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ABSTRACT 

Together, the DNA and epigenome tightly regulate neuronal function and differentiation. 

The abnormal functioning of the genome and epigenome that results from the epigenetic 

alterations that occur in the face of environmental input leads to neurodegeneration. 

Histone deacetylases or HDAC constitute a class of proteins or cofactors that need Zn2+ 

and contribute to the transcription and operation of cells. The overexpression of these 

proteins, which is prevalent in the development of diverse anomalies in the brain tissues, 

leads to the dysregulation of several target proteins involved in cell formation and growth 

associated with Alzheimer's disease, which impairs memory and learning ability. Although 

several strategies have been used to regulate the greater expression of HDACs using 

diverse chemical inhibitors, very limited success has been achieved. In the given study we 

have used machine learning approach to extract drug inhibitor data and target inhibitors. 

Algorithms such as Random Forest and Support Vector Machine have been used to 

preprocess data and add required additional parameters like rotatable bonds, canonical 

smiles, molecular weight, number of atoms, etc. models were trained and evaluation of the 

models were performed the prediction of data. Eventually molecular docking was done and 

a list of top 10 novel compounds were retrieved based on their binding affinities with 

HDAC6. The best binding drug was Bicalutamide, which was an anti-cancerous drug and 

can be used to treat AD by inhibiting HDAC6.  

Keywords: Alzheimer’s disease, Histone deacetylase 6, post translational modification, 

Molecular docking, machine learning. 
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CHAPTER 1 

INTRODUCTION 

"The investigation of mitotically (and possibly meiotically) heritable changes in gene 

expression that aren't triggered by changes in DNA sequence" is how epigenetics are 

defined. Some epigenetic definitions, however, go beyond this and may not necessarily 

include the necessity for heredity [1]. For instance, the US National Institutes of Health 

(2009) states that "epigenetics refers to both secure, in the long run, modifications in the 

transcriptional capacity of a cell that are not generally transferred to next generation and 

inherited alterations to gene function as well as expression [2]. Expression of genes is a 

complex process with many steps. Transcribing a molecule of DNA into an identical RNA 

copy is the first stage of gene expression. RNA polymerase attaches to the promoter 

section of the DNA to start transcription by transcribing to a strand of mRNA that is 

equivalent to one of the DNA strands. It is ready, the mRNA may engage the ribosomes 

and start the translation process. Polypeptides are produced from the N to C terminus, 

during translation in three distinct phases[3][4]. The mRNA then defines the three sets of 

nucleotides (codons) from the DNA code that will be read after the initialization. The 

chosen amino acids are subsequently combined during the elongation phase and linked 

through a protein transferase reaction, resulting in the formation of a peptide bond and 

extension of the peptide chain [5] Translation halts when either of the end codons signifies 

the release of a complete polypeptide chain. The ribosome separates from the mRNA and 

the subunits of the ribosomal membrane when it is time for the cycle to begin again. The 

protein may undergo a number of post-translational modifications before being used in its 

intended function [6]. 

The buildup of aggregated and/or dysfunctional polypeptides in the biological milieu is one 

of the defining characteristics of neurodegenerative diseases (NDDs). In the etiology of 

NDDs, or post-translational modifications (PTMs), are a key regulator of the aggregation 

of inactive proteins [7]. Any alteration to the post-translational process and the protein 

quality control system, including the ubiquitin proteomsome protein, autophagy-lysosomal 

degradation route, misfolded protein accumulation, molecular chaperone, and, increases 

the accumulation of misfolded protein, ubiquitin-proteasome system, which leads in 

nervous system dysfunction. [8]. Post-translational modification has a variety of effects on 
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protein synthesis, aggregation formation, and disease-causing toxic metabolite breakdown. 

PTMs control protein homeostasis, which controls protein structure, functions, and the 

tendency for aggregation. PTMs include acetylation, SUMOylation, glycosylation, 

nitration, phosphorylation, ubiquitination, palmitoylation, and oxidation [9]. Additionally, 

growing data points to the possibility of targeting certain PTMs with tiny chemical 

compounds, which function as a suppressor or activator, reverse the buildup of misfolded 

proteins and so improve neuroprotection [10].  

Inhibitors of HDAC also known as Histone Deacetylase are shown to be advantageous in 

experimental systems of neurological disorders. These type of findings were primarily 

linked to the chromatin deacetylation-induced epigenetic regulation brought on by HDACs, 

particularly those from class I [11]. Since each HDAC might play a unique role in the 

neurodegenerative cascades, additional mechanisms may also be involved in the 

neuroprotective impact of HDAC inhibitors [12]. HDAC6 is one such example, for which 

the contribution to neurodegeneration has so far only been partially understood. There is 

ongoing debate regarding the best approach to take when developing medicines that target 

HDAC6 [13]. Specific inhibitors work to enhance axonal transport, particularly is typically 

compromised in neurodegenerative diseases, by raising the levels of acetylation of -tubulin. 

On the other side, a putative induction of HDAC6 might support the breakdown of protein 

aggregates that are indicative of several NDD, including Alzheimer's, Parkinson's, and 

Huntington's diseases [14]. 

In the given thesis and the literature work, we have majorly discussed post-translational 

modifications specifically acetylation and deacetylation. For the research part of the thesis, 

we chose a segment of Histone deacetylase 6 from the literature review for drug 

repurposing using a machine learning approach. Inhibition of HDAC6 results in the 

stoppage of the progression of Alzheimer’s Disease or AD. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 REGULATION OF HDAC 6 IN POST-TRANSLATIONAL 

MODIFICATION 

A cortactin-dependent, actin-remodeling mechanism that is recruited by HDAC6 

assembles an F-actin network which induces the involvement of autophagosomes along 

with lysosomes and the destruction of substrates [15]. Autophagy malfunctions as a 

result of HDAC6 loss or dysregulation, which delays the breakdown of protein 

aggregates. In juvenile-onset PD, Kufor-Rakeb syndrome is brought on by ATP13A2 

mutations [16]. To encourage autophagosome-lysosome fusion and the destruction of 

protein aggregates, ATP13A2 recruits HDAC6 to the lysosome where it deacetylates 

cortactin and tubulin. Following spinal cord injury, HDAC6 overexpression causes 

microtubule deacetylation and decreased stability, which inhibits autophagy and causes 

damage (fig. 1) [17]. P62 elevates HDAC6 levels in prostate cancer and decreases 

microtubule stability and acetylation of -tubulin, which impairs autophagy flux and 

promotes EMT. In order to prevent HDAC6 from deacetylating -tubulin, restoring 

autophagy and preventing the loss of subcutaneous fat [18]. It is notable that SIRT2 has 

also been engaged in this process, which controls the acetylation of Tau and -tubulin to 

alter autophagy vesicular flow and cargo clearance, in addition to HDAC6-mediated 

cytoskeleton protein acetylation [19]. 
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Figure 1: Complications caused due to the overexpression of HDAC 6 

2.2 HDAC 6 IN ALZHEIMER’S DISEASE 

The area of the hippocampus, entorhinal cerebral cortex, as well as amygdala are the 

primary brain regions impacted by AD[20]. A characteristic intraneuronal pathology in 

AD called neurofibrillary tangles develops in a specific way. The entorhinal area, a 

nearby part of the hippocampus, is where tau protein buildup first affects brain areas, 

which then gradually extend. The hippocampus, which is crucial for developing 

memories (memory training) and more especially for declarative or explicit memory—

the remembering of events—is therefore affected by tau disease [21]. Therefore, it is 

important to pay attention to HDAC6 expression in the hippocampus. When compared 

to young, healthy brains, AD cortex HDAC6 protein levels were 52% higher and 91% 

higher in AD hippocampus. The amount of HDAC6 protein in the brains of AD 

patients and age-matched normal brains was compared to demonstrate that the HDAC6 

protein has been elevated in AD [22].  
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Proteasome restriction is a well-known aspect of AD and appears to enhance the 

interaction between HDAC6 and tau. Such a relationship might be seen in cells, AD 

patients' brains, and in vitro [23]. Regardless of Histone deacetylase's ability to 

deacetylate tubulin, HDAC6 along with tau co-localized inside a compartment. 

Although tau phosphorylation could be reduced by therapy with tubacin or in vivo 

HDAC6 knockdown, the relationship between HDAC6 and tau was unaffected [24]. 

The post-mortem analysis of the Alzheimer patients' brains also showed a small 

amount of alpha-tubulin along with high levels of tubulin acetylation. The majority of 

these activities were seen in neurons with neurofibrillary tangles. Tau boosted tubulin 

acetylation through interacting with HDAC6 to block the deacetylase activity [25]. 

Additionally, human cells overexpressing tau protein showed the same rise. A surplus 

of tau worked as an HDAC6 blocker and stopped cells' ability to induce autophagy and 

then inhibit the proteasome. Accordingly, tau can function as an inhibitor of the 

aggresome pathway as well as the deacetylase function of HDAC6, dependent on the 

HDAC6 interaction with polyubiquitinated proteins [24]. Even if HDAC6 up-

regulation aids in the confinement of ubiquitinated aggregates of proteins and the 

attraction of autophagic components in AD brains, according to Ding's theory, it would 

ultimately be harmful to cell survival because of dropped tubulin acetylation as well as 

increased tau phosphorylation [14]. Finally, combining HDAC6 suppression mice with 

an experiment for extensive amyloid disease has recently shown the beneficial effects 

of HDAC6 depletion on cognition. Loss of HDAC6 could reverse the abnormalities 

while also improving the condition of association and spatial memory formation. These 

results point to HDAC6 suppression as a potential AD target [20]. 

2.3 HDAC6 AS A THERAPEUTIC AGENT IN 

NEURODEGENERATION 

HDAC6 is without a doubt implicated in several neurodegenerative cascade events and 

varies from other HDACs not just in terms of structure but also in terms of subcellular 

location [26]. Common characteristics of many NDs include impaired mitochondria 

transport and removal of protein aggregates, which are related to HDAC6's deacetylase 

as well as ubiquitin ligase activity. But it appears that the outcomes of specifically 

inhibiting HDAC6 in neurological models cannot be generalized to other diseases [27]. 

One argument is that various illnesses involve certain proteins, and in the case of 

HDAC6, protein-protein interactions (PPI) should not be disregarded. One such is the 
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relationship between HDAC6 with tau, which inhibits HDAC6 and prevents it from 

participating in autophagy. In the instance of NDs, some of the PPI mechanisms ought 

to be investigated in both the HDAC6 and class I HDAC contexts [28]. In fact, 

depending on the illness and the targeted isoform, class I HDAC inhibition was 

successful in enhancing cognition, memory, and academic performance in animal 

models (fig. 2). Even though HDAC1 and HDAC2 are quite similar to one another, 

different effects have been seen when each enzyme has been overexpressed. This could 

be connected to how PPI affects the regulation of HDAC activity [29]. As a result, 

HDAC1 may contribute to neurodegeneration by processes other than epigenetics, 

similar to those of HDAC2, such as nuclear export, association with CRM-1, which is a 

nuclear factor, and the production of kinesin complexes to interfere with mitochondrial 

transport [30]. Even though tau buildup in general cell tests and mitochondrial transport 

impairment in NDs could both be prevented by specifically inhibiting HDAC6, the 

involvement of HDAC6 in protein aggregation removal was emphasized. Additionally, 

WT-161, which is a specific HDAC6 inhibitor, did not enhance mental capacity in an 

animal memory test. 

Furthermore, there was convincing evidence that tau in AD inhibited HDAC6. 

Recently, an animal model of AD that has been crossed with an HDAC6 deletion 

showed improved cognitive function [28]. Given that tau eventually inhibits 

overexpressed HDAC6, even though HDAC6 appears to be required for aggregate 

removal by autophagy, which an induction may fall short of reversing the pathogenic 

circumstances that characterize AD. Further research on PPI among HDAC6 and 

additional proteins implicated in certain neurodegenerative diseases would be 

interesting in this area [26]. PPI inhibitors have attracted a lot of attention in the drug 

development process because they make it possible to interact with a particular enzyme 

pathway without affecting the enzyme activity required for other processes. 

Additionally, tiny molecules may modify PPI, which is a desired property to enable 

oral delivery and blood-brain barrier permeability. As a result, it appears that studying 

PPI that underlies HDAC6 processes is a viable strategy for modifying HDAC6 

function in the setting of neurodegeneration [30]. 
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Figure 2: The reduced activity of the HDAC6 deacetylase, promotes the 

acetylation of alpha-tubulin, which aids in lowering toxic amyloid segregation, tau 

pathology, and AB deposition, all of which serve in reduced AD pathology and 

promote neuroprotection. 
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CHAPTER 3 

METHODOLOGY 

Initially, to understand the theoretical concepts of HDAC6 and neurodegeneration, the 

information was summarized from the literature work presented in literature databases 

like PubMed which is accessible through https://pubmed.ncbi.nlm.nih.gov/, Google 

Scholar which is easily accessible through https://scholar.google.com/. For the study, 

three classes of FDA-approved drugs were shortlisted based on diseases like anti-

cancer, anti-diabetes, and anti-hypertension. As AD is a multifactorial disease, it has 

been observed that factors like diabetes, hypertension increased oxidative stress and 

cancer also have an important part in adding to the progression of AD, on this evidence 

these classes of drugs were taken in for study as the drugs repurposed in this study will 

act as multi-target compounds. 

 

3.1 Data Collection 

Initially, a list of approximately 500 FDA-approved three major classes namely 

antihypertension, anticancer, and antidiabetics was retrieved from the drug bank. The 

Spatial Data File (SDF) was downloaded from CHEMBL and PubChem for all the 

compounds and merged into a single SDF file. 

The protein structure of HDAC 6 was retrieved from the Protein Data Bank repository. 

The crystal structure of the human HDAC6 zinc finger domain with PDB ID: 3C5K 

was selected for the study. The selected structure had a crystal structure modeled using 

the X-RAY Crystallography method at a resolution of 1.55 Å. The 3D coordinate file 

of the structure was saved with the .pdb extension. 

 

3.2  Blood Brain Barrier Prediction 

To target HDAC 6 as therapeutics for Alzheimer’s disease a drug must be transported 

to the brain and for a compound to reach the brain it must cross the Blood-brain barrier. 

An online open-access tool namely CB ligand. This tool utilizes support vector 

machine (SVM) and LiCABEDS algorithms to make predictions by applying them to 

four different types of fingerprints (MACCS; OpenBabel (F2P); MolPrint 2D; 

PubChem) from 1593 reported chemical compounds. Among all, the SVM algorithm 

and the PubChem fingerprints were used to predict the compounds for BBB+ or BBB-. 
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3.3  Utilizing machine learning to predict the bioactivity of 

Compounds 

In order to retrieve data and train a ML model Google Colab an online IDE was used. 

Users can write, execute, and collaborate on Python code online using Google Colab, a 

cloud-based integrated development environment (IDE) offered by Google. It is based 

on Jupyter Notebook and gives users access to a hosted environment where they can 

run code, create and store notebooks, and employ sophisticated computational 

resources, such as GPU acceleration, all through a web browser. 

Training and prediction using ML all were done by writing Python-based codes on 

collab. 

 

3.3.1 Package Installation 

The code starts by installing the necessary packages. The "rdkit" package, which is a 

set of cheminformatics and machine learning technologies, is first installed. It allows 

you to manipulate and analyze chemical data. The "pandas" package, a popular data 

manipulation and analysis toolkit, is then installed. It provides data structures and 

methods for managing and processing structured data effectively. Finally, the "sklearn" 

package, which is a machine-learning library with numerous methods and tools for data 

analysis and modeling, is installed. 

3.3.2 Importing Packages 

The required packages are first installed, and then the code imports them to use them. 

Importing the "pandas" package will be used to manipulate and analyze data. It is 

necessary to load the "rdkit" package, which will be used to manage chemical data and 

carry out cheminformatics activities. Imported is the "sklearn" package, which will be 

used to build and hone machine learning models. The "chembl_webresource_client" 

package's "chembl_webresource_client" module is also imported. This module enables 

access to the web service for the ChEMBL database. 

3.3.3 Searching for Target Protein 

The program makes use of the ChEMBL web service to look for a certain target 

protein. To communicate with the ChEMBL database, it uses the "new_client" module 

from "chembl_webresource_client". In this instance, "HDAC6" is the target protein 
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being looked for. The pandas DataFrame "targets" is used to retrieve and store the 

search results. 

3.3.4 Retrieving Bioactivity Data for a Target Protein 

The algorithm then retrieves bioactivity information for the chosen target protein from 

the ChEMBL database after finding it through a search for the target protein. Based on 

the ChEMBL ID of the chosen target protein, the "activity" module from 

"chembl_webresource_client" is used to query the bioactivity data. In particular, the 

"IC50" values for bioactivity data that are presented in nanomolar (nM) units are 

filtered. A pandas data frame named "df" is then used to store the retrieved data. 

3.3.5 Handling Missing Data 

The code handles missing data to ensure the accuracy and completeness of the data. 

The "dropna()" method from pandas is used to remove any rows in the DataFrame "df" 

that have missing values in the columns "standard_value" and "canonical_smiles." This 

makes sure that the subsequent analysis and modeling processes only employ entire 

data points. 

3.3.6 Data Pre-processing 

depending on their standard values, substances are classified as active, inactive, or 

intermediate depending on the bioactivity data. The'standard_value' column in the 

DataFrame "df" is used for this by applying a lambda function to it. The labels "active," 

"inactive," and "intermediate" are used for compounds with values of less than or equal 

to 1000, higher than or equal to 10,000, and values in the middle. RDKit functions are 

used to calculate additional molecular characteristics, including the number of atoms, 

heteroatoms, rotatable bonds, and molecular weight. The DataFrame "df" gains new 

columns for these descriptors. 

3.3.7 Feature Matrix and Target Variable 

A subset of the DataFrame "df" with the columns "num_atoms," "num_heteroatoms," 

"num_rotatable_bonds," and "molecular_weight" is the feature matrix, denoted as "X." 

The input features that will be utilized to train the machine learning model are 

represented by these columns. The 'bioactivity_class' column in the DataFrame is 

designated as the target variable, indicated as "y". It stands for the bioactivity 

prediction task's class labels. 
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3.3.8 Model Training 

The "RandomForestClassifier()" class from the "sklearn.ensemble" module is used to 

build a random forest classifier. Both classification and regression tasks can be handled 

by this classifier. The constructed model is trained using the "fit()" technique utilizing 

the feature matrix "X" and the goal variable "y". 

3.3.9 Predicting Bioactivity for a Given SMILES 

For predicting the bioactivity of a given SMILES string, the method 

"predict_bioactivity()" is defined. The following actions are carried out by the function 

after receiving the SMILES string as input: converts the SMILES string to a molecule 

object using RDKit's "Chem.MolFromSmiles()" function, computes the necessary 

molecular descriptors (number of atoms, heteroatoms, rotatable bonds, and molecular 

weight), creates a DataFrame with the input features, makes predictions using the 

trained model (using the "predict()" and "predict_proba()" methods), and prints the 

predicted class and probabilities. 

3.3.10 Fetching and Predicting Bioactivity for Multiple 

ChEMBL IDs 

The program shows how to retrieve and forecast bioactivity for various ChEMBL IDs. 

The "read_csv()" function is used to read ChEMBL IDs from a CSV file into a pandas 

DataFrame. The "molecule.get()" method is used to retrieve the compound information 

from ChEMBL for each ChEMBL ID in the data frame. The trained model and 

calculated molecular descriptors are used to estimate bioactivity after the canonical 

SMILES are extracted from the compound information. The outcomes are kept in a 

collection of dictionaries. The output is then saved as a CSV file and transformed into a 

data frame. The predicted results DataFrame is printed as output. 

In conclusion, the python-based code executes several operations, such as installing 

packages, obtaining and processing data, training models, and predicting bioactivity. 

For cheminformatics operations, data processing, and machine learning activities, it 

makes use of programs like RDKit, pandas, and scikit-learn. The code demonstrates 
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retrieving and predicting bioactivity for several compounds based on ChEMBL IDs as 

well as bioactivity prediction for a specific chemical structure. 

3.3.11 Molecular Docking 

 As a next step, the retrieved FDA-approved drugs were subjected to molecular 

docking 

3.3.12 Preparation of target protein 

The target protein must first be ready for docking. Any ligands, water molecules, or co-

crystallized small molecules are eliminated in order to prepare the protein structure was 

done using the Biovia Discovery Studio. After that, bond order is determined, any 

irregular residues or heteroatoms are eliminated, any missing hydrogen atoms are 

added and Kolmann charges were finally added using the Autodock Tools.  

3.3.13 Preparation of ligands 

The ligand molecules will then be prepared, and any essential hydrogen atoms and 

correct bonding order will be added. Using the OpenBabel command line, all of the 

ligands were identically produced and transformed into 3D conformational space. 

Furthermore, using the OpenBabel command line, the ligands were stored in a PDBQT 

file format. 

3.3.14 Setting up the docking parameters 

   The parameters for the docking simulation were decided at this stage. The 

coordinates and measurements of a grid box were decided as that surrounds the binding 

site are used to establish the search space, the grid mapping was done for HDAC6 and 

the dimensions were 5.669, -4.987, 12.262, and the size was 34.86 x 39.07 x 40.61. The 

exhaustiveness was increased to 16 from a default value of 8, It signifies how many 

dockings poses per ligand should be generated, as well as how comprehensive the 

search method should be. Higher exhaustiveness values improve docking accuracy 

while lengthening computation time. 

3.3.15 Performing molecular docking 

   The molecular docking simulation is carried out using AutoDock Vina extension in 

the PyRx tool with the prepared target protein, ligands, and docking parameters. To 

identify the optimal binding poses, the computer methodically investigates the ligand 

conformations and orientations inside the specified search space. Based on an 
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evaluation of the interactions between the ligand and protein, AutoDock Vina 

determines the binding affinity (predicted binding energy) for each docking position. 

We used an RMSD threshold of 1Å and free energy of binding cutoff of -9.0kcal/mol 

to filter for promising findings. The hits were then sorted from lowest to highest 

binding free energy. 

 PyRx is a computational tool used to screen the compound libraries against a specific 

receptor and is an in-silico approach for drug discovery and development. It also 

comprises of docking wizard and visualization engine used to perform virtual screening 

and molecular docking. It uses AutoDock Vina as a docking software. AutoDock vina 

utilizes a scoring function based on empirical force fields to estimate the binding 

affinity between a ligand and the protein. The scoring function considers various 

energetic contributions, such as van der Waals interactions, electrostatic interactions, 

and de-solvation effects, to evaluate the binding affinity. The underlying mathematical 

model in AutoDock Vina involves algorithms for global optimization, specifically an 

algorithm called iterated local search. This algorithm performs a systematic exploration 

of the search space to find the most energetically favorable binding conformations of 

the ligand within the protein's binding site. Open Babel for the import of files in SDF 

format. Its programming language is Python and matplotlib is used for 2D plotting. 

3.3.16 Visualization and analysis of docking results 

Once the docking simulation is complete, the data are examined to determine which 

ligand poses have the highest binding affinities. The optimal drug-binding 

conformations have been stored in a discrete PDB file. Biovia Discovery Studio and 

Pymol were utilized to graphically represent the ligand-receptor protein interaction.  

Hydrogen bonds, hydrophobic interactions, and electrostatic interactions between 

ligands and proteins were evaluated by visualizing the docking postures. Binding 

affinity scores are used to rank the ligands, with the highest-scoring ligands being 

chosen for further study or experimental verification. 

Finally, publication-quality images of docking poses were rendered using Pymol’s ray-

tracing feature. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Model Evaluation 

Upon predictions by the Random Forest algorithm the performance of the model was 

evaluated and the following scores were obtained: 

Table 1: Performance Parameters of the Random Forest ML Model 

Performance Parameters Value 

Accuracy 0.8 

Precision 0.666666667 

Recall 1 

F1-Score 0.8 

AUC-ROC 0.833333333 

 

The unique problem, the parameters, and the intended degree of performance all influence 

whether the ratings for a model are excellent or bad. However, a broad analysis based on 

acknowledged standards or thresholds is given below: 

Accuracy: A score of 0.8 means that 80% of the samples were accurately predicted by the 

model. An accuracy of over 70% is typically seen as being good. 

Precision: The model correctly detects about 66.67% of the positive predictions, with a 

precision score of 0.666666667. There are fewer false positives the better the precision. 

Although there is no universal cutoff for good precision scores, a score of at least 0.6 is 

generally regarded as acceptable. 

Recall: A recall score of 1 indicates that all positive samples were accurately identified by 

the model. This shows that the model is highly capable of identifying all positive events. In 

many situations, a recall score of 1 is ideal. 

F1-Score: The harmonic mean and precision has been denoted by an F1-score of 0.8. It 

offers a balanced measurement that takes into account both recall and precision. A good 

F1-score is typically one above 0.7, but the significance varies depending on the issue. 
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AUC-ROC: The model appears to have a decent ability to distinguish between positive 

and negative samples, according to the AUC-ROC score of 0.833333333. A good score is 

one that is above 0.8 and shows that the model has a strong ability to discriminate. 

In conclusion, the model appears to have performed reasonably well based on the presented 

scores, especially in terms of recall, F1-score, and AUC-ROC. It's crucial to remember that 

the specific problem and the environment in which the model is being used determine 

whether these ratings are good or bad. 

Later after classification of algorithms all the three categories of drugs (anti-hypertension, 

anti-cancer, and anti-diabetes) were classified in the categories namely Active Inactive and 

intermediate, assuming the model’s performance and precision were significant. The 

downloaded data frame of 280 FDA-approved drugs were classified as 273 of the totals 

were classified as active 7 as intermediate and none as inactive. 

4.2 Binding Affinity Analysis and Protein Target Interaction 

Upon classification all the FDA- approved drugs were subjected to molecular docking. To 

evaluate the performance of auto dock vina various parameters and algorithms are used 

(TABLE 2). 

TABLE 2: Table summarizing the parameters, algorithms, and their working in 

AutoDock Vina 

Parameter/Algorithm Description Working 

Scoring Function 
Estimates binding 

affinity 

AutoDock Vina employs a scoring 

function based on empirical force 

fields. It considers van der Waals 

interactions, electrostatic 

interactions, and de-solvation 

effects to evaluate the binding 

affinity between a ligand and the 

protein. 
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Iterated Local Search 

(ILS) 

Algorithm for global 

optimization 

ILS is utilized in AutoDock Vina to 

perform a systematic exploration of 

the search space. It aims to find the 

most energetically favorable 

binding conformations of the ligand 

within the protein's binding site. 

ILS combines local search 

(examining local neighborhoods) 

with random perturbations to 

escape local minima and explore 

the entire search space. 

Grid-based Docking Defines the search space 

AutoDock Vina utilizes a grid-

based approach to define the search 

space for molecular docking. The 

grid is generated around the 

protein's binding site, and its 

dimensions and spacing can be 

specified by the user. The grid maps 

the interaction potential of the 

ligand with the protein. 

Exhaustiveness 

Controls the 

thoroughness of the 

search 

The exhaustiveness parameter 

determines the thoroughness of the 

docking search. Higher values 

increase the number of 

conformations sampled during 

docking, resulting in a more 

exhaustive search. However, it also 

increases the computational time 

required for docking. Users can 

adjust this parameter based on the 

desired balance between accuracy 
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and computational efficiency. 

Binding Energy 

Quantifies ligand-

protein interaction 

strength 

The binding energy is a measure of 

the strength of the interaction 

between the ligand and the protein. 

AutoDock Vina calculates the 

binding energy using its scoring 

function. Lower binding energy 

indicates a stronger binding affinity 

between the ligand and the protein. 

Root Mean Square 

Deviation (RMSD) 

Measures structural 

similarity 

RMSD is a measure of the 

structural deviation between two 

molecular structures. In molecular 

docking, it is used to evaluate the 

similarity between the predicted 

ligand conformation and the 

experimental or reference 

conformation. Lower RMSD values 

indicate a closer match between the 

predicted and reference 

conformations. 

 

4.3 Best Binding Compounds 

After virtually screening all the retrieved compounds against HDAC6, a list of best-binding 

drugs were obtained. (TABLE 3) 
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Table 3.- Best binding compounds with HDAC6 after the virtual screening. 

Drug Structure ChEMBL ID Compound 
Binding Affinity 

(Kcal/Mol) 

Blood-

Brain 

Barrier 

 
CHEMBL409 Bicalutamide -9 + 

 
CHEMBL255863 Nilotinib -8.8 + 

 
CHEMBL2028663 Dabrafenib -8.8 + 

 

CHEMBL1082407 Enzalutamide -8.6 + 

 

CHEMBL477772 Pazopanib -8.6 + 

 

CHEMBL1229517 Vemurafenib -8.5 + 

 

CHEMBL2105717 Cabozantinib -8.3 + 

 
CHEMBL1023 Bexarotene -8.3 + 

 

CHEMBL502835 Nintedanib -8.3 + 

 

CHEMBL1738797 Alectinib -8.2 + 
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Bicalutamide, an anti-cancerous drug, resulted as the novel drug which shows the best 

binding that can be repurposed to inhibit HDAC6 and limit the progression of Alzheimer’s 

Disease. The ChEMBL ID for the drug is ChEMBL409. The calculated binding affinity of 

Bicalutamide was -9kcal/mol and the IC50 value was 470 nM. The active site residues of 

HDAC6 interacting with the bicalutamide are GLU-33, ARG-47, and TYR-81 with a bond 

length of 3.3 Å, 1.8 Å, and 2.5 Å respectively (Figure 3). This drug passed the test of Blood 

Brain-Barrier permeability as well and can be considered for further pre-clinical and clinical 

trials. Promising candidates who can inhibit HDAC6 and slow the course of AD were found 

using the performance metrics, including binding affinity, docking accuracy, and 

computational efficiency. 

Bicalutamide is a drug used for the treatment of prostate cancer. It is an androgen receptor 

inhibitor. The brand name under which this drug is sold is Casodex. The Drug Bank 

accession number is DB01128. Bicalutamide is an FDA- approved drug that is always 

taken in oral form. The trace remains of the drugs are easily excreted through urine and 

fecal matter [16]. Bicalutamide is a non-steroidal drug but when consumed can cause side 

effects like weakness, dizziness, swelling in various parts of the body, pain, constipation, 

nausea, fever, high blood pressure, frequent urination, etc. It should be stored at room 

temperature and should be consumed only when prescribed by medical experts. 

Bicalutamide is a multi-purpose drug that can be repurposed to treat neurological disorders 

like Alzheimer’s Disease. 
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FIGURE 3 – Binding of Histone Deacetylates 6 (Zinc finger domain) (3c5k) with 
Bicalutamide, active site interacts with GLU-33, ARG-47, and TYR-81. 

 

With the induction of dynein and kinesin motor complexes, inhibition of HDAC6 with 

an inhibitor reverses oxidative stress-induced neuronal cell death and triggers neurite 

extension, enhances microtubule stability, and mitochondrial transport enhances 

cognitive and memory conditions associated with diseases like Alzheimer's and 

neurological impairments both in animal-based experiments as well as cell. In the R6/2 

mouse model, genetically inhibiting HDAC6 has a twofold impact on the development 

of the illness and motor deficits. This research collectively demonstrated the 

identification of HDAC6 inhibitors as therapeutics for neurodegenerative disorders. 

The identified inhibitors were found to be traditionally used for multiple other diseases 

such as cancer, hypertension, and diabetes. 

The points mentioned below highlight the contribution of the Insilco drug repurposing 

research for the treatment of AD. 

• This insilico drug repurposing study finds novel uses for already approved drugs 

for the inhibition of overexpressed HDAC6 for the treatment of AD by studying the 

pharmaceutical-target protein molecular interactions. 
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• Drug repurposing speeds up medication development for neurological disorders 

like Alzheimer’s Disease, Parkinson’s Disease, etc. In silico tools can swiftly screen 

large chemical libraries against many target proteins to uncover potential hits and lead 

compounds for further investigation. Drug repurposing helps us by saving time and 

money by using existing data and knowledge. 

• Existing drugs that are repurposed for new indications can offer a more 

comprehensive safety profile than newly developed compounds. Due to the fact that the 

safety profiles of repurposed pharmaceuticals have already been established through 

clinical use, the risks associated with adverse effects and toxicity can be better 

comprehended. 

• In silico drug repurposing initiatives provide valuable insights into the action 

mechanisms and target interactions of existing drugs. This information can aid rational 

drug design by guiding the modification of existing compounds or the creation of new 

derivatives with enhanced efficacy or fewer adverse effects. By comprehending the 

structural and functional properties of repurposed pharmaceuticals, researchers can 

rationally enhance their therapeutic potential to treat AD. 

• Drug repurposing avoids unnecessary animal testing by using approved drugs' 

safety and knowledge. Repurposed medications have undergone significant preclinical 

and clinical testing; thus, animal testing is unnecessary. 

4.5 Performance Matric Analysis of AutoDock Vina 

TABLE 4- Performance metric of AutoDock Vina of the study conducted. 

Performance Metric Description Evaluation Method Results 

Binding Affinity 

Measures the 

strength of ligand-

protein interaction 

Calculation of 

binding affinity 

scores 

Average binding 

affinity (top 10):  -

8.54 kcal/mol 

Docking Accuracy 

Evaluates the 

accuracy of docking 

predictions 

Comparison of 

predicted binding 

poses with 

experimental data 

RMSD less than 

1.0 Å 

Computational 

Efficiency 

Measures the speed 

and scalability 

Calculation of the 

time required for 

Average docking 

time: 2 seconds 
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docking calculations 
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CHAPTER 5 

CONCLUSION 

FDA-approved drugs which are responsible for the treatment of a variety of diseases were 

taken for the inhibition of HDAC6 whose over-expression in the brain can cause 

Alzheimer’s disease. Multiple bioinformatics tools and machine learning algorithms were 

used to predict the bioactivity of various compounds. Various techniques along with online 

databases were used to conduct the study based on the drug-repurposing approach. 

Bicalutamide, an anti-cancerous drug resulted to be a potent drug for the inhibition of 

HDAC6 and curing of AD.  

Computational approaches can be one of the best ways to research in the field of life 

sciences and healthcare which can be cost-effective, and time-saving. At the same time, the 

only limitation of computational work is its findings need to be approved by clinical trials 

and further research for human administration. As technology advances, it can be helpful to 

figure out precise treatments for NDDs for which treatments are yet unknown. 
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