
PREDICTING INDIAN AND GLOBAL STOCK INDICES BY 

APPLYING MACHINE LEARNING TECHNIQUES f 

THESIS 
submitted in partial fulfillment of the requirements 

for the award of the degree of 

 

DOCTOR OF PHILOSOPHY 
in MANAGEMENT   

By  

MOHIT BENIWAL 

2K18/PhD/DSM/07  

Delhi School of Management 

 

Under the supervision of 

Dr. ARCHANA SINGH                                 Prof. NAND KUMAR  
Delhi School of Management                                    Department of Humanities  

Delhi Technological University                                 Delhi Technological University  

  

DELHI SCHOOL OF MANAGEMENT 
DELHI TECHNOLOGICAL UNIVERSITY 

MAIN BAWANA ROAD, 
SHAHABAD DAULATPUR 
DELHI 110042, INDIA 2022 

  



i 

 

Candidate’s Declaration  

  

I, hereby, certify that the thesis titled “PREDICTING INDIAN AND GLOBAL STOCK 

INDICES BY APPLYING MACHINE LEARNING TECHNIQUES” and submitted in 

fulfillment of the requirements for the award of the degree of Doctor of Philosophy is an 

authentic record of my research work carried out under the guidance of Dr. Archana Singh 

and Dr. Nand Kumar.   

The matter presented in this thesis has not been submitted elsewhere in part or fully to any 

other university or institute for the award of any degree.  

  

  

  

   

Mohit Beniwal  

2K18/PhD/DSM/07  

Delhi School of Management  

Delhi Technological University  

  

  

  



ii 

 

DELHI TECHNOLOGICAL UNIVERSITY  

(Govt. of National Capital Territory of Delhi)  

MAIN BAWANA ROAD, SHAHABAD DAULATPUR, DELHI 

110042, INDIA  

  

  

Certificate  

  

This is to certify that the thesis titled “PREDICTING INDIAN AND GLOBAL STOCK 

INDICES BY APPLYING MACHINE LEARNING TECHNIQUES” submitted by 

Mohit Beniwal (2K18/PhD/DSM/07) in fulfillment of the requirements for the award of the 

degree of Doctor of Philosophy is an authentic research work carried out by him under our 

guidance and supervision. The contents embodied in this thesis had not been submitted by 

her earlier to any institution or organization for any degree or diploma to the best of our 

knowledge and belief.   

  

  

Dr. Archana Singh   Dr. Nand Kumar  

Delhi School of Management  Department of Humanities  

Delhi Technological University  Delhi Technological University  

 

  



iii 

 

Acknowledgment  

  

I am humbled and deeply grateful to the divine and benevolent supreme goddess of fortune, 

Radha Rani, and the supreme lord Krishna, for bestowing upon me the ability to undertake 

my Ph.D. research.  

I take immense pleasure in expressing my deepest gratitude to my research 

supervisor, Dr. Archana Singh, whose unwavering support and guidance have been 

invaluable throughout my research journey. Her constant motivation and dynamic mentoring 

approach continue to inspire me. I would also like to extend my heartfelt appreciation to my 

joint supervisor, Dr. Nand Kumar, for his continuous motivation, valuable feedback, and 

unwavering support in my research endeavors. His mentoring and encouragement have 

played a pivotal role in my academic pursuits. 

I am indebted to my beloved mother, Smt. Rajwati Devi, and father, Shri Jai 

Bhagwan, whose blessings and unwavering belief in me have propelled me forward in life 

and my career. A special mention of gratitude goes to my loving wife, Smt. Shweta, whose 

unwavering support and understanding have been instrumental in enabling me to dedicate 

the necessary time and effort to pursue my Ph.D. I am thankful to my younger brother, Dr. 

Rohit Beniwal, and his wife, Smt. Meenu, for supporting me throughout the journey. I would 

also like to thank the dear children in our family, Devesh, Gauravi, and Vedant, whose 

presence and love have brought immense joy and fortune into my life. It was their precious 

time that I occasionally borrowed to fulfil my academic pursuits. 



iv 

 

I am also thankful to all my friends and well-wishers who have stood by me during 

this challenging yet rewarding journey. Their encouragement and support have been an 

immense source of strength. Lastly, I express my profound gratitude to all the researchers, 

scholars, and authors whose work and contributions have served as a guiding light 

throughout my Ph.D. endeavor. May the blessings of the divine continue to illuminate my 

path in all future endeavors.  

   

 Mohit Beniwal 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                    

v 

 

Table of Contents 

Candidate’s Declaration ......................................................................................................... i 

Certificate .............................................................................................................................. ii 

Acknowledgment ................................................................................................................. iii 

Table of Contents ................................................................................................................... v 

List of Tables ........................................................................................................................ ix 

List of Figures ........................................................................................................................ x 

List of Abbreviations ........................................................................................................... xii 

1 Introduction .................................................................................................................... 1 

1.1 A Brief History of the Stock Market ....................................................................... 1 

1.2 Efficient Market Hypothesis ................................................................................... 3 

1.3 Random Walk Hypothesis ....................................................................................... 4 

1.4 Fundamental Analysis ............................................................................................. 5 

1.5 Technical Analysis .................................................................................................. 6 

1.6 Statistical Analysis .................................................................................................. 7 

1.7 Machine Learning ................................................................................................... 8 

1.8 Motivation ............................................................................................................. 12 

1.9 Challenges ............................................................................................................. 15 

1.10 Problem Statement ................................................................................................ 16 

1.11 Significance of the Study ...................................................................................... 16 

1.12 Organization of the Thesis .................................................................................... 17 

2 Literature Review ......................................................................................................... 20 

2.1 Predictability of Stock Market .............................................................................. 20 

2.2 Long Short-Term Memory (LSTM) ...................................................................... 22 

2.3 Auto-Regressive Integrated Moving Average (ARIMA) ...................................... 27 

2.4 Support Vector Regression (SVR) ........................................................................ 31 

2.5 Deep Learning (DL) .............................................................................................. 36 

2.6 Research Gap ........................................................................................................ 40 

2.7 Research Questions ............................................................................................... 41 

2.8 Research Objectives .............................................................................................. 42 



                    

vi 

 

2.9 Publications ........................................................................................................... 43 

3. Trading Framework using  LSTM and Technical Analysis ......................................... 44 

3.1 Overview ............................................................................................................... 44 

3.2 Background ........................................................................................................... 45 

3.3 Proposed Methodology ......................................................................................... 49 

3.3.1 Models ............................................................................................................ 49 

3.3.2 LSTM ............................................................................................................. 51 

3.3.3 Model’s framework ........................................................................................ 55 

3.3.4 The Data ......................................................................................................... 58 

3.3.5 Technical Indicators ....................................................................................... 60 

3.3.6 Data Transformation ...................................................................................... 63 

3.3.7 Trading Strategy ............................................................................................. 66 

3.3.8 Evaluation Criteria ......................................................................................... 67 

3.4 Findings ................................................................................................................. 70 

3.4.1 Dow Jones Industrial Average (DJIA) ........................................................... 70 

3.4.2 Nifty ............................................................................................................... 72 

3.4.3 DAX Performance-Index (DAX) ................................................................... 73 

3.4.4 Nikkei 225 (NI225) ........................................................................................ 74 

3.4.5 SSE Composite Index (SSE) .......................................................................... 75 

3.4.6 Consolidated ................................................................................................... 76 

3.5 Significant Outcomes ............................................................................................ 77 

4 Performance Comparison of ARIMA and SVR ........................................................... 79 

4.1 Overview ............................................................................................................... 79 

4.2 Background ........................................................................................................... 79 

4.3 Proposed Methodology ......................................................................................... 82 

4.3.1 The Data ......................................................................................................... 82 

4.3.2 ARIMA .......................................................................................................... 82 

4.3.3 Support Vector Regression (SVR) ................................................................. 83 

4.3.4 The Experiment .............................................................................................. 87 

4.4 Findings ................................................................................................................. 88 

4.4.1 NIFTY ............................................................................................................ 91 



                    

vii 

 

4.4.2 DJIA ............................................................................................................... 92 

4.4.3 DAX ............................................................................................................... 93 

4.4.4 Nikkei 225 ...................................................................................................... 94 

4.4.5 SSE Composite Index .................................................................................... 95 

4.5 Significant Outcomes ............................................................................................ 96 

5 Long-term Price Forecasting using Optimized GA and SVR ...................................... 98 

5.1 Overview ............................................................................................................... 98 

5.2 Background ........................................................................................................... 99 

5.3 Proposed Methodology ....................................................................................... 103 

5.3.1 Genetic Algorithm (GA) .............................................................................. 103 

5.3.2 Rolling Window Forward Validation ........................................................... 105 

5.3.3 Grid Search................................................................................................... 107 

5.3.4 Prediction Models and Assumptions ............................................................ 108 

5.4 Experimental Setups............................................................................................ 111 

5.4.1 SVR .............................................................................................................. 111 

5.4.2 GS-SVR ....................................................................................................... 112 

5.4.3 GA-SVR ....................................................................................................... 113 

5.4.4 OGA-SVR .................................................................................................... 116 

5.4.5 LSTM ........................................................................................................... 118 

5.5 Findings ............................................................................................................... 120 

5.5.1 Nifty ............................................................................................................. 121 

5.5.2 DJIA ............................................................................................................. 122 

5.5.3 DAX ............................................................................................................. 123 

5.5.4 Nikkei 225 .................................................................................................... 125 

5.5.5 SSE ............................................................................................................... 126 

5.5.6 Consolidated result ....................................................................................... 127 

5.5.7 Managerial Insights ...................................................................................... 129 

5.6 Significant Outcomes .......................................................................................... 130 

6 Deep Learning Models for Long-term Price Forecasting .......................................... 131 

6.1 Overview ............................................................................................................. 131 

6.2 Background ......................................................................................................... 132 



                    

viii 

 

6.3 Deep Learning Models ........................................................................................ 135 

6.3.1 Deep Neural Network (DNN) ...................................................................... 135 

6.3.2 Recurrent Neural Network (RNN) ............................................................... 137 

6.3.3 Bi-directional Long Short-Term Memory (Bi-LSTM) ................................ 138 

6.3.4 Gated Recurrent Unit (GRU) ....................................................................... 139 

6.3.5 Convolutional Neural Network (CNN) ........................................................ 140 

6.4 Proposed Methodology ....................................................................................... 141 

6.4.1 Prediction method ........................................................................................ 141 

6.4.2 Experimental Setup ...................................................................................... 143 

6.5 Findings ............................................................................................................... 145 

6.5.1 Nifty ............................................................................................................. 145 

6.5.2 DJIA ............................................................................................................. 146 

6.5.3 DAX ............................................................................................................. 148 

6.5.4 Nikkei 225 .................................................................................................... 149 

6.5.5 SSE ............................................................................................................... 150 

6.5.6 Consolidated ................................................................................................. 151 

6.5.7 Managerial Insights ...................................................................................... 153 

6.6 Significant Outcomes .......................................................................................... 154 

7 Conclusion and Future Work ...................................................................................... 155 

7.1 Conclusions ......................................................................................................... 155 

7.1.1 Trading Framework using LSTM and Technical Analysis .......................... 155 

7.1.2 Performance Comparison of ARIMA and SVR ........................................... 156 

7.1.3 Long-term Price Forecasting using Optimized GA and SVR ...................... 158 

7.1.4 Deep Learning Models for Long-term Price Forecasting ............................ 159 

7.2 Limitations .......................................................................................................... 160 

7.3 Future Work ......................................................................................................... 161 

7.4 Applications ........................................................................................................ 162 

Journal Publications ....................................................................................................... 163 

Conferences .................................................................................................................... 164 

References .......................................................................................................................... 165 

 



                    

ix 

 

List of Tables  

 

Table 2.1 Prediction durations of recent studies .................................................................. 35 

Table 2.2. Publications ......................................................................................................... 43 

Table 3.1. Model’s Descriptions ........................................................................................... 50 

Table 3.2 Pseudo Code of Models’ Algorithm ..................................................................... 56 

Table 3.3 Index Data Summary ............................................................................................ 58 

Table 3.4 Technical Indicators included in the study ........................................................... 60 

Table 3.5 LSTM models parameter values .......................................................................... 67 

Table 3.6 Index Name: DJIA, Country: USA ...................................................................... 71 

Table 3.7 Index Name: NIFTY 50, Country: India .............................................................. 72 

Table 3.8 Index Name: DAX, Country: Germany ............................................................... 73 

Table 3.9 Index Name: NIKKEI 225, Country: JAPAN ...................................................... 74 

Table 3.10 Index Name: SSE Country: China ..................................................................... 75 

Table 3.11 Consolidated Returns from all five indices ........................................................ 76 

Table 4.1 ADF Test ............................................................................................................... 88 

Table 4.2 ARIMA(p,d,q) and AIC of each index ................................................................. 89 

Table 4.3 Grid Search Parameters ........................................................................................ 90 

Table 4.4 NIFTY Evaluation ................................................................................................ 91 

Table 4.5 DJIA Evaluation ................................................................................................... 92 

Table 4.6 DAX Evaluation ................................................................................................... 93 

Table 4.7 NI225 Evaluation ................................................................................................. 94 

Table 4.8 SSE Evaluation ..................................................................................................... 95 

Table 5.1 SVR hyperparameters ........................................................................................ 111 

Table 5.2 Grid Search Parameters ...................................................................................... 112 

Table 5.3 Chromosome Initial Population ......................................................................... 115 

Table 5.4 Nifty ................................................................................................................... 121 

Table 5.5 DJIA ................................................................................................................... 123 

Table 5.6 DAX ................................................................................................................... 124 

Table 5.7 Nikkei 225 .......................................................................................................... 126 

Table 5.8 SSE ..................................................................................................................... 126 

Table 5.9 Consolidated ....................................................................................................... 128 

Table 6.1  Nifty .................................................................................................................. 145 

Table 6.2 DJIA ................................................................................................................... 147 

Table 6.3 DAX ................................................................................................................... 149 

Table 6.4 Nikkei 225 .......................................................................................................... 149 

Table 6.5 SSE ..................................................................................................................... 151 

Table 6.6 Consolidated ....................................................................................................... 152 

Table 6.7 Overview of Models' Results ............................................................................. 152 



                    

x 

 

List of Figures   

Figure 1.1 Schematic Diagram of AI ................................................................................... 12 

Figure 1.2 Cumulative Stock Return of Top 5 GDPs ........................................................... 13 

Figure 3.1 LSTM Unit ......................................................................................................... 52 

Figure 3.2  Prediction Framework ....................................................................................... 55 

Figure 3.3 Close Price Timeline ........................................................................................... 59 

Figure 4.1 Support Vector machine ...................................................................................... 85 

Figure 4.2  Support Vector Regression ................................................................................ 87 

Figure 4.3 SVR algorithm implementation .......................................................................... 88 

Figure 4.4 Static and iterative model prediction for NIFTY ................................................ 92 

Figure 4.5 Static and iterative model prediction for DJIA ................................................... 93 

Figure 4.6 Static and iterative model prediction for DAX ................................................... 94 

Figure 4.7 Static and iterative model prediction for NI225 ................................................. 95 

Figure 4.8 Static and iterative model prediction for SSE .................................................... 96 

Figure 5.1 Genetic Algorithm Flow ................................................................................... 104 

Figure 5.2 Genetic Algorithm Operations .......................................................................... 105 

Figure 5.3 Five-Fold Cross Validation and Rolling Window Forward Validation ............. 107 

Figure 5.4 Grid Search Example ........................................................................................ 108 

Figure 5.5 Flowchart of prediction methods ...................................................................... 110 

Figure 5.6 Flowchart SVR prediction algorithm................................................................ 111 

Figure 5.7 Flowchart GS-SVR prediction algorithm ......................................................... 112 

Figure 5.8 Genetic Algorithm Steps ................................................................................... 114 

Figure 5.9 Flowchart GA-SVR prediction algorithm ........................................................ 116 

Figure 5.10 Flowchart OGA-SVR prediction algorithm ................................................... 117 

Figure 5.11 LSTM architecture .......................................................................................... 119 

Figure 5.12 Performance of models on NIFTY ................................................................. 122 

Figure 5.13 Performance of models on DJIA .................................................................... 123 

Figure 5.14 Performance of models on DAX .................................................................... 124 

Figure 5.15 Performance of models on Nikkei 225 ........................................................... 125 

Figure 5.16 Performance of models on SSE ...................................................................... 127 

Figure 6.1 DNN Architecture ............................................................................................. 136 

Figure 6.2 RNN Architecture ............................................................................................. 137 

Figure 6.3 Bi-LSTM Architecture ...................................................................................... 138 

Figure 6.4 GRU Unit .......................................................................................................... 139 

Figure 6.5 1D-CNN Architecture ....................................................................................... 140 

Figure 6.6 Deep learning model Layers architecture ......................................................... 142 

Figure 6.7 Prediction Framework ...................................................................................... 144 

Figure 6.8 Nifty predictions ............................................................................................... 146 

Figure 6.9 DJIA predictions ............................................................................................... 147 

Figure 6.10 DAX predictions ............................................................................................. 148 

Figure 6.11 NI225 predictions ........................................................................................... 150 

file:///C:/Users/Mohit-OfficePC/Dropbox/DTU%20Faculty/Research/Mohit%20Phd%20Thesis%20Writing/DRC%20Presentation/Mohit%20Full%20Thesis.docx%23_Toc143521350


                    

xi 

 

Figure 6.12 NI225 predictions ........................................................................................... 151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                    

xii 

 

List of Abbreviations 

Abbreviation Full Form 

ADF Augmented Dickey-Fuller 
AI  Artificial Intelligence 
AIC Akaike Information Criterion 
a-m-LSTM-o Average True range Momentum Long Short-Term Memory online 
ANN Artificial Neural Network 
ARCH Auto-Regressive Conditional Heteroskedasticity 
ARIMA Auto-Regressive Integrated Moving Average 
ATR Average True Range 
atr-LSTM-o Average True range Long Short-Term Memory online 
AutoML Automated Machine Learning 
B&H Buy-and-Hold 
Bi-LSTM Bi-Directional Long Short-Term Memory 
BP Back Propagation 
CNN Convolutional Neural Network 
DAX Deutscher Aktienindex 
DJIA Dow Jones Industrial Average 
DL  Deep Learning 
DNN Deep Neural Network 
DT Decision Trees 
EMH  Efficient Market Hypothesis 
fma-LSTM-o Four Moving Averages Long Short-Term Memory Online 
GA Genetic Algorithm 
GARCH Generalized Auto-Regressive Conditional Heteroskedasticity 
GA-SVR Genetic Algorithm Support Vector Regression 
GDP Gross Domestic Product 
GRU Gated Recurrent Unit 
GS Grid-Search 
GS-SVR Grid Search Support Vector Regression 
hMoM Historical Momentum 
TSE Tokyo Stock Exchange 
KNN K-Nearest Neighbors 
LightGBM Light Gradient Boosting Machine 
LSE  London Stock Exchange 
LSTM Long Short-Term Memory 
LSTM-o Long Short-Term Memory Online 
MA Moving Averages 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
MLP Multilayer Perceptron 
MOM Momentum 
MSE Mean Squared Error 
NI225 Nikkei 225 



                    

xiii 

 

NASDAQ National Association of Securities Dealers Automated Quotations 
NB Naive Bayes 
NIFTY National Stock Exchange Fifty 
NSE National Stock Exchange 
NYSE New York Stock Exchange 
OGA-SVR Optimized Genetic Algorithm Support Vector Regression 
PSO Particle Swarm Optimization 
RF Random Forests 
RMSE Root Mean Square Error 
RNN Recurrent Neural Network 
RWH  Random Walk Hypothesis 
SSE Shanghai Stock Exchange 
SVM Support Vector Machine 
SVR Support Vector Regression 
XGBoost eXtreme Gradient Boosting 



                           Chapter 1 

1 

 

1 Introduction 

With the widespread availability of mobile phones and internet access, there has been a 

significant increase in stock market participation across the globe. In India alone, the number 

of demat accounts has reached a staggering 110 million (TimesofIndia, 2023). As individuals 

seek opportunities for excessive returns, many are turning to technical analysis as a means 

to navigate the complexities of the stock market. Moreover, professional traders have long 

relied on technical trading strategies. The emergence of Artificial Intelligence (AI) and 

Machine Learning (ML) has made a substantial impact on the financial landscape, offering 

the ability to analyze vast amounts of data and uncover new insights and patterns that can 

unlock opportunities for financial enthusiasts. 

This chapter aims to provide an introductory background on the stock market and 

explore the methods of analyzing and forecasting stock market movements, prices, and 

trends. It also discusses the motivation behind the study, outlines the challenges in the field, 

and presents the problem statement that this research seeks to address. Furthermore, it 

outlines the organization and structure of the thesis, providing a roadmap for the subsequent 

chapters.  

1.1 A Brief History of the Stock Market 

Stock trading has its roots in ancient civilizations. The earliest example of relatively 

organized equities can be traced back to the 2nd century BC (B. M. Smith, 2004). The 

modern stock market can trace its origins back to the 17th century. The first formal stock 

exchange, the Amsterdam Stock Exchange, was established in 1602 when the Dutch East 

India Company as a joint stock company (C. F. Smith, 1929) issued shares to raise capital 
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(Petram, 2011). The stockholders of the company were guaranteed a share of the profit from 

the earnings (Michie, 2001). The London Stock Exchange (LSE) was established in 1698 

and quickly became a prominent center for stock trading (Johannessen & Johannessen, 

2017). The LSE played a crucial role in financing the Industrial Revolution and acted as a 

model for subsequent stock exchanges worldwide. 

The United States played a significant role in the development of modern stock 

markets. In 1792, the New York Stock Exchange (NYSE) was founded by a group of brokers 

(Mexmonov, 2020) who regularly met under a buttonwood tree on Wall Street (Eames, 

1894). The NYSE grew in prominence, facilitating the trading of stocks and bonds. The latter 

half of the 20th century witnessed significant technological advancements that 

revolutionized stock trading. The first electronic trading systems were introduced in the 

National Association of Securities Dealers Automated Quotations (NASDAQ) stock 

exchange in 1968, which enabled faster and more efficient transactions in the 1970s and 

1980s (Heckman, 2013). The advent of the internet further transformed the stock market, 

allowing individuals to trade stocks online and opening new opportunities for retail 

investors. 

Stock markets became increasingly interconnected as globalization progressed. 

Cross-border investments and the growth of international stock exchanges allowed investors 

to diversify their portfolios and participate in global markets. Emerging markets have also 

gained prominence, with countries like China and India experiencing rapid stock market 

growth. Today, the stock market is a complex and dynamic system that plays a critical role 

in global economies. Stock exchanges operate worldwide, providing a platform for 
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companies to raise capital and investors to trade securities. Every day, stock exchanges 

witness the trading of assets valued at billions of dollars (Hoseinzade & Haratizadeh, 2019a). 

The stock market's influence extends beyond economic indicators, with market movements 

and investor sentiment impacting various aspects of society. It is important for investors and 

traders to gain insight through a forecasting system that accurately predicts stock indices.  

Stock forecasting is a complex task as many factors influence stock prices, such as 

market trends, company financials, economic indicators, investor sentiment, geopolitical 

events, regulatory changes, and technological advancements. In academia, the predictability 

of stock prices remains a subject of debate. The Efficient Market Hypothesis (Fama, 1970) 

and Random Walk Hypothesis (Malkiel, 1973) propose that stock prices cannot be predicted, 

as they contend that prices incorporate all relevant information and follow a random 

trajectory. Conversely, alternative theories, like Technical Analysis (Achelis & Steven, 

2013), argue that stock prices do display discernible patterns and trends based on historical 

data, implying that past patterns can offer insights into future price movements. This ongoing 

discourse on stock predictability has spurred extensive research and the creation of diverse 

forecasting models and techniques to investigate the potential predictability of stock prices. 

Other methods that are utilized to analyze securities are fundamental analysis, statistical 

analysis, and machine learning. 

1.2 Efficient Market Hypothesis 

According to the Efficient Market Hypothesis (EMH), the price of an asset 

incorporates all available information regarding its intrinsic value. Share prices accurately 

and promptly reflect all available information (R. Kumar, 2016). This theory suggests that it 
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is difficult for investors to consistently outperform the market and achieve abnormal or 

excessive risk-adjusted returns. The concept of market efficiency implies that it is 

challenging to identify mispriced assets or predict future price movements based on publicly 

available information. Investors cannot consistently exploit market inefficiencies to achieve 

sustained above-average returns. The EMH implies that any attempts to outperform the 

market are more likely to be the result of luck than skill. 

The EMH has been the subject of extensive academic research and debate. 

Proponents argue that the efficiency of the market is driven by the collective actions of 

numerous market participants, who quickly process and incorporate new information into 

the price. Critics of the EMH, on the other hand, argue that certain market anomalies, 

behavioral biases, or insider trading can lead to temporary inefficiencies that can be 

exploited for profit. Factors such as market sentiment, insider trading, irrational behavior, 

and informational asymmetry can still impact price movements and lead to temporary 

deviations from fundamental value. The studies (Chowdhury et al., 1993; Pettit & Venkatesh, 

1995) examined the returns achieved by insiders at companies. In both studies, it was found 

that insiders consistently and significantly obtained abnormal returns, indicating a departure 

from the EMH. 

1.3 Random Walk Hypothesis 

The Random Walk Hypothesis (RWH) is closely associated with the Efficient Market 

Hypothesis (EMH). A “Random Walk” refers to a price series where each subsequent price 

change is considered a random deviation from previous prices (Malkiel, 2003b). In an 

efficient market, new information is quickly and accurately incorporated into asset prices. 
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Consequently, the price change in the market tomorrow will solely reflect the news that 

emerges tomorrow and will be independent of today's price fluctuations. This implies that 

future price movements are not influenced by past prices, and the unpredictable nature of 

news further adds to the uncertainty. As a result, price changes resulting from unforeseeable 

news events are expected to follow a random pattern and cannot be reliably predicted. 

While the Random Walk Hypothesis has its critics and is not universally accepted, it 

has contributed to the development of index investing and passive investment strategies. It 

has also prompted research and debate in the field of finance regarding the efficiency and 

predictability of financial markets. According to (Lo & MacKinlay, 1998), stock prices do 

not adhere to a random walk pattern. Their study challenged the assumptions of the Random 

Walk Hypothesis by examining the empirical behavior of stock prices. They conducted 

extensive analysis of the random walk model, providing compelling evidence for its 

conclusive rejection throughout the entire sample period from 1962 to 1985. Moreover, this 

rejection holds true across multiple subperiods and encompasses a wide range of aggregate 

return indices as well as portfolios sorted by size.  

1.4 Fundamental Analysis 

Fundamental analysis refers to determining the intrinsic value of shares in stock 

markets. This involves employing a general framework to analyze expected economic 

forecasts, particularly focusing on sectors that are expected to generate growth in sales and 

profits (Wafi et al., 2015). By assessing the financial strength of companies, the efficiency 

of their management, and current market conditions, one can measure the potential for 

business opportunities. To determine the fair value of a stock, historical financial statements 
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are analyzed alongside with current market conditions. This analysis helps assess the 

intrinsic value of the stock. Additionally, fundamental analysts may consider 

macroeconomic factors, such as interest rates, inflation, and industry-specific trends, to 

gauge the overall health of the market and the potential opportunities or risks associated with 

an investment. 

The goal of fundamental analysis is to identify assets that are either undervalued or 

overvalued relative to their intrinsic worth. By comparing the estimated intrinsic value of an 

asset with its current market price, fundamental analysts can make investment decisions, 

such as buying, selling, or holding an asset. Fundamental analysis is often used by long-term 

investors who seek to assess the underlying fundamentals of an asset and make investment 

choices based on their analysis of its potential future performance. Lev & Thiagarajan (1993) 

suggested that information obtained from analyzing the fundamentals of a company has an 

influence on how the market responds to earnings announcements. 

1.5 Technical Analysis 

Technical analysis involves the study of price and volume primarily using charts, 

with the objective of predicting future price trends (Lohrmann & Luukka, 2019; Murphy, 

1999). Charts display price movements over time, allowing analysts to visually identify 

patterns and trends. Many accomplished traders highly value the use of charts in their trading 

activities (Schwager, 1995). Hardly anyone in the financial world ignores technical analysis 

(Roberts, 1959). By examining patterns and trends in price charts, technical analysts aim to 

uncover opportunities for buying or selling assets at advantageous moments. Charles Dow 
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is credited with developing the Dow Theory around 1900, which forms the foundation of 

modern technical analysis (Achelis, 2001).  

The underlying principle of technical analysis is that market prices reflect all 

available information, including fundamental factors and market sentiment. It is important 

to note that technical analysis is based on the assumption that historical price patterns tend 

to repeat themselves, indicating the existence of identifiable market trends. However, 

technical analysis is highly subjective. Different individuals analyzing the same charts may 

perform different technical analyses and draw distinct trend lines. In fact, even the same 

person, when presented with the same chart at different times, may draw varying trend lines 

(DeMark, 1994). In terms of expected returns, technical analysis cannot outperform the 

performance of a buy-and-hold strategy (Fama, 1965; Kumbure et al., 2022; Leigh et al., 

2002). Despite its shortcomings, technical analysis remains widely used by traders and 

investors to complement their decision-making process. It offers a systematic approach to 

analyzing price data and can provide valuable insights into market behavior and potential 

trading opportunities. 

1.6 Statistical Analysis 

Statistical analysis plays a crucial role in the field of finance, particularly when it 

comes to analyzing and understanding the behavior of financial time series. Financial time 

series data, such as stock prices, trading volumes, and other market variables, contain 

valuable information. In this context, statistical methods and techniques are employed to 

analyze and interpret these data, uncover patterns and trends to gain insights into the 

underlying dynamics of the financial markets. 
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Statistical analysis in the stock market involves the utilization of various statistical 

tools and measures. The descriptive analysis provides a summary of the data, offering key 

statistics such as mean, median, standard deviation, and skewness. Correlation analysis helps 

identify relationships between different variables, revealing the degree of association 

between them. Regression analysis, on the other hand, explores the causal relationships 

between variables, allowing for the prediction of one variable based on others. Hypothesis 

testing provides a framework for making inferences about population parameters and 

drawing conclusions from sample data. 

Within the realm of financial time series analysis, specific statistical methods are 

employed to gain deeper insights. Autocorrelation analysis examines the presence of the 

dependence of current values on past values, which can help identify predictable patterns. 

Time series decomposition separates a time series into its various components, such as trend, 

seasonality, and residual elements, providing a clearer understanding of the underlying 

patterns and dynamics. Auto-Regressive Integrated Moving Average (ARIMA) models 

capture the linear relationships between past and current values, incorporating 

autoregressive, moving average, and differencing components. Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models are used to model and forecast volatility 

in financial time series, taking into account the time-varying nature of volatility.  

1.7 Machine Learning 

Artificial intelligence has ushered in a transformative revolution in various 

industries, and the field of finance is no exception. Especially after the advent of AI tools 

like ChatGPT, the focus on artificial intelligence has taken center stage. The ability to 
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analyze large volumes of data, uncover hidden patterns, and generate insights at a rapid pace 

has not only increased efficiency and productivity but has also opened up new possibilities 

for innovation and discovery. Machine learning is an interdisciplinary field that focuses on 

developing computational algorithms capable of automatically extracting meaningful 

patterns and insights from empirical data. It has emerged from the intersection of traditional 

statistical analysis and artificial intelligence research (Edgar & Manz, 2017).  

The field of finance has witnessed a notable rise in publication trends, reflecting the 

extensive utilization of AI and ML across diverse domains. Within this context, AI and ML 

have found widespread applications in areas such as bankruptcy prediction, stock price 

forecasting, portfolio management, oil price prediction, anti-money laundering measures, 

behavioral finance analysis, big data analytics, and blockchain technology. These 

advancements highlight the growing significance of AI and ML in shaping the future of 

finance and driving innovation within the industry (Ahmed et al., 2022). 

Machine learning models can analyze historical stock data, market trends, and other 

relevant factors to forecast future price movements. The integration of machine learning 

algorithms in finance has the potential to enhance decision-making processes and improve 

risk management for financial analysts, traders, and investors. Machine learning algorithms 

can be broadly categorized into two types: supervised and unsupervised learning algorithms 

(Madge & Bhatt, 2015). Supervised learning algorithms are machine learning algorithms 

that learn from labeled data, where each data point is associated with a corresponding label 

or target variable. The algorithm learns by mapping input features to their corresponding 

output labels based on the provided training examples. It generalizes from the labeled data 
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to make predictions on new, unlabeled data. On the other hand, unsupervised learning 

algorithms operate on unlabeled data, where the objective is to discover patterns, structures, 

or relationships within the data. These algorithms do not have access to explicit target 

variables or labels. Unsupervised learning can be used for tasks such as clustering, 

dimensionality reduction, and anomaly detection. 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM) have 

emerged as widely used supervised ML algorithms extensively employed to predict and 

analyze the stock market and its future movements (Chhajer et al., 2022; Selvamuthu et al., 

2019). LSTM, which stands for Long Short-Term Memory, is a specialized type of artificial 

neural network (ANN) architecture, specifically designed to model and capture long-term 

dependencies and patterns in sequential data. Similarly, Support Vector Regression (SVR) is 

a variant of Support Vector Machines (SVM) that is specifically designed for regression 

analysis. However, while SVM is primarily used for classification tasks, SVR focuses on 

predicting continuous numeric values. 

In recent years, the Deep Learning (DL) computing paradigm has attained significant 

recognition as the leading approach in the ML community. Over time, it has progressively 

established itself as the predominant computational approach within the field of machine 

learning (Alzubaidi et al., 2021). Deep learning technology, which originated from artificial 

neural networks (ANN), falls under the umbrella of machine learning (ML) and artificial 

intelligence (AI) and is now widely recognized as a foundational technology (Sarker, 2021a). 

Among the prominent deep learning architectures, this study uses the Deep Neural Network 

(DNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 
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Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural 

Network (CNN).  

DNN is an artificial neural network characterized by multiple hidden layers situated 

between the input and output layers. It follows a feed-forward architecture, where 

information flows through the network in a unidirectional manner from the input layer to the 

output layer (Y. Qian et al., 2014). DNNs are known for their ability to learn hierarchical 

representations of complex data. RNNs, on the other hand, consist of neurons with recurrent 

connections that serve as memory, allowing them to learn the temporal dynamics from 

sequential data (Farsi, 2021). The primary challenge with standard RNNs lies in the 

problems of exploding and vanishing gradient (Y. Wang et al., 2021). LSTM is a type of 

RNN that addresses this issue of vanishing or exploding gradients, enabling it to capture 

long-term dependencies in sequential data. It achieves this through memory cells and gates 

that control the flow of information. Bi-LSTMs enhance the capability of LSTMs by 

incorporating information from both past and future contexts, enabling a richer 

understanding of the data. 

GRU is similar to LSTM, and both address the vanishing gradient problem (J. Zhang 

et al., 2021). They employ reset and update gates to control the flow of information, making 

them more computationally efficient than LSTMs while maintaining good performance. 

CNNs, on the other hand, are primarily used for image classification tasks (Yadav & Jadhav, 

2019). They leverage convolutional layers to extract local patterns and features from the 

input data, enabling them to capture spatial relationships effectively. However, CNN can 

also be used for stock time series forecasting. Figure shows the schematic diagram of AI. 
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1.8 Motivation 

The task of predicting the stock market is widely recognized for its complexity, 

which presents significant challenges to achieving accurate forecasts. With the advent of 

digitization and globalization, investors and institutions now have easier access to investing 

in global stock indices. This necessitates the development of a robust and data-driven 

Figure 1.1 Schematic Diagram of AI 
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forecasting system that can cater to the needs of investors and traders seeking informed 

investment decisions. Notably, emerging economies like India and China have demonstrated 

attractive returns on assets, with several Fortune 500 companies originating from these 

regions. Additionally, developed economies such as the USA, Germany, and Japan boast 

established stock exchanges, further emphasizing the importance of accurate global 

forecasting. These counties are top five GDPs of the world (WorldData.info, 2021). 

 The figure shows the cumulative stock returns of top 5 GDPs. It can be noted 

that Nifty from India outperforming other world indices in recent times.  

 

Figure 1.2 Cumulative Stock Return of Top 5 GDPs 

 

 

The academic community holds varying opinions regarding the effectiveness of 

stock market prediction. The Efficient Market Hypothesis and Random Market Hypothesis 

propose that obtaining excessive returns through stock market prediction is impossible. 
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Statistical tests indicate that future stock price movements are independent of past prices, 

undermining the assumptions of technical analysis, which relies on the repetition of past 

patterns. However, the emergence of machine learning has revolutionized data analysis and 

opened new possibilities for identifying underlying patterns in the financial domain. This 

study aims to develop a forecasting system capable of achieving excess returns over the 

market return. The dynamics of emerging and developing economies are different. The stock 

market is known as a barometer of the national economy. The study further aims to compare 

machine learning techniques with statistical techniques in emerging and developed 

economies. 

Accurate forecasting plays a crucial role in informed decision-making and risk 

mitigation. In machine learning, predictions are typically focused on the immediate next 

steps, which may not be sufficient for long-term planning. Additionally, machine learning 

algorithms have numerous hyperparameters that require careful tuning, as their performance 

is sensitive to these settings. SVM, SVR, DNN, RNN, LSTM, GRU, and other algorithms 

all possess multiple hyperparameters. Therefore, a multistep forecasting approach is 

essential and beneficial for decision-making purposes, especially for the investor 

community. Machine learning and deep learning algorithms have demonstrated their ability 

to tackle complex problems. In this research, using machine learning, the study aims to 

develop a system capable of multistep long-term forecasting where hyperparameters are 

automatically tuned using evolutionary algorithms like genetic algorithms or grid search. 

The study further aims to evaluate the long-term forecasting abilities of deep learning 

models. 
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1.9 Challenges  

The challenges encountered in this thesis revolve around the inherent complexities 

and uncertainties associated with financial time series. The noise and complexity inherent in 

these time series make accurate forecasting a daunting task. Stock prices are influenced by 

numerous factors, and trends can be volatile and rapidly changing. Additionally, the presence 

of randomness in stock prices cannot be ignored. Furthermore, the availability of public 

information for all market participants makes it challenging to consistently achieve excess 

returns. The evolving nature of national economies adds another layer of complexity to the 

analysis. Therefore, a forecasting system is needed that can adapt to the dynamic nature of 

financial time series. 

The noisy nature of financial time series also poses difficulties in accurately 

predicting their behavior. Machine learning algorithms require careful tuning of 

hyperparameters, and manual parameter selection may introduce biases into the research. To 

address this, an automated system is required to select the optimal parameters without human 

intervention. Moreover, the performance of a forecasting system can vary significantly 

across different financial time series. A model that performs well in one series may not 

perform effectively in another series. Developing a robust and generalized system capable 

of handling diverse financial time series from different economies presents a significant 

modeling challenge. 
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1.10 Problem Statement 

The challenges discussed above motivated us to develop a machine-learning 

forecasting system that is robust to handle different financial time series stock indices from 

the top five GDPs of the world. The top five GDPs of the world are the USA, China, Japan, 

Germany, and India (WorldData.info, 2021).  Following are the problem statements to 

overcome the above challenges: 

➢ There is a need to develop a system that leverages Neural Networks and technical 

analysis methods to generate higher returns for investors over the long term 

compared to the buy-and-hold strategy. 

➢ To make informed investment decisions, it is crucial to compare statistical techniques 

and machine learning in forecasting stock prices for both short and long terms, 

considering the distinct dynamics of emerging and developed countries. 

➢ A multistep prediction system is required to address the needs of investors who are 

seeking long-term price and pattern information, as machine learning predictions 

typically focus on the next-step predictions. 

➢ Clarity is needed to determine which deep learning algorithm is most suitable for 

long-term multistep forecasting of financial time series, considering that deep 

learning can solve complex tasks and there are numerous algorithms available for 

forecasting financial time series. 

1.11 Significance of the Study 

The significance of this study lies in addressing the challenges associated with 

predicting stock market movements and developing a robust forecasting system that can 
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generate higher returns for investors over the long term. The study also aims to contribute to 

the ongoing debate within the academic community regarding the effectiveness of stock 

market prediction. The study shows a clear comparison of machine learning techniques with 

statistical techniques in predicting global stock indices. 

Furthermore, the study recognizes the importance of accurate forecasting in 

facilitating informed decision-making and risk mitigation. By focusing on multistep 

forecasting, the research aims to provide investors with long-term price and pattern 

information, overcoming the limitations of machine learning models that primarily focus on 

immediate next steps. The research also acknowledges the challenges posed by 

hyperparameter tuning in machine learning algorithms and aims to develop an automated 

system that optimizes these parameters using evolutionary algorithms. It also recognizes the 

challenge of developing a robust and generalized system capable of handling diverse 

financial time series from different economies and locations. 

1.12 Organization of the Thesis 

Chapter 1: Introduction 

This chapter provides an overview of the stock market, including its brief history and 

key concepts. It also discusses the methods of analysis and prediction used in the field, along 

with the motivation behind the study and the challenges encountered. Additionally, it 

presents the problem statement and the significance of the study. 

Chapter 2: Literature Review 

This chapter conducts a comprehensive review of the existing literature on 

forecasting financial time series. The gaps and limitations in the literature are identified, and 
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the research questions and objectives of the study are defined. This chapter sets the 

foundation for the research and establishes its relevance within the existing body of 

knowledge. 

Chapter 3: Trading Framework using LSTM and Technical Analysis 

This chapter proposes a trading framework that utilizes LSTM and technical analysis 

techniques to outperform the buy-and-hold strategy. The framework is designed to capture 

patterns and trends in financial time series data, enabling more effective decision-making 

for investors. 

Chapter 4: Performance Comparison of ARIMA and SVR 

The focus of this chapter is to compare the performance of iterative and static 

machine learning techniques such as Support Vector Regression with statistical methods 

such as ARIMA in forecasting stock prices in both emerging and developed economies. By 

evaluating and analyzing the results, insights into the strengths and limitations of each 

approach are gained. 

Chapter 5: Long-term Price Forecasting using Optimized GA and SVR 

This chapter addresses the need for long-term price forecasting by proposing a model 

based on optimized Genetic Algorithms and Support Vector Regression (SVR). The model 

aims to forecast the multistep prices of global stock indices, taking into account the dynamic 

nature of the financial markets and the complexities involved. 

Chapter 6: Deep Learning Models for Long-term Price Forecasting 

This chapter compares the performance of various deep learning models, such as 

DNN, RNN, LSTM, Bi-LSTM, GRU, and CNN, for multistep long-term price forecasting 
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of global stock indices. The analysis provides insights into the suitability and effectiveness 

of these models for capturing complex patterns and trends. 

Chapter 7: Conclusion and Future Work 

The final chapter concludes the study by summarizing the key findings and 

contributions. It also discusses the limitations of the research and suggests areas for future 

exploration and improvement. This chapter provides a comprehensive closure to the study 

and outlines the potential for further advancements in stock market forecasting.
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2 Literature Review 

In this chapter, an extensive literature review is conducted on various machine 

learning algorithms used for forecasting stock movement and prices. The field of machine 

learning offers a wide range of algorithms, including but not limited to Logistic Regression, 

Decision Trees, Random Forests, Gradient Boosting (e.g., XGBoost, LightGBM), Support 

Vector Machines (SVM), K-Nearest Neighbors (KNN), Naive Bayes, Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Each 

algorithm possesses its own unique advantages and disadvantages, making it important to 

understand its characteristics and suitability for specific forecasting tasks. By examining the 

existing literature, this review aims to provide insights into the performance and applicability 

of these algorithms in the context of predicting stock market behavior. 

2.1 Predictability of Stock Market 

The efficient market and random walk have long been cherished in academia. It is 

well-accepted that stock returns are essentially unpredictable. In the words of Barber, 

“Trading is hazardous to your wealth (Barber & Odean, 2000).”  However, investors and 

traders kept using fundamental and technical analysis to invest and trade in the stock market. 

Benjamin Graham once said that a stock market is a voting machine in the short run, but in 

the long run, it is a weighing machine (Graham & David, 1965). It is also observed that stock 

index prices tend to exhibit an upward bias over time. 
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The efficient market hypothesis does not affiliate fundamental, technical, or 

sentimental analysis. Malkiel (2003a)  argues that it is impossible to beat market returns in 

the long term without accepting more significant risks. He suggests that there are no 

predictable patterns, and if there are, they are self-destructive and won’t generate extra 

returns after transaction costs in the long term. However, many studies disagree with 

Malkiel’s claims and suggest that the market is predictable to some extent (Poterba & 

Summers, 1988). Pesaran & Timmermann (1995)  examined the predictability of the US 

stock market and concluded that in a volatile market, the predictability increased. 

Christoffersen (2006) conducted a simulation experiment on various data frequencies and 

horizons and concluded that directional predictability exists. Nyberg (2011) forecasted the 

direction of the US stock market using the binary probit model. He found that returns are 

better than buy-and-hold for in-sample data. However, for out-of-sample data, the results 

were weak. The model predicted the signs of returns better than the Autoregressive moving 

average and volatility models in out-of-sample data. Gu & Peng (2019) developed a 

forecasting model based on probability density to predict the direction of market returns. 

They applied their model to the Shanghai Composite Index and CITIC securities. Their 

model gave a higher return for out-of-sample data than the buy-and-hold strategy.  

  Cochrane H., (1999), in his paper “New Facts in Finance,” recognized that stock 

returns do have predictability over a long-term horizon. Lo & MacKinlay  (1998) examined 

the random walk hypothesis for weekly stock market returns by comparing variance 

estimators derived from data sampled at different frequencies. The researchers found that 

the random walk model was strongly rejected for the entire sample period (1962-1985) and 
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for all subperiods, encompassing various indexes of aggregate returns and portfolios sorted 

by size. The rejections were primarily driven by the behavior of small stocks, but they could 

not be solely attributed to the effects of infrequent trading or time-varying volatilities. 

Furthermore, the rejection of the random walk for weekly returns did not support a mean-

reverting model of asset prices.  

The increasing application of soft computing techniques has sparked significant 

interest in academia regarding the prediction of stock market movements using Artificial 

Intelligence (AI) and Machine Learning (ML) methodologies. While the stock market is 

widely recognized for its inherent risks, the potential for accurate financial time series 

prediction presents lucrative opportunities for investors. By harnessing the power of AI and 

ML, researchers and practitioners aim to uncover patterns and relationships within stock 

market data that can lead to more informed investment decisions and potentially yield 

substantial returns. 

2.2 Long Short-Term Memory (LSTM) 

Recently, the application of ML algorithms in predicting stock market prices has been 

a focal point in academic research within the field of time series analysis. Artificial Neural 

Networks (ANNs) have gained popularity in stock prediction due to their ability to learn 

complex patterns and make generalizations. Teixeira Zavadzki de Pauli et al. (2020) 

compared the different architectures of ANNs to predict Brazilian stocks. They compared 

the performance of five Neural Network (NN) architectures to predict the close prices of six 

major stocks in the Brazilian stock exchange. The models were trained on historical stock 

prices to predict the next day's closing price. The models were evaluated based on the Root 



                           Chapter 2 

23 

 

Mean Square Error (RMSE). The results showed that all architectures performed well except 

the radial basis function (RBF) based model. Recurrent Neural Networks (RNNs) are a type 

of ANN specially developed to handle sequential data, such as time-series data. Yang et al. 

(2021) proposed a hybrid model with an improved Particle Swarm Optimization (PSO) 

algorithm and RNN to predict stock prices with better accuracy. The proposed algorithm, a 

combination of a NN and an adaptive adjustment of inertial weight, enhanced its global 

search ability in the early stage and its local search ability in the later stage. The results 

indicated the practical effectiveness of the system. However, RNNs suffer from a vanishing 

gradient problem (Kolen & Kremer, 2001).  

LSTM, a variant of RNN, is specifically designed to overcome the challenge of 

vanishing gradient that RNNs suffer. Moreover, the most frequently utilized ML algorithm 

for predicting financial time series is LSTM (Henrique et al., 2018). Mehtab et al. (2021) 

proposed a hybrid modeling approach to predict stock prices using both ML and deep 

learning-based models. In this study, they used the NIFTY 50 index prices to construct eight 

regression models to predict the multi-step future open values of NIFTY 50 for the upcoming 

week. Four deep learning-based regression models were also built using LSTM networks 

with walk-forward validation and optimized hyperparameters. Their results showed that the 

LSTM-based univariate model that used one-week prior data as input was the most accurate 

model among all. Zhang et al. (2021) applied a neural network and Back Propagation (BP) 

algorithm to forecast intraday stock prices by utilizing transaction data for five consecutive 

days. The BP algorithm neural network showed a prediction accuracy of 73.29%, whereas 

the deep learning fuzzy algorithm had an accuracy of 62.12%. They found that the best 



                           Chapter 2 

24 

 

prediction range was 15 days, and the BP algorithm NN outperformed the deep learning 

fuzzy algorithm in terms of accuracy. Lu et al. (2021) proposed a CNN-BiLSTM-AM model 

for predicting stock prices by combining CNN, bi-directional LSTM (Bi-LSTM), and 

attention mechanisms (AM). Their model predicted the stock closing prices of the next day 

for the Shanghai Composite Index and compared the performance with seven other models 

as the benchmark. The results demonstrated that the CNN-BiLSTM-AM model was superior 

to the other models, with the smallest Mean Absolute Error (MAE), RMSE, and the largest 

R2.  

Some studies prefer predicting direction instead of price. Zhang et al. (2022) 

predicted the direction and developed a trading strategy. Further, they compared the 

performance of multiple models. They used Logistic Regression, SVM, Gradient-Boosting 

Decision Trees, RF, and LSTM. However, they experimented with the models on a single 

index, namely the Shanghai Stock Exchange (SSE) index. They proposed a methodology 

that considered both intraday and interday dynamics of the stock market during the 2015 

stock market crisis in China. The empirical results demonstrated that the market can be 

predicted. Kumar and Haider (2021a) developed a hybrid mechanism that was a fusion of 

RNN-LSTM and combined it with metaheuristic optimization techniques to predict intra-

day stock market trends. They introduced two hybrid approaches in their study. The proposed 

models provided a systematic method for automatically generating an optimized network, 

resulting in a more precise learning process with minimized error rates and improved 

accuracy. They evaluated the efficacy of the optimized RNN-LSTM network using data from 
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six different stock exchanges, and the results showed that the metaheuristic approach 

increased the forecasting accuracy by approximately 4-6%. 

Liu & Lee (1997) presented an intelligent expert system based on technical analysis. 

Their system recommended signals based on rules defined in the system. The net return after 

transaction costs was 22%, which was better than the inflation rate and bank rate at that time. 

Neural Networks overcome the shortcoming of linear methods such as Linear Regression 

(LR) or Multiple Linear Regression (MLR). They can solve non-linear and complex 

problems, which are difficult to solve with linear models. The neural networks can be 

combined with other statistical, evolutionary, or forecasting techniques to make them more 

robust. Bao et al. (2008) also developed an intelligent stock trading system based on turning 

points and probabilistic model. They experimented with their system on S&P 500 

components for around 3000 daily data. They achieved great returns and concluded that their 

system was universally profitable for most stocks. Nayak et al. (2017) proposed a Neural 

Network model optimized using an Artificial Chemical Reaction (ACRNN). They compared 

their model with the Multilayer Perceptron (MLP), Radial Bias Function Neural Network 

(RBFNN), and Multiple Linear Regression (MLP). They concluded that ACRNN shows 

greater accuracy than the other model considered for all seven indices.  

Chung & Shin (2018) investigated the performance of LSTM and the Genetic 

Algorithm (GA) on the Korean Stock Price Index (KOSPI). They predicted the index price 

for the next day and compared it with a benchmark model, which predicts no change in the 

price. They found that the hybrid model of LSTM-GA outperformed their benchmark model 

based on the evaluation parameters MAE, MSE, and Mean Absolute Percentage Error 
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(MAPE). Chen & Ge (2019) explored the attention mechanism in the Long–Short-Term 

Memory (am-LSTM) network in the Hong Kong stock market. They concluded that it 

significantly enhances prediction power when compared to LSTM. Nikou et al. (2019a) 

analyzed the recurrent network method with an LSTM block function. They determined that 

the model predicts the close price of iShares MSCI United Kingdom better than the other 

models, such as Support Vector Regression (SVR) and Random Forest (RF). Lu et al. (2020) 

proposed a novel CNN-LSTM-based model. They compared the CNN-LSTM model with 

the CNN-RNN, LSTM, RNN, and MLP models. They concluded that CNN-LSTM could be 

trusted to predict the stock market and perform better than other compared models.  

Optimization problems are computationally intensive. Researchers are focusing on 

nature-inspired metaheuristic optimization algorithms that do not require the computation of 

the gradient of the objective function. Khan et al. (2020) applied a nature-inspired 

metaheuristic optimizer known as Beetle Antennae Search (BAS) to the portfolio selection 

problem. Their portfolio selection included transaction costs and cardinality constraints. 

They compared the results with those of other optimizers such as Particle Swarm Optimizer 

(PSO), Pattern Search (PS), Interior Point Search, and Genetic Algorithm (GA). While 

achieving the same level of performance, their algorithm was six times faster in the worst 

case and twenty-five times faster in the best case, compared to other algorithms. 

In summary, the available literature is divided into opinions about whether the stock 

market can be predicted. One school favors the efficient market hypothesis and the random 

walk theory, while another favors some predictability. The first school suggests passively 

investing in index-traded funds, whereas the other school advocates actively predicting the 
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market for excess returns. Even if the stock market has a certain predictability, it remains a 

highly challenging and complex task to predict the stock market efficiently. Many studies 

focused on a single index, such as the S&P, NASDAQ, etc., or a basket of stocks. Further, 

most studies limit themselves only to developed economies, limiting the forecasting model’s 

ability to efficiently predict emerging market indices. Emerging economies may have 

different dynamics.  

Further, some studies prefer predicting stock prices instead of direction. Leung et al. 

(2000) compared classification models that predicted directions to level estimation models 

that predicted returns. They found that the performance of classification models was superior 

to level estimation models. Moreover, those studies that predicted the direction of stock 

returns limited themselves to improving accuracy. They did not consider whether it would 

increase the stock’s overall returns. Very few studies have had the benchmark as the buy-

and-hold. Many of them did not consider the transaction cost. These gaps provide motivation 

for the present research. This study proposed a hybrid LSTM model utilizing technical 

indicators in an innovative and intuitive way. It predicts multiple global indices, which are 

top GDPs and have a good mix of emerging and developed economies. The study suggests 

a model to improve returns while reducing risk and compares the model with standard neural 

network models and the passive buy-and-hold strategy. 

2.3 Auto-Regressive Integrated Moving Average (ARIMA) 

In statistical methods, autoregressive moving average (ARMA), autoregressive 

integrated moving average (ARIMA), autoregressive conditional heteroskedasticity 

(ARCH), and generalized autoregressive conditional heteroskedasticity (GARCH) are used 
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to predict stock prices. Out of these methods, ARIMA is one of the most frequently used 

statistical methods for time series analysis (Hiransha et al., 2018). The close prices may have 

an autoregressive component in stock time series data (Paper et al., 2011a). Consequently, 

ARIMA may have the potential for short-term prediction and can compete with other 

techniques (Adebiyi et al., 2014). However, ARIMA is generally not preferred in predicting 

financial time series. Due to the non-linear and non-stationary nature of stock prices, it is 

difficult to model the stock time series with these models (Kazem et al., 2013). 

Hence, machine learning methods such as ANN and SVM are gaining importance 

due to their capabilities to solve non-linear patterns. Pai & Lin (2005) compared the ARIMA, 

SVM, and hybrid ARIMA-SVM models. They evaluated these models based on Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error 

(MAPE), and Root Mean Square Error (RMSE). They concluded that the hybrid ARIMA-

SVM model is more promising than the individual ARIMA and SVM models. McNally et 

al. (2018) experimented with LSTM and ARIMA using the Bitcoin time series data. They 

determined that LSTM achieved an accuracy of 52% and an RMSE of 8%. They also 

compared their results with ARIMA’s and discovered that ARIMA performed poorly.  

For time series data, parametric models such as ARIMA are often robust. However, 

these models do not perform well in the case of highly dynamic and noisy financial time 

series. Qian and Gao (2017) examined the performance of ARIMA and machine learning 

models such as SVM, Logistic Regression, Multi-Layer Perceptron, and denoising 

autoencoder. He utilized three index prices: the DOW 30, the S&P 500, and the Nasdaq. He 

discovered that machine learning models are far superior to ARIMA. 
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Wijaya et al. (2010) analyzed the models of ANN with ARIMA on financial time 

series. They took a daily closing price of 2 months for the prediction. RMSE and MAE were 

used to evaluate the models. They found that ANN has a smaller error than ARIMA. Du 

(2018) compared a hybrid model of ARIMA and Back Propagation Neural Network 

(ARIMA-BPNN) with an individual model of ARIMA and BPNN. He chose the Shanghai 

Securities composition index for prediction and took the data for around one year. He found 

that ARIMA-BPNN accuracy was better than BPNN. Similarly, BPNN outperformed 

ARIMA in terms of accuracy. 

Paper et al. (2011b) demonstrated the effectiveness of the ARIMA intervention model 

in financial time series analysis and forecasting. They asserted that the ARIMA intervention 

model could predict stock index prices. Khashei and Hajirahimi (2019) compared the hybrid 

models ARIMA-MLP and MLP-ARIMA with the individual component models ARIMA and 

MLP (Multiple Layer Perceptron). They predicted the stock index prices of the Dow Jones 

Industrial Average (DJIA), Shenzhen Integrated Index (SZII), and Nikkei 225 (NI225). The 

performance of models was assessed using MAE, MSE, MAPE, and RMSE. They concluded 

that one of the hybrid models always performed better than the individual component 

models, i.e., ARIMA and MLP.  

Ince and Trafalis  (2008) examined the performance of SVR, MPL, and ARIMA. 

They designed two trading techniques after selecting ten stocks from the National 

Association of Securities Dealers Automated Quotations (NASDAQ). These trading 

strategies were based on technical indicators such as Exponential Moving Averages (EMA), 

Moving Average Convergence and Divergence (MACD), Relative Strength Indicator (RSI), 



                           Chapter 2 

30 

 

Bollinger Bands (BB), and Chaikin Money Flow (CMF). Based on RSME, they determined 

that the performance of SVR was superior to MLP and ARIMA. However, different trading 

strategies produced different results.   

Kazem et al. (2013) proposed a hybrid SVR model employing the firefly algorithm 

based on chaos mapping and metaheuristic optimization. The authors predicted the stock 

prices of three stocks on the NASDAQ: Microsoft, Intel, and National Bank. They compared 

the proposed model with hybrid genetic algorithm-based SVR (SVR-GA), firefly algorithm-

based SVR (SVR-FA), Artificial Neural Networks (ANN), chaotic genetic algorithm-based 

SVR (SVR-CGA), and adaptive neuro-fuzzy inference systems (ANFIS). Based on 

evaluation parameters such as MSE and MAPE, the authors concluded that the proposed 

hybrid model is superior to other compared models.  

Chen et al. (2022) tested the performance of their LSTM model on China’s 

commercial bank stocks. They predicted the price of stocks for the mid and long-term. They 

compared their model with MLP, SVM, and Generalized Auto-Regressive Conditional 

Heteroskedasticity (GARCH). Based on evaluation using R-Square, MAE, and MSE, they 

concluded that their model had superior generalization ability compared to other models. 

Yeh et al. (2011) presented a Multiple Kernel Support Regression (MKSVR). This model 

did not require the user to configure the free parameter of MKSVR manually. Using multiple 

kernels, the model itself optimized the parameter. They compared the model with Single 

Kernel Support Vector Regression (SKSVR) and ARIMA. Based on RSME, they concluded 

that their proposed model outperformed other models. Al Galib et al.  (2014) used the hidden 
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Markov model and nearest neighbor algorithm and concluded that their algorithm could 

predict price fluctuations on a given day. 

Hence, most of the literature focuses on ARIMA and neural network models, and 

very few studies compare ARIMA with SVM or SVR. Further, most of the studies focus on 

predicting next-day prices (Zhang et al., 2019; Wu et al., 2021; al Galib et al., 2014). A study 

on the comparison of ARIMA and SVR to predict stock index prices in developed and 

emerging economies has not been observed. The study evaluates the performance of static 

and iterative models of ARIMA and SVR. Static models forecast the long-term price at once 

for more than 1 year. In contrast, iterative models predict the next day’s price and retrain the 

models before predicting the next period’s price. Furthermore, to evaluate the prediction 

power, the static and iterative models of ARIMA and SVR are evaluated using the baseline 

Naïve models of prediction for NIFTY, Dow Jones Industrial Average (DJIA), DAX 

performance index (DAX), Nikkei 225 (NI225), and Shanghai Stock Exchange (SSE) 

composite index.  

2.4 Support Vector Regression (SVR) 

Another common machine-learning algorithm for stock prediction is SVM (Kurani 

et al., 2023). LSTM and SVM are highly effective for predicting stock price movements 

(Kara et al., 2011). While LSTM utilizes memory cells and gates to manage time-based 

connections between data points, SVM is a kernel-based algorithm that identifies the optimal 

hyperplane for class separation. SVR, a variation of SVM, is used for regression tasks and 

aims to find a hyperplane that fits the data closely with an acceptable degree of error rather 

than dividing it into distinct classes like SVM.  
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Zou et al. (2022) proposed a Twin Support Vector Machines (TWSVM) prediction 

model. They employed thirteen indicators, extracted from historical data, as input features 

to predict the next day’s stock direction. A comparison was made between the TWSVM 

predicting model and five other models, including decision tree, Naive-Bayes, RF, 

probabilistic neural network (PNN), and SVM. The results indicated that the TWSVM 

prediction model surpassed the other models in terms of predicting stock price and index 

daily movement. Doroudyan and Niaki (2021) proposed a novel method based on an SVM 

for detecting upward and downward shifts in auto-correlated financial processes modeled by 

the Autoregressive Moving Average-Generalized Autoregressive Conditional 

Heteroskedasticity time series model. The authors identified specific features that can 

capture various characteristics of the patterns, which helps detect shifts in financial 

processes. 

The SVM and SVR are frequently used with hyperparameter optimization techniques 

such as grid search (GS), randomized search, or Bayesian optimization to find the best 

combination of hyperparameters for the given dataset and problem. These techniques help 

to efficiently search through the large hyperparameter space and find the best model 

configuration that can lead to better performance and reduce overfitting. Dash et al. (2021) 

introduced a novel ML approach for time series stock forecasting using a fine-tuned version 

of SVR (FT-SVR). The authors used the grid search technique to find the fine tuned 

hyperparameters of SVR from the training set and validated them on separate data. The 

proposed method, FT-SVR, predicted stock prices from eight large-sized datasets from 

various domains. The authors compared the FT-SVR with similar methods using RMSE and 



                           Chapter 2 

33 

 

MAPE, which demonstrated that the proposed approach was more accurate in predicting 

stock performance for the utilized datasets and required less time compared to other 

methods. Mahmoodi et al. (2022) utilized SVM with PSO to improve the classification. They 

compared the performance of SVM-PSO with two other meta-heuristic algorithms, namely 

the NN and the SVM-Cuckoo Search (SVM-CS) algorithm. The results indicated that SVM-

PSO outperformed SVM-CS and NN algorithms.  

The genetic algorithm (GA) possesses the capability to handle large-scale 

optimization problems and maintain diversity in the population, which helps prevent 

premature convergence. Furthermore, genetic algorithms are computationally efficient and 

can rapidly converge to the optimal solution. Therefore, Genetic algorithm is also frequently 

utilized to search for the best combination of hyperparameters of SVM or SVR, such as the 

kernel type, regularization parameter, and kernel coefficient, that minimize the error of the 

SVR model on a validation set.  Li and Sun (2020) presented a predictive model combining 

kernel parameters and optimization with the SVM model. The authors employed mesh 

search, genetic algorithm, and PSO to optimize SVM parameters. The results indicated that 

optimizing SVM parameters enhanced prediction accuracy. Among the different approaches, 

the genetic algorithm (GA) with the radial basis kernel (RBF) function demonstrated the 

highest performance for stock market forecasting. The PSO was slightly less effective than 

the GS method. Comparison experiments demonstrated that the BP neural network was less 

accurate than the SVM in predicting the stock market.  

Similarly, for deep learning models, a genetic algorithms can also be used to optimize 

parameters such as the number of hidden layers, the number of nodes per layer, the activation 
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function, and the learning rate, among others. Gao et al. (2022) proposed a deep learning 

approach that combined genetic algorithms to predict the overnight return direction of the 

stock market indices. The method utilized global stock market indices as an information 

source and employed multiple convolutional units to extract features from all regions. The 

model was optimized and applied to forecast the overnight return directions of nine global 

stock indices. The results showed that the proposed model performed better than other 

competing methods in terms of accuracy, F-measure, and Sharpe ratio. 

 Solares et al. (2022) presented a comprehensive decision support system that was 

proposed for the management of stock portfolios that addressed the forecasting of price, the 

selection of stock, and the optimization of the stock portfolios. The system utilized ANNs, 

differential evolution, and GA in different stages. The authors evaluated the system using 

historical data from the S&P 500 index and compared it to multiple benchmarks. The results 

demonstrated superior performance compared to the benchmarks. Thakkar and Chaudhari 

(2022) proposed a method based on GA and information fusion, called inter-intra crossover 

and adaptive mutation (ICAN), for predicting stock prices and trends. The study proposed a 

method to optimize the parameters and feature selection of an LSTM model using a genetic 

algorithm with ICAN. Their method outperformed existing GA-based optimization 

approaches in terms of MSE, MAE, MAPE, and R2 score. Another proposed algorithm used 

hybridized genetic algorithm-machine learning regressions for feature selection, achieved a 

parsimonious feature subset for interpretability, and improved the average forecasting 

RMSE.  
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Lv et al. (2022) predicted the price of multiple stock indices. They proposed a new 

hybrid model called CEEMDAN-DAE-LSTM for stock index prediction. They conducted 

experiments using a dataset consisting of two emerging market indices and four developed 

market indices. The model showed superior performance in both prediction accuracy and 

stock index trends, particularly for stock indices with higher volatility, compared to other 

reference models. Table 2.1 shows some recent studies with prediction durations. 

Table 2.1 Prediction durations of recent studies 

Study Dataset Input Features 
Prediction 

Methods 

Evaluation 

Metrics 

Prediction 

Duration 

(Kanwal et 

al., 2022a) 

Crude Oil, 

German 

stock 

index 

(DAX) 

Historical data 
Hybrid DNN, 

LSTM, CNN 
RSME, MAE Daily 

(Chaudhari 

& Thakkar, 

2023) 

Korean 

Index and 

Individual 

Stocks 

Historical data, 

Technical 

Indicator, Google 

trend 

BPNN, LSTM, 

GRU, CNN 

MAE, MSE, 

Accuracy, R2 
Daily 

(Yun et al., 

2021) 

Korean 

Index 

Historical data, 

Technical 

Indicators 

Hybrid GA-

XGBoost 
Accuracy Daily 

(Dash et al., 

2021) 

State Bank 

of India 

Historical data, 

Technical 

Indicators 

SVR RMSE, MAPE Daily, Monthly 

(Kaczmarek 

& Perez, 

2022) 

Portfolio Macro-economic Random Forest 
Sharpe and 

Calmer ratio 
Monthly 

(Lu et al., 

2021) 

SSE 

Composite 

Index 

Historical data 
Hybrid CNN, 

BiLSTM 

RMSE, MAE, 

R2 
Daily 

 

Thus, most of the study focuses on predicting next-day prices or directions (Nazareth 

& Reddy, 2023). Some studies focus on short-term prediction but there is a lack of emphasis 
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on long-term prediction which is an important area for financial time series forecasting. To 

address this gap, the study proposes a method that utilizes SVR and GA, which can benefit 

investors and analysts seeking a longer-term view. To enhance the accuracy of our method, 

the study employs rolling forward validating GA fitness function. As few studies have 

focused on experimenting with their models on multiple global indices, this study 

experiments with the proposed method on multiple global indices. Additionally, the study 

compares the model with grid search-based SVR, genetic algorithm-based SVR, and LSTM. 

2.5 Deep Learning (DL) 

Deep learning is emerging field, which is capable of solving complex problem. Deep 

Neural Networks (DNNs) are feedforward neural networks, meaning they process input data 

in one direction, from the input layer through one or more hidden layers, to the output layer. 

Singh et al. (2017) aimed to demonstrate that deep learning can enhance the accuracy of 

stock market forecasting. The study compared the performance of (2D)2PCA + Deep Neural 

Network (DNN) with 2-Directional 2-Dimensional Principal Component Analysis 

(2D)2PCA + Radial Basis Function Neural Network (RBFNN) and found that the proposed 

method outperformed the RBFNN method, with an improved accuracy of 4.8% for hit rate 

with a window size of 20. The proposed model was also compared with Recurrent Neural 

Network (RNN) and showed an improved accuracy of 15.6% for hit rate. Additionally, the 

correlation coefficient between actual and predicted returns for DNN was found to be 17.1% 

higher than RBFNN and 43.4% better than RNN.  

Kanwal et al. (2022b) proposed a hybrid deep learning (DL) model for the timely 

and efficient prediction of stock prices. The proposed model, BiCuDNNLSTM-1dCNN, 
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combined Bidirectional Cuda Deep Neural Network Long Short-Term Memory and a one-

dimensional Convolutional Neural Network. The model was compared with other hybrid 

DL-based models and state-of-the-art models using five stock price datasets. The results 

indicated that the proposed hybrid model was accurate and reliable for supporting informed 

investment decisions.  

RNNs are designed to handle sequential data that has temporal dependencies, such 

as time series data or natural language processing tasks. Liu et al. (2020) proposed two 

attention-based RNN models, DSTP-RNN and DSTP-RNN-Ⅱ, for long-term and 

multivariate time series prediction. These models were found to outperform state-of-the-art 

methods and provided insights for further exploration of attention-based methods in time 

series prediction. Ranjan and Mahadani (2022) compared LSTM, bi-directional LSTM, and 

RNN models with univariate and multivariate features to predict stock prices. The study 

found that the recurrent neural network approach had the highest accuracy with both 

univariate and multivariate features. The performance was evaluated using root mean square 

error and mean square error as criteria. Naik et al. (2019) proposed an RNN with recurrent 

dropout model to avoid overfitting and used stock returns based on closing prices as input 

to the model. Data was collected from NSE India, and the proposed model outperformed a 

feed-forward artificial neural network in terms of error minimization. 

RNNs suffer from the problem of vanishing and exploding gradients, which can 

make it difficult to train the model effectively. LSTMs overcome the vanishing gradient 

problem in RNNs. Gülmez (2023) developed a deep LSTM network with the Artificial 

Rabbits Optimization (ARO) model (LSTM-ARO) to predict stock prices using DJIA index 
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stocks. Four other models, one ANN and three LSTM, including one optimized by Genetic 

Algorithm (GA), were compared with LSTM-ARO using MSE, MAE, MAPE, and R2 

evaluation criteria. The results indicate that LSTM-ARO outperformed the other models. 

Budiharto (2021) experimented with LSTM and found it to be a reliable predictor for short-

term data with an accuracy of 94.57%. It was observed that using a shorter training period 

of 1 year with high epochs produced better results than using 3-year training data. Rather 

(2021)  implemented a new regression scheme on an LSTM-based deep neural network to 

construct a predicted portfolio. The author conducted a large set of experiments using stock 

data of NIFTY-50 obtained from the National Stock Exchange of India. The results indicated 

that the proposed model outperformed various standard predictive and portfolio optimization 

models. 

Bi-LSTM has an additional LSTM layer that processes the input data in reverse order. 

Lee et al. (2022) proposed an attention-based BiLSTM (AttBiLSTM) model and applied it 

to trading strategy design. The model is evaluated with various technical indicators (TIs), 

including a stochastic oscillator, RSI, BIAS, W%R, and MACD. Two trading strategies 

suitable for deep neural networks (DNNs) are also proposed and verified for their 

effectiveness. The study introduces five well-known TIs and demonstrates the highest 

accuracy of 68.83% in predicting stock trends. Additionally, the concept of exporting the 

probability of the deep model to the trading strategy is introduced, resulting in the highest 

return on investment of 42.74% on the back test of Yuanta/P-shares Taiwan Top 50 ETF 

(TPE0050).  
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GRU has fewer parameters to train compared to LSTM. Hamayel and Owda (2021) 

proposed and compared three recurrent networks (RNN) models for predicting 

cryptocurrency prices: LSTM, bi-LSTM, and GRU. The models were evaluated using the 

Mean Absolute Percentage Error (MAPE). Results showed that the GRU model 

outperformed LSTM and bi-LSTM for all three cryptocurrencies (Bitcoin, Ethereum, and 

Litecoin), with the lowest MAPE percentages. The bi-LSTM model had the highest 

prediction error. Overall, the proposed models showed accurate predictions of 

cryptocurrency prices. 

CNN has given less emphasis to forecast stock prices. Generally, CNN is used for 

computer vision, but recently it has been applied for stock time series forecasting as well. 

Khodaee et al. (2022) developed a hybrid model consisting of a CNN and LSTM to forecast 

Turning Points (TPs) in stock prices. The model first classified each day in the time series 

as a TP or Ordinary Point (OP) and used a balancing approach to have a balanced number of 

TPs and OPs. Technical indicators were then converted into 2D images to consider the 

relationship between them, and the Fuzzy C-Means algorithm was applied to segment the 

inputs and aid training efficiency. A classification hybrid CNN-LSTM-ResNet model was 

proposed to forecast TPs and OPs, and augmentation techniques, including Residual 

Networks (ResNet), were employed. The proposed model outperformed other benchmarks 

with an average accuracy of 60.19% in the Dow-30 and 63.62% in ETFs, achieving a profit 

of up to three times in the Dow-30 and up to four times more than the Buy and Hold strategy 

in ETFs. 
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Using deep learning for financial time series stock forecasting, the majority of 

research focuses on short-term prediction. Specifically, the studies have primarily focused 

on predicting prices for the next day (Nazareth & Reddy, 2023). This short-term emphasis 

on prediction has created a gap in the literature. In this study, this gap is addressed by 

predicting long-term prices. Additionally, most studies have experimented with a single 

index. However, this study used the historical daily price of the top five global economies' 

indices and predicted the daily price for the next year at once, providing investors and traders 

with a long-term market outlook to make informed investment decisions and improve risk 

management. Furthermore, this study exhaustively experimented with six deep learning 

models, namely DNN, RNN, LSTM, Bi-LSTM, GRU, and CNN, to forecast long-term stock 

prices. This extensive research differentiates this study from other studies. 

2.6 Research Gap 

The existing literature in stock market forecasting has primarily focused on specific 

indices or baskets of stocks, mainly in developed economies, limiting their effectiveness in 

predicting multiple global market indices with different dynamics. Furthermore, studies have 

prioritized accuracy improvement in predicting stock prices without considering overall 

returns. To address these gaps, this study introduces a novel hybrid LSTM model that 

incorporates technical indicators to predict multiple indices globally with a focus on 

improving returns and reducing risk. The model is compared against other LSTM models 

and a passive buy-and-hold strategy. There is also less focus on comparing the model's 

performance in emerging and developed economies. Hence, this study evaluates the 

performance of static and iterative models of ARIMA and SVR in emerging and developed 
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economies, where static models forecast long-term prices and iterative models predict next-

day prices. 

The focus of most of the studies is on the short term, varying from a day to a month. 

The study also addresses the limited emphasis on long-term prediction using machine 

learning techniques by proposing an approach that incorporates SVR and GA. Additionally, 

there is a lack of clarity on the suitability of deep learning algorithms for long-term 

prediction. This study compares the forecasting abilities of six deep learning models, namely 

DNN, RNN, LSTM, Bi-LSTM, GRU, and CNN, in predicting long-term prices, establishing 

the study's distinctiveness through comprehensive research methodology. 

2.7 Research Questions 

Inspired by the identified gaps in the existing literature, this study aims to address 

these shortcomings and provide valuable insights by answering the following research 

questions: 

1) Can an LSTM and Technical Analysis-based model improve the returns of global 

stock indices compared to the buy-and-hold strategy? 

2) What is the performance difference between statistical techniques, such as ARIMA, 

and machine learning models, namely Support Vector Regression, in predicting 

global stock indices in both emerging and developed economies for the long and 

short term? 

3) Can an evolutionary algorithm and a Support Vector Regression-based model 

improve the prediction of long-term prices of global stock indices over state-of-the-

art machine learning algorithms? 
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4) What is the level of performance of different deep learning models in predicting 

global stock indices over the long-term? 

 

2.8 Research Objectives 

The research objectives are designed to investigate and accomplish the following key 

goals: 

• RO1: To develop a model based on LSTM and Technical Analysis to improve 

the returns of global stock indices  

• RO2: To compare the performance of statistical techniques such as ARIMA and 

machine learning models such as Support Vector Regression in predicting global 

stock indices in emerging and developed economies 

• RO3: To develop a model to predict long-term prices of global stock indices 

using a Genetic Algorithm and Support Vector Regression 

• RO4: To compare the performance of the deep learning models in predicting 

global stock indices over the long-term. 
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2.9 Publications 

Table 2.2 presents a mapping of the publications with their respective research 

objectives. 

Table 2.2. Publications 

RO Publication Status Index 

RO1 

Beniwal, M., Singh, A., & Kumar, N. "Alternative to Buy-

and-Hold: Predicting Indices Direction and Improving 

Returns Using a Novel Hybrid LSTM Model." 

International Journal on Artificial Intelligence Tools 

(2023).  

Accepted SCIE 

RO2 

Beniwal, M., Singh, A., & Kumar, N. " A comparative 

study of static and iterative models of ARIMA and SVR to 

predict stock indices prices in developed and emerging 

economies." International Journal of Applied Management 

Science (2023) 

Accepted 

Scopus 

and 

ESCI 

RO3 

Beniwal, M., Singh, A., & Kumar, N. (2023). Forecasting 

long-term stock prices of global indices: A forward-

validating Genetic Algorithm optimization approach for 

Support Vector Regression. Applied Soft Computing, 

110566. 

Published SCIE 

RO4 

Beniwal, M., Singh, A., & Kumar, N. "Forecasting 

Multistep Daily Stock Prices for Long-Term Investment 

Decisions: A study of Deep Learning models on Global 

Indices." 

Communicated   
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3. Trading Framework using  

LSTM and Technical Analysis 

3.1  Overview 

Predicting stock direction is a complex and challenging task and stock prices time 

series are extremely noisy. Moreover, the widely accepted academic theories, such as the 

efficient market hypothesis and random walk theory, state that it is impossible to consistently 

generate excess returns over a long-term horizon than the market. However, some 

researchers suggest that the market does have a predictable component. Neural networks 

have a remarkable ability to generalize and predict non-linear and complex data. In this 

study, daily indices data, namely the Dow Jones Industrial Average (DJIA), Nifty Index 

(NIFTY), DAX performance index (DAX), Nikkei 225 (NI225), and SSE Composite Index 

(SSE), of the top five economies of the world, is used for analysis. 

This study experimented with multiple LSTM models, two standards (LSTM and 

LSTM-o), and three newly constructed (fma-LSTM-o, atr-LSTM-o, and a-m-LSTM-o), to 

predict the next-day direction of the indices. Based on the predicted directions, the standard 

models LSTM and LSTM-o returned -7% and 70%, respectively, for the testing period of 

around 15 years. On the other hand, the new models fma-LSTM-o, atr-LSTM-o, and a-m-

LSTM-o yielded returns of 76%, 173%, and 172%, respectively. The study also proposes a 

hybrid LSTM model (a-m-LSTM-o), which improves the returns over the standard LSTM 

models, reduces the number of transactions, and beats the buy-and-hold return. The number 

of transactions for standard models LSTM and LSTM-o is around 90 and 98 per year, 
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respectively; on the other hand, the proposed model has only around 1 transaction per year. 

The buy-and-hold return for the portfolio of five indices is 139%, while the proposed model 

return is 172%. Moreover, the drawdown of the proposed model (-49%) is also better than 

the buy-and-hold (-51%). Hence, the proposed model also reduces the risk. Therefore, the 

proposed model is a good alternative to the conventional approach of an investor. 

3.2  Background 

There is a famous story to explain the efficient market hypothesis. Once, a professor 

was walking down the road with a student. The student saw a $100 bill. When he moved 

ahead to pick it up, the professor told him not to worry about that $100 bill because if it were 

real, then it wouldn’t be here. Similarly, the efficient market hypothesis argues that no excess 

returns are available for a novice or a professional by predicting the market. In the words of 

Ellis (1975) actively trying to beat the market is “The Loser’s Game.” The only way to earn 

higher returns is to accept higher risk (Malkiel, 2003a). The efficient market hypothesis does 

not rule out the possibility of someone making higher returns. It says that someone might be 

lucky to make higher returns, just as someone might be unlucky to make lower returns in the 

market. However, the simple story cannot describe the complex dynamics of the stock 

market. The story assumes that a person’s behavior in normal and panic conditions is 

rational. It implies that no one would leave a $100 bill, even in a panic situation. Similarly, 

the efficient market hypothesis assumes that the whole market is perfectly efficient and 

leaves no scope for excessive returns. However, it might not always be the case. The flash 

crash in the Dow Jones in 2010 led Accenture to trade at nearly zero valuation for a $0.01 

price (Mcinish et al., 2014). In 2020, the world market crashed due to fear of COVID-19. 
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These events create doubt that the stock market is always efficient. Sometimes there is panic 

in the stock market, which might offer an opportunity to buy stocks at lower prices. To 

perform well in the stock market, one needs to develop an algorithm that, with low risk, is 

able to achieve high returns (Nobre & Neves, 2019). This study aims to experiment with 

machine learning techniques and technical analysis to create a model that conservatively 

shorts the indices when the market might panic and aggressively looks to buy back the 

indices at a lower price when the market might rise again. 

Stock markets are affected by many interlinked factors, such as macroeconomic, 

geopolitical, exchange rate, commodity price, global stock markets, and the psychological 

behavior of traders. In addition, unseen events such as war breakouts, tsunamis, earthquakes, 

etc. may affect stock markets. These events impact a country’s economy and may reduce the 

profitability of certain companies. The stock market is one of the riskiest investments. At the 

same time, it can generate significant returns. Investors, traders, and economists have 

immense interest in stock markets. They desire maximum returns with minimum risk. 

Predicting the stock market is an arduous task. Additionally, a time series of stock prices is 

extremely noisy. An accurate prediction of stock prices could be highly fruitful. The efficient 

market hypothesis and random walk theory indicate that predicting the stock market is futile. 

It is impossible to time the market because all the information is already reflected in the 

stock price. However, some studies also favored some predictability and provided evidence 

that the stock market may not necessarily obey the random walk hypothesis and the efficient 

market hypothesis (Fama & French, 1988; Gregory Mankiw et al., 1991; Jegadeesh & 

Titman, 1993; Lo & MacKinlay, 1998; Poterba & Summers, 1988).  
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Stock market analysis can be categorized into four groups: fundamental analysis, 

technical analysis, statistical analysis, and soft computing techniques. Fundamental analysis 

focuses on macroeconomic data, the Industrial outlook, a company’s financial position, 

management, corporate governance, etc. A fundamental investor aims to arrive at the stock’s 

intrinsic price. This intrinsic price is then compared with the security’s current price to 

evaluate whether the security is undervalued or overvalued. A fundamental investor buys an 

undervalued stock with a strong potential to grow multi-fold in the long-term horizon. In 

contrast to fundamental analysis, technical analysis uses historical price and volume data to 

determine future returns. 

Even though technical analysis is applied to all assets these days, it was originally 

developed in the context of the stock market (Neely et al., 1997). Technical analysis assumes 

that historical patterns repeat themselves. It is a study of past price patterns to predict future 

prices (Achelis & Steven, 2013). Traders who rely on technical analysis use technical 

indicators such as moving averages (MA), relative strength indicators (RSI), stochastic 

oscillators, average directional index (ADX), trendlines, etc., to predict whether the price of 

the stock will increase or decrease. Accordingly, they take a long or short position in the 

stocks. Brock et al. (1992) analyzed 90 years of historical data on American stock prices. 

They found that investment returns are higher when investors use technical analysis than the 

buy-and-hold (B&H) strategy. Although many indicators are available, it is difficult to find 

the daily or weekly trend of the stock market (Ticknor, 2013). Moreover, these technical 

analyses are self-destructive (B. Qian & Rasheed, 2007). Once a profitable strategy is known 

publicly, the opportunity soon vanishes. 
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In recent years, machine learning algorithms have been explored to predict the stock 

market (Gerlein et al., 2016). Although stock prices are inherently very noisy and extremely 

difficult to predict, many prediction algorithms claim that stock price movements can be 

predicted to some extent. Some of the well-known algorithms of machine learning are 

Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), and Support Vector 

Machines (SVM). Other algorithms are K-Nearest Neighbor, Random Forest, Decision Tree, 

Logistic Regression, etc. ANNs are able to solve many problems due to their robustness, 

non-linear mapping, and memory ability.  

Some studies are able to obtain higher returns than the buy-and-hold benchmark (A.-

S. Chen et al., 2003; Gu & Peng, 2019). Considering the advancement in machine learning 

capabilities, asset management companies and investment banks are increasing their 

research grants as there is an opportunity for potential profit powered by capable deep 

learning models (Jiang, 2020). CNN is used to analyze visual and speech-type data. 

Traditional neural networks are feed-forward neural networks. RNN is a feedback neural 

network; it stores prior data in memory, making it ideal for sequential data but it suffer from 

vanishing and exploding gradient problems. However, long-term processing memory is 

irrelevant in some cases. LSTMs are a form of RNN that forgets no longer relevant 

memories. 

This study experiments with traditional LSTM models and a hybrid LSTM model. 

These models combine LSTM with technical analysis. Technical analysis helps smooth 

prices and reduce noise. It also generates buy or sell signals. An LSTM learns these patterns 

of buy and sell signals and predicts the future direction of the indices. Overall, this study 
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experiments with five LSTM models. Out of the five models, two are standard LSTM 

models, and three are hybrid models using technical indicators such as Moving Averages 

(MA), Average True Range (ATR), or Momentum (MOM). Five indices are taken from 

different economies, such as the USA, Germany, Japan, India, and China. The USA, 

Germany, and Japan have developed economies, whereas India and China are emerging 

markets. 

The contributions of the study are as follows: 

(1) The performance of multiple LSTM models is compared using nearly 15 years of 

data from different economies. 

(2) Online LSTM models are combined with technical analysis to improve returns 

and reduce transactions compared to traditional LSTM models. 

(3) The proposed hybrid model is tested to demonstrate that it outperforms traditional 

LSTM models. 

(4) The performance of the proposed hybrid model is also compared to the buy-and-

hold approach. It shows better returns for out-of-sample data and provides an 

alternative to the traditional "buy-and-hold" investor's approach. 

3.3  Proposed Methodology 

3.3.1 Models 

The study experimented with five models, as described in Table 3.1. The models are 

primarily designed to improve returns, while improving classification accuracy is a 

secondary goal. LSTM and LSTM-o are two traditional machine learning models. In this 
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study, they are trained to find a pattern in close prices and predict future movement. Three 

new models, namely fma-LSTM-o, atr-LSTM-o, and a-m-LSTM-o, were created with the 

help of technical indicators. The buy-and-hold model is the sixth model, one of our baseline 

models. Along with the buy-and-hold model, the LSTM and LSTM-o models are also our 

baseline models.  

Table 3.1. Model’s Descriptions 

 

Usually, in the standard LSTM model, data is split into train and test data. The LSTM 

model is trained on a fixed training data set. The prediction is made at once for the rest of 

the test data and evaluated by comparing the prediction and test data. However, this approach 

is static. New data, when it arrives, does not play any role in updating the weights of LSTM. 

Hence, new information coming with new data is lost and does not contribute to predictions. 

S. 
no. 

Model 
Abbreviation 

Model Name Model Description 

1 LSTM Long short-term memory Long short-term memory neural network. Close price 
directions are used as the input. 

 

2 LSTM-o 
Long short-term memory 

online 

The data is added as it arrives, and the model is 
retrained with new data before predicting the future 

direction. 
 

3 fma-LSTM-o 
Four moving averages 

LSTM-online 

Four moving averages of close prices MA5, MA10, 
MA20, and MA50 are used to calculate direction. These 

are then used to train LSTM-o 

4 atr-LSTM-o 
Average True range 

LSTM-online 
The Average True Ranges (ATR) of close prices are 

used to calculate directions that train LSTM-o. 
 

5 a-m-LSTM-o 
Average True range and 

Momentum LSTM online 

The proposed novel model. Directions are derived 
from combined historical momentum (hMoM) and 

Average True Range (ATR) that train LSTM-o 
 

6 B&H Buy-and-Hold 

Traditional investment approach, where an investor 
buys a stock and holds it for the long term. It is treated 

as a special case where the prediction model always 
gives a buy signal. 
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Consequently, in dynamic conditions such as the stock market, the LSTM model may 

quickly become obsolete.  

In LSTM-o, an online LSTM, when new data arrives in this model, the model can 

retrain itself to update the weights dynamically. The model adds the new data iteratively in 

a Last Come, First Out (LIFO) manner and predicts the next day’s direction. Once the 

LSTM-o model predicts the next day’s direction, the original data of the next day is available 

to the model for retraining. This way, the model is still using historical data to predict the 

future, but with the advantage of updated information from new data.  

3.3.2 LSTM 

Long Short-Term Memory (LSTM), a type of RNN, overcomes the problem of the 

vanishing gradient that is common in traditional RNNs. Hochreiter and Schmidhuber (1997) 

introduced LSTM to address this problem of RNNs. LSTMs are specifically designed to 

acquire and preserve sequential relationships in time-series data over an extended period of 

time. An LSTM unit comprises two states and three gates, with the gates regulating the 

information flow into and out of the cell state while the states preserve the internal memory 

of the LSTM. Figure 3.1 shows the LSTM unit. 

Input Gate: The input gate uses a sigmoid function to decide the weights of each 

value in the current input and adds the weights to the cell state. The sigmoid function 

produces an output range of values between 0 and 1. 

 

 



                           Chapter 3 

52 

 

 

 

Figure 3.1 LSTM Unit 

Forget Gate: The forget gate assesses which elements of the previous cell state 

should be retained or discarded, and the amount to forget is determined by a sigmoid 

function, which produces an output range of values between 0 and 1. 

Output Gate: The output gate determines which weights from the cell state should 

be output to compute the next hidden state. The gate uses a sigmoid function and a hyperbolic 

tangent (tanh) function to produce an output value in the range between -1 and 1, indicating 

the importance and strength of each cell state value. 

Cell State: The cell state serves as the internal memory of the LSTM, storing data 

that has been accumulated over time and updated by the input gate and forget gate. 
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Hidden State: The hidden state is the output of the LSTM unit and is utilized for 

forecasting purposes. It is produced by the output gate and is dependent on the present input, 

the prior hidden state, and the current cell state. 

The gates and states of an LSTM unit function in tandem to enable the network to 

selectively preserve or discard data over time, resulting in an efficient tool for analyzing 

sequential data. The hidden state at time t, ht, in an LSTM network is calculated using the 

input at time t, xt, the previous hidden state at time t-1, ht-1, and the cell state at time t-1, ct-

1. The cell state is updated based on xt and ht-1, and the updated cell state, ct, is then passed 

through gates that decide which information to keep and which to discard. The forget gate, 

ft, decides which information to discard from the previous cell state, ct-1, by applying a 

sigmoid function to a linear transformation of xt and ht-1. The forget gate can be expressed 

as in Eq. (3.1):  

𝑓𝑡  =  𝜎(𝑊𝑓 𝑥𝑡 +  𝑈𝑓 ℎ𝑡−1 +  𝑏𝑓) (3.1) 

  

where Wf, Uf, and bf are the weight matrix, recurrent weight matrix, and bias vector 

for the forget gate, respectively. The input gate, it, determines which new information should 

be added to the cell state by applying sigmoid and tanh functions to a linear transformation 

of xt and ht-1. The sigmoid function controls which elements of the input should be updated, 

while the tanh function creates a vector of new candidate values to be added to the cell state. 

The input gate can be expressed as in Eq. (3.2): 
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𝑖𝑡  =  𝜎(𝑊𝑖 𝑥𝑡 +  𝑈𝑖ℎ𝑡−1 +  𝑏𝑖) 
 
�̃�𝑡  = tanh(𝑊𝑐 𝑥𝑡  +  𝑈𝑐ℎ𝑡−1 +  𝑏𝑐) 

 

(3.2) 

 

where Wi, Ui, bi, Wc, Uc, and bc are the weight matrix, recurrent weight matrix, and 

bias vector for the input gate and the candidate values, respectively. The cell state, ct, is 

updated by forgetting old information and adding new information, as in Eq. (3.3): 

 

𝑐𝑡  =  𝑓𝑡  ⊙  𝑐𝑡−1  +  𝑖𝑡 ⊙ �̃�𝑡 (3.3) 

 

Where ⊙ denotes element-wise multiplication, the input gate, it, determines which 

new information should be added to the cell state by applying sigmoid and tanh functions to 

a linear transformation of xt and ht-1. The sigmoid function controls which elements of the 

input should be updated, while the tanh function creates a vector of new candidate values to 

be added to the cell state. The output gate can be expressed as in Eq. (3.4): 

 

𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ𝑡−1 +  𝑏𝑜) 
 
ℎ𝑡  =  𝑜𝑡 ⊙ tanh(𝑐𝑡) 

 

(3.4) 

where Wo, Uo, and bo are the weight matrix, recurrent weight matrix, and bias vector 

for the output gate, respectively. By using these gates, LSTMs are able to selectively retain 

important information from the previous cell state, add new information based on the current 

input, and output relevant information as the hidden state. This enables LSTMs to capture 

long-term dependencies and overcome the vanishing gradient problem of traditional RNNs.  
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3.3.3 Model’s framework 

Figure 3.2 describes the framework of the models fma-LSTM-o, atr-LSTM-o, and 

a-m-LSTM-o. The difference between the fma-LSTM-o, atr-LSTM-o, and a-m-LSTM-o is 

price transformation using technical indicators such as moving averages, average true 

ranges, or a combination of average true range and historical momentum. The framework of 

the models has three stages, namely data preparation, prediction, and evaluation.  

 

Figure 3.2  Prediction Framework 

 

The first stage is data preparation, which includes downloading, pre-processing, and 

transforming the data. The time series data consists of close prices only. The pre-processing 
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step uses the forward-fill method to deal with missing values. Close prices are noisy and 

complex, so it is necessary to smooth them for modeling by appropriate transformation. The 

transformation using technical indicators is appropriate to reduce the noise and generate buy-

and-sell signals. Table 3.2 shows pseudo code of the model’s algorithm. 

Table 3.2 Pseudo Code of Models’ Algorithm 

 

This study further transforms the close prices to represent long or short positions. 

Machine learning algorithms are sensitive to data representation. The prediction 

performance is not only dependent on the algorithm but also on the representation of the 

input (Patel et al., 2015). Hence, this transformation impacts the model’s training, which 

further influences predictions of the directions. Ultimately, price transformation affects 

returns from the index. Using one hot encoding and technical analysis, the final output of 

 Algorithm 
Input: One hot encoded technical indicator value  

 Output: Next day direction  

  Procedure 

  Forward Fill the Close price for missing data 

  Calculate technical indicator value (MAs, ATRs, MoMs) 

  One hot encoding {1,0} of the value obtained from the previous step 

  Reshape the input data (None, 15) and label data (none, 1) 

  Compile LSTM models 
  Model. Sequential() 
  LSTM(512, stateful=True, batch_input_shape( batch_size=20, window_size=15, 
features=1)) 
  Dense(1, activation=sigmoid) 
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

  While (test_data) 
  Train Model 
  Predict Next Day 
  Append original Label to Train data 

  Calculate 
Accuracy, Weighted Precision, Weighted Recall, Weighted F1-Score, Prediction return, 
Prediction drawdown, and the number of transactions 

  Evaluate Models 
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the transformation is a matrix of data containing ones and zeros. The ones and zeros represent 

the direction of the close prices. One represents the close price at the time 𝑡𝑛 is increased 

from the close price at the time  𝑡𝑛−1. Similarly, zero represents the close price at 𝑡𝑛 is 

decreased from the close price at the time  𝑡𝑛−1. 

The second stage is the prediction stage. For supervised learning, the matrix data is 

split at this stage into training and testing data. Next, the training data is fed into the five 

LSTM models. While training, the model tries to minimize the binary cross-entropy loss 

function using the sigmoid activation function. The input parameter values of LSTM models 

are kept the same for all models. Apart from standard LSTM, all other models are online 

models. Only the first 100 days’ data is used for initial supervised training. After the initial 

training, the next day’s indices’ price direction is predicted. If the prediction is one, then a 

long position is taken; otherwise, a short position is taken. The original next day’s direction 

is then added to training data in the Last Come-First Out (LIFO) manner. To update the 

model with the changing stock market conditions, the algorithm fed the data into the models 

in a fixed moving window in which the latest day data was added and the first-day data in 

the moving window was removed. Finally, the online models are then retrained with the 

latest data before the next prediction. This cycle continues until all the predictions are made 

for the testing period.  

Test and prediction data are compared in the final stage. Both have one dimension of 

data containing stock price directions. For evaluation purposes, seven factors are captured: 

accuracy, weighted precision, weighted recall, weighted F1-Score, prediction return, 

prediction drawdown, and the number of transactions (TXNs). Weighted precision, recall, 
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and F-score provide a better view than accuracy in cases of class imbalance. This study 

focuses on increasing returns and reducing drawdown (risk) with a minimum number of 

transactions.  

3.3.4 The Data 

 

The study analyzes five major indices using data from the top five GDPs 

(StatisticsTimes.com, 2020). One index from each country, namely the US, India, Germany, 

Japan, and China. The data is downloaded from Yahoo Finance. Table 3.3 summarizes the 

data.  

 

If the close price of a day is higher than the previous day’s close price, it is a positive 

closing; otherwise, it is a negative closing. For all indices, Positive Closing ranges from 52% 

to 54%, and Negative Closing ranges from 46% to 48%. The number of trading days is kept 

Table 3.3 Index Data Summary 

Country 
Name 

Stock Exchange Index Name 
Index  

Symbol 
Positive 
Closings 

Negative 
Closings 

USA 

New York Stock 
Exchange (NYSE) and 
National Association of 
Securities Dealers 
Automated Quotations 
(NASDAQ) 

Dow Jones 
Industrial 
Average 

DJIA 54% 46% 

INDIA 
National Stock 
Exchange (NSE) NIFTY 50 NIFTY 53% 47% 

GERMANY 
Frankfurt Stock 
Exchange 

Deutscher 
Aktienindex 

DAX 53% 47% 

JAPAN 
Tokyo Stock Exchange 
(TSE) Nikkei 225 

 
NI225 

52% 48% 

CHINA 
Shanghai Stock 
Exchange 

SSE Composite 
Index 

SSE 52% 48% 
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common for all indices. Hence, it is daily data for around 15 years, from 2007 to 2021, 

consisting of 3480 trading days. Figure 3.3 shows the close price movement of all indices. 

 

Figure 3.3 Close Price Timeline 

 

The data from these five countries is very diverse, originating from different 

continents, cultures, and economies. The New York Stock Exchange is the world’s largest 

stock exchange, and its index, the Dow Jones Industrial Average, is one of the oldest indices. 

The USA has a developed economy, and its stock markets are considered highly efficient. 

Japan and China are East Asian countries. Japan is a developed economy, whereas China is 

considered a developing economy. 

Japan’s Tokyo Stock Exchange and China’s Shanghai Stock Exchange are among the 

top exchanges in the world. Germany is a western European developed economy. India is a 

South Asian country. Interestingly, China and India contribute more than 30% of the world’s 



                           Chapter 3 

60 

 

population, and India is the most populated country and an emerging economy. The National 

Stock Exchange is India’s largest electronically traded exchange.  

3.3.5 Technical Indicators 

The raw data is pre-processed for missing or invalid values. Specifically, the forward-

filling method is used, which fills in the missing or invalid values from the previous day’s 

data. The close price is used as input among the available features, such as Open, High, Low, 

and Close prices. For LSTM and LSTM-o, close prices are one-hot encoded. For the novel 

hybrid models, technical indicators such as Moving averages, Average True Range, and 

Historical Momentum or combinations thereof are computed from close prices. One-hot 

encoding is applied after the transformation of close prices from technical indicators. 

Historical momentum is a new and uniquely modified version of the momentum indicator. 

Table 3.4 summarizes technical indicators derived from close prices to create additional 

features. 

Table 3.4 Technical Indicators included in the study 

S. No. Technical Indicator Name Abbreviation 

1 
2 
3 

Simple Moving Averages 
Average True Range 
Historical Momentum  

SMA 
ATR 
hMoM 

 

 

Moving averages (MA) are the averages of the closing price over a specific time 

period. This study uses a simple moving average to smooth the closing prices in a rolling 

window fashion. In the rolling window simple moving average, the simple moving average 

𝑆𝑀𝐴𝑁
𝑛  of the 𝑁𝑡ℎday is updated with the close prices of the latest n days. For example, 
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𝑆𝑀𝐴𝑁
15 refers to 15 day’s simple moving average on the 𝑁𝑡ℎ day. Eq. (3.5) shows the 

calculation over n days. 

𝑆𝑀𝐴𝑁
𝑛 =

𝐶𝑙𝑜𝑠𝑒𝑁−1 + 𝐶𝑙𝑜𝑠𝑒𝑁−2. . +. . 𝐶𝑙𝑜𝑠𝑒𝑁−𝑛

N
 

( 

(3.5) 

 

𝑆𝑀𝐴𝑁
5

=
𝐶𝑙𝑜𝑠𝑒𝑁−1 + 𝐶𝑙𝑜𝑠𝑒𝑁−2 + 𝐶𝑙𝑜𝑠𝑒𝑁−3 + 𝐶𝑙𝑜𝑠𝑒𝑁−4 + 𝐶𝑙𝑜𝑠𝑒𝑁−5

5
 

 

𝑀𝑜𝑀𝑁 =
𝑆𝑀𝐴𝑁

5 − 𝑆𝑀𝐴𝑁−5
5

5
 

 

 

𝑀𝑜𝑀_𝑀𝑖𝑛𝑁 = |𝑀𝑖𝑛{𝑀𝑜𝑀𝑁 , 𝑀𝑜𝑀𝑁−1, . . . , 𝑀𝑜𝑀1}| 

 

 

𝑇ℎ𝑎𝑛𝑘 𝑦𝑜𝑢 𝑓𝑜𝑟 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑜𝑢𝑡. ℎ𝑀𝑂𝑀𝑁

=
𝑝𝑟𝑖𝑐𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑁 ∗ 100

𝑀𝑜𝑀_𝑀𝑖𝑛𝑁
   

 

(3.6) 

 

 

 

(3.7) 

 

 

(3.8) 

 

 

(3.9) 

 

𝐶𝑙𝑜𝑠𝑒𝑁 stands for the close price of the 𝑁𝑡ℎ day. Naughton et al. (2008) found 

substantial profits using momentum strategies in Chinese stocks. They claimed that 

momentum is a pervasive feature of stock returns. The study also uses a modified version of 

momentum, historical momentum (hMoM). Generally, in the stock market, momentum is 

calculated as rolling momentum over a period of time. However, in this study, rolling 

momentum is not calculated. Instead, historical momentum is used. Historical momentum 

has the memory of the momentum of all past days. For example, 𝑀𝑜𝑀_𝑀𝑖𝑛100, in Eq. (3.8), 
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has the absolute minimum momentum over 100 days. This intuitive and innovative 

transformation of momentum helps the models extract important historical information.  

The average true range (ATR) is a volatility-based technical indicator. To determine 

the average true range, first the true range of the indices is determined. True range is the 

maximum of the absolute difference between the High price and Low price, the absolute 

difference between the High price and the previous Close price, and the absolute difference 

between the Low price and the previous Close. The average true range is the moving average 

of the true ranges. Eq. (3.10) and Eq. (3.11) calculate True Range and Average True range, 

respectively. 

𝑇𝑅𝑁 = 𝑀𝐴𝑋 {
|𝐻𝑖𝑔ℎ𝑁 − 𝐿𝑜𝑤𝑁|, |𝐻𝑖𝑔ℎ𝑁 − 𝐶𝑙𝑜𝑠𝑒𝑁−1|,

 |𝐿𝑜𝑤𝑁 − 𝐶𝑙𝑜𝑠𝑒𝑁−1|
} 

                         

𝐴𝑇𝑅𝑁
𝑛 =

𝑇𝑅𝑁−1 + 𝑇𝑅𝑁−2 + ⋯ + 𝑇𝑅𝑁−𝑛

𝑛
 

(3.10) 

 

(3.11) 

 

Trailing ATR (𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
𝑛) is utilized to generate signals of buy and sell indices. 

A Trailing ATR follows the close price if it rises or falls in a trend. First, the average true 

range is multiplied by a factor 𝑛 , and then it is subtracted from the current close price. In 

this study, the maximum trailing price from the last 15 days is the trailing ATR. Eq. (3.12) 

calculates the Trailing ATR. 

𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
𝑛 = 𝑀𝑎𝑥{(𝐶𝑙𝑜𝑠𝑒𝑁 − 𝑛 ∗    𝐴𝑇𝑅𝑁

15),(𝐶𝑙𝑜𝑠𝑒𝑁−1 −
                                            𝑛  𝐴𝑇𝑅𝑁−1

15 ),…., (𝐶𝑙𝑜𝑠𝑒𝑁−15 −  𝑛 ∗    𝐴𝑇𝑅𝑁−14
15 )} 

(3.12) 
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3.3.6 Data Transformation 

Technical indicators help smooth prices. Without smoothing, prices values and 

direction tend to be noisy. Technical indicators transform prices into bigger patterns. There 

are many technical indicators, and it is not feasible to study them all. Hence, selective 

indicators such as Moving averages, Average True ranges, and momentum are taken into 

account for the study. There is no fixed rule on how technical indicators should be used. 

Generally, technical indicators come with some default parameters. Traders or investors can 

change these to adjust according to market conditions. The purpose of most investors or 

traders is to maximize returns with minimum risk. This study uses these technical indicators 

intuitively and innovatively to fulfill these goals. Typically, traders also focus on accuracy. 

This study does not primarily aim to improve accuracy. Hence, in this study, the use of 

technical indicators differs from how they are generally used. 

Both standard models, LSTM and LSTM-o, use close price directions. Close prices 

are one-hot encoded based on Eq. (3.13). Long positions are represented by 1, whereas short 

positions are represented by 0. The ones and zeros matrix is used as input to the LSTM and 

LSTM-o. 

 

One of the critical components of a machine-learning experiment is data 

representation. This study proposes an approach to transform the data to improve the returns 

over the buy-and-hold strategy. In this study, there are three essential aspects of the 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =     { 0, (Closenth – Close(nth-1)) ≤ 0 
1, Elsewhere} 

 

(3.13) 
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transformed data. First, the model should learn to decide where to buy and sell the indices 

based on the historical pattern. Second, the model should also learn to take a short position 

very conservatively with a higher probability of accuracy and maintain a long position 

aggressively. A model must accurately predict the short positions to beat the buy-and-hold 

returns. This study hypothesizes that the stock market is weakly efficient during 

unprecedented events such as Tsunamis, COVID-19, the Russia-Ukraine war etc. These 

events may create panic among some traders and investors, creating selling pressure in the 

stock market. The market falls sharply during such events. Hence, it might be possible to 

predict the downfall of the stock market from historical patterns. Third, along with 

improving returns, investors also aspire to reduce risk. Hence, in this study, the 

representation of the transformed data is such that the models learn to reduce the drawdown 

(risk). However, this happens concurrently when short positions are accurately predicted.  

For fma-LSTM, atr-LSTM-o, and a-m-LSTM-o, technical indicators transform the 

close price direction so that the short position is taken very conservatively and the long 

position is maintained aggressively. Moving averages have been the basic indicators used by 

technical analysts for a long time. Normally, one or two moving averages are used by traders. 

However, this study takes a different approach. Fma-LSTM uses four moving averages, 

namely MA5, MA10, MA20, and MA50. Long and short positions were taken according to Eq. 

(3.14). 
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As shown by Eq. (3.14),  fma-LSTM is highly conservative in taking a short position. 

All moving averages MA5, MA10, M20, and MA50 must be sequentially less than the bigger 

moving average; only then can a short position be taken. On the other hand, when a fast-

moving average such as MA5 crosses above MA10, the long position is taken again. The 

intuition of being conservatively short and aggressively long is to sell in a panic and buy at 

a low price to increase returns. Similarly, in atr-LSTM-o, positions are taken according to 

Eq. (3.15) 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =   { 0, 𝑖𝑓{(𝐶𝑙𝑜𝑠𝑒𝑁  <  𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
1 ) and  

                                (𝐶𝑙𝑜𝑠𝑒𝑁 < 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
4 )} 

                                             1, Elsewhere} 

 

(3.15) 

 

When the close price decreases rapidly and goes below both 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
1  and 

𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔_𝐴𝑇𝑅𝑁
4 , then a short position is taken. If any condition becomes false, the position 

is reversed to long. In the last model, a-m-LSTM-o, average true range, and historical 

momentum were used. Eq. (3.16) describes transformation.  

 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = {             0, 𝑖𝑓(MA5<MA10<MA20<MA50)=True 
                                       1, Elsewhere} 

(3.14)  
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𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = { 0, 𝑖𝑓(ℎ𝑀𝑂𝑀𝑁  < (−50)) 

          1, Elsewhere} 

  

(3.16) 

 

Historical momentum  h𝑀𝑂𝑀𝑁 is negative when the close price decreases compared 

to the previous timeframe. Similarly, it is positive when close prices increase. Negative 

momentum varies from -100 to 0.  

3.3.7 Trading Strategy 

 All models are trained using common parameters of LSTM on five index datasets: 

DJIA, NIFTY, DAX, NI225, and SSE. A single row in the matrix has 16 days of close price 

direction. The column of the matrix is continuous data of directions. The first 15 days’ close 

price direction is used as training input to the LSTM, and the 16th day is the target. The data 

of each index is split into a matrix of train and test sets. The train data set has 100 rows and 

16 columns, and the test data set has 3350 rows and 16 columns. The LSTM model is trained 

on fixed 100 rows for 100 epochs. This model makes predictions at once for all the test data 

of 3350 days. The predictions are an array containing 1 and 0, representing long and short 

positions. Table 3.5 shows the parameters’ values. 

In the second model, LSTM-o is also trained for 100 rows using ten epochs initially. 

Further, once the prediction is made for the next day, the next day’s original direction is 

appended to the moving window training set in Last-In-First-Out fashion (LIFO). 

 

 

 

 



                           Chapter 3 

67 

 

Table 3.5 LSTM models parameter values 

 

The moving window has 20 rows and 16 columns of data. A total of 35 days of data 

are present in a moving window. LSTM-o is again trained on the moving window containing 

20 rows of 15 columns using one epoch only. Importantly, this retrains the model quickly 

and updates the weights by identifying the dynamically changing conditions. This process 

continues until all predictions are made for 3350 days. Similarly, fma-LSTM-o, atr-LSTM-

o, and a-m-LSTM-o are trained like LSTM-o. The only difference from LSTM-o is price 

transformation using technical indicators using Eq. from (3.14) to (3.16). The models’ 

parameters are kept the same to ensure a fair comparison. 

3.3.8 Evaluation Criteria 

Seven performance indicators are captured for comparison and evaluation purposes: 

accuracy, weighted precision, weighted recall, weighted F1-score, prediction return, 

prediction drawdown, and the number of transactions (TXNs). Weighted precision, weighted 

recall, and weighted F1-score are components of a matrix known as the confusion matrix. 

Although improving accuracy is not the primary purpose of the study; still, it provides insight 

Parameter Values 

Activation Sigmoid 

Optimizer Adam 

Loss binary_crossentropy 

Metrics Accuracy  

Stateful True 

Layers 2 

Shuffle False 
 

Batch Size 20 

Input Shape (15, 1) 

LSTM layer Shape (None,512) 

Dense layer Shape (None, 1) 
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into the comparison of the models. As the close prices are one-hot-encoded into ones and 

zeros, the model’s framework predicts the next day’s direction as a classification problem. 

Accuracy is calculated using Eq. (3.17). However, it gives a biased evaluation in case where 

one class in the classification is in the majority. For example, if 80 cases are positive and 20 

cases are negative, then if the model predicts all cases are positive, it still gives 80% 

accuracy. This accuracy of 80% could lead to a biased evaluation. 

Hence, accuracy can be misleading if there is an imbalance between classification 

classes. The confusion matrix’s components, such as precision, recall, and F1-score, take 

class imbalance into account and provide a better evaluation than accuracy. Precision, recall, 

and F1-score are calculated from Eq. from (3.18) to (3.20). 

 

𝑃𝑐1 =
𝑇𝑃𝑐1

𝑇𝑃𝑐1 + 𝐹𝑃𝑐1
  

(3.18) 

𝑅𝑐1 =
𝑇𝑃𝑐1

𝑇𝑃𝑐1 + 𝐹𝑁𝑐1
  

(3.19) 

 

𝐹1𝑐1 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐1

+
1

𝑅𝑒𝑐𝑎𝑙𝑙𝑐1

  

(3.20) 

 

For positive class: 𝑃𝑐1 denotes precision,  𝑇𝑃𝑐1 denotes True Positive,  𝐹𝑃𝑐1 denotes 

False Positives, 𝑅𝑐1 denotes recall, 𝐹𝑃𝑐1 denotes False Positives, and 𝐹1𝑐1 is F1 score 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 100 / 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (3.17) 
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computed as harmonic means of precision and recall. Weighted precision (𝑊𝑝), weighted 

recall (𝑊𝑟), and weighted F1-score (𝑊𝐹1) assign weights according to the ratio of classes 

present in the dataset. They are calculated using Eq. from (3.21) to (3.23). 

 

𝑊𝑐1 𝑎𝑛𝑑 𝑊𝑐2 denotes weights of the first and second classes, respectively. To 

calculate the prediction return, the study compares the original direction of the index with 

the prediction direction in the test data set. For example, suppose the next day’s original 

direction of index price is “1”, and the prediction direction for the next day is also “1”. In 

that case, the next day’s return is added to the cumulative predicted return. Similarly, if the 

prediction direction is opposite to the original direction of the index price, then the actual 

return is subtracted from the cumulative predicted return. Eq. (3.24) and Eq. (3.25) 

summarize cumulative return calculations. 

𝑊𝑝 =
𝑊𝑐1 ∗  𝑃𝑐1 + 𝑊𝑐2 ∗ 𝑃𝑐2

𝑊𝑐1 + 𝑊𝑐2
 

 

(3.21) 

𝑊𝑟 =
𝑊𝑐1 ∗  𝑅𝑐1 + 𝑊𝑐2 ∗ 𝑅𝑐2

𝑊𝑐1 + 𝑊𝑐2
 

 

(3.22) 

𝑊𝐹1 =
𝑊𝑐1 ∗  𝐹1𝑐1 + 𝑊𝑐2 ∗ 𝐹1𝑐2

𝑊𝑐1 + 𝑊𝑐2
 

 

(3.23) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑁 =
𝐶𝑙𝑜𝑠𝑒𝑁 − 𝐶𝑙𝑜𝑠𝑒𝑁−1

𝐶𝑙𝑜𝑠𝑒𝑁−1
 (3.24) 
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Transactions (TXNs) hold a lot of weight for investors or traders to choose between 

alternative strategies. Please note that transaction costs are not calculated in the study. 

Transaction costs vary with time, technology, and government policies, making it difficult 

to accommodate returns accurately. 

3.4  Findings 

3.4.1 Dow Jones Industrial Average (DJIA) 

The Dow Jones Industrial Average (DJIA) is one of the oldest and most studied 

indexes, with a market cap of around $11 trillion. Moreover, some of the world’s largest 

companies are listed on DJIA. This makes the DJIA index an essential index to track for 

traders and investors. In buy-and-hold (B&H), accuracy is treated as a special case of 

prediction, where investors only predict the market going up. Investors hold the investment 

forever after buying it at once. Hence, the number of transactions in the buy-and-hold is 

always 1. Historically, for DJIA, the market went up 54% of the time in the trading duration. 

As the buy-and-hold strategy never predicts the direction downward, the weighted precision 

is drastically low at 30%. Further, the F1 score of the buy-and-hold is 38%. All other models 

show a better F1 score. The LSTM-o model has the best F1 score. However, the return is 

𝑖𝑓{(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑁 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑡𝑢𝑟𝑛𝑁) 

𝑇ℎ𝑒𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑡𝑢𝑟𝑛𝑁 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑡𝑢𝑟𝑛𝑁−1 + 𝑅𝑒𝑡𝑢𝑟𝑛𝑁 

𝐸𝑙𝑠𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑡𝑢𝑟𝑛𝑁 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑅𝑒𝑡𝑢𝑟𝑛𝑁−1 − 𝑅𝑒𝑡𝑢𝑟𝑛𝑁  } 

 

 

(3.25) 



                           Chapter 3 

71 

 

merely 18%, whereas the returns of B&H are 178%. The results of all models are 

summarized in Table 3.6. 

Table 3.6 Index Name: DJIA, Country: USA 

 

The LSTM model predictions are close to random predictions in multiple runs of the 

algorithm. It has the lowest return of “-30%”, and the return varies a lot in every run. The 

return from the model fma-LSTM-o is less than the buy-and-hold. The atr-LSTM-o gives 

the best return of 204%. In terms of return, the a-m-LSTM-o is the second-best with 198%. 

However, the weighted precision score of a-m-LSTM-o is better than atr-LSTM-o. Both atr-

LSTM-o and a-m-LSTM-o beat the buy-and-hold. The return from the a-m-LSTM-o is very 

close to the buy-and-hold. Moreover, a-m-LSTM-o has a lower drawdown of “-44%” 

compared to “-50%” in the buy-and-hold. LSTM and LSTM-o are not viable strategies to 

invest in or trade because of the high number of transactions. Moreover, the returns from 

LSTM and LSTM-o are also significantly lower than buy-and-hold. 

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 52% 50% 50% 49% -30% -95% 1525 

LSTM-o 50% 50% 50% 50% 18% -50% 1602 

fma-LSTM-o 54% 51% 54% 45% 152% -49% 170 

atr-LSTM-o 54% 51% 54% 44% 204% -63% 129 

a-m-LSTM-o 54% 54% 54% 41% 198% -44% 33 

B&H 54% 30% 54% 38% 178% -50% 1 
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3.4.2 Nifty 

 Nifty’s weighted precision for buy-and-hold is 28%. Interestingly, LSTM has nearly 

double the drawdown of buy-and-hold. A drawdown of “-100%” or more is possible in these 

models as they take short positions too. For example, if the model shorts the stock at a price 

of 100 and the price goes to 250, it is a “-150%” drawdown. Similar to the performance of 

LSTM in DJIA, the number of transactions is extremely high, making the model hard to 

implement. The return is merely 15%. After transaction costs, it will reduce a large 

percentage of return. Apart from LSTM, all models give better returns than the buy-and-

hold. atr-LSTM-o has 98% more return than the buy-and-hold. The number of transactions 

is moderate, less than 10 per year for 15 years duration. Similarly, a-m-LSTM-o return is 

66% more than the buy-and-hold. However, it has only three transactions in 15 years. 

Moreover, the weighted precision of the a-m-LSTM-o is 53%, whereas the weighted 

precision of atr-LSTM-o is 51%. The results of all six models for NIFTY are summarized 

in Table 3.7. 

Table 3.7 Index Name: NIFTY 50, Country: India 

 

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 50% 51% 50% 49% 15% -100% 1246 

LSTM-o 52% 52% 52% 52% 247% -29% 1480 

fma-LSTM-o 52% 49% 52% 43% 252% -58% 177 

atr-LSTM-o 53% 51% 53% 43% 344% -40% 139 

a-m-LSTM-o 53% 53% 53% 42% 312% -52% 3 

B&H 53% 28% 53% 37% 246% -52% 1 
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3.4.3 DAX Performance-Index (DAX) 

In DAX, the weighted F1-scores of the models LSTM and LSTM-o are the highest, 

whereas weighted recall is the lowest. Further, like in DJIA and NIFTY, these models have 

a high number of transactions and lower returns than buy-and-hold. The results of all six 

models for DAX are summarized in Table 3.8. 

Table 3.8 Index Name: DAX, Country: Germany 

 

A weighted precision of 58% is the highest for a-m-LSTM-o. Except for a-m-LSTM-

o, all other models have lower returns than buy-and-hold. Further, the a-m-LSTM-o model 

has 80% more return and 11% less drawdown in the DAX. Hence, it yields a higher return 

with lower risk. Moreover, the number of transactions is also low, nearly 1.5 per year. The 

atr-LSTM-o is the second best. 

The return is closer to B&H, but the number of transactions is moderately high. The 

risk is also an essential factor to consider before investing in a model. Drawdowns and 

transactions represent the risk to the investors and traders. Only a-m-LSTM-o and LSTM 

have a lower drawdown than the buy-and-hold. However, a-m-LSTM-o has the least number 

of transactions among all the Neural Network models.  

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 50% 51% 51% 50% 76% -47% 1132 

LSTM-o 50% 50% 51% 50% -13% -103% 1351 

fma-LSTM-o 53% 50% 53% 44% 66% -69% 213 

atr-LSTM-o 53% 50% 53% 42% 135% -57% 138 

a-m-LSTM-o 54% 58% 54% 38% 220% -38% 22 

B&H 53% 28% 53% 37% 140% -49% 1 
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3.4.4 Nikkei 225 (NI225) 

In NI225, the weighted F1 score is the highest for LSTM-o, but the return is merely 

28% compared to the buy-and-hold return of 124%. This fact is interesting as it indicates 

that a high F1 score does not guarantee high returns. The results of all six models for NI225 

are summarized in Table 3.9. 

Table 3.9 Index Name: NIKKEI 225, Country: JAPAN 

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 49% 52% 47% 39% -126% -129% 1194 

LSTM-o 51% 51% 51% 51% 28% -57% 1519 

fma-LSTM-o 51% 49% 51% 44% 20% -82% 209 

atr-LSTM-o 53% 52% 52% 43% 167% -32% 165 

a-m-LSTM-o 53% 47% 53% 37% 141% -48% 23 

B&H 53% 28% 53% 36% 124% -51% 1 

 

Further, the number of transactions is also a lot higher than that of other models. The 

LSTM performed the worst in NI225. Its predicted return is negative at “-126%”. In contrast, 

the atr-LSTM-o return is the highest, and the a-m-LSTM-o return is the second highest. 

Further, atr-LSTM-o has the lowest predicted drawdown. However, the number of 

transactions in atr-LSTM-o is nearly seven times that of a-m-LSTM-o. a-m-LSTM-o has 

nearly 1.5 transactions per year, whereas atr-LSTM-o has nearly 11 transactions per year. 

Moreover, the return of a-m-LSTM-o is also higher than the buy-and-hold.  
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3.4.5 SSE Composite Index (SSE) 

China’s SSE Composite index return for the buy-and-hold approach over the duration 

is just 8%. The data shows that the index price rises quickly and falls sharply. The results of 

all six models for SSE are summarized in Table 3.10. 

Table 3.10 Index Name: SSE Country: China 

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 50% 50% 50% 50% 32% -32% 1683 

LSTM-o 52% 52% 52% 52% 72% -33% 1427 

fma-LSTM-o 52% 51% 52% 46% -110% -124% 271 

atr-LSTM-o 51% 49% 52% 42% 14% -53% 172 

a-m-LSTM-o 53% 46% 53% 36% -11% -64% 6 

B&H 53% 28% 53% 36% 8% -55% 1 

 

 

The prediction drawdowns of LSTM and LSTM are lower than those of other models 

and buy-and-hold. The fma-LSTM-o prediction return is negative at 110%. The atr-LSTM-

o has returned closer to buy-and-hold. Moreover, it also has a similar drawdown. However, 

transactions again are nearly 11 per year, whereas the number of transactions in a-m-LSTM-

o is only 0.4 per year. Interestingly, a-m-LSTM-o gives a small negative return but a bigger 

drawdown than buy-and-hold strategy. The model fails to beat the buy-and-hold strategy 

only in this index. This result indicates that a-m-LSTM-o cannot always guarantee greater 

returns than the buy-and-hold strategy in an index. A portfolio of indices is a better approach 

to diversifying risk and making the model robust.  
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3.4.6 Consolidated 

To stabilize the returns from the models, the study made a portfolio to invest in all 

indices with equal weightage. Hence, the respective average of all evaluation parameters is 

computed. Table 3.11 has consolidated numbers. For example, the accuracy in the table 

refers to the average accuracy of all five indices. Similarly, weighted precision, weighted 

recall, and weighted F1-score are determined. The accuracy of atr-LSTM-o and a-m-LSTM-

o is equal to buy-and-hold. However, the weighted precision of these models is better than 

the buy-and-hold strategy. Similarly, the weighted F1 score of LSTM, LSTM-o, and fma-

LSTM-o is better than the buy-and-hold. Interestingly, the accuracies of these three models 

are less than the hypothetical accuracy of the buy-and-hold. Table 3.11 shows the 

consolidated result. 

Table 3.11 Consolidated Returns from all five indices 

Model Name Accuracy 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-Score 

Prediction 
Return 

Prediction 
Drawdown 

TXNs 

LSTM 50% 51% 49% 47% -7% -80% 1356 

LSTM-o 51% 51% 51% 51% 70% -54% 1476 

fma-LSTM-o 52% 50% 52% 44% 76% -76% 208 

atr-LSTM-o 53% 50% 53% 43% 173% -49% 148 

a-m-LSTM-o 53% 51% 53% 39% 172% -49% 17 

B&H 53% 28% 53% 37% 139% -51% 1 

 

The average prediction returns from all indices for the models LSTM, LSTM-o, and 

fma-LSTM-o are less than the average return of the buy-and-hold. Moreover, the drawdowns 

of these three models are also greater than the buy-and-hold. Further, the numbers of 

transactions are extremely high for LSTM and LSTM-o. Fma-LSTM-o and a-m-LSTM-o 
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have a moderate number of transactions. Only atr-LSTM-o and a-m-LSTM-o returns are 

higher than buy-and-hold. Additionally, the drawdowns of these two models are less than 

the buy-and-hold. The number of transactions in a-m-LSTM-o is on the lower side. 

3.5  Significant Outcomes 

Significant outcomes from the analysis are as follows: 

➢ The accuracy of the atr-LSTM-o and a-m-LSTM-o models is equal to the buy-and-

hold strategy. 

➢ The average prediction returns of the LSTM, LSTM-o, and fma-LSTM-o models are 

lower than the average return of the buy-and-hold strategy. 

➢ The drawdowns of the LSTM, LSTM-o, and fma-LSTM-o models are higher 

compared to the buy-and-hold strategy. 

➢ LSTM and LSTM-o models have a high number of transactions, while fma-LSTM-

o and a-m-LSTM-o models have a moderate number of transactions. 

➢ Atr-LSTM-o and a-m-LSTM-o models have higher returns than the buy-and-hold 

strategy. 

➢ The drawdowns of the atr-LSTM-o and a-m-LSTM-o models are lower than those 

of the buy-and-hold strategy. 

➢ The number of transactions in the a-m-LSTM-o model is relatively lower compared 

to other models. 
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In summary, the study suggests that the proposed model a-m-LSTM-o is a good 

alternative for active investors compared to passive buy-and-hold strategy. 

This chapter is based on the study: 

Beniwal, M., Singh, A., & Kumar, N. (2023). Alternative to Buy-and-Hold: Predicting 

Indices Direction and Improving Returns Using a Novel Hybrid LSTM Model. International 

Journal on Artificial Intelligence Tools. 

(Index: SCIE) 
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4 Performance Comparison of ARIMA and SVR 

4.1 Overview 

Stock market forecasting is a complicated and strenuous task. Moreover, the stock 

market time series is non-linear, volatile, dynamic, and chaotic. Auto-Regressive Integrated 

Moving Average (ARIMA) and Support Vector Regression (SVR) are popular methods in 

time series forecasting. This study empirically compares static and iterative models of 

ARIMA’s and SVR’s ability to predict stock market indices in developed and emerging 

economies. Five global stock indices, two from emerging and three from developing 

economies, are predicted. In the long term, in contrast to the Efficient Market Hypothesis 

and Random Walk Hypothesis, the results show that the SVR has some predictable power. 

Further, the SVR has better predictability in emerging economies than in developed ones in 

long-term forecasting. However, the market shows efficient behavior in daily prediction, and 

ARIMA and SVR fail to forecast better than the Naïve model.   

 

4.2 Background 

The future is mostly uncertain, and so is the prediction. The field of prediction is a 

challenging area. Especially financial time series prediction is an immensely complex and 

arduous task. The stock market is considered extremely risky, especially when predicting the 

short term. In this study, the “short-term” means daily prediction.  

The Box-Jenkins model or methodology, often known as Auto-Regressive Integrated 

Moving Average (ARIMA), is a classical statistical model helpful in analyzing and 

forecasting time series data. It was developed by George Box and Gwilym Jenkins in 1970 
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(Box et al., 1970). ARIMA is one of the most widely utilized methodologies in time series 

modeling (Hiransha et al., 2018). Recently, there has been an increase in academic interest 

in forecasting the stock market using artificial intelligence and machine learning. Jeff 

Hawkins once said, “The key to artificial intelligence has always been the representation” 

(Hardy, 2012). There are several ways that data may be represented, and machine learning 

models can be trained. 

In machines, artificial intelligence mimics human or animal intelligence. There are 

three types of machine learning algorithms: supervised, unsupervised, and reinforcement 

learning. This study focuses on supervised learning for stock market prediction. Some 

prominent supervised machine learning algorithms are Linear regression, the SVM 

algorithm, the Naive Bayes algorithm, Artificial Neural Networks (ANN), Random Forests, 

etc. Vapnik (1995) developed the Support Vector Machine (SVM), a supervised machine 

learning algorithm used for classification. SVM distinguishes between classes by locating a 

hyperplane in the N dimensions. In contrast, Support Vector Regression (SVR) is a 

regression algorithm that provides continuous real values output. SVR has high 

generalization and prediction accuracy (Awad & Khanna, 2015b). 

The objectives of the study are to compare the static and iterative models of ARIMA 

and SVR to predict stock indices’ prices in developed and emerging economies. The study 

experiments with multiple static and iterative ARIMA and SVR models, and their 

performance on the NIFTY, Dow Jones Industrial Average (DJIA), DAX performance index 

(DAX), Nikkei 225 (NI225), and Shanghai Stock Exchange (SSE) composite index is 

assessed. From 2017 through 2022, daily data for these two indexes is obtained from Yahoo 
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Finance. This time period is marked by substantial stock market cycles. The period from 

2017 through 2020 was characterized by a bull market. The coronavirus pandemic came in 

March 2020, causing the global market to tumble in unprecedented ways. After a few months 

of the pandemic, the world market started recovering and started a very strong bull market 

again. Hence, this period from 2017 to 2022 covers all cycles of the market. 

The study examines six models, namely Naïve static, ARIMA static, SVR static, 

Naïve iterative, ARIMA iterative, and SVR iterative. The stock indices data from five 

countries, namely the US, Germany, Japan, India, and China, are analyzed. India and China 

are emerging economies, while the US, Japan, and Germany are considered developed 

countries. The study evaluates the model’s predictive powers in emerging and developed 

economies. Static and iterative Naïve models are baseline models used for comparison. 

Naïve models assume the future prices to be the last known price of the training period. This 

model supports the random walk theory that prices cannot be predicted in an efficient market. 

Static models forecast the prices for the entire test duration at once. These models do not 

retrain themselves even if new data is available. To address this issue, iterative models only 

predict the price for a day ahead. After the next day’s prediction, the original data is appended 

to the training set for retraining. This process updates the models and makes them dynamic. 

The iterative models then predict the prices for the upcoming day. The same cycle is repeated 

until the last day price is forecasted. All six models are evaluative using mean absolute error, 

mean squared error, mean absolute percentage error, and root mean square error.  
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4.3 Proposed Methodology 

4.3.1 The Data 

The data for this study is obtained from Yahoo Finance, which contains daily prices 

between 2017 and 2022. The indices of three developed economies, the Dow Jones Industrial 

Average (DJIA), the DAX performance index (DAX), and the Nikkei 225 (NI225), and two 

emerging economies, the Nifty 50 and the SSE composite index (SSE), are used for analysis. 

The economies of the US, Germany, Japan, India, and China represent different continents 

and hence a good representation of the world economy. The diversity of time series data will 

test the robustness of models. These countries are also in the top five GDP (“World GDP 

Ranking,” 2020). DJIA is one of the most popular and followed indices. The USA is a 

developed country, and its stock market is considered efficient. Similarly, the Nikkei 225 

and DAX indices belong to developed countries, and their stock markets are also considered 

efficient. On the other hand, India and China are emerging economies considered 

developing, although China's GDP is the second-largest. The stock market is a barometer of 

a country’s economy. The stock market dynamics of developed and developing countries can 

be quite different. As a result, a comparison study is required to understand the difference in 

performance, if any, between ARIMA and SVR in two distinct types of economies. 

4.3.2 ARIMA 

The ARIMA model is divided into three stages: identification, estimation, and 

diagnostic checking. ARIMA (p, d, q) is composed of three parts Auto-Regressive AR(p), 

Integrated I(d), and Moving Average MA(q). The parameters (p, d, and q) of ARIMA 
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indicates the specific model best fits the time series. Following is a description of the 

components: 

Auto-Regressive AR(p): The dependent variables are lagged observations in this model. 

The significant cutoff number of lagged observations is p.  

Integrated I(d): The observations are subtracted from their predecessors to make the time 

series stationary. The number of times the observations are subtracted is a whole number, 

denoted by d. 

Moving Average MA(q): This model regresses over past forecasted errors to predict future 

values. “q” represents the order of the moving average, which is the number of past errors 

significant for regression and forecast. 

The ARIMA model is described in Eq. (4.1) as follows:  

 

 

where 𝑌�̂� denotes the predicted target, c is a constant, e is an error term, and 𝑌𝑡 is past 

observation at time t after differencing d times. 

4.3.3 Support Vector Regression (SVR) 

The present form of Support Vector Machine (SVM) is largely attributed to the 

contributions of Vapnik et al. (Boser et al., 1992a, 1992b; Cortes et al., 1995; Guyon et al., 

1993; Schslkopf et al., 1996; Vapnik et al., 1997). SVM is a type of supervised ML algorithm 

𝑌�̂� =  𝑐 +  𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2+ . . + 𝜃𝑝𝑌𝑡−𝑝 − 𝜙1𝑒𝑡−1

− 𝜙2𝑒𝑡−2− . . −𝜙𝑞𝑒𝑡−𝑞 
(4.1) 
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used for the classification of data. If in a dataset, data points are given (x1, y1), (x2, y2), ..., 

(xn, yn), where xi is the input vector of features and yi is the corresponding output, the SVM 

algorithm detects the weight vector w and the bias term b that define the hyperplane in Eq. 

(4.2): 

𝑦 =  𝑤 ∗ 𝑥 +  𝑏 
(4.2) 

 

The weight vector w determines the orientation of the hyperplane, while the bias term 

b sets its position. The hyperplane segregates the feature space into two regions, one for each 

class. SVM seeks to find the optimal hyperplane that best separates the two classes. The 

optimal hyperplane is the one that maximizes the margin, which is the distance between the 

hyperplane and the closest data points of each class. The margin is defined as in Eq. (4.3): 

 

γ =
2

||𝑤||
  

(4.3) 

 

where γ denotes the margin and ||w|| represents the Euclidean norm of the weight 

vector. To ensure that outliers do not influence the optimal hyperplane, SVM introduces the 

concept of “slack variables.” The slack variables ξi and ξi
* enable certain data points to exist 

on the incorrect side of the hyperplane while still penalizing them for being misclassified. 

The constraints on the slack variables are defined in Eq. (4.4): 

 

𝑦𝑖  −  𝑤 ∗  𝑥𝑖  −  𝑏 ≤  𝜀 +  𝜉𝑖  
 

𝑤 ∗  𝑥𝑖  +  𝑏 −  𝑦𝑖  ≤  𝜀 +  𝜉𝑖
∗ 

 

𝜉𝑖 , 𝜉𝑖
∗  ≥  0 

(4.4) 
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where ε is a small positive constant that defines the width of the margin, and yi is the 

output or class label of the data points. The optimization problem for SVM can be formulated 

as in Eq. (4.5): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
||𝑤||

2
+  𝐶 ∗  ∑(𝜉𝑖  +  𝜉𝑖

∗) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖  −  𝑤 ∗  𝑥𝑖  −  𝑏 ≤  𝜀 +  𝜉𝑖 

 

                                                𝑤 ∗  𝑥𝑖  +  𝑏 – 𝑦𝑖  ≤  𝜀 +  𝜉𝑖
∗ 

 
𝜉𝑖 , 𝜉𝑖

∗ ≥  0 

(4.5) 

 

where C is a positive constant that controls the trade-off between maximizing the 

margin and minimizing the slack variables. The optimization problem can be solved using 

various methods, such as the quadratic programming method or the gradient descent method. 

Figure 4.1 shows the SVM. 

 

 

 

 

Figure 4.1 Support Vector machine 
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Support Vector Regression (SVR) is a variant of the SVM algorithm that is widely 

employed for regression analysis. The SVR algorithm finds the function f(x) that 

approximates the relationship between the input features and the output values. The function 

f(x) is defined as in Eq. (4.6): 

 

𝑓(𝑥) =  𝑤 ∗ 𝑥 +  𝑏 
(4.6) 

 

where f(x) is the predicted output value, x is the input vector of features, w is the 

weight vector, and b is the bias term. The goal of SVR is to find the optimal values of w and 

b that minimize the error between the predicted output values and the actual output values. 

The optimization problem for SVR can be formulated as in Eq. (4.7): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
||𝑤||

2
+  𝐶 ∗  ∑(𝜉𝑖  +  𝜉𝑖

∗) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦 −  𝑓(𝑥) ≤  𝜀 +  𝜉𝑖 

 

                                                       𝑓(𝑥)–  𝑦 ≤  𝜀 +  𝜉𝑖
∗ 

 
𝜉𝑖 , 𝜉𝑖

∗ ≥  0 

(4.7) 

 

where C is a positive constant, same as in SVM, that controls the trade-off between 

minimizing the error and minimizing the slack variables, ε is the width of the insensitive 

zone, and y is the actual output value.  The optimization problem in SVM and SVR has some 

similarities, but they have different constraints. The constraints of SVM aim to maximize 

the margin between the classes, while the constraints of SVR focus on minimizing the error 

margin of the function f(x). Additionally, the loss function used to measure the error in SVR 

and SVR is different. Figure 4.2 shows SVR. 
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Figure 4.2  Support Vector Regression 

 

 

4.3.4 The Experiment 

This study compares the ARIMA model to SVR for five indices: (DJIA), NIFTY 50 

(NSEI), DAX, Nikkei 225 (NI225), and SSE Composite Index (SSE). The data is gathered 

from Yahoo Finance which is daily data for around five years, from January 2017 to July 

2022. Two types of models, namely static and iterative, are designed and evaluated. Static 

models of ARIMA and SVR are trained on 75% of the data and predict prices for the 

remaining 25% of the days. On the other hand, iterative models of ARIMA and SVR are first 

trained on 75% of the data and then predict the next day’s price. Once the price is predicted 

for the next day, the original price is used to retrain the iterative models before predicting 

the price of the upcoming day. This process continues until all prices for the test duration are 

predicted in succession. The models are compared using RMSE, MAPE, MSE, and MAE. 
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The hyperparameters of the SVR models are selected automatically using grid search to 

eliminate bias in the experiments. Figure 4.3 shows the flow of the SVR model 

implementation. 

 

Figure 4.3 SVR algorithm implementation 

4.4 Findings 

All time series of five indices are tested for stationarity using the Augmented Dickey-

Fuller (ADF) test. Subsequently, the ARIMA model is selected using the Akaike Information 

Criterion (AIC). Table 4.1 shows the output of the ADF test on the original time series. 

Table 4.1 ADF Test 

  NSEI DJI DAX NI225 SSE 

ADF Statistic:  -0.84 -1.6 -2.3 -1.7 -2.1 

p-value:  0.8 0.48 0.17 0.42 0.24 

usedlag:  7 10 7 4 0 

The number of observations:  1348 1372 1383 1336 1332 

Critical Values:  1% -3.43 -3.43 -3.43 -3.43 -3.43 

Critical Values: 5% -2.86 -2.86 -2.86 -2.86 -2.86 

Critical Values: 10% -2.56 -2.56 -2.56 -2.56 -2.56 
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The ADF statistics of all time series are greater than critical values at 1%, 5%, and 

10% levels. Hence, all stock indices’ time series are non-stationary. The auto-Arima function 

is utilized to find the best parameters of ARIMA (p, d, q). Table 4.2 shows the list of 

parameters experimented with and their AIC values. The best parameters with the lowest 

AIC values are in bold font.  

Table 4.2 ARIMA(p,d,q) and AIC of each index 

NSEI DJI DAX NI225 SSE 

(p,d,q) AIC (p,d,q) AIC (p,d,q) AIC (p,d,q) AIC (p,d,q) AIC 

(0,1,0) 17206 (0,1,0) 19941 (0,1,0) 17991 (0,1,0) 18904 (0,1,0) 13157 

(0,1,1) 17208 (0,1,1) 19921 (0,1,1) 17993 (0,1,1) 18906 (0,1,1) 13159 

(0,1,2) 17210 (0,1,2) 19904 (0,1,2) 17994 (0,1,2) 18903 (0,1,2) 13160 

(1,1,0) 17208 (1,1,0) 19917 (1,1,0) 17993 (1,1,0) 18906 (1,1,0) 13159 

(1,1,1) 17210 (1,1,1) 19911 (1,1,1) 17995 (1,1,1) 18903 (1,1,1) 13161 

(1,1,2) 17212 (1,1,2) 19906 (1,1,2) 17995 (1,1,2) 18901 (1,1,2) 13162 

(2,1,0) 17210 (2,1,0) 19905 (2,1,0) 17994 (2,1,0) 18903 (2,1,0) 13160 

(2,1,1) 17212 (2,1,1) 19907 (2,1,1) 17996 (2,1,1) 18901 (2,1,1) inf 

(2,1,2) 17214 (2,1,2) 19907 (2,1,2) 17998 (2,1,2) 18903 (2,1,2) 13157 

(3,1,0) 17211 (3,1,0) 19907 (3,1,0) 17996 (3,1,0) 18903 (3,1,0) 13161 

(3,1,1) 17213 (3,1,1) 19862 (3,1,1) 17998 (3,1,1) 18903 (3,1,1) 13159 

(3,1,2) inf (3,1,2) 19838 (3,1,2) 17985 (3,1,2) 18905 (3,1,2) 13158 

(4,1,0) 17211 (4,1,0) 19904 (4,1,0) 17998 (4,1,0) 18903 (4,1,0) 13157 

(4,1,1) 17208 (4,1,1) 19855 (4,1,1) 17999 (4,1,1) 18904 (4,1,1) 13157 

(4,1,2) 17208 (4,1,2) 19841 (4,1,2) 17997 (4,1,2) 18906 (4,1,2) 13158 

(5,1,0) 17198 (5,1,0) 19904 (5,1,0) 17994 (5,1,0) 18904 (5,1,0) 13158 

(5,1,1) 17193 (5,1,1) 19854 (5,1,1) 17986 (5,1,1) 18903 (5,1,1) 13159 

(5,1,2) 17186 (5,1,2) 19840 (5,1,2) 17987 (5,1,2) 18904 (5,1,2) inf 

(6,1,0) 17193 (6,1,0) 19887 (6,1,0) 17990 (6,1,0) 18906 (6,1,0) 13157 

(6,1,1) 17193 (6,1,1) 19838 (6,1,1) 17987 (6,1,1) 18905 (6,1,1) 13158 

(6,1,2) 17184 (6,1,2) 19830 (6,1,2) 17988 (6,1,2) 18908 (6,1,2) 13159 

(7,1,0) 17192 (7,1,0) 19860 (7,1,0) 17989 (7,1,0) 18906 (7,1,0) 13158 

(7,1,1) 17194 (7,1,1) 19834 (7,1,1) 17989 (7,1,1) 18908 (7,1,1) 13160 

(7,1,2) 17183 (7,1,2) 19832 (7,1,2) 17991 (7,1,2) 18909 (7,1,2) 13161 

(8,1,0) 17194 (8,1,0) 19847 (8,1,0) 17989 (8,1,0) 18908 (8,1,0) 13159 

(8,1,1) 17196 (8,1,1) 19835 (8,1,1) 17991 (8,1,1) 18910 (8,1,1) 13161 

(8,1,2) 17197 (8,1,2) 19834 (8,1,2) 17993 (8,1,2) 18911 (8,1,2) 13160 
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(9,1,0) 17194 (9,1,0) 19835 (9,1,0) 17991 (9,1,0) 18909 (9,1,0) 13161 

(9,1,1) 17193 (9,1,1) 19834 (9,1,1) 17993 (9,1,1) 18911 (9,1,1) 13162 

(9,1,2) 17193 (9,1,2) 19834 (9,1,2) 17995 (9,1,2) 18908 (9,1,2) 13162 

(10,1,0) 17196 (10,1,0) 19832 (10,1,0) 17993 (10,1,0) 18909 (10,1,0) 13162 

(10,1,1) 17195 (10,1,1) 19834 (10,1,1) 17995 (10,1,1) 18911 (10,1,1) 13163 

(10,1,2) 17197 (10,1,2) 19836 (10,1,2) 17990 (10,1,2) 18904 (10,1,2) 13162 

 

Support Vector Regression (SVR) is a non-parametric model. The time series is split into 

a 75:25 ratio in both static and iterative models. 75% of the days are used to train the SVR 

model, and 25% of the days are kept as test data. The prices are predicted for 25% of the 

days. In this study, the RBF kernel is applied to the model. Further, the dates are converted 

to integers and used as input. Before feeding the Close Prices to SVR, they are scaled and 

transformed. The close prices range from 0 to 1 while training. Once the SVR model predicts 

the close prices, they are again inverse-transformed to the original scale. Parameters C and 

epsilon determine a trade-off between model complexity and training error. This study 

selects the hyperparameter of SVR using grid search. The grid search selects the best 

parameter from Table 4.3. The grid search is designed in such a way that the values of C and 

epsilon avoid overfitting and underfitting. 

Table 4.3 Grid Search Parameters 

Parameter  Values 

C 0.1, 1, 10 

Epsilon 0.05, 0.1, 0.2 

 

Six models are developed, three for static and three for iterative. Further, all six models 

are tested on five indices. RMSE, MAPE, MAE, and MSE are utilized to evaluate the 

efficiency of these models. In three static models, namely Naïve, ARIMA, and SVR, prices 
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are predicted for 25% of the days at once and compared with the original prices of 25% of 

the test data. The Naïve static model assumes that the prices for the rest of the 25% of days 

remain the same as the last day of the 75% of train data. In the other three iterative models, 

namely Naïve iterative, ARIMA iterative, and SVR iterative, price is predicted for the next 

day after training on 75% of the data. Once the price is predicted for the next day, the model 

is retrained again with newly available data, and the next-to-next-day price is predicted 

iteratively. Naïve iterative assumes the next day’s price is the same as the previous day’s 

close price. 

4.4.1 NIFTY 

Table 4.4 shows the performance of all six models in NIFTY. The RMSE, MAPE, MAE, 

and MSE of ARIMA static are the highest. Notably, the ARIMA static model performs worse 

than the Naïve static model, indicating that it is difficult for the ARIMA model to handle the 

complexity of financial time series. 

Table 4.4 NIFTY Evaluation 

Model RMSE MAPE MAE MSE 

Naïve static 1728.89 8.67 1481.9 2989059 

ARIMA static 1765.3 8.86 1515.63 3116274 

SVR static 842.23 4.37 703.88 709349 

Naïve iterative 172.33 0.79 130.97 29697 

ARIMA iterative 175.75 0.81 133.08 30889 

SVR iterative 556.71 2.77 452.97 309930 

 

Among static models, Support Vector Regression (SVR) performs the best. However, 

SVR iterative performs worst compared to ARIMA iterative and Naïve iterative. So, the 

predicted prices of SVR are far from the original prices compared to the ARIMA and Naïve 
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predicted prices. For Nifty, Figure 4.4 shows the predicted price of NIFTY 50 for SVR and 

ARIMA models.  

  

Figure 4.4 Static and iterative model prediction for NIFTY 

4.4.2 DJIA 

Table 5 shows the performance of all models in the Dow Jones Industrial Average (DJIA). 

Results vary a little compared to NIFTY in the case of DJIA. 

Table 4.5 DJIA Evaluation 

Model RMSE MAPE MAE MSE 

Naïve static 2751.42 7.19 2499.18 7570314 

ARIMA static 2730.61 7.13 2478.92 7456205 

SVR static 3376.69 9.47 3258.63 11402052 

Naïve iterative 329.82 0.73 247.56 108779 

ARIMA iterative 335.97 0.76 256.51 112878 

SVR iterative 1222.93 3.06 1029.75 1495556 

 

In contrast to the SVR static prediction for the NIFTY, the prediction of SVR static for 

DJIA is the worst among the static models in terms of RMSE, MAPE, MAE, and MSE. 

ARIMA static performs the best in predicting prices. Although the SVR model performed 

poorly in terms of evaluation parameters, it is able to predict the pattern correctly. This 
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prediction can be important to investors. In iterative models, SVR iterative performed worst, 

and Naïve iterative the best. This result also indicates that the performance of the models 

can differ in emerging and developed economies. For DJIA, Figure 4.5 shows the predicted 

price of DJIA for SVR and ARIMA models.  

4.4.3 DAX 

Table 4.6 shows the RMSE, MAPE, MAE, and MSE for the DAX index. ARIMA 

marginally outperformed the SVR static model. Similarly, in iterative models, naïve 

outperformed the ARIMA marginally. 

Table 4.6 DAX Evaluation 

Model RMSE MAPE MAE MSE 

Naïve static 1031.86 6.15 923.67 1064732 

ARIMA static 1000.75 5.98 894.62 1001507 

SVR static 1001.87 5.97 905.09 1003738 

Naïve iterative 182.22 0.89 131.16 33205 

ARIMA iterative 185.45 0.91 133.58 34393 

SVR iterative 657.85 3.69 535.82 432768 

  

  Figure 4.5 Static and iterative model prediction for DJIA 
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Figure 4.6 shows the prediction chart for the ARIMA and SVR models. The result hints 

that model performance can vary within developed countries as well. 

4.4.4 Nikkei 225 

Table 4.7 shows the performance of models on the Nikkei 225 index. The ARIMA model 

outperformed naïve and SVR in the static models. ARIMA iterative marginally outperformed 

naïve in iterative models.  

Table 4.7 NI225 Evaluation 

Model RMSE MAPE MAE MSE 

Naïve static 1529.62 4.45 1210.93 2339745 

ARIMA static 1386.46 4.04 1105.08 1922275 

SVR static 2417.37 7.8 2162.27 5843693 

Naïve iterative 346.59 0.98 273.54 120128 

ARIMA iterative 346.54 0.98 273.32 120090 

SVR iterative 1090.88 3.26 909.94 1190011 

 

Figure 4.7 shows the fit line, prediction line, and train and test data of static and iterative 

models. The pattern of the Nikkei 225 index in test data is different from other indices. All 

  

Figure 4.6 Static and iterative model prediction for DAX 
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other indices, namely the Nifty, DJIA, and DAX, moved up first and then downwards, but 

the Nikkei 225 moved only downwards in test data. Still, the SVR model’s final price is near 

to the final close price in the test data.   

4.4.5 SSE Composite Index 

Table 4.8 shows the performance of models on the SSE composite index. SVR static 

outperformed both naïve and ARIMA static in static models. While in iterative models, naïve 

outperformed other iterative models. 

Table 4.8 SSE Evaluation 

Model RMSE MAPE MAE MSE 

Naïve static 185.91 4.78 164.48 34563 

ARIMA static 168.5 4.14 140.12 28392 

SVR static 156.12 3.73 124.52 24375 

Naïve iterative 33.9 0.75 25.39 1149 

ARIMA iterative 34.26 0.76 25.79 1174 

SVR iterative 117.06 2.76 92.2 13703 

 

 
 

Figure 4.7 Static and iterative model prediction for NI225 
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Figure 4.8 shows the prediction prices by ARIMA and SVR for both static and iterative 

models. Further, Figure 4.8 clearly shows that the SSE composite index pattern is completely 

different from other global indices. Still, the SVR static model is able to closely predict the 

future pattern. 

4.5 Significant Outcomes 

Significant outcomes from the analysis are as follows: 

➢ ARIMA static outperforms SVR static in the DJIA and NI225 indices. In DAX, both 

have similar performance. This suggests SVR's low performance in developed 

economies. 

➢ SVR static exhibits lower MAPEs for Nifty and SSE compared to DJIA, DAX, and 

NI225, indicating better predictability in emerging economies. 

  

Figure 4.8 Static and iterative model prediction for SSE 
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➢ The Naïve model performs better than ARIMA iterative and SVR iterative models in 

next-day price prediction. This indicates that the short-term prediction ability of both 

ARIMA iterative and SVR iterative is similar to random forecasting. 

➢ The prices predicted by ARIMA in the long term do not exhibit variation. 

In summary, the study suggests that the SVR static model has better predictability than 

the ARIMA static model over the long term in emerging economies. Unlike ARIMA static, 

SVR static is able to suggest both future prices and patterns. 

 

This chapter is based on the study: 

Beniwal, M., Singh, A., & Kumar, N. " A comparative study of static and iterative 

models of ARIMA and SVR to predict stock indices prices in developed and emerging 

economies." International Journal of Applied Management Science (2023) 

 



                           Chapter 5 

98 

 

 

5 Long-term Price Forecasting using Optimized GA and SVR 

5.1 Overview 

Predicting long-term stock index prices is a challenging and debatable task. Most of 

the studies focus on predicting next-day stock prices. However, those are not useful to long-

term investors and traders. This study attempts to predict up to a year’s daily prices of global 

stock indices using daily data of close prices. This study fills a gap in the existing literature 

by focusing on long-term stock index price forecasting, which is crucial for practical 

applications in the financial markets. Moreover, the empirical analysis highlights the 

superior performance of a rolling forward-validation approach over cross-validation in 

predicting long-term stock prices. A forward-validating Genetic Algorithm Optimization for 

Support Vector Regression (OGA-SVR) is used to efficiently forecast multi-step ahead long-

term global stock indices. Further, the performance of the model is compared with that of 

Support Vector Regression (SVR), Grid Search based Support Vector Regression (GS-SVR), 

Genetic algorithm-based Support Vector regression (GA-SVM), and state-of-the-art Long 

Short-Term Memory (LSTM) algorithms.  

The models are empirically tested on daily data from five global stock indices time 

series, namely the Nifty, Dow Jones Industrial Average (DJIA), DAX performance index 

(DAX), Nikkei 225 (NI225), and Shanghai Stock Exchange composite index (SSE). Root 

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are used for the 

evaluation. The result shows the OGA-SVR model outperforms other models in predicting 

the long-term prices of global indices. Further, the OGA-SVR model has the potential to 
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forecast the long-term underlying future pattern of index prices, which can be used to build 

trading and risk mitigation systems for investors and traders. 

5.2 Background 

Benjamin Graham once said that a stock market is a voting machine in the short run, 

but in the long run, it is a weighing machine (Graham & David, 1965). The stock index 

prices are also biased toward an upward direction in the long term. However, Investing or 

trading in the stock market is risky. Still, the stock market attracts many investors and traders 

because of its ease of accessibility, the possibility of diversification, and the potential to give 

lucrative returns.  

With the advent of electronic trading and an explosion in stock data, researchers have 

explored the use of artificial intelligence to predict the stock market. Machine learning, a 

subset of artificial intelligence, has the capability to handle non-linear, noisy, huge, and 

complex data with ease. LSTM and SVM/SVR are the most commonly used machine 

learning algorithms for forecasting financial time series (Henrique et al., 2018). This study 

experiments with Support Vector Regression (SVR) and LSTM algorithms to predict the 

stock indices’ prices. 

To implement machine learning algorithms successfully, optimizing the 

hyperparameters to achieve the best possible model architecture is often necessary. However, 

refining hyperparameters through a trial-and-error approach can be time-consuming for a 

human ML expert. An alternative approach is to use Automated Machine Learning 

(AutoML), which can automate several phases of machine learning, such as data 

preprocessing, feature selection, and hyperparameter optimization. Hyperparameter 
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optimization is a subfield of automated machine learning (AutoML) that automates the 

selection of hyperparameters for machine learning algorithms, leading to the creation of 

optimized models that are tailored to specific datasets and algorithms (Drachal & 

Pawłowski, 2021; Taljard, 2021). The common approaches for automated hyperparameter 

optimization include Grid-Search (GS), Random Search, Bayesian Optimization, and 

Genetic Algorithms (GA) (Drachal & Pawłowski, 2021).  

Grid search performs an exhaustive search with a predetermined set of 

hyperparameters to find the optimum combination of hyperparameters for a given model 

(Bergstra & Bengio, 2012). The genetic algorithm, on the other hand, is a heuristic 

optimization technique that emulates natural selection and evolution to find the optimum 

hyperparameters (Holland, 1992). SVR has two important hyperparameters, C and epsilon, 

that control the trade-off between model complexity and error. Achieving high prediction 

accuracy using a single machine-learning method can be challenging, and combining soft 

computing methods can improve accuracy (Lu et al., 2021). In this study, grid-search and 

genetic algorithms are utilized to optimize these two hyperparameters of the SVR model.  

Cross-validation is a commonly used technique for estimating the performance of a 

model on out-of-sample data, and it is widely used for both model selection and assessment 

(Schnaubelt, 2019). One of the initial validations is the leave-one-out cross-validation 

proposed by Stone (1974) and Allen (1974). Out of several extensions of leave-one-out 

cross-validation, k-fold cross-validation (Geisser, 1975) is the most common (Schnaubelt, 

2019). K-fold cross-validation randomly splits data in k equally size subset. The model is 

trained on the k-1 subset and tested on the remaining subset. This method assumes that 
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observations are independent and identically distributed. However, in time series analysis, 

this assumption does not hold true. An alternative to cross-validation is forward validation. 

Schnaubelt (2019) empirically studied common validation schemes and concluded that 

forward-validation techniques provide more accurate estimates of the out-of-sample error. 

 In forward validation, data is divided into consecutive intervals, with each interval 

representing a specific time period rather than being randomly split. The model is trained on 

earlier intervals and tested on later intervals, making it especially helpful for time series data. 

Therefore, this study’s optimized genetic algorithm-based SVR model (OGA-SVR) uses a 

specific type of forward validation known as “rolling window forward validation” to 

estimate the model’s performance on out-of-sample data. The rolling window forward 

validation takes into account any temporal patterns that may exist in the time series data.  

Machine learning involves organizing data into input features and output targets, but 

the task becomes more complex when it comes to multi-step prediction. Multi-step 

prediction involves mapping multiple output targets to input features. This process can be 

particularly challenging when attempting to map long-term prices, such as daily prices over 

a year, to input features. In practice, including long-term price data as an input feature is 

often not feasible. Most studies predict next-day stock prices, with some predicting intraday 

prices (Nazareth & Reddy, 2023). Most studies use daily data as a sampling frequency, so 

the prediction frequency is also typically daily. However, accurately predicting stock prices 

over longer time horizons remains a challenging problem in machine learning. Many traders 

and investors are interested in predicting long-term prices, such as yearly predictions. Rouf 

et al. (2021), in their literature review, reported 24 studies, and those studies predicted 
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intraday, daily, weekly, or up to 90 days, but no study predicted yearly prices. This gap 

motivated this study to predict the global indices’ long-term prices using the SVR and LSTM 

algorithms. This study trains SVR and LSTM to identify patterns based on time dependency. 

As time is known for the future and provided as input to the models, our models can predict 

stock prices for any future duration, such as monthly, quarterly, yearly, etc., using daily 

historical data. 

This study experiments with predicting the long-term prices of the five global indices 

with five models. The five global indexes are the Nifty from India, the Dow Jones Industrial 

Average (DJIA) from the US, the DAX performance index (DAX) from Germany, the Nikkei 

225 (NI225) from Japan, and the Shanghai Stock Exchange composite index (SSE) from 

China. These are stock indices from the world’s top five economies in terms of Gross 

Domestic Product (GDP) (Countries by GDP, 2022). The study optimizes the 

hyperparameters of the SVR model using a genetic algorithm and rolling window forward 

validation. The rolling forward-validation approach enables the model to adapt to new data 

and avoid overfitting, while the genetic algorithm helps to explore a large search space of 

possible solutions and find the optimal ones. The Optimized Genetic Algorithm based on 

SVR (OGA-SVR) predicts one year ahead of stock indices prices. The optimized hybrid 

model OGA-SVR predictions are compared with those of SVR, Grid Search-based SVR 

(GS-SVR), Genetic Algorithm-based SVR (GA-SVR), and LSTM. The models are 

evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) on out-of-sample data.  
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The objective of this study is to contribute to the field of stock price prediction by 

using daily historical data to predict one year ahead of stock prices. This study aims to 

demonstrate the superior performance of a rolling forward-validated genetic algorithm 

support vector regression (SVR) model over cross-validated SVR and genetic algorithm 

SVR models. The study also seeks to optimize the OGA-SVR model to improve its 

predictions in comparison to other SVR models and a double-layer long short-term memory 

(LSTM) deep learning model. Furthermore, the study aims to analyze and predict the stock 

prices of multiple global indices to evaluate the optimized model’s robustness and ability to 

perform well on different time series data. Ultimately, this research endeavors to advance 

the development of effective long-term prediction models for stock prices and help investors 

and traders make informed decisions over long-term time horizons. 

 

5.3 Proposed Methodology   

5.3.1 Genetic Algorithm (GA) 

The inspiration for Genetic Algorithms (GAs) came from Darwin’s theory of 

evolution, which involves simulating the survival of fitter creatures and their genes (De, 

1988; Holland, 1992; Mirjalili, 2019). Figure 5.1 shows the steps involved in GA. 
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Figure 5.1 Genetic Algorithm Flow 

 

When the problem is computationally demanding and difficult to solve, GA can be 

used to obtain a solution that is close to optimal (Chung & Shin, 2020; Kramer & Kramer, 

2017). GAs are often used in ML and time series forecasting, where they can be used to 

identify optimal hyperparameters for ML models and to search for the best possible models 

for predicting future values in time series data. GA involves six stages: initialization, fitness 

calculation, selection, crossover, mutation, and termination condition check (Pal & Wang, 

1996). Figure 5.2 shows the GA operations. 
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Figure 5.2 Genetic Algorithm Operations 

 

GA starts by randomly generating a population of chromosomes that represent 

potential solutions to a problem. These solutions are sorted based on a fitness score like 

accuracy, RMSE, etc. If the stopping criteria are met, the best solutions are returned; 

otherwise, a new generation is created through crossover and mutation. The new generation 

is evaluated again, and the process continues iteratively until the stopping criteria are met. 

 

5.3.2 Rolling Window Forward Validation 

One of the crucial tools for assessing the performance of regression and classification 

techniques is cross-validation (Bergmeir & Benítez, 2012). Cross-validation is widely 

utilized for evaluating how well a model performs on data that has not been seen during 

training, and it is commonly employed for both selecting and evaluating models. Cross-

validation involves dividing a dataset into multiple subsets, or folds, for model training and 

testing. One-fold is held out as a validation set for evaluation, while the remaining folds are 

used for training. This process is repeated for each fold, and the performance metrics are 

averaged to estimate the performance of generalization on unseen or out-of-sample data. The 
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validation set is important to optimize hyperparameters and prevent overfitting of the model 

during training. K-fold cross-validation, a variation of cross-validation, is the most common 

(Schnaubelt, 2019). K-fold cross-validation divides the dataset into k equal-sized subsets, 

where k is a user-defined positive integer. 5-fold cross-validation and 10-fold cross-

validation are frequently used. After division, the model is trained on k-1 partitions and 

evaluated on the unseen partition. This process is repeated k times, with each subset serving 

as the validation set once for training a model. The evaluation metric, such as accuracy or 

mean squared error, is recorded after each run. Lastly, the average is computed across all k 

runs for the final evaluation metric. This approach is a more reliable estimation of the 

performance of unseen data.  

Cross-validation assumes that observations are independent and identically 

distributed, which may not hold true in time series analysis. As an alternative, forward 

validation can be used. Forward validation is a technique that partitions the dataset into 

consecutive subsets, based on time instead of random assignment. This technique is 

particularly useful for time series data, where the temporal order of observations is 

important. By training the model on earlier subsets and validating it on later subsets, forward 

validation simulates the real-world scenario in which the model is deployed to predict future 

values based on historical data. One of the variants of forward validation is rolling window 

forward validation. In rolling window forward validation, the size of the subsets remains 

constant, but they are shifted forward by a certain number of observations at each step. 

Rolling window forward validation can be especially helpful for stock time series data, 
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where recent data is more relevant in predicting the future. Figure 5.3 visually explains cross-

validation and rolling window forward validation. 

 

Figure 5.3 Five-Fold Cross Validation and Rolling Window Forward Validation 

 

5.3.3 Grid Search 

Grid search (GS) is a technique that involves searching through a pre-defined set of 

hyperparameters to identify the optimal combination of hyperparameters for a given model 

by performing an exhaustive search (Bergstra & Bengio, 2012). GS divides parameters into 

grids of the same length within a certain range, with each point representing a set of 

parameters. Traversing all the points in the grid enables obtaining the optimal solution (Sun 

et al., 2021). The model is then trained and evaluated for each combination of 

hyperparameters in the grid, and the optimal combination is selected based on the 

performance metrics. GS is commonly used with supervised ML algorithms, such as SVR. 

For example, when using SVR, one can fine-tune hyperparameters such as the penalty 

parameter ‘C’ and the gamma parameter. A GS can test all possible combinations of values 

within specified ranges. For instance, the grid may include values of the penalty parameter 
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(1, 10, 100) and gamma parameter (0.001, 0.01, 0.1). Figure 5.4 shows an example of the 

combination of the parameters in the grid search. GS can try and evaluate each combination 

of these hyperparameters, and the combination with the best performance on the cross-

validation dataset is selected. GS uses brute force. As the number of hyperparameters and 

their ranges increases, the number of models to be trained and evaluated increases 

exponentially. Therefore, this process can become computationally expensive, especially 

when dealing with many hyperparameters and a large dataset. 

 

Figure 5.4 Grid Search Example 

 

5.3.4 Prediction Models and Assumptions 

This study experiments with five models, namely Support Vector Regression (SVR), 

Grid Search based Support Vector Regression (GS-SVR), Genetic Algorithm based Support 

Vector Regression (GA-SVR), Optimized Genetic Algorithm Support Vector Regression 

(OGA-SVR), and Long Short-Term Memory (LSTM). The study optimized the predictions 

of OGA-SVR using a genetic algorithm and rolling window forward validation to tune the 

hyperparameters of SVR. The other models, SVR, GS-SVR, GA-SVR, and LSTM, are used 

as baseline models to compare the performance of the optimized model, OGA-SVR. In this 

study, the Radial Bias Kernel (RBF) and default value of gamma in the Scikit-learn Python 

library are used for all models of SVR. The default value of gamma in the Scikit-learn Python 

library is ‘scale’ as shown in the equation Eq. (5.1): 
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𝑇ℎ𝑎𝑛𝑘 𝑦𝑜𝑢 𝑓𝑜𝑟 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑜𝑢𝑡. 𝑆𝑐𝑎𝑙𝑒 =
1

𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 × 𝑉𝑎𝑟(𝑋)
 (5.1) 

 

 

The other two important hyperparameters of SVR are C and epsilon, which play a 

critical role in training the model. The cost parameter, denoted by C, is a regularization 

parameter that balances the trade-off between minimizing the training error and the 

complexity of the model. When C is small, the margin is wider, and the model allows for 

more training errors. Conversely, a larger C value leads to a narrower margin and fewer 

training errors. In SVR, C controls the degree to which the margin is allowed to be violated 

in the training data. Epsilon is another threshold parameter in SVR that sets the minimum 

distance between the predicted and actual values before an error is counted. If the predicted 

value is within the epsilon distance of the actual value, it is considered accurate and has zero 

error. Any predicted value beyond the epsilon distance of the actual value is considered 

inaccurate and has a non-zero error. Choosing a smaller value of epsilon increases the 

sensitivity of the model to errors, whereas a larger value of epsilon results in a less sensitive 

model. These two parameters of SVR are optimized in other models of SVR. Finally, the 

predictions made by the models are evaluated using RMSE and MAPE. Figure 5.5 shows 

the general flow chart of prediction algorithms. 



                           Chapter 5 

110 

 

 

Figure 5.5 Flowchart of prediction methods 

 

The complete process is done in three steps: data preparation, prediction, and 

evaluation. The following are the assumptions of the prediction models: 

• The models assume the future pattern of the stock prices is related to historical 

data. This is against the random market hypothesis but aligns with technical 

analysis. 
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• The experimental model OGA-SVR assumes that rolling forward validation is 

more appropriate than cross-validation to improve predictability for stock 

market forecasting. 

5.4 Experimental Setups 

5.4.1 SVR 

SVR is the base model for this study. The model SVR is trained without 

hyperparameter optimization, and default values of hyperparameters are used. This is helpful 

in evaluating other models' efficiency. Table 5.1 lists the default value of SVR. Fig. 8 shows 

the flowchart of the prediction algorithm of SVR. 

Table 5.1 SVR hyperparameters 

Hyperparameter Values 

Kernel RBF 

C 1 

Epsilon 0.1 

Gamma Scale 

 

 

 

Figure 5.6 Flowchart SVR prediction algorithm 
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5.4.2 GS-SVR 

The Grid Search-based Support Vector Regression (GS-SVR) algorithm uses a grid 

search approach to optimize the hyperparameters C and epsilon. Specifically, the Scikit-learn 

Python library’s grid search function estimates the performance of different hyperparameters 

using cross-validation (CV). Table 5.2 shows the input to the grid search. Figure 5.7 shows 

the flowchart of GS-SVR prediction.  

Table 5.2 Grid Search Parameters 

Parameters Values 

param_grid 
C:  [0.001, 0.01, 0.1, 1, 10, 100] 

Epsilon: [0.1, 0.5, 0.1, 0.15, 0.2, 0.25] 

scoring neg_root_mean_squared_error 

cv 10 

 

 

 

 

Figure 5.7 Flowchart GS-SVR prediction algorithm 
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In this study, using grid search, 10-fold cross-validation was used to evaluate the 

performance of different hyperparameter combinations, with the RMSE used as the loss 

measurement. This approach aids in the training process by identifying the optimal 

combination of hyperparameters, which are then utilized in the Support Vector Regression 

(SVR) algorithm to make predictions about future prices.  

5.4.3 GA-SVR 

Genetic algorithm-based Support Vector Regression (GA-SVR) used a genetic 

algorithm instead of a grid search to optimize the hyperparameters C and epsilon. GS and 

GS are both techniques used for hyperparameter optimization but differ in their approaches. 

Grid search is a brute-force approach that evaluates the performance of all possible 

hyperparameter combinations within a pre-defined range. On the other hand, genetic 

algorithms are inspired by the natural selection process and the survival of the fittest. Figure 

5.8 shows the steps of the genetic algorithm in this study. 
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Figure 5.8 Genetic Algorithm Steps 

 

 

Genetic algorithms use an iterative process to evaluate and optimize 

hyperparameters. In each iteration, the algorithm selects a set of hyperparameters, creates 

new sets by combining and mutating them, and evaluates their performance. The best-

performing hyperparameters are then selected for the next iteration, and the process is 
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repeated until exit criteria are met. In the GA-SVR process, full training data is utilized to 

converge on the best parameter.  

The initial population comprises pairwise combinations of values of C and epsilon 

from Table 5.3. Each value from the C list is paired with every value from the epsilon list, 

resulting in 36 initial solutions. The top 50% of individuals in the population are selected as 

parents and allowed to undergo crossover with randomly created new children. Further, the 

mutation is permitted in 20% of the population, allowing the insertion of any random value 

in the individual solution, subject to the limit of maximum and minimum values of C and 

epsilon from Table 5.3.  

Table 5.3 Chromosome Initial Population 

Chromosome Initial Values 

C 0.001, 0.01, 0.1, 1, 10, 100 

Epsilon  0.1, 0.5, 0.1, 0.15, 0.2, 0.25 

 

The exit criterion in this study is a maximum number of generations, which is set at 

30. Similarly, Yun et al. (2021) also used 30 generations while optimizing their machine-

learning models. The fitness function of GA-SVR aims to minimize the RMSE of the fit 

value of prices and training prices. Figure 5.9 shows the flowchart of GA-SVR. 
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Figure 5.9 Flowchart GA-SVR prediction algorithm 

 

 

5.4.4 OGA-SVR 

Optimized Genetic Algorithm-based Support Vector Regression (OGA-SVR) utilizes 

rolling window forward validation along with a genetic algorithm to optimize the 

hyperparameters C and epsilon of SVR. The genetic algorithm aims to find the best 

parameter on full training data, unlike grid search. In the Scikit-learn Python library, grid 

search has cross-validation inbuilt into it to estimate the performance on unseen data. In 

contrast to grid search, genetic algorithms do not inherently include cross-validation as a 

part of the optimization process on training data. This can lead to variations in the 

performance of the model on unseen data. Further, the assumption of independent and 

identically distributed observations, which is made in cross-validation, is not valid in time 

series analysis. Forward validation is proposed as an alternative to cross-validation. 
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According to the empirical study of Schnaubelt (2019), forward-validation techniques were 

found to provide more accurate estimates of the out-of-sample error than other validation 

schemes. Hence, in this study, to optimize the performance on unseen data, rolling window 

forward validation is incorporated in the fitness function of the genetic algorithm in the 

model OGA-SVR. Figure 5.10 shows the flowchart of the OGA-SVR prediction algorithm. 

 

 

 

Figure 5.10 Flowchart OGA-SVR prediction algorithm 

 

 

In this study, rolling window forward validation divides the data year-wise and trains 

the model on one year’s data while validating it on the next year’s data. In the next step, the 

model is trained on the data it was validated on and is further validated in the next year of 
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the currently trained window. This process continues until the training reaches the last year 

of data. The fitness function of OGA-SVR aims to minimize the average RMSE of all 

validated data, whereas the fitness function of the genetic algorithm aims to minimize the 

RMSE of the full training dataset. The remaining operations of OGA-SVR, including 

population initialization, crossover, and mutation, are similar to those of GA-SVR, as 

discussed in the preceding section.  

 

 

5.4.5 LSTM 

The Long Short-Term Memory (LSTM) algorithm is a powerful tool for processing 

sequential data, such as stock time series data. In this study, after trial and error, two LSTM 

layers and a dense output layer are stacked sequentially. The LSTM layers are recurrent 

neural networks that can handle sequential data, while the dense layer is a fully connected 

neural network layer that processes the output of the LSTM layers to produce a final output. 

Using two LSTM layers makes this architecture deeper than a single LSTM layer 

architecture, which can handle complex patterns of stock prices.  

Additionally, the study added dropout layers to reduce overfitting and make the 

model more robust. Dropout is a regularization technique commonly used in neural networks 

to reduce overfitting. The dropout process involves the selective omission of a portion of the 

neurons in a layer during training by setting them to zero. Figure 5.11 shows the architecture 

of the LSTM model. 
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Figure 5.11 LSTM architecture  

 

 

This dropout approach helps the neural network learn more resilient features, 

preventing it from becoming overly reliant on any one feature. The number of epochs is 100, 

the batch size is 32, and the dropout percentage is 20% for all indices. 
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5.5 Findings 

This study experiments with five global indices: the Nifty from India, the Dow Jones 

Industrial Average (DJIA) from the US, the DAX performance index (DAX) from Germany, 

the Nikkei 225 (NI225) from Japan, and the Shanghai Stock Exchange composite index 

(SSE) from China. These stock indices represent the world’s top five economies in terms of 

GDP. The study obtains 10 years of data for all indices from Yahoo Finance, spanning from 

January 1st, 2013 to December 31st, 2022. The training set uses data from January 1st, 2013, 

to December 31st, 2021, and the testing set reserves data from January 1st, 2022, to 

December 31st, 2022. The data is then divided into training and testing sets, with a ratio of 

90:10 for all models. In GS-SVR, the training data is then split for 10-fold cross-validation. 

In contrast, in OGA-SVR, the data is divided year-wise to utilize consecutive years of data 

in training and validation in rolling window forward validation. The data is preprocessed for 

training by removing fields such as Open, High, and Low prices and the Adjusted Close and 

Volume fields. The data is then reduced to only include the date index and close price. The 

date index is encoded into integers ranging from 1 to n. The encoded values of dates and 

close prices are further transformed using the min-max scaler equation shown in Eq. (5.2) 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
  (5.2) 

 

where X is the feature matrix,  Xmin and Xmax represent the minimum and maximum 

values of X, respectively. Since input features rely on previous prices, the models can predict 

prices for any time in the future using only future dates. After training, the models predict 

future prices using future dates from the testing data. The data is then inverse-transformed 
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and compared to the testing data. The study evaluates the results using RMSE and MAPE in 

the training and testing data. RMSE is used to compare the model on the same dataset, while 

MAPE is used to compare models on a different dataset. 

5.5.1 Nifty 

Table 5.4 shows the results for NIFTY during training and testing. There is no 

difference in performance between SVR and GS-SVR, as their train and test RMSE and 

MAPE values are the same. This is because the best-estimated parameters by grid search for 

GS-SVR are the same as the default parameters of SVR. In contrast, GA-SVR performs 

better in both the training and testing data than SVR and GS-SVR. 

Table 5.4 Nifty  

Model 

Train 

RMSE 

Test 

RMSE 

Train 

MAPE Test MAPE 

SVR 765.38 2787.05 7.24 15.29 

GS-SVR 765.38 2787.05 7.24 15.29 

GA-SVR 729.72 1721.7 6.64 8.87 

OGA-SVR 1016.26 1296.24 9.18 6.36 

LSTM 663.57 1522.84 5.61 7.72 

 

 

 

Due to its strong capability to handle sequential data, LSTM has the second-best 

performance on the test data and the best on the training data. The optimized model, OGA-

SVR, performs best on the test data but worst on the training data. Fig. 14 shows the models’ 

prediction chart, where the gray line divides the training and testing data. 
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Figure 5.12 Performance of models on NIFTY 

 

5.5.2 DJIA 

Table 5.5 presents the performance of all models on DJIA. Similar to the Nifty 

results, SVR and GS-SVR exhibit similar performance. However, both SVR and GS-SVR 

demonstrate poor performance compared to the other models. GA-SVR exhibits some 

improvement in training and testing data compared to SVR and GS-SVR. LSTM exhibits 

the lowest RMSE and MAPE on training data but the second-best on testing data. The 

optimized model exhibits the worst performance on training data but the best on testing data. 

Figure 5.13 visualizes the performance of all models. 
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Table 5.5 DJIA 

Model 
Train 

RMSE 

Test 

RMSE 

Train 

MAPE 

Test 

MAPE 

SVR 1315.96 7064.22 5.04 20.28 

GS-SVR 1315.96 7064.22 5.04 20.28 

GA-SVR 1244.76 6653.96 4.44 18.95 

OGA-SVR 1591.99 1961.45 5.98 4.87 

LSTM 1625.81 2827.79 5.01 7.39 

 

 

Figure 5.13 Performance of models on DJIA 

 

 

 

5.5.3 DAX 

SVR has the worst performance on testing data. The GS-SVR performs better than 

the SVR, but both show poor performance compared to other models. The GA-SVR model 

performs best on training data compared to all other models but does not generalize well on 

testing data, indicating overfitting. Figure 5.14 illustrates the fit and prediction prices of all 
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models. Interestingly, unlike the previous LSTM performance on NIFTY and DJIA, the 

performance of LSTM is lower than that of GA-SVR on DAX. The optimized model OGA-

SVR shows the lowest performance on training but the best on testing data. Table 5.6 

presents the performance of all models on DAX. 

 

 

Figure 5.14 Performance of models on DAX 

 

 

 

Table 5.6 DAX 

Model 
Train 

RMSE 

Test 

RMSE 

Train 

MAPE 

Test 

MAPE 

SVR 721.98 3416.08 5.14 23.62 

GS-SVR 774.81 3207.71 5.4 21.99 

GA-SVR 656.02 3094.12 4.54 15.49 

OGA-SVR 843.06 1761.95 6.02 11.7 

LSTM 779.22 2554.55 5.47 17.63 
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5.5.4 Nikkei 225 

In contrast to previous results, the best performance on SVR model is the best on 

testing data. Figure 5.15 shows the performance of all models.  

 

Figure 5.15 Performance of models on Nikkei 225 

 

 

 

The RMSE is the minimum for GA-SVR on training data but the highest on test data. 

Hence, it is overfitting the testing data. The GS-SVR and OGA-SVR models have similar 

results as both models estimate the same hyperparameters. The LSTM model is the second-

best on testing data. Table 8 presents the performance of all models on the Nikkei 225. 
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Table 5.7 Nikkei 225 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

SVR 1262.73 2042.3 5.38 6.4 

GS-SVR 1379.07 3690.73 5.77 13.16 

GA-SVR 1168.82 15487.49 4.91 45.11 

OGA-SVR 1379.07 3690.73 5.77 13.16 

LSTM 1507.74 3329.79 6.4 11.86 

 

 

5.5.5 SSE 

Table 9 presents the performance of all models on SSE. The GA-SVR performs worst 

on test data. Fig. 18 shows the fit and predicted prices of all models on SSE. The best 

performance exhibited by GS-SVR. The performance of SVR is close to that of GS-SVR. 

The performance of the optimized model is less than that of SVR, GS-SVR, and LSTM on 

testing data. 

 

 

 

Table 5.8 SSE 

Model 
Train  

RMSE 

Test  

RMSE 

Train  

MAPE 

Test  

MAPE 

SVR 311.85 419.06 7.33 12.43 

GS-SVR 341.66 421.39 7.66 12.1 

GA-SVR 269.61 931.85 6.67 28.1 

OGA-SVR 313.06 502.3 7.53 15.08 

LSTM 193.46 501.21 4.57 14.41 
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Figure 5.16 Performance of models on SSE 

 

 

5.5.6 Consolidated result 

To compare the performance of all models on all datasets, the study consolidated the 

results in Table 5.9. The GA-SVR model exhibits good performance on testing data but worst 

on testing data. This result implies that the genetic algorithm finds the hyperparameters that 

overfit the training data. The reason for overfitting can be attributed to the absence of 

validation on unseen data. However, there is also an absence of validation on unseen data in 

the SVR model, but its performance on testing data is better than GA-SVR. The MAPE of 

training data of GA-SVR is lesser than the MAPE of SVR. This indicates that finding the 

best parameter using training datasets does not guarantee good performance on testing data. 
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There is an increase in the RMSE value of GS-SVR compared to the RMSE values of SVR 

and GA-SVR. However, the performance of GS-SVR is better than GA-SVR but less than 

SVR on the training dataset. GS-SVR uses 10-fold cross-validation, which should increase 

the model’s generalization ability on the testing dataset. However, the results do not comply. 

The reason why 10-fold cross-validation does not improve the result of GS-SVR compared 

to SVR can be attributed to the violation of the assumption that observations are independent 

and identically distributed. In stock time series data, this assumption of cross-validation does 

not hold true. Hence, 10-fold cross-validation does not improve the performance of GS-SVR 

over SVR. 

 

Table 5.9 Consolidated 

Model 

Train 

MAPE 

Test 

MAPE 

SVR 6.03 15.60 

GS-SVR 6.22 16.56 

GA-

SVR 5.44 23.30 

OGA-

SVR 6.90 10.23 

LSTM 5.41 11.80 

 

 

The training MAPE of the LSTM model is better compared to all other models. 

Hence, the LSTM network is able to fit the complex pattern of the stock market better than 

other models. Further, it also performs second best on unseen test data. This result clearly 

reflects the outstanding ability of LSTM to handle sequential data. Based on MAPE on the 

training datasets, the optimized model OGA-SVR does not fit the prices as well as other 

models. However, the performance of testing datasets is the best for OGA-SVR. This 
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suggests that the stock prices are noisy, and fitting the model well on the training datasets 

can degrade the performance of the testing datasets. The OGA-SVR models used rolling 

window forward validation. This helps the models compromise their performance on the 

training dataset to predict well on the testing dataset. Hence, in the stock market time series, 

a higher RMSE or MAPE value on training datasets suggests that the model is bad. Further, 

the results also suggest that training a model on stock time series using rolling window 

forward validation is a better alternative to cross-validation to predict on testing datasets. 

5.5.7 Managerial Insights 

The results clearly demonstrate the excellent forecasting ability of the proposed 

OGA-SVR approach. Therefore, this study recommends the use of the OGA-SVR model for 

long-term forecasting of stock market prices due to its superior performance on testing data. 

The study also highlights the importance of using rolling window forward validation to avoid 

overfitting on the training data and to improve the generalization ability of the model on 

testing data. Cross-validating grid search or genetic algorithms alone cannot generalize well 

on unseen testing data. Therefore, managers and investors should be cautious about relying 

on predictions solely based on grid search or genetic algorithms with SVR. This study also 

demonstrates that LSTM is also an appropriate algorithm for long-term stock prediction. 

Future research could explore the use of other models and validation techniques for stock 

market time series data to improve the accuracy of the predictions. The insights from this 

study can assist managers in making better investment decisions and understanding the 

limitations of the models used for stock market forecasting.  
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5.6 Significant Outcomes 

From the findings, the following are the significant outcomes of the chapters: 
 

➢ The optimized model, OGA-SVR, outperformed all compared models on testing 

data. The optimized model exhibited better generalization ability by avoiding 

overfitting in the training data. 

➢ The generic algorithm was overfitting in the training process and hence performed 

poorly on testing data. 

➢ Cross-validation did not improve the result of SVR, which suggests that observations 

in financial time series data are not independent. 

➢ Rolling window forward validation is more suitable for estimating the future 

performance of stock time series data. 

➢ The performance of LSTM was good on both training and testing data. 

 

In summary, the study demonstrates that the proposed model OGA-SVR outperforms 

the state-of-the-art model LSTM for forecasting global stock indices. The model may be 

utilized by investors to make informed decisions. 

 

The work in this chapter is based on the following publication: 
 

Beniwal, M., Singh, A., & Kumar, N. (2023). Forecasting long-term stock prices of 
global indices: A forward-validating Genetic Algorithm optimization approach for 
Support Vector Regression. Applied Soft Computing, 110566.
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6 Deep Learning Models for Long-term Price Forecasting 

6.1 Overview 

Deep machine learning algorithms play an important role in facilitating the 

development of predictive models for the stock market. However, most studies focus on 

predicting next-day stock prices using deep learning, limiting the usability of the predictive 

model for investors. There is a gap in the literature for studies that predict daily prices for up 

to a year. Deep learning is a subset of neural networks that can automatically extract features 

from raw data without the need for manual feature engineering.  

This study extensively explores the ability of deep learning models to predict out-of-

sample the daily prices of global stock indices over the long term, up to a year. The 

performance of six models, including Deep Neural Network (DNN), Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term 

Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network 

(CNN), is compared using RMSE and MAPE. The models predict the long-term daily prices 

of five global stock indices, namely the Nifty, the Dow Jones Industrial Average (DJIA), the 

DAX performance index (DAX), the Nikkei 225 (NI225), and the Shanghai Stock Exchange 

composite index (SSE). 

The results confirm the superiority of LSTM for predicting long-term daily prices. 

The Bi-LSTM does not improve the result of the LSTM but performs better than other 

algorithms. CNN overfits the training data and poorly forecasts the long-term stock prices 

of global indices based on the testing data. The study can be further applied to different 

frequencies of data, such as 1-minute, 5-minute, 15-minute, etc.  
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6.2 Background 

Various machine learning algorithms have been used in stock market analysis, such 

as Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), and Naive 

Bayes (NB). These algorithms have demonstrated varying degrees of success in predicting 

stock prices. The accuracy of predictions is subject to a margin of error, which is influenced 

by the choice of algorithm employed (Nikou et al., 2019b). However, neural networks have 

emerged as robust and effective machine learning algorithms that can efficiently handle 

noisy and nonlinear data to forecast time series (Yu & Yan, 2020). Among neural networks, 

deep learning has become a popular approach for analyzing stock market data due to its 

superior performance in prediction tasks. Deep learning enables the creation of 

computational models that consist of multiple layers of processing, which can learn to 

represent data with varying degrees of abstraction (Lecun et al., 2015). Currently, there is a 

growing trend among asset management companies and investment banks to allocate more 

research funds toward the development of artificial intelligence techniques, particularly in 

the field of deep learning (Jiang, 2021a). Deep learning models have shown better 

performance compared to linear and other machine learning models in stock market 

prediction tasks, owing to their ability to effectively handle large volumes of data and 

identify complex nonlinear relationships between input features and prediction targets 

(Jiang, 2021b).  

One advantage of deep learning is its ability to automatically extract features from 

raw data (Liang et al., 2017; D. Wu et al., 2022), which eliminates the need for feature 

engineering and improves the accuracy of forecasting. Deep learning models are composed 
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of multiple layers of interconnected neurons, with each layer responsible for extracting 

higher-level features from the input data. Numerous deep-learning architectures have been 

created to address diverse problems and the inherent structure of datasets (Bhandari et al., 

2022). In this study, some frequently used deep learning models such as Deep Neural 

Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), 

Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Units (GRU), and 

Convolutional Neural Networks (CNN) are explored.  

DNN includes dense hidden layers with a hierarchical topology (Thakkar & 

Chaudhari, 2021). DNNs can learn multiple levels of features from raw input data using 

multiple layers of nonlinear transformations. An RNN is a specialized type of Artificial 

Neural Network (ANN) that can handle sequential inputs through the incorporation of 

internal feedback connections between neurons (K. Kumar & Haider, 2021b). LSTM, a 

specific type of RNN, is a neural network architecture that possesses the ability to retain 

memory, making it well-suited for processing and predicting significant events that have 

longer intervals and time delays within time series data (Lin et al., 2021). However, LSTM 

can only learn from past information (Alkhatib et al., 2022). Bi-LSTM, a variant of LSTM, 

can learn from past as well as future information because it has two hidden layers with 

opposite directions connected with the same output (Alkhatib et al., 2022; Houssein et al., 

2022; Qin et al., 2018). Similar to LSTM, GRU can handle sequence data while simplifying 

the complex computations involved in LSTM (S. Zhang et al., 2023). While CNN is inspired 

by computer vision, it can also be designed for financial data (Hoseinzade & Haratizadeh, 

2019b; Shah et al., 2022).  
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In the field of stock market prediction, most of the research has focused on predicting 

the next day's price (Rouf et al., 2021), using iterative methods to predict prices for the entire 

test data. This approach has occasionally achieved high accuracy but is not always useful for 

traders seeking long-term predictions. For long-term prediction, machine learning 

algorithms need to provide multi-output predictions. However, structuring machine learning 

algorithms for multi-output long-term predictions can be a tedious task and sometimes 

impractical. To address this limitation, this study proposes an approach for stock market 

prediction that leverages the time dependency of stock prices. Instead of predicting only the 

next day's price, machine learning algorithms are trained to learn the patterns of price 

fluctuations in relation to time. By exploiting the time dependency of prices, the study aims 

to predict long-term prices with higher accuracy and precision. To test the robustness of the 

approach, the study experiments with the ML algorithms on stock indices of the top five 

economies in terms of Gross Domestic Product (GDP) (Countries by GDP, 2022), namely 

the Nifty, the Dow Jones Industrial Average (DJIA), the DAX performance index (DAX), 

the Nikkei 225 (NI225), and the Shanghai Stock Exchange composite index (SSE). 

The proposed approach contributes to the field of predicting long-term stock prices 

using deep learning. Further, it can provide traders and investors with more accurate and 

reliable long-term predictions. This can help them make informed investment decisions and 

reduce risk. Additionally, the proposed approach can be used to develop advanced trading 

strategies, such as trend-following or mean-reverting. Overall, this study contributes to the 

ongoing research efforts aimed at improving the accuracy and reliability of stock market 
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predictions using advanced deep learning algorithms. Hence, this study contributes in the 

following ways: 

➢ Most predictive studies in the stock market emphasize next-day prices. In contrast, 

this study presents an approach to exploit price patterns in relation to time 

dependency to forecast long-term stock prices of global indices. 

➢ Extensive experiments are conducted on the top five GDPs to evaluate the predicting 

robustness of LSTM and other deep learning algorithms in the long term. 

➢ The research addresses multiple questions regarding the ability to forecast long-term 

stock prices of global indices, such as whether RNN performs better than DNN, 

whether it is better to use Bi-LSTM instead of LSTM, whether GRU outperforms 

LSTM, and which algorithm from DNN, RNN, LSTM, Bi-LSTM, GRU, and CNN 

is the least suitable. 

➢ The approach helps investors gauge the market outlook for the long term and make 

informed decisions. 

➢ Furthermore, the study may inspire other researchers to develop trading and risk 

management systems for the long-term horizon. 

 

6.3 Deep Learning Models 

6.3.1 Deep Neural Network (DNN) 

ANNs were proposed in the 1940s as the simplest model to mimic the way human 

brains work in processing information and learning from it. However, ANNs' learning 

becomes challenging if the data increases in size (Awad & Khanna, 2015a). Multi-layer 

Perceptron (MLP) is a variant of feedforward ANN and is the foundation of DNN (Sarker, 
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2021b). A fully connected MLP having more than or equal to two hidden layers is referred 

to as a DNN in this study. DNNs are highly scalable and can handle large and complex 

datasets with ease. Hinton et al. (2006) first proposed DNNs. In a DNN, there are three 

distinct layer types, starting with the input layer, followed by two or more hidden layers, and 

concluding with an output layer. The input layer receives and processes the input data, which 

is then transformed through the subsequent hidden layers via activation functions. Each 

hidden layer comprises multiple neurons, and the output of each neuron is fully connected 

to all neurons in the next layer, creating a dense layer. Lastly, the output layer produces the 

network's final output, which can either be a single value or a vector of values. Figure 6.1 

shows the architecture of a typical DNN. 

 

Figure 6.1 DNN Architecture 
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6.3.2 Recurrent Neural Network (RNN) 

DNNs are feedforward neural networks where information only flows in one 

direction, from the input layer through the hidden layers to the output layer. Feedforward 

neural networks encounter several difficulties when processing temporally related data, such 

as time series, including managing varying-length sequences (Tsantekidis et al., 2022).  In 

contrast, RNNs have a feedback mechanism where information can flow back into the 

network. Hence, RNNs can take in a sequence of data and use it to build a kind of memory 

that helps them understand the current and past data in that sequence. Elman (1990) first 

introduced simple RNN (J. Zhang & Man, 1998). In this paper, SimpleRNN from 

TensorFlow is used, which is fully connected. A fully connected RNN layer means that each 

neuron in the layer is connected to every neuron in the next layer. Figure 6.2 shows the 

architecture of a simple RNN.  

 

Figure 6.2 RNN Architecture 
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6.3.3 Bi-directional Long Short-Term Memory (Bi-LSTM) 

LSTM was discussed earlier. Bidirectional RNN (Bi-RNN) was proposed by 

Schuster and Paliwal in 1997 (Schuster & Paliwal, 1997). Later, Graves and Schmidhuber 

(2005) proposed Bi-LSTM. The architecture of Bi-LSTM is similar to LSTM, but LSTMs 

utilize past information to make predictions. However, LSTMs do not incorporate future 

information in their predictions, which could limit their ability to capture certain patterns in 

the data. Bi-LSTM can obtain not only past context information but also future context 

information (Y. Wang et al., 2019). LSTMs utilize past information in order to make 

predictions. However, LSTMs do not consider future information in their predictions, which 

may limit their ability to capture certain patterns in the data. Figure 6.3 shows the 

architecture of Bi-LSTM. 

 

Figure 6.3 Bi-LSTM Architecture  
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6.3.4 Gated Recurrent Unit (GRU) 

The GRU was proposed by Kyunghyun Cho (2014). A GRU is a subtype of RNN 

that shares some similarities with LSTM. However, GRU is characterized by the presence 

of only two gates, namely a reset gate and an update gate. Like LSTM, GRU also largely 

tackles the vanishing gradient problem (Shen et al., 2018). Further, due to its simpler 

structure, GRU trains faster (Samsani et al., 2022) and is computationally more efficient (Xia 

et al., 2022) than LSTM. Figure 6.4 shows the architecture of the GRU unit. 

 

Figure 6.4 GRU Unit 

 

There are two gates in the GRU, namely the reset gate and the update gate. The reset 

gate plays a crucial role in determining the extent to which the previous hidden state should 

be discarded and the new input should be included in the current hidden state. The update 

gate, on the other hand, determines the extent to which the previous hidden state should be 

retained and how much of the new input should be added to the hidden state. 
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6.3.5 Convolutional Neural Network (CNN) 

CNN in its primitive form was first introduced by Yann LeCun (Bhatt et al., 2021; 

LeCun et al., 1998) inspired by the work of Kunihiko Fukushima (Fukushima, 1980). 

However, the focus on CNN increased after the introduction of a deep convolutional neural 

network also known as Alexnet (Hinton et al., 2012; Krizhevsky et al., 2017).   

 

Figure 6.5 1D-CNN Architecture  

 

Figure 6.5 shows the architecture of a one-dimensional CNN. In 1D-CNN, the 

convolutional kernel is an array of one dimension.  As shown in the figure, a typical CNN 

architecture comprises several layers, including the input layer, convolutional layer, pooling 

layer, fully connected layer, and output layer. Although CNN is used for image recognition, 

it can also process time series data (H. Wang et al., 2021).  
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6.4 Proposed Methodology 

6.4.1 Prediction method 

In this study, all deep learning models have the same configuration, so the 

comparison can be unbiased. Figure 6.6 shows the architecture of the deep learning models. 

The first layer of each model is the input layer. The dates are converted into an integer from 

1 to n. Along with integer dates, this layer also has an input of a transformed array of scaled 

close prices using the min-max scaler formula in Eq. (6.1) 

 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
  (6.1) 

 

 

Assuming X is the feature matrix, Xmin and Xmax correspond to its minimum and 

maximum values, respectively. The input layer gives output to the model’s first layer. The 

first layer of the model is the corresponding fully connected neuron cell, such as DNN, RNN, 

LSTM, Bi-LSTM, GRU, or CNN. There are 256 fully connected neuron units. This layer 

has a ReLU activation function. Deep learning models can sometimes can overfit the training 

data. Hence, it is important to design a prediction method that tackles the problem of 

overfitting the training data. To handle the overfitting in training data, a dropout layer with 

256 units is added after the first layer. The dropout rate is kept at 20% in the dropout layer 

for all models.  
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Figure 6.6 Deep learning model Layers architecture  

 

To make the learning deeper, a second layer of deep learning units is added. The 

second layer also has 256 units. This layer also has a ReLU activation function. A second 

dropout layer is again stacked on top of the deep learning layer with the same 20% dropout 

rate and 256 units. Finally, a dense layer with a single neuron is added with a sigmoid 

activation function. The data is input into the models with a batch size of 32. The models are 

compiled and trained using the Adam optimizer and mean squared error as a loss function. 

For all models, 100 epochs are used to train them. The output from the model is inversely 
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transformed and compared with the original prices. The final evaluation of the models is 

done based on RMSE and MAPE. 

6.4.2 Experimental Setup 

In this study, an investigation is conducted using five prominent global indices, 

which are the Nifty, the Dow Jones Industrial Average (DJIA), the DAX performance index 

(DAX), the Nikkei 225 (NI225), and the Shanghai Stock Exchange composite index (SSE). 

These indices belong to India, the USA, Germany, Japan, and China, respectively. The 

countries are the top five economies in the world. As the stock market is reflected in the 

economy of a country, these indices from diverse economies can help test the robustness of 

the deep learning model. The data is collected from Yahoo Finance for a span of around ten 

years, from January 1st, 2013, to February 28th, 2023. Such a long period helps the model 

train on different phases of the market, such as bull, bear, and stagnant. The last year's data 

is kept for testing purposes, while the rest of the data is utilized for training. Upon completion 

of training, the trained models make predictions on future prices using dates from the testing 

data. The prices obtained from the testing phase are inverse-transformed and compared to 

the predicted values. The efficacy of the models is evaluated using RMSE on both training 

and testing data. MAPE is used to compare the results obtained from different indices 

because the value of indices varies from market to market. Figure 6.7 shows the overall 

experimental design. 
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Figure 6.7 Prediction Framework 

 

 

The process has three stages, namely data processing, prediction, and evaluation. 

Data processing involves learning and encoding data. In the prediction stage, deep learning 

models are used to forecast future prices. Lastly, in the evaluation state, models are evaluated 

using RMSE and MAPE. 
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6.5 Findings 

6.5.1 Nifty 

Table 6.1 shows the results of all models on the Nifty index. In the training phase, 

CNN performed the best and LSTM performed the worst. Further, GRU is the second-best 

in terms of RMSE and MAPE. However, in the testing phase, LSTM performed the best, 

and CNN performed the second worst. This indicates that fitting well in the training phase 

does not guarantee better performance in the testing phase. Figure 6.8 shows visually the 

price pattern and prediction in the training and testing phases. The gray line separates the 

training and testing periods.  

 

 

Table 6.1  Nifty 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

DNN 503.34 1255.32 3.52 6.2 

RNN 510.74 1353.29 3.56 6.8 

LSTM 581.37 881.38 4.51 3.95 

Bi-LSTM 576.12 1064.63 4.46 4.96 

GRU 506.26 1224.16 3.6 5.98 

CNN 499.28 1326.14 3.49 6.64 
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Figure 6.8 Nifty predictions 

 

 

 

 

6.5.2 DJIA 

Table 6.2 shows the results of all models on the DJIA index. The performance of 

CNN in the training phase is the best in the DJIA index, similar to the performance of CNN 

on Nifty. DNN is the second-best in terms of training RMSE and MAPE. GRU performed 

worst in the training period, and LSTM is the second worst. However, the scenario changes 

in the testing phase. The LSTM model again performed the best, while the CNN model 

performed the worst. Figure 6.9 shows the performance of deep learning models during the 

training and testing periods. The MAPE values are higher in the DJIA compared to the Nifty 

index.  
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Figure 6.9 DJIA predictions 

 

 

 

 

 

 

 

Table 6.2 DJIA 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

DNN 957.45 4027.82 2.76 11.67 

RNN 1011.53 3953.16 3.26 11.42 

LSTM 1041.41 3736.37 3.1 10.71 

Bi-LSTM 991.63 3928.81 2.82 11.34 

GRU 1085.22 3942.12 3.43 11.39 

CNN 937.4 4145.69 2.69 12.05 
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6.5.3 DAX 

Table 6.3 shows the performance of deep learning models on the DAX performance 

index. In contrast to the performance of CNN on the Nifty and DJIA, CNN's performance is 

not the best during the training phase. The DNN model performed slightly better than the 

CNN model. Following a similar pattern in the previous two indices, the LSTM model 

performed the worst in terms of the training RMSE and training MAPE. However, the LSTM 

is the best-performing model during testing in DAX as well. The MAPE values are higher 

in DAX compared to the Nifty and DJIA. Figure 6.10 visualizes the pattern of prices both 

during the training and testing phases. 

 

 

 

 

Figure 6.10 DAX predictions 
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Table 6.3 DAX 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

DNN 596.34 2453.73 3.71 17.06 

RNN 601.07 2479.58 3.67 17.26 

LSTM 684.68 2246.89 4.53 15.48 

Bi-LSTM 681.42 2473.32 4.52 17.21 

GRU 679.04 2414.38 4.45 16.76 

CNN 598.2 2421.44 3.74 16.82 

 

 

 

6.5.4 Nikkei 225 

Table 6.4 reports the results of the six models on the Nikkei 225. The results are 

similar to previous experiments. The CNN model shows superiority during the training 

phase, and the GRU model outperforms other models during the testing period. The MAPE 

values are smaller compared to the DJIA and DAX but bigger than the Nifty. Figure 6.11 

shows the chart of the original close price and fit and prediction prices during the testing and 

training periods, respectively.  

 

Table 6.4 Nikkei 225 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

DNN 1016.41 3013.85 3.91 10.8 

RNN 996.18 2932.33 3.89 10.49 

LSTM 1421.02 3080.97 5.88 11.06 

Bi-LSTM 1259.34 2908.46 5.14 10.4 

GRU 1058.77 2610.49 4.23 9.25 

CNN 990.39 2989.09 3.8 10.71 
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Figure 6.11 NI225 predictions 

 

 

 

6.5.5 SSE 

Table 6.5 shows the performance of the models on the SSE index. RNN fits the best 

on the training data of the SSE index, and LSTM fits the worst. The Bi-LSTM models 

performed the best on testing data. The LSTM model is in second place. The CNN models 

again performed poorly on the testing data. Figure 6.12 visualizes the results of all models. 

It can be seen that the CNN predicted prices are farthest from testing close prices.  
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Table 6.5 SSE 

Model Train RMSE Test RMSE Train MAPE Test MAPE 

DNN 188.75 324.18 4.8 9.5 

RNN 183.04 452.4 4.49 13.7 

LSTM 234.99 357.77 5.8 10.68 

Bi-LSTM 198.46 354.77 4.89 10.57 

GRU 184.49 395.5 4.49 11.89 

CNN 189.66 546.76 4.71 16.77 

 

 

Figure 6.12 NI225 predictions 

 

6.5.6 Consolidated 

In all models, the CNN model tends to overfit the training prices and underfit the 

testing prices. In contrast, the LSTM model tends to underfit the training price but performs 

the best on the testing data. Table 6.6 shows the consolidated result. To compare the models 

between the five indices, RMSE cannot be used as the scale of close prices is different for 

each index. Hence, MAPE is appropriate for comparison. Except for the LSTM, the Bi-
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LSTM is superior to all other models. This can be associated with the fact that LSTM and 

Bi-LSTM have a lot of similarities in architecture. The performance of GRU and DNN is 

the same on testing data. However, DNN fits better on the training data compared to the 

GRU. GRU also has a gated mechanism like LSTM and Bi-LSTM but it is not able to 

outperform these models to predict long-term prices.  

Table 6.6 Consolidated 

Model Train MAPE Test MAPE 

DNN 3.74 11.05 

RNN 3.77 11.93 

LSTM 4.76 10.38 

Bi-LSTM 4.37 10.90 

GRU 4.04 11.05 

CNN 3.69 12.60 

 

Table 6.7 visualizes the best and worst performers during the training and testing 

phases. RNN is the second-worst performing, which might be due to a vanishing gradient 

problem. 

 

Table 6.7 Overview of Models' Results 

 Training  Testing 

  The Best The Worst The Best The Worst 

Nifty CNN LSTM LSTM RNN 

DJIA CNN GRU LSTM CNN 

DAX CNN LSTM LSTM RNN 

NI225 CNN LSTM GRU LSTM 

SSE RNN LSTM Bi-LSTM CNN 

 

 

CNN performed the poorest compared to other models, and this might be because 

CNN is designed to work with computer vision and images. It can be used for time series 
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analysis, but with a similarly deep learning architecture, it does not well predict long-term 

prices. 

 

6.5.7 Managerial Insights 

Based on the analysis, the study found that the LSTM model is superior to other 

models in predicting long-term stock prices for the five indices considered. The LSTM 

model may perform poorly on training data compared to other models, but it performed well 

on testing data, indicating that it is an appropriate model to predict long-term stock prices of 

global indices. However, the CNN model tends to overfit the training data and underfit the 

testing data, making it unsuitable for predicting long-term stock prices. Furthermore, the 

study found that the performance of the models varies across the different indices, indicating 

that the stock market trends in different regions are not identical. Additionally, the study 

highlights the importance of selecting the appropriate evaluation metrics when comparing 

the performance of the models. In this case, MAPE is used because it accounts for the 

difference in scale among the indices. Overall, the findings of this study could be useful for 

investors and traders who rely on stock price predictions to make informed investment and 

risk mitigation decisions. The LSTM model, in particular, could be a valuable tool for 

predicting long-term stock prices, providing a competitive edge in the stock market.  
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6.6 Significant Outcomes 

➢ In forecasting long-term prices using deep learning models, the LSTM performed the 

best on Nifty, DJIA, and DAX. 

➢ Out of all the deep learning models used, the Bi-LSTM also performed better than 

other models except the LSTM. 

➢ 1-D CNN overfits the training data, performs poorly on testing data, and is hence 

least appropriate to predict long-term stock prices. RNN also performed poorly on 

testing data. 

➢ Based on the training and testing of MAPE, GRU's forecasting ability for long-term 

prices of global indices is inferior to LSTM, Bi-LSTM, and DNN. 

In summary, among the compared deep learning models, the LSTM model is the 

most appropriate for forecasting long-term prices. 

 

This chapter is based on the following paper: 

Beniwal, M., Singh, A., & Kumar, N. "Forecasting Multistep Daily Stock Prices for Long-
Term Investment Decisions: A study of Deep Learning models on Global Indices." 
(Communicated) 
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7 Conclusion and Future Work 

This chapter serves as a conclusion to the study, discussing its limitations and 

providing insights into future directions. Furthermore, it suggests the potential applications 

of the research findings. 

7.1 Conclusions 

7.1.1 Trading Framework using LSTM and Technical Analysis 

In this study, a model based on LSTM and technical indicators was developed. The 

empirical study conducts a series of experiments on standard models such as LSTM and 

LSTM-o and some created models such as fma-LSTM-o, atr-LSTM-o, and a-m-LSTM-o. 

The study used the model’s parameters as round numbers that traders generally use to avoid 

underfitting and overfitting.  

Confusion matrix components such as accuracy, weighted prediction, weighted 

recall, and weighted F1-score are used as evaluation parameters. Apart from these, prediction 

return, prediction drawdown, and the number of transactions are also used to evaluate the 

models. From the results of the experiments, it can be concluded that a high value of 

weighted precision, weighted recall, or weighted F1 score does not make a model better. It 

cannot be assumed that a model with a high F1score will yield higher returns. Some models 

with high F1-score give poor returns. The study emphasizes that the prediction return, 

prediction drawdown, and number of transactions are more practical criteria for evaluation. 

The study innovatively and intuitively uses technical indicators to transform prices. 

Some studies improve the accuracy of classification but do not compare returns. Further, lots 
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of studies lack a buy-and-hold model as a baseline (Basak et al., 2019; Borovkova & 

Tsiamas, 2019; Kim et al., 2006). However, the proposed model improves returns over the 

baseline buy-and-hold return. It provides an alternative for investors to think beyond the 

passive buy-and-hold strategy. 

7.1.2 Performance Comparison of ARIMA and SVR 

This work analyzes and evaluates the performance of static and iterative ARIMA and 

SVR models. Further, a comparison is made with the baseline static and iterative Naïve 

models. The data of five global indices, namely, Nifty, DJIA, DAX, NI225, and SSE, are 

split for training and testing in a 75:25 ratio for both static ARIMA and SVR models. In the 

static models, a long-term prediction of price is made at once. For all the test days, the naïve 

static model assumes that the price remains the same as on the last day of the training day. 

The models are evaluated using RMSE, MAPE, MAE, and MSE. Based on these parameters, 

the SVR model performs the best for the Nifty and SSE indices in the static models. Both of 

these indices belong to emerging economies. In the DAX index, ARIMA static and SVR 

static both performed equally. The ARIMA static model outperforms SVR static in the DJIA 

and NI225 indices. Notably, ARIMA performed better than SVR static in developed 

economies. From the result, it could be inferred that SVR static has better predictability 

power in emerging economies than in developed economies. Additionally, ARIMA predicted 

that prices do not fluctuate in the long term. It is not giving any future directional information 

to the investors. On the other hand, SVR static is able to capture past patterns in all indices 

and provide directional information to investors. Hence, it can be concluded that for long-

term prediction, SVR does have predictability.  
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In iterative models of ARIMA and SVR, the models are first trained on 75% of the 

data. Once trained, the models predict only the next day’s price. Before predicting the 

upcoming day, the iterative models are retrained with the original price of the predicted day. 

This process makes the models dynamic and adjustable to changes in the behavior of the 

time series. The Naïve iterative model assumes the next day’s price is the same as the 

previous day’s price. ARIMA iterative and SVR iterative are compared to the Naïve model 

based on RMSE, MAPE, MAE, and MSE. This study shows that the Naïve model performed 

better than both models, i.e., the ARIMA and SVR iterative models. This result indicates that 

the Naïve model is best for prediction in next-day price prediction. ARIMA iterative is 

similar to the Naïve model. Though SVR performs the worst based on evaluation parameters, 

its prices still reflect the underlying trend. The best performance by the naïve model shows 

that in the short term, the prediction abilities of ARIMA and SVR are close to random 

forecasting. 

This study empirically demonstrates that the SVR static model has better predictive 

power than other models over the long term. Additionally, the SVR models predict the price 

trend and eliminate noise. The experiments also show that the SVR has better predictability 

in emerging economies such as India and China. Further, in developed countries, the 

predicted price pattern of the SVR model reflects similarly to the test data, which can be 

useful to investors. ARIMA and Naïve model fails to add that futuristic knowledge to 

investors. In iterative models, the SVR and ARIMA fail to beat the Naïve models. Hence, 

market efficiency makes it difficult to predict the price for the next day by learning the 
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underlying pattern. Using this study, investors can be more confident using SVR static to 

predict the long-term pattern of prices in developing countries like India and China.  

 

7.1.3 Long-term Price Forecasting using Optimized GA and SVR 

This study proposed a model based on forward-validating genetic algorithm and 

support vector regression to forecast the multistep long-term stock prices. While using daily 

data for prediction, the study avoided using statistical calculations and technical indicators 

based on historical data. This study only used dates, and close prices are input and output 

features, respectively. As dates were known input variables for the long-term duration, the 

models predicted daily close prices for up to a year.  

After empirical evaluation using RMSE and MAPE, the study found that the 

optimized model OGA-SVR outperformed all baseline models on testing data. The 

optimized model exhibited better generalization ability by avoiding overfitting in the 

training data. The model used rolling window forward validation, which helped it perform 

well on unseen future data. The results suggest that only genetic algorithm based SVR model 

was overfitting in the training process and hence performed poorly on testing data. The study 

also found that cross-validation did not improve the result of SVR, as observations in time 

series data are not independent. Therefore, rolling window forward validation is more 

suitable for estimating the future performance of stock time series data.  

After OGA-SVR, LSTM has the best performance among other models. The 

performance of LSTM is good on both training and testing data, which affirms its 

outstanding ability to handle sequential data and suitability for stock time series data. 



                           Chapter 7 

159 

 

Although the LSTM model showed good performance on training and testing data with two 

dropout layers, further optimization of hyperparameters such as the number of neurons, 

batch size, and number of epochs can improve performance.  

 

7.1.4 Deep Learning Models for Long-term Price Forecasting 

The study extensively explores the ability of deep learning models to predict the daily 

prices of global stock indices over the long term, up to a year. The performance of six models, 

including DNN, RNN, LSTM, Bi-LSTM, GRU, and CNN, is compared using RMSE and 

MAPE. The models predict the long-term daily prices of five global stock indices, namely 

the Nifty, DJIA, DAX, NI225, and SSE. 

The results confirm the superiority of LSTM for predicting long-term daily prices. 

The LSTM performed the best on the Nifty, DJIA, and DAX. Overall, among the compared 

models, the MAPE on all indices demonstrates that LSTM is most appropriate to predict 

long-term stock prices. The Bi-LSTM also performed better than other models except for 

the LSTM. This suggests that processing input by Bi-LSTM in reverse order does not 

improve stock prediction over LSTM. CNN overfits the training data and performs poorly 

on the testing data. Therefore, among the compared models, it is least appropriate to predict 

long-term stock prices. Similarly, RNN also performed poorly on testing data. According to 

the literature, GRU is computationally efficient, but its forecasting ability is inferior to that 

of LSTM, Bi-LSTM, and DNN, as indicated by the results. 
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7.2 Limitations 

In the study of LSTM and technical analysis models, the parameters are chosen 

manually rather than algorithmically. A dynamic parameter assignment by the models will 

make the modes more robust. The researchers may further compare the models with other 

neural networks such as CNN, DNN, and RNN. 

In the comparative study of the ARIMA and SVR, only close prices and dates are 

used as input to the models. Researchers can include fundamental analysis, technical 

analysis, sentiment analysis, or evolutionary algorithms to improve the forecasting 

capabilities of the machine learning algorithm. Further, this study does not generate buy or 

sell signals. Researchers can further develop a trading or decision system to help investors 

in their decision-making. 

In forecasting long-term prices using GA and SVR, it only tested the models on 

global indices, which have a tendency to go up and are comparatively less volatile than 

individual stock prices. It will be interesting to explore whether the approach produces 

similar results for individual stock predictions. Particularly, the use of only a single input 

variable limits the models’ performance. The performance can be improved by feeding prices 

and predicting them from sampling frequencies such as monthly, quarterly, and yearly.  

In the study of forecasting long-term prices using deep learning models, the 

architecture of the models is selected manually. Hence, using automated Machine Learning 

(AutoML) might improve results by optimizing the hyperparameters. Apart from dropout, 

other regularization techniques such as forward validation and moving window training may 

enhance the results. 
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7.3 Future Work  

➢ The methods and models utilized in this study can be further explored to 

develop trading and risk management systems. These systems can assist 

investors, traders, and analysts in making better-informed decisions. 

➢ The study focused on daily data frequency; however, it can be applied to 

small frequency data such as 1 min, 5 min, 15 min, 1 hour, etc. Hence, it will 

be interesting to evaluate the model efficiently in shorter timeframes. 

➢ The study can be utilized to further develop a dynamic parameter assignment 

mechanism for LSTM and technical analysis models to enhance their 

robustness. This can be achieved by determining the optimal parameters 

algorithmically based on the characteristics of the dataset. 

➢ Expand the input features by incorporating fundamental or sentiment 

analysis. This can potentially improve the forecasting capabilities of machine 

learning algorithms. 

➢ Explore the use of automated Machine Learning (AutoML) techniques to 

optimize the architecture and hyperparameters of deep learning models. This 

can lead to improved performance by automatically fine-tuning the model 

configuration. 
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➢ Some of the machine learning algorithms are not evaluated in the study, such 

as random forests, XGboost, decision trees, etc. It will be interesting to 

explore those algorithms and compare the proposed models’ performance. 

 

7.4 Applications 

➢ A trading system based on the long-term prediction of daily prices can be 

built to enhance the decision-making of traders and investors. 

➢ Further, using the long-term stock forecasting model of this study, stock 

portfolios can be optimized.  

➢ The long-term prediction models, especially OGA-SVR, can be effectively 

applied to other time series forecasting tasks, such as sales forecasting, 

inventory forecasting, electricity demand forecasting, and more. 

➢ Based on the models' predictions, investors can develop systems to take 

positions in the derivatives market to hedge their risks or enhance their 

returns. 
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1 
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