels in the aquatic 

ecosystem. Some dissolved inorganic elements such as nitrogen, phosphorus, and sulfur 

are also present in the river as essential nutrients for life. Because of nutritional 

shortages, aquatic organisms may not grow as much under low total solids 

concentrations (Kumar et al., 2022b).  

During the study period from 2013 to 2017, TDS concentrations ranged from 112-332 

mg/l, 118-346 mg/l, 128-482 mg/l, 136-496 mg/l, 152-538 mg/l, 160-554 mg/l, and 

172-616 mg/l at S1, S2, S3, S4, S5, S6 and S7 respectively. TDS concentrations were 

under the desired range of 500 mg/l at S1, S2, S3, and S4 but exceeded at S5, S6, and 

S7, according to the IS: 10500:2012. The lowest TDS was found at S1, while the highest 

at S7. Downstream sites noted a higher level of TDS than the upstream sites (Figure 

5.4). Continual increases from S1 to S7 are caused by the release of large volumes of 

solid waste, residential wastewater discharge, encroachment, and sewage in areas with 

high population density (Goel et al., 2018; Iqbal et al., 2019). Variation in TDS 

concentration was observed to be comparable with variation in EC. The Gomti River 

receives a lot of precipitation during the monsoon, possibly more than it can handle. 

This pattern supports the dilution effect and lowers the river's TDS concentration (Singh 

et al., 2004; Jaiswal et al., 2019). On the other hand, during the non-monsoon season, 

the river flow decreases, and certain short rivers dry up. As a result, non-monsoon had 

higher TDS than monsoon. The TDS measurements indicated that the river might be fit 

for drinking with disinfection (TDS≤500 mg/l; Class A) (IS: 2296:1992). But in non-

monsoon conditions, the water at some sites, like S5, S6, and S7, with TDS levels over 

500 mg/l, might be safe to consume following conventional treatment. All sites 

observed acceptable TDS levels ≤1500 mg/l for Class C and ≤2100 mg/l for Class E 

(IS: 2296:1992).  
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Figure 5.4: Variation of TDS for the period 2013-2017 (a) Spatial (b) Temporal 

along river Gomti 

 

The Gomti River could be utilized for irrigation and industrial purposes, and it was 

suitable for drinking following conventional treatment and disinfection, as per the TDS 

data. Unfortunately, even though it has been shown to be a large load there, the rivers 

are seen to be the greatest area to dump trash even though this leads to increased TDS 

in the water, filthy conditions, and health problems in the form of waterborne 

communicable diseases (Kharake and Raut, 2021).  
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5.2.5 Total alkalinity (TA) 

Because of the different hydroxides, bicarbonates, and carbonates present in water, TA 

measures an aqueous solution's capacity to neutralize acids (Egleston et al., 2010). The 

alkalinity of the water must be determined (for example, for corrosion control in 

conditioning the boiler feed water) to determine the amount of lime and soda required 

for water softening (Omer, 2019). 

TA values for the all-selected sampling stations S1, S2, S3, S4, S5, S6, S7, ranged 

between 142-252 mg/l with an average of 216 mg/l, 148-264 mg/l with an average of 

224.2 mg/l, 156-272 mg/l with an average of 233.5 mg/l, 162-278 mg/l with an average 

of 240.3 mg/l, 168-286 mg/l with an average of 250.0 mg/l, 172-298 mg/l with an 

average of 256.7 mg/l, 186-316 mg/l with an average of 270.3 mg/l respectively for the 

whole study period. For 2013, 2014, 2015, 2016, and 2017, the maximum values of TA 

is appeared in May, June, and July, whereas the minimum in August and September. 

The average value of TA was found to be greater than 200 mg/l as per IS: 10500:2012 

standards at all sampling stations during the study period. The acceptable and desirable 

amounts of TA in water bodies are 600 and 200 mg/l, respectively, according to IS: 

10500:2012. TA was found to be highest at S7 (316 mg/l) during the summer and lowest 

during the rainy season at S1 (142 mg/l) (Figure 5.5). This can be caused by dilution 

brought on by freshwater entering the river system during the monsoon season (Kamboj 

and Kamboj, 2019). Iqbal et al. (2019), Kumar et al. (2021c), and Kumar et al. (2022a) 

found a similar value and trend in the Gomti River.  

High levels of TA in water could indicate chemical or industrial pollution and be 

unsuitable for plant irrigation (Jaiswal et al., 2019). Natural waters' alkalinity is a buffer, 

shielding fish and other aquatic species from abrupt pH shifts. For instance, if an acidic 

chemical pollutants a lake that is naturally alkaline, the acid and alkaline compounds 

react to neutralize each other, leaving the pH of the lake water unaffected. The buffering 

capability should be at least 20 mg/l of calcium carbonate to protect aquatic life (Omer, 

2019). However, it can be seen that TA showed an increasing trend from upstream to 

downstream (S1 to S7), which could be attributed to the mixing of wastewater in the 

stream as several drains join it along its course. Results of TA in the river Gomti were 

in close agreement with the study of Khadse et al. (2008), where a high range of TA 

was reported in the Kanhan River, which carried a considerable amount of sewage 

water. 
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Figure 5.5: Variation of TA for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti  

 

5.2.6 Total hardness (TH) 

The concentration of TH and other divalent cations in river water is influenced largely 

by dissolved calcium and magnesium ions in terms of mg/l as CaCO3; however, other 

cation (aluminum, barium, iron, manganese, strontium, and zinc) also contributes 

sulfate. The surrounding rocks of the water bodies give the majority of their source (Lkr 
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et al., 2020). The other sources are domestic effluent (sewage and domestic used water) 

and ineffective treatment of industrial and other waste material (Singh et al., 2005). 

The TH of river water has been an essential factor because it affects water's industrial 

and domestic use. In industries, water is used to manufacture high-quality products, 

water supply facilities, boilers, cooling towers, membrane clogging, and efficiency of 

heat exchangers. Hard water is not suitable for many kitchen appliances and domestic 

purposes such as washing, cleaning, and laundry because it forms scale. Scaling causes 

problems with pipe blockages as well as producing a characteristic 'watermark' or 'scum 

line' in baths and sinks when soaps are used. Hard water is also not preferable for 

drinking (Malakootian et al., 2010). 

TH values in present study ranged between 120 mg/l to 236 mg/l, 128 mg/l to 244 mg/l, 

134 mg/l to 256 mg/l, 140 mg/l to 262 mg/l, 148 mg/l to 274 mg/l, 156 mg/l to 282 

mg/l, 170 mg/l to 294 mg/l with mean values of 196.8 mg/l, 202.7 mg/l, 212.0 mg/l, 

218.8 mg/l, 228.5 mg/l, 235.9 mg/l, 248.2 mg/l for sampling stations S1, S2, S3, S4, 

S5, S6, S7 respectively. In the entire study period, the value of TH seemed to be 

increasing from S1 to S7, and the lowest range of TH was found in August and 

September for the whole study period (Figure 5.6).  
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Figure 5.6: Variation of TH for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

Mixing of domestic effluents and enhanced anthropogenic activities were the probable 

reasons for the high value of TH at this site, which could be supported by the study of 

Kumar et al. (2021c) and Kumar et al. (2022a) on Gomti River and by Kumar et al. 

(2015) on Varuna River where the cause of elevated range of TH was attributed to the 

amalgamation of urban runoff. The levels of TH were far below the 300 mg/l 

recommended limit (IS: 10500:2012) that could be applied for drinking purposes, but 

during non-monsoon, it exceeded the allowable level of 200 mg/l for Class A (IS: 

2296:1992) at all sampling stations. Based on the TH readings, the Gomti River water 

is categorized as hard (121-180 mg/l) to very hard water (˃180 mg/l) (Bora and 

Goswami, 2017).  

 

5.2.7 Calcium (Ca) and Magnesium (Mg) 

Most of the cationic content in freshwater ecosystems is made up of the major cations, 

which include Ca and Mg, and have slightly varied seasonal trends in their behavior. 

Because natural and human-made inputs vary widely, the concentrations of different 

cations fluctuate significantly on a spatial basis (Jaiswal et al., 2019). Ca reduces 

chemical toxicity to fish and other aquatic organisms in natural water bodies (Jaiswal 

et al., 2019). Ca is frequently found in calcium salts (CaCl2 or CaCO3). Ion exchange 
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or calcite precipitation removes calcium. When CO2 is low, chemical reactions reverse 

and precipitate calcite. During the study, Ca concentrations varied between 24.7-49.6 

mg/l, 25.5-49.6 mg/l, 27.1-53.6 mg/l, 28.5-55.2 mg/l, 30.3-56 mg/l, 31.1-59.2 mg/l, and 

34.2-64 mg/l at S1, S2, S3, S4, S5, S6, and S7 respectively, with the maximum and 

minimum values of 64 mg/l at S7 and 24.7 mg/l at S1 in the river Gomti (Figure 5.7).  

 

 

 

Figure 5.7: Variation of Ca for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 
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Its greater concentration may be due to temperature rise, water level drop, and 

household waste accumulation (Lkr et al., 2020). Ca values were substantially within 

the 75 mg/l limits (IS: 10500:2012) at all sampling points, increasing from sampling 

stations S1 to S7. These findings are supported by the study of Singh et al. (2005), 

Singh and Singh (2007), and Kumar et al. (2022a).  

Dolomite, marl, and other rocks undergo chemical weathering and breakdown, 

resulting in Mg formation. This is because of the highest solubility of Mg and the least 

biological activity of all the elements. Minerals with high Mg content dissolve slowly 

(Lkr et al., 2020). At sampling stations, Mg concentrations were 12.9-35.5 mg/l in 2013, 

12.9-36.0 mg/l in 2014, 19.9-32.1 mg/l in 2015, 16.8-35.5 mg/l in 2016, and 16.7-36.0 

mg/l in 2017. The maximum Mg concentration was 36.0 mg/l at S7, while the minimum 

was 12.48 mg/l at S1. The Mg concentrations were significantly over the permissible 

limit of 30 mg/l (IS: 10500:2012) at all sampling stations except S1. The measured 

values of Mg increased from S1 to S7 during the study period (Figure 5.8). This finding 

can be supported by the study of Rajesh et al. (2015), where the distribution of Mg was 

recorded in the case of the Ganga river and also supported by Singh et al. (2005), Singh 

and Singh (2007) and Kumar et al. (2022a) where the distribution of Mg was recorded 

in case of Gomti River. 
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Figure 5.8: Variation of Mg for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

In waters with medium-to-high water mineralization, the Ca: Mg ratio decreases. The 

most frequent source of Ca and Mg is the erosion of rocks (such as limestone and 

dolomite) and minerals (such as calcite and magnesite). Ca and Mg can also be 

impacted by sewage pollution, industrial waste, and soil erosion (Jaiswal et al., 2019). 

 

5.2.8 Chloride (Cl) 

Chloride (Cl) is a key indicator of water quality and is present naturally as NaCl, KCl, 

and CaCl2. There are numerous sources of Cl, including the weathering process that 

causes different rocks to leach Cl, irrigation runoff, animal feed, and surface runoff 

from inorganically treated agricultural areas (Bora and Goswami, 2017). Freshwater 

pollution may be indicated by high chloride concentrations (more than 250 mg/l) 

(Omer, 2019). Despite the fact that Cl alone is innocuous to humans, its elevated levels 

can be seen as an "advance warning" of the presence of other harmful pollutants in the 

water. Water with a high concentration of Cl is unfit for irrigation and is detrimental to 

aquatic plants and animals (Venkatesharaju et al., 2010). Cl is very mobile, and it 

usually moves from the soil-water contact to the roots of plants before building up in 

the leaves (Jaiswal et al., 2019). Although chloride in drinking water does not 

negatively affect public health, large quantities can give most people a salty taste. 
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Normally, chlorides are not hazardous to people; however, the sodium in table salt has 

been linked to renal and cardiac problems (Omer, 2019). Small chloride levels are 

necessary for typical cell processes in animal and plant life.  

The average Cl concentration for the selected water samples was 13.1 mg/l, 14.5 mg/l, 

16.7 mg/l, 18.4 mg/l, 21.3 mg/l, 23.3 mg/l, and 27.2 mg/l at sampling stations S1, S2, 

S3, S4, S5, S6, and S7 respectively (Figure 5.9).  

 

 

 

Figure 5.9: Variation of Cl for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 
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It was found that all sampling stations during the study period contained allowable Cl 

concentrations according to Class A (≤ 250 mg/l) (IS: 2296:1992), and they followed 

the desirable limit of IS: 10500:2012. During the study period, the minimum and 

maximum Cl concentrations were 8 and 33 mg/l at S1 and S7, respectively, 

demonstrating that the measured Cl values increased from S1 to S7 over the study 

period. A similar finding was reported by Singh et al. (2005), Singh and Singh (2007), 

Kumar et al. (2022a), and Edokpayi et al. (2015) while studying the Gomti River and 

Mvudi River, respectively. This result demonstrated no Cl toxicity along the Gomti 

River's longitudinal profile. 

 

5.2.9 Dissolved oxygen (DO) 

Water bodies have varying concentrations of DO, which is the total amount of oxygen 

present. The physical, chemical, and biological activity of the water body determines 

the DO content (Wang et al., 2013; Bora and Goswami, 2017). In water pollution 

control, DO estimation is crucial. The main factors that help in regulating the DO level 

in an aquatic environment are atmosphere-water surface exchange, photosynthesis, 

respiration, and mineralization (Wang et al., 2013). Generally, water sources are in 

equilibrium with the atmosphere so that oxygen can diffuse across the air-water 

interface. The amount of DO present in water reflects atmospheric dissolution. For the 

river, oxygen diffusion across the air-water interface plays an important role in 

regulating oxygen concentration because of having a high surface area (Hamid et al., 

2020). The wind and wave action also helps to regulate the DO level of the river. The 

amount of DO depends on photosynthesis by plants, respiration by aquatic organisms, 

decomposition of organic matter/waste, chemical oxidation of minerals, and turbulence 

(Sanchez et al., 2007; Ravikumar et al., 2013). 

The partial pressure of gases varies with altitude, so the amount of DO also varies with 

altitude. Apart from all this, DO content in water depends on the time of day, rate of 

flow, depth, altitude, and season (Sallam and Elsayed, 2018). Typically, relatively 

healthy waters indicate a fluctuation of DO around saturation and diurnal change caused 

by temperature and metabolism. On the other hand, a significant decline in DO below 

saturation denotes the presence of untreated wastewater or an excessive amount of 

nutrients from nonpoint sources of pollution in the stream. The impact of municipal and 

industrial effluents on the waters was also estimated using the DO concentration to 

measure water quality (Sanchez et al., 2007). The DO is a significant parameter for 



 

5-127  
 

water quality assessment because it provides information about the water quality, 

ecological status, productivity, and health of water bodies (Wang et al., 2013). The DO 

shows the variation in biological parameters due to aerobic or anaerobic phenomena 

and reflects the state of river water for aquatic and human life (Gupta et al., 2017). In 

normal conditions, the running water contains a high amount of DO tending toward 

saturation compared to stagnant water. Microorganisms require DO to decay organic 

matter. As organic matter increase, more DO is needed, which reduces DO in water and 

leads to eutrophic condition in the river. Anthropogenic activities also affected the DO 

in the river due to the deposition of domestic, industrial, and agricultural waste, which 

contains oxygen-consuming organic waste (Gupta et al., 2017). 

According to the IS: 10500:2012, an optimal DO level for preserving aquatic life is 5 

mg/l. When the DO concentration falls below the ideal range, a water sample is deemed 

polluted (Bora and Goswami, 2017). During the study period, the DO values at S1, S2, 

S3, S4, S5, S6, and S7 were 2.8-11.4 mg/l, 2.9-10.9 mg/l, 0.7-9.5 mg/l, 1.3-8.4 mg/l, 

1.1-6.0 mg/l, 0.6-5.1 mg/l, and 0.3-3.8 mg/l, respectively. The minimum average value 

observed at all sample stations was in July. The value of DO was found to be minimal 

at the last sampling station, S7 (Figure 5.10).  
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Figure 5.10: Variation of DO for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

The minimum value at all sample points throughout the hot and dry periods was far 

below the suggested range (5 mg/l). The trend of obtained results was in accordance 

with the study done by Singh et al. (2005), Singh and Singh (2007), Goel et al. (2018), 

Iqbal et al. (2019), Kumar et al. (2021c) and Kumar et al. (2022a) on Gomti river and 

by Joseph and Jacob (2010) on Pennar river, Kerala. High organic loads, drain 

discharges, and religious rituals along the riverbank all contributed to the current trends 

of DO depletion at most sampling locations (Shah and Joshi, 2017). Sufficient oxygen 

is necessary for the survival of aquatic fauna and the decomposition of organic matter 

by microorganisms. For higher life forms to survive, a stream's dissolved oxygen 

concentration must be at least 2 mg/l (Shivayogimath et al., 2012). 

The DO observations were within the permissible limit of Class A (DO > 6 mg/l) at S1, 

S2, S3, S4, and S5 during monsoon season and lie under Class D & E (DO > 4 mg/l) 

during the non-monsoon season (IS: 2296:1992). This outcome may be attributable to 

the monsoon's wave action, enough turbulence, and significant oxygen diffusion from 

the surrounding environment (Sharma and Kansal, 2011). These sites receive water 

from 28 drains (Nagariya drain, Sarkata drain, Pata drain, Wazirganj drain, Ghasiyari 

mandi drain, Cis-Gomati Pumping Station, G. H. canal, Daliganj drain I, Kukrail drain, 

Gomti Nagar drainage, etc.) containing low organic pollution, and they could therefore 
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be utilized for various purposes, such as outdoor swimming. However, the DO levels 

declined for the site S6 and S7 and reached Class D & E (DO > 4 mg/l) during the non-

monsoon season, but during monsoon season, S6 lies in Class B (DO > 5 mg/l), and S7 

lies in Class D & E (IS: 2296:1992). 

 

5.2.10 Biochemical oxygen demand (BOD) 

BOD is the total amount of oxygen needed by aerobic microorganisms in a water body 

to metabolize biodegradable organic wastes (Wang et al., 2013). BOD is a gauge for 

organic pollution as higher results indicate higher levels (Ravikumar et al., 2013; Bora 

and Goswami, 2017). Thus, BOD is an indicator of organic pollution in a river. The 

increased value of BOD indicates higher organic pollution in the river (Bora and 

Goswami, 2017). Typically, the waste material predominantly has two types of 

biodegradable compounds - carbonaceous compound and nitrogenous compound, 

which are metabolic byproducts or standard components. In general, we only measure 

CBOD in the BOD test. The decomposition of organic material induces high BOD in 

municipal and industrial effluents (Rasmussen et al., 2009; Sallam and Elsayed, 2018). 

BOD levels of more than 5 mg/l are unfavorable. During this study, the BOD values in 

river water ranged from 2.3-11.0 mg/l, 3.1-4.2 mg/l, 3.6-9.0 mg/l, 4.5-10.0 mg/l, 6.0-

11.5 mg/l, 6.5-12.5 mg/l, and 8.5-18.6 mg/l at S1, S2, S3, S4, S5, S6, and S7, 

respectively (Figure 5.11).  
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Figure 5.11: Variation of BOD for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

According to IS: 10500:2012, the maximum BOD value observed at all sampling 

stations during the study period was unacceptable and increased from S1 to S7. The 

trend of obtained results was in accordance with the study done by Singh et al. (2005), 

Singh and Singh (2007), Goel et al. (2018), Iqbal et al. (2019), Kumar et al. (2021c) 

and Kumar et al. (2022a) on Gomti river. A high score in each sampling point indicates 

that irreparable harm has been done due to the discharge of untreated organic waste and 

religious ceremonies close to the riverside. A rise in BOD in river water bodies may be 

due to many factors, including the degradation of DO, increased TDS, high quantum 

discharge, low water flow, and debris mounds along the river. Dead people and animals 

may also contribute to this occurrence (Singh et al., 2018). The concentration of BOD 

was recorded in all seasons under Class B, C, D, and E (BOD> 3 mg/l) at all sites except 

in site S1. In the case of S1, BOD lies under Class A (BOD> 2 mg/l) during the monsoon 

season (IS: 2296:1992). An increase in BOD value was observed after S3, which could 

be attributed to its journey through the city, which receives wastewater from 28 drains 

till S7. 

 

5.2.11 Chemical oxygen demand (COD) 

COD measures the amount of oxygen needed to completely oxidize all organic matter 
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into water and carbon dioxide. It is typically employed to gauge how much organic 

material is present in water (Kumar et al., 2021c). By measuring almost all of the 

organic matter in sewage and industrial waste, COD is a useful tool for determining the 

extent of pollution. COD is a sign of declining water quality brought on by industrial 

wastewater discharge (Kumar et al., 2022a). The COD parameter measures both 

biodegradable and non-biodegradable organic materials. For the same sample, COD 

readings are always greater than BOD values (Omer, 2019). 

In the present study, COD levels in the river were measured and found to be varied 

from 12.4-18.4 mg/l (mean value of 14.89 mg/l) at S1, 13.6-24.8 mg/l (mean value 

18.99 mg/l) at S2, 18.8-44.8 mg/l (mean value 28.14 mg/l) at S3, 24.4-47.6 mg/l (mean 

value 34.49 mg/l) at S4, 31.2-56.4 mg/l (mean value 43.74 mg/l) at S5, 35.6-60.8 mg/l 

(mean value 50.12 mg/l) at S6 and 48.4-70.8 mg/l (mean value 61.79 mg/l) at S7. S7 

had the highest COD of 70.8 mg/l, while the lowest (12.4 mg/l) was observed at S1, 

exceeding the maximum permissible limit (10 mg/l) during the study period (WHO, 

2011). No permissible limit of COD has been identified by the Indian Standards (IS: 

2296:1992 and IS: 10500:2012). The trend of obtained results was in accordance with 

the study done by Singh et al. (2005), Singh and Singh (2007), Kumar et al. (2021c), 

and Kumar et al. (2022a) on the Gomti River. Site-wise variation showed that the COD 

was comparable from S1 to S2 and increased substantially at S3, showing the mixing 

of industrial wastewater into the stream through various drains (Figure 5.12).  
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Figure 5.12: Variation of COD for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

The downstream (S7), which had higher levels of organic wastes, showed current trends 

in the rise of COD concentrations. Untreated industrial, municipal, and religious rituals 

near the riverbed produced significant amounts of inorganic and organic carbon. Kumar 

et al. (2015) and Sophia et al. (2017) reported similar results while studying River 

Varuna and Adyar Estuary, respectively.  

 

5.2.12 Bacteriological analysis (Total coliforms and fecal coliforms) 

Bacteria, unicellular microorganisms, are very abundant, diversified, and widely 

distributed in nature. They are found on almost every surface of the Earth, such as soil, 

ocean, glacier, human gut, etc. Bacteria found in the aquatic environment may be used 

as an indicator of water quality (Kumar et al., 2022a). Bacteria with beneficial and 

pathogenic characteristics are entered into the water by natural or through human 

activities. Pathogenic bacteria are the cause of dangerous diseases in human and aquatic 

animals (Baker-Austin et al., 2006). The indicator bacteria are of two types- fecal 

coliform and non-fecal coliform. The fecal coliform bacteria, Escherichia and 

Klebsiella are essentially found in the human intestine and other warm-blooded 

animals. In contrast, non-fecal coliform bacteria include Enterobacter and Citrobacter, 

which are distributed in nature and can be populated in organic matter (Islam et al., 

2018). 
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Water without fecal matter contamination is the critical parameter of water quality 

because human feces are commonly considered a higher risk for human health. After 

all, it usually contains human enteric pathogens (Haque et al., 2019). The presence of 

indicator bacteria in the water sources indicates fecal contamination and the potential 

presence of the pathogenic organism. So, their presence can be used as a signal to 

determine why such contamination is present, how severe it is, and what steps can be 

taken to eliminate it. The increased value of indicator bacteria shows a higher level of 

fecal contamination and the vital risks of waterborne diseases (Singh and Singh, 2014). 

Water-prone diseases (typhoid fever, paratyphoids, dysentery, infectious hepatitis, and 

cholera) are caused by drinking contaminated water and by participating in recreational 

activities such as swimming, boating, and aquatic sports in contaminated water (Haque 

et al., 2019). Due to household sewage overflows or other nonpoint human and animal 

waste sources, coliform bacteria may appear in ambient water (Shivayogimath et al., 

2012).  

Analytical results showed that the total coliform (TC) in the present study ranged from 

1400- 4000 MPN/100 ml with the average of 2618 MPN/100 ml at S1, 2400-7000 

MPN/100 ml with the average of 4015 MPN/100 ml at S2, 4900-40000 MPN/100 ml 

with the average of 15953 MPN/100 at S3, 13000- 58000 MPN/100 ml with the average 

of 30583 MPN/100 ml at S4, 32000- 110000 MPN/100 ml with the average of 74933 

MPN/100 ml at S5, 70000- 130000 MPN/100 ml with the average of 99450 MPN/100 

ml at S6, and 94000- 240000 MPN/100 ml with the average of 151033 MPN/100 ml at 

S7. A high population of TC showed that the river was severely polluted with sewage 

in all the seasons; however, the concentration of TC was highest in February, March, 

and July (Figure 5.13). High TC in July is attributed to the indiscriminate discarding of 

waste along with open defecation around the river bank, which tends to wash off into 

the river during rainfall. The finding was in accordance with the studies of 

Venkatesharaju et al. (2010) on the Cauvery River and Mishra and Tripathi (2007) on 

the Ganga River in Varanasi. Site-wise variation showed the comparable population of 

TC at the first two sites (i.e., S1, S2). According to water quality criteria given by IS: 

2296:1992, sites S1 and S2 lie under Class B (TC > 500 MPN/l00 ml), but sites S3, S4, 

S5, S6, and S7 exceeded the criteria of Class C (TC > 5000 MPN/l00 ml) with respect 

to TC and thus classified under D and E class throughout the study period. 
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Figure 5.13: Variation of TC for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

Results showed that the fecal coliform (FC) in the present study ranged from 700- 2700 

MPN/100 ml with an average of 1467 MPN/100 ml at S1, 1300-4900 MPN/100 ml with 

an average of 2595 MPN/100 ml at S2, 2600-34000 MPN/100 ml with an average of 

11710 MPN/100 at S3, 7900- 43000 MPN/100 ml with an average of 22655 MPN/100 

ml at S4, 22000- 79000 MPN/100 ml with an average of 48983 MPN/100 ml at S5, 

33000- 79000 MPN/100 ml with an average of 67800 MPN/100 ml at S6, and 49000- 

170000 MPN/100 ml with an average of 108083 MPN/100 ml at S7 (Figure 5.14).  
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Figure 5.14: Variation of FC for the period 2013-2017 (a) Spatial (b) Temporal, 

along river Gomti 

 

The findings of the enumeration revealed that the coliform count levels were greater 

than expected at each location. The acceptable limit of no-coliform/100 ml (IS: 

10500:2012) was found to be exceeded by the coliform MPN (most probable number) 

index during the study period. The coliform count was much higher at S7 compared to 

the other sampling stations. Summertime high temperatures and significant microbial 

activity may cause the material cycling of pollutants, reducing the amount of nutrients 
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in rivers (Islam et al., 2018). Similar results were also investigated by Singh and Singh 

(2014) through their studies on Gomti river pollution at Jaunpur, at Lucknow by Goel 

et al. (2018) and Kumar et al. (2022a), at Barak River in Assam by Rajkumar and 

Sharma (2013) and Gola River in Uttarakhand by Chandra et al. (2006) in India. 

Additionally, the total fecal coliform counts gradually increased from upstream sites 

(S1), which received less municipal sewage, to downstream locations (S7), which 

received a significant amount of municipal sewage through 28 drains. Thus, it is 

hypothesized that excessive bacterial pollution occurred as a result of open defecation 

as well as the discharge of untreated sewage in the Gomti River's downstream basin. 

The discharge of untreated home sewage and open defecation along the river's banks 

are the two leading causes of fecal coliform (Kumar et al., 2022a).  

 

5.3 ANOVA analysis 

The ANOVA test was used to assess the variability in the water quality from 7 sampling 

points. For water quality assessments, one-way ANOVA is suggested as a more 

efficient approach than two-way ANOVA (Rizvi et al., 2016; Pujar et al., 2020). One-

way ANOVA was applied to each water quality parameter, and the peculiarity between 

the sampling stations, months, and years was estimated. At a level of significance of 

0.05%, the amount of variance between the mean values of several parameters was 

examined. The predominant site, month, and year-specific sources along the Gomti 

River's flow were highlighted using the test statistics of an ANOVA (Chaudhary et al., 

2019; Kumar et al., 2022a). Results of one-way ANOVA with respect to years, months, 

and sampling stations are presented in Table 5.2, Table 5.3, and Table 5.4, respectively. 

The EC, TDS, Ca, Mg, and Cl of the water samples displayed a significant variance 

compared to the other parameters, according to the F-statistic of the ANOVA test at ≤ 

0.05 of the water quality parameters. The excess value of F-statistics for the EC, TDS, 

Ca, Mg, and Cl parameters showed that the river Gomti was significantly polluted from 

extraneous sources over the study period of 2013–2017. Significant annual fluctuation 

for water quality metrics from 2013 to 2017 was shown by one-way ANOVA F-

statistics values (p ≤ 0.05), showing sources of pollution due to growth in urbanization 

and industrialization (Ali et al., 2021). 
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Table 5.2: One-way ANOVA values for parameters showing annual variation 

Variables Sum of Squares df* Mean Square F Sig.* 

WT 83.94 4 20.99 0.70 0.60 

pH 0.29 4 0.07 0.54 0.71 

EC 1460916.03 4 365229.01 17.95 0.00 

TDS 480869.68 4 120217.42 18.07 0.00 

TA 8125.30 4 2031.32 1.65 0.16 

TH 6968.90 4 1742.22 1.35 0.25 

Ca 1008.89 4 252.22 3.10 0.02 

Mg 3542.77 4 885.69 15.29 0.00 

Cl 380.32 4 95.08 3.38 0.01 

DO 31.86 4 7.97 1.08 0.36 

BOD 109.33 4 27.33 2.36 0.05 

COD 1844.05 4 461.01 1.70 0.15 

TC 8941350142.86 4 2235337535.71 0.75 0.56 

FC 6623731484.76 4 1655932871.19 1.07 0.37 

*df - degree of freedom; Sig. - significance level 

 

The WT, pH, EC, TDS, TA, TH, Ca, Mg, Cl, and DO of the water samples displayed a 

significant variance compared to the other parameters, according to the F-statistic of 

the ANOVA test at ≤ 0.05 of the water quality parameters. The excess value of F-

statistics for these parameters indicated that extraneous source-induced pollution is 

considerable for different seasons of the study area. One-way ANOVA F-statistics 

values (p ≤ 0.05) for water quality measures demonstrated considerable seasonal 

volatility, pointing to sources of pollution brought on by weather changes (Rizvi et al., 

2016; Chaudhary et al., 2019). 

The water quality metrics all demonstrated significant fluctuation, except for WT, 

according to the F-statistic of the ANOVA test at ≤ 0.05. The excess value of the F-

statistics for these parameters showed significant pollution caused by extraneous 

sources from the Gomti River's headwaters (S1) to downstream (S7). Significant 

differences between sampling locations were found for water quality indicators 

according to one-way ANOVA F-statistics values (p ≤ 0.05), indicating possible 

sources of pollution. Kumar et al. (2022a) found a similar result for the Gomti River. 
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Table 5.3: One-way ANOVA values for parameters showing seasonal variation 

Variables Sum of Squares df* Mean Square F Sig.* 

WT 12071.24 11 1097.39 847.18 0.00 

pH 14.59 11 1.33 13.28 0.00 

EC 2767692.12 11 251608.38 14.38 0.00 

TDS 679551.28 11 61777.39 9.83 0.00 

TA 317897.25 11 28899.75 58.51 0.00 

TH 349252.80 11 31750.26 67.17 0.00 

Ca 11589.94 11 1053.63 18.52 0.00 

Mg 4250.66 11 386.42 6.76 0.00 

Cl 975.02 11 88.64 3.27 0.00 

DO 329.25 11 29.93 4.43 0.00 

BOD 137.77 11 12.53 1.07 0.39 

COD 4073.64 11 370.33 1.37 0.18 

TC 18113844190.48 11 1646713108.23 0.55 0.87 

FC 14134535663.57 11 1284957787.60 0.83 0.61 

*df - degree of freedom; Sig. - significance level 

 

Table 5.4: One-way ANOVA values for parameters showing spatial variation 

Variables Sum of Squares df* Mean Square F Sig.* 

WT 8.10 6 1.35 0.04 1.00 

pH 25.14 6 4.19 57.28 0.00 

EC 1405550.19 6 234258.36 11.38 0.00 

TDS 586484.91 6 97747.49 15.20 0.00 

TA 128309.79 6 21384.97 22.58 0.00 

TH 121469.33 6 20244.89 19.88 0.00 

Ca 4995.39 6 832.57 11.54 0.00 

Mg 2026.69 6 337.78 5.46 0.00 

Cl 9104.76 6 1517.46 213.59 0.00 

DO 1701.35 6 283.56 84.75 0.00 

BOD 3832.36 6 638.73 241.49 0.00 

COD 103418.62 6 17236.44 649.78 0.00 

TC 1143227434238.10 6 190537905706.35 785.30 0.00 

FC 566042873870.00 6 94340478978.33 482.89 0.00 

*df - degree of freedom; Sig. - significance level 
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Additionally, the F-statistics of an ANOVA determined a significant difference 

between the sites in terms of pollutants, a justified load of pesticide pollution, and urban 

sewage runoff. The findings recommend reducing the sources of toxins that pour into 

the Gomti River and creating remediation plans to lessen the pollution of the river. 

Every housing society needs a primary sewage treatment facility and a place to dump 

solid waste. A grid-based inventory for each section of the river's course, from its source 

to its confluence, can help lower the pollution load (Ali et al., 2021; Kumar et al., 

2022a). 

 

5.4 Correlation analysis  

It measures the degree of closeness between two variables; one is taken as the 

dependent variable and the other as an independent variable (Isaac and Siddiqui, 2022). 

The dependent variable provides a basis for estimating the regression coefficients with 

each independent variable that maximizes the dependent variable (Gholizadeh et al., 

2016; Sharma et al., 2021b). A higher correlation coefficient value symbolizes a better-

fit relationship between the regression variables. In this work, correlation analysis is 

carried out to find the significant correlation between different water quality parameters 

(Bhandari and Nayal, 2008; Jaiswal et al., 2019). The correlation coefficient is close to 

+1 (positive correlation), indicating that as one variable rises, the other rises almost 

linearly. However, a correlation value close to -1 (negative correlation) denotes that 

when one variable rises, the other variable falls almost linearly. Values close to zero 

indicate little or no linear association between the variables (Maity et al., 2021). The 

correlation between data points is zero, suggesting that data are truly independent of 

each other. 

Since water quality parameters showed spatiotemporal variations, it was necessary to 

derive a relationship between them. For this reason, the Pearson correlation was 

calculated for water quality parameters at a 0.05 significance level. Correlation analysis 

facilitates locating the critically important parameters on which other parameters 

depend. Once the degree of relationship is established, for the value of one given 

variable, the value of another can be detected. 

Strong positive correlations (p ≥ 0.9) between the water quality measures, such as EC, 

TDS, TA, Cl, BOD, COD, TC, and FC for the water samples collected during 2013 - 

2017 in Table 5.5, were identified, respectively. 
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Table 5.5: Correlation coefficient matrix of physicochemical and biological parameters of the river Gomti 

  WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

WT 1.00 
             

pH -0.22 1.00 
            

EC 0.03 -0.12 1.00 
           

TDS 0.08 -0.18 0.97 1.00 
          

TA -0.23 0.03 0.62 0.59 1.00 
         

TH -0.19 0.04 0.64 0.61 0.98 1.00 
        

Ca -0.12 0.03 0.44 0.42 0.70 0.62 1.00 
       

Mg -0.01 -0.01 0.33 0.38 0.45 0.37 0.83 1.00 
      

Cl 0.08 -0.48 0.55 0.56 0.62 0.61 0.45 0.31 1.00 
     

DO -0.31 0.68 -0.38 -0.42 -0.37 -0.38 -0.32 -0.27 -0.71 1.00 
    

BOD 0.06 -0.56 0.50 0.55 0.55 0.53 0.46 0.41 0.85 -0.83 1.00 
   

COD 0.10 -0.62 0.49 0.54 0.60 0.59 0.42 0.31 0.91 -0.79 0.92 1.00 
  

TC 0.07 -0.62 0.43 0.47 0.49 0.49 0.34 0.24 0.86 -0.72 0.88 0.93 1.00 
 

FC 0.08 -0.60 0.44 0.48 0.49 0.50 0.33 0.23 0.86 -0.71 0.87 0.92 0.98 1.00 
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In particular, the correlation matrix showed that some parameters are significantly 

correlated with each other. pH was found to be negatively and moderately correlated 

with BOD, COD, TC, and FC; however, it was positively and moderately correlated 

with DO. EC is found to be significantly correlated only with TDS and moderately 

correlated with TA, TH, Cl, and BOD. This could be well understood by the study of 

Bhandari and Nayal (2008) on the Kosi River, where they indicated a high correlation 

of EC with TDS. 

TH was found to be moderately correlated with Ca, Cl, BOD, COD, and Ca is strongly 

correlated with Mg. These ions regulate the mineralization of water (Varol, 2020). 

Natural and human-made sources contribute to the fluctuation of these ions (Maity et 

al., 2021). Cl was recorded to exhibit a strong correlation with BOD, COD, TC, and FC 

but a strong negative correlation with DO. TDS exhibited a moderate correlation with 

TA, TH, Cl, BOD, and COD (Cadraku, 2021), while TA exhibited a strong correlation 

with TH and Ca and a moderate correlation with Cl, BOD, and COD, which illustrates 

how residential sewage affects the Gomti river. Effluent discharge from the residential, 

industrial, and agricultural regions is caused by COD (Bellos and Sawidis, 2005). BOD 

and COD show a strong correlation with TC and FC. This is supported by the study of 

Tajmunnaher and Chowdhury (2017) on the Kushiyara River (Bangladesh) and by 

Jaiswal et al. (2019) on the Yamuna River (India), where they reported a positive 

correlation between BOD and COD, which shows that there is a serious industrial 

effluent pollution of the river. The negative relationship between WT and DO suggests 

that rising WT promotes the biological activity of aquatic organisms, which results in 

an intake of DO. The fact that WT and DO are inversely correlated may be because 

cooler water tends to dissolve larger amounts of oxygen.  

The low DO levels at numerous locations were consistently associated with high BOD 

values, according to the DO-BOD association, which could be because aerobic species 

consume DO during the assimilation of organics in polluted water (Brandt et al., 2017). 

TC and FC show a very strong correlation between them. The behavior of polluting 

sources and their dissipation is comparable at all seven water sampling locations, 

according to the total statistical correlations of water samples between the 

physicochemical characteristics.  

 

5.5 Multivariate statistical techniques 

MSTs are data analysis techniques utilized in water quality investigations to fully 
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comprehend two or more variables (Kwon and Jo, 2023). They provide clear and 

straightforward answers for interpreting environmental data, identifying potential 

influences on water systems, the foundation for further water quality management, and 

a solution to pollution issues in many nations throughout the world, including India (De 

Andrade et al., 2008; Venkatesharaju et al., 2010; Bodrud-Doza et al., 2016; Liu et al., 

2021). The statistical analysis tool SPSS, version 26.0, was used to calculate PCA and 

CA to statistically analyze the water quality results. They have been extensively utilized 

in recent years to analyze data on water quality and explain the pertinent information 

(Kazi et al., 2009; Varol et al., 2012; Sharma and Ravichandran, 2021). PCA was used 

for each sampling point to determine the most important factor affecting the 

deterioration of the water quality and to foretell the source of pollution in the river 

system (Tripathi and Singal, 2019). Additionally, CA was used to create a cluster of 

sample stations that shows how comparable the pollutant loads are at the various 

locations (Kumar et al., 2020b). 

 

5.5.1 Principal component analysis 

In pattern recognition, PCA is a frequently used method for decreasing input 

dimensions and generating related features (Mustapha et al., 2013; Arora and Keshari, 

2021). PCA can also identify the pattern and highlight the differences and similarities 

between the data (Singh et al., 2005; Kannel et al., 2007; Malik and Hashmi, 2017; 

Kwon and Jo, 2023). A covariance matrix is created from the initial variables to obtain 

the eigenvalues and eigenvectors using the square Euclidean distance. Correlated 

variables and eigenvector coefficients are used to create new variables called principal 

components (PCs) (Jaiswal et al., 2019). A smaller collection of information is created 

to determine dependencies on the data sets and extract information about the essential 

parameters' interactions with other parameters from the new uncorrelated variable 

without losing any crucial information (Sharma and Ravichandran, 2021). 

Depending on the values of the correlation matrix, the cumulative factor variance of 

greater than 0.85, 0.65-0.85, and less than 0.65 are classified as having strong, 

moderate, and weak correlations, respectively. Table 5.6 and Table 5.7 displays the 

PCA results, which reveal the parameter and matching factor loading rates. The 

eigenvalues and variance factors for each site are generated from the data sets. 

According to the water quality parameter displayed in the scree plots, the number of 

factors is designed, as shown in Figure 5.15. Results of PCA suggest that three 
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eigenvalues are significant. PCA's component loading plots to estimate the pollutants' 

origin are shown in Figure 5.16. PCA yielded the three principal components, which 

accounted for 80.37 % of the total variance associated with all parameters. The first 

three components explained about 80.37 % of the variance, while the rest explained 

only 19.63 %. 

 

 

Figure 5.15: Scree plot of the eigenvalues 

 

 

Figure 5.16: Component loading plots of PCA to estimate the origin of pollutants 
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Table 5.6: Extracted values of various PCA parameters 

Total Variance Explained 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total % of variance Cumulative % Total % of variance Cumulative % Total % of variance Cumulative % 

1 7.65 54.65 54.65 7.65 54.65 54.65 5.58 39.82 39.82 

2 2.48 17.68 72.33 2.48 17.68 72.33 3.10 22.12 61.94 

3 1.13 8.04 80.37 1.13 8.04 80.37 2.28 16.25 78.19 

 

Table 5.7: Rotated component matrix of the water quality factor loadings 

Variables WT pH EC TDS TA TH Ca Mg Cl DO BOD COD TC FC 

Component 

PC1 0.13 -0.80 0.22 0.27 0.30 0.30 0.18 0.11 0.81 -0.82 0.86 0.90 0.92 0.91 

PC2 0.05 0.13 0.93 0.90 0.62 0.67 0.29 0.14 0.39 -0.17 0.28 0.31 0.24 0.26 

PC3 -0.01 0.14 0.15 0.17 0.45 0.36 0.89 0.93 0.20 -0.20 0.28 0.19 0.10 0.09 

*Statistically significant loadings are marked by bold 
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The first component consisted of pH, Cl, DO, BOD, COD, TC, and FC with a total 

variation of 54.65 % within the dataset, which explains strong positive loadings for 

BOD, COD, TC, and FC and moderate positive loading for Cl while moderate negative 

loading for pH and DO. This component represented organic pollution from domestic 

wastewater and sewage pollution. This finding could be supported by the study of 

Gupta et al. (2009) on the Mumbai coast. This component also correlated with Cl, which 

could be due to the release of domestic effluents into the river water. This component 

contains variables with probable sources of origin and attributed to the runoff from the 

fields with high solids load and waste disposal activities. Strong loading of BOD and 

COD were grouped together in a component that indicated organic pollution load, 

which could be supported by the similar findings of Venkatramanan et al. (2014) for 

the Nakdong River (Korea). This component was attributed to the anthropogenic 

pollution source and could be supported by the positive correlation between BOD and 

COD (Arora and Keshari, 2021). A high concentration of organic chemicals in the water 

body suggested that oxidizable organic and inorganic pollutants extensively pollutes 

the river. Nominally treated or often untreated effluent discharge from industries and 

direct waste dumping into the stream was the main reason for elevated levels of COD 

and BOD. 

The second component accounted for 17.68 % of the total variance in the dataset. It has 

strong positive EC and TDS loading and moderate positive TA and TH loading. A 

similar finding was reported in a study on the Tigris River (Bhagdad) by Ismail et al. 

(2014) and River Gharasoo (Iran) by Rezaei and Sayadi (2015), in which EC and TDS 

were grouped in a component. According to Ismail et al. (2014), this could be linked to 

point-source pollution from domestic and industrial wastewater and nonpoint sources 

such as agricultural activities (Chakravarty and Gupta, 2021). 

The third component was responsible for 8.04 % of the total variance and had strong 

positive loading of Ca and Mg. This component represented the point and nonpoint 

pollution of the river. Phosphorus-rich bedrock, human and animal waste, industrial 

runoff, agricultural runoff, and washing clothes could be some probable causes (Jaiswal 

et al., 2019). 

 

5.5.2 Cluster analysis 

CA is one of the most effective methods for categorizing water quality metrics 

(Shrestha and Kazama, 2007; Sharma and Ravichandran, 2021). Each data point in the 
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CA defines a single-membered cluster, which then combines to produce a 

multimembered cluster, and so on, until all of the data points are combined to form a 

single huge cluster. Hierarchical clustering (HCA), the most popular method of CA, 

offers intuitive correlations between any sample and the complete data set (Shrestha 

and Kazama, 2007; Liu et al., 2021). Thus, HCA was performed to find out the water 

quality characteristics. HCA was used in the current study to analyze the five years of 

the dataset from 2013 to 2017. The created clusters were shown using dendrograms 

(Singh et al., 2004, 2005; Arora and Keshari, 2021). The squared Euclidean approach 

was employed as a distance matrix, and Ward's method of CA was used to analyze 

variance. The Euclidean distance matrix and transformation of dimensions on a 

comparable scale were computed using the normalized data (Jaiswal et al., 2019). The 

results obtained from the cluster analysis yielded a dendrogram are shown in Figure 

5.17, which noticeably indicates that the sampling stations are grouped into three 

heterogeneous clusters. 

 

 

Figure 5.17: Dendrogram showing spatial clustering of sampling stations 
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Group A comprised S1, S2, S3, and S4; Group B comprised S5 and S6; Group C 

comprised only S7. It can be seen from Figure 5.17 that Group A was less polluted than 

Group B and Group C. Group C was the most polluted stretch of the river because the 

discharges from 28 drains finally reached this site. The Gomti River stretch was divided 

into three categories. The first category, which included S1, S2, S3, and S4, were 

moderately polluted areas. The second category included S5 and S6, polluted areas, and 

the last category, which included S7, referred to as the most polluted stretch.  

The primary source of pollution in the high-pollution zones was the direct release of 

neighboring rural home sewage into rivers and the sewage from nearby cities after 

treatment/partial treatment by sewage treatment plants. Urban domestic water 

consumption has surpassed sewage treatment facilities' carrying capacity due to rising 

urban living standards. A new sewage treatment plant is now being built, which will 

worsen the water quality. The M/s. Hindustan Aeronautics Ltd. (HAL), Tata Motors, 

Railway Carriage and Wagon Shop (C&W), the battery industry, numerous small- to 

medium-sized companies, bakeries, auto repair shops, and dairy farms were the main 

discharge businesses. The Gomti River is heavily polluted by sources such as vegetable 

waste, oil, grease, and surfactants used for washing clothes at the river site, 

biomedical/animal waste, fish/meat markets, and cattle barns. 

 

5.6 Assessment of water quality indices 

A large number of water quality parameters assessed over different seasons resulted in 

a large number of multidimensional data. Interpretation of every single water quality 

parameter, its seasonal variability, and compliance with the prescribed guideline value 

given by national and international organizations was very complex and time-

consuming (Kamboj and Kamboj, 2019; Kamboj et al., 2020). In order to gather 

information about the water quality of the river Gomti understandably, it was essential 

to assess its water quality using Water Quality Indices (WQIs) as well as to get a single 

value that could reflect the overall water quality of the river and facilitates easy 

interpretation (Khan et al., 2003; Shah and Joshi, 2017; Semy and Singh, 2021). Based 

on the available literature on the use of WQIs in assessing the water quality of rivers, 

the four most suitable WQIs [Arithmetic water quality index (Arithmetic WQI), 

Synthetic pollution index (SPI), Comprehensive Pollution Index (CPI) and Ved Prakash 

water quality index (CPCB-WQI)] were selected to compare and check their suitability 

in defining water quality data of the river Gomti. 
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5.6.1 Assessment of Arithmetic WQI 

The summary of the Arithmetic WQI values of the water samples from all seven 

sampling stations (S1 – S7) for each year (2013–2017) is presented in Table 5.8. 

Arithmetic WQI values for the all-selected sampling stations S1, S2, S3, S4, S5, S6, 

and S7 ranged between 78.99 to 175.61 with an average of 120.81, 83.70 to 148.23 with 

an average of 117.52, 92.86 to 184.85 with an average of 137.62, 102.99 to 196.60 with 

an average of 152.33, 123.35 to 220.99 with an average of 176.66, 132.49 to 228.69 

with an average of 192.49, and 154.66 to 249.39 with an average 221.12 respectively 

for the whole study period. The results revealed that all the water samples fall into 

category E (>100), which is unsuitable for drinking and fish culture and requires proper 

treatment before use. These stations recorded the highest arithmetic WQI values during 

2017, ranging from 175.61 at Station S1 to 249.39 at Station S7. The arithmetic WQI 

of the water samples collected at stations S1 and S2 were better than other sampling 

stations. Samples collected at stations S1 and S2 have better water quality conditions, 

as these stations are present in the outskirts of Lucknow city and have less urban 

agglomeration. Similar results were also observed by Dutta et al. (2018a), Goel et al. 

(2018), and Iqbal et al. (2019) for the river Gomti. The pollutants in the water at the 

sampling stations were added primarily due to various anthropogenic activities like the 

inflow of untreated sewerage from residential and commercial establishments, 

unavailability of proper sanitation systems, agricultural runoff, direct disposal of 

untreated outflow from industries, and unabated dumping of solid waste by the 

communities residing alongside the river, etc. (Tangri et al., 2018; Iqbal et al., 2019). 

The arithmetic WQI analysis unveiled that sampling stations S5, S6, and S7 have the 

highest levels of pollutants along the entire reach of the Gomti River. Not only high 

sewage disposal and eutrophication but the lack of sufficient flow leads to the stagnancy 

of river water, which results in a high pollution level of sampling stations, which in turn 

reduces the self-purification capacity of the river Gomti. Rehana and Majumdar (2011) 

reported similar impacts of altered river flow on Tunga Bhadra. In addition to the above 

reasons, a continuous increase in the population, which resulted in riverbed 

encroachment and exploitation of river water for various chores, contributed to the 

deterioration of the water quality of the river Gomti (LDA, 2016; UPPCB, 2019). 

Figure 5.18 indicates, from 2013 to 2017, how the pollution level increased when we 

moved downstream from station S1 to S7.  
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Figure 5.18: Variation of Arithmetic WQI of studied stations in the Gomti River 

for the period 2013-2017 

 

A similar study has been reported by Kumar and Dua (2009), Kumar and Bahadur 

(2013), Rizvi et al. (2016); Bhutiani et al. (2016), Shah and Joshi (2017), Gupta et al. 

(2017) Lkr et al. (2018), Chaudhary et al. (2019), Sharma et al. (2020), Gupta et al. 

(2020), Pramanik et al. (2020), Chabuk et al. (2020), Ali et al. (2021), Semy and Singh 

(2021) and Kumar et al. (2021b) on other rivers in India. 

 

5.6.2 Assessment of SPI 

The SPI was estimated for seven water sampling stations using 12 physicochemical 

parameters. SPI comparisons among sampling locations between 12 months of 5 years 

(2013-2017) are presented in Table 5.9. The SPI values ranged from 0.868 to 1.277 at 

S1, 0.908 to 1.312 at S2, 0.987 to 1.465 at S3, 1.07 to 1.601 at S4, 1.254 to 1.859 at S5, 

1.338 to 2.02 at S6 and 1.513 to 2.177 at S7. The mean values of SPI are 1.112, 1.151, 

1.250, 1.367, 1.532, 1.662 and 1.927 at S1, S2, S3, S4, S5, S6 and S7, respectively, 

which indicates “very poor” (1.0-3.0) status at all sampling sites during the study period 

(Figure 5.19). 

The water quality is severely polluted and can only be used for irrigation. During the 
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study period, a gradual increase of SPI was found from S1 to S7 sampling stations, 

which specify the degree of water quality deterioration of the Gomti River downstream. 

As more sewage-discharging drains merged with the river from the S1 to S7 site, a 

considerable shift in SPI value was noticed. In contrast to earlier published studies, a 

considerable SPI divergence was seen between the seasons in the current study. During 

the study period, SPI falls only under the poor (0.5-1.0) and very poor (1.0-3.0), i.e., 

moderately polluted to severely polluted, and can be used only for irrigation and 

industrial purposes. 

The outcomes of the SPI studies, as well as the regional and seasonal evaluation of the 

relevant physicochemical parameters, were validated with similar data from the 

literature (Ali et al., 2021). Ma et al. (2009) developed this method to assess the impact 

of pollutants on water quality, and due to its simplicity, it has since been widely 

employed in numerous research studies (Solangi et al., 2018; Solangi et al., 2020; Hui 

et al., 2020; Sunar et al., 2020). 

 

 

Figure 5.19: Variation of SPI of studied stations in the Gomti River for the period 

2013-2017 



 

5-151  
 

Table 5.8: Water quality status of the river Gomti during the study period as per Arithmetic WQI 

  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

S1 

Jan 168.75 Unsuitable 168.75 Unsuitable 88.07 Very poor 88.07 Very poor 111.28 Unsuitable 

Feb 173.07 Unsuitable 173.07 Unsuitable 91.88 Very poor 113.76 Unsuitable 112.11 Unsuitable 

Mar 164.57 Unsuitable 164.57 Unsuitable 118.40 Unsuitable 113.68 Unsuitable 122.85 Unsuitable 

Apr 119.45 Unsuitable 121.90 Unsuitable 119.45 Unsuitable 121.90 Unsuitable 115.74 Unsuitable 

May 128.36 Unsuitable 137.71 Unsuitable 128.36 Unsuitable 128.36 Unsuitable 137.71 Unsuitable 

Jun 147.47 Unsuitable 116.47 Unsuitable 128.68 Unsuitable 128.68 Unsuitable 140.75 Unsuitable 

Jul 128.83 Unsuitable 107.05 Unsuitable 114.60 Unsuitable 126.31 Unsuitable 126.31 Unsuitable 

Aug 92.40 Very poor 78.99 Very poor 116.18 Unsuitable 95.54 Very poor 95.54 Very poor 

Sep 115.78 Unsuitable 100.68 Unsuitable 110.65 Unsuitable 97.43 Very poor 113.35 Unsuitable 

Oct 137.24 Unsuitable 90.73 Very poor 111.70 Unsuitable 105.17 Unsuitable 105.17 Unsuitable 

Nov 139.74 Unsuitable 100.45 Unsuitable 116.76 Unsuitable 109.72 Unsuitable 109.72 Unsuitable 

Dec 175.61 Unsuitable 107.74 Unsuitable 108.34 Unsuitable 108.34 Unsuitable 108.34 Unsuitable 

S2 

Jan 108.12 Unsuitable 108.12 Unsuitable 95.36 Very poor 95.36 Very poor 116.67 Unsuitable 

Feb 113.90 Unsuitable 113.90 Unsuitable 101.49 Unsuitable 124.46 Unsuitable 116.01 Unsuitable 
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  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

Mar 119.09 Unsuitable 119.09 Unsuitable 127.85 Unsuitable 126.06 Unsuitable 130.65 Unsuitable 

Apr 129.71 Unsuitable 131.87 Unsuitable 129.71 Unsuitable 131.87 Unsuitable 122.34 Unsuitable 

May 138.47 Unsuitable 135.42 Unsuitable 138.47 Unsuitable 138.47 Unsuitable 135.40 Unsuitable 

Jun 121.61 Unsuitable 121.61 Unsuitable 137.98 Unsuitable 137.98 Unsuitable 148.23 Unsuitable 

Jul 112.00 Unsuitable 112.00 Unsuitable 124.47 Unsuitable 139.81 Unsuitable 139.81 Unsuitable 

Aug 83.70 Very poor 83.70 Very poor 124.57 Unsuitable 102.12 Unsuitable 102.12 Unsuitable 

Sep 97.63 Very poor 105.10 Unsuitable 117.07 Unsuitable 104.05 Unsuitable 114.02 Unsuitable 

Oct 107.11 Unsuitable 97.46 Very poor 117.88 Unsuitable 112.12 Unsuitable 112.13 Unsuitable 

Nov 96.88 Very poor 105.38 Unsuitable 121.66 Unsuitable 116.12 Unsuitable 116.12 Unsuitable 

Dec 112.95 Unsuitable 112.95 Unsuitable 114.98 Unsuitable 114.98 Unsuitable 114.98 Unsuitable 

S3 

Jan 113.37 Unsuitable 113.37 Unsuitable 105.25 Unsuitable 105.25 Unsuitable 155.49 Unsuitable 

Feb 126.21 Unsuitable 126.21 Unsuitable 113.87 Unsuitable 158.31 Unsuitable 145.75 Unsuitable 

Mar 134.97 Unsuitable 134.97 Unsuitable 141.73 Unsuitable 155.34 Unsuitable 184.06 Unsuitable 

Apr 140.03 Unsuitable 160.23 Unsuitable 140.03 Unsuitable 160.22 Unsuitable 184.85 Unsuitable 

May 151.86 Unsuitable 176.08 Unsuitable 151.86 Unsuitable 151.86 Unsuitable 176.06 Unsuitable 

Jun 138.48 Unsuitable 138.48 Unsuitable 154.10 Unsuitable 154.10 Unsuitable 169.38 Unsuitable 
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  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

Jul 125.57 Unsuitable 125.57 Unsuitable 133.24 Unsuitable 168.74 Unsuitable 168.74 Unsuitable 

Aug 92.86 Very poor 92.86 Very poor 135.20 Unsuitable 129.01 Unsuitable 129.01 Unsuitable 

Sep 108.45 Unsuitable 121.17 Unsuitable 125.94 Unsuitable 141.52 Unsuitable 152.58 Unsuitable 

Oct 119.43 Unsuitable 112.02 Unsuitable 126.14 Unsuitable 146.79 Unsuitable 146.80 Unsuitable 

Nov 106.78 Unsuitable 118.71 Unsuitable 123.22 Unsuitable 141.51 Unsuitable 141.52 Unsuitable 

Dec 121.23 Unsuitable 121.23 Unsuitable 139.89 Unsuitable 139.89 Unsuitable 139.89 Unsuitable 

S4 

Jan 131.53 Unsuitable 131.53 Unsuitable 125.39 Unsuitable 125.39 Unsuitable 167.54 Unsuitable 

Feb 142.30 Unsuitable 142.30 Unsuitable 130.47 Unsuitable 166.63 Unsuitable 166.49 Unsuitable 

Mar 151.96 Unsuitable 151.96 Unsuitable 158.02 Unsuitable 167.52 Unsuitable 194.00 Unsuitable 

Apr 157.34 Unsuitable 164.54 Unsuitable 157.34 Unsuitable 164.54 Unsuitable 196.60 Unsuitable 

May 166.87 Unsuitable 194.14 Unsuitable 166.87 Unsuitable 166.87 Unsuitable 194.13 Unsuitable 

Jun 154.61 Unsuitable 154.61 Unsuitable 169.42 Unsuitable 169.42 Unsuitable 185.49 Unsuitable 

Jul 144.76 Unsuitable 144.76 Unsuitable 151.32 Unsuitable 179.31 Unsuitable 179.31 Unsuitable 

Aug 102.99 Unsuitable 102.99 Unsuitable 153.57 Unsuitable 147.05 Unsuitable 147.05 Unsuitable 

Sep 120.89 Unsuitable 137.19 Unsuitable 139.82 Unsuitable 156.84 Unsuitable 174.50 Unsuitable 

Oct 128.70 Unsuitable 125.77 Unsuitable 137.88 Unsuitable 156.20 Unsuitable 156.19 Unsuitable 
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  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

Nov 121.58 Unsuitable 137.84 Unsuitable 143.88 Unsuitable 152.47 Unsuitable 152.31 Unsuitable 

Dec 137.15 Unsuitable 137.15 Unsuitable 151.58 Unsuitable 151.58 Unsuitable 151.58 Unsuitable 

S5 

Jan 154.09 Unsuitable 154.09 Unsuitable 147.24 Unsuitable 147.24 Unsuitable 186.09 Unsuitable 

Feb 164.31 Unsuitable 164.31 Unsuitable 160.83 Unsuitable 198.64 Unsuitable 190.53 Unsuitable 

Mar 176.73 Unsuitable 176.73 Unsuitable 198.72 Unsuitable 194.75 Unsuitable 211.45 Unsuitable 

Apr 196.69 Unsuitable 199.15 Unsuitable 196.69 Unsuitable 199.15 Unsuitable 220.99 Unsuitable 

May 199.72 Unsuitable 214.75 Unsuitable 199.72 Unsuitable 199.72 Unsuitable 214.72 Unsuitable 

Jun 180.65 Unsuitable 180.65 Unsuitable 192.20 Unsuitable 192.20 Unsuitable 204.05 Unsuitable 

Jul 167.79 Unsuitable 167.79 Unsuitable 179.85 Unsuitable 195.25 Unsuitable 195.25 Unsuitable 

Aug 123.35 Unsuitable 123.35 Unsuitable 181.68 Unsuitable 163.80 Unsuitable 163.80 Unsuitable 

Sep 142.31 Unsuitable 163.50 Unsuitable 166.46 Unsuitable 174.13 Unsuitable 177.34 Unsuitable 

Oct 146.54 Unsuitable 150.00 Unsuitable 165.96 Unsuitable 168.93 Unsuitable 168.93 Unsuitable 

Nov 139.07 Unsuitable 166.96 Unsuitable 175.44 Unsuitable 181.51 Unsuitable 181.51 Unsuitable 

Dec 157.92 Unsuitable 157.92 Unsuitable 178.82 Unsuitable 178.82 Unsuitable 178.82 Unsuitable 

S6 

Jan 172.86 Unsuitable 172.86 Unsuitable 172.43 Unsuitable 172.43 Unsuitable 197.25 Unsuitable 
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  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

Feb 182.88 Unsuitable 182.88 Unsuitable 179.20 Unsuitable 210.53 Unsuitable 207.42 Unsuitable 

Mar 192.45 Unsuitable 192.45 Unsuitable 215.89 Unsuitable 211.69 Unsuitable 223.67 Unsuitable 

Apr 218.36 Unsuitable 192.45 Unsuitable 218.36 Unsuitable 215.97 Unsuitable 228.69 Unsuitable 

May 219.56 Unsuitable 228.06 Unsuitable 219.56 Unsuitable 219.56 Unsuitable 228.06 Unsuitable 

Jun 197.64 Unsuitable 197.64 Unsuitable 207.21 Unsuitable 207.21 Unsuitable 217.99 Unsuitable 

Jul 188.07 Unsuitable 188.07 Unsuitable 206.61 Unsuitable 206.72 Unsuitable 206.72 Unsuitable 

Aug 132.49 Unsuitable 132.49 Unsuitable 202.07 Unsuitable 176.19 Unsuitable 176.19 Unsuitable 

Sep 155.36 Unsuitable 181.48 Unsuitable 181.58 Unsuitable 183.92 Unsuitable 194.19 Unsuitable 

Oct 164.17 Unsuitable 169.18 Unsuitable 170.10 Unsuitable 178.72 Unsuitable 178.72 Unsuitable 

Nov 161.58 Unsuitable 186.56 Unsuitable 188.61 Unsuitable 197.06 Unsuitable 197.06 Unsuitable 

Dec 177.33 Unsuitable 177.33 Unsuitable 195.88 Unsuitable 195.88 Unsuitable 195.88 Unsuitable 

S7 

Jan 198.65 Unsuitable 198.65 Unsuitable 206.71 Unsuitable 206.71 Unsuitable 227.42 Unsuitable 

Feb 216.48 Unsuitable 216.48 Unsuitable 209.82 Unsuitable 242.15 Unsuitable 245.41 Unsuitable 

Mar 231.15 Unsuitable 231.15 Unsuitable 246.57 Unsuitable 227.80 Unsuitable 246.80 Unsuitable 

Apr 243.56 Unsuitable 232.16 Unsuitable 243.56 Unsuitable 232.16 Unsuitable 243.41 Unsuitable 

May 246.52 Unsuitable 242.57 Unsuitable 246.52 Unsuitable 246.52 Unsuitable 242.57 Unsuitable 
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  2013 2014 2015 2016 2017 

  WQI Status WQI Status WQI Status WQI Status WQI Status 

Jun 219.61 Unsuitable 219.61 Unsuitable 230.51 Unsuitable 230.51 Unsuitable 249.39 Unsuitable 

Jul 226.72 Unsuitable 226.72 Unsuitable 237.33 Unsuitable 228.70 Unsuitable 228.70 Unsuitable 

Aug 154.66 Unsuitable 154.66 Unsuitable 217.34 Unsuitable 195.54 Unsuitable 195.54 Unsuitable 

Sep 175.48 Unsuitable 219.97 Unsuitable 210.45 Unsuitable 211.45 Unsuitable 242.13 Unsuitable 

Oct 187.47 Unsuitable 208.04 Unsuitable 217.75 Unsuitable 219.81 Unsuitable 219.81 Unsuitable 

Nov 182.63 Unsuitable 218.60 Unsuitable 231.81 Unsuitable 231.96 Unsuitable 231.96 Unsuitable 

Dec 193.79 Unsuitable 193.79 Unsuitable 227.83 Unsuitable 227.83 Unsuitable 227.83 Unsuitable 

 

Table 5.9: Water quality status of the river Gomti during the study period as per SPI 

  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

S1 

Jan 1.232 Very Poor 1.232 Very Poor 1.233 Very Poor 1.233 Very Poor 1.262 Very Poor 

Feb 1.245 Very Poor 1.245 Very Poor 1.226 Very Poor 1.263 Very Poor 1.277 Very Poor 

Mar 1.189 Very Poor 1.189 Very Poor 1.040 Very Poor 1.207 Very Poor 1.197 Very Poor 

Apr 1.049 Very Poor 1.191 Very Poor 1.049 Very Poor 1.191 Very Poor 1.109 Very Poor 

May 1.103 Very Poor 1.129 Very Poor 1.103 Very Poor 1.103 Very Poor 1.129 Very Poor 
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  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

Jun 1.079 Very Poor 1.079 Very Poor 1.095 Very Poor 1.095 Very Poor 1.174 Very Poor 

Jul 0.968 Poor 0.968 Poor 1.023 Very Poor 1.026 Very Poor 1.026 Very Poor 

Aug 0.868 Poor 0.868 Poor 1.068 Very Poor 0.997 Poor 0.997 Poor 

Sep 0.952 Poor 0.974 Poor 1.075 Very Poor 0.977 Poor 0.973 Poor 

Oct 1.066 Very Poor 1.061 Very Poor 1.065 Very Poor 1.033 Very Poor 1.033 Very Poor 

Nov 1.106 Very Poor 1.123 Very Poor 1.135 Very Poor 1.098 Very Poor 1.098 Very Poor 

Dec 1.254 Very Poor 1.254 Very Poor 1.223 Very Poor 1.223 Very Poor 1.223 Very Poor 

S2 

Jan 1.277 Very Poor 1.277 Very Poor 1.294 Very Poor 1.294 Very Poor 1.302 Very Poor 

Feb 1.312 Very Poor 1.312 Very Poor 1.305 Very Poor 1.235 Very Poor 1.305 Very Poor 

Mar 1.267 Very Poor 1.267 Very Poor 1.130 Very Poor 1.175 Very Poor 1.171 Very Poor 

Apr 1.149 Very Poor 1.168 Very Poor 1.149 Very Poor 1.168 Very Poor 1.057 Very Poor 

May 1.171 Very Poor 1.148 Very Poor 1.171 Very Poor 1.171 Very Poor 1.148 Very Poor 

Jun 1.119 Very Poor 1.119 Very Poor 1.173 Very Poor 1.173 Very Poor 1.193 Very Poor 

Jul 1.003 Very Poor 1.003 Very Poor 1.118 Very Poor 1.010 Very Poor 1.010 Very Poor 

Aug 0.908 Poor 0.908 Poor 1.137 Very Poor 0.973 Poor 0.973 Poor 

Sep 0.999 Poor 1.014 Very Poor 1.131 Very Poor 1.022 Very Poor 0.974 Poor 
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  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

Oct 1.110 Very Poor 1.117 Very Poor 1.115 Very Poor 1.044 Very Poor 1.044 Very Poor 

Nov 1.141 Very Poor 1.169 Very Poor 1.181 Very Poor 1.144 Very Poor 1.144 Very Poor 

Dec 1.300 Very Poor 1.300 Very Poor 1.285 Very Poor 1.285 Very Poor 1.285 Very Poor 

S3 

Jan 1.298 Very Poor 1.298 Very Poor 1.317 Very Poor 1.317 Very Poor 1.418 Very Poor 

Feb 1.324 Very Poor 1.324 Very Poor 1.287 Very Poor 1.213 Very Poor 1.397 Very Poor 

Mar 1.328 Very Poor 1.328 Very Poor 1.174 Very Poor 1.200 Very Poor 1.465 Very Poor 

Apr 1.204 Very Poor 1.270 Very Poor 1.204 Very Poor 1.270 Very Poor 1.420 Very Poor 

May 1.242 Very Poor 1.393 Very Poor 1.242 Very Poor 1.242 Very Poor 1.393 Very Poor 

Jun 1.229 Very Poor 1.229 Very Poor 1.263 Very Poor 1.263 Very Poor 1.388 Very Poor 

Jul 1.111 Very Poor 1.111 Very Poor 1.160 Very Poor 1.368 Very Poor 1.368 Very Poor 

Aug 0.987 Poor 0.987 Poor 1.163 Very Poor 1.195 Very Poor 1.195 Very Poor 

Sep 1.066 Very Poor 1.135 Very Poor 1.153 Very Poor 1.370 Very Poor 1.198 Very Poor 

Oct 1.178 Very Poor 1.185 Very Poor 1.142 Very Poor 1.288 Very Poor 1.288 Very Poor 

Nov 1.165 Very Poor 1.231 Very Poor 1.199 Very Poor 1.350 Very Poor 1.350 Very Poor 

Dec 1.301 Very Poor 1.301 Very Poor 1.163 Very Poor 1.163 Very Poor 1.163 Very Poor 

S4 
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  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

Jan 1.383 Very Poor 1.383 Very Poor 1.363 Very Poor 1.363 Very Poor 1.474 Very Poor 

Feb 1.340 Very Poor 1.340 Very Poor 1.331 Very Poor 1.483 Very Poor 1.518 Very Poor 

Mar 1.417 Very Poor 1.417 Very Poor 1.256 Very Poor 1.337 Very Poor 1.581 Very Poor 

Apr 1.328 Very Poor 1.399 Very Poor 1.328 Very Poor 1.399 Very Poor 1.560 Very Poor 

May 1.367 Very Poor 1.601 Very Poor 1.367 Very Poor 1.367 Very Poor 1.601 Very Poor 

Jun 1.381 Very Poor 1.381 Very Poor 1.411 Very Poor 1.411 Very Poor 1.559 Very Poor 

Jul 1.267 Very Poor 1.267 Very Poor 1.315 Very Poor 1.485 Very Poor 1.485 Very Poor 

Aug 1.070 Very Poor 1.070 Very Poor 1.292 Very Poor 1.378 Very Poor 1.378 Very Poor 

Sep 1.167 Very Poor 1.247 Very Poor 1.269 Very Poor 1.483 Very Poor 1.454 Very Poor 

Oct 1.257 Very Poor 1.284 Very Poor 1.247 Very Poor 1.377 Very Poor 1.377 Very Poor 

Nov 1.271 Very Poor 1.352 Very Poor 1.326 Very Poor 1.417 Very Poor 1.415 Very Poor 

Dec 1.396 Very Poor 1.396 Very Poor 1.285 Very Poor 1.285 Very Poor 1.285 Very Poor 

S5 

Jan 1.467 Very Poor 1.467 Very Poor 1.346 Very Poor 1.346 Very Poor 1.555 Very Poor 

Feb 1.457 Very Poor 1.457 Very Poor 1.354 Very Poor 1.762 Very Poor 1.657 Very Poor 

Mar 1.565 Very Poor 1.565 Very Poor 1.537 Very Poor 1.605 Very Poor 1.727 Very Poor 

Apr 1.649 Very Poor 1.743 Very Poor 1.649 Very Poor 1.743 Very Poor 1.859 Very Poor 
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  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

May 1.648 Very Poor 1.828 Very Poor 1.648 Very Poor 1.648 Very Poor 1.828 Very Poor 

Jun 1.513 Very Poor 1.513 Very Poor 1.587 Very Poor 1.587 Very Poor 1.797 Very Poor 

Jul 1.438 Very Poor 1.438 Very Poor 1.539 Very Poor 1.646 Very Poor 1.646 Very Poor 

Aug 1.254 Very Poor 1.254 Very Poor 1.525 Very Poor 1.545 Very Poor 1.545 Very Poor 

Sep 1.373 Very Poor 1.376 Very Poor 1.491 Very Poor 1.610 Very Poor 1.513 Very Poor 

Oct 1.402 Very Poor 1.335 Very Poor 1.376 Very Poor 1.484 Very Poor 1.484 Very Poor 

Nov 1.384 Very Poor 1.415 Very Poor 1.421 Very Poor 1.486 Very Poor 1.486 Very Poor 

Dec 1.423 Very Poor 1.423 Very Poor 1.496 Very Poor 1.496 Very Poor 1.496 Very Poor 

S6 

Jan 1.578 Very Poor 1.578 Very Poor 1.497 Very Poor 1.497 Very Poor 1.651 Very Poor 

Feb 1.595 Very Poor 1.595 Very Poor 1.541 Very Poor 1.874 Very Poor 1.786 Very Poor 

Mar 1.664 Very Poor 1.664 Very Poor 1.687 Very Poor 1.755 Very Poor 1.840 Very Poor 

Apr 1.803 Very Poor 1.664 Very Poor 1.803 Very Poor 1.903 Very Poor 2.020 Very Poor 

May 1.794 Very Poor 1.971 Very Poor 1.794 Very Poor 1.794 Very Poor 1.971 Very Poor 

Jun 1.669 Very Poor 1.669 Very Poor 1.721 Very Poor 1.721 Very Poor 1.951 Very Poor 

Jul 1.619 Very Poor 1.619 Very Poor 1.778 Very Poor 1.791 Very Poor 1.791 Very Poor 

Aug 1.338 Very Poor 1.338 Very Poor 1.703 Very Poor 1.663 Very Poor 1.663 Very Poor 
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  2013 2014 2015 2016 2017 

  SPI Status SPI Status SPI Status SPI Status SPI Status 

Sep 1.497 Very Poor 1.526 Very Poor 1.614 Very Poor 1.651 Very Poor 1.622 Very Poor 

Oct 1.558 Very Poor 1.447 Very Poor 1.366 Very Poor 1.579 Very Poor 1.579 Very Poor 

Nov 1.541 Very Poor 1.548 Very Poor 1.543 Very Poor 1.615 Very Poor 1.615 Very Poor 

Dec 1.579 Very Poor 1.579 Very Poor 1.645 Very Poor 1.645 Very Poor 1.645 Very Poor 

S7 

Jan 1.715 Very Poor 1.715 Very Poor 1.821 Very Poor 1.821 Very Poor 1.945 Very Poor 

Feb 1.809 Very Poor 1.809 Very Poor 1.838 Very Poor 2.022 Very Poor 2.114 Very Poor 

Mar 2.000 Very Poor 2.000 Very Poor 2.032 Very Poor 2.013 Very Poor 2.084 Very Poor 

Apr 2.070 Very Poor 2.027 Very Poor 2.070 Very Poor 2.027 Very Poor 2.125 Very Poor 

May 2.096 Very Poor 2.109 Very Poor 2.096 Very Poor 2.096 Very Poor 2.109 Very Poor 

Jun 1.927 Very Poor 1.927 Very Poor 1.996 Very Poor 1.996 Very Poor 2.177 Very Poor 

Jul 1.999 Very Poor 1.999 Very Poor 2.093 Very Poor 1.992 Very Poor 1.992 Very Poor 

Aug 1.513 Very Poor 1.513 Very Poor 1.847 Very Poor 1.830 Very Poor 1.830 Very Poor 

Sep 1.647 Very Poor 1.874 Very Poor 1.831 Very Poor 1.903 Very Poor 2.130 Very Poor 

Oct 1.716 Very Poor 1.851 Very Poor 1.840 Very Poor 1.938 Very Poor 1.938 Very Poor 

Nov 1.704 Very Poor 1.858 Very Poor 1.941 Very Poor 1.971 Very Poor 1.971 Very Poor 

Dec 1.728 Very Poor 1.728 Very Poor 1.950 Very Poor 1.950 Very Poor 1.950 Very Poor 
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5.6.3 Assessment of CPI 

According to the approach used to categorize the overall water quality status of the river 

Gomti, the CPI value was assessed for each location using water quality measures (from 

January 2013 to December 2017) (Table 5.10). The monthly CPI data were organized 

to examine the seasonal variations in water quality, and the mean CPI of each year 

during the study period was calculated using this data (Figure 5.20).  

 

 

Figure 5.20: Variation of CPI of studied stations in the Gomti River for the period 

2013-2017 

 

The CPI values at S1 and S2 for all seasons were found in the range of 0.688 to 1.054 

with an average of 0.918 and 0.725 to 1.087 with an average of 0.962 respectively, 

indicating basically qualified (0.81-1.0), i.e., poor quality and only allowable for 

irrigation purposes. Comparably, the CPI values at sampling stations S3, S4, S5, S6, 

and S7 were observed 0.787 to 1.348 with an average of 1.063, 0.846 to 1.455 with an 

average of 1.143, 0.955 to 1.577 with an average of 1.256, 1.014 to 1.662 with an 

average of 1.340 and 1.132 to 1.836 with an average of 1.504 respectively, indicating 

polluted (1.01-2.0), i.e., very poor quality (polluted) and can be used restrictedly for 

irrigation. It was also noticed that the river Gomti water was found only in three 

categories: qualified (0.41-0.8), basically qualified (0.81-1.0), and polluted (1.01-2.0) 

during the study period at different locations and months. Moreover, the water quality 
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of the rivers during the year 2013–17 was found to be in the polluted category, and CPI 

values increased from sampling stations S1 to S7, showing an increase in pollutant load 

as a result of recent, excessive human activity. Additionally, similar remarks regarding 

the unsuitability of water were made by Sidabutar et al. (2017), Wang et al. (2018), 

Matta et al. (2018), Kumar et al. (2020a), Pramanik et al. (2020) and Kumar et al. 

(2021b) during their investigation of water quality by CPI.  

 

5.6.4 Assessment of CPCB-WQI 

CPCB-WQI was developed for the evaluation of the water quality of River Ganga by 

Ved Prakash et al. (1990), which was the modified version of NSF-WQI (Abbasi and 

Abbasi, 2012). The index was modified in terms of the set of parameters and weights. 

This index model calculated water quality based on only four parameters (pH, DO, 

BOD, and FC). CPCB-WQI value was evaluated for each location using selected water 

quality parameters (between January 2013 and December 2017) according to the 

technique used to categorize the river Gomti's overall water quality condition (Table 

5.11). This model aggregated the index value based on the weighted product method, 

which usually worked well for low values with great variability and followed a linear 

scale for classification.   

The CPCB-WQI values for all seasons were found in range of 30.31 to 100.44 with a 

mean of 54.61 at S1, 38.81 to 94.99 with a mean of 55.14 at S2, 29.68 to 63.10 with a 

mean of 45.38 at S3, 28.92 to 54.71 with a mean of 40.86 at S4, 27.65 to 45.97 with a 

mean of 34.43 at S5, 26.22 to 40.60 with a mean of 31.88 at S6 and 25.66 to 34.35 with 

a mean of 29.18 at S7. The mean values of CPCB-WQI at S1 and S2 lie under the 

category medium to good, Class -B (50-63), S3 and S4 under the category bad, Class -

C (38-50), S5, S6, and S7 under category bad to very bad, Class – D & E (<38). It was 

also noticed that the river Gomti water was found in all categories classified by CPCB-

WQI for different sampling stations during different months of the study period. The 

result of CPCB-WQI could be well related to the biological and physicochemical 

results. Also, well-defined annual and site-wise variation was observed in the CPCB-

WQI values (Figure 5.21); thus, any little change in the pollution concentration could 

be well noticed. According to CPCB-WQI values, the water quality of river Gomti is 

deteriorating during its course to Lucknow (UP) from upstream (S1) to downstream 

(S7). Several researchers used this index, Bhutiani et al. (2016), Singh et al. (2018), and 

Kharake and Raut (2021) on other rivers in India. 
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Table 5.10: Water quality status of the river Gomti during the study period as per CPI 

  2013 2014 2015 2016 2017 

  CPI Status CPI Status CPI Status CPI Status CPI Status 

S1 

Jan  0.944 Basically Qualified 0.944 Basically Qualified 0.924 Basically Qualified 0.924 Basically Qualified 0.950 Basically Qualified 

Feb 0.990 Basically Qualified 0.990 Basically Qualified 0.964 Basically Qualified 1.007 Polluted 0.983 Basically Qualified 

Mar 0.991 Basically Qualified 0.991 Basically Qualified 0.905 Basically Qualified 1.054 Polluted 0.995 Basically Qualified 

Apr 0.912 Basically Qualified 1.050 Polluted 0.912 Basically Qualified 1.050 Polluted 1.020 Polluted 

May 0.925 Basically Qualified 1.012 Polluted 0.925 Basically Qualified 0.925 Basically Qualified 1.012 Polluted 

Jun 1.023 Polluted 1.023 Polluted 0.933 Basically Qualified 0.933 Basically Qualified 1.017 Polluted 

Jul 0.938 Basically Qualified 0.938 Basically Qualified 0.799 Qualified 0.931 Basically Qualified 0.931 Basically Qualified 

Aug 0.688 Qualified 0.688 Qualified 0.922 Basically Qualified 0.773 Qualified 0.773 Qualified 

Sep 0.770 Qualified 0.843 Basically Qualified 0.856 Basically Qualified 0.766 Qualified 0.768 Qualified 

Oct 0.871 Basically Qualified 0.876 Basically Qualified 0.858 Basically Qualified 0.853 Basically Qualified 0.853 Basically Qualified 

Nov 0.877 Basically Qualified 0.924 Basically Qualified 0.869 Basically Qualified 0.912 Basically Qualified 0.912 Basically Qualified 

Dec 0.926 Basically Qualified 0.926 Basically Qualified 0.930 Basically Qualified 0.930 Basically Qualified 0.930 Basically Qualified 

S2 

Jan  0.984 Basically Qualified 0.984 Basically Qualified 0.970 Basically Qualified 0.970 Basically Qualified 0.991 Basically Qualified 

Feb 1.041 Polluted 1.041 Polluted 1.026 Polluted 1.038 Polluted 1.015 Polluted 

Mar 1.048 Polluted 1.048 Polluted 0.971 Basically Qualified 1.087 Polluted 1.010 Polluted 
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  2013 2014 2015 2016 2017 

  CPI Status CPI Status CPI Status CPI Status CPI Status 

Apr 0.976 Basically Qualified 1.073 Polluted 0.976 Basically Qualified 1.073 Polluted 1.047 Polluted 

May 0.984 Basically Qualified 1.066 Polluted 0.984 Basically Qualified 0.984 Basically Qualified 1.065 Polluted 

Jun 1.062 Polluted 1.062 Polluted 0.995 Basically Qualified 0.995 Basically Qualified 1.078 Polluted 

Jul 0.969 Basically Qualified 0.969 Basically Qualified 0.867 Basically Qualified 0.985 Basically Qualified 0.985 Basically Qualified 

Aug 0.725 Qualified 0.725 Qualified 0.983 Basically Qualified 0.781 Qualified 0.781 Qualified 

Sep 0.812 Basically Qualified 0.880 Basically Qualified 0.906 Basically Qualified 0.804 Basically Qualified 0.850 Basically Qualified 

Oct 0.902 Basically Qualified 0.916 Basically Qualified 0.898 Basically Qualified 0.888 Basically Qualified 0.888 Basically Qualified 

Nov 0.907 Basically Qualified 0.966 Basically Qualified 0.911 Basically Qualified 0.959 Basically Qualified 0.959 Basically Qualified 

Dec 0.961 Basically Qualified 0.961 Basically Qualified 0.980 Basically Qualified 0.980 Basically Qualified 0.980 Basically Qualified 

S3 

Jan  1.024 Polluted 1.024 Polluted 1.021 Polluted 1.021 Polluted 1.125 Polluted 

Feb 1.088 Polluted 1.088 Polluted 1.064 Polluted 1.132 Polluted 1.162 Polluted 

Mar 1.114 Polluted 1.114 Polluted 1.038 Polluted 1.205 Polluted 1.316 Polluted 

Apr 1.035 Polluted 1.235 Polluted 1.035 Polluted 1.235 Polluted 1.339 Polluted 

May 1.051 Polluted 1.348 Polluted 1.051 Polluted 1.051 Polluted 1.347 Polluted 

Jun 1.149 Polluted 1.149 Polluted 1.076 Polluted 1.076 Polluted 1.343 Polluted 

Jul 1.046 Polluted 1.046 Polluted 0.922 Basically Qualified 1.236 Polluted 1.236 Polluted 

Aug 0.787 Qualified 0.787 Qualified 1.044 Polluted 0.911 Basically Qualified 0.911 Basically Qualified 

Sep 0.862 Basically Qualified 0.962 Basically Qualified 0.951 Basically Qualified 0.987 Basically Qualified 0.962 Basically Qualified 
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  2013 2014 2015 2016 2017 

  CPI Status CPI Status CPI Status CPI Status CPI Status 

Oct 0.961 Basically Qualified 0.985 Basically Qualified 0.947 Basically Qualified 1.029 Polluted 1.029 Polluted 

Nov 0.945 Basically Qualified 1.022 Polluted 0.963 Basically Qualified 1.086 Polluted 1.086 Polluted 

Dec 0.993 Basically Qualified 0.993 Basically Qualified 1.018 Polluted 1.018 Polluted 1.018 Polluted 

S4 

Jan  1.099 Polluted 1.099 Polluted 1.081 Polluted 1.081 Polluted 1.179 Polluted 

Feb 1.135 Polluted 1.135 Polluted 1.123 Polluted 1.266 Polluted 1.249 Polluted 

Mar 1.192 Polluted 1.192 Polluted 1.102 Polluted 1.287 Polluted 1.378 Polluted 

Apr 1.117 Polluted 1.300 Polluted 1.117 Polluted 1.300 Polluted 1.388 Polluted 

May 1.139 Polluted 1.455 Polluted 1.139 Polluted 1.139 Polluted 1.455 Polluted 

Jun 1.257 Polluted 1.257 Polluted 1.183 Polluted 1.183 Polluted 1.434 Polluted 

Jul 1.151 Polluted 1.151 Polluted 1.024 Polluted 1.306 Polluted 1.306 Polluted 

Aug 0.846 Basically Qualified 0.846 Basically Qualified 1.132 Polluted 1.006 Polluted 1.006 Polluted 

Sep 0.929 Basically Qualified 1.035 Polluted 1.027 Polluted 1.062 Polluted 1.119 Polluted 

Oct 1.022 Polluted 1.064 Polluted 1.015 Polluted 1.090 Polluted 1.090 Polluted 

Nov 1.018 Polluted 1.111 Polluted 1.055 Polluted 1.144 Polluted 1.141 Polluted 

Dec 1.064 Polluted 1.064 Polluted 1.090 Polluted 1.090 Polluted 1.090 Polluted 

S5 

Jan  1.173 Polluted 1.173 Polluted 1.129 Polluted 1.129 Polluted 1.260 Polluted 

Feb 1.227 Polluted 1.227 Polluted 1.188 Polluted 1.429 Polluted 1.354 Polluted 
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  2013 2014 2015 2016 2017 

  CPI Status CPI Status CPI Status CPI Status CPI Status 

Mar 1.301 Polluted 1.301 Polluted 1.270 Polluted 1.449 Polluted 1.478 Polluted 

Apr 1.297 Polluted 1.508 Polluted 1.297 Polluted 1.508 Polluted 1.563 Polluted 

May 1.319 Polluted 1.577 Polluted 1.319 Polluted 1.319 Polluted 1.576 Polluted 

Jun 1.355 Polluted 1.355 Polluted 1.321 Polluted 1.321 Polluted 1.575 Polluted 

Jul 1.271 Polluted 1.271 Polluted 1.161 Polluted 1.400 Polluted 1.400 Polluted 

Aug 0.955 Basically Qualified 0.955 Basically Qualified 1.278 Polluted 1.103 Polluted 1.103 Polluted 

Sep 1.050 Polluted 1.129 Polluted 1.160 Polluted 1.156 Polluted 1.165 Polluted 

Oct 1.118 Polluted 1.131 Polluted 1.118 Polluted 1.174 Polluted 1.174 Polluted 

Nov 1.106 Polluted 1.191 Polluted 1.144 Polluted 1.225 Polluted 1.225 Polluted 

Dec 1.123 Polluted 1.123 Polluted 1.213 Polluted 1.213 Polluted 1.213 Polluted 

S6 

Jan  1.259 Polluted 1.259 Polluted 1.230 Polluted 1.230 Polluted 1.322 Polluted 

Feb 1.322 Polluted 1.322 Polluted 1.301 Polluted 1.502 Polluted 1.433 Polluted 

Mar 1.369 Polluted 1.369 Polluted 1.363 Polluted 1.531 Polluted 1.549 Polluted 

Apr 1.397 Polluted 1.595 Polluted 1.397 Polluted 1.595 Polluted 1.645 Polluted 

May 1.415 Polluted 1.659 Polluted 1.415 Polluted 1.415 Polluted 1.659 Polluted 

Jun 1.458 Polluted 1.458 Polluted 1.415 Polluted 1.415 Polluted 1.662 Polluted 

Jul 1.389 Polluted 1.389 Polluted 1.291 Polluted 1.480 Polluted 1.480 Polluted 

Aug 1.014 Polluted 1.014 Polluted 1.388 Polluted 1.169 Polluted 1.169 Polluted 
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  2013 2014 2015 2016 2017 

  CPI Status CPI Status CPI Status CPI Status CPI Status 

Sep 1.126 Polluted 1.219 Polluted 1.241 Polluted 1.191 Polluted 1.212 Polluted 

Oct 1.211 Polluted 1.212 Polluted 1.115 Polluted 1.232 Polluted 1.232 Polluted 

Nov 1.206 Polluted 1.276 Polluted 1.223 Polluted 1.298 Polluted 1.298 Polluted 

Dec 1.227 Polluted 1.227 Polluted 1.298 Polluted 1.298 Polluted 1.298 Polluted 

S7 

Jan  1.370 Polluted 1.370 Polluted 1.419 Polluted 1.419 Polluted 1.537 Polluted 

Feb 1.487 Polluted 1.487 Polluted 1.470 Polluted 1.654 Polluted 1.630 Polluted 

Mar 1.590 Polluted 1.590 Polluted 1.558 Polluted 1.684 Polluted 1.700 Polluted 

Apr 1.554 Polluted 1.699 Polluted 1.554 Polluted 1.699 Polluted 1.739 Polluted 

May 1.586 Polluted 1.799 Polluted 1.586 Polluted 1.586 Polluted 1.799 Polluted 

Jun 1.633 Polluted 1.633 Polluted 1.575 Polluted 1.575 Polluted 1.836 Polluted 

Jul 1.630 Polluted 1.630 Polluted 1.461 Polluted 1.608 Polluted 1.608 Polluted 

Aug 1.132 Polluted 1.132 Polluted 1.462 Polluted 1.277 Polluted 1.277 Polluted 

Sep 1.240 Polluted 1.417 Polluted 1.382 Polluted 1.346 Polluted 1.451 Polluted 

Oct 1.322 Polluted 1.433 Polluted 1.389 Polluted 1.444 Polluted 1.444 Polluted 

Nov 1.308 Polluted 1.463 Polluted 1.432 Polluted 1.519 Polluted 1.519 Polluted 

Dec 1.337 Polluted 1.337 Polluted 1.474 Polluted 1.474 Polluted 1.474 Polluted 
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Table 5.11: Water quality status of the river Gomti during the study period as per CPCB-WQI 

 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

S1 

Jan 31.03 Bad to very bad 31.03 Bad to very bad 100.44 Good to excellent 100.44 Good to excellent 95.51 Good to excellent 

Feb 30.39 Bad to very bad 30.39 Bad to very bad 68.63 Good to excellent 63.87 Good to excellent 94.41 Good to excellent 

Mar 31.32 Bad to very bad 31.32 Bad to very bad 52.92 Medium to good 59.75 Medium to good 59.11 Medium to good 

Apr 52.90 Medium to good 58.00 Medium to good 52.90 Medium to good 58.00 Medium to good 56.68 Medium to good 

May 52.90 Medium to good 52.12 Medium to good 52.90 Medium to good 52.90 Medium to good 52.13 Medium to good 

Jun 36.41 Bad to very bad 53.95 Medium to good 51.91 Medium to good 51.91 Medium to good 52.73 Medium to good 

Jul 39.54 Bad 51.65 Medium to good 50.57 Medium to good 49.00 Bad 49.00 Bad 

Aug 44.53 Bad 52.26 Medium to good 52.92 Medium to good 54.04 Medium to good 54.04 Medium to good 

Sep 40.96 Bad 53.69 Medium to good 55.18 Medium to good 54.39 Medium to good 54.32 Medium to good 

Oct 37.23 Bad to very bad 60.84 Medium to good 55.55 Medium to good 55.26 Medium to good 55.26 Medium to good 

Nov 35.59 Bad to very bad 61.07 Medium to good 57.95 Medium to good 58.20 Medium to good 58.20 Medium to good 

Dec 30.31 Bad to very bad 96.19 Good to excellent 63.36 Good to excellent 63.36 Good to excellent 63.36 Good to excellent 

S2 

Jan 64.69 Good to excellent 64.69 Good to excellent 68.58 Good to excellent 68.58 Good to excellent 64.05 Good to excellent 

Feb 64.33 Good to excellent 64.33 Good to excellent 66.53 Good to excellent 56.08 Medium to good 94.99 Good to excellent 

Mar 59.82 Medium to good 59.82 Medium to good 51.09 Medium to good 51.41 Medium to good 53.81 Medium to good 
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 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

Apr 50.87 Medium to good 51.14 Medium to good 50.87 Medium to good 51.14 Medium to good 48.42 Bad 

May 50.05 Medium to good 48.60 Bad 50.05 Medium to good 50.05 Medium to good 48.60 Bad 

Jun 52.54 Medium to good 52.54 Medium to good 49.41 Bad 49.41 Bad 46.08 Bad 

Jul 49.84 Bad 49.84 Bad 48.74 Bad 38.81 Bad 38.81 Bad 

Aug 50.86 Medium to good 50.86 Medium to good 50.88 Medium to good 46.59 Bad 46.59 Bad 

Sep 52.60 Medium to good 52.23 Medium to good 53.37 Medium to good 52.26 Medium to good 47.50 Bad 

Oct 55.80 Medium to good 59.03 Medium to good 53.68 Medium to good 51.47 Medium to good 51.47 Medium to good 

Nov 60.73 Medium to good 60.04 Medium to good 56.70 Medium to good 56.08 Medium to good 56.08 Medium to good 

Dec 64.87 Good to excellent 64.87 Good to excellent 61.73 Medium to good 61.73 Medium to good 61.73 Medium to good 

S3 

Jan 61.72 Medium to good 61.72 Medium to good 63.10 Good to excellent 63.10 Good to excellent 44.21 Bad 

Feb 57.29 Medium to good 57.27 Medium to good 58.04 Medium to good 33.30 Bad to very bad 46.96 Bad 

Mar 53.08 Medium to good 53.08 Medium to good 44.60 Bad 34.43 Bad to very bad 30.33 Bad to very bad 

Apr 46.27 Bad 34.06 Bad to very bad 46.27 Bad 34.06 Bad to very bad 29.68 Bad to very bad 

May 44.29 Bad 31.56 Bad to very bad 44.29 Bad 44.29 Bad 31.56 Bad to very bad 

Jun 45.49 Bad 45.49 Bad 43.55 Bad 43.55 Bad 33.12 Bad to very bad 

Jul 43.52 Bad 43.52 Bad 42.54 Bad 33.58 Bad to very bad 33.58 Bad to very bad 

Aug 45.95 Bad 45.95 Bad 42.76 Bad 40.37 Bad 40.37 Bad 
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 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

Sep 49.00 Bad 48.25 Bad 48.23 Bad 44.48 Bad 33.91 Bad to very bad 

Oct 51.38 Medium to good 53.09 Medium to good 48.78 Bad 38.87 Bad 38.87 Bad 

Nov 55.77 Medium to good 55.12 Medium to good 51.45 Medium to good 46.35 Bad 46.35 Bad 

Dec 60.01 Medium to good 60.01 Medium to good 40.40 Bad 40.40 Bad 40.40 Bad 

S4 

Jan 54.71 Medium to good 54.71 Medium to good 53.84 Medium to good 53.84 Medium to good 39.25 Bad 

Feb 48.62 Bad 48.62 Bad 49.13 Bad 35.86 Bad to very bad 40.44 Bad 

Mar 46.16 Bad 46.16 Bad 36.77 Bad to very bad 32.25 Bad to very bad 29.76 Bad to very bad 

Apr 38.09 Bad 34.37 Bad to very bad 38.09 Bad 34.37 Bad to very bad 28.92 Bad to very bad 

May 36.78 Bad to very bad 30.07 Bad to very bad 36.78 Bad to very bad 36.78 Bad to very bad 30.07 Bad to very bad 

Jun 39.41 Bad 39.41 Bad 37.10 Bad to very bad 37.10 Bad to very bad 31.94 Bad to very bad 

Jul 39.55 Bad 39.55 Bad 38.37 Bad 32.22 Bad to very bad 32.22 Bad to very bad 

Aug 42.14 Bad 42.14 Bad 38.32 Bad 38.16 Bad 38.16 Bad 

Sep 45.57 Bad 41.30 Bad 43.73 Bad 41.57 Bad 32.08 Bad to very bad 

Oct 48.26 Bad 48.56 Bad 44.85 Bad 37.36 Bad to very bad 37.36 Bad to very bad 

Nov 51.11 Bad 48.48 Bad 44.45 Bad 42.90 Bad 42.90 Bad 

Dec 53.98 Bad 53.98 Bad 37.61 Bad to very bad 37.614 Bad to very bad 37.61 Bad to very bad 
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 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

 

S5 

Jan 45.31 Bad 45.31 Bad 38.94 Bad 38.94 Bad 31.47 Bad to very bad 

Feb 39.62 Bad 39.62 Bad 33.60 Bad to very bad 31.86 Bad to very bad 31.73 Bad to very bad 

Mar 35.15 Bad to very bad 35.15 Bad to very bad 27.65 Bad to very bad 28.74 Bad to very bad 28.12 Bad to very bad 

Apr 30.41 Bad to very bad 31.53 Bad to very bad 30.41 Bad to very bad 31.53 Bad to very bad 29.32 Bad to very bad 

May 30.78 Bad to very bad 30.12 Bad to very bad 30.78 Bad to very bad 30.78 Bad to very bad 30.12 Bad to very bad 

Jun 33.10 Bad to very bad 33.01 Bad to very bad 31.98 Bad to very bad 31.98 Bad to very bad 31.86 Bad to very bad 

Jul 35.33 Bad to very bad 35.33 Bad to very bad 32.85 Bad to very bad 29.54 Bad to very bad 29.540 Bad to very bad 

Aug 38.34 Bad 38.34 Bad 33.39 Bad to very bad 35.75 Bad to very bad 35.75 Bad to very bad 

Sep 39.83 Bad 34.33 Bad to very bad 36.69 Bad 35.18 Bad to very bad 31.77 Bad to very bad 

Oct 43.99 Bad 37.25 Bad 34.69 Bad to very bad 34.91 Bad to very bad 34.91 Bad to very bad 

Nov 45.97 Bad 35.15 Bad 32.08 Bad to very bad 31.30 Bad to very bad 31.30 Bad to very bad 

Dec 43.28 Bad 43.28 Bad 32.25 Bad to very bad 32.25 Bad to very bad 32.25 Bad to very bad 

S6 

Jan 39.82 Bad 39.82 Bad 33.60 Bad to very bad 33.60 Bad to very bad 29.72 Bad to very bad 

Feb 33.48 Bad to very bad 33.48 Bad to very bad 30.05 Bad to very bad 31.37 Bad to very bad 30.26 Bad to very bad 

Mar 32.08 Bad to very bad 32.08 Bad to very bad 26.22 Bad to very bad 28.27 Bad to very bad 27.57 Bad to very bad 
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 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

Apr 28.14 Bad to very bad 30.56 Bad to very bad 28.14 Bad to very bad 30.56 Bad to very bad 30.52 Bad to very bad 

May 27.95 Bad to very bad 29.88 Bad to very bad 27.95 Bad to very bad 27.95 Bad to very bad 29.88 Bad to very bad 

Jun 30.15 Bad to very bad 30.15 Bad to very bad 29.26 Bad to very bad 29.26 Bad to very bad 31.75 Bad to very bad 

Jul 31.79 Bad to very bad 31.79 Bad to very bad 30.07 Bad to very bad 30.41 Bad to very bad 30.41 Bad to very bad 

Aug 36.30 Bad to very bad 36.30 Bad to very bad 30.35 Bad to very bad 34.41 Bad to very bad 34.41 Bad to very bad 

Sep 38.21 Bad 31.26 Bad to very bad 34.37 Bad to very bad 32.86 Bad to very bad 30.13 Bad to very bad 

Oct 40.59 Bad 33.07 Bad to very bad 31.07 Bad to very bad 33.13 Bad to very bad 33.13 Bad to very bad 

Nov 40.60 Bad 30.73 Bad to very bad 30.22 Bad to very bad 28.56 Bad to very bad 28.56 Bad to very bad 

Dec 39.50 Bad 39.50 Bad 29.26 Bad to very bad 29.26 Bad to very bad 29.26 Bad to very bad 

S7 

Jan 30.35 Bad to very bad 30.35 Bad to very bad 30.25 Bad to very bad 30.25 Bad to very bad 28.22 Bad to very bad 

Feb 27.84 Bad to very bad 27.84 Bad to very bad 27.62 Bad to very bad 26.32 Bad to very bad 27.79 Bad to very bad 

Mar 28.36 Bad to very bad 28.36 Bad to very bad 25.66 Bad to very bad 29.47 Bad to very bad 26.68 Bad to very bad 

Apr 27.07 Bad to very bad 28.64 Bad to very bad 27.07 Bad to very bad 28.64 Bad to very bad 28.43 Bad to very bad 

May 27.05 Bad to very bad 28.49 Bad to very bad 27.05 Bad to very bad 27.05 Bad to very bad 28.49 Bad to very bad 

Jun 29.44 Bad to very bad 29.44 Bad to very bad 29.03 Bad to very bad 29.03 Bad to very bad 28.44 Bad to very bad 

Jul 28.75 Bad to very bad 28.75 Bad to very bad 28.76 Bad to very bad 28.83 Bad to very bad 28.83 Bad to very bad 

Aug 31.02 Bad to very bad 31.02 Bad to very bad 28.94 Bad to very bad 32.76 Bad to very bad 32.76 Bad to very bad 
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 2013 2014 2015 2016 2017 

 
CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

CPCB-

WQI 
Status 

Sep 34.36 Bad to very bad 28.75 Bad to very bad 30.35 Bad to very bad 31.40 Bad to very bad 28.95 Bad to very bad 

Oct 33.48 Bad to very bad 30.62 Bad to very bad 28.74 Bad to very bad 29.69 Bad to very bad 29.69 Bad to very bad 

Nov 33.480 Bad to very bad 29.00 Bad to very bad 26.96 Bad to very bad 27.79 Bad to very bad 27.79 Bad to very bad 

Dec 32.657 Bad to very bad 32.66 Bad to very bad 28.50 Bad to very bad 28.50 Bad to very bad 28.50 Bad to very bad 
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Figure 5.21: Variation of CPCB-WQI of studied stations in the Gomti River for 

the period 2013-2017 

 

5.7 Geospatial assessment of water quality indices 

To manage river water sustainably, it is crucial to monitor pollution patterns and their 

trends in relation to urbanization. The locational distribution of water pollutants is 

delineated using spatial distribution maps of estimated water quality indices 

(Arithmetic WQI, SPI, CPI, and CPCB-WQI), which also aid in the holistic suggestion 

of surface water pollution prevention and treatment actions. 

Integration of the Arithmetic WQI, SPI, CPI, and CPCB-WQI data collecting with GIS 

can enable policymakers or stakeholders to assess the water quality situation of the river 

Gomti in Lucknow (UP). In ArcGIS 10.4, the spatial analyst tool's IDW interpolation 

method is used to perform the spatial interpolation. IDW predicts the values of the 

measured and unmeasured sites using a weighted distance (Chabuk et al., 2020; Ali et 

al., 2021). Although the indices described above show the quality of the water, they do 

not really convey that quality. As a result, the data set's integration with a GIS aid in 

letting the public and policymakers know the actual status of the river Gomti's water 

quality. Policymakers and the general public can easily access and comprehend the 

study's output (Chabuk et al., 2020; Ali et al., 2021). 

For the given stretch of the river Gomti in Lucknow, WQIs were analyzed for five years 

in a row (2013–2017). The arithmetic WQI (Figure 5.22), SPI (Figure 5.23), CPI 
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(Figure 5.24), and CPCB-WQI (Figure 5.25) values were interpolated with IDW 

geostatistics in ArcGIS for improved interpretability. The results clearly exposed the 

pollution load of the river Gomti at all the sampling stations. Further, it is observed that 

water quality is deteriorating continually due to high anthropogenic activities at the 

sampling locations S1 – S7. The trends of pollution load indicate the change in river 

water quality from S1 to S7 during the study period (2013-2017). 

The current WQIs can be used with GIS to create stronger water quality management 

plans. Recently, several researchers (Katyal et al., 2012; Alsaqqar et al., 2015; 

Jayalakshmi and Velappan, 2015; Shil et al., 2019; Chabuk et al., 2020; Ali et al., 2021; 

Oseke et al., 2021) stated the use of GIS in water quality assessment. GIS integrates 

geographical data with laboratory data exceptionally well and more correctly predicts 

the spatial distributions of water quality indicators. 
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Figure 5.22: Arithmetic WQI of the river Gomti for suitability assessment (2013-

2017)  
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Figure 5.23: SPI of the river Gomti for suitability assessment (2013-2017) 
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Figure 5.24: CPI of the river Gomti for suitability assessment (2013-2017) 
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Figure 5.25: CPCB-WQI of the river Gomti for suitability assessment (2013-2017) 
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5.8 Statistical modeling 

The water quality at all sampling stations along the Gomti River has been examined 

using statistical and time series analysis. Table 5.12 presents key statistical measures, 

including the mean, median, mode, minimum, maximum, range, standard deviation 

(SD), kurtosis, skewness, and coefficient of variation (CoV) for the calculated water 

quality indices, namely Arithmetic WQI, SPI, CPI, and CPCB-WQI, at each of the 

sampling stations. Table 5.13 explains the trend and time series analysis of the ARIMA 

model, stationary R-squared, R-squared, RMSE, MAPE, MAE, MaxAPE, MaxAE, 

Normalized BIC, and Ljung-Box Q(18) for all calculated water quality indices at all 

sampling stations.  

 

Arithmetic WQI: In the case of S4 and S6, mean median and mode values are the 

same; thus, it shows normal behavior, low data points spread, and symmetrical and 

platykurtic curve, but for S1, S2, S3, S5, and S7, it is nonsymmetrical and platykurtic. 

Compared to the baseline model, the time series model performs better since stationary 

R-squared and R-squared values behave similarly. Due to the high RMSE value, the 

dependent series cannot be closed to the level anticipated by the model. Using the 

Ljung-Box model, for all sites, the value of statistics lies from 13.22 to 30.53, with a 

significance level ranging from 0.01 to 0.59, the degree of freedom is 15, and Winters' 

Additive ARIMA model was used for prediction. Using plot of residual ACF, residual 

PACF, forecast, observed, best fit, LCL, and UCL (ANNEXURE –II, and III), it is 

observed that the value of Arithmetic WQI lies between 86.20 to 130.24 for S1, 107.23 

to 170.54 for S2, 142.25 to 256.93 for S3, 155.86 to 247.60 for S4, 172.66 to 291.95 

for S5, 182.47 to 297.99 for S6 and 202.99 to 323.43 for S7 and at all sites, the water 

quality is impacted, as determined by the 95% confidence interval. In order to assess 

the annual variability in Arithmetic WQI, the monthly data were arranged, which were 

further used to calculate the mean Arithmetic WQI of each year during the predicted 

period (2018-2027), which is depicted in Figure 5.26.  

It is observed by the predicted value that Arithmetic WQI falls under Category E (above 

100), which is unsuitable for drinking and fish culture and requires proper treatment 

before use at all sampling stations except S1 in the monsoon season, which falls under 

Category D (76–100), i.e., very poor which is only used for irrigation. The results reflect 

that the water quality of the river Gomti is gradually degrading for the predicted future 

compared to the baseline period. 
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Table 5.12: Statistical analysis of Arithmetic WQI, SPI, CPI and CPCB-WQI 

  Mean Median Mode Minimum Maximum Range SD* Kurtosis Skewness CoV* 

S1 

Arithmetic WQI 120.81 115.98 128.36 78.99 175.61 96.61 22.90 0.40 0.85 0.19 

SPI 1.11 1.10 1.10 0.87 1.28 0.41 0.10 -0.66 -0.25 0.09 

CPI 0.92 0.93 0.93 0.69 1.05 0.37 0.08 0.59 -0.80 0.09 

CPCB-WQI 54.61 53.30 52.90 30.31 100.44 70.14 16.21 2.23 1.16 0.30 

S2 

Arithmetic WQI 117.52 116.12 138.47 83.70 148.23 64.53 14.40 -0.29 -0.14 0.12 

SPI 1.15 1.15 1.17 0.91 1.31 0.40 0.11 -0.71 -0.28 0.10 

CPI 0.96 0.98 0.98 0.73 1.09 0.36 0.09 0.77 -0.99 0.09 

CPCB-WQI 55.14 52.40 50.05 38.81 95.00 56.17 8.60 6.60 1.73 0.16 

S3 

Arithmetic WQI 137.62 139.18 151.86 92.86 184.85 91.99 21.43 -0.31 0.14 0.67 

SPI 1.25 1.24 1.24 0.98 1.47 0.48 0.10 0.02 -0.26 0.38 

CPI 1.06 1.04 1.05 0.79 1.35 0.56 0.13 0.46 0.52 0.53 

CPCB-WQI 45.38 44.54 44.29 29.67 63.10 33.42 8.94 -0.60 0.22 0.74 

S4 

Arithmetic WQI 152.33 152.14 166.87 102.99 196.60 93.61 20.72 0.15 0.01 0.14 

SPI 1.37 1.37 1.37 1.07 1.60 0.53 0.11 0.98 -0.16 0.08 
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  Mean Median Mode Minimum Maximum Range SD* Kurtosis Skewness CoV* 

CPI 1.14 1.12 1.14 0.85 1.46 0.61 0.13 0.61 0.47 0.11 

CPCB-WQI 40.86 39.33 36.78 28.92 54.71 25.79 6.95 -0.56 0.44 0.17 

S5 

Arithmetic WQI 176.66 178.08 199.72 123.35 220.99 97.64 21.83 -0.17 -0.27 0.12 

SPI 1.53 1.51 1.65 1.25 1.86 0.61 0.14 -0.22 0.40 0.09 

CPI 1.26 1.23 1.32 0.96 1.58 0.62 0.15 -0.02 0.52 0.12 

CPCB-WQI 34.43 33.01 30.78 27.65 45.97 18.32 4.53 0.39 1.01 0.13 

S6 

Arithmetic WQI 192.49 193.32 192.45 132.49 228.69 96.20 21.55 0.40 -0.50 0.11 

SPI 1.66 1.65 1.66 1.34 2.02 0.68 0.15 0.26 0.247 0.90 

CPI 1.34 1.31 1.42 1.01 1.66 0.65 0.15 -0.10 0.338 0.11 

CPCB-WQI 31.88 30.56 27.95 26.22 40.60 14.38 3.57 0.54 1.103 0.11 

S7 

Arithmetic WQI 221.12 227.61 246.52 154.66 249.39 94.73 21.75 1.40 -1.16 0.10 

SPI 1.93 1.95 2.10 1.51 2.18 0.66 0.15 0.38 -0.76 0.08 

CPI 1.50 1.49 1.59 1.13 1.84 0.70 0.15 0.00 -0.17 0.10 

CPCB-WQI 29.18 28.75 27.05 25.66 34.36 8.70 1.88 0.59 0.91 0.06 

*SD - Standard Deviation; CoV - Coefficient of variation 
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Table 5.13: Trend and time series analysis of the Gomti River Arithmetic WQI, SPI, CPI, and CPCB-WQI 

  S1 S2 S3 S4 S5 S6 S7 

Model Fit Statistics for Arithmetic WQI 

Stationary R-squared 0.59 0.70 0.77 0.75 0.81 0.80 0.78 

R-squared 0.71 0.73 0.78 0.78 0.83 0.81 0.73 

RMSE 12.54 7.55 10.16 9.82 9.19 9.52 11.42 

MAPE 7.95 5.13 5.73 4.96 3.98 3.55 4.07 

MAE 9.42 5.85 7.71 7.28 6.76 6.53 8.63 

MaxAPE 24.08 21.79 19.36 20.80 17.80 19.37 15.56 

MaxAE 29.21 27.15 26.17 27.67 32.34 39.14 33.81 

Normalized BIC 5.26 4.25 4.84 4.77 4.64 4.71 5.08 

Ljung-Box Q(18) for Arithmetic WQI 

Statistics 23.09 25.33 18.94 14.00 30.53 13.22 23.97 

df* 15 15 15 15 15 15 15 

Sig.* 0.08 0.05 0.22 0.53 0.01 0.59 0.07 

Model Fit Statistics for SPI 

Stationary R-squared 0.56 0.50 0.52 0.53 0.69 0.73 0.71 

R-squared 0.85 0.87 0.56 0.55 0.76 0.75 0.79 

RMSE 0.04 0.04 0.07 0.07 0.07 0.08 0.07 

MAPE 2.82 2.88 4.24 4.36 3.54 3.35 2.96 
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  S1 S2 S3 S4 S5 S6 S7 

MAE 0.03 0.03 0.05 0.06 0.05 0.06 0.06 

MaxAPE 11.71 8.16 13.06 11.56 12.33 12.38 9.32 

MaxAE 0.12 0.09 0.18 0.16 0.21 0.18 0.16 

Normalized BIC -6.17 -6.16 -5.13 -5.01 -5.09 -4.98 -5.13 

Ljung-Box Q(18) for SPI 

Statistics 37.44 18.69 23.59 41.19 15.36 13.35 16.32 

df* 15 15 15 15 15 15 15 

Sig.* 0.00 0.23 0.07 0.00 0.43 0.58 0.36 

Model Fit Statistics for CPI 

Stationary R-squared 0.78 0.79 0.71 0.72 0.74 0.74 0.77 

R-squared 0.73 0.76 0.66 0.67 0.76 0.77 0.81 

RMSE 0.04 0.04 0.08 0.08 0.07 0.07 0.07 

MAPE 3.60 3.30 5.16 4.85 4.23 4.07 3.39 

MAE 0.03 0.03 0.06 0.06 0.05 0.06 0.05 

MaxAPE 16.62 18.61 23.40 22.15 19.05 19.53 16.01 

MaxAE 0.15 0.18 0.24 0.25 0.24 0.27 0.23 

Normalized BIC -6.01 -6.10 -4.98 -4.96 -5.03 -5.01 -5.15 

Ljung-Box Q(18) for CPI 

Statistics 25.11 27.51 24.60 23.64 32.99 34.71 41.60 
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  S1 S2 S3 S4 S5 S6 S7 

df* 15 15 15 15 15 15 15 

Sig.* 0.05 0.03 0.06 0.07 0.01 0.00 0.00 

Model Fit Statistics for CPCB-WQI 

Stationary R-squared 0.64 0.70 0.70 0.70 0.67 0.68 0.72 

R-squared 0.59 0.71 0.69 0.77 0.75 0.63 0.54 

RMSE 12.00 4.74 5.16 3.38 2.32 2.21 1.30 

MAPE 13.36 4.27 9.26 6.63 5.19 5.16 3.15 

MAE 7.35 2.48 3.91 2.59 1.78 1.67 0.93 

MaxAPE 76.09 29.14 46.17 26.39 15.14 18.29 10.91 

MaxAE 33.75 27.68 15.37 9.93 6.55 7.22 3.75 

Normalized BIC 6.06 3.32 3.49 2.64 1.89 1.79 0.72 

Ljung-Box Q(18) for CPCB-WQI 

Statistics 6.44 9.55 8.47 10.63 26.53 26.01 40.93 

df* 3 15 15 15 15 15 15 

Sig.* 0.09 0.85 0.90 0.78 0.03 0.04 0.00 

*df - degree of freedom, Sig. - significance level 
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Figure 5.26: Variation of predicted annual mean values of Arithmetic WQI of 

studied stations in the Gomti River for the period 2018-2027  

 

SPI: All sites display normal behavior and minimal data spread. The curve is 

symmetrical and platykurtic. Because stationary R-squared and R-squared values show 

the same behavior across all sites, the prediction model is superior to the baseline 

model. The dependent series is closed at the level predicted by the model because the 

RMSE value is low. Using the Ljung-Box model, statistics lie between 13.35 and 41.19, 

the significance level varies from 0.00 to 0.58, the degree of freedom is 15, and Winters' 

Additive ARIMA model was used for prediction. Using plot of residual ACF, residual 

PACF, forecast, observed, best fit, LCL, and UCL (ANNEXURE –IV and V), show 

that the value of SPI lies between 0.97 to 1.36 for S1, 0.97 to 1.32 for S2, 1.16 to 1.66 

for S3, 1.29 to 1.87 for S4, 1.55 to 2.25 for S5, 1.64 to 2.38 for S6 and 1.86 to 2.71 for 

S7 and the quality of river water gets affected at all sampling stations during the 

predicted period (2018-2023), which is calculated at 95% confidence interval. The 

monthly data were arranged to assess the annual variability in SPI to calculate the mean 

SPI of each year during the predicted period (2018-2027), as shown in Figure 5.27.  

The result of the predicted value of SPI revealed that the Gomti River water quality is 

gradually degrading as compared to the baseline period. It is observed that SPI falls 

under very poor (1.0-3.0), i.e., severely polluted water classification, which is only 

suitable for irrigation purposes. Water quality status (WQS) is very poor, i.e., severely 
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polluted at all sampling stations in all seasons. However, in the case of stations S1 and 

S2, water quality is poor (0.5-1.0), i.e., moderately polluted during monsoon season. 

 

 

Figure 5.27: Variation of predicted annual mean values of SPI of studied stations 

in the Gomti River for the period 2018-2027 

 

CPI: Every site displays a normal curve, low, symmetric, and platykurtic data 

dispersion. Because stationary R-squared and R-squared values show similar behavior, 

the prediction model performs better than the baseline model. Because the RMSE 

values are small, the dependent series is closed at the level predicted by the model. 

Using the Ljung-Box model, the value of statistics ranges from 23.64 to 41.60, the 

significance level lies from 0.00 to 0.07, the degree of freedom is 15, and Winters' 

Additive ARIMA model was used for prediction.  

Using plot of residual ACF, residual PACF, forecast, observed, best fit, LCL, and UCL 

(ANNEXURE –VI and VII), show that the value of CPI lies between 0.78 to 1.05 for 

S1, 0.81 to 1.10 for S2, 0.98 to 1.56 for S3, 1.07 to 1.66 for S4, 1.18 to 1.84 for S5, 

1.24 to 1.88 for S6 and 1.36 to 2.07 for S7 and the quality of river water gets effected 

at all sampling stations during the predicted period (2018-2023), which is calculated at 

95% confidence limits. The monthly data were arranged to assess the annual variability 

in CPI to calculate the mean CPI of each year during the predicted period (2018-2027), 

as represented in Figure 5.28, which shows that water quality is deteriorating from S1 
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to S7 as well as from 2018-2027. CPI status at S4, S5, and S6 falls under polluted while 

S7 is under polluted and seriously polluted, suggesting that water from S4, S5, S6, and 

S7 can be used restrictedly for irrigation, and proper treatment is required before use. 

However, CPI status ranges between basically qualified and polluted at S3 and S2, 

which can be used for irrigation only, but S1 lies under three statuses: qualified, 

basically qualified, and polluted, which can be used for irrigation and industrial 

purposes. 

 

 

Figure 5.28: Variation of predicted annual mean values of CPI of studied stations 

in the Gomti River for the period 2018-2027 

 

CPCB-WQI: The mean, median, and mode do not behave normally for any of the sites, 

the standard deviation is high, and the spread is uniform and asymmetrical. Except for 

S2, which possesses leptokurtic, the curve is platykurtic. Because stationary R-squared 

and R-squared values exhibit similar behavior, the model is superior to the baseline 

model. Due to excessive RMSE values, the dependent series cannot be closed to the 

level anticipated by the model. Using the Ljung-Box model, the value of statistics lies 

between 6.44 and 40.93, the significance level between 0.00 and 0.90, the degree of 

freedom is 15 except at S1, which is 3, and the Winters' Additive ARIMA model was 

used for prediction.  
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Using plot of residual ACF, residual PACF, forecast, observed, best fit, LCL, and UCL 

(ANNEXURE –VIII and IX), it is observed that the value of CPCB-WQI lies between 

52.79 to 80.49 for S1, 36.94 to 67.14 for S2, 15.33 to 45.22 for S3, 16.43 to 41.59 for 

S4, 18.03 to 34.19 for S5, 20.47 to 30.75 for S6 and 22.61 to 29.65 for S7 and the river 

water quality gets effected at all sampling stations during the predicted period (2018-

2023), which is calculated at 95% confidence limits. To calculate the mean CPCB-WQI 

of each year during the predicted period (2018-2027), the monthly data were arranged 

to assess the annual variability in CPCB-WQI, represented in Figure 5.29, which shows 

that water quality is deteriorating from S1 to S7.  

This index classified the last three sites (S5 to S7) into bad to very bad categories 

classified as class D & E by CPCB, whereas S3 and S4 sites ranged between bad and 

bad to very bad categories. Sampling station S1 ranged between good to excellent and 

medium to good (Class A and B by CPCB), and the water quality of sampling station 

S2 falls under all categories of CPCB-WQI. The predicted period result of CPCB-WQI 

could be well related to the biological and physicochemical results. Also, well-defined 

seasonal and site-wise variation was observed in the CPCB-WQI values, and thus, any 

minor change in the pollution concentration could be well noticed.  

 

 

Figure 5.29: Variation of predicted annual mean values of CPCB-WQI of studied 

stations in the Gomti River for the period 2018-2027 
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5.9 Assimilative capacity 

The outcomes of the simulated scenarios were compared with the quality criteria that 

apply to river water bodies in India, where the CPCB has identified water quality 

requirements in terms of a few chemical characteristics, known as primary water quality 

criteria, to assess the assimilative capacity. Additionally, the standard IS 2296:1992 

from the Bureau of Indian Standards includes recommendations for water quality 

parameters for various uses. The quality standards that would serve as a guide for the 

use of the water resource were consolidated based on the current usage of the river and 

the legislation and guidelines reviewed. 

 

5.9.1 Present scenarios and assimilative capacity (2013-2017) 

Regarding the temporal variation, a rise in DO was seen in the current study at all 

sample locations during the rainy season. This finding is consistent with reports in the 

literature that precipitation benefits this parameter (Liu et al., 2020). Additionally, it is 

noted that concentrations at all sample stations are greater during the rainy season than 

they are during the dry season, which is consistent with reports in the literature that 

indicate precipitation has a favorable impact on DO (Liu et al., 2020). After analyzing 

the graphs in Figure 5.30, it is found that DO concentration varies from 2.8 – 11.4 mg/l 

at S1, 2.9 – 10.9 mg/l at S2, 0.7 – 9.5 mg/l at S3, 1.3 – 8.4 mg/l at S4, 1.1 – 6.0 mg/l at 

S5, 0.6 to 5.1 mg/l at S6 and 0.3 – 3.8 mg/l at S7 during the study period (2013-2017). 

The minimum DO concentration at all sampling stations lies below 4 mg/l while the 

maximum DO concentration is well above the reference limit (4 mg/l), but the scenario 

at S7 shows a lower concentration than the reference limit (4 mg/l) for both minimum 

and maximum concentrations. 

In the case of BOD, the highest concentrations were reported during the dry season 

because of the lower flow rates during this time of year, which increases pollution loads 

and lowers DO while increasing BOD owing to decomposition processes (Liu et al., 

2020). Additionally, Benjumea et al. (2018) assert that the lack of nutrient dilution is 

caused by a greater presence of organic materials at lower flow rates. 

For the study period of 2013 – 2017, the minimum and maximum BOD concentrations 

vary from 2.3 – 11.0 mg/l, 3.10 – 4.2 mg/l, 3.6 – 9.0 mg/l, 4.5 – 10.0 mg/l, 6.0 – 11.5 

mg/l, 6.5 – 12.5 mg/l and 8.5 – 18.6 mg/l at S1, S2, S3, S4, S5, S6 and S7 respectively. 

Figure 5.31 shows that the river water quality at selected sampling stations is unfit for 

all purposes according to the designated best-use criteria of CPCB for surface water. 
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Figure 5.30: Variation of DO during 2013-17 along river Gomti 
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Figure 5.31: Variation of BOD during 2013-17 along river Gomti
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As indicated above, for each scenario, concentrations are higher during the dry season 

than the wet season because of the lower flows during the dry season, which results in 

higher concentrations of pollutant loads, lower DO, and raised BOD owing to 

decomposition processes (Liu et al., 2020). It's crucial to realize that rivers' ability to 

assimilate pollutants is a complicated process that simultaneously incorporates 

physical, chemical, and biological processes. Most water pollutants are eliminated 

through biodegradation processes (Benjumea et al., 2018). 

The relationship between DO and BOD variability and distance was also studied by 

Zubaidah et al. (2019). The diffuse combination of pollutant loads led the DO 

concentration to drop in downstream points while the BOD increased. However, the 

river's self-purification process was still possible, mainly between S1 and S2 of the 

studied section, as the distance between them is 32.5 km, but the total distance between 

S2 to S7 is only 26 km, which also receives 461.33 MLD of wastewater by 28 major 

and minor drains. This pollution load affects the assimilative capacity of the river and 

renders its self-purification process. The assimilative process was seen in the area with 

the highest effluent concentration, and DO decreased before trending upward. Results 

are also justified by Torres-Bejarano et al. (2022) research on how a decline in river 

flow during the dry season also affects the ability of pollutants in domestic wastewater 

to be diluted, which has an impact on assimilative capacity. 

 

5.9.2 Simulated scenarios and assimilative capacity (2018-2027) 

A comparison between the concentrations in the time series and the defined reference 

limits was made to assess the assimilation capacity. The statistical analysis for DO and 

BOD is detailed in Table 5.1 and includes mean, median, mode, range, standard 

deviation, kurtosis, skewness, and coefficient of variation. For DO and BOD, Ljung-

Box Q(18) analysis, stationary R-squared, R-squared, RMSE, MAPE, MaxAPE, MAE, 

MaxAE, and Normalised BIC are shown in Table 5.14. 

 

Dissolved oxygen: Mean, median, and mode values are not the same; thus, the curve is 

not normal at all sampling stations. At all sites, SD and kurtosis values are low; hence, 

the curve is symmetrical and platykurtic, respectively. Skewness values are close to 

zero, which shows that the curve is symmetrical. Time series models outperform 

baseline models for all locations because stationary R-squared and R-squared values 

behave similarly. Because the RMSE values are small, the dependent series is closed at 
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the level predicted by the model. From the Ljung-Box model, for all sites, the value of 

statistics lies between 5.35 to 33.16, the significance level between 0.00 and 0.15, the 

degree of freedom ranged between 3 to 15, and Winters' Additive ARIMA model was 

used for prediction. Using plot of residual ACF, residual PACF, forecast, observed, best 

fit, LCL, UCL, residual ACF, residual PACF values for next 10 years (2018-2027) for 

DO and BOD (ANNEXURE – X, and XI), it is observed that value of DO lies between 

6.51-10.71 mg/l for S1, 2.52-9.28 mg/l for S2, 0.21-4.84 mg/l for S3, 0.48-4.46 mg/l 

for S4, 0.46-2.95 mg/l for S5, 1.81-3.42 for S6 and 0.54-2.01 mg/l for S7 and the quality 

of river water gets affected at all sampling stations during the predicted period (2018-

2027), which is calculated at 95 % confidence scale.  

When DO concentrations fall below the standard limit of 4 mg/l, water is deemed to be 

of poor quality, which may be detrimental to some fish and macroinvertebrate 

populations and negatively affect the chemical processes in aquatic ecosystems. As 

shown in Figure 5.32a & b, DO does not remain at good levels over this limit throughout 

the predicted time (2018-2027) at S5, S6, and S7 in both dry and wet seasons. DO 

concentrations are higher than the reference limit at S1 during the predicted period, but 

in the case of S2, S3, and S4, DO concentration is higher in the wet season and lower 

in the dry season. It can be concluded that the river can effectively digest present 

discharges without materially changing this parameter. As a result, the river maintains 

its ability to assimilate pollutants that require oxygen without damaging the aquatic 

ecology (Chapra et al., 2021). At S5, S6, and S7, the DO decreased more during the dry 

season than it does now, which is related to low flow values and less medium aeration 

(Liu et al., 2020). It is consistent with what has been discovered in other studies that 

discharge causes a DO drop in water bodies (Torres-Bejarano et al., 2022). 

 

Biochemical oxygen demand: At sampling stations S2, S4, S5, S6, and S7, mean, 

median, and mode values are equal; thus, data behave normally. BOD exhibits low SD 

values, and kurtosis lies below 3; hence, the curve is symmetrical and platykurtic for 

all sites. Since stationary R-squared and R-squared values display comparable behavior, 

the model performs better than the baseline model. Since the RMSE value is low, the 

dependent series is closed at the model's prediction level for all locations. From the 

Ljung-Box model, for all sites, statistics lie between 12.42 and 30.31, significance 

varies from 0.01 to 0.65, degree of freedom ranged is 15, and Winters' Additive ARIMA 

model was used for prediction.  
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Table 5.14: Trend and time series analysis of DO and BOD of river Gomti  

  S1 S2 S3 S4 S5 S6 S7 

Model Fit Statistics for DO 

Stationary R-squared 0.74 0.57 0.67 0.63 0.59 0.48 0.51 

R-squared 0.74 0.90 0.48 0.67 0.49 0.48 0.22 

RMSE 1.53 0.67 1.77 1.02 0.87 0.94 0.78 

MAPE 17.05 7.81 41.18 20.45 23.43 32.93 49.64 

MAE 0.95 0.50 1.39 0.76 0.67 0.63 0.57 

MaxAPE 132.30 40.61 339.14 104.58 104.99 175.60 287.71 

MaxAE 3.79 1.86 4.62 3.11 2.27 2.24 2.01 

Normalized BIC 1.94 -0.59 1.35 0.24 -0.09 0.97 -0.30 

Ljung-Box Q(18) for DO 

Statistics 11.26 24.73 25.77 27.30 33.16 5.35 29.57 

df* 3 15 15 15 15 3 15 

Sig.* 0.01 0.05 0.04 0.03 0.00 0.15 0.01 

Model Fit Statistics for BOD 

Stationary R-squared 0.43 0.52 0.67 0.63 0.73 0.72 0.70 

R-squared 0.88 0.50 0.66 0.67 0.81 0.83 0.60 

RMSE 0.90 0.17 0.90 0.86 0.67 0.65 1.09 
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  S1 S2 S3 S4 S5 S6 S7 

MAPE 13.69 3.65 12.92 10.23 6.20 5.48 6.23 

MAE 0.54 0.13 0.67 0.66 0.52 0.53 0.76 

MaxAPE 105.59 14.51 43.78 32.60 17.41 20.46 31.15 

MaxAE 3.07 0.61 2.34 2.56 1.85 1.59 4.99 

Normalized BIC -0.00 -3.29 -0.03 -0.09 -0.60 -0.65 0.38 

Ljung-Box Q(18) for BOD 

Statistics 17.03 22.93 22.85 25.45 19.76 30.31 12.42 

df* 15 15 15 15 15 15 15 

Sig.* 0.32 0.09 0.09 0.04 0.18 0.01 0.65 

*df - degree of freedom, Sig. - significance level 
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Figure 5.32a: Predicted variation of DO during 2018-2022 along river Gomti 
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Figure 5.32b: Predicted variation of DO during 2023-2027 along river Gomti 
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Using plot of residual ACF, residual PACF, forecast, observed, best fit, LCL, UCL, 

residual ACF, residual PACF, and ARIMA prediction monthly values for the next 10 

years (2018-2027) for DO and BOD (ANNEXURE – XII and XIII), explains that the 

value of BOD lies between 2.05-6.46 mg/l for S1, 3.34-4.34 mg/l for S2, 6.22-14.60 

mg/l for S3, 7.57-15.94 mg/l for S4, 9.01-18.11 mg/l for S5, 10.19-19.11 mg/l for S6 

and 12.26-21.12 mg/l for S7 and the quality of water gets affected at all sampling 

stations during the predicted period (2018-2027), which is calculated at 95 % 

confidence limits. 

The graph (Figure 5.33a, b) shows that all sampling stations exceed the reference limit 

(2 mg/l), and this occurs during the whole predicted period (2018-2027), and water 

bodies that exceed the reference limit are considered polluted (Jingsheng et al., 2006). 

The highest concentration of this characteristic at S7 during the dry season is 21.12 

mg/l. Due to the reduced river flow in this scenario, all sampling stations similarly 

indicate a significant increase in this parameter during the dry season. These findings 

demonstrate that river flow changes primarily affect the river's capacity to assimilate 

this parameter. Generally, the factor that has the greatest impact on absorption capacity 

is the variation in flow rates, both in the river and outflows (Torres-Bejarano et al., 

2022). This tendency is consistent with the findings of Islam et al. (2015), who found 

that BOD decreased during the wet season and increased during the dry season. Liu et 

al. (2018) suggest that the reduction in water assimilative capacity during the dry season 

demonstrated that the pollution loads in this season were significantly more serious than 

wet season, and a reduction in pollutant loads must be done to achieve its water quality 

protective goal where there were higher concentrations of BOD in the dry season. 

 

5.10 Impact of rising temperatures on water quality status 

According to global climate models, future global AT has consistently been predicted 

to shift significantly. The change in AT directly affects the temperature of the water, 

which could, therefore, impact the water's quality. This study aims to create fabricated 

scenarios for AT and investigate how these scenarios might affect river water quality. 

It was utilized to extract WT data from the anticipated AT after a linear regression 

analysis of time series data of WT and AT was conducted to establish a link. The 

regression analysis simulates how the water quality index (BWQI) responds to various 

fabricated scenarios.  

 



 

5-203  
 

 

Figure 5.33a: Predicted variation of BOD during 2018-2022 along river Gomti
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Figure 5.33b: Predicted variation of BOD during 2023-2027 along river Gomti
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The Bascaron WQI (BWQI) was assessed and compared with the previous 20 years 

(1998-2017) data to check the impact of various simulated scenarios on water quality. 

The places along the stretch of water prone to degradation owing to changes in different 

scenarios are identified, and the changes in water quality for the various scenarios 

relative to the base scenario are quantified. 

 

5.10.1 Relationship between air temperature, water temperature and BWQI  

The regression equation with the best R2 value obtained for WT with AT, and for WT 

with BWQI is given in Table 5.15. 

 

Table 5.15: Regression equation with best R2 value 

Parameters Regression equation  R²  

WT Y= 0.6463X + 8.4916 0.5734 

BWQI Y = - 2.3009X + 117.18 0.5734 

 

For the above-mentioned regression equation, the dependent variable is Y, and the 

independent variable is X. For WT, the dependent variable is WT, and the independent 

is AT; for BWQI, the dependent variable is BWQI, and WT is an independent variable. 

WT and BWQI were calculated for RCP 4.5 and RCP 8.5 scenarios by using regression 

equations with RCP 4.5 and RCP 8.5 fabricated scenarios of AT and WT, respectively 

(Table 5.16). 

 

Table 5.16: Fabricated scenarios for air temperature 

Variables RCP 4.5 RCP 8.5 

Period 2040-2069 2070-2099 2040-2069 2070-2099 

AT (0C) 42.67 43.27 43.37 45.33 

 

5.10.2 Impact on water quality 

The collected data from CWC (Lucknow) at the sampling station (Hanuman Setu) has 

been used to calculate BWQI for the period of 1998 to 2017 as per the given 

methodology (ANNEXURE – XIV). The regression equation is used to calculate 

climate change scenario RCP 4.5 (2040-2069), RCP 4.5 (2070-2099), RCP 8.5 (2040-

2069) and RCP 8.5 (2070-2099). The BWQI is predicted for future climate change 
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scenarios and compared with the previous years (1998-2017).  

BWQI value was evaluated at the sampling station (Hanuman Setu, Lucknow) using 

water quality parameters (WT, DO, and BOD) for the period between 1998 to 2017 

according to the methodology for the classification of the overall water quality status 

of the river Gomti (Table 5.17). To assess the annual variability in water quality, the 

monthly BWQI data were organized, which were further used to calculate the mean 

BWQI of each year during the study period (Figure 5.34). The BWQI values for 20 

years lie only in two water quality classifications, i.e., medium and bad, which are 42.92 

to 70.00, respectively. The maximum value (70.00) of BWQI was found in 2004, and 

the minimum (42.92) in 2016 and 2017. Data reflects that the BWQI value keeps 

decreasing with time, which shows that river water quality is deteriorating. It occurs 

due to the rapid urbanization, industrialization, and encroachment of the river bed, 

which requires immediate remedial actions to retain and to maintain the water quality 

of river Gomti by concerned authorities.  

Changes in stream WT can be linked to the effects of climate change. The evolution of 

AT in the future, together with other meteorological and physical characteristics, will 

significantly impact how climate change affects stream WT (Ficklin et al., 2013; Khani 

and Rajaee, 2017). These modifications will affect DO and BOD concentrations and 

instream biological activity, which will affect BWQI. This led to establishing a WT- 

BWQI relationship for the river to forecast future water quality index based on WT. As 

a result, future WT for the river was predicted, and matching BWQI was computed.  

The BWQI was not highly different from the previous scenario (2014-2017) as it lies 

in the bad category in water quality classification; however, a slight decrease in BWQI 

is expected in the future under all scenarios. Based on predicted increases in air and 

river water temperatures under climate change scenarios, the BWQI does not generally 

indicate a significant decline in the near future. BWQI value was found to be 38.79 for 

scenario (RCP 4.5) 2040-2069, 37.90 for scenario (RCP 4.5) 2070-2099, 37.75 for 

scenario (RCP 8.5) 2040-2069, 34.83 for scenario (RCP 8.5) 2070-2099, which reflects 

a reduction in RCP 8.5 than RCP 4.5. A past study found a similar result of WQIs with 

climate change conditions for 15 rivers in New Brunswick, Canada's Atlantic coast (El-

Jabi et al., 2014). 

Low values for DO can result from the stream temperature increase since it decreases 

the solubility of oxygen in the water. The stream temperature rise may also accelerate 

the growth of algae and phytoplankton, further depleting DO in the water (Santy et al., 
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2022). The river's capacity to absorb pollution loads may be diminished by the rising 

stream temperature (Chapra et al., 2021); hence, with warming, a rise in BOD is 

predicted, and this is supported by other studies (Rehana and Mujumdar, 2012; Chapra 

et al., 2021) which also influences BWQI. 

 

Table 5.17: Water quality status of the river Gomti during the study period as 

per BWQI 

Years BWQI  Water quality classification 

1998 65.28 Medium 

1999 66.39 Medium 

2000 67.50 Medium 

2001 69.44 Medium 

2002 69.86 Medium 

2003 68.89 Medium 

2004 70.00 Medium 

2005 60.97 Medium 

2006 54.86 Medium 

2007 56.94 Medium 

2008 61.81 Medium 

2009 58.19 Medium 

2010 54.17 Medium 

2011 53.33 Medium 

2012 61.94 Medium 

2013 55.56 Medium 

2014 45.00 Bad 

2015 50.00 Bad 

2016 42.92 Bad 

2017 42.92 Bad 

(RCP 4.5) 2040-2069 38.79 Bad 

(RCP 4.5) 2070-2099 37.90 Bad 

(RCP 8.5) 2040-2069 37.75 Bad 

(RCP 8.5) 2070-2099 34.83 Bad 
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Figure 5.34: BWQI profile plots 

 

5.11 River water quality management plan 

Unchecked pollution disposal often results in various environmental problems, 

including the growth of hazardous algal blooms, eutrophication, the extinction of 

aquatic life, a reduction in biodiversity, and, eventually, adverse effects on human 

health. The current water pollution threatens the viability of the river environment and 

the urban area next to it. Therefore, it is necessary to regulate the concentration of water 

quality to an ideal level to preserve the water ecosystem. The best management 

scenarios must be created to launch credible water-quality management plans to 

conserve river water habitats. These plans must also be practical and affordable. Poor 

river water management has led to significant changes in water quantity and quality as 

well as altered ecosystems, which have reduced the advantages that can be obtained by 

the people who depend on them. 
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5.11.1 Status of the Gomti river water quality 

According to the CPCB (2017), the most polluted rivers in India are some of the rivers 

in Uttar Pradesh. The Gomti, Hindon, Kali, and Yamuna rivers' water quality is 

considered to be gravely worrying. Gomti stretch from Sitapur to Varanasi is classified 

as Priority Class – I (Sitapur, Lucknow, Sultanpur) according to CPCB (2017). 

According to UPPCB river water quality monitoring from 2017 to 2019, the river Gomti 

is not appropriate for drinking or outdoor bathing between Kudiaghat and Jagdishpur 

due to the detected polluted length of the river between Sitapur to Jaunpur. It can only 

be used for controlled waste disposal, industrial cooling, or irrigation (Class – E, 

specified as per IS: 2296:1992). 

According to the current study, four WQIs were used to assess the status of the water 

quality of the river Gomti at seven sampling stations (S1 to S7). The result showed that 

according to Arithmetic WQI, water at all stations is unsuitable for drinking and fish 

culture. Out of all, S1 and S2 have comparatively better water quality. Similar results 

were found in the case of the other three WQIs. A gradual increase in the value of WQIs 

occurs after sampling station S2 due to the discharge of 28 drains between S2 to S7. 

The condition worsens at S7 due to the lack of self-purification capacity between S2 

and S7. The river experiences more deterioration in water quality during the dry season 

and non-monsoon season due to the lack of sufficient flow. The predicted value of 

WQIs for future (2018- 2027) water quality shows the same deterioration rate. 

 

5.11.2 Sources and causes of pollution 

Surface runoff is a seasonal occurrence that is heavily influenced by the climate in the 

basin, whereas human discharges are a continuous polluting source. Domestic sewage 

from Class-I cities, Class-II cities, and many towns, as effluents from various industries, 

are discharged into the river Gomti throughout its length. About 78% of the pollution 

is caused by raw sewage, effluents, and sludge disposal. The major sources of river 

Gomti pollution are given below: 

 The river Sarayan, a tributary of the river Gomti, confluences in the village of 

Kantaayan, district of Sitapur. Ten industries in the river's catchment discharge 

sewage and industrial waste into the river. About 4 MLD of treated effluent 

from these industries and nearly 20 MLD of sewage are dumped into the river 

Sarayan, which eventually merges with the river Gomti. 
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 The majority of the river's stretch has seen encroachment from urban areas, 

sewage discharge from Lucknow, and activities related to washing clothes 

(Dhobighat). From Lakhimpur to Barabanki, the river Gomti traverses 275 km, 

while in Lucknow city, it goes 20 km from upstream (Ghaila Ghat) to 

downstream (Pipra Ghat). 

 There are 28 important drains in Lucknow; 14 are in the Cis-Gomti area, the 

southern half, and 14 are in the Trans-Gomti area, the northern section, with a 

total discharge of 461.33 MLD. Some large drains can discharge more than 100 

MLD of wastewater, whereas the smaller drains can only discharge 0.5 MLD 

between sampling stations S2 to S7.  

 Due to a lack of water, particularly during the summer, the quality of the river 

Gomti is affected by the daily withdrawal of raw water (270 MLD) from the 

river. 

 On the banks of this polluted section of the river, there are 132 villages (50 on 

the left bank and 82 on the right bank). According to the 2011 census, these 

settlements have a combined population of 3,25,844 producing trash that 

contributes to river pollution. 

 Total sewage and industrial effluent discharge through 68 drains that discharge 

directly or partially into the river is estimated to be 865 MLD in the polluted 

section of the Gomti River. According to a desk inventory, several drains are 

currently discharging 835 MLD of sewage and 30 MLD of industrial effluent 

into the river Gomti. Since only 443 MLD of the estimated 835 MLD total 

sewage discharge gets treated, this is a significant area of concern. 

 Fourteen drains come from Jaunpur and have a combined discharge of roughly 

16 MLD. They are all small drains, and most convey domestic wastewater that 

is less than 1 MLD. Only Turtipur and Ahyapur drains transport sewage, which 

is around 5 MLD. At Jaunpur, raw sewage is dumped directly into the Gomti 

River. In the Kerakat (Jaunpur) area, seven minor drains with a combined flow 

of about 8.7 MLD dumped directly into the Gomti River. 

 The river's catchment region has seven major towns—Sitapur, Sandila, 

Lucknow, Barabanki, Jagdishpur, Sultanpur, and Jaunpur—as well as one town 

area, Kerakat (Jaunpur). The sewage and other effluent these cities produce add 

to the river's organic burden. As previously indicated, sewage treatment is a 
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severe cause for worry as the installed capacity of the sewage treatment plants 

is 443 MLD, and they are operating at 100% of their installed capacity. About 

422 MLD of untreated sewage enters the river, Gomti. This suggests that the 

available treatment facility is insufficient. The river Gomti and the 345 MLD 

Bharwara STP's treated sewage meet just downstream of Lucknow city, close 

to Khaledeoria. Upstream of Lucknow city, close to Kudiyaghat, the river 

Gomti is where the 56 MLD treated sewage from Daulatganj STP meets. 

 Existing STPs have an installed capacity of 443 MLD, and 373 MLD capacity 

STPs are planned for installation in Jaunpur, Sultanpur, and Lucknow; however, 

there is a need for more STPs to be built in Sitapur, Barabanki, Amethi 

(Jagdishpur), and Kerakat (Jaunpur). 

 In the catchment basin of the Gomti River's polluted section, there are 30 water-

polluting enterprises. These businesses have wastewater treatment facilities, and 

the processed wastewater is released through 10 drains, all combined drains 

where the treated industrial wastewater is mixed with sewage. The industries 

related to sugar, distilleries, textiles, electroplating, slaughterhouses, and other 

unrelated industries are highly polluting. The quantified consented discharge 

from the units is the basis for the estimates of industrial effluent; however, 

actual industrial effluent may exceed the estimates due to over-discharge by 

consented industries and discharge from illegal units operating in 

nonconforming regions. 

 As a result of several anthropogenic activities, the water quality of 

river Gomti is currently witnessing an alarming loss. The overall water quality 

has been significantly impacted by destructive habitat change, water diversion, 

insufficient plant cover along riverbanks, siltation, water abstraction, and low 

water velocity. In the research region, dredging, artificial barriers, and river 

fragmentation caused by riverfront development projects pose a serious threat 

to the deterioration of water quality brought on by sewage pollution between 

sampling stations S4 to S6. 

 

5.11.3 Gomti River stretch rejuvenation action plan 

The research and site visits have revealed that the degradation of river water quality can 

be attributed to two primary factors: pollution and low discharge (mainly during the dry 
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season). The following are mitigation measures for improving river water quality: 

 The riverfront project has significantly impeded the natural flow of the Gomti 

River, causing detrimental effects on its water quality. Particularly, the 8.2 km 

stretch between Kuriyaghat (S3) and Laamart Rubber Dam has experienced 

water stagnation due to numerous barriers constructed as part of the project. 

This interruption goes against the inherent nature of a flowing water body and 

has faced severe degradation. The Gomti River heavily relies on groundwater 

as its primary source of replenishment, but the riverfront project has disrupted 

the vital connection between the river and the groundwater. To address this 

issue, implementing rainwater harvesting and creating ponds upstream of 

Kuriyaghat (S3), i.e., between S1 to S3, can play a crucial role in recharging 

groundwater and replenishing the Gomti River.  

 Cultivating Satha Dhaan (garmi wala dhaan/ chaini dhaan), a water-intensive 

variety of rice poses a significant challenge as it consumes around ten times 

more water than other varieties. This high water demand puts added pressure on 

the already limited groundwater. Since the Gomti River relies heavily on 

groundwater, the diminishing water levels directly impact the river's health. 

Continuously cultivating Satha Dhaan can have detrimental effects on the river. 

Therefore, it is essential to consider making Satha Dhaan farming illegal 

between S1 to S2. Raising awareness among farmers through various 

campaigns and promoting alternative crops like pulses can help discourage 

Satha Dhaan cultivation. Additionally, encouraging afforestation, especially of 

Neem tree, Ashok tree, Tamarind/Imli tree, and Jamun tree, along the riverbanks 

between S1 to S2 would aid in replenishing the groundwater levels and prevent 

encroachments. 

 The excessive presence of water hyacinths on the river between S2 to S4 creates 

dense mats that block sunlight, reducing oxygen levels and promoting the 

growth of harmful organisms. Decomposition leads to increased organic matter 

and stagnant water, posing risks to aquatic life and human health. Effective 

measures should be taken to control and manage the spread of water hyacinths. 

This may involve mechanical removal, such as manually harvesting the plants 

or using biological controls like introducing natural predators or herbivorous 

species that feed on water hyacinths. Regular monitoring and maintenance 
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should also be enforced to prevent its regrowth.  

 The presence of algae over the water, mainly at S3, depletes oxygen levels, 

produces harmful toxins, disrupts the ecosystem balance, and diminishes 

aesthetics and odor. Algal blooms can occur due to excessive nutrient levels in 

the water, such as nitrogen and phosphorus. Key measures to improve water 

quality and address algae overgrowth include responsible nutrient management, 

establishing riparian buffer zones, upgrading wastewater treatment, 

implementing stormwater management, raising public awareness, and 

conducting regular monitoring for early detection and intervention. 

 Despite being Asia's biggest STP (Bharwara Sewage Treatment Plant, 

Bharwara, Gomtinagar, Lucknow), its operation was short-lived, and currently, 

it is running at only one-fourth of its capacity. The primary issue lies in the lack 

of interlinking drains, which prevents the diversion of all the sewage to the 

treatment plant as intended. Mitigation measures for this challenge include 

interlinking drains, upgrading and maintenance, increasing capacity utilization, 

monitoring and enforcement, public awareness, and stakeholder engagement. 

An alternative approach to maximizing efficiency and optimizing resource 

allocation would have been establishing multiple smaller plants along the 

stretch between S2 and S7 rather than relying on a single large plant.  

 The presence of foam, mainly at S7, can indicate excessive organic matter, 

detergents, or industrial waste entering the river. These substances can 

contribute to the depletion of oxygen levels, harm aquatic life, and degrade 

water quality. Key measures to mitigate foam presence in the river include 

identifying and controlling pollution sources, upgrading wastewater treatment, 

raising public awareness, managing nutrient pollution, implementing regular 

monitoring, and fostering collaboration and regulation. 

 Pollution from dhobi ghats and chikankari work significantly impacts water 

quality between S2 to S6. The pollution of water with chemicals, detergents, 

solid wastes, and dyes from these sources introduces pollutants that degrade 

water ecosystems. The excessive nutrient levels from these activities contribute 

to eutrophication, leading to algal blooms and oxygen depletion. Mitigation 

measures include proper wastewater treatment, promoting eco-friendly 

materials, responsible waste management, raising awareness, and enforcing 
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regulations. Implementation of separate designated areas can help mitigate the 

impact on river water caused by dhobi ghats and chikankari work in Lucknow. 

By this, it becomes easier to manage and control the discharge of pollutants into 

the river. This segregation helps prevent direct pollution and allows for the 

implementation of proper wastewater treatment systems tailored to handle 

effluents.  

 The major urban habitation between S2 to S6 results in significant solid waste 

disposal challenges. The high population density and urban activities generate 

substantial waste that needs proper management. Mitigation measures should 

focus on implementing efficient waste management practices, such as 

establishing proper waste collection and segregation systems, promoting 

recycling and composting, raising public awareness about waste reduction and 

responsible disposal, and enforcing regulations for waste management 

compliance.  

 

In order to enhance the water quality of the Gomti River in Lucknow (UP) between S1 

and S7, it is crucial to implement the aforementioned suggestions along with additional 

mitigation measures to achieve this goal, which are as follows:  

 Declare the river as the “State River” of Uttar Pradesh; since the river originates 

in the state (Pilibhit) and joins with the Ganga there (Ghazipur), there is no 

interstate dispute or controversy with this designation. To restore the beauty and 

holiness of this river, this will be a fantastic project to resuscitate the river 

culture of the Awadh. Declare all 24 major tributaries' points of origin and 

confluence as "Eco-fragile regions." 

 The Sharda Canal System occasionally adds extra flow to the Gomti through 

escapes of up to 2.83 m3/s through the Kheri branch on the left and the Lucknow 

branch on the right. According to the roaster, the branches in Lucknow and 

Kheri operate concurrently and alternately. Sharda flows can be pumped in 

Gomti's upper reaches. However, Sharda will not have sufficient flows since all 

flows are directed into the Sharda Canal at Banbasa during the dry season. A 

canal should be planned with a well-fed Sharda River, designed to provide 

surplus water, connected to the Gomti River. The chronic issue of a fast-drying 

Gomti may be resolved by a steady supply of water from the Sharda, which 
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receives abundant water from its Himalayan source. 

 Restoring the drainage of the Gomti River, particularly in the upper watershed, 

is also advised. A series of minor check-dams can be built in the head region of 

the tributaries to ensure the flow of water to the river. 

 Define the boundaries of the entire floodplain, from its source to Ganga's 

confluence, and clear any unauthorized encroachments. Stop using the land, and 

the land-use change should not be violated by using a barrier. 

 Declare a no-construction zone 500 m from the middle of the river. Clean up 

the silt that has accumulated in the riverbed near the main settlements of 

Sultanpur, Jaunpur, and Lucknow. 

 Estimating the total amount of sewage produced by cities and towns without 

sewage treatment facilities and preparing a Detailed Project Report (DPR) for 

sewage treatment. Construction of sewage treatment facilities with sufficient 

capacity. Completion and commissioning of the STP being built at Lucknow's 

Ghiyasuddin Haider (G.H.) Canal. 

 Installing a secondary or tertiary treatment system in STPs that are currently in 

operation but cannot meet discharge standards under the current system. 

Treatment of wastewater entering rivers from rural regions using 

bioremediation, phytoremediation, oxidation ponds, etc. 

 The re-invention and monitoring of water-polluting industries in the drainage 

system's catchment region and their current condition concerning permission, 

ETP installation, ETP sufficiency, and final discharge point and enforcing their 

closure if they are operating without permission or in compliance. 

 Modernization and operation of currently existing Solid Waste Treatment 

facilities that are not in operation or compliant with regulations. Strict 

enforcement of the ban on solid and other trash disposals within 500 m of 

riverbanks. 

 Ensuring idol immersion is eco-friendly by constructing artificial ponds with 

suitable lining and efficient sludge and wastewater disposal, as well as building 

water harvesting structures, rainwater recharge structures, water ponds, and 

rainwater wells on river banks. 
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CHAPTER - 6  

CONCLUSIONS AND FUTURE PROSPECTS 

 

6.1 Conclusions 

The physical, chemical, and biological properties of the river water samples from Gomti 

clearly show that the water is unfit for human consumption. Ranges of important 

parameters, including DO, BOD, COD, EC, TA, TC, and FC, exceeded the 

prescribed standards. The entire river stretch was found to be extremely polluted, and 

the amount of pollution increased from upstream to downstream (S1 to S7), 

demonstrating the effects of Lucknow's (UP) rapid industrialization and urbanization. 

Water quality parameter spatial variability maps demonstrated the rise in pollutant 

concentration along a river's course. 

This study uses an integrated method to assess the river Gomti's surface water quality. 

By comparing the measured water quality to the national and international standards, 

data analysis has helped to identify the early warning indications of water quality 

decline. The concentration of water quality parameters in the river Gomti is above 

acceptable levels due to several anthropogenic activities, including the inflow of 

untreated sewage from residential and commercial establishments, the lack of adequate 

sanitation systems, agricultural runoff, direct disposal of untreated outflow from 

industries, and unabated dumping of solid waste by the communities living alongside 

the river, among others. 

In the present study, fourteen water quality parameters have been considered for water 

quality management. Out of 14 water quality parameters, the mean values of WT, pH, 

TDS, TH, Ca, Mg, and Cl are well within the prescribed range of BIS (2012)/WHO 

(2011), whereas EC, TA, COD, TC, and FC were higher than the prescribed limit. DO, 

and BOD falls under the prescribed limit of BIS (2012)/WHO (2011) at station S1, S2, 

and S3 but not at other stations. 

As per Designated Best Uses of Water (CPCB, IS: 2296:1992), the mean value of pH 

falls under Class – A at all sampling stations, DO falls under Class – A at S1 and S2, 

Class – B at S3, Class – C & D at S4 but S5, S6 and S7 falls under Class – E. In the 

case of BOD, values fall under Class – D. According to the mean value of TC sampling 

stations S1 and S2 fall under Class – C, whereas S3, S4, S5, S6, and S7 fall under Class 

- D. 
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One-way ANOVA analysis concluded that pH and DO gradually decrease from S1 to 

S7, whereas other parameters (EC, TDS, TA, TC, Ca, Mg, Cl, BOD, COD, TC, and 

FC) increase from S1 to S7. pH, TA, TH, DO, BOD, COD, TC, FC exhibit only 

temporal and spatial variation, whereas EC, TDS, Ca, Mg, and Cl show not only 

temporal and spatial variation but also annual variation. 

To identify the sources of river pollution, PCA is utilized. The experimental results 

show that in the whole study period, the major PCs responsible for water quality 

deterioration are pH, Cl, DO, BOD, COD, TC, and FC, with a total variation of 54.65% 

within the dataset. These components represented organic pollution from domestic 

wastewater and sewage pollution. Thus, the PCA assisted in locating the study area's 

point and nonpoint sources of pollution. This fundamentally helps to prioritize control 

efforts concerning various pollution sources. 

The CA helped in the categorization of similar stations for the river Gomti. CA resulted 

in three Clusters (moderate, high, and very high pollution sites) for river Gomti in all 

seasons. Cluster 1 (S1, S2, S3, and S4) represents a moderate pollution site because it 

is on the upstream side of Lucknow city. In contrast, Cluster 2 (S5 and S6) represents 

a high-pollution site because it is located in the middle of the route. The Cluster 3 (S7) 

represents the most polluted site because it is located in the downstream zone of 

Lucknow city.  

The number of monitoring stations could be decreased with the help of this 

categorization. Each cluster will be represented by one monitoring station for sampling 

per cluster. This will undoubtedly lower the cost of river sampling in nations like India, 

where resources and specialized human skills are scarce. 

WQIs can be used by policymakers to determine how different policy initiatives affect 

the water quality of a water body. It simplifies complex data so that stakeholders and 

decision-makers can easily understand it. 

The present study assessed the Arithmetic WQI for five years (2013-2017). The results 

revealed that all the water samples fall into category E (>100), which is unsuitable for 

drinking and fish culture and requires proper treatment before use except at S1, S2, and 

S3 during monsoon season which falls under category D (75-100). These stations 

recorded the highest Arithmetic WQI values during 2017, ranging from 175.61 at 

Station S1 to 249.39 at Station S7. The Arithmetic WQI of the water samples collected 

at stations S1 and S2 were found to be better than other sampling stations. 

The mean values of SPI are 1.112, 1.151, 1.250, 1.367, 1.532, 1.662 and 1.927 at S1, 
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S2, S3, S4, S5, S6 and S7, respectively, which indicates “very poor” (1.0-3.0) status at 

all sampling sites during the study period. The water quality is severely polluted and 

can be used only for irrigation purposes. 

The CPI value of the river Gomti water was found only in three categories: qualified 

(0.41-0.8), basically qualified (0.81-1.0), and polluted (1.01-2.0) during the study 

period at different locations and months. Moreover, the river water quality during the 

years 2013–2017 was found to be in the polluted category. CPI values increased from 

sampling stations S1 to S7, indicating increased pollution load due to extreme human 

activities in recent years. 

The mean values of CPCB-WQI at S1 and S2 lie under the category medium to good, 

Class -B (50-63), S3 and S4 under the category bad, Class -C (38-50), S5, S6, and S7 

under category bad to very bad, Class – D & E (<38). It was also noticed that the river 

Gomti water was found in all categories classified by CPCB-WQI for different 

sampling stations during the study period. 

The maximum value was observed at station S7 for all four estimated WQIs. Thus, we 

can correlate the high WQIs of the station with anthropogenic activities, i.e., 

agricultural runoff and disposal of wastewater from urban and industrial areas nearby. 

This is further supported by the statistic that the WQIs were lower in the case of S1, 

where anthropogenic activities were low, and it increases as it goes from S1 to S7. PCA 

study further establishes that anthropogenic activities are the leading causes of the 

decline in water quality in this area. As a result, it can be said that WQIs are high at all 

sampling stations except at S1 and S2. 

Statistical modeling for the period of 10 years (2018-2027) based on calculated data of 

WQIs (Arithmetic WQI, SPI, CPI, and CPCB-WQI) reveals similar results as the 

baseline period (2013-2017). The maximum value was observed at station S7, while 

minimum values at S1 and increase as it goes from S1 to S7 in the case of all four 

predicted WQIs. Model performance indicators or metrics were used to monitor the 

model's performance, i.e., RMSE, MAPE, MAE, MaxAPE, and MaxAE. Based on 

model performance indicators or metrics values, it was found that out of all four WQIs, 

SPI and CPI were the most suitable.  

Statistical modeling results may help to plan the water quality management strategies 

for this water body. This study will be of great use to policymakers, managers of water 

quality, and scientists in the future. The model's effectiveness lies in the user's ability 

to evaluate the water quality at several sites using a small dataset. 
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During the study period (2013-2017), the minimum DO concentration at all sampling 

stations lay below 4 mg/l while the maximum DO concentration was well above the 

reference limit (4 mg/l), but the scenario at S7 shows a lower concentration than the 

reference limit (4 mg/l) for both minimum and maximum concentrations. For BOD, the 

river water quality at selected sampling stations is unfit for all purposes according to 

the designated best-use criteria of CPCB (IS: 2296:1992) for surface water. 

DO does not remain at reasonable levels over this limit throughout the predicted time 

(2018-2027) at S5, S6, and S7 in both dry and wet seasons. DO concentrations are 

higher than the reference limit at S1 during the predicted period, but in the case of S2, 

S3, and S4, DO concentration is higher in the wet season and lower in the dry season. 

At all sampling stations, BOD exceeds the reference limit (2 mg/l), which occurs during 

the predicted period (2018-2027), so the water bodies that exceed the reference limit 

are considered polluted. 

Conclusions for each scenario show that BOD concentrations are higher in the dry 

season than in the wet season due to the decline in flows during the dry season, and vice 

versa for DO. The Gomti River has an average daily flow of 1,500 MLD, and it rises to 

55,000 MLD after rains and drops to 500 MLD during the summer. It is crucial to 

realize that rivers' ability to assimilate pollutants is a complicated process that 

simultaneously combines physical, chemical, and biological processes, with the 

majority of water pollutants being reduced through biodegradation processes. 

The water quality profile of BWQI for climate change scenarios RCP 4.5 (2040-2069), 

RCP 4.5 (2070-2099), RCP 8.5 (2040-2069), and RCP 8.5 (2070-2099) has been done 

and concluded as the BWQI was not highly different from previous scenario (2014-

2017) as it lies in bad category in water quality classification; however, a slight decrease 

in BWQI is expected in the future under all scenarios. BWQI value was found to be 

38.79 for scenario (RCP 4.5) 2040-2069, 37.90 for scenario (RCP 4.5) 2070-2099, 

37.75 for scenario (RCP 8.5) 2040-2069, 34.83 for scenario (RCP 8.5) 2070-2099 

which reflects a reduction in RCP 8.5 than RCP 4.5.  

The selected WQIs have been studied by adopting the GIS method and the Inverse 

Distance Weighted (IDW) Interpolation. The maps of WQIs showed that the study area 

was highly polluted by 28 drains discharges approximately 461.33 MLD wastewater. 

As a result, the water from the Gomti River should not be directly reused due to its high 

physicochemical and biological load. Prior treatment should be taken into account to 

enhance its quality to meet water quality regulations, live up to public expectations, and 
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safeguard the environment and public health. The Gomti River, which flows through 

the main city of the province of the most populous state in India, has an issue with its 

surface water quality. The leading cause of the current extremely polluted water quality 

is the direct discharge of industrial and domestic wastewater into rivers through a 

system of drains. The river habitat is unfavorable for aquatic life and the surrounding 

environment because of the poor quality of the water.  

As a result, management alternatives are suggested to lessen pollution. Between 

sampling stations S2 and S7, a sufficient sewage treatment facility ought to be set up. 

In order to facilitate the river's natural processes of self-purification and self-cleansing, 

adequate discharge must be maintained at all times, particularly during the dry or non-

monsoon seasons. The removal of solid waste such as plastic, paper, dead animals, and 

other debris is necessary to keep the flow in the river body. The implementation of these 

initiatives will contribute to an improvement in water quality in the foreseeable future. 

 

6.2 Scope for further work  

The control of water quality is essential, given the steadily rising trends in water 

pollution. It is crucial to have a scientific method for identifying locations with a high 

potential for pollution in developing nations like India, where the economic structure 

of the nation is still being developed. An integrated strategy involving WQIs, GIS, and 

modeling makes it easier to conduct vulnerability analyses that will aid in classifying a 

region into zones with varied degrees of pollution so that appropriate interventions can 

be started well in advance. The project can be expanded to include additional rivers and 

bodies of water. 

 Since water quality indices are created in various parts of the world with various 

goals or applications, it is imperative to develop a new water quality index for 

the river Gomti based on the study's goals, and it may be undertaken as a future 

project. 

 The influence of pollution caused by agricultural fields could not be considered 

in WQMs due to a lack of data on agricultural runoff. The model may need to 

be updated in the future with data on agricultural runoff, which would shed light 

on the contribution of diffuse sources of pollution in the Gomti River. 

 River water interacts with the sediment and is affected by the sediment's quality. 

Modeling sediment and water quality may be a grey area in the future. The 
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influence of the river's declining water quality on the basin's groundwater can 

be investigated further using a study based on the interactions between surface 

and subsurface water. 

 

6.3 Significant contributions  

The Gomti River's water quality was evaluated in this study using an integrated 

methodology (MSTs, WQIs, GIS, and statistical modeling), and the results were 

utilized to help develop the strategies for a surface water quality management plan. The 

following list includes the present study's major contributions: 

 The river sampling stations have been categorized using the CA method. The 

results of CA enable the clustering of related sample stations, which facilitates 

the design of the optimal number of sampling stations, hence lowering the 

number of stations and the cost of sampling.  

 In the current study, source apportionment was carried out using PCA, and the 

actual causes of river water quality decline were also evaluated. The 

policymakers and scientists will be benefitted from the source apportionment 

studies as they carefully create and implement surface water quality control 

programs. 

 The usage of WQIs aids in understanding the condition of the entire study river 

stretch. The current study provides the overall appropriateness status of the 

water quality. The study also emphasizes the vital aspects of water quality. The 

Gomti River's water quality was predicted with statistical modeling of various 

WQIs. The interception and diversion (I&D) of sewage before it reaches rivers, 

as well as the installation of treatment facilities to treat the intercepted sewage, 

are some recommendations made based on both outcomes to preserve the river 

water quality. 

 The results of this study show that employing an integrated strategy of MSTs, 

WQIs, GIS, and statistical modeling makes it possible to construct more reliable 

surface water quality management plans in a developing nation like India. The 

combined use of these scientific tools would not only aid in managing surface 

water quality but also result in time and cost savings. 
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ANNEXURES 
 

ANNEXURE – I 

Sampling Stations Photographs 
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S2 - Up Stream water intake  
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S3 - Kuriyaghat 

 

 



 
 

8-274  
 

 

 

 

S4 - Downstream Mohan Meakins  
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S5 - Nishat Ganj Bridge 
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S6 - Upstream Barrage 
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S7 - Downstream STP Nala Bharwara junction 
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ANNEXURE – II 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of Arithmetic WQI (S1 – S7) 
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ANNEXURE – III 

Predicted value of Arithmetic WQI (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 105.35 112.78 145.00 161.55 179.21 196.15 227.08 
Feb 2018 113.63 121.99 160.53 174.89 197.18 211.16 245.52 
Mar 2018 119.83 132.58 176.67 189.92 213.13 225.81 256.14 
Apr 2018 106.70 137.12 183.53 193.28 223.99 233.35 258.42 
May 2018 118.23 145.26 188.00 202.96 227.19 241.54 264.39 
Jun 2018 118.70 141.49 177.36 191.88 211.41 224.12 249.38 
Jul 2018 108.69 133.61 170.82 185.04 202.65 217.82 249.09 
Aug 2018 86.20 107.23 142.24 155.86 172.66 182.47 202.99 
Sep 2018 97.80 115.55 156.39 170.95 186.21 197.89 231.34 
Oct 2018 99.76 117.31 156.70 166.03 181.54 190.77 230.03 
Nov 2018 105.30 119.19 152.81 166.68 190.37 204.76 238.84 
Dec 2018 110.04 122.12 158.89 170.85 191.93 207.05 233.66 
Jan 2019 106.33 115.58 153.66 169.51 186.40 202.42 233.64 
Feb 2019 114.68 124.80 169.18 182.85 204.38 217.43 252.08 
Mar 2019 120.94 135.39 185.33 197.88 220.33 232.08 262.70 
Apr 2019 107.69 139.93 192.19 201.24 231.19 239.62 264.98 
May 2019 119.33 148.07 196.66 210.92 234.38 247.81 270.95 
Jun 2019 119.80 144.29 186.02 199.84 218.61 230.39 255.94 
Jul 2019 109.70 136.42 179.48 193.00 209.85 224.09 255.65 
Aug 2019 87.00 110.04 150.90 163.82 179.85 188.74 209.55 
Sep 2019 98.71 118.36 165.05 178.91 193.41 204.16 237.91 
Oct 2019 100.68 120.12 165.36 173.99 188.73 197.04 236.59 
Nov 2019 106.28 122.00 161.47 174.64 197.56 211.04 245.40 
Dec 2019 111.06 124.93 167.55 178.81 199.12 213.32 240.22 
Jan 2020 107.32 118.39 162.32 177.47 193.60 208.69 240.20 
Feb 2020 115.75 127.61 177.84 190.81 211.57 223.71 258.64 
Mar 2020 122.06 138.20 193.99 205.84 227.52 238.35 269.27 
Apr 2020 108.69 142.74 200.85 209.20 238.38 245.89 271.54 
May 2020 120.44 150.88 205.32 218.88 241.58 254.09 277.51 
Jun 2020 120.91 147.10 194.68 207.80 225.80 236.66 262.50 
Jul 2020 110.72 139.23 188.14 200.96 217.04 230.36 262.21 
Aug 2020 87.80 112.85 159.56 171.78 187.05 195.01 216.11 
Sep 2020 99.63 121.17 173.71 186.87 200.60 210.44 244.47 
Oct 2020 101.62 122.93 174.01 181.95 195.93 203.31 243.15 
Nov 2020 107.27 124.81 170.13 182.60 204.76 217.31 251.96 
Dec 2020 112.09 127.74 176.20 186.77 206.32 219.59 246.78 
Jan 2021 108.31 121.20 170.98 185.43 200.79 214.96 246.76 
Feb 2021 116.82 130.42 186.50 198.77 218.77 229.98 265.20 
Mar 2021 123.19 141.01 202.65 213.80 234.72 244.62 275.83 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 109.70 145.55 209.50 217.16 245.58 252.16 278.10 
May 2021 121.56 153.69 213.98 226.84 248.77 260.36 284.07 
Jun 2021 122.04 149.91 203.34 215.76 233.00 242.93 269.06 
Jul 2021 111.74 142.04 196.80 208.92 224.24 236.63 268.77 
Aug 2021 88.62 115.65 168.22 179.74 194.24 201.29 222.68 
Sep 2021 100.55 123.98 182.37 194.83 207.80 216.71 251.03 
Oct 2021 102.56 125.74 182.67 189.91 203.12 209.58 249.71 
Nov 2021 108.26 127.62 178.78 190.56 211.95 223.58 258.52 
Dec 2021 113.13 130.55 184.86 194.73 213.52 225.87 253.34 
Jan 2022 109.32 124.01 179.64 193.39 207.99 221.23 253.32 
Feb 2022 117.91 133.23 195.16 206.73 225.96 236.25 271.76 
Mar 2022 124.34 143.81 211.31 221.76 241.92 250.90 282.39 
Apr 2022 110.72 148.36 218.16 225.12 252.77 258.43 284.66 
May 2022 122.69 156.49 222.64 234.80 255.97 266.63 290.63 
Jun 2022 123.17 152.72 212.00 223.72 240.19 249.21 275.62 
Jul 2022 112.78 144.85 205.46 216.88 231.43 242.91 275.33 
Aug 2022 89.44 118.46 176.88 187.70 201.44 207.56 229.24 
Sep 2022 101.49 126.79 191.03 202.79 215.00 222.98 257.59 
Oct 2022 103.51 128.54 191.33 197.87 210.32 215.86 256.27 
Nov 2022 109.27 130.43 187.44 198.52 219.15 229.85 265.08 
Dec 2022 114.18 133.36 193.52 202.69 220.71 232.14 259.90 
Jan 2023 110.34 126.82 188.30 201.35 215.18 227.51 259.88 
Feb 2023 119.00 136.03 203.82 214.69 233.16 242.52 278.32 
Mar 2023 125.49 146.62 219.97 229.72 249.11 257.17 288.95 
Apr 2023 111.75 151.17 226.82 233.08 259.97 264.71 291.22 
May 2023 123.83 159.30 231.29 242.76 263.17 272.90 297.19 
Jun 2023 124.32 155.53 220.66 231.68 247.39 255.48 282.18 
Jul 2023 113.83 147.66 214.12 224.84 238.63 249.18 281.89 
Aug 2023 90.28 121.27 185.54 195.66 208.63 213.83 235.80 
Sep 2023 102.43 129.59 199.69 210.75 222.19 229.25 264.15 
Oct 2023 104.48 131.35 199.99 205.83 217.52 222.13 262.83 
Nov 2023 110.29 133.24 196.10 206.48 226.34 236.12 271.64 
Dec 2023 115.25 136.16 202.18 210.65 227.91 238.41 266.46 
Jan 2024 111.36 129.62 196.96 209.31 222.38 233.78 266.44 
Feb 2024 120.11 138.84 212.48 222.65 240.35 248.80 284.88 
Mar 2024 126.66 149.43 228.62 237.68 256.31 263.44 295.51 
Apr 2024 112.79 153.97 235.48 241.04 267.17 270.98 297.78 
May 2024 124.98 162.11 239.95 250.72 270.36 279.17 303.75 
Jun 2024 125.47 158.34 229.32 239.64 254.58 261.75 288.74 
Jul 2024 114.89 150.46 222.78 232.80 245.82 255.45 288.45 
Aug 2024 91.12 124.08 194.20 203.62 215.83 220.10 242.36 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 103.39 132.40 208.34 218.71 229.39 235.53 270.71 
Oct 2024 105.45 134.16 208.65 213.79 224.71 228.40 269.39 
Nov 2024 111.31 136.04 204.76 214.44 233.54 242.40 278.20 
Dec 2024 116.32 138.97 210.84 218.61 235.10 244.68 273.02 
Jan 2025 112.40 132.43 205.61 217.27 229.58 240.05 273.00 
Feb 2025 121.23 141.65 221.14 230.61 247.55 255.07 291.44 
Mar 2025 127.84 152.24 237.28 245.64 263.50 269.71 302.07 
Apr 2025 113.84 156.78 244.14 249.00 274.36 277.25 304.34 
May 2025 126.14 164.92 248.61 258.68 277.56 285.45 310.31 
Jun 2025 126.64 161.14 237.97 247.60 261.78 268.02 295.30 
Jul 2025 115.96 153.27 231.44 240.76 253.02 261.72 295.01 
Aug 2025 91.97 126.89 202.86 211.58 223.03 226.38 248.92 
Sep 2025 104.35 135.21 217.00 226.67 236.58 241.80 277.27 
Oct 2025 106.43 136.97 217.31 221.75 231.91 234.67 275.95 
Nov 2025 112.35 138.85 213.42 222.40 240.74 248.67 284.76 
Dec 2025 117.41 141.78 219.50 226.57 242.30 250.96 279.58 
Jan 2026 113.45 135.24 214.27 225.23 236.77 246.32 279.56 
Feb 2026 122.36 144.46 229.80 238.57 254.75 261.34 298.00 
Mar 2026 129.03 155.05 245.94 253.60 270.70 275.99 308.63 
Apr 2026 114.90 159.59 252.80 256.96 281.56 283.52 310.90 
May 2026 127.32 167.73 257.27 266.64 284.75 291.72 316.87 
Jun 2026 127.82 163.95 246.63 255.56 268.98 274.29 301.86 
Jul 2026 117.05 156.08 240.10 248.72 260.21 268.00 301.57 
Aug 2026 92.82 129.69 211.52 219.54 230.22 232.65 255.48 
Sep 2026 105.32 138.02 225.66 234.63 243.78 248.07 283.83 
Oct 2026 107.43 139.78 225.97 229.71 239.10 240.94 282.51 
Nov 2026 113.40 141.66 222.08 230.36 247.93 254.94 291.32 
Dec 2026 118.50 144.59 228.16 234.53 249.49 257.23 286.14 
Jan 2027 114.51 138.05 222.93 233.19 243.97 252.60 286.12 
Feb 2027 123.50 147.27 238.46 246.53 261.94 267.61 304.56 
Mar 2027 130.24 157.86 254.60 261.56 277.89 282.26 315.19 
Apr 2027 115.98 162.40 261.46 264.92 288.75 289.80 317.46 
May 2027 128.51 170.54 265.93 274.60 291.95 297.99 323.43 
Jun 2027 129.02 166.76 255.29 263.52 276.17 280.57 308.42 
Jul 2027 118.14 158.89 248.75 256.68 267.41 274.27 308.13 
Aug 2027 93.69 132.50 220.17 227.49 237.42 238.92 262.04 
Sep 2027 106.31 140.83 234.32 242.59 250.97 254.34 290.39 
Oct 2027 108.43 142.58 234.63 237.67 246.30 247.22 289.07 
Nov 2027 114.46 144.47 230.74 238.32 255.13 261.21 297.88 
Dec 2027 119.61 147.40 236.82 242.49 256.69 263.50 292.71 
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ANNEXURE – IV 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of SPI (S1 – S7) 
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ANNEXURE – V 

Predicted value of SPI (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 1.261 1.277 1.385 1.449 1.567 1.690 1.955 
Feb 2018 1.274 1.283 1.364 1.459 1.668 1.808 2.070 
Mar 2018 1.184 1.191 1.354 1.458 1.731 1.851 2.177 
Apr 2018 1.136 1.129 1.329 1.459 1.859 1.968 2.215 
May 2018 1.134 1.154 1.358 1.517 1.851 1.994 2.253 
Jun 2018 1.124 1.147 1.330 1.485 1.730 1.876 2.156 
Jul 2018 1.020 1.021 1.279 1.420 1.672 1.849 2.167 
Aug 2018 0.974 0.971 1.161 1.294 1.555 1.670 1.858 
Sep 2018 1.007 1.021 1.240 1.380 1.603 1.711 2.029 
Oct 2018 1.071 1.080 1.271 1.365 1.547 1.635 2.008 
Nov 2018 1.132 1.151 1.314 1.412 1.569 1.702 2.041 
Dec 2018 1.258 1.286 1.273 1.386 1.598 1.748 2.013 
Jan 2019 1.271 1.281 1.415 1.489 1.610 1.732 2.005 
Feb 2019 1.284 1.286 1.395 1.498 1.711 1.850 2.120 
Mar 2019 1.193 1.194 1.385 1.497 1.774 1.894 2.228 
Apr 2019 1.145 1.132 1.359 1.498 1.903 2.010 2.266 
May 2019 1.142 1.157 1.388 1.556 1.894 2.037 2.303 
Jun 2019 1.133 1.150 1.360 1.524 1.773 1.918 2.207 
Jul 2019 1.028 1.024 1.309 1.459 1.715 1.891 2.217 
Aug 2019 0.981 0.973 1.191 1.333 1.599 1.713 1.909 
Sep 2019 1.015 1.024 1.270 1.420 1.647 1.754 2.079 
Oct 2019 1.079 1.083 1.302 1.404 1.590 1.678 2.059 
Nov 2019 1.141 1.154 1.345 1.452 1.612 1.744 2.091 
Dec 2019 1.267 1.289 1.304 1.425 1.641 1.791 2.063 
Jan 2020 1.280 1.284 1.446 1.528 1.653 1.774 2.056 
Feb 2020 1.293 1.289 1.425 1.537 1.754 1.892 2.171 
Mar 2020 1.202 1.197 1.415 1.537 1.817 1.936 2.278 
Apr 2020 1.154 1.135 1.390 1.538 1.946 2.053 2.316 
May 2020 1.151 1.160 1.419 1.596 1.937 2.079 2.353 
Jun 2020 1.141 1.153 1.391 1.564 1.817 1.960 2.257 
Jul 2020 1.036 1.027 1.340 1.499 1.759 1.934 2.267 
Aug 2020 0.989 0.976 1.222 1.373 1.642 1.755 1.959 
Sep 2020 1.023 1.027 1.301 1.459 1.690 1.796 2.129 
Oct 2020 1.087 1.086 1.332 1.444 1.633 1.720 2.109 
Nov 2020 1.149 1.157 1.375 1.491 1.656 1.787 2.141 
Dec 2020 1.277 1.293 1.335 1.465 1.684 1.833 2.113 
Jan 2021 1.290 1.287 1.476 1.568 1.696 1.817 2.106 
Feb 2021 1.303 1.293 1.456 1.577 1.798 1.935 2.221 
Mar 2021 1.211 1.201 1.446 1.576 1.860 1.979 2.328 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 1.162 1.138 1.420 1.577 1.989 2.095 2.366 
May 2021 1.160 1.163 1.449 1.635 1.980 2.121 2.404 
Jun 2021 1.150 1.156 1.421 1.603 1.860 2.003 2.307 
Jul 2021 1.044 1.030 1.370 1.538 1.802 1.976 2.317 
Aug 2021 0.996 0.978 1.252 1.412 1.685 1.798 2.009 
Sep 2021 1.030 1.029 1.331 1.499 1.733 1.839 2.179 
Oct 2021 1.095 1.089 1.363 1.483 1.677 1.762 2.159 
Nov 2021 1.158 1.160 1.406 1.531 1.699 1.829 2.191 
Dec 2021 1.287 1.296 1.365 1.504 1.727 1.875 2.164 
Jan 2022 1.300 1.291 1.507 1.607 1.740 1.859 2.156 
Feb 2022 1.313 1.296 1.486 1.616 1.841 1.977 2.271 
Mar 2022 1.220 1.204 1.476 1.616 1.903 2.021 2.378 
Apr 2022 1.171 1.141 1.451 1.617 2.032 2.138 2.416 
May 2022 1.168 1.166 1.480 1.675 2.024 2.164 2.454 
Jun 2022 1.159 1.159 1.452 1.643 1.903 2.045 2.357 
Jul 2022 1.051 1.032 1.401 1.578 1.845 2.019 2.368 
Aug 2022 1.004 0.981 1.283 1.452 1.728 1.840 2.059 
Sep 2022 1.038 1.032 1.362 1.538 1.776 1.881 2.230 
Oct 2022 1.104 1.091 1.394 1.522 1.720 1.805 2.209 
Nov 2022 1.167 1.163 1.436 1.570 1.742 1.871 2.242 
Dec 2022 1.297 1.299 1.396 1.544 1.770 1.918 2.214 
Jan 2023 1.309 1.294 1.538 1.647 1.783 1.902 2.206 
Feb 2023 1.323 1.299 1.517 1.656 1.884 2.020 2.321 
Mar 2023 1.229 1.207 1.507 1.655 1.946 2.063 2.429 
Apr 2023 1.180 1.144 1.482 1.656 2.075 2.180 2.467 
May 2023 1.177 1.169 1.510 1.714 2.067 2.206 2.504 
Jun 2023 1.167 1.162 1.482 1.682 1.946 2.088 2.408 
Jul 2023 1.059 1.035 1.432 1.617 1.888 2.061 2.418 
Aug 2023 1.011 0.984 1.313 1.491 1.771 1.882 2.110 
Sep 2023 1.046 1.035 1.392 1.577 1.819 1.923 2.280 
Oct 2023 1.112 1.094 1.424 1.562 1.763 1.847 2.260 
Nov 2023 1.176 1.166 1.467 1.610 1.785 1.914 2.292 
Dec 2023 1.306 1.303 1.426 1.583 1.814 1.960 2.264 
Jan 2024 1.319 1.298 1.568 1.686 1.826 1.944 2.257 
Feb 2024 1.333 1.303 1.547 1.695 1.927 2.062 2.372 
Mar 2024 1.239 1.210 1.537 1.694 1.990 2.106 2.479 
Apr 2024 1.189 1.147 1.512 1.696 2.118 2.222 2.517 
May 2024 1.186 1.172 1.541 1.753 2.110 2.249 2.554 
Jun 2024 1.176 1.165 1.513 1.721 1.989 2.130 2.458 
Jul 2024 1.067 1.038 1.462 1.657 1.931 2.103 2.468 
Aug 2024 1.019 0.986 1.344 1.530 1.815 1.925 2.160 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 1.054 1.037 1.423 1.617 1.863 1.966 2.330 
Oct 2024 1.120 1.097 1.455 1.601 1.806 1.890 2.310 
Nov 2024 1.185 1.169 1.498 1.649 1.828 1.956 2.342 
Dec 2024 1.316 1.306 1.457 1.622 1.857 2.002 2.314 
Jan 2025 1.329 1.301 1.599 1.725 1.869 1.986 2.307 
Feb 2025 1.343 1.306 1.578 1.735 1.970 2.104 2.422 
Mar 2025 1.248 1.213 1.568 1.734 2.033 2.148 2.529 
Apr 2025 1.198 1.150 1.543 1.735 2.162 2.265 2.567 
May 2025 1.195 1.175 1.571 1.793 2.153 2.291 2.605 
Jun 2025 1.185 1.169 1.543 1.761 2.032 2.172 2.508 
Jul 2025 1.076 1.040 1.493 1.696 1.975 2.146 2.518 
Aug 2025 1.027 0.989 1.374 1.570 1.858 1.967 2.210 
Sep 2025 1.062 1.040 1.453 1.656 1.906 2.008 2.380 
Oct 2025 1.129 1.100 1.485 1.641 1.849 1.932 2.360 
Nov 2025 1.194 1.172 1.528 1.689 1.872 1.999 2.392 
Dec 2025 1.326 1.310 1.487 1.662 1.900 2.045 2.365 
Jan 2026 1.339 1.304 1.629 1.765 1.912 2.029 2.357 
Feb 2026 1.353 1.310 1.609 1.774 2.014 2.147 2.472 
Mar 2026 1.258 1.216 1.599 1.773 2.076 2.191 2.580 
Apr 2026 1.207 1.153 1.573 1.775 2.205 2.307 2.618 
May 2026 1.204 1.178 1.602 1.832 2.196 2.333 2.655 
Jun 2026 1.194 1.172 1.574 1.800 2.076 2.215 2.558 
Jul 2026 1.084 1.043 1.523 1.736 2.018 2.188 2.569 
Aug 2026 1.034 0.991 1.405 1.609 1.901 2.010 2.260 
Sep 2026 1.070 1.043 1.484 1.696 1.949 2.051 2.431 
Oct 2026 1.137 1.103 1.516 1.680 1.893 1.974 2.410 
Nov 2026 1.203 1.175 1.559 1.728 1.915 2.041 2.443 
Dec 2026 1.336 1.313 1.518 1.701 1.943 2.087 2.415 
Jan 2027 1.350 1.308 1.660 1.804 1.956 2.071 2.407 
Feb 2027 1.364 1.313 1.639 1.814 2.057 2.189 2.522 
Mar 2027 1.267 1.220 1.629 1.813 2.119 2.233 2.630 
Apr 2027 1.216 1.156 1.604 1.814 2.248 2.350 2.668 
May 2027 1.213 1.181 1.633 1.872 2.239 2.376 2.705 
Jun 2027 1.203 1.175 1.605 1.840 2.119 2.257 2.609 
Jul 2027 1.092 1.046 1.554 1.775 2.061 2.231 2.619 
Aug 2027 1.042 0.994 1.436 1.649 1.944 2.052 2.311 
Sep 2027 1.078 1.045 1.515 1.735 1.992 2.093 2.481 
Oct 2027 1.146 1.106 1.546 1.720 1.936 2.017 2.461 
Nov 2027 1.212 1.178 1.589 1.767 1.958 2.083 2.493 
Dec 2027 1.346 1.316 1.548 1.741 1.986 2.130 2.465 
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ANNEXURE – VI 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of CPI (S1 – S7) 
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ANNEXURE – VII 

Predicted value of CPI (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 0.957 1.005 1.138 1.206 1.277 1.349 1.525 
Feb 2018 1.007 1.058 1.202 1.280 1.389 1.465 1.647 
Mar 2018 1.007 1.058 1.253 1.329 1.464 1.525 1.726 
Apr 2018 1.007 1.054 1.271 1.343 1.539 1.615 1.751 
May 2018 0.979 1.042 1.265 1.364 1.526 1.601 1.773 
Jun 2018 1.005 1.064 1.254 1.361 1.489 1.570 1.752 
Jul 2018 0.925 0.978 1.192 1.286 1.405 1.495 1.689 
Aug 2018 0.780 0.814 0.983 1.066 1.183 1.240 1.358 
Sep 2018 0.816 0.871 1.040 1.133 1.236 1.287 1.469 
Oct 2018 0.880 0.921 1.085 1.155 1.247 1.289 1.508 
Nov 2018 0.917 0.964 1.116 1.192 1.282 1.349 1.550 
Dec 2018 0.948 0.997 1.103 1.178 1.281 1.358 1.521 
Jan 2019 0.961 1.009 1.170 1.239 1.311 1.378 1.557 
Feb 2019 1.012 1.062 1.234 1.313 1.423 1.494 1.680 
Mar 2019 1.011 1.062 1.285 1.362 1.498 1.554 1.759 
Apr 2019 1.012 1.058 1.303 1.376 1.573 1.644 1.783 
May 2019 0.983 1.046 1.297 1.397 1.560 1.631 1.806 
Jun 2019 1.010 1.068 1.286 1.394 1.523 1.600 1.785 
Jul 2019 0.929 0.982 1.225 1.319 1.439 1.524 1.722 
Aug 2019 0.784 0.817 1.015 1.099 1.217 1.269 1.390 
Sep 2019 0.820 0.875 1.072 1.166 1.270 1.316 1.502 
Oct 2019 0.884 0.925 1.118 1.188 1.281 1.318 1.541 
Nov 2019 0.921 0.968 1.148 1.226 1.316 1.378 1.583 
Dec 2019 0.952 1.001 1.136 1.211 1.315 1.388 1.554 
Jan 2020 0.965 1.013 1.203 1.273 1.345 1.407 1.590 
Feb 2020 1.016 1.067 1.266 1.346 1.457 1.523 1.713 
Mar 2020 1.015 1.067 1.317 1.395 1.532 1.583 1.792 
Apr 2020 1.016 1.063 1.336 1.409 1.606 1.673 1.816 
May 2020 0.987 1.050 1.329 1.430 1.594 1.660 1.839 
Jun 2020 1.014 1.073 1.318 1.428 1.557 1.629 1.818 
Jul 2020 0.933 0.986 1.257 1.352 1.472 1.553 1.755 
Aug 2020 0.787 0.820 1.048 1.132 1.251 1.298 1.423 
Sep 2020 0.823 0.878 1.105 1.199 1.304 1.345 1.535 
Oct 2020 0.888 0.929 1.150 1.221 1.315 1.347 1.574 
Nov 2020 0.925 0.972 1.180 1.259 1.350 1.407 1.616 
Dec 2020 0.956 1.005 1.168 1.245 1.349 1.417 1.587 
Jan 2021 0.969 1.017 1.235 1.306 1.379 1.436 1.623 
Feb 2021 1.020 1.071 1.299 1.380 1.491 1.552 1.746 
Mar 2021 1.020 1.071 1.349 1.428 1.566 1.612 1.825 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 1.020 1.067 1.368 1.442 1.640 1.702 1.849 
May 2021 0.992 1.054 1.362 1.463 1.628 1.689 1.871 
Jun 2021 1.019 1.077 1.351 1.461 1.591 1.658 1.851 
Jul 2021 0.937 0.990 1.289 1.386 1.506 1.582 1.788 
Aug 2021 0.790 0.824 1.080 1.165 1.285 1.327 1.456 
Sep 2021 0.827 0.882 1.137 1.232 1.338 1.374 1.567 
Oct 2021 0.892 0.932 1.182 1.254 1.349 1.376 1.607 
Nov 2021 0.929 0.976 1.212 1.292 1.384 1.436 1.648 
Dec 2021 0.960 1.009 1.200 1.278 1.383 1.446 1.619 
Jan 2022 0.973 1.021 1.267 1.339 1.412 1.465 1.656 
Feb 2022 1.025 1.075 1.331 1.413 1.525 1.581 1.779 
Mar 2022 1.024 1.075 1.382 1.461 1.599 1.641 1.857 
Apr 2022 1.025 1.071 1.400 1.475 1.674 1.731 1.882 
May 2022 0.996 1.058 1.394 1.496 1.662 1.718 1.904 
Jun 2022 1.023 1.081 1.383 1.494 1.625 1.687 1.883 
Jul 2022 0.941 0.994 1.321 1.419 1.540 1.611 1.820 
Aug 2022 0.794 0.827 1.112 1.198 1.318 1.356 1.489 
Sep 2022 0.831 0.885 1.169 1.266 1.372 1.403 1.600 
Oct 2022 0.896 0.936 1.214 1.287 1.383 1.406 1.639 
Nov 2022 0.933 0.980 1.245 1.325 1.418 1.465 1.681 
Dec 2022 0.964 1.013 1.232 1.311 1.417 1.475 1.652 
Jan 2023 0.978 1.025 1.299 1.372 1.446 1.494 1.689 
Feb 2023 1.029 1.080 1.363 1.446 1.559 1.610 1.812 
Mar 2023 1.029 1.080 1.414 1.494 1.633 1.670 1.890 
Apr 2023 1.029 1.076 1.432 1.509 1.708 1.760 1.915 
May 2023 1.000 1.063 1.426 1.530 1.696 1.747 1.937 
Jun 2023 1.027 1.086 1.415 1.527 1.659 1.716 1.916 
Jul 2023 0.945 0.998 1.354 1.452 1.574 1.640 1.853 
Aug 2023 0.797 0.831 1.144 1.231 1.352 1.385 1.522 
Sep 2023 0.834 0.889 1.201 1.299 1.406 1.432 1.633 
Oct 2023 0.899 0.940 1.247 1.320 1.417 1.435 1.672 
Nov 2023 0.937 0.984 1.277 1.358 1.452 1.494 1.714 
Dec 2023 0.969 1.017 1.265 1.344 1.451 1.504 1.685 
Jan 2024 0.982 1.029 1.332 1.405 1.480 1.523 1.722 
Feb 2024 1.034 1.084 1.395 1.479 1.592 1.639 1.844 
Mar 2024 1.033 1.084 1.446 1.528 1.667 1.699 1.923 
Apr 2024 1.034 1.080 1.464 1.542 1.742 1.789 1.948 
May 2024 1.005 1.067 1.458 1.563 1.729 1.776 1.970 
Jun 2024 1.032 1.090 1.447 1.560 1.693 1.745 1.949 
Jul 2024 0.949 1.002 1.386 1.485 1.608 1.669 1.886 
Aug 2024 0.801 0.834 1.177 1.265 1.386 1.414 1.555 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 0.838 0.892 1.233 1.332 1.439 1.461 1.666 
Oct 2024 0.903 0.944 1.279 1.354 1.450 1.464 1.705 
Nov 2024 0.942 0.988 1.309 1.391 1.486 1.523 1.747 
Dec 2024 0.973 1.022 1.297 1.377 1.485 1.533 1.718 
Jan 2025 0.986 1.033 1.364 1.438 1.514 1.552 1.755 
Feb 2025 1.038 1.089 1.428 1.512 1.626 1.668 1.877 
Mar 2025 1.038 1.089 1.478 1.561 1.701 1.729 1.956 
Apr 2025 1.038 1.084 1.497 1.575 1.776 1.818 1.981 
May 2025 1.009 1.072 1.490 1.596 1.763 1.805 2.003 
Jun 2025 1.036 1.095 1.479 1.593 1.727 1.774 1.982 
Jul 2025 0.953 1.006 1.418 1.518 1.642 1.698 1.919 
Aug 2025 0.804 0.837 1.209 1.298 1.420 1.443 1.588 
Sep 2025 0.842 0.896 1.266 1.365 1.473 1.490 1.699 
Oct 2025 0.907 0.948 1.311 1.387 1.484 1.493 1.738 
Nov 2025 0.946 0.992 1.341 1.424 1.520 1.553 1.780 
Dec 2025 0.977 1.026 1.329 1.410 1.518 1.562 1.751 
Jan 2026 0.991 1.038 1.396 1.471 1.548 1.581 1.788 
Feb 2026 1.043 1.093 1.460 1.545 1.660 1.697 1.910 
Mar 2026 1.042 1.093 1.511 1.594 1.735 1.758 1.989 
Apr 2026 1.043 1.089 1.529 1.608 1.810 1.847 2.014 
May 2026 1.014 1.076 1.523 1.629 1.797 1.834 2.036 
Jun 2026 1.041 1.099 1.512 1.626 1.761 1.803 2.015 
Jul 2026 0.957 1.010 1.450 1.551 1.676 1.727 1.952 
Aug 2026 0.808 0.841 1.241 1.331 1.454 1.472 1.621 
Sep 2026 0.845 0.900 1.298 1.398 1.507 1.519 1.732 
Oct 2026 0.911 0.952 1.343 1.420 1.518 1.522 1.771 
Nov 2026 0.950 0.996 1.374 1.458 1.553 1.582 1.813 
Dec 2026 0.981 1.030 1.361 1.443 1.552 1.591 1.784 
Jan 2027 0.995 1.042 1.428 1.505 1.582 1.611 1.820 
Feb 2027 1.048 1.098 1.492 1.578 1.694 1.727 1.943 
Mar 2027 1.047 1.098 1.543 1.627 1.769 1.787 2.022 
Apr 2027 1.048 1.093 1.561 1.641 1.844 1.876 2.046 
May 2027 1.018 1.080 1.555 1.662 1.831 1.863 2.069 
Jun 2027 1.046 1.104 1.544 1.660 1.795 1.832 2.048 
Jul 2027 0.962 1.015 1.483 1.584 1.710 1.756 1.985 
Aug 2027 0.811 0.844 1.273 1.364 1.488 1.501 1.653 
Sep 2027 0.849 0.904 1.330 1.431 1.541 1.548 1.765 
Oct 2027 0.915 0.956 1.376 1.453 1.552 1.551 1.804 
Nov 2027 0.954 1.000 1.406 1.491 1.587 1.611 1.846 
Dec 2027 0.986 1.034 1.393 1.476 1.586 1.620 1.817 
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ANNEXURE – VIII 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of CPCB-WQI (S1 – S7) 
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ANNEXURE – IX 

Predicted value of CPCB-WQI (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 80.49 64.01 45.22 41.59 34.19 30.75 28.23 
Feb 2018 79.04 67.14 39.25 36.47 30.28 27.79 25.82 
Mar 2018 57.29 53.08 34.31 31.35 26.56 25.58 26.05 
Apr 2018 53.80 48.38 30.19 28.87 26.45 25.96 26.31 
May 2018 59.24 47.36 30.50 28.30 26.37 25.24 25.97 
Jun 2018 55.40 47.89 33.24 30.64 27.98 26.48 27.42 
Jul 2018 52.79 43.10 31.21 30.14 28.04 27.19 27.13 
Aug 2018 54.32 47.05 33.61 32.84 31.39 30.21 29.65 
Sep 2018 56.46 49.48 35.11 33.48 30.71 29.32 29.11 
Oct 2018 55.03 52.18 36.23 35.45 32.05 30.05 28.79 
Nov 2018 57.98 55.82 39.36 37.60 30.14 27.78 27.35 
Dec 2018 59.81 60.88 37.90 35.99 31.47 29.16 28.51 
Jan 2019 64.84 63.32 41.58 38.90 32.77 30.04 27.87 
Feb 2019 63.73 66.46 36.20 34.18 29.03 27.15 25.47 
Mar 2019 56.61 52.40 31.73 29.47 25.46 24.99 25.69 
Apr 2019 55.29 47.69 28.00 27.17 25.36 25.37 25.96 
May 2019 56.39 46.68 28.28 26.64 25.28 24.66 25.61 
Jun 2019 55.27 47.20 30.76 28.80 26.82 25.87 27.06 
Jul 2019 54.25 42.42 28.91 28.33 26.88 26.57 26.77 
Aug 2019 54.94 46.37 31.08 30.82 30.09 29.51 29.29 
Sep 2019 55.51 48.80 32.43 31.41 29.44 28.65 28.75 
Oct 2019 55.15 51.50 33.43 33.22 30.73 29.36 28.43 
Nov 2019 56.11 55.13 36.25 35.19 28.89 27.14 26.99 
Dec 2019 56.87 60.19 34.93 33.71 30.16 28.49 28.15 
Jan 2020 58.96 62.64 38.24 36.38 31.41 29.35 27.51 
Feb 2020 58.51 65.77 33.39 32.04 27.83 26.53 25.11 
Mar 2020 55.49 51.71 29.35 27.69 24.41 24.42 25.34 
Apr 2020 54.91 47.01 25.97 25.57 24.31 24.78 25.60 
May 2020 55.42 45.99 26.22 25.08 24.23 24.09 25.26 
Jun 2020 54.93 46.52 28.45 27.07 25.71 25.28 26.71 
Jul 2020 54.48 41.73 26.78 26.64 25.77 25.96 26.42 
Aug 2020 54.80 45.68 28.74 28.93 28.84 28.83 28.93 
Sep 2020 55.05 48.11 29.95 29.47 28.22 27.99 28.39 
Oct 2020 54.90 50.81 30.85 31.13 29.45 28.69 28.08 
Nov 2020 55.33 54.45 33.38 32.94 27.69 26.51 26.63 
Dec 2020 55.66 59.51 32.19 31.57 28.91 27.84 27.80 
Jan 2021 56.56 61.95 35.16 34.02 30.11 28.67 27.16 
Feb 2021 56.36 65.09 30.79 30.03 26.68 25.92 24.75 
Mar 2021 55.03 51.03 27.15 26.03 23.40 23.86 24.98 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 54.77 46.32 24.08 24.07 23.30 24.21 25.24 
May 2021 55.00 45.31 24.31 23.61 23.23 23.54 24.90 
Jun 2021 54.78 45.83 26.33 25.44 24.65 24.70 26.35 
Jul 2021 54.58 41.05 24.81 25.04 24.70 25.36 26.06 
Aug 2021 54.72 45.00 26.58 27.15 27.65 28.17 28.58 
Sep 2021 54.83 47.43 27.67 27.65 27.05 27.35 28.04 
Oct 2021 54.76 50.13 28.47 29.17 28.23 28.03 27.72 
Nov 2021 54.95 53.76 30.75 30.83 26.55 25.90 26.28 
Dec 2021 55.10 58.82 29.67 29.57 27.72 27.20 27.44 
Jan 2022 55.50 61.27 32.33 31.81 28.87 28.02 26.80 
Feb 2022 55.41 64.40 28.40 28.15 25.57 25.32 24.40 
Mar 2022 54.82 50.34 25.11 24.46 22.43 23.31 24.62 
Apr 2022 54.70 45.64 22.34 22.65 22.34 23.66 24.89 
May 2022 54.80 44.62 22.53 22.22 22.27 22.99 24.54 
Jun 2022 54.71 45.15 24.36 23.91 23.63 24.13 25.99 
Jul 2022 54.61 40.36 22.98 23.54 23.68 24.78 25.70 
Aug 2022 54.68 44.31 24.57 25.48 26.51 27.52 28.22 
Sep 2022 54.73 46.74 25.56 25.94 25.93 26.72 27.68 
Oct 2022 54.70 49.44 26.28 27.33 27.07 27.38 27.36 
Nov 2022 54.78 53.08 28.32 28.86 25.45 25.31 25.92 
Dec 2022 54.85 58.14 27.34 27.70 26.57 26.57 27.08 
Jan 2023 55.03 60.58 29.73 29.75 27.67 27.37 26.44 
Feb 2023 54.99 63.72 26.20 26.39 24.52 24.74 24.04 
Mar 2023 54.72 49.66 23.23 22.99 21.50 22.77 24.27 
Apr 2023 54.67 44.95 20.71 21.32 21.41 23.11 24.53 
May 2023 54.71 43.94 20.89 20.92 21.34 22.47 24.19 
Jun 2023 54.67 44.46 22.53 22.48 22.65 23.57 25.64 
Jul 2023 54.63 39.68 21.29 22.13 22.70 24.21 25.35 
Aug 2023 54.66 43.63 22.72 23.92 25.41 26.89 27.86 
Sep 2023 54.68 46.06 23.60 24.33 24.86 26.10 27.32 
Oct 2023 54.67 48.76 24.25 25.61 25.95 26.75 27.01 
Nov 2023 54.71 52.39 26.08 27.01 24.40 24.73 25.56 
Dec 2023 54.74 57.45 25.20 25.94 25.47 25.96 26.73 
Jan 2024 54.82 59.90 27.34 27.82 26.53 26.74 26.09 
Feb 2024 54.80 63.04 24.16 24.73 23.50 24.17 23.68 
Mar 2024 54.68 48.97 21.48 21.60 20.61 22.25 23.91 
Apr 2024 54.65 44.27 19.21 20.06 20.53 22.58 24.17 
May 2024 54.68 43.25 19.37 19.69 20.46 21.95 23.83 
Jun 2024 54.66 43.78 20.85 21.13 21.71 23.03 25.28 
Jul 2024 54.64 38.99 19.72 20.81 21.76 23.65 24.99 
Aug 2024 54.65 42.94 21.01 22.45 24.36 26.27 27.51 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 54.66 45.37 21.80 22.83 23.83 25.50 26.97 
Oct 2024 54.65 48.07 22.38 24.00 24.87 26.14 26.65 
Nov 2024 54.67 51.71 24.02 25.28 23.39 24.16 25.21 
Dec 2024 54.68 56.77 23.23 24.30 24.42 25.37 26.37 
Jan 2025 54.72 59.22 25.14 26.02 25.43 26.13 25.73 
Feb 2025 54.71 62.35 22.28 23.18 22.53 23.62 23.33 
Mar 2025 54.66 48.29 19.87 20.30 19.76 21.74 23.55 
Apr 2025 54.65 43.58 17.82 18.88 19.68 22.06 23.82 
May 2025 54.66 42.57 17.96 18.54 19.62 21.45 23.47 
Jun 2025 54.65 43.09 19.29 19.86 20.81 22.50 24.92 
Jul 2025 54.64 38.31 18.27 19.56 20.86 23.11 24.63 
Aug 2025 54.65 42.26 19.43 21.07 23.35 25.67 27.15 
Sep 2025 54.65 44.69 20.14 21.41 22.84 24.92 26.61 
Oct 2025 54.65 47.39 20.65 22.49 23.84 25.54 26.29 
Nov 2025 54.66 51.03 22.12 23.66 22.42 23.60 24.85 
Dec 2025 54.66 56.08 21.41 22.76 23.41 24.78 26.01 
Jan 2026 54.68 58.53 23.12 24.34 24.38 25.53 25.37 
Feb 2026 54.67 61.67 20.55 21.73 21.60 23.07 22.97 
Mar 2026 54.65 47.60 18.38 19.08 18.94 21.24 23.20 
Apr 2026 54.65 42.90 16.52 17.77 18.87 21.56 23.46 
May 2026 54.65 41.89 16.65 17.45 18.80 20.95 23.12 
Jun 2026 54.65 42.41 17.85 18.67 19.95 21.99 24.57 
Jul 2026 54.64 37.62 16.93 18.39 20.00 22.58 24.28 
Aug 2026 54.64 41.57 17.97 19.78 22.38 25.08 26.79 
Sep 2026 54.65 44.00 18.60 20.09 21.90 24.34 26.25 
Oct 2026 54.65 46.70 19.06 21.07 22.86 24.95 25.94 
Nov 2026 54.65 50.34 20.38 22.14 21.49 23.06 24.49 
Dec 2026 54.65 55.40 19.73 21.31 22.44 24.21 25.65 
Jan 2027 54.66 57.85 21.26 22.76 23.37 24.94 25.02 
Feb 2027 54.66 60.98 18.96 20.37 20.70 22.54 22.61 
Mar 2027 54.65 46.92 17.00 17.93 18.16 20.75 22.84 
Apr 2027 54.64 42.22 15.33 16.72 18.09 21.06 23.10 
May 2027 54.65 41.20 15.43 16.43 18.03 20.47 22.76 
Jun 2027 54.64 41.73 16.51 17.54 19.13 21.48 24.21 
Jul 2027 54.64 36.94 15.68 17.29 19.17 22.06 23.92 
Aug 2027 54.64 40.89 16.61 18.56 21.46 24.50 26.43 
Sep 2027 54.64 43.32 17.18 18.85 20.99 23.79 25.90 
Oct 2027 54.64 46.02 17.59 19.75 21.91 24.38 25.58 
Nov 2027 54.65 49.66 18.77 20.73 20.60 22.53 24.14 
Dec 2027 54.65 54.72 18.18 19.96 21.51 23.66 25.30 
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ANNEXURE – X 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of DO (S1 – S7) 
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ANNEXURE – XI 

Predicted value of DO (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 10.71 9.28 4.84 4.46 2.95 1.83 1.65 
Feb 2018 10.57 8.83 3.05 3.47 2.28 2.39 0.99 
Mar 2018 8.47 6.81 1.87 2.01 1.37 2.43 1.07 
Apr 2018 7.68 5.60 1.35 1.83 1.78 2.47 1.29 
May 2018 7.84 5.68 1.61 1.96 1.90 2.65 1.53 
Jun 2018 7.58 5.53 2.29 2.41 1.86 3.42 1.41 
Jul 2018 6.93 3.63 1.93 1.86 1.49 2.75 1.20 
Aug 2018 6.68 4.15 2.22 2.25 2.13 2.77 2.01 
Sep 2018 6.89 5.03 2.49 2.56 2.20 2.21 1.92 
Oct 2018 6.91 5.82 2.98 3.04 2.35 2.93 1.84 
Nov 2018 7.82 7.11 3.71 3.55 1.95 2.25 1.48 
Dec 2018 8.51 8.87 3.00 2.99 2.18 2.18 1.72 
Jan 2019 8.76 8.91 3.94 3.84 2.61 1.81 1.57 
Feb 2019 8.65 8.48 2.48 2.99 2.02 2.49 0.94 
Mar 2019 7.73 6.54 1.52 1.74 1.21 2.72 1.02 
Apr 2019 7.40 5.37 1.10 1.57 1.58 2.52 1.22 
May 2019 7.30 5.46 1.31 1.69 1.68 2.54 1.45 
Jun 2019 7.17 5.31 1.87 2.08 1.65 3.09 1.33 
Jul 2019 6.74 3.48 1.57 1.60 1.32 2.99 1.14 
Aug 2019 6.63 3.99 1.81 1.94 1.89 2.67 1.91 
Sep 2019 6.79 4.83 2.03 2.20 1.95 2.42 1.82 
Oct 2019 6.80 5.58 2.43 2.62 2.08 2.71 1.74 
Nov 2019 7.20 6.83 3.03 3.06 1.73 2.50 1.40 
Dec 2019 7.62 8.51 2.44 2.58 1.93 2.41 1.62 
Jan 2020 7.81 8.56 3.21 3.31 2.32 1.97 1.48 
Feb 2020 7.76 8.14 2.02 2.58 1.79 2.51 0.89 
Mar 2020 7.19 6.28 1.24 1.50 1.08 2.71 0.96 
Apr 2020 6.99 5.16 0.90 1.36 1.40 2.67 1.15 
May 2020 6.93 5.24 1.07 1.46 1.49 2.48 1.37 
Jun 2020 6.87 5.10 1.52 1.79 1.46 2.93 1.26 
Jul 2020 6.60 3.34 1.28 1.38 1.17 2.96 1.08 
Aug 2020 6.54 3.83 1.48 1.67 1.67 2.71 1.80 
Sep 2020 6.65 4.64 1.66 1.90 1.72 2.52 1.72 
Oct 2020 6.66 5.36 1.98 2.26 1.84 2.57 1.64 
Nov 2020 6.93 6.56 2.47 2.64 1.53 2.61 1.32 
Dec 2020 7.20 8.17 1.99 2.22 1.71 2.46 1.53 
Jan 2021 7.32 8.22 2.62 2.85 2.05 2.18 1.40 
Feb 2021 7.30 7.82 1.65 2.22 1.59 2.46 0.84 
Mar 2021 6.93 6.03 1.01 1.29 0.95 2.69 0.91 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 6.80 4.95 0.73 1.17 1.24 2.71 1.09 
May 2021 6.77 5.03 0.87 1.26 1.32 2.51 1.29 
Jun 2021 6.73 4.89 1.24 1.54 1.30 2.83 1.19 
Jul 2021 6.56 3.21 1.05 1.19 1.03 2.85 1.01 
Aug 2021 6.52 3.67 1.20 1.44 1.48 2.75 1.70 
Sep 2021 6.59 4.45 1.35 1.64 1.53 2.53 1.62 
Oct 2021 6.60 5.15 1.61 1.95 1.63 2.54 1.55 
Nov 2021 6.77 6.30 2.01 2.27 1.36 2.59 1.24 
Dec 2021 6.95 7.85 1.62 1.92 1.51 2.49 1.44 
Jan 2022 7.03 7.89 2.13 2.46 1.82 2.32 1.32 
Feb 2022 7.02 7.51 1.35 1.91 1.41 2.44 0.79 
Mar 2022 6.78 5.79 0.82 1.11 0.84 2.67 0.85 
Apr 2022 6.70 4.76 0.59 1.01 1.10 2.69 1.02 
May 2022 6.68 4.83 0.71 1.08 1.17 2.58 1.21 
Jun 2022 6.65 4.70 1.01 1.33 1.15 2.75 1.12 
Jul 2022 6.54 3.08 0.85 1.02 0.92 2.78 0.95 
Aug 2022 6.51 3.53 0.98 1.24 1.31 2.75 1.59 
Sep 2022 6.56 4.28 1.10 1.41 1.35 2.55 1.52 
Oct 2022 6.57 4.94 1.31 1.68 1.45 2.54 1.45 
Nov 2022 6.68 6.05 1.64 1.96 1.20 2.54 1.16 
Dec 2022 6.79 7.54 1.32 1.65 1.34 2.52 1.35 
Jan 2023 6.84 7.57 1.74 2.12 1.61 2.39 1.23 
Feb 2023 6.83 7.21 1.10 1.65 1.25 2.45 0.74 
Mar 2023 6.68 5.56 0.67 0.96 0.75 2.63 0.80 
Apr 2023 6.63 4.57 0.48 0.87 0.97 2.67 0.96 
May 2023 6.61 4.64 0.58 0.93 1.04 2.63 1.13 
Jun 2023 6.60 4.51 0.82 1.15 1.02 2.69 1.04 
Jul 2023 6.53 2.96 0.69 0.88 0.81 2.74 0.89 
Aug 2023 6.51 3.39 0.80 1.07 1.16 2.71 1.49 
Sep 2023 6.54 4.11 0.90 1.22 1.20 2.57 1.42 
Oct 2023 6.54 4.75 1.07 1.45 1.28 2.53 1.35 
Nov 2023 6.62 5.80 1.34 1.69 1.07 2.52 1.09 
Dec 2023 6.69 7.24 1.08 1.42 1.19 2.52 1.26 
Jan 2024 6.72 7.27 1.42 1.83 1.43 2.43 1.15 
Feb 2024 6.72 6.92 0.89 1.42 1.10 2.48 0.69 
Mar 2024 6.62 5.34 0.55 0.82 0.66 2.59 0.75 
Apr 2024 6.58 4.38 0.40 0.75 0.86 2.66 0.89 
May 2024 6.58 4.45 0.47 0.80 0.92 2.64 1.06 
Jun 2024 6.56 4.33 0.67 0.99 0.90 2.67 0.97 
Jul 2024 6.52 2.84 0.57 0.76 0.72 2.70 0.83 
Aug 2024 6.51 3.25 0.65 0.92 1.03 2.68 1.38 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 6.53 3.94 0.73 1.05 1.06 2.58 1.31 
Oct 2024 6.53 4.56 0.87 1.25 1.14 2.52 1.26 
Nov 2024 6.58 5.57 1.09 1.45 0.95 2.51 1.01 
Dec 2024 6.63 6.95 0.88 1.23 1.05 2.52 1.17 
Jan 2025 6.65 6.98 1.16 1.57 1.26 2.47 1.07 
Feb 2025 6.64 6.65 0.73 1.23 0.98 2.50 0.64 
Mar 2025 6.58 5.13 0.45 0.71 0.59 2.58 0.69 
Apr 2025 6.56 4.21 0.32 0.64 0.76 2.65 0.82 
May 2025 6.55 4.28 0.39 0.69 0.82 2.64 0.98 
Jun 2025 6.54 4.16 0.55 0.85 0.80 2.66 0.90 
Jul 2025 6.51 2.73 0.46 0.66 0.64 2.67 0.76 
Aug 2025 6.51 3.12 0.53 0.79 0.91 2.65 1.28 
Sep 2025 6.52 3.79 0.60 0.90 0.94 2.58 1.21 
Oct 2025 6.52 4.37 0.71 1.07 1.01 2.52 1.16 
Nov 2025 6.55 5.35 0.89 1.25 0.84 2.50 0.93 
Dec 2025 6.58 6.67 0.72 1.06 0.93 2.51 1.08 
Jan 2026 6.60 6.70 0.94 1.36 1.12 2.49 0.98 
Feb 2026 6.59 6.38 0.59 1.06 0.87 2.52 0.59 
Mar 2026 6.55 4.92 0.36 0.61 0.52 2.57 0.64 
Apr 2026 6.54 4.04 0.26 0.56 0.68 2.63 0.76 
May 2026 6.53 4.11 0.31 0.60 0.72 2.64 0.90 
Jun 2026 6.53 3.99 0.45 0.73 0.71 2.65 0.82 
Jul 2026 6.51 2.62 0.38 0.56 0.57 2.64 0.70 
Aug 2026 6.51 3.00 0.43 0.68 0.81 2.63 1.17 
Sep 2026 6.51 3.63 0.49 0.78 0.83 2.57 1.11 
Oct 2026 6.51 4.20 0.58 0.93 0.89 2.53 1.06 
Nov 2026 6.53 5.14 0.72 1.08 0.74 2.50 0.85 
Dec 2026 6.55 6.40 0.58 0.91 0.83 2.51 0.99 
Jan 2027 6.56 6.44 0.77 1.17 0.99 2.50 0.90 
Feb 2027 6.56 6.13 0.48 0.91 0.77 2.53 0.54 
Mar 2027 6.54 4.73 0.30 0.53 0.46 2.57 0.58 
Apr 2027 6.53 3.88 0.21 0.48 0.60 2.62 0.69 
May 2027 6.52 3.94 0.26 0.51 0.64 2.63 0.82 
Jun 2027 6.52 3.83 0.36 0.63 0.63 2.64 0.75 
Jul 2027 6.51 2.52 0.31 0.49 0.50 2.63 0.64 
Aug 2027 6.51 2.88 0.35 0.59 0.72 2.61 1.07 
Sep 2027 6.51 3.49 0.40 0.67 0.74 2.56 1.01 
Oct 2027 6.51 4.03 0.47 0.80 0.79 2.53 0.97 
Nov 2027 6.52 4.93 0.59 0.93 0.66 2.50 0.77 
Dec 2027 6.54 6.15 0.48 0.78 0.73 2.51 0.90 
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ANNEXURE – XII 

Graphical representation of trend, time series analysis (ACF, PACF, observed, 

best fit, LCL, UCL) of BOD (S1 – S7) 
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ANNEXURE – XIII 

Predicted value of BOD (2018-2027) by Time-series analysis 

Date S1 S2 S3 S4 S5 S6 S7 
Jan 2018 3.18 3.34 6.22 7.57 9.01 10.19 13.16 
Feb 2018 3.25 3.46 6.98 8.33 10.37 11.69 14.66 
Mar 2018 3.23 3.64 7.70 9.05 11.19 12.29 15.26 
Apr 2018 2.05 3.72 8.26 9.65 12.27 13.69 15.66 
May 2018 2.14 3.76 7.96 9.55 11.77 13.19 15.66 
Jun 2018 2.66 3.74 7.36 8.83 10.67 12.09 14.66 
Jul 2018 2.59 3.80 7.58 8.95 10.47 11.99 15.06 
Aug 2018 2.61 3.64 6.76 8.05 9.57 10.29 12.26 
Sep 2018 2.51 3.66 7.40 8.73 10.23 11.11 14.58 
Oct 2018 2.75 3.48 6.92 7.95 9.17 10.29 13.56 
Nov 2018 2.89 3.38 6.78 8.01 9.75 11.09 14.06 
Dec 2018 3.21 3.48 6.40 7.75 9.63 10.79 13.46 
Jan 2019 3.40 3.40 6.92 8.27 9.66 10.79 13.77 
Feb 2019 3.48 3.52 7.68 9.03 11.02 12.29 15.27 
Mar 2019 3.46 3.70 8.40 9.75 11.84 12.89 15.87 
Apr 2019 2.19 3.78 8.96 10.35 12.92 14.29 16.27 
May 2019 2.29 3.82 8.66 10.25 12.42 13.80 16.27 
Jun 2019 2.85 3.80 8.06 9.53 11.32 12.70 15.27 
Jul 2019 2.77 3.86 8.28 9.65 11.12 12.60 15.67 
Aug 2019 2.80 3.70 7.46 8.75 10.22 10.90 12.87 
Sep 2019 2.68 3.72 8.10 9.43 10.88 11.72 15.19 
Oct 2019 2.95 3.54 7.62 8.65 9.82 10.90 14.17 
Nov 2019 3.09 3.44 7.48 8.71 10.40 11.70 14.67 
Dec 2019 3.44 3.54 7.10 8.45 10.28 11.40 14.07 
Jan 2020 3.64 3.46 7.63 8.97 10.30 11.40 14.37 
Feb 2020 3.73 3.58 8.39 9.73 11.66 12.90 15.87 
Mar 2020 3.71 3.76 9.11 10.45 12.49 13.50 16.47 
Apr 2020 2.35 3.84 9.67 11.05 13.57 14.90 16.87 
May 2020 2.46 3.88 9.37 10.95 13.07 14.40 16.87 
Jun 2020 3.05 3.86 8.77 10.23 11.97 13.30 15.87 
Jul 2020 2.97 3.92 8.99 10.35 11.77 13.20 16.27 
Aug 2020 3.00 3.76 8.17 9.45 10.87 11.50 13.47 
Sep 2020 2.88 3.78 8.81 10.13 11.53 12.32 15.79 
Oct 2020 3.17 3.60 8.33 9.35 10.47 11.50 14.77 
Nov 2020 3.32 3.50 8.19 9.41 11.05 12.30 15.27 
Dec 2020 3.69 3.60 7.81 9.15 10.93 12.00 14.67 
Jan 2021 3.91 3.52 8.33 9.66 10.95 12.00 14.98 
Feb 2021 4.01 3.64 9.09 10.42 12.31 13.50 16.48 
Mar 2021 3.98 3.82 9.81 11.14 13.13 14.10 17.08 
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Date S1 S2 S3 S4 S5 S6 S7 
Apr 2021 2.53 3.90 10.37 11.74 14.21 15.50 17.48 
May 2021 2.64 3.94 10.07 11.64 13.71 15.00 17.48 
Jun 2021 3.28 3.92 9.47 10.92 12.61 13.90 16.48 
Jul 2021 3.19 3.98 9.69 11.04 12.41 13.80 16.88 
Aug 2021 3.23 3.82 8.87 10.14 11.51 12.10 14.08 
Sep 2021 3.10 3.84 9.51 10.82 12.17 12.92 16.40 
Oct 2021 3.41 3.66 9.03 10.05 11.11 12.10 15.38 
Nov 2021 3.57 3.56 8.89 10.11 11.69 12.90 15.88 
Dec 2021 3.97 3.66 8.51 9.85 11.58 12.60 15.28 
Jan 2022 4.21 3.58 9.04 10.36 11.60 12.60 15.59 
Feb 2022 4.32 3.70 9.80 11.12 12.96 14.10 17.09 
Mar 2022 4.29 3.88 10.52 11.84 13.78 14.70 17.69 
Apr 2022 2.72 3.96 11.08 12.44 14.86 16.10 18.09 
May 2022 2.84 4.00 10.78 12.34 14.36 15.60 18.09 
Jun 2022 3.54 3.98 10.18 11.62 13.26 14.50 17.09 
Jul 2022 3.44 4.04 10.40 11.74 13.06 14.40 17.49 
Aug 2022 3.48 3.88 9.58 10.84 12.16 12.70 14.69 
Sep 2022 3.34 3.90 10.22 11.52 12.82 13.52 17.01 
Oct 2022 3.67 3.72 9.74 10.74 11.76 12.70 15.99 
Nov 2022 3.85 3.62 9.60 10.80 12.34 13.50 16.49 
Dec 2022 4.28 3.72 9.22 10.54 12.22 13.20 15.89 
Jan 2023 4.54 3.64 9.74 11.06 12.25 13.20 16.19 
Feb 2023 4.66 3.76 10.50 11.82 13.61 14.70 17.69 
Mar 2023 4.63 3.94 11.22 12.54 14.43 15.30 18.29 
Apr 2023 2.94 4.02 11.78 13.14 15.51 16.70 18.69 
May 2023 3.07 4.06 11.48 13.04 15.01 16.20 18.69 
Jun 2023 3.82 4.04 10.88 12.32 13.91 15.10 17.69 
Jul 2023 3.72 4.10 11.10 12.44 13.71 15.00 18.09 
Aug 2023 3.76 3.94 10.28 11.54 12.81 13.30 15.29 
Sep 2023 3.61 3.96 10.92 12.22 13.47 14.12 17.61 
Oct 2023 3.97 3.78 10.44 11.44 12.41 13.30 16.59 
Nov 2023 4.16 3.68 10.30 11.50 12.99 14.10 17.09 
Dec 2023 4.63 3.78 9.92 11.24 12.87 13.80 16.49 
Jan 2024 4.91 3.70 10.44 11.76 12.90 13.80 16.80 
Feb 2024 5.03 3.82 11.20 12.52 14.26 15.30 18.30 
Mar 2024 5.01 4.00 11.92 13.24 15.08 15.90 18.90 
Apr 2024 3.18 4.08 12.48 13.84 16.16 17.30 19.30 
May 2024 3.32 4.12 12.18 13.74 15.66 16.80 19.30 
Jun 2024 4.13 4.10 11.58 13.02 14.56 15.70 18.30 
Jul 2024 4.02 4.16 11.80 13.14 14.36 15.60 18.70 
Aug 2024 4.07 4.00 10.98 12.24 13.46 13.90 15.90 
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Date S1 S2 S3 S4 S5 S6 S7 
Sep 2024 3.91 4.02 11.62 12.92 14.12 14.72 18.22 
Oct 2024 4.29 3.84 11.14 12.14 13.06 13.90 17.20 
Nov 2024 4.51 3.74 11.01 12.20 13.64 14.70 17.70 
Dec 2024 5.01 3.84 10.63 11.94 13.52 14.40 17.10 
Jan 2025 5.31 3.76 11.15 12.46 13.55 14.40 17.40 
Feb 2025 5.45 3.88 11.91 13.22 14.91 15.90 18.90 
Mar 2025 5.43 4.06 12.63 13.94 15.73 16.50 19.50 
Apr 2025 3.45 4.14 13.19 14.54 16.81 17.90 19.90 
May 2025 3.60 4.18 12.89 14.44 16.31 17.40 19.90 
Jun 2025 4.48 4.16 12.29 13.72 15.21 16.30 18.90 
Jul 2025 4.36 4.22 12.51 13.84 15.01 16.20 19.30 
Aug 2025 4.41 4.06 11.69 12.94 14.11 14.51 16.50 
Sep 2025 4.24 4.08 12.33 13.62 14.77 15.33 18.82 
Oct 2025 4.66 3.90 11.85 12.84 13.71 14.51 17.80 
Nov 2025 4.89 3.80 11.71 12.90 14.29 15.31 18.30 
Dec 2025 5.44 3.90 11.33 12.64 14.17 15.01 17.70 
Jan 2026 5.77 3.82 11.85 13.16 14.20 15.01 18.01 
Feb 2026 5.92 3.94 12.61 13.92 15.56 16.51 19.51 
Mar 2026 5.89 4.12 13.33 14.64 16.38 17.11 20.11 
Apr 2026 3.74 4.20 13.89 15.24 17.46 18.51 20.51 
May 2026 3.91 4.24 13.59 15.14 16.96 18.01 20.51 
Jun 2026 4.87 4.22 12.99 14.42 15.86 16.91 19.51 
Jul 2026 4.74 4.28 13.21 14.54 15.66 16.81 19.91 
Aug 2026 4.80 4.12 12.39 13.64 14.76 15.11 17.11 
Sep 2026 4.61 4.14 13.03 14.32 15.42 15.93 19.43 
Oct 2026 5.07 3.96 12.55 13.54 14.36 15.11 18.41 
Nov 2026 5.32 3.86 12.41 13.60 14.94 15.91 18.91 
Dec 2026 5.92 3.96 12.03 13.34 14.82 15.61 18.31 
Jan 2027 6.28 3.88 12.56 13.86 14.85 15.61 18.61 
Feb 2027 6.45 4.00 13.32 14.62 16.21 17.11 20.11 
Mar 2027 6.41 4.18 14.04 15.34 17.03 17.71 20.71 
Apr 2027 4.07 4.26 14.60 15.94 18.11 19.11 21.11 
May 2027 4.26 4.30 14.30 15.84 17.61 18.61 21.11 
Jun 2027 5.30 4.28 13.70 15.12 16.51 17.51 20.11 
Jul 2027 5.16 4.34 13.92 15.24 16.31 17.41 20.51 
Aug 2027 5.22 4.18 13.10 14.34 15.41 15.71 17.71 
Sep 2027 5.02 4.20 13.74 15.02 16.07 16.53 20.03 
Oct 2027 5.52 4.02 13.26 14.24 15.01 15.71 19.01 
Nov 2027 5.80 3.92 13.12 14.30 15.59 16.51 19.51 
Dec 2027 6.46 4.02 12.74 14.04 15.47 16.21 18.91 
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ANNEXURE – XIV 

Water quality (WT, DO, BOD) and AT data at Hanuman Sethu and calculated 

BWQI (1998 – 2017) 

Date AT WT DO BOD BWQI 
Jan-1998 14.13 16.50 6.60 2.03 93.33 
Feb-1998 18.11 19.00 6.40 2.03 91.67 
Mar-1998 22.48 21.50 6.27 1.89 86.67 
Apr-1998 31.65 23.00 5.95 2.03 76.67 
May-1998 36.15 32.50 5.62 1.89 45.00 
Jun-1998 36.26 34.00 5.69 2.03 43.33 
Jul-1998 30.21 32.50 5.62 1.89 45.00 
Aug-1998 28.94 31.50 6.40 1.83 53.33 
Sep-1998 27.98 32.50 6.60 1.83 48.33 
Oct-1998 25.96 32.00 6.14 1.83 53.33 
Nov-1998 21.24 26.50 6.27 2.02 65.00 
Dec-1998 16.79 23.00 6.60 1.83 81.67 
Jan-1999 15.40 16.00 6.40 2.09 91.67 
Feb-1999 20.38 18.50 6.60 2.09 93.33 
Mar-1999 26.22 23.50 5.95 2.16 76.67 
Apr-1999 32.70 25.50 5.62 2.22 70.00 
May-1999 36.40 28.50 5.69 2.22 56.67 
Jun-1999 36.50 32.50 6.01 1.83 46.67 
Jul-1999 33.67 33.00 6.01 2.03 45.00 
Aug-1999 30.31 32.10 5.88 1.83 45.00 
Sep-1999 27.73 32.00 6.08 2.02 51.67 
Oct-1999 24.84 30.00 6.40 1.83 60.00 
Nov-1999 21.07 28.00 6.27 1.83 66.67 
Dec-1999 17.12 21.00 6.54 2.02 93.33 
Jan-2000 16.33 18.50 6.60 2.03 93.33 
Feb-2000 17.67 19.50 6.40 2.03 91.67 
Mar-2000 24.62 20.50 6.27 1.89 93.33 
Apr-2000 32.57 26.50 5.95 2.03 63.33 
May-2000 35.83 31.00 5.62 1.89 51.67 
Jun-2000 33.06 32.00 5.69 2.03 50.00 
Jul-2000 30.72 33.00 5.62 1.89 45.00 
Aug-2000 30.19 31.00 6.40 1.83 53.33 
Sep-2000 27.34 30.50 6.60 1.83 55.00 
Oct-2000 24.84 32.00 6.14 1.83 53.33 
Nov-2000 21.31 27.50 6.27 2.02 65.00 
Dec-2000 16.39 20.50 6.60 1.83 95.00 
Jan-2001 14.98 18.50 6.40 2.09 91.67 
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Date AT WT DO BOD BWQI 
Feb-2001 19.66 18.00 6.60 2.09 93.33 
Mar-2001 25.38 23.00 5.95 2.16 76.67 
Apr-2001 31.59 25.00 5.62 2.22 70.00 
May-2001 35.61 28.50 5.69 2.22 56.67 
Jun-2001 34.24 30.00 5.36 2.22 56.67 
Jul-2001 31.50 29.50 6.47 2.02 58.33 
Aug-2001 29.82 29.50 6.54 2.15 60.00 
Sep-2001 30.03 31.00 6.60 2.16 53.33 
Oct-2001 25.88 29.50 6.08 2.22 58.33 
Nov-2001 21.55 26.50 6.21 2.16 65.00 
Dec-2001 16.76 18.00 6.73 2.29 93.33 
Jan-2002 15.12 15.00 6.54 2.35 86.67 
Feb-2002 18.69 16.50 6.14 2.42 91.67 
Mar-2002 25.87 19.50 6.14 2.42 91.67 
Apr-2002 32.54 25.00 5.42 2.42 70.00 
May-2002 36.30 31.00 5.49 2.42 50.00 
Jun-2002 36.28 32.00 5.23 2.55 50.00 
Jul-2002 36.69 29.50 5.69 2.42 56.67 
Aug-2002 30.53 30.00 5.95 2.22 56.67 
Sep-2002 27.06 30.50 5.56 1.96 51.67 
Oct-2002 25.37 29.50 6.21 1.64 60.00 
Nov-2002 21.50 24.00 6.54 2.22 80.00 
Dec-2002 17.14 18.00 6.73 2.35 93.33 
Jan-2003 14.07 14.00 6.60 2.28 80.00 
Feb-2003 18.85 16.50 6.40 2.28 91.67 
Mar-2003 24.58 22.00 6.14 2.42 85.00 
Apr-2003 32.16 25.50 5.82 2.49 70.00 
May-2003 34.77 28.00 5.56 2.35 63.33 
Jun-2003 37.15 30.50 7.45 0.65 56.67 
Jul-2003 31.83 30.50 5.10 0.98 51.67 
Aug-2003 29.83 28.50 6.01 3.46 56.67 
Sep-2003 27.73 31.00 6.60 3.92 51.67 
Oct-2003 23.61 29.00 6.47 4.71 55.00 
Nov-2003 18.55 25.00 6.86 3.46 71.67 
Dec-2003 15.75 17.00 7.12 3.53 93.33 
Jan-2004 14.09 14.50 7.91 3.86 81.67 
Feb-2004 18.10 15.50 7.58 3.60 88.33 
Mar-2004 26.43 20.50 7.19 2.81 95.00 
Apr-2004 33.10 25.50 6.80 1.96 75.00 
May-2004 35.54 26.50 6.86 1.37 68.33 
Jun-2004 33.30 30.50 5.69 2.61 50.00 
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Date AT WT DO BOD BWQI 
Jul-2004 29.73 31.50 6.14 2.29 51.67 
Aug-2004 29.45 29.50 6.67 2.16 60.00 
Sep-2004 28.90 30.50 6.86 3.52 51.67 
Oct-2004 24.99 29.50 5.88 2.36 56.67 
Nov-2004 20.65 22.50 7.84 1.17 85.00 
Dec-2004 16.73 20.00 7.06 1.96 96.67 
Jan-2005 15.02 14.50 7.25 1.37 83.33 
Feb-2005 19.44 16.50 4.31 14.50 76.67 
Mar-2005 26.59 20.00 3.33 11.76 75.00 
Apr-2005 30.57 23.50 2.55 9.39 61.67 
May-2005 34.19 26.00 6.47 9.42 63.33 
Jun-2005 37.58 29.50 2.35 11.75 40.00 
Jul-2005 29.82 29.50 2.35 9.99 41.67 
Aug-2005 29.92 31.00 4.70 7.65 41.67 
Sep-2005 28.02 31.50 7.25 3.52 53.33 
Oct-2005 25.15 29.50 4.70 7.46 48.33 
Nov-2005 19.91 22.00 4.51 7.06 75.00 
Dec-2005 15.62 19.50 1.37 8.22 71.67 
Jan-2006 15.79 16.00 4.90 10.59 78.33 
Feb-2006 22.79 17.00 4.51 14.10 76.67 
Mar-2006 24.97 21.50 1.76 8.32 65.00 
Apr-2006 31.20 25.00 1.96 9.99 51.67 
May-2006 35.69 31.00 2.16 9.42 35.00 
Jun-2006 33.25 29.50 3.92 9.40 45.00 
Jul-2006 30.32 29.00 1.76 9.39 38.33 
Aug-2006 28.88 30.00 5.29 6.28 50.00 
Sep-2006 29.05 28.00 2.94 6.28 50.00 
Oct-2006 27.56 31.00 2.16 7.46 36.67 
Nov-2006 21.90 25.00 2.35 7.06 56.67 
Dec-2006 17.44 17.00 2.16 8.22 75.00 
Jan-2007 15.90 16.00 1.18 10.59 70.00 
Feb-2007 18.88 17.50 0.98 14.10 70.00 
Mar-2007 23.62 21.00 1.18 8.32 71.67 
Apr-2007 32.69 26.00 0.98 11.19 51.67 
May-2007 34.33 28.50 0.98 11.19 38.33 
Jun-2007 36.08 30.00 0.78 14.70 36.67 
Jul-2007 31.53 31.00 2.34 12.52 31.67 
Aug-2007 28.90 29.00 5.88 8.82 48.33 
Sep-2007 28.06 29.50 7.06 4.32 58.33 
Oct-2007 24.56 28.00 6.28 4.20 61.67 
Nov-2007 20.99 25.00 5.68 4.32 66.67 
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Date AT WT DO BOD BWQI 
Dec-2007 15.88 18.00 2.68 5.88 78.33 
Jan-2008 15.73 14.00 2.35 4.72 66.67 
Feb-2008 18.06 14.00 3.14 3.52 70.00 
Mar-2008 27.01 20.50 0.98 7.08 75.00 
Apr-2008 31.25 25.00 0.78 8.80 53.33 
May-2008 34.74 28.50 0.98 9.80 40.00 
Jun-2008 31.34 30.00 0.98 9.80 40.00 
Jul-2008 28.62 28.00 5.10 9.80 55.00 
Aug-2008 28.20 31.00 7.06 8.80 46.67 
Sep-2008 27.12 32.00 7.13 1.56 56.67 
Oct-2008 24.47 29.00 7.06 1.72 63.33 
Nov-2008 18.96 24.00 7.45 2.74 81.67 
Dec-2008 15.92 19.50 7.06 3.51 93.33 
Jan-2009 15.37 16.50 7.45 4.72 91.67 
Feb-2009 18.93 18.00 6.27 8.62 83.33 
Mar-2009 25.02 20.50 3.74 8.32 78.33 
Apr-2009 31.80 24.50 3.92 11.19 56.67 
May-2009 35.58 29.00 3.33 11.19 41.67 
Jun-2009 37.04 29.00 3.41 14.70 40.00 
Jul-2009 33.28 31.00 3.43 12.52 33.33 
Aug-2009 30.38 32.00 3.44 8.82 36.67 
Sep-2009 27.65 31.00 3.54 4.32 43.33 
Oct-2009 22.53 30.50 3.50 4.20 41.67 
Nov-2009 18.46 23.50 3.55 4.32 70.00 
Dec-2009 14.85 18.00 3.52 5.88 81.67 
Jan-2010 13.94 14.00 3.54 4.72 70.00 
Feb-2010 18.44 16.00 3.54 8.62 78.33 
Mar-2010 26.54 23.00 3.54 8.32 65.00 
Apr-2010 33.85 27.00 1.22 11.19 43.33 
May-2010 36.56 29.00 1.24 11.19 36.67 
Jun-2010 37.27 31.00 0.98 14.70 30.00 
Jul-2010 32.16 32.50 1.28 12.52 21.67 
Aug-2010 29.23 30.00 4.31 8.82 46.67 
Sep-2010 26.84 31.00 4.33 4.32 45.00 
Oct-2010 24.42 29.00 6.22 4.20 55.00 
Nov-2010 20.53 23.50 6.14 4.32 75.00 
Dec-2010 14.71 20.00 4.31 5.88 83.33 
Jan-2011 13.23 15.50 3.92 4.72 76.67 
Feb-2011 18.63 9.05 3.33 3.52 50.00 
Mar-2011 25.47 8.28 2.16 7.08 43.33 
Apr-2011 31.12 25.50 1.96 8.80 51.67 
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Date AT WT DO BOD BWQI 
May-2011 36.55 29.50 1.76 9.80 38.33 
Jun-2011 34.38 30.00 1.57 9.80 38.33 
Jul-2011 29.48 28.50 1.57 9.80 38.33 
Aug-2011 28.32 29.50 1.76 8.80 38.33 
Sep-2011 27.48 32.50 4.70 1.56 43.33 
Oct-2011 24.24 26.50 3.92 1.72 61.67 
Nov-2011 20.21 23.50 4.31 2.74 75.00 
Dec-2011 15.51 20.00 3.72 3.51 85.00 
Jan-2012 13.70 14.50 3.92 2.94 73.33 
Feb-2012 17.21 16.50 3.72 3.54 85.00 
Mar-2012 23.94 20.00 3.33 3.51 83.33 
Apr-2012 31.44 25.00 8.70 5.37 71.67 
May-2012 36.05 28.00 2.74 5.68 51.67 
Jun-2012 38.86 31.50 2.35 7.65 36.67 
Jul-2012 31.55 32.00 2.16 7.05 36.67 
Aug-2012 28.75 31.00 5.88 2.74 50.00 
Sep-2012 26.72 30.50 5.68 3.54 48.33 
Oct-2012 23.43 30.50 5.10 3.92 48.33 
Nov-2012 18.19 23.50 4.90 3.54 73.33 
Dec-2012 14.88 18.50 4.70 4.32 85.00 
Jan-2013 13.41 13.00 4.51 5.31 63.33 
Feb-2013 17.56 14.50 6.66 3.52 78.33 
Mar-2013 24.40 21.00 4.90 4.11 85.00 
Apr-2013 31.40 24.00 1.76 6.48 60.00 
May-2013 36.47 29.50 1.57 7.85 40.00 
Jun-2013 33.01 30.00 1.76 9.80 38.33 
Jul-2013 29.54 28.50 5.29 12.75 45.00 
Aug-2013 28.67 31.50 3.72 16.65 33.33 
Sep-2013 28.02 29.00 4.31 17.65 41.67 
Oct-2013 24.95 25.00 4.70 12.75 56.67 
Nov-2013 18.84 27.50 4.90 15.70 48.33 
Dec-2013 15.62 20.00 3.53 10.75 76.67 
Jan-2014 14.90 12.00 3.33 8.25 56.67 
Feb-2014 17.25 10.50 2.74 7.65 50.00 
Mar-2014 23.51 17.00 2.55 8.25 75.00 
Apr-2014 31.08 23.00 2.74 8.85 61.67 
May-2014 35.90 30.00 2.55 12.75 38.33 
Jun-2014 38.79 33.00 0.98 15.65 21.67 
Jul-2014 32.32 25.00 0.00 10.80 51.67 
Aug-2014 31.13 32.50 0.98 9.80 26.67 
Sep-2014 29.32 32.50 1.96 12.75 21.67 
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Date AT WT DO BOD BWQI 
Oct-2014 26.37 30.00 0.00 17.60 35.00 
Nov-2014 20.55 29.00 0.00 18.12 35.00 
Dec-2014 14.90 21.00 1.76 24.50 66.67 
Jan-2015 14.31 12.00 2.35 19.60 50.00 
Feb-2015 19.74 14.00 1.96 39.20 53.33 
Mar-2015 23.00 20.00 2.35 19.80 70.00 
Apr-2015 29.06 21.00 0.00 7.84 75.00 
May-2015 35.82 23.00 0.00 29.10 55.00 
Jun-2015 36.92 30.00 0.98 26.40 35.00 
Jul-2015 30.86 26.50 0.00 20.04 41.67 
Aug-2015 30.58 29.50 1.57 15.70 33.33 
Sep-2015 30.55 31.50 0.59 25.50 28.33 
Oct-2015 27.91 27.50 0.78 23.60 41.67 
Nov-2015 23.96 22.50 0.98 27.40 55.00 
Dec-2015 17.08 22.00 0.98 29.40 61.67 
Jan-2016 17.11 16.50 0.00 21.60 68.33 
Feb-2016 21.01 24.00 0.00 23.50 55.00 
Mar-2016 27.06 28.00 0.00 18.90 41.67 
Apr-2016 33.82 30.00 1.96 13.70 35.00 
May-2016 35.87 29.00 0.39 39.20 35.00 
Jun-2016 35.61 32.50 0.78 11.60 25.00 
Jul-2016 29.65 29.00 1.37 15.70 33.33 
Aug-2016 28.76 31.50 3.72 11.80 36.67 
Sep-2016 28.01 33.00 1.76 9.80 25.00 
Oct-2016 25.54 30.50 3.92 4.00 43.33 
Nov-2016 20.20 27.50 1.57 5.90 48.33 
Dec-2016 16.67 21.50 0.00 7.80 68.33 
Jan-2017 15.83 16.50 0.00 21.60 68.33 
Feb-2017 19.73 24.00 0.00 23.50 55.00 
Mar-2017 25.44 28.00 0.00 18.90 41.67 
Apr-2017 33.58 30.00 1.96 13.70 35.00 
May-2017 36.57 29.00 0.39 39.20 35.00 
Jun-2017 35.96 32.50 0.78 11.60 25.00 
Jul-2017 29.23 29.00 1.37 15.70 33.33 
Aug-2017 28.91 31.50 3.72 11.80 36.67 
Sep-2017 28.23 33.00 1.76 9.80 25.00 
Oct-2017 26.26 30.50 3.92 4.00 43.33 
Nov-2017 20.07 27.50 1.57 5.90 48.33 
Dec-2017 16.98 21.50 0.00 7.80 68.33 
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ANNEXURE – XV 

 

Drinking Water Specifications (IS 10500: 2012) 

S. No.  Parameters Permissible Limit Maximum Limit 

1  Odor Agreeable Agreeable 

2  Taste Agreeable Agreeable 

3  pH 6.5 to 8.5 No relaxation 

4  TDS (mg/l) 500 2000 

5  Hardness (as CaCO3) (mg/l) 200 600 

6  Alkalinity (as CaCO3) (mg/l) 200 600 

7  Nitrate (mg/l) 45 No relaxation 

8  Sulfate (mg/l) 200 400 

9  Fluoride (mg/l) 1 1.5 

10  Chloride (mg/l) 250 1000 

11  Turbidity (NTU) 5 10 

12  Arsenic (mg/l) 0.01 0.05 

13  Copper (mg/l) 0.05 1.5 

14  Cadmium (mg/l) 0.003 No relaxation 

15  Chromium (mg/l) 0.05 No relaxation 

16  Lead (mg/l) 0.01 No relaxation 

17  Iron (mg/l) 0.3 No relaxation 

18  Zinc (mg/l) 5 15 

19  Fecal Coliform (CFU) 0 0 

20  E. Coli (CFU) 0 0 

 

Water Quality Standards in India (Source IS 2296:1992) 

Characteristics 
Designated best use 

A B C D E 

Dissolved Oxygen (DO) mg/l, min. 6 5 4 4 - 

Biochemical Oxygen demand 

(BOD) mg/l, max. 
2 3 3 - - 

Total coliform organisms 

MPN/100 ml, max. 
50 500 5,000 - - 

pH value 6.5-8.5 6.5-8.5 6.0-9.0 6.5-8.5 6.0-8.5 

Color, Hazen units, max. 10 300 300 - - 

Odor Un-objectionable   - - 

Taste Tasteless - - - - 
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Characteristics 
Designated best use 

A B C D E 

Total dissolved solids, mg/l, max. 500 - 1,500 - 2,100 

Total hardness (as CaCO3), 

mg/l, max. 
200 - - - - 

Calcium hardness (as CaCO3), 

mg/l, max. 
200 - - - - 

Magnesium hardness (as CaCO3), 

mg/l, max. 
200 - - - - 

Copper (as Cu), mg/l, max. 1.5 - 1.5 - - 

Iron (as Fe), mg/l, max. 0.3 - 0.5 - - 

Manganese (as Mn), mg/l, max. 0.5 - - - - 

Chlorides (as Cu), mg/l, max. 250 - 600 - 600 

Sulphates (as SO4), mg/l, max. 400 - 400 - 1,000 

Nitrates (as NO3), mg/l, max. 20 - 50 - - 

Fluorides (as F), mg/l, max. 1.5 1.5 1.5 - - 

Phenolic compounds (as C2H5OH), 

mg/l, max. 
0.002 0.005 0.005 - - 

Mercury (as Hg), mg/l, max. 0.001 - - - - 

Cadmium (as Cd), mg/l, max. 0.01 - 0.01 - - 

Selenium (as Se), mg/l, max. 0.01 - 0.05 - - 

Arsenic (as As), mg/l, max. 0.05 0.2 0.2 - - 

Cyanide (as Pb), mg/l, max. 0.05 0.05 0.05 - - 

Lead (as Pb), mg/l, max. 0.1 - 0.1 - - 

Zinc (as Zn), mg/l, max. 15 - 15 - - 

Chromium (as Cr6+), mg/l, max. 0.05 - 0.05 - - 

Anionic detergents (as MBAS), 

mg/l, max. 
0.2 1 1 - - 

Barium (as Ba), mg/l, max. 1 - - - - 

Free Ammonia (as N), mg/l, max. - - - 1.2 - 

Electrical 

conductivity, micromhos/cm, max. 
- - - - 2,250 

Sodium absorption ratio, max. - - - - 26 

Boron, mg/l, max. - - - - 2 

 
 



 
 

8-335  
 

Designated Best Uses of Water (Source: CPCB) 

Designated Best Use Class Criteria 

Drinking Water Source 

without conventional 

treatment but after disinfection 

A 1.Total Coliforms Organism MPN/100 

ml shall be 50 or less 

2. pH between 6.5 and 8.5 

3. Dissolved Oxygen 6 mg/l or more 

4. Biochemical Oxygen Demand 5 days 

20°C, 2 mg/l or less 

Outdoor bathing (Organized) B 1.Total Coliforms Organism MPN/100 

ml shall be 500 or less 

2. pH between 6.5 and 8.5 

3. Dissolved Oxygen 5 mg/l or more 

4. Biochemical Oxygen Demand 5 days 

20°C, 3 mg/l or less 

Drinking water source after 

conventional treatment and 

disinfection 

C 1.Total Coliforms Organism MPN/100 

ml shall be 5000 or less 

2. pH between 6 and 9 

3. Dissolved Oxygen 4 mg/l or more 

4. Biochemical Oxygen Demand 5 days 

20°C, 3 mg/l or less 

Propagation of Wild life and 

Fisheries 

D 1. pH between 6.5 and 8.5 

2. Dissolved Oxygen 4 mg/l or more 

3. Free Ammonia (as N) 

4. Biochemical Oxygen Demand 5 days 

20°C, 2 mg/l or less 

Irrigation, Industrial Cooling, 

Controlled Waste disposal 

E 1. pH between 6.0 and 8.5 

2. Electrical Conductivity at 25°C 

micro mhos/cm, maximum 2250 

3. Sodium absorption Ratio Max. 26 

4. Boron Max. 2mg/l 

  Below-E Not meeting any of the A, B, C, D & E 

criteria 

 

 

 

  

 

 


