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ABSTRACT 

The first part of the thesis examines the use of technology such as big data, artificial 

intelligence (AI) as well as machine learning (ML) in cognitive healthcare, with a focus 

on personalized medicine for neurodegenerative diseases and drug discovery and 

development. Healthcare systems throughout the world face considerable problems from 

neurological illnesses including Parkinson's disease, Alzheimer's disease, Amyotrophic 

Lateral Sclerosis, and Huntington's disease. As a result, novel methods of medication 

development, diagnosis, and treatment are required. The first part of the thesis analyzes 

the state of neurological healthcare today and the shortcomings of conventional 

approaches to treating the complexity and variety of neurodegenerative illnesses. It then 

explores how utilizing enormous amounts of data from sources including genomes, 

proteomics, imaging, and medical records might change drug development and precision 

medicine. Intending to identify disease causes and enhance therapeutic approaches, it 

investigates the incorporation of multi-omics data along with the creation of computer 

models. The thesis also addresses the difficulties and moral issues related to the 

application of AI and ML in brain-related treatment in its literature review section. It 

speaks to the necessity for open and strong validation frameworks as well as data 

confidentiality, unfairness, and interpretability challenges. This thesis illustrates the 

promise of AI and ML in improving neurological healthcare through a thorough 

examination of research, case studies, and computer experiments. It emphasizes how 

important it is for researchers, physicians, as well as business stakeholders to work 

together to fully utilize AI and ML for individualized and successful therapies in 

neurodegenerative illnesses. 
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In the second part of the thesis, drug discovery and development, which is a segment of 

the literature review has been considered for the research work for the thesis. Using 

machine learning algorithms, I predicted drugs to stop the progression of Alzheimer’s 

disease by inhibiting the DNMT1 protein. Out of the drugs mentioned in the predicted 

list, I have retrieved the best-binding drugs which limit the disease continuation. This 

work was performed using multiple computational biology tools like virtual screening 

and molecular docking, which also work on machine learning algorithms. The resulting 

drugs can be studied in experimental labs to bring the results from the bench to the 

bedside. 

Finally, this research establishes the groundwork for future developments in novel drug 

discovery and personalized medicine for neurodegenerative illnesses, notably 

Alzheimer's Disease, and adds to the corpus of understanding in the discipline of AI and 

ML in brain healthcare. 

Keywords: Alzheimer’s disease, DNA Methyltransferase 1, artificial intelligence and 

machine learning, big data, Molecular docking, MD simulation, Binding affinity, 

personalized medicine. 
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CHAPTER 1 

INTRODUCTION 

Rapid advancement are attained in allied areas of neurobiology along with artificial 

intelligence (AI) in recent years [1]. Investigations based on AI was closely linked to 

neurology and psychology at the beginning of the computer era [2], [3]. The interaction 

has, however, diminished significantly in recent years due to the tremendous complexity 

growth and academic boundary consolidation of both disciplines [2]. Examining 

biological intellect carefully has two advantages for the development of AI. First, unlike 

and in addition to the statistical and logically based techniques and concepts that have 

predominated conventional approaches to AI, neuroscience offers a rich source of 

motivation for new kinds of algorithms and architectures [4]. An algorithm's affirmation 

is a crucial part of a larger general intelligence system so that it can be applied in the study 

of the brain [3]. When determining how to most effectively allocate resources for a long-

term research initiative, these hints can be crucial. For example, in the case, if a tool is 

not performing at the stage needed or expected but we notice it is vital to brain function, 

we can conclude that improved engineering efforts aimed at making it operate in artificial 

systems are likely to be successful [4].  John McCarthy in 1956, coined the terminology 

of Artificial intelligence and also introduced the world to its principles [5].  AI was 

entirely based on complex algorithms and the human mind mimicking software for 

analysis and solving crucial problems like decision-making ability, visual perception, and 

speech recognition [6]. Tremendous chances and opportunities are created in the 

healthcare industry because of the involvement of artificial intelligence techniques in 

computer work and the power to access huge amounts of data with great ease [7]. AI has 

multiple applications in the field of healthcare including developing protocols, preventing 

diseases, monitoring patients, keeping a record of medical history, and even helping 

researchers and clinicians to extract important information from the flood of data [8] 

(figure1). Innovations in AI have shown legitimate implementations in some critical 

situations like performing skin cancer analysis better than dermatologists [9], [10] and 

predicting mortality using prostheses following cardiac surgery [11]. Performance of Ai 

has been seen from the nano level to the mega level but the usage rate is much lower in 

the field of healthcare and medicine as compared to other sectors like mechanics, 
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electronics, electricals, etc. [12], [13]. Intensified loads of neurodegenerative disorders 

are considered a major reason for speedy aging in the population and at a later date 

resulting in extravagant expenses in treatment, assistance in the patient’s care, 

hospitalization, and even higher mortality rates [14]. The criteria that differentiate NDDs 

from neurological disorders is the neuronal dysfunction or neuronal loss in specified 

regions of the spinal cord or brain. Several physical and mental impairments are witnessed 

in people suffering from age-related neurological disorders also known as NDDs like 

speech issues, cognitive decline, forgetfulness, anxiety, continuous changes in mood, and 

even decline in other organs of the body is also seen [14]. These disorders can be a result 

of electrical, structural, or biochemical abnormalities in the neurons, spinal cord, and 

brain. AD, a very common disease among the list of neurodegenerative disorders is 

predicted to affect approximately 7 million Europeans by 2040. The complete cure for 

the disease is still unknown, still, the diagnosis, treatment, and care comprise around 130 

billion euros per year 
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Figure 1. The diagram is divided into four components: Patient Data Collection, 

Artificial Intelligence/Machine Learning, Treatment Plan, and Ongoing Monitoring 

and adjustment to provide prescribed treatment. Based on this medication, patient’s 

response is recorded and is again fed into the algorithms to enhance its accuracy. 

 

Instruments used in clinical fields are equipped with updated versions of intelligent 

machine learning abilities which can be used to avoid errors in predictions and decision-

making processes. It can also assist clinicians in their treatment process and provide valid 

and updated information in textbooks and journals [15]. Companies and industries like 

International Business Machines (IBM), Microsoft, Google, Apple, and DeepMind 

Technologies Ltd. are heavily investing in healthcare facilities related to artificial 

intelligence and are using several tools and techniques which integrate AI/ML algorithms 

for the improvement of the medical sector [15], [16]. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Moving towards big data in personalized healthcare 
The term ‘Big Data’ was popularized in the year 1997, in the frame of reference to data 

visualization [17]. Its approachability is targeted to overcome exceptional challenges in 

the field of biomedicine and healthcare. Since then, biomedical and healthcare research 

has witnessed unapprehended changes in clinical as well as molecular knowledge 

discovery based on big data analysis[18]. For a very long era, big science and business 

intelligence were major sources of inspiration for big data technologies development [19]. 

In the year 2009, when people started using google for the prediction of flu-like illnesses 

just by scrutinizing the queries available, the prediction was highly accurate just like the 

prognostication of high-priced monitoring networks of the Centers for Disease Control 

and Prevention. Witnessing this, several analysts affirmed that big data can be a solution 

to modern healthcare problems [20]. In the last two decades, medical organizations and 

researchers have initiated to enfold retrieval of data from digitalized clinical records 

rather than using the traditional methods of data collection. This has resulted in real-time 

care, cost depreciation, data accuracy with minimal errors, and improved efficiency[21]. 

Big data analytics is being considered over traditional database management systems 

because regular systems were unable to administer vast information consisting of details 

concerning patient care like signs and symptoms, clinical records, the behavior of the 

patient, imaging data, medications, and insurance claiming data, etc. [22] (figure 2a).  

There are majorly four analytical models present that are used for data mining and 

analysis: Descriptive, Diagnostic, Predictive, and Prescriptive. In the descriptive model, 

exploitation of already present data is done to provide accurate outcomes. The diagnostic 

model helps to understand the reason for the occurrence of the disease. The predictive 

model analyzes the patterns of reasons by which the disease is caused and predicts future 

risks. The prescriptive model at the end provides some useful recommendations to control 

the occurrence of the disease [23], [24]. But the analysis of medical data from incalculable 

patients, determination of clusters and correlations, and the development of new models 

for disease prediction utilizing the machine learning approach or statistical techniques 

have been made possible using contemporary big data technologies [20]. The 

characteristics of big data analytics which have improved the processing of data and the 
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decision-making ability are the six V’s, which represent: variability, variety, veracity, 

velocity, value, and volume. Volume, which is considered a foremost attribute refers to 

the amount of data that is being exploited for the analysis and retrieval of desired 

outcomes [25]. But in rare times, the data present in the databases or the clinical records 

do not contain enough information depth or the clinical data which is responsible for the 

expected results is missing.  

Even the databases which are used for the evaluation of these data are expensive enough 

to be obtained by every individual and this sets a limitation in the field of research based 

on big data analytics [26]. The sources that comprise the surge of data are biosensors, 

digitizers, scanners, mobile phones, the internet, emails, and social networks [25], [27] 

(figure 2b). The different types of information which are stored in the form of texts, 

videos, images, sounds, and geometrics or in the combination of any of these which is 

used for analysis and processing denotes a variety of data. The data can be both structured 

as well as unstructured which could have been retrieved from laboratory exams, sensors, 

simulation results, etc. as presented in some research studies [28], [29]. Velocity can be 

used to determine the rate of changes occurring, for example, the growth rate in age-

related disorders where the number of patients increases with the increase in age. Veracity 

concerns with the data accuracy and data quality that is to be used in the processing of 

big data because data collected from clinical research is usually of good quality and high 

accuracy but at the same time, data from clinical practices may not generate valuable data 

and it may result in the wastage of time studying them and also distracts from their 

patient’s care[30]. Another V symbolizes value which describes that data can provide 

valuable outcomes from the already stored information [20]. And finally, the last V means 

variability which tells how quickly and to what degree the format of your data changes. 

And how frequently does the nature or format of your data alter? Several algorithms have 

been proposed in the meantime to overcome the drawbacks like time complexity, and 

spatial complexity, and for the categorization of imbalanced data into 2 classes [31], [32]. 
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Figure 2: (a). There are multiple sources of big data like databases, electronic health 

records, cloud computing, wearable gadgets, etc. (b). Applications of big data in 
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healthcare include error free outcomes, better patient monitoring, cost reduction 

and enhanced privacy and security of confidential data of patients. 

Table 1: Big data-based research in the healthcare industry 

S.No. Work done Algorithm Methodology Sensor type Merits Demerits 
Refer
ences 

1. 

Early detection 
and preventative 
steps for limiting 

chikungunya virus 

Fuzzy K-
Nearest 

Neighbor 
algorithm 

Smart health approach 
Wearable 
Internet of 

Things devices 

Easy to carry 
devices 

Security 
execution is 

required 
[33] 

2. 
To continuously 

monitor the 
patients in ICU 

- 
Real-time IoT-based 

device 

Wearable 
sensors, bedside 

monitor 

Permits the 
staff to invest 

time in 
decision-

making with 
precise 

monitoring 

The accuracy 
of the system 
is yet to be 

tested. 

[30] 

3. 
Evaluate the 

condition of IoT 
sensors 

Korotkoff 
method 

Technology based 
care 

Blood pressure 
sensors, inertial 

sensors 

Reduction in 
power gap, 

meet the power 
requirement 

Skin 
irritation, 

uncomfortabl
e for the user 

[34] 

4. 

Healthcare system 
for detection and 

limit of 
chikungunya virus 

Fuzzy C- 
means 

algorithm 

Analyzing social 
networks 

GPS sensors, 
wearable 

sensors, climate 
detector sensor 

Quick 
generation of 
alerts, high 
efficiency 

High power 
consumption 

[35] 

5. 
IoT-based system 

for personal 
healthcare devices 

Fault-tolerant 
algorithm 

Machine-to-machine-
based IoT system 

Wearable 
sensors, and 

personal 
healthcare 

devices 

Effective 
supply of 
healthcare 
services 

Usage of 
Byzantine 

fault-tolerant 
algorithm 

[36] 

6. 

Storage and 
processing of big 

data for healthcare 
purposes 

Stochastic 
gradient 
descent 

algorithm 

Meta-fog redirection 
IoT sensors, 

wearable sensors 

Protection and 
prevention of 
big data from 

intruders 

Accessible 
storage is not 

provided 
[37] 

7. 

Framework 
proposal for the 

mining of 
healthcare data 

- 
Tensor-based data 
mining approach 

- Strong privacy inconsistent [38] 

8. 

Usage of big data 
analytics for 

remote monitoring 
of patients 

Quantitative 
methods 

Remote based real-
time monitoring 

system 
Body sensors 

Early 
detection, cost 

reduction 

Less 
accuracy 

[39] 

9. 

ML-based 
simultaneous aided 

diagnosis for 
outpatients 

Support 
vector 

machine 

simultaneous aided 
diagnosis model 

- 
Provide better 

healthcare 
services 

Data 
collected 
manually 

[40] 

10. 

Usage of sensors 
and smartphones 

for recording signs 
of users 

-- 
Mobile physiological 

sensor system 
Wireless sensors 

Cost-effective, 
convenient 

Issue in 
consumption 

of energy 
[41] 

11. 
Smartphone-based 
study of the ECG 
pattern of patients 

-- 
Cloud-

electrocardiogram 
system 

-- 

Reducing 
diagnosis time. 

Enhancing 
medical 

service quality 

Security 
issues 

[42] 

12. 
Mobile application 
for self-healthcare 

services 
-- 

Designing research 
methodology 

-- 
Highly 

effective 
technology 

Not 
applicable to 

remote 
healthcare 
services 

[43] 

13. 
Manipulation of 

sensors and 
management and 

Pattern 
matching 

algorithms 

Architecture-level 
modifiability analysis 

Biomedical 
devices 

High 
communicatio
n efficiency 

Short time 
monitoring 

[44] 
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monitoring of 
cardiac rhythms 

irregularity 

14. 
Investigation of 

image-based 
diagnosis 

-- Subject task analysis -- 
Quick 

diagnosis 

Processing 
time is 

unpredictable 
[45] 

 

2.2 The implication of artificial intelligence in precision 

medicine 

In earlier days, if a large number of patients used to share similarities in the symptoms 

they were given generalized treatments irrespective of the cause of their illness. This 

could result in several allergic reactions. As technology advanced and the healthcare 

industry went drastic changes, several diagnostic tools were made for diagnosis and 

treatments [46]. The twenty-first century demands the evolution of the medical sector on 

the basis of disruptive technologies like bioinformatics, advanced biotechnology, cheap 

genome sequencing, patient electronic health records, and digital sensors used [47], [48] 

(figure 3). Precision medicine, as defined by the National Institutes of Health, is "an 

arising strategy for the therapy and control of a disease that considers variances in genes, 

environment, and habits for each person." This method enables medical professionals and 

academics to make more accurate predictions about which disease-specific treatments 

and preventative measures will be effective in which populations. It needs powerful 

computers (supercomputers), algorithms that can acquire information on their own 

quickly (deep learning), and usually, a method that makes use of doctors' thinking skills 

on a new level [49]. Supercomputers' processing strength has turned into a battlefield as 

nations contend for supremacy through them. In cancer, dermatology, and cardiology, 

deep learning systems have demonstrated that they can make decisions at least as well as 

human doctors [49], [50].  

The significance of fusing the expertise of doctors with such systems must be recognized. 

Competitors developed algorithmic methods for identifying metastatic breast cancer in 

whole slide pictures of sentinel lymph node biopsies for the International Symposium on 

Biomedical Imaging's grand challenge. The success percentage of the winning program 

was 92.5%. The success rate was 96.6% when a pathologist separately examined the same 

pictures. The pathologist's success rate rose to 99.5% when the deep learning system's 

forecasts and diagnoses were combined, which represents an 85% decrease in the error 

rate caused by humans [51]. Stakeholders must now put in place a plan that supports 
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evidence production, data sharing and integration into healthcare, financial benefits, 

regulations, payment, and user involvement in order to completely realize the 

incorporation of precision medicine [52], [53]. Several arguments have taken place 

discussing whether the involvement of AI/ML-based precision medicine is leading to the 

loss of the human touch. But this isn’t true. AI-based precision medicine requires a lot of 

tools, codes, patient monitoring, data analysis, and many more which is not possible 

without the involvement of doctors and researchers.  
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Figure 3. Timeline of the advancements in the technology based on precision 

medicine and healthcare industry. 
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2.3 Role of artificial intelligence in integrating clinical and 
omics data to revalorize personalized medicine 
In the 21st century, as the biomedical sector witnesses the big data era, Scientific journals, 

and funding agencies are encouraged and motivated to produce large volumes and a 

variety of data so that the accessibility to data gets much easier and quicker. To make data 

publically available, multiple databases and repositories were entrenched [54]–[57]. 

Standardized frameworks for data management approaches, cross-platform 

interoperability, and common processes for data sharing and data analysis, on the other 

hand, trailed behind an exponentially growing faster data output, hurting model 

implementation and insight generation. Researchers' abilities to acquire, combine, and 

analyze frequently noisy, complex, and high-dimensional data continue to face significant 

challenges as a result of the isolation of data from EHRs and the multi-omics[58], [59]. 

But several steps are being taken to avoid false or negative data like an increase in the 

sample size, reduction in the heterogenicity of the studied population, reduction in the 

heterogenicity of the measurement methods, reduction in feature space to lower data’s 

background noise, performing 2-3 studies to validate the results, and performing 

experiments both in-vitro and in-vivo to validate the outcomes [58]. UK Biobanks and 

Million Veterans Programs are standard examples of biobanks containing data that are 

used to avoid the issue of sample size. The data present here is in the form of biochemical, 

demographic, or anthropometric data [60], [61]. Despite the fact that omics research is 

restricted by large analytical heterogeneity and design constraints based on experiments, 

leading to a low signal-to-noise rate, data merging of multi-omics information remains a 

key provocation in precision medication [62]. Genetic and genomic study along with the 

environmental conditions of the person proves to have a notable part in the precision 

medicine revolution launching, and this also shows that the majority of the precision 

medicine data is taken from genetic and genomic studies  [63], [64]. This approach of 

precision medicine has saved a lot of money and time which was earlier used in genetic 

studies and wet laboratory experiments [65]. Numerous molecular attributes, including 

genes, proteins, and the relationships between those elements, are responsible for 

biological processes. By grouping these molecules based on their structural or functional 

similarity, omics refers to their thorough classification and measurement [66]. Integrating 

multiple levels of omics data allows researchers to model biochemical systems and better 

comprehend how distinct biological systems communicate at the molecular level [66], 

[67]. For instance, an increase in a gene's messenger RNA expression may not result in 
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an increase in its protein expression, and an increase in its protein expression may not 

result in an increase in its activity. Additionally, a single assessment of a single omics 

region may not disclose time- or dynamically-dependent processes. In order to adequately 

describe biochemical signatures indicative of the phenotype at the exact time the sample 

is collected, these difficulties call for deliberate mixtures of omics data [68].  

Omics integration is an effective strategy that can connect even tiny data sets across 

orthogonal biochemical regions, amplifying physiologically important signals in the 

process [69]. Common methods for doing this include empirical connections 

(correlation), functional settings like pathways, data drawn from a single study design, 

and meta-analyses that combine the findings of several studies [70]. However, only DL 

provides the ability to integrate omics data both unstructured and controlled. For example, 

to create a multi-omics library and predictive model, researchers investigating the growth 

kinetics of Escherichia coli used a recurrent neural network (RNN) as part of an ML-

based data integration approach [71], [72]. Integration of omics data is important for 

neurodegenerative diseases (NDDs) like AD as well as PD because the given diseases 

typically have a multifactorial origin, diverse clinical manifestations, and mixed 

pathologies [73]. The two types of multi-omics data are multi-feature data and multi-

relational data, respectively, depending on the number of features and sample sets that 

are engaged in the same event or system. However, some data design variants are feasible, 

such as multi-class data that measure different sample sets employing a similar set of 

characteristics and at last, tensor data that measure the same sample collection of objects 

using the identical set of features in various scenarios [74]. A multi-omics-based 

statistical analysis of data in Neurodegenerative Disorders may be done to identify sub-

phenotypes using clustering methods or to look for potential indicators and druggable 

targets. Understanding the relationships between an array of features may also be 

important in comprehending the pathogenic mechanisms underneath various illness 

phenotypes, every one of which is identified by a unique combination of biomarkers to 

create a phenotypic subtype with its own set of appropriate personalized treatments [75].  

2.4 Applications of artificial intelligence in precision medicine 
Currently, a variety of uses of precision medicine support health treatment at various 

stages of life. To determine the likelihood of transmitting genetic diseases to future 

generations, genetic screening may be used before conception [76]. Non-invasive prenatal 

testing can be used to check for the developmental defects caused by trisomy 13, 18, and 

21 in the fetus between eight and twelve weeks of gestation [77]. Whole-genome 
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sequencing of the fetus has even been done. Sequencing has been used at delivery to 

quickly identify a variety of serious diseases for which there may be a remedy, lowering 

morbidity and mortality [78]. Later in life, these methods can be used to identify a number 

of illnesses, most notably cancer by detecting DNA from moving tumor cells [79]. Here 

we are going to discuss some applications of precision medicine which involve the 

integration of artificial intelligence and machine learning [80] (figure 4). 

 

Figure 4: P4 Medicine consists of four quadrants: predictive, preventive, 

personalized, and participatory, with precision medicine as the overarching concept. 

The predictive component uses data and analytics to anticipate risk, the preventive 

component focuses on measures to prevent or delay disease onset, the personalized 

component customizes healthcare based on an individual's unique characteristics, 

and the participatory component promotes patient involvement in their own care. 

This holistic and personalized approach aims to achieve optimal outcomes. 
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2.4.1  Data hampering and privacy 
Big data comprises a huge amount of unstructured or unstructured data which is collected 

from several sources like smart devices, gadgets, web server logs, phone records, and 

many more. The gathered information is in the form of videos, images, audio, written 

records, etc. that is to be linked with several sources for analysis, cleaning, and 

transformation [81]. The entire data is extremely vulnerable and need strong security and 

privacy in order to avoid trust issues [82], [83]. If encryption is not provided, the patient’s 

crucial data may be subjected to the attacks of cybercrime and can be severely misused 

[84]. Differential privacy, a model for data protection received Godel Prize in the year 

2017 and was introduced to overcome the shortcoming and limitations of already existing 

privacy models [85]. This model helps in the identification of individuals from datasets 

with the help of auxiliary information. The differential privacy model promises to provide 

valid information when studying a dataset, even if the individual is involved in the study 

or not [86]. Efforts are invested to fill the gap between the differential privacy model and 

the k-anonymity model to provide accurate results and maximize privacy [87]. Earlier, 

features of the differential privacy model were a major limitation in precision medicine 

because the data dimensionality was unable to match up with the model’s privacy 

mechanism [88]. But now the implementation of differential privacy models for GWAS 

is helping users to analyze the databases. This initiative has resulted in providing accurate 

outcomes with good quality [89]–[91]. 

2.4.2  Medical devices assistant  
Regardless of the extensive research that has helped to identify a wide range of illnesses, 

it has been difficult to translate that research into clinical practice. Machine learning or 

ML can fill the gap between precise medical evaluation and the translation of pertinent 

clinical data [19]. Researchers are using AI-enabled smart devices, such as smartwatches, 

smartphones, and tablets, for the identification and categorization of arrhythmias [92]. 

They are also using these devices for the detection of aspiration pneumonia in which the 

patients suffer from swallowing difficulties which were caused by stroke or dementia [93] 

and to increase medication compliance in anticoagulation therapy receiving patients [94]. 

Specialists are using iPads with AI capabilities to develop differential diagnostic and 

treatment plans for uncommon epilepsy disorders [95], as well as smart devices 

comprising of wrist-based sensors, for the identification of seizure like activity [96]. The 

tracking of cardiovascular illnesses, pulmonary diseases, anemia, and sleep apnea [97] is 

attainable by the addition of photoplethysmography devices in gadgets. Additionally, 
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Parkinson's disease signs like tremors and altered gait, posture, and speaking patterns 

could be detected and measured by wearable devices [98]. Personal monitoring devices 

offer the chance to direct behavioral adjustments [99], but the accuracy of the data they 

gather can vary [100]. . In addition, one-third of all smart device owners in the US gave 

them up within six months of purchase, indicating the potential of the technology to 

influence long-term attitudinal change [101]. To determine the best strategies for 

maximizing wearables' efficacy in the maintenance and promotion of health, more study 

is required [102]. 

 

Table 2: Artificial intelligence-based technologies and their applications in concern 
to neurological disorders 

S.no. 
AI/ML-based medical 

devices 
Description Applications References 

1. smartphones 

 An iPhone-based application 
 Medical history based 8-minutes 

based on medical history of patients 
and their families 

Helpful in the classification 
and stratification of tremors 
in patients. 

[103] 

2. Smartwatches 

 Smart device system-based 
application used to track 
movements.  

 2 watches are worn during the 
neurological exams. 

 The data collected from 
smartwatches are assessed based on 
amplitude and frequency to 
distinguish different types of 
movement disorders. 

Capturing and detecting 
high-resolution tremors, and 
movement disorders and the 
information is transferred to 
the user's mobile phone. 

[103] 

3. Smart patches 

 A wearable smart device 
 embedded electronics attached to 

the skin of the patient 
 monitoring physiological symptoms 

like a pulse 

Deliver bio-electrical signals 
for Sensation restoration and 
skin nerve regeneration. 

[104] 

4. Tablet-based devices 

 iPad-device-based assessment 
 test of Archeamedian spiral drawing 

to test neurological patients 
 data collected is used for feature 

detection, pattern deviation, 
direction inversion. 

The sum of the data 
collected from the test is 
used for the prediction and 
diagnosis of movement 
neurological disorders. 

[103] 

5. 
Epifinder – AI-integrated 
application 

 iPad-based pattern recognition 
applications 

 better medication and therapeutic 
approaches to neurological 
disorders like epilepsy.  

 Neurologists use the data history 
saved in application for treatment of 
patient. 

Comparision of knowledge 
representation and symptoms 

[105] 

6. Photoplethysmography 

 technique for detection of heartbeat 
 analyzing change in skin color and 

absorption of light.  
 Change in the light intensity is 

detected by PPG via the reflection 
from the tissue. 

Cell-phone-based PPG 
records the heartbeat and 
variability which is 
considered for paramedics. 

[106] 
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7. 
Electrocardiography 
monitors 

 A phone-based electrocardiogram 
 records heartbeats in form of 

electrical signals 
 check condition of the heart. 

Used to detect atrial flutter, 
ventricular premature beats, 
atrial fibrillation, etc. 

[106] 

8. Neuroimaging 

 Quantitative and qualitative 
techniques 

 to study the activity and structure of 
the brain. 

Machine learning algorithms 
are used in diagnosis and 
treatment decisions. 

[107] 

9. Self-organizing map 

 ML-based approach 
 studying phenotypic difference 

between concussion patients based 
on balance, vestibular diagnostics 
results 

Supports the identification of 
different phenotypic aspects 
of concussion. 

[108] 

10. 
Imaging-based time since 
stroke onset 

 ML-based approach to extract 
imaging sequences and hidden 
representations. 

 Demonstration of improved 
classification by integrating deep 
features is also done. 

Analysis of magnetic 
resonance imaging is 
advanced for stroke 
treatment by getting closer to 
operational decision support 
tools. 

[107] 

11. Augmented EEG-learning 

 Several ML-based models 
 SVM and linear discriminant 

analysis are used for the prediction 
of seizures. 

Neurophysiological and 
pathological factors are used 
for the prediction of the 
results of epilepsy surgery. 

[109] 

12. Imaging services 

 CT scan and MRI  
 Imaging services model working on 

clinical clues and severity of the 
patient. 

Easier and quicker imaging 
evaluation is performed. 

[110] 

13. 
Electrodermal activity 
sensor 

 wrist-annotated wearable sensor 
uses a video-based EEG monitor.  

 Each epoch is classified into 3 
classifiers based on probability 
estimations 

 classifier 1 has 19 features, 
classifier 2 has 46 features and 
classifier 3 has 25 features. 

Detection of precision-based 
seizure activity. 

[111]–[113] 

14. EnsoSleep  AI-based algorithm for 
classification of sleep disorders. 

It is a sleep-scoring solution 
used in sleep centers and 
hospitals for testing sleep 
volume and management of 
patient care. 

[114] 

15. 
HIPAA-compliant 
applications 

 application is designed for 
improved medication, and 
therapeutics 
identification of patients, dosing, 
and treatment.  

Patients suffering from 
Alzheimer’s, stroke, and 
epilepsy uses this application 
to elevate medication 
adherence. 

[115] 

 
 
2.4.3  SNPs prediction and mutational analysis 
The majority of the human genome, or about 1/1,000th of the typical human genome, is 

made up of single nucleotide polymorphisms (SNP) [116], [117]. SNPs are traditionally 

considered to be biallelic since two of four familiar nucleotides are present in the given 

location and the most uncommon nucleotide is present in over one percent of the entire 

population [118], [119]. The current studies are heavily focused on the distribution and 

purpose of SNPs.  Reviews for comprehension that how SNPs influence the structure of 

the protein, using SNPs in genetic research, and locating functional variations in 

contender genes are all accessible [120].  Bioinformatics, and artificial intelligence in the 
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form of web resources and software tools has played a major role in SNP characterization. 

Accessibility to visualization and functional annotations are provided in the NCBI 

databases like Ensembl, dbSNP, and OMIM. SNPper and Goldenpath are some major 

resources for the analysis and visualization of SNP [121]. Finding a link between complex 

illnesses and genetic risk factors is a current scientific concern. The method that links 

variations with traits is known as a genome-wide association study (GWAS), and it has 

been used the most frequently so far. Analyzing single nucleotide polymorphism is 

required in this. Understanding the illness development linked to SNPs is one of the main 

significances of SNP research. The main challenge for the experts is to create a method 

that can efficiently mine the millions of functional SNPs present in a database [122]. SNPs 

are more commonly found in the 5′UTR, 3′UTR, and introns of the genome, which are 

non-coding sections [123], [124]. While SNPs in the 3′UTR typically have an impact on 

gene translation, those in the 5′UTR are engaged in transcriptional activity. The handling 

of mRNA will be impacted by the polymorphism found in intronic areas [125]. Because 

non-synonymous SNPs in the coding sections of the genome are bringing mutations at 

the amino acid level, which can be detrimental to the structure or function of the protein, 

researchers are paying close attention to coding SNPs in particular. Proteins are harmed 

by a variety of complicated illnesses because of their collusion in protein folding, protein-

protein interactions, and protein stability alterations [126]. Latest advancements which 

include summing up temporal and spatial prospects of gene or protein expression data 

help in the understanding of regulatory activities [127]–[130]. Recently, the SNPs that 

are associated with phenotypes and genetic risk factors are included in risk modeling. 

This approach has benefitted in the accurate prediction of disease [131]. In order to assign 

genetic risk for the individual outcome, polygenic risk scoring plays a major role [132]. 

Studies have shown that bigger datasets have elevated the chance to predict smaller effect 

sizes of SNPs and such SNPs if get indulged in polygenic risk models lead to accurate 

predictions of the illness [133].  
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CHAPTER 3 
 

3.1 The emergence of artificial intelligence-based drug 
discovery and development in neurological diseases  

Intensified loads of neurodegenerative disorders are considered a major reason for speedy 

aging in the population and at a later date resulting in extravagant expenses in treatment, 

assistance in the patient’s care, hospitalization, and even higher mortality rates [14]. The 

criteria that differentiate NDDs from neurological disorders is the neuronal dysfunction 

or neuronal loss in specified regions of the spinal cord or brain. Several physical and 

mental impairments are witnessed in people suffering from age-related neurological 

disorders also known as NDDs like speech issues, cognitive decline, forgetfulness, 

anxiety, continuous changes in mood, and even decline in other organs of the body is also 

seen [14]. These disorders can be a result of electrical, structural, or biochemical 

abnormalities in the neurons, spinal cord, and brain. AD, being the most common disease 

among the list of neurodegenerative disorders is predicted to affect approximately 7 

million Europeans by 2040. The complete cure for the disease is still unknown, still, the 

diagnosis, treatment, and care comprise around 130 billion euros per year [14]. Facing 

such challenges, improvement in the healthcare sector is a need of society. Applications 

of artificial intelligence have started to contribute to the upgradation of neurological 

healthcare as the algorithms help to study the risk factors like genetics, epigenetics, and 

environmental factors which are responsible for the diseased body, also at the same time 

reducing manual labor [46]. To make research easy, several databases have been made 

which provide most of the knowledge regarding the diseases specifically the most studied 

NDDs like Alzheimer’s Disease and Parkinson’s disease [14], [134]. In the current era, 

computational work has significantly contributed to the field of research and healthcare, 

and a large portion of scientific research can rely on the analysis, predictions, and results 

produced by high-technology-based computational tools and algorithms [135].  

Precision medicine, an artificial intelligence-based medication can pave the path to 

studying neurological disorders on a deeper level and provide a much more 

comprehensive description as compared to traditional medication. The ultimate goal of 

the researchers should be to take practical applications from bench to bedside, analysis, 

and discriminate patients based on risk factors, find the stage or level of disease, provide 

tailored medications, and set up strategies to provide the right treatment to the right person 
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at the right time [134]. AI has proven to be richly beneficial by giving a promising future 

in upgrading neurological care procedures, analysis of brain tumors, monitoring of 

symptoms and progression, and outcome predictions. In the past few years, several 

instruments, databases, and gadgets are invented which in turn increased efficiency in 

diagnostics, prognosis, functionality, and treatment of patients [136]. AI-based precision 

medicine is not only a ground breaking miracle in the field of science but it has also 

become a battleground through which several countries are demonstrating their powers 

[46]. Improvements in the techniques which help in understanding and parsing out the 

intermediate pathways that expedite neuronal loss and dysfunction is a major step of 

integration of precision medicine in the treatment of neurological disorders.  

Table 3: Machine learning algorithms with their mechanism of action, applications 
in neurology 

S.NO. ALGORITHMS 
MECHANISM OF 
ACTION 

APPLICATIONS REFERENCES 

1. Random forest 
Classification of new 
objects from attributes  

Prediction, classification [137] 

2. Regression 
Finding the correlations 
between dependent and 
independent variables 

interpolation [138] 

3. Decision tree 
Dividing the population into 
more than 2 homogenous 
sets 

classification [139] 

4. K means 
Classification of datasets in 
a specific number of 
clusters 

clustering [140] 

5. 
k-Nearest neighbors 
algorithm 

Classification of new cases 
based on majority voting 
and storing all cases for 
prediction 

Interpolation, clustering [141] 

6. Logistic regression 
Using logic function finding 
the event’s occurrence 
probability 

classification [142] 

7. Naïve Bayes 
Prediction is done by 
assuming a feature that is 
different from other features 

classification [143] 

8. 
Support vector 
machine 

Plotting data items as a 
point in n-dimensional 
space 

classification [144] 

9. 
gradient boosting 
algorithm 

Predictions did by 
assembling the learning 
algorithms 

prediction [145] 

10. 
Double Ratchet 
Algorithm 

Conversion of high 
dimensional data into low 
dimensional data 

Interpolation, classification [146] 

 

In recent years there has been a blood of scientific articles based on artificial intelligence 

in healthcare, big data in healthcare, AI-based precision medicine, and implementation of 

precision medicine in chronic diseases like cancer, diabetes, and neurological disorders. 

Here, we have made graphs of the number of papers got published on various neurological 



21 
 

disorders like Alzheimer’s disease (A.D.), Parkinson’s disease (P.D.), Huntington’s 

disease (H.D.), and Neuropsychiatric disorders. These graphs were made using the 

keywords precision medicine, AI/ML, and neurological disorders (A.D., P.D., H.D., and 

neuropsychiatric disorders, etc) on literature databases like PubMed and Google Scholar 

(figure 5).  
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Figure 5: (a) This graph displays the number of PUBMED indexed publications on 

the topics of Precision medicine and AD, PD, HD, and NPD. Each topic is 

represented by a different coloured line, and the y-axis shows the number 
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of publications. (b) shows the graph of the number of publications present in Google 

Scholar database, related to neurological disorders likeAD, PD, HD, NPD. The data 

present in both the graphs is from the year 2014 to March 2023. 

In the thesis, latest literature is collected and drug discovery and development, an 

important application of AI/ML has been taken into consideration for the research work 

to defend the thesis work. Machine learning algorithms have been employed to retrieve, 

sort, and indentify multipurpose drugs for the treatment of neurological disease, AD. AD 

has been a deadly disease for which accurate medications are not yet present. As the 

urbanization is increasing, canges in lifestyles, environment and even in the genetic 

makeup are occurring, which is resulting in the mutation in genes and proteins and later 

leading to neurological conditions in a person. Eventually, machine learning tools were 

used to validate the results. The entire methodology, results and discussion have been 

done in the upcoming parts of the thesis. 
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3.2 ALZHEIMER’S DISEASE 

Alzheimer's disease (AD) is an untreatable neurological condition that gradually erodes 

cognitive abilities until dementia emerges. AD is distinguished from other forms of 

dementia by the aggregation of intracellular neurofibrillary tangles and extracellular 

amyloid β plaques. Medications such as Donegal, galantamine, rivastigmine, and 

memantine are presently available to treat AD. However, clinicians work against the 

clock to identify drugs that can slow or stop disease progression. Amyloid-beta-targeting 

medicines, DNMT 1 inhibiting medicines have been developed for many decades, but 

promising medications have failed to exhibit therapeutic efficacy in the clinical trial phase 

III research. Even the positive Aducanumab findings from Biogen are still unclear, and 

further study is needed to evaluate the drug's long-term effectiveness. Consequently, 

scientists concentrate their efforts on tau-targeting therapies, as tau seems to be more 

directly linked to cognitive decline than amyloid. Along with this protein, other genes and 

proteins like DNMT 1 and BACE 1 and many more are being studied. Some of the 

apoptotic signaling pathways that affect AD are involved in the interaction between 

trophic factors with signaling pathways, including PI3K/AKT, JNK, MAPK, and mTOR. 

Immunotherapies make up most drugs in clinical trials, even though they are still 

relatively young. Objective cognitive impairments are the basis for the clinical diagnosis 

of AD (which are, typically, prominent memory impairments) [147]. Atypical AD 

presentations with deficits in non-amnesic areas have been seen in some instances. But 

AD has many clinical traits in common with other neurodegenerative dementias, such as 

Lewy body dementia, frontotemporal disorders, and vascular dementia, rendering early 

and alternative identification proves to be challenging in the initial stages of the disease 

[148], [149]. Precision medicine in AD and other neurological diseases, aims to offer a 

therapeutic or preventive strategy that is personalized to the discovered molecular pattern 

for vulnerability and disease progression. This is done by identifying risk factors, and its 

underlying  pathophysiologic mechanism, and administering a therapeutic or preventive 

intervention. Drug discovery and development has been an advanced application of 

machine learning which is being utilized for predicting the appropriate drugs for the 

treatment of AD, without using any animal model for experimentation purpose. This also 

helps cost and time reduction along with saving the animals from getting exploited. 

Determining the risk profile, molecular mechanisms, and analysis of disease pathology 

profile are some of the other applications of precision medicine in A.D [150], [151]. 
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How is technology getting advanced in other medical applications? For diagnostic, 

prognosis, or progression modeling, recent works on the application of AI in AD study 

use language and speech data gathered in various methods and computational speech 

processing. This field of technology includes techniques for listening to, identifying, and 

comprehending spoken language. It suggests that at least some of the AD detection 

procedures might be automatic. The core of this study program has been machine learning 

techniques. The development of predictive models that are "learned" directly from data 

is the focus of the AI discipline known as machine learning, where the student enhances 

its performance through "experience." Positive findings from research on automated 

speech and language processing using AI and machine learning techniques have sparked 

a growing interest. Signal processing, computational linguistics, and human-robot 

interactions are some approaches that have been studied with respect to A.D. diagnosis 

and treatment [152]–[154]. The work here is based on the drug discovery and 

development application for the inhibition of DNMT 1 to stop the progression of AD, and 

make more and more drugs easily feasible to the patients which cause less side-effects to 

their health. 
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3.3 DNA METHYLTRANSFERASE 1 

A big protein having a C-terminal catalytic domain and an N-terminal regulatory region, 

DNMT1 has about 1600 amino acids. CXXC zinc finger domain, Proliferating cell 

nuclear (PCNA) binding domain (PBD), two bromo-adjacent homologies domains 

replication foci targeting sequence (RFTS) domain are only a few of the functionally 

significant domains found in the regulatory N-terminal region [155]. 7 lysyl-glycyl 

dipeptide repeats serve as the link between the C-terminal as well as N-terminal domains. 

The multiple domains that collectively comprise the N-terminal region each have a 

unique role in how DNMT1 operates as a whole [156]. While DNMT1 interacts with 

replication machinery via the PBD domain, the RFTS domain improves DNMT1 

recruitment to replication foci, whereas the CXXR zinc finger domain aids in DNMT1 

binding to unmethylated DNA [157]. It is not unexpected that DNMT1 experiences 

conformational modifications with the goal to communicate with domain-specific 

proteins given the distinct functional functions that these domains perform. Furthermore, 

it is not unusual for proteins to undergo specific conformational changes during structural 

interactions that lead to functional activity. Recruiting DNMT1 to heterochromatin 

replication foci and DNMT1 autoinhibition are the two primary functions of the DNMT1 

RFTS domain [158]. To stop the enzyme, the domain binds to the binding pocket of the 

catalytic domain. It has been discovered that the degree of inhibition depends on the 

intensity of the connection between RFTS and the catalytic domain: the more intense the 

interaction, the decreased DNA methylation activity [157]. The RFTS domain must be 

moved in order for the DNMT to function. It's also crucial to remember that a helical 

connector between the CXXR domain, as well as the BAH1 domain of the 

DNMT1, regulates the autoinhibition caused by RFTS. Mutations in the RFTS domain 

impact DNA methylation since it is an autoinhibitory domain, which also results in 

aberrant functioning [155]. DNMT1 if mutated is find responsible for the cause of AD. It 

is seen to perform the regulatory function in central nervous system development but if 

mutated leads to the diposition of abnormal proteins in the brain which in turn cause 

memory issues and can be non-treatable and fatal. 
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3.4 DRUG DISCOVERY AND DEVELOPMENT 

Healthcare systems always require new medications to address unmet medical 

requirements in a range of medical specialties, and pharmaceutical companies are largely 

focused on developing new treatments through the difficult procedures of research and 

development for drugs. The discovery process involves a number of processes, including 

as target selection and validation, hit detection, lead generation and optimization, and 

target identification for possible future development. On the other hand, the process of 

development includes refining the production of chemicals and formulations, performing 

animal toxicological research, running clinical trials, and finally obtaining regulatory 

approval. [159]. Both of these procedures take a lot of time and money, and the business 

is now under pressure due to incredibly strict regulatory demands, environmental 

concerns, and decreased profits as a result of patent expirations. 

The goal of a preclinical drug discovery program is to generate a small number of 

pharmaceutical candidate molecules with sufficient evidence of biological activity at a 

disease-relevant target, sufficient security especially sufficient drug-like properties to be 

evaluated in people. A great deal of discovery programs tries to produce a variety of 

prospective molecules since numerous compounds do not proceed through the entire 

process owing to problems with dependability, motion, efficacy, privacy, or other 

characteristics.[160][161]. The enormous cost of failure implies that researchers 

proposing novel targets or compounds for research should carefully consider the traits 

that accompany effective research programs, even as funding in AD treatments 

continues[159]. It is more preferable for failures to occur sooner rather than later in 

development in a situation where disappointment is the norm. Additionally, it is ideal if 

every investigation in the development program produces data that offers a strong case 

for ending, continuing, or specifically changing the compound development program. 

Data that are challenging to interpret scientifically can result in additional studies and 

delayed decisions without the possibility of better studies in the future [161]. For this 

method multiple machine learning algorithms and computational tools are required which 

helps in time saving and are always cost effective. 
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CHAPTER 4 

METHODOLOGY 

 

Initialy macine learning algorithms like support vector machine, and random forest were 

trained to retrive the entire inhibtors that were established against DNMT1. These were 

devided into active, inactive and intermediate classes based on the multiple parameters 

like molecular weight, structure, atoms present , etc. Then the shortlisted drugs were 

validated on the basis of binding affinity and RMSD value using molecular docking 

technique. The methodology for entire data collection till docking and results retrieval is 

given below. 

A. Collection of data 

To repurpose the drugs against DNA methyltransferase 1, a list of anti-cancerous, anti-

diabetic, and anti-hypertensive Drugs was retrieved from ChEMBL. ChEMBL is a 

chemical database managed by the European Bioinformatics Institute and is responsible 

for the information regarding the bioactive molecules specifying their drug-producing 

properties. 

The SDF structure of all the listed drugs was retrieved from PubChem using 

https://pubchem.ncbi.nlm.nih.gov/. PubChem is a database handled by the National 

Center For Biotechnology Information and is responsible for the activities of chemical 

molecules against biological assays. 

The blood-brain barrier (BBB) permeability of these drugs was checked by screening all 

the drugs through a BBB predictor using https://cbligand.org/BBB/predictor.php. BBB 

permeability protects the brain from inhibiting harmful molecules to pass by because they 

can be severely toxic to neurons. 

Protein Data Bank or PDB, a file format used to specify the 3-D structure of molecules 

was used to download the structures of wild-type DNMT1 and its mutant using the link 

https://www.rcsb.org/. The basic information of literature was derived from literature 

databases like PubMed and google scholar which consists of all the studies and research 

work in form of published papers. It was done using https://pubmed.ncbi.nlm.nih.gov/, 

and https://scholar.google.com/. 

B. Preparation of receptor and ligand 
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AutoDock vina was used to prepare the DNMT1 molecule structure. Water molecules 

were removed from the structure and polar hydrogen atoms, and Kollman charges were 

introduced in the structure. The prepared structure of the receptor was saved in the 

PDBQT format. 

Similarly, ligands in the form of drugs that were downloaded in the SDF format were 

initially converted to PDB format and eventually to the PDBQT format. This entire 

process was carried out in the docking tool. The grid map for DNMT1 and its mutant was 

prepared whose dimensions were 80x80x80 and whose center was - 9.167, -5.056, 12.000 

C. Molecular docking 

Molecular docking was carried out using the AutoDock Vina tool and the top ten drugs 

were shortlisted based on their free binding energy and Root Mean Square Deviation 

(RMSD) value. <1 angstrom was the value for RMSD and -9kcal/mol was standard free 

binding energy. 

D. Enlisting top drugs and studying the best drug 

A list of best drugs was made and the best binding ligand was taken for docking again 

and the details were retrieved. A table was made and the images were prepared at 300dpi. 

TOOL USED : AUTODOCK VINA 4 

Molecular docking is a computational method used for the prediction of bound 

confirmations and the affinity required for binding. This procedure tries to predict the 

binding of receptors and ligands. The prediction of binding is necessary for the virtual 

screening of libraries of drug-like molecules. Hence this entire procedure is beneficial in 

the drug discovery and development process [162]. 

Virtual screening and molecular docking can be done by AutoDock Vina, which is new 

software and highly efficient than other docking software i.e. AutoDock 4. It not only 

provides accurate results but also calculates the grid maps and sums up results in a much 

more presentable and understandable manner. AutoDock Vina uses the Fletcher- 

Goldfarb-Shanno method for local optimization which uses gradient along with the 

scoring function concerning its argument [163]. 

Some other advancements in docking are like inverse molecular docking in which the 

cellular mechanism and the clinical application of known and unknown drugs can be 

studied. Cross docking is used to study the binding of antigen-antibody interactions. 

Movement of the side chains of the binding site is permitted with the use of induced fit 

docking. The movement takes place during the docking process [164]. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

When the list of best drugs was analyzed, some of them did not pass the blood-brain 

barrier permeability. So, a total of 15 drugs were listed out of which 10 drugs that passed 

the standard parameters were taken. After analysis of all the parameters, those drugs were 

finalized for the list of 10 drugs. 

 Table 4: LIST OF TOP 10 DRUGS WITH ChEMBL IDs, BINDING AFFINITY, 
AND BLOOD-BRAIN BARRIER PERMEABILITY 

ChEMBL ID Compound Name Binding Affinity 

(kcal/mol) 

IC50 

value 

(nM) 

Blood-

Brain 

Barrier 

CHEMBL225071 Raltitrexed -13.8 14.44 + 

CHEMBL409 Bicalutamide -13.2 160 + 

CHEMBL1095097 Eplerenone -13.2 81 + 

CHEMBL477772 Pazopanib -12.6 1010 + 

CHEMBL2028663 Dabrafenib -12.5 0.7 + 

CHEMBL139835 Cyproterone acetate -12.2 7.1 + 

CHEMBL1023 Bexarotene -11.9 83 + 

CHEMBL1201139 Megestrol acetate -11.9 3x104 + 

CHEMBL435 Hydrochlorothiazide -11.6 7300 + 

CHEMBL1481 Glimepiride -11.4 7.3 + 

 

Raltitrexed (ChEMBL ID: ChEMBL225071) proved to be the best drug. It is an anti-

cancerous drug that can be repurposed for Alzheimer’s disease. The binding affinity of 

Raltitrexed came to -13.8 kcal/mol. It is sold under the brand name Tomudex® and the 

drug is manufactured by AstraZeneca which is a pharmaceutical industry. The drug bank 

accession number is DB00293. The half-life of Raltitrexed is 198 hours. 

Consumption of the drug can result in some side effects like unusual bleeding, chest pain, 

fever, pale skin, ulcers, etc. Considering the traditional medications, this drug is used for 
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the treatment of cancer and lung issues but now it can be researched for the treatment of 

neurodegenerative diseases like A.D. because it results in the inhibition of DNMT1which 

is one of the causes of Alzheimer’s disease. 

 

 

Figure 6: BINDING OF DNMT1 WITH RALTITREXED 

It is well known that there have not been many advancements in the history of 

neurodegenerative treatments. But taking a step towards the solution to the problem can 

give us some positive results. As technology is advancing, various methods have been 

designed to work on the NDD treatment. In-silico studies are one of them where the 

structure and affinity of the compound can be studied. Virtual screening and molecular 

docking can be done to repurpose any drug for any disease. For example, we took anti-

cancer, anti-diabetic, and anti-hypertension drugs to select a few drugs which can be 

effective in the treatment of AD and the inhibition of DNMT1 with some specific 

mutation. 

Utilizing the advancements in the field of medicine, we repurposed Raltitrexed which is 

an anti-cancer drug, for the treatment of AD. It can be a useful drug for treatment because 

of its high binding energy of -13.8kcal/mol and Ic50 value of 14.44nM. IC50 value 

denotes the quantity of the drug or medicine required for the inhibition of half biological 

process. The use of Raltitrexed will deactivate all the pathways of DNMT1 mutants which 

results in the progression of the disease. 
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CHAPTER 5 

CONCLUSION 

In order to comprehend and cure human disease, drug discovery and development is a 

cutting-edge method of clinical practice and study. The categorization and forecasting of 

outcomes for both people and groups are made possible by the analysis and processing of 

multi-omics data using machine learning methods, including the recently developed deep 

learning models. Thus, the aim of AI/ML is to emulate human neurological functions. It 

is ushering in a growing phase in healthcare, fuelled by the increasing accessibility of 

medical data along with the fast advents of analytics tools. In the current era, drug 

discovery and development has also evolved greatly thanks to genetics and genomics, 

which are also well suited to machine learning technology. Drug discovery and 

development and AI offer great promise for the future of humankind as they have already 

made significant contributions to our knowledge of human health and illness. A lot of 

research is to be done in the field of neurological sciences with respect to AI/ML but still, 

great progress has been made that helps in the early detection of diseases with the help of 

biomarkers and omics studies. AI/ML is going to be a wonderful tool in the field of 

medicine and healthcare.  
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