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ABSTRACT 

In today's highly competitive and fast-paced manufacturing industry, companies are 

increasingly turning to flexible manufacturing systems (FMS) to improve their efficiency 

and productivity. FMS is an automated manufacturing system that includes transport 

vehicles, automated storage, and a comprehensive computer control system, all working 

together to produce a wide variety of parts quickly and efficiently. FMS is a critical 

component of Industry 4.0, the fourth industrial revolution characterized by the integration 

of advanced technologies making it smart manufacturing process.  

Scheduling optimization is a crucial aspect of Flexible Manufacturing Systems (FMS) that 

involves determining the optimal sequence for producing multiple components and 

allocating the appropriate resources to each operation. The FMS scheduling optimization 

is of paramount importance for manufacturers, as it results in increased productivity and 

reduced production costs. By utilizing an efficient FMS scheduling optimization, 

manufacturers can achieve faster production times, higher throughput rates, and improved 

quality control. The optimization of FMS scheduling is a significant factor in the current 

Industry 4.0. The integration of advanced technologies with FMS scheduling optimization 

can lead to the development of smarter factories with improved efficiency, accuracy, and 

automation. As such, the optimization of FMS scheduling is a vital element in the success 

of modern manufacturing operations. 

Traditional optimization methods, such as linear programming and dynamic programming, 

have been used for scheduling optimization in manufacturing for several decades. 

However, these methods have limitations when it comes to solving complex scheduling 

problems in Flexible Manufacturing Systems (FMS), which are characterized by large 



 

 
 

 

vii 

search spaces, non-linear relationships, and combinatorial constraints. Metaheuristics, a 

class of optimization algorithms that use heuristic rules to explore the search space 

efficiently, have emerged as a powerful tool for solving complex FMS scheduling 

problems. Metaheuristic algorithms are inspired from natural phenomena and mimics it to 

find near-optimal solutions by iteratively exploring the search space, making probabilistic 

moves, and adapting to the search environment. These algorithms can handle multiple 

objectives, constraints, and uncertainty, making them suitable for FMS scheduling 

optimization. With the advancement of computing power and the availability of high-

performance computing platforms, metaheuristic algorithms have become even more 

useful in FMS scheduling optimization.  

In this research, three novel hybrid meta heuristic methods have been proposed: 1) 

GAPSOTS- An amalgamation of Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Tabu Search (TS) 2) HAdFA- The Hybrid Adaptive Firefly Algorithm and 3) 

HFPA- Hybrid Flower Pollination Algorithm. GAPSOTS is simple hybridization of classic 

meta heuristics without any adaptive features. The GAPSOTS suffered from local optima 

entrapment and convergence was impetuous. To address the premature convergence 

problem inherent in the classic Firefly Algorithm (FA), the researcher developed HAdFA 

that employs two novel adaptive strategies: employing an adaptive randomization 

parameter (α), which dynamically modifies at each step, and Gray relational analysis 

updates firefly at each step, thereby maintaining a balance between diversification and 

intensification. HFPA is inspired by the pollination strategy of flowers. Additionally, both 

HAdFA and HFPA are incorporated with a local search technique of enhanced simulated 

annealing to accelerate the algorithm and prevent local optima entrapment.  
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The current study addresses FMS scheduling optimization for the following: 

• A Flexible Job Shop Scheduling Problem (FJSSP) was analysed, studied and tested 

with proposed meta-heuristics for several benchmark problems for multi-objectives 

of makespan (MSmax), maximal machine workload (WLmax), total workload 

(WLtotal), total idle time (Tidle ) and Total tardiness, i.e., lateness of jobs (Tlate ). 

• An FMS configuration,  integrated with AGVs, Automatic storage and retrieval 

system (AS/RS) has been optimized using a Combined Objective Function (COF) 

with the aim of minimizing the machine idle time and the total penalty cost 

combinedly. In order to test the effectiveness of this optimization method, several 

problems were developed and tested by varying the number of jobs and machines 

for this particular FMS setup. 

• The concurrent scheduling of machines and AGVs in a multi-machine FMS setup 

for different layouts has been studied. This problem has been developed as a multi-

objective optimization with objectives to minimize the makespan, mean flow time, 

and mean machine idle time. Proposed meta-heuristics have been employed and 

tested on randomly generated example problems to evaluate their performance for 

this setup. These meta-heuristics have proven to be effective in finding optimal 

solutions, and their application can lead to improved efficiency and reduced costs 

in FMS setups. 

• Finally, a real-life case study was conducted in a Lube Oil Blending Plant, 

Faridabad, India. The proposed GAPSOTS and HAdFA are tested for three 

problems with varying jobs and machines for multi objectives.  
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The corresponding computational experiments have been reported and analyzed. The 

suggested algorithms have been implemented and tested using Matlab R2019a, computing 

environment on an Intel Core™i7, with Windows 10. The results indicate that the proposed 

HAdFA tends to be more efficient among the proposed algorithms and consistently 

demonstrated to achieve not only optimal solutions but also new makespan values were 

found for some problems. The efficiency of HAdFA can be attributed to the adaptive 

parameters integrated into it.  This algorithm significantly improves convergence speed 

and enables the exploration of a large number of rich optimal solutions.  
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CHAPTER 1 

 INTRODUCTION 

1.1 Background  

Till the period of 20th century, the manufacturing industries did not offer any flexibility. 

In fact, there was no demand in terms of efficiency because the competitions were only among 

the national markets and not the international markets. Manufacturers had decided the things 

that consumers buy.  Literally, there were no choices or options for the customer and only the 

manufacturers influence the buying capacity or desire of any consumer. The World War II had 

paved way to new-flanged materials and led to innovative technologies in production in terms 

of output and quality. It had opened the floor to overseas market and competition. It was that 

time when the paradigm shift had occurred in the open market from the manufacturer to the 

customer. 

In the year 1965, Theo Williamson had received the patent for the very first Flexible 

Manufacturing Systems (FMS) for his invention of numeric control equipment. CNC machines 

utilized for lathe and mill applications are few examples that are covered under the category of 

numeric control machines. The huge development and changes in the technologies equally had 

imposed some challenges and difficulties in the period around 1970 and obviously the flexible 

manufacturing had gained popularity and manufacturers started using it for adapting to the new 

environment/ changes. It was in the year 1980, the manufacturers, first time in the history, had 

focused the quality, efficacy and flexibility to sustain in the market. 

1.2 FLEXIBLE MANUFACTURING SYSTEM 

The increased demand for the manufacturing needs and to satisfy the huge consumers 

of multiple domains, effective manufacturing is essential, which incorporates Flexible 

Manufacturing System (FMS). Production or productivity is paramount in any manufacturing 

industry. The resources that are utilized for production in a manufacturing unit may involve 

unprocessed materials, capital investment, workforce / human resource, logistics / 

transportation of goods, etc.  
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1.2.1 Scheduling in Manufacturing System 

Schedule is a document and normally states the occurrence of things and illustrates a 

strategy for the timing of definite actions and Scheduling is the method of creating the schedule. 

In general, the problem of scheduling can be handled in two stages; in the first stage, the order 

is planned or decided to select the subsequent work. In the second stage, formation of starting 

time and possibly the finishing time of every job is made. 

1.2.2 Production Scheduling 

Effective production is ensured through a process called “production scheduling”.  It is 

defined as an activity in which the resources are assigned with a proper timescale or timetable 

and the time of operation of each and every associated activity is scheduled or organized. It 

finds the type of resource to be expended at a particular manufacturing phase and as per the 

evaluations a time-table is made because of which the organization will not have any resource 

deficit during the production time. The FMS is a scheme of manufacturing that permits several 

products produced without any reconfiguration requirements of the entire manufacturing line. 

It possesses a group of numeric controlled machines having multiple function facilities. Further 

it contains a material management scheme and the computer system connected online through 

which, the governing and controlling of the complete system becomes simple and easy [1]. 

Production scheduling is usually thought as the utmost important concern in the 

planning and functioning of a manufacturing scheme. Enhanced scheduling scheme shows 

greater effect on cost saving, enlarged productivity, gratified customers, etc. Further, new 

consumer demand for high range goods has led to a growth in product complication, which 

additionally stresses the necessity for better-quality scheduling. Expert scheduling increases 

the volume consumption efficiency and decreases the time needed to complete tasks and it 

ultimately helps the organization in huge profit making especially in the prevailing competitive 

atmosphere  [2].  

The manufacturing industries must improve the production and manufacturing schemes 

to satisfy the variable demands of the clients for custom-built products and to withstand the 

present day market competitions worldwide. The scheme should be adaptable, productive and 

capable of serving the demands within stipulated/ committed time at a reasonable price. The 

FMS integrates the benefits of job-shop and batch manufacturing schemes. There is an option 
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for changing the parts and tools in an automated manner by means on controllable and 

centralized computer in case of FMS  [3]. 

FMS involves certain amount of flexibility and permits the system to respond in the 

event of expected and unexpected changes. Flexibility is the rate at which it responds to the 

change and adapts it.  To be treated as flexible, the flexibility should happen in the product’s 

lifespan as a whole. That is, starting through the design to manufacturing to delivery.  It can be 

reiterated that FMS is a computer regulated scheme, which can generate a range of products or 

else parts in any sequence without taking much of time to change the order of sequence. 

1.2.3 Types of Flexibilities 

The FMS design should incorporate concurrent manufacturing of several capacities of 

a changing variety of products/ goods with superior quality.  Possibly there are 11 types of 

flexibilities, which are listed below  [4]: 

Machine Flexibility: It refers to the flexibility offered by the machine with various 

operations that could be performed. 

Product Flexibility: It is the capability to include new products/goods in the scheme. 

Router Flexibility: It is the capability to use various routes for yielding a product. 

Material Handling Flexibility: It is the capacity of transferring the products in a given 

facility of manufacturing. 

Operation Flexibility: It is the capacity to create a product in multiple methods. 

Process Flexibility: It is the capacity of the system for creating a group of products. 

Volume Flexibility: It is the ability of the system to make low and high amount of 

products within the economic viability for a predetermined investment. 

Expansion Flexibility: It is the adaptability of the system to enlarge/ expand for 

increasing the amount of production. 

Program Flexibility: It is the capacity of running the system in an automated manner.  
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1.2.4 Advantages of FMS 

The various benefits of FMS can be listed as under  [5] : 

1. Realizing an extremely automatic manufacturing process with complete 

monitoring by the use of computers  

2. Quality management and increased productivity 

3. Possibility for scaling the operations for various output stages 

4. Economical way of reconfiguration and customization of the procedure of 

manufacturing 

5. Timely report of the process of manufacturing with thorough data 

6. Coordination amongst the manufacturers, suppliers, and consumers to 

streamline the work, reduce the cost and to improve the efficiency 

1.2.5 Disadvantages of FMS 

FMS possesses few drawbacks, which can be listed as [6], 

1. Complexity in implementation  

2. Requires experts for operating the machineries and for maintenance 

3. Requires huge capital investment 

1.3 MAJOR COMPONENTS OF FMS 

The FMS contains the following important elements [7]: 

Workstation: It comprises of Computer Numerical Controlled (CNC) machines to 

carry out several functions on set of parts. It even contains additional work stations such as, 

checking stations, assembly mechanisms and sheet metal presses. 

Automated Material Handling and Storage system: The material handling system 

operates in an automatic manner and is useful to move the work and subassembly parts amongst 

the stations for processing. It includes the handling devices that works automatically such as, 
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automated guided automobile, conveyors, etc. Actually, there are two categories of systems for 

material handling namely, the primary and secondary systems. 

Primary handling system:  It is accountable to transfer the work parts among the 

system stations and establishes the fundamental arrangement of FMS. 

Secondary handling system: It covers various devices available at the FMS 

workstations, which may include the transferring/ moving instruments, automated pallet 

changer and related devices. 

Computer Control System: It is helpful in controlling the actions of the handling 

stations and the material treatment arrangement in FMS. 

Inspection Equipment: It takes account of the Coordinate Measuring Machines 

(CMMs) utilized for the purpose of inspection when not connected online and is computerized  

Miscellaneous Components 

It comprises of a centralized coolant and proficient chip separating scheme and 

possesses the following features: 

1. The system should have the potential to regain the coolant 

2. The mixture of parts, pallets, and the fixtures are to be dressed then and there by 

removing the dust, chippings prior to the working and before inspection. 

1.4 FUNCTIONS OF SCHEDULING 

The functions that are to be performed methodologically and in a well-organized way 

for achieving appropriate and effectual design of production scheduling are [8]: 

1. Allocating various works to several facilities by viewing the viability of 

allocation (loading). 

2. Creating a rule set with regard to priorities to order or arrange the activities/ 

actions on the facilities (sequencing) 

3. Send out work orders according to the schedule to induct loading of works to 

facilities 
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1.5 GENERAL OBJECTIVES OF SCHEDULING 

Following are the goals of scheduling in FMS   [9]: 

1. Realizing maximum efficiency of the operations by means of optimal use of 

machineries and apparatus. (Performance based) 

2. Retaining fewer inventories in raw materials as well as in the process. (Material 

based) 

3. Sustaining small flow-time of products/ goods. Identify potential bottlenecks in 

their production processes and take corrective actions (due-date based) 

The objectives are frequently contradictory to each other and by itself the scheduling 

procedure should have a compromise between said objectives in such a way that appropriate 

equilibrium is attained. 

1.6 SCHEDULING ELEMENTS 

The sequence and timing of operations are decided through scheduling through which, 

the usage of resources is made optimum and the production needs are met. The scheduling 

elements are listed below. 

a. Configuration of influx jobs 

b. Type and quantity of machineries and operations 

c. The worker/machine or worker/operation ratio 

d. Job flow design 

e. The priority rules for assigning the work. 

1.7 METHODS TO SOLVE FMS SCHEDULING 

Usually, the goal of FMS scheduling does not only consider one factor rather it involves 

various objectives. In simple terms, the problem of FMS scheduling is modelled as a multi-

objective problem. This necessitates the formation of mathematical equations with various 

restrictions/ constraints. Solving those problems involving simple mathematics is very 
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cumbersome and time consuming. Hence, various other methods are suggested to solve the 

same in the literatures. Few of them are listed under [10]–[13]. 

1. Mathematical programming procedure 

2. Multi criteria decision making  

3. Heuristic methods 

4. Control theoretical model 

5. Simulation based model 

6. Artificial intelligent based technique 

7. Meta-heuristic scheme 

1.7.1 Mathematical Programming Procedure 

This technique involves, linear programming, branch algorithm, bound algorithm, etc. 

This kind of model works well when the problem size is small and is not genuine for large 

sized problems. Also, the model is constructed using initial guesses and approximations, which 

are not validated in real-life problems. 

1.7.2 Multi Criteria Decision Making 

The several factors linked to FMS are devised as goals in this type.  

Goal programming and Integer programming formulations are few examples. The 

classic goals, which are frequently considered, will fulfil the production requests, dipping the 

time of output of parts and harmonizing the machine use. 

1.7.3 Heuristic Method 

The heuristics framed are in the form dispatching rules, sometimes a combination of 

such rules are used increasing the complexity. The rules to be combined are decided by the 

alternative routes available. The procedures involved with this type are iterative in most of the 

cases and is used to estimate the best route out of the probable routes available. 
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1.7.4 Control Theoretical Model 

 The main theme of this model is to sustain and safe guard the buffer of parts formed in 

FMS till the feasibility limit. This approach locates the solution in the FMS's production 

capacity boundary. Together with the security buffer level for all part kinds, a corresponding 

state for capacity is created for each machine state. 

1.7.5 Simulation Based Model 

Ingalls [14] has quoted the definition of simulation stated by Shanon as “the process of 

designing a model of a real system and conducting experiments with this model for the purpose 

either of understanding the behaviour of the system or of evaluating various strategies (within 

the limits imposed by a criterion or set of criteria) for the operation of the system”. 

In this methodology, simulation is suggested as a tool to estimate various rules linked 

to dispatching. A simulation model is prepared to signify the manufacturing arrangement and 

the model’s rules are verified then. This method is considered powerful as it offers a feasible 

answer. 

1.7.6 Artificial Intelligent Based Technique 

This is used to unravel complex real-time optimization issues, which possess a big 

searching space.  These Expert systems are applied to imitate the performance of a skilled 

human. Definite systems are regularly made for well-defined manufacturing systems. These 

methods have provided worthy outcomes for area specific issues. 

1.7.7 Meta-heuristic scheme 

A Meta-heuristic is an all-purpose solution technique that delivers an overall structure 

and policy strategies for evolving heuristic method for fitting a specific problem. They 

syndicate heuristics in a more common structure to direct the searching practice in capably 

exploring the searching space to get a nearer ideal solution. Therefore, these approaches are 

found appropriate for solving even problems of larger size with less effort and time. 

The common optimization techniques can be classified as shown in Figure 1.1 and 

taxonomy of meta-heuristic approaches is depicted in Figure 1.2. 
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Figure 1.1 Classification of common search practices 

 

 

Figure 1.2 Classification of Meta-Heuristic Approach 
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1.8 PERFORMANCE MEASURES 

For solving the problem associated with scheduling of FMS, proper objectives are 

required and the problem is modelled as a multiple objective problem. There may be numerous 

objectives, which are complex in nature and sometimes the objectives may be contradictory. 

Hence for stating the objectives clearly, the performance measure of a particular scheduling is 

essential. A regular performance measure is one, which does not have a decreasing function in 

terms of job completing period. For such measures, the objective function is usually the 

minimizing of performance measure. Some of the important performance measures include, 

total flow time, makespan (overall length of the schedule), overall delay, quantity of delayed 

jobs and maximum delay, etc. The makespan factor is very vital in scheduling as it relates to 

the productivity improvement and highest resource usage. In current scenario, every customer 

is satisfied only when a product is delivered quickly or when it is delivered within the stipulated 

date/ time. Thus, on-time delivery becomes a significant factor in terms of gratifying the 

customers. Unless or otherwise the said factor is not focused it would result in losing the 

customers and market attraction. Also, the production cost is obviously important for any 

company. Production cost lessening is realized with proper utilization of resources (material 

management), less time to complete the production and delivering the products on-time. 

Another kind of performance measure is the non-regular one.  This is something related to job 

earliness. When the jobs are completed well before the time stated then the jobs are penalized. 

Thus, a problem may contain purely regular performance measures or else it is may be 

combinational. Most of the problems associated to scheduling in real time are multi-objective 

in general. The earlier and few present-day researches had been focusing with shop scheduling 

problem with only one objective of reducing the makespan [15], [16]. The analysis will not 

yield genuine results if the scheduling is modelled with one objective in the present scenario. 

Present day’s manufacturing is highly dynamic and has an inconsistent atmosphere. Thus, the 

problem of scheduling should be modelled as a multi-objective problem. In most of the recent 

literatures, even though multiple objectives are considered, it just involves two or three criteria  

[17]–[19]. For rigorous analysis and optimal design many objectives should be included. Once 

the objectives are made by including proper number of valid performance measures, a hybrid 

meta-heuristic algorithm is used for optimization or meet the objective in an efficient manner. 
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1.9 STATEMENT OF THE PROBLEM  

Flexible manufacturing systems (FMSs) have developed as an exceedingly effectual 

manufacturing scheme to create products of different sizes and range [20]–[22]. In a common 

perspective, flexibility can be regarded as a character of the linking among a system and its 

periphery. FMS scheduling contains the elements/ components of machine-loading, routing of 

parts, scheduling the tasks related to manufacturing, planning and assigning the tools, forming 

the agenda for buffer utilization and scheduling the automatic guided vehicles (AGV) [23]. 

These literatures have not given importance to the setup time/ cost or part process-time. 

Neglecting these factors simplifies the analysis, which may not affect the solution quality for 

few applications. Yet, most of the application should include these features as the solution is 

highly dependent on them. The literatures after the year 1960 have pointed out the significance 

of setup time and cost in static and deterministic problems of scheduling [24]–[26] and [27], 

[28] . 

Cheng et al. [29] have made a review on scheduling problems with regard to flow shop, whereas 

[30] surveyed the same problem with respect to batching. Allahverdi et al. [31] have offered a 

widespread literature review comprising settings for dynamic and stochastic problem in various 

shop atmosphere such as, only one machine, many machines operating simultaneously 

(parallel), flow shops, and job shops. It is evident from the survey of number of publications in 

the field of “scheduling problems” that scheduling is an integral part of FMS and more 

innovations are needed for obtaining better FMS. The innovation may be in the form of adding 

many features that are impacting the solution quality of FMS in the objective function or it may 

be a novel algorithm combining many iterative/ heuristic/ neighbourhood algorithms to provide 

a better solution. Economic aspect like setup time/ cost has got a tremendous influence on the 

profit of the manufacturing firm in terms of saving [32].  The two main components in how an 

FMS operates are job and tool flows. A variety of topics directly connected to the flow of work 

pieces have been the focus of research using the parts mobility approach [6]. In addition, the 

scheduling of machines and vehicles has received a great deal of focus from academics as 

separate issues. But very few academics have stressed the significance of concurrently 

scheduling machines and AGVs. This work will focus on such arena in view of improving the 

performance of FMS with effective scheduling. 
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1.10 RESEARCH GOALS 

The basic purpose of this study is to plan and execute a multi-objective scheduling 

method in flexible manufacturing systems using meta-heuristic techniques.  

The key objectives of this research are,  

• To frame a multi-objective mathematical model for increasing the performance 

of an FMS. 

• To examine the optimum solution for the sequencing problem related to 

scheduling or deciding the optimal sequence by checking the entire possibilities. 

• Solve multi-objective scheduling of FJSP for numerous benchmark instances 

with the following objectives for minimizing 

1) The maximum completion time of machines or jobs makespan (MSmax). 

2) Maximum machine workload (WLmax), i.e., the maximum processing 

time of a machine. 

3) The total workload of machines, i.e., total processing time over all 

machines (WLtotal). 

4) Total idle time, i.e., idle time of machines (Tidle ). 

5) Total tardiness, i.e., lateness of jobs (Tlate ). 

• Minimize the machine idle time and the total penalty cost by a combined 

objective function (COF) for an FMS setup. 

• Obtain an optimized schedule with an objective to minimize makespan, 

maximum machine workload and total workload for a case study conducted in 

an oil blending plant in Faridabad. 

• To develop three novel hybrid algorithms 1) GAPSOTS (Hybridization of GA, 

PSO, TS) 2) HAdFA (Hybrid Adaptive Firefly Algorithm- FA with adaptive 

features hybridized with Simulated Annealing-SA) 3) HFPA (Hybrid Flower 

Pollination Algorithm which is the hybridization of the “Flower Pollination 

Algorithm with SA”) for solving the aforementioned objectives. 

• Study the impact of adaptive parameters in FA and compare it with FPA without 

adaptive parameters. Very few papers have used adaptive parameters in SI. To 
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this date none of the articles in FA, have incorporated adaptive features with FA 

for scheduling. 

• To compare the performance of the novel techniques developed with other state-

of-art techniques such as GA, PSO, simulated annealing (SA) to ensure its 

superiority. 

• To obtain an optimal schedule for concurrent scheduling of AGVs and machines 

in a FMS setup with the objectives to minimize makespan, mean flow time, 

mean tardiness. 

• The simulation was done on 63 well-known benchmark problems of FJSP, an 

FMS setup and a real-life case study. 

1.11 CONTRIBUTIONS OF THE PRESENT WORK 

• This work considers the overall workload of a machine, setup time and the 

workload of the biggest machine in addition to the makespan (completion time). 

Thus, the problem is well-defined with multi-objectives. 

• A meta-heuristic approach is considered with hybrid algorithm to elude the few 

drawbacks of individual approach. The hybrid algorithm will include both the 

Swarm intelligence and population-based algorithms with adaptive parameters. 

A total of 3 algorithms are developed to enhance the performance of scheduling. 

• Also, case studies will be used for analysis. The analysis will be based on the 

variety of machines and jobs to be performed. All cases will involve more than 

one machine and more than one job. 

• Application of developed meta-heuristics to schedule AGVs and machines 

combinedly for multi-objectives.  
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The research framework for the proposed work is given in Figure 1.3 

 

Figure 1.3 Framework of proposed research 
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1.12 ORGANIZATION OF THE THESIS 

The chapter-wise particulars are provided below. 

Chapter 1- The first chapter of this research is the Introduction which covers the topic 

in great detail. In addition, the problem formulation, goals and research objectives and the 

contributions of the work are spelled out. 

Chapter 2- This chapter contains Literature review in which, previous researches 

relevant to the present study are investigated and deliberated. Furthermore, earlier studies are 

examined so as to find the gaps existing and incorporate the possible gaps in the present 

research. 

Chapter 3- summarises about Soft Computing Techniques and the proposed three new 

nature inspired meta-heuristic schemes for various scheduling problems. 

Chapter 4- describes about the problem formulation of Flexible Job Shop Scheduling 

Problem (FJSSP) for multi objectives and the validations of the proposed algorithms are done 

by comparison of their results with other meta-heuristic schemes and comparison among 

themselves. 

Chapter 5- discusses the combined objective optimization of flexible manufacturing 

system scheduling for multi objectives and comparison of their results with existing algorithms 

and among themselves. 

Chapter 6- briefs out the problem and analyze the optimal results obtained by 

scheduling of machines and AGVs combinedly for multi objectives. 

Chapter 7- Details the application of proposed algorithms for a real-life case study 

conducted in an Oil blending plant and analyze the results. 

Chapter 8-The conclusion of the work as per the discussions with regard to the 

aforementioned chapters along with potentials for future work is conveyed in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Flexible manufacturing systems (FMSs) have emerged as an extremely effectual 

manufacturing scheme during 21st century and helps to yield products with various dimensions 

and types [33]–[35]. Generally, flexibility is regarded as an interfacing character among a 

system and its peripherals.  

FMS scheduling includes the elements of machine loading, routing of parts, Scheduling 

the tasks of manufacture, planning and distributing the tools, formation of agenda for utilizing 

buffer and the plan of AGVs [36].   Many literatures have indicated that the process time of 

job/ cost and the time for setup/ cost with respact to job are not important. This approximation 

would make the investigation simple and even echoes on specific applications but it badly 

influences the quality of the solution with respect to scheduling applications that need the time/ 

cost of setup concretely.  

Inclusion of time/ cost setup in scheduling design has become an integral entity at the 

middle of 1960s. Mant survey related to this had been performed and their results had been 

presented for deliberations [28], [29], [31]. The problem of scheduling can be regarded as static 

or deterministics; researches have been carried out on both models [28], [30].   

Cheng et al. [29] have a made a widespread review on the problems of scheduling in 

flow shop, whereas, Potts and  Kovalyov  [30] have presented the results of their survey of 

scheduling relating to batching applications. Allahverdi et al. [31] have offered the outcomes 

of the review of scheduling as stochastic as well as dynamic problems for various shop 

applications. The atmosphere for the same has included scheduling with only one machine, 

many machines grouped in parallel, jop shop, and flow shop, etc. The results from such surveys 

paved a way for new researches as per the guidelines provided through the results and made 

them to incorporate the time or cost of setup as a vital factor of scheduling. The tremendous 

and steady increase of research in this direction is due to the fact that involving the cost of 
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setting up will reflect on the savings and will increase the profit in turn, especially in real-time 

environments [37]. 

This literature review chapter aims to provide an overview of the current state of 

research on FMS, focusing on its design, control, scheduling, optimization, and performance 

evaluation. The chapter will begin by introducing the concept of FMS and its various 

components, followed by a review of the literature on the design of FMS.  

Next, the chapter will review the literature on FMS scheduling, which involves the 

determination of the order and timing of tasks to be performed by the various components of 

the system. This will include a discussion of the different scheduling techniques that have been 

developed for FMS, such as rule-based and optimization-based scheduling, and the factors that 

influence the choice of scheduling technique. 

The chapter will then review the literature on FMS optimization, which involves the 

maximization of system performance by optimizing the use of resources such as raw materials, 

energy, and labor. This will include a discussion of the different optimization techniques that 

have been developed for FMS and the factors that influence the choice of optimization 

technique. 

2.2 OVERVIEW OF FLEXIBLE MANUFACTURING SYSTEM 

The FMS permits to produce a variety of product types for which, the reconfiguration 

is not required for the entire length of the manufacturing line. In addition, it contains a huge set 

of numerically controlled machines [38]–[40] with multifunction ability [41], [42], an 

automatic material handling system [43]–[45] and an online computer network  [46]. This 

network is accomplished of controlling and directing the entire system [47].  

The significance of having a rapid turnaround, minimum cost with regard to workers 

and inventories, and superior quality are the favorable benefits and they make FMS preferable 

in modern schemes of manufacturing in industrialized segments [48]. 

The events of manufacturing, tasked related with transportation and storing, etc. are to 

be correctly scheduled for increasing the efficiency of the FMS in a global manner. The event 

of scheduling is influenced by various factors such as, automation level, particular FMS 

characters, the plant at which FMS is situated and its functional rules in addition to the 
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resources of FMS [49]. The growth of scheduling with better quality integrating the entire 

containing resources of FMS, viz. machines, tools, automated guiding vehicles [50], buffer, is 

one among the major functional issue to be redressed in such atmosphere [51]. More precisely, 

effectual scheduling is an indispensable deed that can augment the efficacy and utility of 

resources [52].  The entering jobs will have recurrent fluctuations in the design of parts, which 

will impose higher complications to the problem of scheduling. The work concentrates on the 

schedule of various jobs entering into the system in an effective manner and also aims to 

maximize the utility of the system with increased system output, especially when the machines 

are fortified with various tools and periodicals for tools. In such settings, the performances 

regarding the schedule are described in terms of temporary activity of standard middle term 

efficacy in quantifying the time of production, delay, etc. All these factors make scheduling a 

complex one and careful handling is needed through proper architecture for governing the 

FMS. Normally, the terminology “scheduling” is a vital gismo to engineering and 

manufacturing and has severe effect on process productivity [53]. The main aim of using 

scheduling is to diminish the time and cost involved with production and it directs the particular 

production amenity, the apparatus on which it is to performed and the staff who must work 

along with that equipment during manufacturing process [54]. The key intention of “production 

scheduling” is to increase the operational efficiency along with cost reduction [55]. A variety 

of software products are offered for the models of manufacturing. They take into account the 

entire process starting from the raw material acceptance, manufacturing to procuring. “Steel-

M1” and “Gear-X” are the raw materials procured using which, AX-100,200, BX-100,200 and 

CX-100,200 are made. The various operations associated in making the above products are 

cutting, extra processing, assembling, packing and selling [56].  

2.3 TYPES OF FMS 

The flexible manufacturing system categorized different types depending on the sorts 

of activity they perform. These are discussed as follows:  

2.3.1 Based on Kinds of Operation 

FMS can be distinguished dependent upon the types of activities they achieve: 

I. Processing operation: This task modifies a “work material” beginning with 

one state to the following state by moving to the final needed part or thing. It 
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upgrades the value by the arrival of the beginning materials or shifting the 

geometrical properties. 

II. Assembly operation: It incorporates connecting a minimum of two sections to 

create another component, which is known as a subassembly or assembly. 

Unchanging/ unalterable connecting process, which involves brazing, adhesion 

bonding, extension fits, welding, fusing/ fastening, rivets/ bolts and press fitting. 

2.3.2 Based on Number of Machines  

With reference to the quantity of machines in the scheme, the standard types of a 

flexible manufacturing system are discussed as follows: 

I. Single machine cell (SMC). This comprises of completely atomized machine, 

which is accomplished unattended activities for a timeframe that is longer than 

one machine cycle. It is fit for handling, responding to changes in the production 

schedule, processing different part styles and accommodating freshly entering 

part while introduced. In such scenario, handling is consecutive, not 

simultaneous. 

II. Flexible manufacturing cell (FMC). This encompasses a part handling system 

and two or three processing workstation. The part taking care of framework is 

associated with an unload/load station. It is fit for synchronously producing 

various parts. 

III. A Flexible Manufacturing System (FMS). This system possesses 4 or more 

workstations (turning centers or CNC machining centers) for processing and is 

connected automatically by a distributed computer system and mechanically by 

a common part handling system. It likewise incorporates non-handling work 

stations that help generation yet don’t legitimately take an interest in it. For 

example, coordinate measuring machines, pallet/ part washing stations. These 

features suggestively distinguish it from FMC. 
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Figure 2.1 Comparison of three categories of FMS 

 

2.3.3 Based on Level of Flexibility 

One more taxonomy of FMS is done on the basis of the degree of flexibility connected 

to the arrangement. Two groups are notable here:  

I. Dedicated FMS: Several ranges of part styles can be created in this group.  The 

model of the product is assumed stable and hence, the scheme may be modelled 

with specific number of process speciality to have an effective operation. 

II. Random order FMS: The extensive fluctuations happening in the part patterns 

are managed with this group. The degree of flexibility with this group should 

be more than the previous group in order to lodge the heavy fluctuations 

occurring. Moreover, this type has potential to process the parts that are highly 

complex in nature. To accomplish the same, a refined control scheme employing 

computers is utilized for this category. 
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Figure 2.2 The difference between dedicated and random-order FMS types 

According to the quoted definition, there exist numerous basic components in FMS. An 

outline for recognizing the FMS components is provided in the subsequent section. It mainly 

made up of 2 subsystems namely, 

ü Physical subsystem  

ü Control subsystem 

The former takes account of the elements presented below:  

1. Workstations: The components involved here are, Numerical Controlled (NC) 

machines, machine tools, apparatus for scrutiny/ inspection, loading & unloading action, and 

area/ space for machining.  

2. Storage Retrieval Systems: This function like a buffer for the period of WIP (work-

in-processes) and carries devices called carousels, which helps to stock parts for few moments 

from work stations to operations.  

3. Material Handling Systems: This carries powered vehicles/ transportations, 

conveyors, automated guided vehicles (AGVs), and few more arrangements to transmit parts 

from one workstation to the other.  

Control subsystem has hardware and software elements, which are described as below:  
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1. Control hardware:  It has computers of mini and micro sizes, PLC (controllers 

working on the programmable logic), networks for communication, devices used 

for changeover (switching) and other devices connected externally to the system, 

which may have printers for storing memory for improving the operating capacity 

of FMS. 

2. Control software: This is having a group of files through which, the physically 

present subsystems are regulated/ controlled. Anyhow, the compatibility among the 

hardware and software decides the efficacy of FMS. 

 

2.4 PROBLEMS IN FMS 

 

Stecke[57] did a detailed analysis on FMS problems and classified those problems based on 

“Design, planning, scheduling and control”. Figure 2.3 shows the different types of FMS 

problems at various stages of installation of FMS.  

 

Figure 2.3 Problems of FMS 

2.4.1 Importance of Scheduling in FMS 

 Among various problems encountered in successful implementation of FMS, 

Scheduling plays a pivotal role. The scheduling is an important “decision -making” process. 

Effective production scheduling is important for several reasons. Firstly, it ensures that the 

required products are produced at the right time and in the right quantity, which is critical for 

meeting customer demands and maintaining customer satisfaction. Secondly, it helps to 
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optimize the use of resources, such as machines, materials, and labor, by ensuring that they are 

used efficiently and effectively. Thirdly, it helps to reduce lead times and inventory costs by 

ensuring that production runs smoothly and that there are no delays or bottlenecks in the 

production process. [58] [59] 

Ojstersek et al [60]classified the scheduling problems of FMS into three main categories. Table 

2.1 shows the categorization of FMS problems. 

Table 2.1 Categorization of FMS problems 

 

Several models and methodologies have been designed with different algorithms for 

solving the issue of planning and scheduling of FMS. Over the decades researchers 

implemented Exact methods, Heuristics and recently Meta-heuristic approaches. The meta 

heuristic approaches are further classified into Evolutionary based algorithms (EA) and Swarm 

intelligence-based algorithms (SI).  Depending upon the number of objectives to be solved, the 

FMS scheduling problems can be further divided into single objective and multi objective 

problems. Following sections briefs about the different techniques implemented for various 

objectives and FMS problems. 
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2.5 LITERATURE STUDY OF FMS - PROBLEM TYPE, OPTIMIZATION 

TECHNIQUES. 

2.5.1 Studies related to Design, implementation of FMS 

 Stecke [57] provided a detailed report on “design, planning, scheduling and control 

problems” encountered in FMS. This provides a good base paper to understand the basics of 

Implementation of FMS. 

He et al[61] studied the sequencing and scheduling of parts in flexible manufacturing systems 

in a “mass customization/mass personalization (MC/MP) environment”. They analysed the 

input scheduling rules for robots and machines.  

Negahban and Smith [62] did an exhaustive review for design and operation problems 

encountered in FMS. They also analysed various simulation packages utilized for FMS by the 

researchers.  

Freitag and Hildebrandt [63] designed a simulation environment for a real case study 

of semi-conductor manufacturing problem. They used a “multi-obejctive GA” for due date 

related objectives. 

A Study by Krishna et al. [64] had made a scheduling for FMS that involves a problem 

of optimization of combination type and the complex level is higher. As the management of 

material is a vital constituent of FMS, the scheduling of treating the material is syndicated to 

machines’ schedule. The authors have incorporated the impact of buffer in deciding the FMS 

output by means of simulation along with the regular objective of lessening the makespan. A 

“Flexsim” simulation package has been applied for validation purpose, which is a discrete 

event simulator. The scheduling mode for the two objectives is made parallel instead of 

sequential manner. For analysis, a typical problem comprising various layouts and dissimilar 

job groups are taken.  

A study by Gang and Quan [65] has described a multifaceted arrangement for FMS and 

has highlighted the trouble in planning for production. An all-purpose FMS scheduling model 

is constructed and a list algorithm has been suggested depending on multiple levels/ degrees of 

flexibility and this is the central part of the suggested algorithm. Then a common scheme for 
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planning is evolved. The proposed model has been investigated using the suggested algorithm 

and validated by means of planning layout.  The precision and compliance are then verified 

with reference to the model as well as the algorithm. 

A work by Mallikarjuna et al. [66] has considered a multi-objective optimization 

approach toward scheduling FMS that has to be optimum manner and considered to be one of 

the constraints in constituting the ladder type layout through different metaheuristic approach 

like  SA, Particle swarm method (PSM) and so on. The outcome of objective function with 

regard to the total of iterations performed and computational time. The SA and SM were tested 

by considering the different Ladder layout issues. The simulated result has been compared with 

different optimization technique like SA and PSM. Finally, they concluded that the obtained 

solution using SA is better than the PSM but the computational time of both approaches is 

almost same.  

Erdin and Atmaca, [67] have modelled and executed the FMS for computing the 

desirable quantity, usage, and the order of sequence of various workstations and the layout for 

the specified number of several production parts, timing and sequence to process. The 

investigation and computations are performed by means of analytical model employing 

bottleneck principles and clustering methods that employs the ordering through ranking. The 

parts those have resemblances of each other are made as manufacturing units for making the 

analysis easy and also to utilize the workstations effectively. The derived results of the 

proposed model have been compared with traditional models of manufacturing for evaluating 

the efficiency.  

Liu, et.al. [68] have adopted support vector machine technique for the scheduling of 

FMS intended to allocate the rules of dispatching and ultimately realizing better performance. 

The impulsive and erratic conditions of dynamic nature like various types of parts, their mix- 

ratio, and influx of jobs. The SVM is regarded as a superior learning model than others because 

of its generalized performance with multi-kernel environments. To substantiate the results 

through simulation, the classical model of FMS with physical layout is considered. The SVM 

is operated with radial basis function kernel and it has been identified from the results that the 

SVM outperforms the traditional models. Also, the setting-up process with SVM has taken 

very less time.  
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Lee and Ha [69] have presented a genetic approach to identify the pseudo optimal value 

for the process of integrated plan and scheduling issues. They have considered the integrated 

problem as a combinational category of optimization with NP-compete type. Thus the study 

targets to get a solution for process plan and its schedule at a time. The intricacy associated 

with such issues is more as it involves or necessitates a number of flexibilities and limitations 

for FM environments. In order to tackle them, the prevailing studies have left out particular 

flexibilities and restraints or else those have constructed an algorithm with composite structure. 

More precisely, the genetic approaches have been enforced to build several chromosomes to 

include several flexibilities. This definitely would augment the complexity of the algorithm, 

which in turn, deteriorates the performance. The suggested novel algorithm has an integrated 

chromosome description and unites several flexibilities into just one string. So, it is possible to 

adapt a simple and regular procedure of genetic approach and the formerly made genetic 

operators. Experimentations conducted on several standard problems have proved that the 

suggested model has upgraded the makespan by around 17% with minimum time of computing.  

Malik and Pena [70] have established the application of model checking for the task 

scheduling with optimum values in FMS. The scheme has been though of a discrete event 

system and the minimum restricted safety behaviour is amalgamated as per the supervisory 

model of control theory. The time restraints are included to the model as finite state machineries 

in the extended form. The Supremica, which is a tool of model checking and the discrete event 

systems are applied to compute the optimum time for scheduling.  

Research by Baruwa and Piera [71] developed a coloured Petri net (CPN) for 

identification of optimal solution for problems associated with scheduling. This research uses 

the CPN approach incorporates reachability graphs for finding a solution. Further, this research 

focused on reducing memory requirement it exploits structural equivalence graphs with desire 

reachability in flexible manufacturing systems’ (FMS). Results illustrated that developed 

approach performs effectively rather than existing search methods adopted for scheduling for 

large size FMS.  

A study by Lee and Lee [72] described efficient scheduling for the schemes of 

manufacturing with flexibility, using a new heuristic function depending on T-timed Petri net. 

The suggested functions help to diminish the make span effectively as compared to the 

available functions with regard to the desirable amount of states and time utilized for 

computing. These functions of the proposed scheme have ensured that they are more 
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permissible and knowledgeable than the conventional “resource-cost reachability matrix”. 

When the heuristic functions are enhanced, it is even possible to obtain the initial adjacent 

optimum solution quickly. Moreover, a heuristic function of adaptable version for entire states 

has been recommended [73].  The experimentation has been carried out through an arbitrary 

problem generator and the outcomes infer that the recommended scheme has performed well 

as estimated. Research by Zambrano Rey et al.[74] proposed a semi-hierarchical architecture 

for optimization of flexible manufacturing system (FMS) present scenario. This research 

considers various myopic decisions through optimization technique. With optimization 

mechanism in simulation local and global calculation is evolved for FMS. Simulation analysis 

of the proposed approach performs controlling of assembly cell by means of higher hierarchical 

approach. In the myopic reduction of behaviour variance of completion time is measured as 

performance measures. Through simulation analysis, it is concluded that semi-hierarchical 

architecture reduces behaviour of myopic in FMS with the increased ability to offer a balance 

between disturbance ability and low complexity maintenance; hence it will be appropriate for 

production control. But this research fails to provide an appropriate mathematical calculation 

for proposed approach.  

2.5.2 Studies related to Flexible job shop scheduling problem (FJSSP) 

Mastrolilli and GAmbardella [75] proposed that the neighbourhood functions are 

effective in improving the solution quality for the flexible job shop problem, and that the 

selection of a suitable neighbourhood function is an important factor in achieving good results 

with metaheuristic algorithms. They developed metaheuristic algorithms such as simulated 

annealing and tabu search. Neighbourhood functions define a set of possible solutions that are 

"close" to the current solution, and the metaheuristic algorithm explores these solutions in order 

to find an improved solution. 

 Mati et al [76] proposed a heuristic approach of integrated greedy algorithm that 

combines a priority rule for job sequencing and a dispatching rule for machine assignment. The 

priority rule determines the order in which the jobs are processed, while the dispatching rule 

assigns each job to a machine based on its availability and the processing time of the job. 

Xia and Wu [77]  suggested a method with hybrid optimization strategy that combines 

a local search algorithm and a “multi-objective genetic algorithm (MOGA)”. The local search 

algorithm is used to enhance the quality of the solutions produced by the MOGA. The MOGA 
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is used to develop a diverse set of candidate solutions that represent various trade-offs between 

the competing objectives. Additionally, the research suggests a novel neighborhood structure 

for the local search algorithm that is adapted to the MOFJSP's properties. 

Motaghedi-larijani et al  [78] suggested a method employing a “multi-objective genetic 

algorithm (MOGA)” to develop solutions that simultaneously optimise many objectives, like 

lowering makespan (total completion time) and the quantity of late jobs. In addition, the 

research suggests a heuristic initialization technique that yields high-quality initial solutions 

for the MOGA as well as a novel fitness function for the MOGA that integrates both the 

makespan and tardiness objectives. 

Xing et al [79] developed an efficient integration between the knowledge model and 

the “Ant Colony Optimization (ACO)” model is provided by the “KBACO” algorithm. The 

“KBACO” algorithm's knowledge model extracts some previous information from ACO's 

optimization and then utilises the information to direct the present heuristic searching. 

Khadwilard et al [80] describes the implementation of the proposed Firefly Algorithm 

approach and investigates the impact of different parameter settings, including the number of 

fireflies, the light absorption coefficient, and the attraction coefficient, on the performance of 

the algorithm. The paper also proposes a novel initialization method that generates high-quality 

initial solutions for the FA. 

Research by Bhushan and Kumar [81] focused on improving job scheduling in FMS 

for dynamic variation in incoming jobs and efficiency. For optimization of jobs in FMS, this 

research uses Taguchi philosophy and genetic algorithm. The designed optimization approach 

schedules various incoming jobs within the system effectively with an increase in system 

throughput and utilization of machine which is incorporated with a distinct number of tools 

and magazines. This research concluded that experimental analysis of simulation for real-world 

system is certain drawbacks such as higher cost, dangerous and time-consuming this are all 

overcome in this proposed approach. However, this research does not offer information about 

tools considered for this research. 

Karthikeyan et al [82] developed a novel strategy approach based on the combination 

of the data mining (DM) technique with the “particle swarm optimization (PSO)” algorithm. 

PSO is employed to assign tasks and choose the sequence in which jobs are processed by 
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machines. By using data mining to extract knowledge from solution sets and identify close to 

optimal solutions to combinatorial optimization issues.  

Yanibelli and Amandi [83] takes into account two competing, top-priority optimization 

goals for project managers. One of these goals is to shorten the project's timeline. The best 

group of human resources should be tasked with carrying out each project activity, according 

to the other goal. A multi-objective hybrid search and optimization technique is suggested as a 

solution to the issue. This approach combines a multi-objective evolutionary algorithm with a 

multi-objective simulated annealing algorithm. To enhance the efficiency of the evolutionary-

based search, the multi-objective simulated annealing algorithm is incorporated into the multi-

objective evolutionary algorithm. 

Roshanaei et al [84]  suggested to use a meta-heuristic that combines the “Artificial 

Immune and Simulated Annealing (AISA) algorithms”. The optimization gap is assessed by 

contrasting the unsatisfactory AISA solutions with their MILP exact optimal counterparts 

found for small- to medium-sized F-JSSP benchmarks. Mould and die shop case study was 

used to study the efficiency of proposed algorithms.  

Yuan et al [85] developed “hybrid harmony search (HHS)” to solve FJSSP. The 

continuous harmony vector is first converted using developing approaches into a kind of 

discrete two-vector code for the FJSP in order to make the harmony search (HS) algorithm 

adaptable to the FJSP. Second, by effectively decoding the converted two-vector code, the 

harmony vector is mapped into a workable active schedule, which may significantly condense 

the search space. Thirdly, to ensure that the initial harmony memory (HM) occurs with a 

specific level of quality and diversity, a successful initialization approach combining heuristic 

and random procedures is presented. The algorithm was tested on benchmark problems. 

Buddala and Mahapatra [86] developed “Teaching–learning-based optimization 

(TLBO)” for minimizing makespan by an integrated approach. They developed a new local 

search method influenced from GA and tested the algorithm on various benchmark problems. 

Li et al [87] developed an adaptive evolutionary algorithm where they used a new 

encoding for population initialization. They made changes in other genetic operators too. Their 

focus was on parameter adaptive settings and the testing results proved that adaptation of 

parameters increases the efficiency of FJSSP. 
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Ning et al [88] developed “quantum bacterial foraging optimization” for objective of 

low carbon emissions. They analyzed the results with ANOVA and demonstrate the efficiency 

of algorithm. 

Jiang et al [89] implemented a “discrete animal migration optimization (DAMO) to 

solve the dual-resource constrained energy-saving flexible job shop scheduling problem 

(DRCESFJSP)” to minimize the amount of energy used overall in the workshop. 

“A dynamic self-learning artificial bee colony (DSLABC) optimization technique” is 

developed by Long et al  [90] to resolve the DFJSSP, which is the issue of adding new jobs 

into flexible job-shops. Initially, the “self-learning artificial bee colony (SLABC) algorithm” 

is created by combining the “Q-learning algorithm” and the conventional “artificial bee colony 

(ABC)” method. The update dimension of each iteration of the ABC algorithm can be 

dynamically modified using the learning features of the Q-learning algorithm, which increases 

the convergence accuracy of the ABC. Second, the precise dynamic scheduling technique is 

chosen, and the DSLABC is suggested. The activities that have not yet begun processing will 

be postponed together with the newly inserted job. 

2.5.3 Studies related to Scheduling of AGVs and machines in FMS 

Pandey and Singh did a review of “automated guided vehicle design and control”. The 

report presents a technique to integrate several lines of AGV research and makes 

recommendations for future work on the most important associated issues, such as vehicle 

scheduling. In various job shop setups, scheduling issues involving vehicle dispatching, guide-

path design, and routing are resolved.  

Chawla et al [91] developed “Modified Memetic Particle Swarm Optimization 

Algorithm (MMPSO)”, which combines “Particle Swarm Optimization (PSO) and Memetic 

Algorithm (MA)”, is used to schedule multi-load AGVs with the least amount of travel and 

waiting time possible in the FMS. The proposed “MMPSO algorithm” demonstrates balanced 

exploration and exploitation for the global search method of the traditional Particle Swarm 

Optimization (PSO) algorithm and the local search method of the Memetic Algorithm (MA), 

which further yields efficient and effective initial feasible solutions for the scheduling problem 

for multiple load AGVs. 
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Reddy et al [92] addressed the simultaneous scheduling problem of AGVs with 

machines and tools using a flower pollination algorithm (FPA) based on the pollination process 

of flowers and a nonlinear mixed integer programming (MIP) formulation to describe the joint 

scheduling of machines, AGVs, and tools. 

Zheng et al [93]minimized the makespan while scheduling machines and AGVs 

simultaneously. They proposed “Tabu search” for this study. The suggested approach 

incorporates the production of two neighbour solutions, which are then alternatively and 

repeatedly employed to improve solutions, as well as a novel two-dimensional solution 

representation. Also, for the large-size problems, a better lower limit computation method is 

introduced. 

Prasad and Rao [94] proposed a “black widow optimization algorithm” to solve 

machines and tool scheduling side by side using many machines in a flexible manufacturing 

system, the best possible sequences are generated to reduce production time. The objective was 

to minimize makespan. 

Research by Sreenivas et al. [95] performed parallel scheduling using a simulated 

annealing algorithm for addressing parallel scheduling of AGV’s and machines. Based on 

simulated annealing trajectory-based method is developed. A focused approach aimed to 

identifies minimum makespan, mean makespan and tardiness of the system. Simulated 

annealing is tested for over 20 standard problems collected from analysis of literature. The 

developed annealing is considered the adoption of two-stage calculation performance. The 

limitation observed in this research is mathematical formulation or derivation is minimal for 

tardiness, job completion time and mean value. 

Nageswara rao et al [96] research aims at the utility of concurrently scheduling two 

similar automated guided vehicles (AGVs) and machines in a flexible manufacturing system 

(FMS). AGV performance optimization is essential for enhancing FMS efficiency. For the 

purpose of providing the best Sequence with relative makespan value and AGVs schedule for 

ten work sets and four lay outs, a hybrid meta heuristic method is designed and created with 

Java code. 

A work by Singh and Jayant [97] presented a problem in appropriate selection of FMS 

in specifically for a manufacturing organization. In the process of FMS decision-making 

process, three criteria are considered such as ELECTRE III, VIKOR and improved 
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PROMETHEE for decision-making system. Based on the numerical expression is presented 

and discussed three multiple criteria decision-making process of FMS. Ranking of three 

selected variables are comparatively examined with VIKOR, improved PROMETHEE and 

ELECTRE III provide the good alternative set value of {7, 4}. Alternative ranking values are 

higher for 7 and 4 with the alternative of 7 which is ideal according to the RSC, IQ, FSU and 

closet criteria according to ideal criteria IMR, CMC and closer based on the best alternative of 

7. This research concluded that matching method would be applied for the appropriate class of 

problem required. Validation procedure is adopted, and feasible application is explored. To 

resolve problem researcher are struggling to select guide for efficient method by means of the 

theoretical and practical formulation. But this research fails to provide appropriate steps for the 

entire research process and techniques are not developed.  

Research by Saren et al. [98] focused on effective performance characteristics of 

decision-making strategies involved in FMS by means of hierarchical structure. This research 

discussed the tools, parts and machine for the transition. This research considers the FMC 

model formulated on laboratory operation of Faculty of Managerial and Technological 

Engineering, University of Oradea. Analysis is performed with consideration of arrival rate of 

part and decision processing of parts through transition of each sub-model. Analysis of 

hierarchical model is performed through CPN tools software for FMS modelling and 

formulation. Results illustrated that implementation of transition and place is based on arrival 

time and processing time of parts through hierarchical model. This research stated that various 

parts are processed through different sub-models which increase overall performance of FMS. 

However this research does not provides a clear conclusion for this research and mathematical 

derivation for the proposed model also.  

A study by Gothwal and Raj [99] developed a framework for managing task proactively 

for FMS. To retain best solution this research integrates simple additive weighting and 

weighted product scheme along with the process of analytical hierarchy.  Weights are 

determined and measured with AHP using SAW and WPM approaches with management of 

performance measure prioritizing with improved decision-making performance. For 

conversion of qualitative to quantitative measures fuzzy logic is adopted in this research.  

A study by Chawla et al. [100] investigated dynamic job selection for simulation by 

means of rules involved in dispatching and scheduling is performed with consideration of 

multi-load scenario of automated guided vehicles (AGVs) FMS of different size vehicles. 
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AGVs incorporates multi-load scenario consideration of rules for dispatching machine initiated 

nearest vehicle (NV) and materials for pick and drop in FMS. Results revealed that rules for 

dispatching involve similarity of outperforms of jobs and rules involved in dispatching. This 

research concluded that FMS throughput depends on AGV speed and fleet. But this research 

does not consider any mathematical formulation for analysis in FMS. 

A study by Erol et al. [101] have proposed a method to machines and AGVs inside the 

scheme of manufacturing by means of multiple agents dependent scheduling. The presented 

method operates through a practical atmosphere and creates viable schedules with the help of 

bidding or negotiating mechanisms amongst the agents. Furthermore, they suggested 

investigating and additional refining the multi-agent systems (MAS) methodology for 

resolving scheduling in a dynamic ambience [102] and controlling the issues/ complications in 

manufacturing. 

Burnwal and Deb [103] have implemented an iterative model using cuckoo searching 

(CS) algorithm for optimizing the process of schedule in FMS. It is accomplished in two folds: 

by reducing the cost of punishment (fine) because of the postponement in manufacturing and 

by increasing the utilized time of machine. It is intended to illustrate the use of CS related 

structure to identify the optimum jobs.  The Levy fight operator has been used for this purpose 

by making minute changes in the suggested algorithm as it is much suited for applications of 

unconnected nature.  

A Study by Huang et al. [104] has proposed efficient scheduling for FMS and has 

estimated an upgraded searching tactic and its usage with FMS scheduling in the P-timed Petri 

net context.  It is possible to apply the acceptable and non-acceptable exploratory/ heuristic 

functions at a time using recommended algorithm by implementing the Petri net. It is also 

established that the resultant heuristic function of combinational type is permissible and highly 

conversant than the other elements. The investigational results for a sample FMS and numerous 

groups of arbitrarily created issues demonstrate that the presented searching technique does 

well and has matched the beliefs.  

Research by Başak and Albayrak [105] developed a Petri net (PN) model for a FMS. 

An analysis is evaluated with consideration of PN design and implementation mechanism in 

FMS. Modelling of FMS tools adopts PNs with principal modelling with the implementation 

of object-oriented Petri nets (OOPNs) method for design plus implementation of effective 
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controlling for production. Developed PN utilizes timed marked graph (TMG) which is 

generally a subclass of PNs. The conclusion of the research stated that real-time scheduling 

and modelling effectively controls the FAMS (flexible automotive manufacturing system) 

located in Valeo Turkey. Since this research focused on performance evaluation of Turkey 

alone, it will not be significant for other countries. 

Research by Chawla et al. [106] investigated the rules associated with the dispatching 

of dynamic job selection approach for multi-load automated guided vehicles (AGVs) in FMS 

have different sizing. Sizing related to AGVs are vehicles initiated through the nearest vehicle 

(NV) involves certain framed rules for dispatching and material drop for flexible 

manufacturing system (FMS). For consideration of two size in facility of FMS is evaluated 

with job selection for five different jobs with desire rules in dispatching. Rules related to 

dispatching in FMS are evaluated using simulation process based on the consideration of 

selection criterion for jobs similarity for the destination. Through analysis, it is concluded that 

FMS throughput increases or decreases with consideration of AGV speed and fleet size. This 

research does not offer any mathematical explanation or simulation measures for FMS 

scheduling.  

A study by Kumar et al. [107] has examined the problem in scheduling associated with 

FMS by the application of meta-heuristics approach improvement in planning for production 

for FMS scheduling. This research considers flexible manufacturing system 6 machine 

producing system with consideration of 3 distinct parts with 3 machines at different setup 

considers each setup and consideration of 3 alternative routes. Scheduling for optimization 

involves Bacterial Foraging optimization algorithm (BFOA, GA and Differential Evolution 

(DE) for an optimal scenario in to consideration. Through analysis, this research concluded 

that proper decision in industry performs excellent setup and scheduling by the meta-heuristics 

approach and modelled using Pro model software for different runs. This research does not 

provide application variation of FMS sector. 

A study by Mousavi et al. [108] developed a mathematical model by integration of 

genetic approach, swarm based approach (PSO), and hybrid GA-PSO for optimal job 

scheduling with AGVs for reducing makespan and quantity of AGVs for consideration of 

charging the battery. Numerical analysis of results demonstrated that makespan is decreased 

by application of three algorithms through scheduling before and after optimization approach 

for AGVs. Results illustrated that GA-PSO provides optimum results and performance output 
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for the other two algorithms. AGVs mean value for operation improves efficiency in terms of 

69.4%, 74%, and 79.8% for a multi-objective function with all three algorithms mentioned in 

the proposed model. Validation and evaluation of the model is evaluated through Flexsim 

software for simulation performance measures. This research fails to provide an 

implementation of proposed algorithm in the scheduling of AGVs. 

Research by Mishra et al. [109] evaluated the FMS manufacturing system for the 

production of multiple products which requires reconfiguration in production line. This 

research utilizes Particle Swarm Optimization (PSO) with multi-objective scheduling process 

for a manufacturing process for tasks such as transport and storage requires appropriate 

scheduling mechanism. To resolve scheduling problem related to FMS PSO provides an 

optimal solution for obtaining a solution by means of scheduling by genetic algorithm (GA). 

But this research fails to provide details about consideration of job for scheduling and 

processing involved in FMS. 

Research by Kamatchi and Saravanan [110]  suggested a modified discrete firefly 

algorithm for flexible open shop scheduling issues are investigated along with five objective 

functions toward met real-world production situation. Further, they have applied ordinary 

firefly algorithm, which dealt with an isolated form of the non-stop function like distance, 

movement and attractiveness for finding correct location of Firefly. The demonstrated 

outcomes confirm that the suggested approach provides improved results in comparison to the 

other algorithms specified in research papers.  Upcoming scholars may concentrate on multi-

objectives with few more objectives that are not included in the present study or the fuzzy 

version of that. 

MATLAB possess strong power of computation and helps to solve problems that are 

complex in nature. The “parallel computing” tool box helps to perform the computations 

quickly and effectively when more machines are operated in parallel in FMS. As the modern 

scheduling has many objectives and some of the objectives are contradictory in nature, such 

kind of issues should be solved with a powerful tool. Hence, MATLAB can be used for 

scheduling problems in flexible manufacturing schemes with multiple objectives. Many 

literatures have reported the application of MATLAB in FMS especially for scheduling [111]–

[116]. 
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Research by Rashmi and Bansal [117] developed an ant colony optimization technique 

for multi-objective task scheduling for Auto Guided Vehicle (AGV) in FMS. ACO adopts 

effective scheduling path for AGV task scheduling by balancing the objective function with 

minimized task time of AGVs in FMS. Optimum scheduling is performed through a 

combination of objective function. Analysis demonstrated that ACO technology is a promising 

technique with effective dynamic performance capability. Minimal change in objective 

function improves task scheduling performance which resulted in AGV utilization and overall 

system efficiency.  

Research by Mehrabian et al. [118] has presented a mathematical programming model 

based on a two-objective function which integrates AVGs routing in the flexible manufacturing 

system and scheduling of flower shop. Uncertainty is always of higher demand for real-life 

problems like processing time and due dates. In order to resolve realistic problem, several 

parameters are considered in this research for the developed mathematical model. In the 

formulation of a fuzzy based model for programming effective technique is identified through 

literature. A mathematical model is evaluated using f Non-dominated Sorting Genetic 

Algorithm-II (NSGAII) and particle swarm optimization with multiple objectives for 

evaluation of accuracy value and efficiency of the system assessment. But this research does 

not provide practical application of the proposed model in FMS scheduling for AVGs. 

Udhayakumar and Kumanan  [119] have aimed to make active scheduling and ordering 

sequence of job in an optimal way along with a proficient tool that decreases the makespan of 

FMS. A novel ant colony optimization (ACO) algorithm has been utilized for meeting the 

objective. The said algorithm tries to get adjacent solutions with optimum values by means of 

Giffler extension and Thompson algorithm for arriving at a schedule, which is active as well 

as optimal. The results of the designated algorithm has been compared with the algorithms 

suggested in earlier researches and the investigation proves that the suggested method helps in 

achieving improved solution with minimum span of time. 

Mathew and Saravanan [120] have presented a genetic algorithm for integrating 

flexibility in the modern manufacturing schemes. They have accounted various objectives such 

as, reducing the machines’ idling time, decreasing the total cost expended towards penalty, 

which is imposed for not satisfying the timelines very frequently. Software is established for 

obtaining the order of sequence of the operations involved in FMS with optimal values. The 

authors have tested their proposal with 16 tools integrated in a total of 16 numeric control 
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machines governed through computers to process 43 different products. The problems are even 

experimented through the meta-heuristic approaches pointed out in the research papers. The 

results of them are matched to the suggested method.  The GA approach of considered problem 

with designated objectives has yielded a globally optimal scheduling once 1700 generations 

have been completed. 

Kumar et al  [121] have validated the usefulness of genetic and differential evolution 

schemes for schedule of FM system. They have used sixteen machineries along with 43 jobs 

of flexible manufacturing to test the proposed method and the results attained have been used 

to compare with traditional rules of schedule. The coding for designated approach has been 

carried out in MATLAB environment of version 7.1. 

Nidhiry and Saravanan  [122] have utilized tools of CNC machines of 32 numbers in 

the schedule of FMS that deals with 40 various products. They have decided to deal with 2 

different objectives that are opposing in nature. They are minimalizing the idling time of 

machines and diminishing the overall cost incurred by the way of penalty. They have devised 

an optimization technique using NSGA-II software, which is capable of handling several 

objectives at a time. The optimal sequencing of products has been carried out by .net 

programming setup. The comparisons have been carried out by matching the recommended 

method with other famous algorithms available in the research papers. The finest solution has 

been attained after 3000 generations. 

Marichelvam et al. [123]  have offered a hybrid monkey searching algorithm for 

resolving the schedule problem associated to flow shop jobs. This problem is a combinatorial 

problem and NP-hard category due to its complexity. The considered objectives are the 

reduction of make-span to greater extent and reduction of overall flow time. Here, 2 various 

sub populations are created with 2 goals and dissimilar rules of dispatch have been utilized to 

enhance the solution excellence. The performance has been compared with different popular 

algorithms that are proven to be effective. The results of experimentation and comparison infer 

that the monkey searching has produced a loftier output to meet out the said objectives. 

2.5.4 Studies on Firefly algorithm and Flower Pollination algorithm on other domains 

Fister et al [124] provided a comprehensive review on firefly algorithms with its 

variants. This provides as a good base pare to understand and study about the different 
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adaptations that have been made to FA.  This study strongly recommends that FA is good for 

solving any engineering problems due its simplicity. 

“A probabilistic Energy Management system to optimize the operation of the Micro-

Grid (MG) based on an efficient Point Estimate Method (PEM)” by an “Adaptive Modified 

Firefly Algorithm (AMFA)” to achieve an optimal operational planning with regard to cost 

minimization is developed by Mohammadi et al [125] 

Álvarez-Gil et al [126] solved a make to order production unit for minimizing makespan 

total workload; and maximum workload by a Discrete FA. Customers can choose from a few 

qualifying product attributes in the proposed framework, which are viewed as the several 

manufacturing procedures that make up each job. 

“An adaptive hybrid evolutionary firefly algorithm (AHEFA) for shape and size 

optimization of truss structures under multiple frequency constraints” was studied and analysed 

by Lieu et al [127]. “Differential evolution (DE) algorithm” was hybridized with the firefly 

algorithm (FA). 

Gandomi et al [128] developed FA by introducing chaos into the algorithm. This lead 

to the effective global search and the algorithm was tested on several benchmark instances.  

Yu et al [129] [130], [131]developed various “self- adaptive FA” in order to avoid the 

FA falling into local optima due to its fixed parameters. Here the authors have suggested to 

make the parameter change dynamically at each iteration.  

 Diab and El-Sharkawy [132]conducted a review on recently developed Flower 

pollination algorithm (FPA). They analysed the applications of FPA, its variants and also added 

the future scope of the FPA. 

 Alyasseri et al [133] did a detailed study on various modifications done to FPA till date. 

And they found that the modifications help the FPA to achieve better results and simplicity of 

coding is desirable. To deal with the complicated nature of optimization problems, 

modification, hybridization, and parameter-tuning of FPA are used. 

 Cui and He [134] introduced “Cat Fish Mechanism” in FPA to weed out the worst 

solutions obtained during the iterations. Because of this modification the FPA was able to 

maintain superior diversity in population thereby leading to achieve best optimal results. 
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 Qu et al [135] developed “hormone modulation mechanism (HMM-FPA)” for a “no-

wait flow shop scheduling problem (NWFSP)” with an objective to maximize consummate 

time. The authors introduced a self-adaptive neighbour search for local search. Benchmark 

instances were used to test the algorithms efficiency and it proved to be better when adaptive 

parameters are used. 

2.6 INFERENCE FROM LITERATURE STUDY 

 The following section briefly explains the voids in research, commonality and scope of 

expansion of various research problems in FMS scheduling categorizing with respect to meta 

heuristics, Objectives, FMS problems. 

2.6.1 Meta-heuristics techniques 

Solving the problems by exact method needs a rigorous derivations and calculations 

involved is more and most importantly the computational time is high especially when the size 

of the problem enlarges and carries more instances. It is even complicated when NP-hard 

problems are dealt. In such situations, the time of computing exponentially increases with the 

problem size. Meta-heuristics methods are very good alternative to such problem as the 

solution provided is very closer approximation to real solutions and the computational time is 

drastically reduced. When the scheduling problems are concerned with regard to added 

flexibility in modern manufacturing, many objectives are to be met with minimum time frame. 

The problem is composite in nature and includes large instances of problem. Using meta-

heuristic will offer a compromise between the quality of solution and the time of computing. 

This can be fit to the wants of real-world problems for optimizing and this method is not 

demanding in view of problem formation. That is, there is no rule for framing the objective 

function and constraints based on the decision-making variables. Hence, this method is well 

adapted to FMS scheduling issues and offers very good solution in least possible time. Also, a 

hybrid heuristic approach may provide finest solution than single heuristic in the case of multi-

objective problems. 

Among meta heuristics, Evolutionary Algorithms (EA) and Swarm Intelligence (SI) 

based algorithms are dominating the optimization research area. SI is gaining popularity due 

to its simplicity and very few parameters which are easy to control. Computational complexity 

is less for SI when compared to EA. Yet, not all SI techniques are effective in scheduling of a 

FMS. Thus, the need arises to formulate an effective SI technique to tackle the scheduling 
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problem. This can be achieved either by parameter tuning or hybridization of one or more 

techniques. 

2.6.2 Multi-objective scheduling technique  

The flexible manufacturing focuses on the customer needs and accordingly has to 

produce products. To sustain in the market and cope up with the competition prevailing in the 

market, many constraints are there and depending on these restraints, a clear objective has to 

be made. In general, many literatures have projected the problem with only one objective, 

which is the lessening of make-span to the minimum possible extent.  

Even though satisfying this objective is paramount in invariably all the manufacturing 

industries/ units, this objective alone will not meet the requirements of the customer. Having 

introduced automation almost in all firms at least partially, the objective converts into multi-

varied and involves many parallel machines.  A fine is being levied if the particular job is not 

over as per the stipulated time and in some cases early delivery poses a problem. Thus, the 

tardiness and workload of machines, and the number of machines used are becoming 

significant factors in scheduling problem. Thus, making a distinct objective by combining all 

the needs is mandatory. Obviously, the objective function turns out be a multiple objective 

function. Even two objectives are referred as multi-objective problem as per the literature. Yet, 

for rigorous analysis more than two objectives are needed.  Hence, there is a need for pertinent 

design with a generally modifiable structure suiting to multiple production objectives.   

2.6.3 FMS Scheduling problems 

A hierarchical approach to solving FJSP subproblems is frequently used. Whereas few 

studies have been conducted for an integrated approach in which both machine assignment and 

machine routing are performed concurrently. The integrated technique explores two fields and 

takes into account both subproblems simultaneously. The variety in the search space tends to 

rise as a result of this pattern of searching. Therefore, it is crucial to devise a strategy for 

potentially reducing the problem's complexity by conducting a thorough search in the search 

space. The scheduling of machines and AGVs has to be done together in order to decrease the 

production cost and makespan. But very few studies have dealt the problem of simultaneous 

scheduling. Therefore, there is a significant scope to attempt “simultaneous scheduling of 

machines and AGVs” 
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Hence, it is intended to address all the drawbacks deliberated so far and design a powerful 

hybrid algorithm for scheduling problem in FMS. 

2.7 RESEARCH GAPS  

The analysis of existing literature related to flexible manufacturing system (FMS) 

certain research objective is observed for consideration of different scenario which is presented 

as follows: In order to use an efficient approach of meta-heuristic for the problem of concern 

in this work, the various gaps or intricacies associated with the existing heuristic methodologies 

in scheduling of FMS have been found and listed. 

1. Several meta-heuristics techniques are evolved for solving scheduling problem 

in FMS, but effective technique is not presented. 

2. The performance is conducted based on formulated research objective domain, 

which may vary for another process. 

3. Minimal change in objective function leads to change in entire processing 

associated with manufacturing.  

4. In terms of Swarm intelligence (SI) approaches, FA and FPA are intriguing 

methods with a broad range of potential applications for additional analysis and 

testing, including scheduling. In order to solve the FJSSP problem, FPA is a 

relatively new technique, and academics have only so far suggested using it to 

solve the single objective problem. In order to address the multi-objective 

scheduling problem with hybridization, there is room to broaden the FPA. 

5. Recent years have seen the introduction of adaptive elements into an 

optimization technique's control parameters. This allows the researcher to have 

control over how a strategy investigates and exploits the solutions, and it also 

allows for the resolution of issues like local optima trapping. Also, is noted that 

most FMS scheduling experiments are resolved by combining one or more 

metaheuristics. 

6. Integrated approach to solve the sub problems of machine assignment and 

sequencing in FJSSP scheduling can be attempted. 

7. Parameter tuning of FA can be done for FMS scheduling as the literature has 

shown that parameter tuning plays an important role to increase the fficiency of 

the algorithm. 
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8. Multi-objectives (due date related and time related objectives) to schedule FMS 

can be attempted since most of the studies focused on single objective of 

minimization of makespan only.  

9. Also, most of the literatures have applied heuristic approach to boost the results 

and it is seen through the investigation that hybrid method combining more than 

one algorithm is efficient. This study also aims to develop a meta-heuristic 

approach hybridizing many relevant and feasible algorithms to handle the 

scheduling problem in FMS.  

10. Many of the studies have used benchmark instances to test the efficiency of the 

proposed algorithm but very few studies attempted to solve a real life case study 

for multi-objective scheduling optimization. 

2.8 SUMMARY 

In this chapter, it has been examined about FMS in consideration of several scenarios 

in to consideration. For analysis of FMS, performance evaluation is considered based on meta-

heuristics approach, decision making with consideration of multi-objective terms, multi-

objective scheduling and artificial intelligence technique in the processing of FMS. Analysis 

of literature presented that scheduling in FMS is performed via consideration of incoming jobs 

count, operation, task assignment and scheduling. Under multi-objective scenario optimization 

approaches such as Tabu search, Ant colony algorithm, Particle Swarm algorithm and 

simulated annealing are adopted. Among those optimization approaches, performance is not 

desired since it involves a minimal change in objective function alters the complete 

performance output of the system. Thus, the need arises to develop a new SI technique. In the 

multi-criteria decision-making process, a clear description is not presented for type of FMS 

scheduling. As meta-heuristics is found to be a better option to the several objectives persisting 

in FMS particularly for scheduling problems, the proposed method will adopt appropriate 

hybrid meta-heuristic methods for various cases of scheduling problems in FMS. Also, 

MATLAB platform is utilized for execution as it works efficiently with high computational 

abilities. Also, it has built-in libraries, flexibilities to call external libraries and it is well proven 

in efficiently solving the optimization problems than any other tools.  
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CHAPTER 3  

SOFT COMPUTING TECHNIQUES 

 

3.1 INTRODUCTION 

 Soft computing optimization algorithms are a family of techniques designed to find 

the optimal solution to a problem that may involve a large number of variables or complex 

constraints. Soft computing techniques refer to a set of methodologies and algorithms that are 

designed to handle complex problems in a flexible and efficient manner. Unlike traditional 

computing techniques that rely on strict mathematical models and rules, soft computing 

techniques are inspired by biological processes and human reasoning. Soft computing 

techniques encompass a wide range of tools, including artificial neural networks, fuzzy logic, 

evolutionary computation, and swarm intelligence. These techniques are particularly useful in 

areas where the problem is not well-defined or the data is incomplete or uncertain. Soft 

computing techniques have found widespread applications in various fields, including 

engineering, medicine, finance, and natural language processing, to name a few. The ability of 

soft computing techniques to learn from data and adapt to changing conditions makes them a 

valuable tool for solving complex problems in the modern world. 

 Soft computing techniques have found a wide range of applications in scheduling 

and production planning due to their ability to handle complex and uncertain problems. 

Production scheduling involves determining the sequence of tasks, allocating resources, and 

assigning jobs to workers or machines to meet production targets while minimizing costs and 

maximizing efficiency. Soft computing techniques can be used as optimization algorithms by 

leveraging their ability to search through large solution spaces and identify the best possible 

solution based on the given criteria. An optimization algorithm is a mathematical technique 

that is used to find the best possible solution to a problem, given a set of constraints and 

objectives. Optimization algorithms are designed to search through a large space of possible 

solutions and identify the solution that maximizes or minimizes the objective function while 

satisfying the constraints. 
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The general working of soft computing optimization algorithms can be summarized in the 

following steps: 

• Problem Formulation: The first step is to define the problem and identify the input data, 

output data, constraints, and objectives. 

• Data Preprocessing: The input data is preprocessed to remove noise and 

inconsistencies and transform the data into a format suitable for soft computing 

techniques. 

• Technique Selection: The appropriate soft computing technique is selected based on the 

problem requirements and characteristics. 

• Model Development: A soft computing model is developed that can learn from the input 

data and generate output data based on the problem objectives and constraints. 

• Fitness Function Definition: A fitness function (objective function) is defined that 

evaluates the quality of the candidate solutions generated by the soft computing 

algorithm. 

• Initialization: The soft computing optimization algorithm is initialized with a set of 

random candidate solutions. 

• Evaluation: Each candidate solution is evaluated using the fitness function to determine 

its quality. 

• Selection: The best candidate solutions are selected based on their fitness scores. 

• Variation: The selected candidate solutions are modified or combined to generate new 

candidate solutions. 

• Evaluation: The fitness function is again used to evaluate the new candidate solutions. 

• Termination: The optimization algorithm is terminated based on a predefined stopping 

criterion, such as a maximum number of iterations or a minimum level of improvement. 

• Output: The optimized solution is outputted as the solution to the problem. 

In the context of optimization, metaheuristics are high-level strategies that guide the search for 

optimal solutions to a given problem. Metaheuristic algorithms operate at a higher level of 

abstraction than traditional optimization algorithms, such as linear programming or quadratic 

programming, and can handle complex, non-linear, and non-convex optimization problems. 
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Metaheuristic algorithms are based on the idea of iteratively exploring and exploiting the search 

space of the problem, aiming to find the global optimum or a good approximation of it. These 

algorithms do not guarantee finding the optimal solution, but they are often effective at finding 

good solutions in a reasonable amount of time, even for very complex optimization problems. 

Metaheuristic algorithms are usually stochastic and iterative, meaning that they generate a set 

of candidate solutions and refine them over a number of iterations. The candidate solutions are 

evaluated using a fitness function, which measures how well each solution performs in 

achieving the optimization objective. The metaheuristic algorithms use this information to 

adjust the search strategy and generate new candidate solutions. Metaheuristic algorithms are 

widely used in various applications, including scheduling, routing, resource allocation, 

machine learning, and many others, where finding optimal or near-optimal solutions is critical 

for the success of the system or process. 

3.1.1 Meta Heuristics inspired by Nature 

 Nature-inspired metaheuristics  mimics the natural processes or phenomena that 

have evolved over millions of years to solve complex problems efficiently. These natural 

processes have been refined by the laws of evolution, and they have proven to be highly 

effective in solving complex problems in nature. 

The basic principle behind nature-inspired metaheuristics is to generate a population of 

candidate solutions, and iteratively refine them based on a fitness function that measures how 

well each solution performs in achieving the optimization objective. The metaheuristic 

algorithms use this information to adjust the search strategy and generate new candidate 

solutions. 

Nature-inspired metaheuristic algorithms are often stochastic and iterative, and they generate 

a set of candidate solutions that are iteratively refined based on a set of rules or heuristics 

inspired by natural phenomena. These algorithms are often used to solve optimization problems 

that are difficult or impossible to solve with traditional optimization algorithms. 

Examples of natural phenomena that have inspired metaheuristic algorithms include: 

• Evolutionary processes, such as Genetic Algorithms (GA), Differential Evolution (DE), 

and Genetic Programming (GP). 
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• Swarm behavior, such as ‘Particle Swarm Optimization’ (PSO), ‘Ant Colony 

Optimization’ (ACO), ‘Firefly Algorithm’ (FA) and ‘Artificial Bee Colony’ (ABC). 

• Physical phenomena, such as Simulated Annealing (SA), Tabu Search (TS), Flower 

Pollination Algorithm (FPA), and Bat Algorithm (BA). 

• Human-inspired algorithms, such as Harmony Search (HS) and Cultural Algorithms 

(CA). 

After a thorough study and analysis of scheduling literature, the nature-inspired algorithms 

listed below are developed and implemented to optimize Scheduling of Flexible Manufacturing 

System and are described in more detail in the sections that follow: 

i) GAPSOTS- A hybridization technique developed by hybridizing GA, PSO and TS 

ii) HFPA- A hybridization technique developed by hybridizing classic FPA with SA 

iii) HAdFA- A hybridization technique of classic FA with SA incorporated with novel 

adaptive strategies. 

Some portions in methodologies of GAPSOTS, HFPA and HADFA are published by this 

researcher as part of this thesis [136]–[138] 

3.2 GAPSOTS- HYBRIDIZATION OF GA, PSO AND TS 

 An effective multi-objective scheduling approach is applied, which is a 

combination of the genetic algorithm (GA), particle swarm optimization (PSO) and Tabu 

search (TS) algorithms (GAPSOTS algorithm). The purpose of using genetic algorithm with 

multiple objectives is to successfully resolve multiphase process scheduling in FMS setting. 

Then, PSO algorithm is applied for optimization the scheduling process and TS is used for 

solving combinatorial optimization issues (problems where an optimal ordering and selection 

of options is desired). This new approach is made by hybrid method with multiple objectives 

to handle the flexible job scheduling complications with manifold goals.  Investigational 

studies have been utilized to validate the method, and a comparative analysis is done by 

matching the results of the recommended method to specify the compliance/ flexibility and 

supremacy of the present model. [136] 

The genetic algorithm uses predetermined size of populations and considered the 

population issues which indicate the schedules of the machine. During every step of iteration, 
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the non-performing or poor candidates are expelled from the population. Likewise, the 

schedules that are performing comparatively lesser than the expectations are detached from the 

population. Meanwhile, new candidates will be added to the population in GA. Thus, the fresh 

schedules created by means of mutations to separate schedules are substituting the detached 

schedules. Then the crossover operations are applied to schedule pairs existing in the 

population. 

In the same way, PSO algorithm is exploited for searching the path sequence that 

provides an optimum answer for the problem concerned. Moreover, the concept of 

indigenous/local searching in the searching space is adopted for augmenting the performance 

of the algorithm. The searching population contain particles and every particle contained in the 

population relates to an individual. A particle swarm is created in arbitrary fashion at the start 

and the position of every individual describes a potential solution in the searching area. Two 

vectors namely position and velocity vectors assist to upgrade the position of every individual 

particle while the movement of particles take place in the searching area.  

TS algorithm is fundamentally a neighbourhood approach and offers a way to clear the 

inflexible combinatorial problems of optimizing. It helps to get rid of “local optima” problems 

for such ambience. The process of transfer of present solution to the adjoining solution is 

termed as move.  The neighbourhood/ nearby solution providing optimal solution is attained 

through a “move” in case of TS algorithm.  

3.2.1 Framework of GAPSOTS 

In the context of FMS scheduling, GA works by encoding the scheduling problem as a 

set of genes, and creating an initial population of potential solutions (i.e., chromosomes) 

randomly. Each chromosome represents a schedule that assigns specific jobs to specific 

machines at specific times. The fitness of each chromosome is evaluated based on its ability to 

minimize the objective function, such as the total completion time, makespan, or flowtime.  

A hybrid approach that combines Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Tabu Search (TS) is developed to solve Flexible Manufacturing System (FMS) 

scheduling problems. Figure 3.1 depicts system flow process of GAPSOTS.  
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Figure 3.1 System Flow of process using GAPSOTS method 

Important Aspects of GA 

i) Rank Selection Method: Rank selection is a selection method used in Genetic Algorithms 

(GA) to select the individuals for reproduction in the next generation. In rank selection, the 

individuals in the population are sorted based on their fitness values, and each individual is 

assigned a rank based on its position in the sorted list. The best individual is assigned the 

highest rank, the second best individual is assigned the second-highest rank, and so on. After 
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assigning ranks to all individuals, a probability distribution is created based on the ranks, where 

individuals with higher ranks have a higher probability of being selected for reproduction. Thus 

a mating pool with high quality parents are selected. 

ii) Mutation: Swap mutation is a genetic operator used in Genetic Algorithms (GA) to 

introduce randomness and increase diversity in the population of candidate solutions. Swap 

mutation works by randomly selecting two genes (or variables) in an individual's chromosome 

and swapping their values. 

iii) Crossover: Two-point crossover is a genetic operator used in Genetic Algorithms (GA) to 

generate new offspring chromosomes by combining two parent chromosomes. In two-point 

crossover, two crossover points are randomly selected along the length of the chromosomes, 

and the genes between these points are exchanged between the parents to create the offspring. 

This ensures that the ‘child’ has properties of both the parents. 

Particle Swarm Optimization (PSO) 

In the problem space, each individual or possible solution—referred to as a particle—

flies with a velocity that is continuously changed in accordance with the collective flying 

experience of the particle and its companions. Each particle keeps track of its own personal 

best (pbest) and the swarm's best position (global best), respectively, during the search process 

(gbest). In order to find the best solution, each particle in the swarm interacts with the others 

and works to gradually advance towards the promising regions of the search space. The velocity 

update formula given in Equation 3.1 and 3.2 are vital aspects of PSO.  

𝑉!"#$ = 𝜏	𝑉!" +	𝐶$. 𝑟𝑎𝑛𝑑. ,𝑋!" −	𝑝𝑏𝑒𝑠𝑡!"4 +	𝐶%. 𝑟𝑎𝑛𝑑. ,𝑋!" −	𝑔𝑏𝑒𝑠𝑡!"4            (3.1) 

𝑋!"#$ 	= 	𝑋!" +	𝑉!"#$                    (3.2)

 where C1 and C2 are coefficients of acceleration, 𝜏 is weight, t is iteration number. 

Tabu Search 

The main idea behind Tabu Search is to prevent the search from revisiting recently 

visited solutions, which can help the algorithm to escape from local optima and explore a larger 

search space. A “tabu list’ will be maintained which contains previous solutions, if the same 

solution occurs then the algorithm skips that solution and moves onto next solution. Aspiration 

criterion is important aspect in TS. The aspiration criterion typically involves checking the 
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quality of the move and comparing it to the quality of the current best solution. If the move 

leads to a solution that is better than the current best solution, the move is allowed, even if it is 

currently on the tabu list. This allows the algorithm to escape local optima and potentially find 

better solutions. 

The parameters of GAPSOTS are given in Table 3.1. 

Table 3.1 Parameters of GAPSOTS 

 

The following are the procedural steps for this hybrid approach: 

1. Problem formulation: Define the FMS scheduling problem, including the number of 

machines, the number of jobs, and the processing times, and determine the objective 

function to be optimized. 

2. Chromosome encoding: Encode each chromosome in the population as a schedule that 

assigns jobs to machines at specific times. Since FJSP has machine assignment and 

sequencing problem, real number encoding is used in this study. 

3. Initial population generation: Create an initial population of chromosomes randomly. 

The population size can be determined based on the complexity of the problem. 
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4. Fitness evaluation: Evaluate the fitness of each chromosome based on its ability to 

minimize the objective function. The fitness function can be determined based on the 

problem formulation. 

5. Hybridization: Combine the GA, PSO, and TS algorithms to create a hybrid algorithm. 

The GA is used for initial population generation and crossover, the PSO is used for 

particle updating and mutation, and the TS is used for local search. 

6. Selection: Select the best individuals from the population based on their fitness to create 

the next generation. Rank-based selection method is used in this study. 

7. Crossover: Exchange genetic information between two parent chromosomes to create 

two offspring chromosomes that inherit traits from both parents. Two point crossover 

is used in this study. 

8. Mutation: Randomly change a gene or a set of genes in a chromosome to introduce 

diversity and prevent premature convergence. Swap mutation is used in this study 

9. Particle updating: Update the particles in the PSO algorithm based on their position, 

velocity, and the best solution found so far. The update formula can be determined 

based on the PSO algorithm. 

10. Local search: Apply the TS algorithm to the best solution found so far to perform a 

local search and improve the solution quality.  

11. New population generation: Create a new population of chromosomes by applying 

selection, crossover, and mutation to the current population, and update the particles in 

the PSO algorithm. 

12. Convergence criteria: Check if the termination criterion is met, such as reaching a 

maximum number of generations, achieving a desired fitness level, or reaching a time 

limit. 

13. Final solution: Select the best chromosome from the final population as the solution to 

the scheduling problem. 

14. Validation: Validate the solution by testing it on different instances of the problem and 

comparing it with other optimization techniques or heuristics. 

15. Parameter tuning: Adjust the parameters of the hybrid algorithm, such as the population 

size, crossover rate, mutation rate, particle swarm size, and tabu tenure, to obtain better 

results. This step is critical for achieving optimal or near-optimal solutions. 
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3.3 HFPA- HYBRIDIZATION OF FPA & SA 

3.3.1 Standard FPA working procedure 

Flower pollination algorithm works on the basis of pollination of flowers. The 

pollination of a flower occurs with the help of bees, bats, wind etc. The pollination may occur 

between the flowers of same plant or flowers of different plants. When pollination occurs 

within the same plant it is called “Self-pollination or Abiotic Pollination” and when it occurs 

for different flowers of different plants it is called “Global Pollination or Biotic Pollination”. 

This ideology is used to mimic in obtaining optimal solutions in a scheduling problem. 

The flowers are “solutions” and they are randomly generated at initial stage. There is a “switch 

operator” which decides if the pollination occurs locally or globally. Usually the “Switch 

Probability” ranges between 0 and 1. Table 3.2 illustrates the main components of FPA. 

Table 3.2 Components of FPA for Optimization 

Yang [139] developed FPA and summarized the concept of FPA in four rules. 
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A random number is generated; if it is less than “p” global pollination occurs; otherwise, 

local pollination occurs.  

The global pollination is calculated using Equation 3.3. 

𝑦&"#$ = 𝑦&" + 𝐿	(𝑦&" − 𝑔∗),                                                                                               (3.3) 

where 𝑦&" is the individual flower at generation t, L is the step size obtained from the levy 

distribution, and g* is the best solution among all the solutions.  [138] 

The local pollination is calculated using  

𝑦&"#$ = 𝑦&"+∈ 	 (𝑦!" − 𝑦(")                                                                                                                          (3.4) 

where ∈ is random number from the uniform distribution [0,1], and 𝑦!"	𝑎𝑛𝑑	𝑦("  are different 

flowers.   Figure 3.2 exhibits the work flow process of FPA 

 

Figure 3.2 FPA work flowchart 
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3.3.2 Hybrid FPA 

Simulated Annealing (SA) is hybridized with FPA to further improve FPA's performance. SA 

was chosen due to its ease of implementation and flexibility to move from the local optimum. 

Classic FPA cannot be used for coding since FJSP is discrete. So, in this case, DFPA suggested 

by Xu et al [140] is employed. The results from the DFPA are forwarded to SA for additional 

improvement, and the worst solution is replaced to a new best solution that SA has chosen. The 

best outcome found during the search process is stored and updated.  

3.3.3 Encoding- Decoding of HFPA 

In this study, encoding and decoding are done using the two-string approach. In FJSP, 

there are two subproblems. The operations are routed after a machine is assigned. There are 

two strings used: the operation routing string (ORS), which indicates the total number of 

operations for "n" jobs, and the machine assignment string (MAS), which indicates the total 

number of machines. MAS is assigned a vector that was produced at random and is equal to 

the number of machines. A random vector with the value n is chosen for ORS. According to 

the order of the activities, decoding is carried out from left to right, and related machines are 

distributed in accordance with MAS. Figure 3.3 depicts the discretization and 

encoding/decoding of HFPA. The parameters for HFPA is given in Table 3.3 

 

Figure 3.3 Encoding-Decoding of HFPA 
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Table 3.3 Parameters of HFPA 

 

3.4 HADFA ( HYBRIDIZATION OF ADAPTIVE FA AND SA)  

The next proposed algorithm is based upon the “bio-luminesce” property of fireflies 

which was proposed by Yang [141]. The firefly algorithm is a swarm-based optimization 

algorithm that uses a swarm of fireflies to search for the optimal solution to a given problem. 

Each firefly represents a candidate solution to the problem, and the swarm of fireflies explores 

the solution space by moving towards brighter and more attractive fireflies.  

Firefly algorithm works on basic three rules and its formulas are as follows [141] 

 

 (1) The attractiveness parameter b is given by Equation 3.5 

𝛽)𝑒*+,
!                                  (3.5) 

where r is 0 and γ is the light absorption coefficient. 
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 (2)  The “movement of firefly or solution update rule” is given by Equation 3.6 

𝑥!"(𝑡 + 1) = 𝑥!"(𝑡) + 𝛽#𝑒$%&
!
"#(𝑥'"(𝑡) − 𝑥!"(𝑡) + 𝛼𝜖!                  (3.6) 

 

The parameters b and a From Equation 3.6 plays an important role in balancing 

exploration and exploitation of FA. But these values are fixed in standard FA. When parameter 

tuning is performed for FA it is expected that the FA will perform better. Thus a novel 

“Adaptive Firefly Algorithm(AdFA)” is proposed where a- the randomization parameter 

changes dynamically and the whole movement formula (Equation 3.6) is replaced with new 

solution update formula proposed by Cheung et al [142]. With respect to the two adaptive 

strategies proposed , following changes are made to standard FA. 

Strategy 1: The randomization α strategy proposed by Sababha et al [143] is incorporated here, 

which is represented by Equation 3.7. 

𝛼(𝑡&) = exp @1 − @ ""#$
""#$*"%

B
-
B                                                                                                              (3.7) 

where c (Random decaying speed) value is 5, tmax- Maximum Iterations, ti- present 

iteration. Every iteration changes the randomness parameter from its initial value of 0.5 with 

Equation 3.7 which helps to hasten convergence. 

Strategy 2: Cheung et al [142] proposed a “heterogenous update rule” which intensified the 

searching ability of fireflies. This helps the firefly to search globally for new optimal solutions. 

Thus Equation 3.6 is replaced by Equations 3.8a and 3.8b 

𝑥!"(𝑡 + 1) = (
(1 − 𝜏)𝑥!"(𝑡) + 𝜏(𝑥#"(𝑡) − 𝑥$"(𝑡 + 1),						𝑖𝑓	𝑟𝑎𝑛𝑑	 > 0.5

𝐺%&' − 𝑡
𝐺%&'

(1 − 𝜂). 𝑥!"(𝑡) + 𝜂. 𝑔𝑏𝑒𝑠𝑡"(𝑡), 𝑒𝑙𝑠𝑒
																																								(3.8𝑎) 

𝑥&"(𝑡 + 1) =	∝ (𝑡 + 1) ∈!	 0𝑥")*+ − 𝑥")!,0                                                                                (3.8b) 
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where the “Gmax is the maximum number of generations”, “η is the gray coefficient”, “rand is 

a random number in the range [0,1]”, and “Xr is randomly generated by Equation 3.8b”. 

The Adaptive Firefly algorithm is further hybridized with Simulated Annealing for further fine 

tuning of optimal solutions obtained. The parameters of HAdFA is given in Table 3.4 

Table 3.4 Parameters of HAdFA 

 

3.4.1 Methodological Steps for implementation of HAdFA 

1. Problem Definition: Define the problem and its constraints. The constraints include the 

availability of resources, precedence relationships between operations, and machine 

setups. 

2. Initialize Parameters: Define the parameters for the adaptive firefly algorithm, 

including the number of fireflies, the maximum number of iterations, the initial 

attractiveness parameter, the absorption coefficient, the step size. 

3. Generate Initial Population: Generate a random initial population of fireflies. 

4. Evaluate Objective Function: Evaluate the objective function for each firefly in the 

population. The objective function depends on the problem to be solved. 

5. Sort the Fireflies: Sort the fireflies in the population based on their objective function 

values. The best fireflies are moved towards the global best firefly, which has the lowest 

objective function value. 
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6. Update Attractiveness Parameters: Update the attractiveness parameters for each firefly 

based on their distances to other fireflies. The attractiveness parameter controls the 

intensity of the light emitted by a firefly, which attracts other fireflies 

7. Move Fireflies: Move the fireflies towards other fireflies based on their attractiveness 

and the distance between them. Execute new update formula Equation 3.8a and 3.8b. 

8. Evaluate Objective Function: Evaluate the objective function for each firefly after 

moving an sort the fireflies in the population based on their objective function values. 

9. Check Stopping Criteria: Check if the stopping criteria has been met. The stopping 

criteria is maximum number of iterations. 

10. Repeat: If the stopping criteria has not been met, Execute SA 

11. Initialize the initial solution for SA with a mix of best optimal results of FA and some 

random population. 

12. Again evaluate the objective function 

13. Start the annealing process by giving input parameters of annealing rate and 

temperature. 

14. Return the Best Solution: Once the annealing process is complete, return the best 

solution found during the search. 

15. Check Stopping Criteria if not goto step 6 repeat process until termination condition 

satisfied. 

16. Output the final optimal results for further validation. 

3.5 SUMMARY 

Soft computing optimization algorithms are a family of techniques designed to find the 

optimal solution to a problem that may involve a large number of variables or complex 

constraints which helps to solve any scheduling problems with less effort. Soft computing 

techniques are particularly useful in solving optimization problems that involve complex 

constraints and objectives, where traditional optimization techniques may not be effective. In 

lieu of that, three new novel meta-heuristics GAPSOTS, HFPA and HAdFA are proposed for 

this study. The detailed working of each algorithm is explained in respective sections. Further 

chapters in this thesis details about the implementation of these algorithms for various 

scheduling problems in FMS.  
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CHAPTER 4  

FLEXIBLE JOB SHOP SCHEDULING - A MULTI OBJECTIVE APPROACH 

 
4.1 INTRODUCTION 
 

Flexible job shop scheduling plays a crucial role in Flexible Manufacturing System 

(FMS) scheduling by helping to optimize the scheduling of production processes in highly 

dynamic and unpredictable manufacturing environments. Flexible job shop scheduling is a 

complex problem-solving technique used in manufacturing and other industries to optimize the 

scheduling of production processes. In a flexible job shop, there are multiple work centers, 

each of which is capable of performing a variety of operations. Additionally, there are several 

machines or resources available to perform each operation, making the scheduling process even 

more complex. The challenge of flexible job shop scheduling is to assign the appropriate 

operations to each work center and allocate the necessary resources to each operation to ensure 

that production runs efficiently, with minimal downtime and maximum utilization of resources. 

This task requires a sophisticated approach that can balance the competing demands of different 

production lines, resources, and deadlines, while minimizing costs and maximizing 

productivity. Therefore, the development of efficient scheduling algorithms and tools has 

become a critical research area for industrial and academic communities alike. In this context, 

the application of machine learning and optimization techniques can help to achieve the desired 

goals of flexible job shop scheduling. Flexible job shop scheduling is important in FMS 

scheduling because it helps to optimize the utilization of machines, resources, and labor, which 

is crucial for ensuring that the FMS operates efficiently and effectively. By assigning the 

appropriate operations to each work center and allocating the necessary resources to each 

operation, flexible job shop scheduling can help to reduce the time and cost of production while 

improving product quality. 

Moreover, flexible job shop scheduling can enable an FMS to adapt quickly to changing 

production requirements, such as changes in demand or unexpected machine breakdowns. By 

providing a flexible and agile scheduling system, an FMS can respond to changing conditions 

quickly, helping to minimize downtime and reduce production costs. 

 In the context of flexible job shop scheduling, two commonly used approaches to 

solving the problem are the integrated method and the hierarchy method. The integrated 

method is a comprehensive approach that considers all the tasks involved in scheduling 

production processes, including task sequencing, resource allocation, and due-date assignment. 
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This method aims to optimize the entire production process as a whole, taking into account the 

interdependence and interaction between different stages of the process. The integrated method 

typically involves complex optimization models and algorithms, such as mathematical 

programming and meta-heuristics, to solve the scheduling problem. The advantage of this 

approach is that it can produce highly optimized schedules that take into account all the factors 

affecting the production process. However, the downside is that it can be computationally 

intensive and require significant resources to implement. 

The hierarchy method, on the other hand, is a more incremental approach that breaks 

down the scheduling problem into smaller sub-problems and solves them sequentially. This 

approach involves dividing the scheduling process into different levels or stages, such as long-

term planning, medium-term planning, and short-term scheduling, each of which involves 

different decision variables and constraints. By decomposing the problem into smaller, more 

manageable sub-problems, the hierarchy method can reduce the computational complexity of 

the scheduling process and enable faster and more practical solutions. However, the downside 

is that it may not always produce the most optimized schedules as it does not consider the 

interdependence between the different levels or stages of the production process. 

Both the integrated and hierarchy methods have their advantages and disadvantages, 

and the choice of approach will depend on the specific requirements of the production process 

and the available resources. In practice, many companies may use a combination of both 

approaches, depending on the nature of the production method and complexity of the FJSSP. 

This chapter explains the optimization of Flexible Job Shop Scheduling Problem 

(FJSSP) through an integrated approach by the proposed techniques HFPA and HAdFA. 

GAPSOTS is not implemented for this FJSSP as they are very complex in nature and it is 

computationally expensive when used for an integrated approach. Parts of this chapter are 

published as a research article by the researcher, Devi et al [137], [138] 

 

4.2 FJSSP FRAMEWORK 

The FJSSP can be articulated mathematically as a multi-objective mixed-integer linear 

programming (MILP) model. It typically includes decision variables, objective function, and a 

set of constraints that ensure that the solution satisfies the requirements of the problem. This 

study aims to minimize multiple objectives, including makespan, total workload, maximum 

machine workload, total idle time, and total tardiness of machines. The decision variables, 

objective functions, and limitations can be expressed as follows: 
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Decision Variables: Let us define the following decision variables: 

• xijkm represents the start time of the operation k on the machine j at work center i. 

• dijk represents the due date for the operation k at work center i. 

• zij represents the completion time of the last operation at work center i on machine j. 

• yi represents the total workload of work center i. 

• zmax represents the maximum machine workload. 

• wijkm represents the idle time of machine j at work center i between the completion of 

operation k and the start of operation k+1. 

Objective Functions: The objective functions aim to optimize multiple objectives 

simultaneously. The objective functions can be formulated as follows: 

• Minimize makespan: 

Minimize MSmax = max (xijkm + pijk)        (1) 

• Minimize total workload: 

Minimize WLtotal = ∑i yi          (2) 

• Minimize maximum machine workload: 

Minimize WLmax = zmax           (3) 

• Minimize total idle time: 

Minimize Tidle = ∑i ∑j ∑k wijkm         (4) 

• Minimize total tardiness of machines: 

Minimize Tlate = ∑i ∑j ∑k max(0, xijkm + pijk - dijk)      (5) 

Constraints: The flexible job shop scheduling problem must satisfy a set of constraints that 

define the relationships between different decision variables and ensure that the solution is 

feasible. These constraints can be formulated as follows: 

• Each operation must start after its predecessor is completed. This can be expressed as: 

xijkm + pijk ≤ xij'k'm for all k' ≠ k and (i, j) ≠ (i', j')       (6) 

• At a time a machine can perform only one operation. This can be expressed as: 

xijkm + pijk ≤ xij'k'm + M(1-δijk,ij'k') for all k' ≠ k and (i, j) ≠ (i', j')    (7) 

where M is a large positive number, and δijk,ij'k' is a binary variable that is 1 if operations k 

and k' on machines j and j' at work center i are processed simultaneously, and 0 otherwise. 

• Each operation must be processed only once. This can be expressed as: 

∑j ∑m xijkm = 1 for all k and I         (8) 

• The start time of each operation must be greater than or equal to its release time. This 

can be expressed as: 

xijkm ≥ rijk for all k, i, and j          (9) 
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• The completion time of each operation on each machine must be tracked. This can be 

expressed as: 

zij ≥ xijkm + pijk for all k, i, and j                   (10) 

• The completion time of the last operation at each work center must be tracked. This can 

be expressed as: 

zij ≥ zij-1k' m + pik' for all k' ≠ k and (i, j)                  (11) 

• The total workload of each work center must be tracked. This can be expressed as: 

yi ≥ ∑j ∑k pijk for all i                    (12) 

• The maximum machine workload must be tracked. This can be expressed as: 

zmax ≥ zij for all i and j                   (13) 

 

4.2.1 Assumptions: 

1. No setup times: The setup times required to switch between different types of machines 

are ignored in the problem. 

2. No machine breakdowns: The problem assumes that all machines operate continuously 

without any breakdowns. 

3. No job priorities: All jobs are assumed to have the same priority, and no preference is 

given to any particular job. 

4. Deterministic processing times: The processing times for each operation are assumed 

to be known in advance and are fixed. 

5. No buffer storage: The problem assumes that there is no buffer storage between 

machines, and each operation is processed immediately after the previous operation is 

completed. 

6. Single-level bills of materials: The problem assumes that each job consists of a single 

level of bill of materials, where each operation is performed only once. 

7. No capacity constraints: The problem assumes that there are no capacity constraints on 

the machines or work centers. 

4.3 METHODOLOGIES PROPOSED 

 The FJSSP is attempted in this study by developing two novel metaheuristic techniques 

viz. HFPA and HAdFA. The detailed working methodology is already explained in Chapter 3. 

The objective functions to be minimized are listed in Section 4.2. The parameter settings of 

HFPA and HAdFA are given in Chapter 3. 

In this section the implementation steps and encoding - decoding of HFPA and HAdFA 

to solve FJSSP are explained. 
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4.3.1 Implementation of HAdFA 

HAdFA is the adaptive version of classical firefly Algorithm (FA). Two adaptive strategies are 

proposed for this study. i) In classic FA the fireflies are not updated at each step whereas in the 

adaptive feature the researcher proposed, the fireflies change at every updating step by a new 

update rule. ii) another parameter that changes dynamically is randomization parameter a. 

These adaptive strategies help the algorithm to strike a balance between diversification and 

intensification of fireflies.  

Following are the steps to implement HAdFA for FJSSP: 

1. Initialize Population: The firefly algorithm is a swarm intelligence optimization 

algorithm that uses a swarm of fireflies to search for the optimal solution to a given 

problem. Each firefly represents a candidate solution to the problem, and the swarm of 

fireflies explores the solution space by moving towards brighter and more attractive 

fireflies. The population initialization step in the firefly algorithm involves creating an 

initial set of fireflies, which represents the starting population of candidate solutions. 

The efficacy of the algorithm and the caliber of the solutions produced can be 

significantly influenced by the quality and diversity of the initial population. 

2. Solution Representation: In this work, “real number encoding" is used for encoding 

purposes. Routing and scheduling problems are addressed using a combined strategy 

[144]. Each job's operations are given an integer component, while each machine's 

operation sequence is given a fractional component. An example is used to explain the 

encoding system. Table 4.1 demonstrates the matrix of three jobs and three machines 

along with the processing times for each machine. According to the operation's 

processing times in ascending order, a priority table of machines is created as shown in 

Table 4.2. Priority values will be assigned will be equal to the number of machines. 

Here 3 machines hence priority order will be for 3. And the priorities will be assigned 

according to the ascending order of processing time of the respective machines. When 

the machines have same processing times then the machine with lower number will be 

given the priority. 
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Table 4.1 Example job/machine matrix 
 Position Operation M1 M2 M3 

Job 1 1 O11 5 3 1 

 2 O12 2 4 6 

Job 2 3 O21 3 7 5 

 4 O22 1 3 2 

 5 O23 3 2 4 

Job 3 6 O31 4 1 5 

 7 O32 6 4 5 

 

Table 4.2 Order of priority table 

 
 

Table 4.3 Stochastic illustration of firefly position 

 
Operations O11 O12 O21 O22 O23 O31 O32 

Firefly Locus 2.564 3.321 1.035 2.245 1.234 2.987 3.032 

Level of Priority 2 3 1 2 1 2 3 

Machine Number M2 M3 M1 M3 M2 M1 M1 

 

Table 4.3 depicts the illustration of fireflies when assigned the random integers with 

fractions. The maximum number of integers randomized will be equal to the number of 

machines plus 1 and the least value should be 1. According to the matrix given in Table 4.3, 

O11 has 2.564 hence 2 will be the priority order and the corresponding machine will be 

assigned to it. Same way all operations will be alloted machines. Following the allocation, each 

machine's tasks are carried out in ascending order of fractional values. This was both machine 

assignment and its sequencing are done concurrently.  
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3. Firefly Assessment: The firefly assessment is done through the HAdFA 

implementation. The minimization of objective functions given in Section 4.2 is 

measured. Adaptive strategies are implemented. Update the solutions according to the 

new update rule. Evaluate the best result and quit if termination criteria are achieved.  

 

4.3.2 Implementation of HFPA 

The Flower Pollination Algorithm (FPA) is inspired by the process of pollination in 

flowers. The FPA algorithm simulates this process by representing the solutions to an 

optimization problem as flowers, and the search for the optimal solution as a process of 

pollination. The algorithm generates new solutions by combining the features of two or more 

solutions, similar to the way that pollinators carry pollen from one flower to another. The Lévy 

flight operation used in the FPA algorithm simulates the movement of pollinators between 

flowers, and the local search algorithm Simulated Annealing (SA) represents the process of 

refining the solutions over time. 

The HFPA algorithm is a powerful optimization technique that leverages the natural processes 

of pollination to efficiently search for optimal solutions to complex problems. By mimicking 

the behaviour of pollinators and flowers and hybridizing FPA with SA, the proposed HFPA 

algorithm is able to generate high-quality solutions and quickly converge to an optimal 

solution. 

Steps to implement HFPA is similar to HAdFA. First initialize population, input the 

parameters, Evaluate Objective Function by HFPA, if satisfied quit else continue the iterations. 

The discrete FPA is adapted for this study. The detailed steps can be further studied from Xu 

et al[140].  

Methodological steps of HFPA 

• Initialize a population of solutions randomly. 

• Generate new solutions by combining features of two or more solutions using Lévy 

flight operation. 

• Improve the quality of the solutions through a local search (SA). 

• Select the best solutions for the next generation. 

• Repeat steps 2-4 till termination conditions are met. 
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4.4 INPUT TEST INSTANCES  

 The FJSSP is solved for objectives to minimize makespan, maximum machine 

workload, total workload, total machine idle time and tardiness. 

The following five benchmark test instances are used to validate the proposed HFPA and 

HAdFA. All the data sets are easily accessible from OR library. The comprehensive data 

instances for this problem can be found in https://d-nb.info/1023241773/34 

 

1. Kacem data set. [145] This is the most solved data set in FJSSP for decades. This data 

set consists of 5 problems with various machines and jobs and operations. The data of 

Kacem is given in Appendix Table A 1.1- Table A 1.5 

2.  Dauzère–Pérès data set [DP data set] [146]. This data set has 18 problems in total. 

Each problem has varying jobs (10-20), machines (5-10), operations (15-25).  

3. Brandimarte’s Data set [ BR Data Set] [147] This benchmark problem has 10 problems 

with machines varying from 15-20, jobs varying from 10-20 with 240 operations in 

total. It is the standard benchmark problem for FJSSP.  

4. Du Test Instances and Rajkumar Instance [148], [149] This data set consists of 3 

problems with 8 jobs to 12 machines for 30 operations.  

 

4.5 PROPOSED ALGORITHMS VALIDATION AND DISCUSSIONS 

 Using Matlab R2019b, the proposed HAdFA and HFPA have been developed and 

validated. To show that our algorithms are more effective than other metaheuristics reported in 

the literature, 50 simulation runs were done to ensure the program's stability. In the sections 

that follow, the performance assessments of the algorithms for benchmark examples are 

covered in more detail. This section describes the performance comparison of HAdFA with 

HFPA and other metaheuristics that have been used to explicate the benchmark instances in 

the literature.  

4.5.1 Kacem Data sets (KA data set) 

Performance Comparisons of HFPA with HAdFA 
 
 Table 4.4 shows the performance comparisons of HFPA and HAdFA. The Column 1 

represents the problem type, with ‘n’ jobs and ‘m’ machines and number of operations ‘o’. The 

objectives that have been solved are MSmax, WLmax, WLtotal, Tlate, and Tidle. In every problem, 

HAdFA performs better than HFPA, particularly for large problem cases. HAdFA performs 

better than HFPA owing to the adaptive parameter technique it uses. Although the processing 
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times of the two approaches hardly differ, real-time complex issues can benefit more from 

those few seconds. For each Kacem instance, the best possible solution is depicted as Gantt 

charts in Figures 4.1–4.5. The Gantt chart's ordinate indicates the number of machines, while 

the abscissa indicates for time. In order to make the Gantt chart easier to interpret, each job is 

given a distinct color. Below the relevant job block, processing times for that job is given.  

J 1,1 denotes Job 1, with Operation 1, J 2,3 denotes Job 2, with Operation 3, and so forth. Every 

task represented on a Gantt chart is subject to the same rule. Since HADFA performs better the 

gantt charts are shown for HAdFA technique only. 

Note: The entire performance comparisons for this data set are published as a research article 

by the researcher, Devi et al [138] 

 

Table 4.4 Comparison of HAdFA and HFPA for Performance Metrics 

 

Problem     

n x m x o 

 

n × m 

HAdFA HFPA 

MSmax WLmax WLtotal Tidle Tlate T(s) MSmax WLmax WLtotal Tidle Tlate T(s) 

4 × 5 × 12 10 8 32 11 8 1.1 11 10 32 9 6 1.4 

8 × 8 × 27 14 12 74 22 21 1.1 14 12 77 22 19 1.1 

10 × 7 × 29 11 11 61 10 41 2 11 10 62 7 43 2.5 

10 × 10 × 30 7 6 41 11 20 3 7 6 42 12 30 3 

15 × 10 × 57 11 11 91 20 38 13 11 10 93 25 38 10 
 

 
Figure 4.1 HAdFA KA1 (4 × 5 × 12) MSmax = 12 WLmax = 9 WLtotal = 34 
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Figure 4.2 HAdFA- KA2- (10 × 7 × 29) MSmax = 11 WLmax = 10 WLtotal = 62 

 

 
 

 Figure 4.3 HAdFA -KA-3 (10× 10× 30) MSmax = 7 WLmax = 6 WLtotal = 42  
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Figure 4.4. HAdFA- KA-4 (15 × 10 × 57) MSmax = 11 WLmax = 11 WLtotal = 91 

 
 

Figure 4.5 HAdFA-KA-5 (8 × 8× 27) MSmax = 14 WLmax = 11 WLtotal = 76  
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Performance Comparison of Proposed Algorithms with Other Meta-Heuristics [138] 

 In this section the proposed algorithms are measured up against existing algorithms 

found in the literature. In view of the fact that there are not any previous studies comparing the 

Tlate and Tidle values, to the best of researcher’s knowledge, Table 4.5 presents the comparison 

of HAdFA and HFPA with existing algorithms for MSmax, WLmax, WLtotal only. Results of 

HAdFA and HFPA are compared with DE [150], MOPSO [151], BEG NSGA II [152], 

PSO+RRHC [153], ADCSO [154], and IH PSO [155]. NA indicates the nonavailability of data 

for that particular problem. The comparison has been made with similar multi-objective 

problems and the most recent technique. In the 4 × 5 problem, two new solutions of MSmax = 

10, WLmax = 8, and WLtotal = 32, and MSmax = 12, WLmax = 9, and WLtotal = 34 were found. The 

Gantt chart for the new Pareto is shown in Fig 2. Similarly, in the 8 × 8 problem, two new 

solutions, MSmax = 16, WLmax = 13, and WLtotal = 74 and MSmax = 14, WLmax = 11, and WLtotal 

= 76 were found. For the 10 × 7 problem, MSmax = 12, WLmax = 11, and WLtotal = 62 was found. 

The newly found solutions are highlighted. Table 4.5 also illustrates that HAdFA provides new 

Pareto optimal solutions in addition to giving best optimal solutions. In Table 4.5, the last 

column, T, displays the computational time in ‘s’. The low computational power aids in running 

the program multiple times by changing the parameters as the researcher wants. This advantage 

will be helpful when solving for real time case studies.  

Table 4.5 Experimental Validation for Kacem Data Set with other Metaheuristics. 

 
F1=MSmax; F2= WLmax; F3= WL total 
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4.5.2 Dauzère–Pérès data set [DP data set] 

 Dauzère–Pérès [146] developed this test instance to test his algorithm. This data set 

known as ‘DP data set’ is a standard benchmark problem often used by researchers to validate 

their developed algorithm. Table 4.6 shows the performance assessment of the computational 

results of the DP data of HFPA and HAdFA with the hybrid GA (hGA) proposed by Gao et al. 

[156] Column T in Table 4.6 indicates the average computational time in ‘s’; the last column 

shows the Relative Deviation Measure obtained by comparing the best makespan of hGA, 

HFPA, and HAdFA to the makespan of another algorithm. The best makespan obtained by the 

three algorithms is indicated in bold letters. The results of this DP data set are published as 

research article by the researcher, Devi et al[138]. 

 

Table 4.6 Experimental Results for DP data set 

 
F1=MSmax; F2= WLmax; F3= WL total 

Problem n x m Flex (LB,UB) T T T PI
F1 F2 F3 seconds F1 F2 F3 seconds F1 F2 F3 seconds %

01a 10 x 5 1.13 (2505, 2530) 2518 2505 11 137 102.71 2505 2505 11 137 20.5 2505 2505 11 137  19.8 0.51%
02a 10 x 5 1.69 (2228, 2244) 2231 2231 11 137 140.98 2231 2231 11 137 27.1 2230 2230 11 137 12.55 0.04%
03a 10 x 5 2.56 (2228, 2235) 2229 2229 11 137 106.53 2229 2229 11 137 15.32 2229 2229 11 137 12.45 0.00%
04a 10 x 5 1.13 (2503, 2565) 2515 2503 11 085 95.93 2507 2503 11 085 34.23 2503 2503 11 074 31.03 0.47%
05a 10 x 5 1.69 (2189, 2229) 2217 2217 11 045 143.95 2219 2212 10 986 30.05 2215 2212 10 981 31.85 0.09%
06a 10 x 5 2.56 (2162, 2216) 2196 2196 10 962 111.83 2197 2194 10 893 25.2 2196 2193 10 891 20 0.00%
07a 15 x 8 1.24 (2187, 2408) 2307 2287 16 485 356.32 2298 2190 16 485 40.34 2282 2187 16 485 36.23 1.10%
08a 15 x 8 2.42 (2061, 2093) 2073 2070 16 485 330.08 2069 2069 16 485 39.87 2070 2069 16 485 45.32 0.19%
09a 15 x 8 4.03 (2061, 2074) 2066 2065 16 485 327.49 2066 2066 16 485 12. 05 2065 2065 16 485 10 0.00%
10a 15 x 8 1.24 (2178, 2362) 2315 2263 16 532 345.19 2307 2293 16 487 21.9 2291 2257 16 494 18.08 1.05%
11a 15 x 8 2.42 (2017, 2078) 2071 2069 16 418 360.45 2069 2063 16 228 61.23 2064 2058 16 230 21.33 0.34%
12a 15 x 8 4.03 (1969, 2047) 2030 2030 16 172 329.71 2030 2024 16 065 31 2030 2022 16 065 29.05 0.00%
13a 20 x 10 1.34 (2161, 2302) 2257 2254 21 610 462.85 2257 2244 21 610 22.35 2257 2233 21 610 22 0.00%
14a 20 x 10 2.99 (2161, 2183) 2167 2164 21 610 587.13 2167 2167 21 610 31.05 2167 2164 21 610 28.85 0.00%
15a 20 x 10 5.02 (2161, 2171) 2165 2165 21 610 669.92 2166 2165 21 610 10.05 2165 2165 21 610 19.35 0.00%
16a 20 x 10 1.34 (2148, 2301) 2256 2242 21 593 452.41 2256 2251 21 534 24.89 2255 2243 21 504 18.78 0.04%
17a 20 x 10 2.99 (2088, 2169) 2140 2138 21 307 616.34 2140 2138 21 114 21.3 2138 2138 21 105 9 0.09%
18a 20 x 10 5.02 (2057, 2139) 2127 2127 21 204 667.01 2127 2127 21 009 15.6 2127 2125 21 006 18.9 0.00%

hGA HFPA HAdFA
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Table 4.6 shows that our proposed HFPA and HAdFA exhibit superior performance to hGA. 

New MSmax values are found for almost all problems by HAdFA. Significantly, HAdFA 

achieved well in, more than 60% of the total problems. For Problem 8a, HFPA afforded a better 

MSmax than hGA and HAdFA. The computational time for HFPA and HAdFA was drastically 

reduced compared to hGA. Although the computational time depends on the operating system, 

the speed of our proposed techniques is still superior to hGA. Our proposed techniques take a 

few seconds to run a problem. The test problems were run on Intel Core i7 2.3-GHz CPU by 

Matlab 2019 and above. All the problems were simulated 25 times to assess the constancy of 

the code, and satisfactory results were obtained. Comparing HFPA and HAdFA results for DP 

data, the computational time of HAdFA is almost similar to that of HFPA. HAdFA affords the 

best makespan in the majority of cases. Hence, the HAdFA performs better than the HFPA for 

DP data. The computational results validate that both HFPA and HAdFA perform better than 

hGA in terms of their running time and objective results as well 

Convergence Analysis 

To better illustrate the performance superiority of HAdFA over HFPA, a convergence 

pace curve is shown in Figure 4.6 for DP data instance-10a. The X axis is CPU time in seconds 

and Y axis is Makespan value. The makespan obtained by HFPA is 2307 in 22 seconds and 

HAdFA obtained makespan value of 2291 in 18 seconds. Figure 4.6 clearly depicts the faster 

convergence of HAdFA in few seconds than HFPA to achieve the lower makespan value. This 

analysis holds for maximum test problems. However, for few problems HAdFA performed 

slow in comparison to HFPA, especially when number of operations are more. But obtaining 

best makespan compensates for the little higher computation time.  

 
Figure 4.6. Convergence Graph for DP data-10a instance of the HFPA and HAdFA. 
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4.5.3 Brandimarte’s Test instances (BR data set) 

The input data for BR data set was originally developed by Brandimarte [147]. This 

became a benchmark problem set in later years to validate any newly developed algorithms for 

FJSSP. The BR data set consists of 10 problems with various jobs size and number of machines. 

Total of 240 operations are performed in this data. Combined objective function of 

minimization of makespan, maximum workload, total workload is also attempted for this data 

set. Weighted Sum approach is used for this. Equation 14 gives COF formula. 

Minimize     COF= ω1 x MSmax + ω2 x WL max + ω3 x WL total                                           (14) 

Subject to: 

ω1 + ω2 + ω3 = 1     0 ≤ ω-, ω., ω/ ≤ 1                                                                  (15) 

where COF is the combined objective function. ω1, ω2, ω3 are weights given for the three 

objectives. The problem determines the weight value; if an objective requires more 

consideration, a higher weight value is assigned; otherwise, a lower value is given. The 

weighted sum approach has the benefit of allowing the user to adjust the weights of the 

objectives used in accordance with the problem requirement. Weights assigned are ω1=0.7 

ω2=0.15 ω3=0.15 for this study. As its already proved that HAdFA gives better results than 

HFPA from previous analysis ( Section 4.5.1, 4.5.2) the BR data study is focussed to emphasize 

the significance of the performance of adaptative parameters employed in FA, the results of 

BR data problems are compared with Discrete FA (DFA) proposed by Lunardi et al [157] , 

Adaptive FA and HAdFA. Table 4.7 displays the results of DFA, AdFA and HAdFA. The last 

column in the table indicates the percentage improvement (PI) of HAdFA with AdFA.  

 

Table 4.7 Results of DFA, AdFA and HAdFA with PI 

Problem Technique MSmax WLmax WLtotal COF PI for COF 

MK01 
AdFA 40 36 150 45 

2.22% 
HAdFA 40 36 150 44 

MK02 
AdFA 26 25 136 32.85 

5.79% 
HAdFA 26 21 128 31.05 

MK03 
AdFA 204 159 831 212.05 

0.56% 
HAdFA 204 146 822 210.85 

MK04 
AdFA 60 63 335 74.05 

0.54% 
HAdFA 54 53 324 73.65 

MK05 
AdFA 172 171 669 198.45 

1.58% 
HAdFA 170 170 658 195.35 
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Table 4.7 contd 
 

MK06 
AdFA 55 62 330 79 

2.27% 
HAdFA 53 52 332 77.2 

MK07 
AdFA 136 139 676 159.35 

1.47% 
HAdFA 138 136 648 157 

MK08 
AdFA 523 520 2478 619.05 

0.78% 
HAdFA 523 506 2410 614.25  

MK09 
AdFA 299 311 2251 406 

1.05% 
HAdFA 300 299 2249 401.75 

MK10 
AdFA 211 219 1896 305.35 

1.83% 
HAdFA 201 212 1872 299.85 

 

 From Table 4.7, it can be observed that best makespan values are obtained for large 

scale problems especially MK10 has new makespan value of 201. Though there is not much 

difference in makespan value between DFA with AdFA and HAdFA for small and mid-size 

problems, large scale problems show considerable improvement. Also, the COF shows a 

significant enhancement in all cases. This demonstrates the importance of adaptive parameters 

and local search when introduced to classic FA. It is also observed that there is a significant 

improvement of 2.22%, 5.79%, 1.58%, 2.27%, and 1.47% in COF for MK 01, MK02, MK05, 

MK06, and MK07, respectively. Though MK03, MK04, MK08 and MK09 show a little 

improvement in optimal values, this slight difference will significantly impact the 

computational time.  

  A Wilcoxon signed rank test is adopted to analyze the significant differences in the 

results for each test instance. It’s a non-parametric analysis used for performance comparison 

of two metaheuristics. A confidence level of α = 0.05 is taken. The analysis was done for 

average makespan of 10 Brandimarte instances for 25 runs. The results show that the HAdFA 

performs better than Adaptive FA for 8 instances with p-value < 0.0001 except MK01, MK03 

and MK08 for which p-value is ‘0’ that indicates there is no significant difference in both 

algorithms. For MK07 and MK09 AdFA performs better than HAdFA. 

Performance Comparison of HAdFA with other Techniques [137] 

 Next, the proposed HAdFA is compared with other recent techniques taken from 

literature, and the comparison is shown in Table 4.8. Very few studies have been done to solve 

COF. The proposed HAdFA is compared with Search Method (SM) by Xing et al. [158], HTSA 

by Li et al. [159] , MODE by Balaraju et al. [150], BEG-NSGA-II by Deng et al. [152], and 
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ADCSO by Jiang et al. [154]. The last column gives percentage of algorithm improvement. 

(AI) 

Table 4.8 Comparison of Performance metrics for Brandimarte problems 

 
where Cm- MSmax; Wm- WL max;  Wt- WL total 

AI 0% 0% 0% 11% 1% 13% 1% 0% 3% -0.4
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 The results shown in Table 4.8 indicate that our technique achieves the best output for 

MK01–MK03 and MK10, and it outperforms other approaches, especially in mid-scale 

problems. A maximum improvement of 13% can be seen for MK06. All the problems have 

been run 25 times. From Table 4.8, it can be inferred that proposed algorithm works effectively 

for both Single-objective optimization and multi-objective optimization. There is a substantial 

improvement in both computational times and the optimal results. As the actual optimal 

schedule for Brandimarte instances is very challenging to be represented as Gantt charts, two 

sample Gantt charts are shown in Figure 4.7 and 4.8, and these charts are obtained from HAdFA 

for MK01 and MK06 for make-span. The hatched lines indicate idle time. 

 

 

 
Figure 4.7 Gantt chart of problem MK01 for make-span (MSmax = 40) 

 

 
Figure 4.8 Gantt chart of problem MK06 for make-span (MSmax = 53)  

 

4.5.3 Du Test Instances and Rajkumar Instance 

 In this section three problem instances viz problems with 8jobs-5machines, 12jobs–

5machines, and 8jobs–8machines are utilized to study the efficacy of Adaptive FA and 

HAdFA. The problem sets are originally developed by Du et al., [148] and Rajkumar et al. 

[149]. For performance comparison, the maximum and average results from experiment data 

of 20 distinct runs were gathered. 

The computational results obtained by AdFA and HAdFA are given in Table 4.9. Table 

4.9 also shows the COF obtained for different weights and performance comparison with other 

algorithms, including GA by Du et al. [148], GRASP technique by Rajkumar et al. [149], 

Discrete FA (DFA), and Hybrid Discrete FA (HDFA) by Karthikeyan et al.[160]. The ‘-’ 

indicates that the data is unavailable. The time taken for computation is given in seconds. It is 
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validated that the proposed AdFA and HAdFA perform superiorly to the other algorithms in 

reference to the results shown in Table 4.9. The computational time has been reduced 

drastically in comparison to other algorithms. The computational time of AdFA and HAdFA 

has significantly less difference. There is a significant improvement in COF values. Figure  4.9, 

4.10 and 4.11 depicts the Gantt chart of solutions. J (11), J (12), and so on represent the job 

number and operation in Gantt charts. Hatched lines show the machine’s idle time. 

 

 
 

Figure 4.9 Gantt chart of problem 8×5 with 20 operations 
 

 

 

Figure 4.10 Gantt chart of problem 12×5 with 30 operations 

 

 
 

Figure 4.11 Gantt chart of problem 8×8 with 27 operations 
 

 



 78 

Table 4.9 Results of performance metrics for Du and Rajkumar Test instances 

Problem     8x5x20 12x5x30 8x8x27 

GA 

MSmax   27 33 - 

WLmax   27 33 - 

WLtotal   109 145 - 

COF 

F(0.5-0.3-0.2) 43.4  55.4 - 

F(0.3-0.2-0.5) 68  89 - 

F(0.2-0.3-0.5) 51.6 66.6 - 

Time(s)   - - - 

GRASP 

MSmax   24 33 16 

WLmax   24 33 13 

WLtotal   101 138 73 

COF 

F(0.5-0.3-0.2) 39.4 54 26.5 

F(0.3-0.2-0.5) 62.5 85.5 43.9 

F(0.2-0.3-0.5) 47.1 64.5 31.6 

Time(s)   NA NA - 

DFA 

MSmax   28 34 16 

WLmax   25 32 13 

WLtotal   102 139 73 

COF 

F(0.5-0.3-0.2) 41.9 54.4 26.5 

F(0.3-0.2-0.5) 64.4 86.1 43.9 

F(0.2-0.3-0.5) 49.7 64.5 31.6 

Time(s)   0.18 0.37 0.41 

HDFA 

MSmax   24 31 15 

WLmax   24 30 12 

WLtotal   101 140 75 

COF 

F(0.5-0.3-0.2) 39.4 52.5 26.1 

F(0.3-0.2-0.5) 62.5 85.3 44.4 

F(0.2-0.3-0.5) 47.1 63.2 31.5 

Time(s)   0.45 0.93 0.85 

AdFA 

MSmax   24 31 15 

WLmax   24 30 12 

WLtotal   100 140 75 

COF 

F(0.5-0.3-0.2) 39.4 52.8 26.5 

F(0.3-0.2-0.5) 62.5 85.1 44 

F(0.2-0.3-0.5) 47 64.1 31.5 

Time(s)   0.28 0.4 0.45 

HAdFA 

MSmax   22 30 14 

WLmax   18 30 12 

WLtotal   97 140 75 

COF 

F(0.5-0.3-0.2) 39.4 51.5 25.85 

F(0.3-0.2-0.5) 60 85 43.2 

F(0.2-0.3-0.5) 45 62.9 31.5 

Time(s)   0.25 0.39 0.4 
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4.6 SUMMARY 

 Flexible job shop scheduling problem (FJSSP) with an aim to solve multi-objectives of 

minimizing makespan, maximum workload, total workload, total idle time, total tardiness is 

performed by the proposed HFPA and HAdFA. Four benchmark instances viz; Kacem 

intances, Brandimarte instances, Dauzère–Pérès, Du and Rajkumar instances are utilized to 

validate the proposed algorithms efficiency. Total of 36 problems with varying job and 

machine size are evaluated. After detailed analysis it is concluded that HAdFA performs better 

than HFPA. It is also demonstrated that adaptive strategies employed in FA helped HAdFA to 

achieve best optimal solutions. Future scope of this investigation is detailed in Chapter 7. The 

next Chapter, reports the study and findings of an FMS. 
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CHAPTER 5  

COMBINED OBJECTIVE OPTIMIZATION OF FLEXIBLE MANUFACTURING 

SYSTEM SCHEDULING 

 

5.1 INTRODUCTION 

 Flexible Manufacturing Systems (FMS) have been around since the 1960s and have 

become increasingly important in the manufacturing industry, especially in the current era of 

Industry 4.0. An FMS is a highly automated and computer-controlled system that is designed 

to produce a variety of products with minimal setup time and changeovers. FMS has become 

an essential part of modern manufacturing because it allows for flexibility in the production 

process, which is crucial in meeting the demands of consumers in a rapidly changing 

marketplace. FMS can accommodate a wide range of product designs and specifications, 

allowing manufacturers to produce customized and personalized products quickly and 

efficiently. 

Optimal scheduling is crucial to the success of Flexible Manufacturing Systems (FMS) 

as it directly impacts the system's efficiency, productivity, and profitability. FMS are designed 

to produce a variety of products with minimal setup time and changeovers, and optimal 

scheduling helps to achieve this objective by ensuring that the machines are used in the most 

efficient manner possible. This results in increased productivity, reduced lead time, increased 

throughput, improved quality, and reduced costs. By optimizing scheduling, FMS can remain 

competitive in an increasingly challenging manufacturing environment. 

This chapter details about the optimal scheduling of FMS taken from Jerald et al [161] 

which comprises of two test instances for 43 jobs 16 machines and 80 jobs and 16 machines. 

The objectives of the research are to combinedly optimize both machine idle time and the total 

penalty cost. Three meta heuristics viz., GAPSOTS, HFPA, HAdFA are developed to achieve 

combined optimal scheduling of proposed FMS. The results and performance comparison are 

given in following subsequent sections. 

 

5.2 DESCRIPTION OF FMS TEST INSTANCES 

 The following are the problem context, premise, and goal of the current work: 

Figure 5.1 shows the set-up of FMS taken for this study. A total of five Flexible Machine Cells 

(FMC) is there and each FMC has dedicated CNC machines which is shown in Table 5.1. The 

FMCs also has a tool magazine which is self-sufficient, An ATC to change the tools 

automatically, and an automatic pallet changer. There will be specified number of robots to 
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move the materials in between the machines during operations. There is also a loading and 

unloading station. The unfinished products are stored in automatic storage and retrieval system 

(AS/RS). There are two Automated Guided Vehicles (AGVs) which connects all FMCs and 

helps in moving finished/ semi-finished products among the cells. 

 

 
Figure 5.1 FMS configuration 

 

Table 5.1 Details of FMC and its Dedicated Machines 

FMC number Machine number 

1 M/C 7, M/C 10 

2 M/C 4, M/C 15 

3 M/C 1, M/C 11, M/C 12, M/C 13 

4 M/C 3, M/C 14 

5 M/C 2, M/C 5, M/C 6, M/C 8, M/C 9, M/C16 

 

 Following are the assumptions made for this work 

1. The tool magazine's tool combinations can be utilized to create 40 to 80 different kinds 

of products. 

2. Each product type or variety has its own processing order, batch size, deadline, and fine 

for missing the deadline.  

3. A given machine has a processing time for each process in the processing process. 



 82 

4. A randomly generated product mix (as given in Table 5.2) reflects the demand of the 

market at the time. 

The FMS optimal scheduling is done for Combined Objective Function (COF) which 

minimizes the idle time of a machine and total penalty cost.  

𝐶𝑂𝐹 = E𝜔∗ .)"/0	234/0"5	6)7"(.26
9/:&;<;	23,;&77&=03	234/0"5

+ 𝜔∗ .)"/0	9/->&43	?@03	.&;3	(.9?)
	.)"/0	30/B73@	"&;3

G                        (5.1) 

 

Where w* is weight factor and 0.5 is its value.  

Table 5.2 Product mix for 43 jobs 16 machines 
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5.3 INPUT DATA FOR FMS SCHEDULING 

 Three new novel meta- heuristic are proposed in this study to perform combined 

optimal scheduling of FMS. The working procedure of GAPSOTS, HFPA and HAdFA are 

already explained in detail Chapter 3- Soft Computing Techniques. Four benchmark test 

instances are taken from Jerald et al [161]  and Nidhish [162] for studying the combined 

objective function. Test instance 1 has 10 jobs x 8 machines, Test instance two has 20 jobs x 

15 machines, Test instance 3 has 43 jobs and 16 machines. Table 5.2 and 5.3 shows the product 

mix along with the processing machine time, due dates, penalty cost including the batch sizes.  

  

Table 5.3 Product Mix for 80 jobs and 16 machines 
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5.4 RESULTS AND DISCUSSIONS 

The proposed algorithms GAPSOTS, HFPA and HAdFA are implemented to minimize the 

before said objectives combinedly. The performance comparisons are shown in Table 5.4 of 

three proposed algorithms with existing Particle Swarm Optimization (PSO), Memetic 

Algorithm (MA), Simulated Annealing (SA), Genetic algorithm (GA) [161], [163]. Among the 

three algorithms HFPA and HAdFA tend to optimize better than GAPSOTS. However, the 

GAPSOTS also exhibit near optimal COF. There is meagre difference in achieving optimal 

values by the proposed techniques. Nevertheless, HAdFA and HFPA again proves to yield 

better solutions than other algorithms. Bar chart comparisons are shown in Figure 5.2. 
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Table 5.4 Performance Comparison of Algorithms 
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Figure 5.2 Bar chart comparisons of Algorithms 

 

5.5 SUMMARY 

 This chapter detailed the Combined Objective Optimization (COF) for an FMS setup 

generated by Jerald et al. Four test instances with variable jobs ranging from 10 to 80 and 

machines ranging from 8 to 16 are studied and the performances are analyzed. The COF is to 

minimize machine idle time and total penalty cost combinedly. The test instances are tested by 

proposed heuristics GAPSOTS, HFPA and HAdFA. For all four test instances HAdFA yielded 

the best optimal value closely followed by HFPA and GAPSOTS. This research demonstrates 

that the methods created here may be effectively customized to work with any FMS that has 

numerous components and machines that are subject to multiple objective functions. Future 

components will include load/unloading stations' accessibility and handling durations, robots, 

and AGVs. 

 

 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10J x 8M 20J X 15M 43J X 16M 80J X 16M

CO
F

TEST INSTANCES

Genetic Algorithm

Simulated Annealing

Memetic Algorithm

Particle Swarm Optimisation

GAPSOTS

HFPA

HADFA



 87 

CHAPTER 6 

CONCURRENT SCHEDULING OF MACHINES AND AUTOMATIC GUIDED 

VEHICLES  

6.1 INTRODUCTION  

 This chapter details about the concurrent scheduling of machines and AGVs for 

different FMS layouts. FMS scheduling problem considering the elements such as tools and 

AGVs are very complex and hence powerful evolutionary algorithms are essential for solving 

these problems.  

Simultaneous scheduling of machines and AGVs is a complex optimization problem 

that involves coordinating the utilization of resources within a manufacturing or warehousing 

environment. The goal is to find the optimal schedule for both machines and AGVs in order to 

maximize production efficiency, reduce idle time, and minimize overall costs. This requires 

taking into account a variety of factors such as machine and AGV capacities, production 

requirements, available raw materials, and the need to ensure that all tasks are completed within 

specified time windows. To achieve this, sophisticated algorithms are used to generate 

schedules that meet these requirements while ensuring that the system is working at maximum 

efficiency. The scheduling of machines and AGVs concurretly is a critical aspect of modern 

manufacturing and warehousing operations and is essential for achieving high levels of 

productivity, quality, and customer satisfaction 

Both, machine scheduling and AGV scheduling are interrelated problems. An FMS will 

be able to perform all of the tasks assigned in shortest time span when AGVs and machines are 

scheduled together. Scheduling of AGVs play a keyrole in performance improvement of a 

FMS. 

Scheduling optimization is done to optimise certain objectives which are decided upon the 

customer needs and requirements, market circumstances, customized needs of the customer. In 

order to solve the concurrent scheduling of AGVs and machines , the researcher proposes three 

new novel meta-heuristics named GAPSOTS, HADFA and HFPA for single objective of 

minimizing makespan and for multi objectives to minimize makespan, mean tardiness and 

mean flow time.  The adequacy and effectiveness of the proposed approaches can be assessed 

by comparing the outcomes with those of existing approaches found in the literature.  
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Following are the assumptions considered in this study  

•   A machine cannot be operated for more than one operation at once. 

•   Each task consists of a number of operations, each with a specific order of priority. 

•  Transport timings for AGVs and processing times for operations are known.  

•  Recharging time of AGVs are negligible.  

•  Deadlock in operating AGVs is not taken into account. 

•  It is presumed that all machines, tools, jobs and AGVs are available initially.  

•  Loading and unloading times of AGVs are not considered.  

•  Pre-emption of jobs, tools and vehicles are not allowed  

•  Tool set up time and transfer times are not considered.  

6.2 METHODOLOGICAL STEPS TO SCHEDULE MACHINES AND AGVS 

SIMULTANEOUSLY 

Step1: The job sets, travel time matrix of AGVs, solution vectors are to be entered initially. 

Step2: Proposed algorithm parameters are read following each other. 

Step2a: Assign positions to jobs, operations, machines and AGVs. 

Step3: Implement proposed meta-heuristic. 

 Step 3.1: population initialization 

 Step 3.2: Evaluate each vector for objective criteria. 

Step4: When an operation of a job is completed, any available AGV is called upon to transfer 

the job to next location as per job’s schedule. 

Step5: The job will wait in the buffer if the assigned machine is busy, and it gets loaded when 

the machine becomes free. 

Step6: Start the operation on the machine. 

Step7: Check all operation are completed on the particular job, if not start from step 4. 

Step8: Compute the objective function values upon completion of all operations. 
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6.3 MINIMIZING MAKESPAN – SINGLE OBJECTIVE APPROACH 

In this section, Machines and AGVs are scheduled concurrently for different FMS layouts 

with an objective to minimize makespan. The input data , layouts of FMS are detailed 

subsequently in this section. 

1. The first objective function minimizing makespan is calculated by following equations  

𝑂!( = 𝑇!( + 𝑃!(                   (4.1) 

where Ojk is completion time required for an operation; Tjk is travelling time for 

AGVs; Pjk is processing time of an operation; kth operation for jth job. 

\ Time taken for a job to complete is   𝐶! = ∑ 𝑂!(4
!C$ 	              (4.2) 

Makespan  = Max ( C1 , C2, C3 …. Cn)                (4.3) 

6.3.1 FMS Setup Considered in this Study 

The FMS considered in this work has four machines having computer numerical 

machines (CNCs), each CNC has  separate tool magazine which is self-sufficient, one 

automatic tool changer (ATC) and one automatic pallet changer (APC). Four different layouts 

are considered for optimal scheduling of machines and AGVs and it is shown in Figure 6.1.the 

travelling distances are shown in the Figure 6.1. AGV move with a speed of 40 m/min. Travel 

time matrix is given in Table 6.1 including loading and unloading. In Figure 6.1, L/U refers 

Load Unload Stations ; and M1,M2......refers Machines in order. The job set data can be found 

in Bilge and Ulusoy [164] 
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Figure 6.1 Different Layouts of FMS  

 

Total of 40 problems are developed with the help of job set data and travel time matrix 

(TTM). For further calculation a second set of data is developed by having processing time 

doubled or tripled. In both the cases TTM is halved. Therefore in total 82 problems are 

considered in this study to minimize makespan. Further details can be acquired from Bilge and 

Ulusoy [164]. In this study, two conditions are considered and defined as travelling time/ 

processing time (t/p ratio).  

Case i) First data set formed with actual processing and travel time and t/p > 0.25  ( 40 

problems in total) 

Case ii) Second data set formed with doubled or tripled processing time and half travel 

time and t/p < 0.25. (42 problems in total) 
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Table 6.1 Travel Time Matrix 
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6.4 MULTI-OBJECTIVE APPROACH 

In addition, to the objective minimizing makespan, two more objectives are solved for 

scheduling machines and AGVs simultaneously . 

1. The second objective function,  mean flowtime (Fj) is the difference between the 

completion time and the arrival time of the job 'j'  and is given by Equation 4.5. 

Fj = Cj-Aj                          (4.4) 

where Cj is completion time of job ‘j’ and Aj is time taken for arrival of job ‘j’ 

\ Mean Flow time = $
4
∑ 𝐹!4
!C$                    (4.5) 

2. The third objective function mean tardiness is given by Equation 4.6. Tardiness is the 

difference between completion time and due date. 

Mean Tardiness = $
4
∑ 𝑇!4
!C$                   (4.6) 

where  Tj is tardiness 

 
Figure 6.2 Different FMS layout 

 

6.4.1 Input Data of FMS setup considered 

The researcher tested the standard job shop benchmark instances for different FMS layouts. 

The benchmark data is available in https://github.com/tamy0612/JSPLIB/tree/master/instances 

The testing was done on selected test instances and the layouts used are shown in Figure 6.2.and 
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the TTM are given in Table 6.2. Due dates are assumed for the test instances along with two 

AGVs and it is expected that each work would take an average amount of time to complete. 

Table 6.2 Travel Time matrices (TTM) 
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6.5 RESULTS AND DISCUSSIONS FOR SINGLE OBJECTIVE 

The algorithms proposed in this study ( GAPSOTS, HAdFA and HFPA) are tested on 

82 data sets taken from Bilge and Ulusoy. Single objective to minimize makespan when both 

machines and AGVs are scheduled simultaneously is considered for this data set. Along with 

findings from previously used approaches, the outcomes of the proposed methods are reported 

in the following Sub Sections. 

6.5.1 Results of Case (i) when t/p > 0.25 

This section details the results of proposed GAPSOTS, HAdFA and HFPA compared with 

techniques found in literature. Table 6.3, 6.4, 6.5, 6.6 depicts the comparison with exiting 

techniques for Layout 1, Layout 2, Layout 3, Layout 4. The minimum makespan obtained is 

highlighted in bold. The bar charts from Figure 6.3-6.7 depicts the same results for the four 

layouts.  

Table 6.3 Results Comparison for Layout 1 when t/p > 0.25 

 
JOB 

NO: 
STW 
[164] 

UGA 
[165] 

AGA 
[166] 

PGA 
[167] 

SALS 
[168] 

FPA 
[169] 

GAPSOTS HFPA HADFA 

1 96 96 96 96 96 96 96 96 96 

2 105 104 102 100 102 100 105 100 102 

3 105 105 99 99 99 99 99 99 85 

4 118 116 112 112 112 112 116 112 85 

5 89 87 87 87 87 87 87 85 80 

6 120 121 118 118 118 118 119 115 114 

7 119 118 115 111 111 111 118 110 98 

8 161 152 161 161 161 151 152 150 146 

9 120 117 118 116 116 116 118 118 115 

10 153 150 147 147 147 150 150 150 146 
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Figure 6.3 Results Comparison for Layout 1 when t/p > 0.25 

 

From Table 6.3 it is inferred that HAdFA gives the best performance when compared to other 

proposed techniques and existing techniques from literature. HAdFA outperforms other 

techniques for 9 problems. For job set 2, HFPA has given minimum makespan. HFPA 

performed better than GAPSOTS for all job sets. GAPSOTS either gave similar results or 

worse results to existing values. 

  

Table 6.4 Results Comparison for Layout 2 when t/p > 0.25 
JOB NO: STW UGA AGA PGA SALS FPA GAPSOTS HFPA HADFA 

1 82 82 82 82 82 82 82 82 82 

2 80 76 76 76 76 76 85 76 70 

3 88 85 85 85 85 85 85 85 85 

4 93 88 88 87 87 87 88 87 87 

5 69 69 69 69 69 69 76 69 69 

6 100 98 98 98 98 98 98 98 93 

7 90 85 79 79 79 79 79 79 79 

8 151 142 151 151 151 141 151 142 141 

9 104 102 104 102 102 102 102 102 99 

10 139 137 136 135 135 135 137 135 131 
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Figure 6.4 Results Comparison for Layout 2 when t/p > 0.25 

 

 

From Table 6.4, it is deduced that all proposed algorithms are unable to give best results for all 

job sets. GAPSOTS gave slightly worse solution for Job set 2 and Job set 5. HFPA is unable 

to produce any better values than existing values. HAdFA is able to give new makespan values 

for Job set 2, 6, 8,9 and 10. HAdFA is consistently performing better than algorithms. 

 

Table 6.5 Results Comparison for Layout 3 when t/p > 0.25 
JOB 

NO: 

STW UGA AGA PGA SALS FPA GAPSOTS HFPA HADFA 

1 84 84 84 84 84 84 84 84 82 

2 86 86 86 86 86 86 98 86 85 

3 86 86 86 86 86 86 86 86 78 

4 95 91 89 89 89 89 89 89 69 

5 76 75 74 74 74 74 74 74 72 

6 104 104 104 103 103 103 103 103 101 

7 91 88 86 83 83 83 94 82 80 

8 153 143 153 153 153 143 143 137 137 

9 110 105 106 105 105 105 105 105 105 

10 143 143 141 139 138 139 149 139 119 
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Figure 6.5 Results Comparison for Layout 3 when t/p > 0.25 

 

It can be observed from Table 6.5, that for Layout 3 the proposed algorithms 

GAPSOTS,HFPA, HAdFA gives better results than existing algorithms for most of the job 

sets. Though GAPSOTS provides slightly worse results for Job set 2, 7 and 10 this only proves 

that evolution based algorithms are unable to procure best optimal solutions. HFPA  gives best 

makespan than other existing methods for Job set 7, 8 and 10. HAdFA is the one which out 

performs other methodologies for all  job sets except no.9 where the makespan is similar to 

PGA and SALS. 

Table 6.6 and Figure 6.6. shows the performance comparison of Layout 4. It can be 

clearly observed HAdFA again outperforms other optimization techniques. New makespan 

values are found for all job sets. HFPA performed better than GAPSOTS for job set 4,6,7,8,9 

and 10. GAPSOTS gives similar results of existing methodologies except Job set 6 where it 

gives slightly worse results. 
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Table 6.6 Results Comparison for Layout 4 when t/p > 0.25 
JOB 

NO: 

STW UGA AGA PGA SALS FPA GAPSOTS HFPA HADFA 

1 108 103 103 103 103 103 103 103 102 

2 116 113 108 108 108 108 108 108 106 

3 116 113 111 111 111 111 111 111 84 

4 126 126 126 126 121 126 126 121 84 

5 99 97 96 96 96 96 96 96 86 

6 120 123 120 120 120 120 124 120 101 

7 136 128 127 126 126 126 127 126 112 

8 163 163 163 163 163 153 163 151 150 

9 125 123 122 122 120 122 123 120 109 

10 171 164 159 158 159 158 165 157 119 

 

 

 
Figure 6.6 Results Comparison for Layout 4 when t/p > 0.25 
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6.5.2 Results of Case (ii) for t/p < 0.25 

Table 6.7,6.8,6.9,6.10 and Figure 6.7,6.8,6.9,6.10 represents the Case (ii) where the 

travelling time to processing ratio is lesser than 0.25. (t/p < 0.25) for all four layouts. 

 

Table 6.7 Results Comparison for Layout 1 when t/p < 0.25 
JOB 

NO: 

STW UGA AGA PGA TS SPMA FPA GAPSOTS HFPA HADFA 

1 126 126 126 126 126 126 126 126 126 

2 148 148 148 148 148 148 148 148 148 

3 150 148 150 150 150 150 150 150 143 

4 121 119 119 119 119 119 119 119 116 

5 102 102 102 102 102 102 102 102 102 

6 186 186 186 186 186 186 186 186 173 

7 137 137 137 137 137 137 137 137 137 

8 292 271 292 292 292 272 272 272 271 

9 176 176 176 176 176 176 176 176 161 

10 238 236 238 238 238 238 238 238 224 

 

 
Figure 6.7 Results Comparison for Layout 1 when t/p < 0.25 

  

Table 6.7 and Figure 6.7 illustrates the performance comparison of the proposed 

algorithms with existing algorithms. All three algorithms have achieved lower bound makespan 

values [164] for 4 problems out of 10 job sets. HFPA and GAPSOTS have executed similar 

makespan values. HAdFA has given new makespan values for job sets 3,4,6,8,9 and 10.  
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Table 6.8 Results Comparison for Layout 2 when t/p < 0.25 
JOB 

NO: 
STW UGA AGA PGA 

TS 

SPMA 
FPA GAPSOTS HFPA HADFA 

1 123 123 123 123 123 123 123 123 123 

2 143 143 143 143 143 143 143 143 143 

3 148 145 145 145 145 145 145 145 145 

4 116 114 114 114 114 114 114 114 114 

5 100 100 100 100 100 100 100 100 100 

6 181 181 181 181 181 181 181 181 181 

7 136 136 136 136 136 136 136 136 136 

8 287 268 287 287 287 267 267 267 267 

9 174 173 173 173 173 173 173 173 156 

10 236 238 236 236 236 236 236 236 222 

 

 

 
Figure 6.8 Results Comparison for Layout 2 when t/p < 0.25 

 

The Table 6.8 illustrates that the proposed GAPSOTS, HFPA and HAdFA are able to 

achieve best makespan values for all the cases. HAdFA has performed much better than existing 

algorithms and gave new low bound makespan values of 156 and 222 for job nine and ten. 

Figure 6.8 depicts the same results in the form of bar chart.  
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Table 6.9 Results Comparison for Layout 3 when t/p < 0.25 
JOB 

NO: 

STW UGA AGA PGA TS SPMA FPA GAPSOTS HFPA HADFA 

1 122 122 122 122 122 122 122 122 122 

2 146 146 146 146 146 146 146 146 146 

3 146 146 146 146 146 146 146 146 141 

4 116 114 114 114 114 114 114 114 114 

5 99 99 99 99 99 99 99 99 99 

6 184 182 182 182 182 182 182 182 165 

7 137 137 137 137 137 137 137 137 137 

8 288 268 270 268 288 268 268 268 268 

9 176 174 174 174 174 174 174 174 174 

10 237 237 237 237 237 237 237 237 237 

 

 

 
Figure 6.9 Results Comparison for Layout 3 when t/p < 0.25 

 

From Table 6.9 it can be observed that all job sets have achieved same makespan values except 

job 3 of HAdFA, which has given new makespan value of 141 and it has been highlighted in 

bold numbers. GAPSOTS and HFPA gave similar results  for all job sets. 
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Table 6.10 Results Comparison for Layout 4 when t/p < 0.25 
JOB 

NO: 
STW UGA AGA PGA TS SPMA FPA GAPSOTS HFPA HADFA 

1D 124 124 124 124 124 124 124 124 124 

3D 151 151 151 151 151 151 151 151 151 

6D 185 184 184 184 184 184 184 184 184 

7D 138 137 137 137 137 137 137 137 137 

8D 293 273 293 293 293 273 293 273 272 

9D 177 175 175 175 175 175 175 175 159 

10D 240 244 240 240 240 240 243 240 240 

2T 217 217 217 217 217 217 217 217 217 

3T 221 221 221 221 221 221 221 221 221 

4T 179 172 172 172 172 172 172 172 171 

5T 154 148 148 148 148 148 148 148 148 

7T 203 203 203 203 203 203 203 203 203 

  D represents the process time are doubled while travel times are halved 
  T represents the process time are tripled while travel times are halved 
 

 

 
Figure 6.10 Results Comparison for Layout 4 when t/p < 0.25 

 

The Layout 4 for ten job sets achieves same makespan for HAdFA like existing 
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features integrated in classic Firefly Algorithm helps the problem to achieve new makespan 

results. GAPSOTS and HFPA gave similar results to that of existing techniques.  

 

6.5.3 Comparison Analysis Among Proposed Algorithms 

Case (i)  

Table 6.11 compares the makespans of the three suggested techniques: GAPSOTS, HFPA and 

HAdFA for simultaneously scheduling machines, jobs, and AGVs for Case i for all layouts. 

Bold letters indicate the ideal values. Figure 6.11 displays the same data in a bar chart. From 

Table 6.11, it can be observed that HAdFA has given best makespan for 30 problems out of 40 

for case (i). HFPA has given best makespan for one problem- Job set 2/ Layout 1 and also it 

has achieved similar makespan like HAdFA for 6 problems. GAPSOTS has not achieved any 

best makespan for any of the problems but has given similar makespan as that of HFPA for 

most of the problems. From this observation we can conclude that HAdFA gives the best 

makespan among the proposed algorithms. 

 

Table 6.11 Makespan obtained by proposed algorithms for case (i) 

 
Job 

Set 
Layout 1 Layout 2 Layout 3 Layout 4 

 GAPSOTS HFPA HADFA GAPSOTS HFPA HADFA GAPSOTS HFPA HADFA GAPSOTS HFPA HADFA 

1 96 96 96 82 82 82 84 84 82 103 103 102 

2 105 100 102 85 76 70 98 86 85 108 108 106 

3 99 99 85 85 85 85 86 86 78 111 111 84 

4 116 116 85 88 87 87 89 89 69 126 121 84 

5 87 85 80 76 69 69 74 74 72 96 96 86 

6 119 115 114 98 98 93 103 103 101 124 120 101 

7 118 110 98 79 79 79 94 82 80 127 126 112 

8 152 150 146 151 142 141 143 137 137 163 151 150 

9 118 118 115 102 102 99 105 105 105 123 120 109 

10 150 150 146 137 135 131 149 139 119 165 157 119 
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 Figure 6.11 Makespan obtained by proposed algorithms for case i 

Case (ii) 

Table 6.12 compares the make-spans of the three suggested techniques: GAPSOTS, HFPA and 

HAdFA for simultaneously scheduling machines, jobs, and AGVs for Case ii for all layouts. 

Bold letters indicate the ideal values. Figure 6.12 displays the same data in a bar chart. From 

Table 6.12, it can be observed that HAdFA has given best makespan for 10 problems out of 40 

for case (ii). HFPA and GAPSOTS have given similar results for all the problems. For case ii, 

HAdFA was unable to give best makespan for most of the problems.   

 

Table 6.12 Makespan obtained by proposed algorithms for case (ii) 

Job Set Layout 1 Layout 2 Layout 3 

 GAPSOTS HFPA HADFA GAPSOTS HFPA HADFA GAPSOTS HFPA HADFA 

1 126 126 126 123 123 123 122 122 122 

2 148 148 148 143 143 143 146 146 146 

3 150 150 143 145 145 145 146 146 141 

4 119 119 116 114 114 114 114 114 114 

5 102 102 102 100 100 100 99 99 99 

6 186 186 173 181 181 181 182 182 165 
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Table 6.12 contd 
 

7 137 137 137 136 136 136 137 137 137 

8 272 272 271 267 267 267 268 268 268 

9 176 176 161 173 173 156 174 174 174 

10 238 238 224 236 236 222 237 237 237 

 
 

 

 

  

  
Figure 6.12 Makespan obtained by proposed algorithms for case ii 
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2T 217 217 217 
3T 221 221 221 
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6.6 RESULTS AND DISCUSSIONS FOR MULTI OBJECTIVE 

This section details about the performance comparison of HAdFA with HFPA for 5 test 

instances for simultaneous scheduling of machines and AGVs. Five different layouts (given in 

Figure 6.2 ) are chosen for this study. The aim is to minimize makespan , mean flowtime, mean 

tardiness. The researcher implemented HAdFA and HFPA for this study as its already proven 

that HFPA gives better results than proposed GAPSOTS.  As there are no existing results for 

these job sets, comparison analysis with other techniques could not be done. The details of the 

test instances studied are given from Table 6.13 to 6.17.  

 

Table 6.13 Test Instance 1 

 
Table 6.14 Test Instance 2 

 
Table 6.15 Test Instance 3 

 



 107 

Table 6.16 Test Instance 4 

 
Table 6.17 Test Instance 5 

 
Table 6.18 and Figure 6.13 depicts the results of performance metrics achieved by 

HAdFA and HFPA. The best results are given in bold. 

 

Table 6.18 Performance outputs of HAdFA for multi-objectives 

 Makespan Mean Flow Time Mean Tardiness 

 HADFA HFPA HADFA HFPA HADFA HFPA 

TI 1 96 96 78.8 82 7 8.5 

TI 2 344 392 257.1 262 101.4 104 

TI 3 950.5 971 763 809 277.34 276 

TI 4 403.2 408 290.02 291 98 99 

TI 5 1162 1180 980 995 389 390 
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Figure 6.13 Performance outputs of HAdFA for multi-objectives 

            

  From Table 6.18 and Figure 6.13 it is observed that HAdFA gives superior results than HFPA 

which demonstrates that HAdFA is consistently achieving best performance metrics 

irrespective of  problem sizes. The results also shows that multi-objective optimization  can be 

accomplished by HAdFA effortlessly. HAdFA has given best results for all problems except 

TI 3 mean tardiness where HFPA has given best mean tardiness for that problem. 

 

6.7 CONVERGENCE ANALYSIS FOR GAPSOTS, HAdFA AND HFPA 

 The convergence graphs of GAPSOTS, HFPA and HAdFA are displayed in Figure 

6.14 for makespan of Job set 4, Layout 4. Table 6.19 demonstrates the time taken to converge, 

the iteration value when best makespan is obtained. The HAdFA takes more time to converge 

due to the adaptive features incorporated. HFPA converges earlier than GAPSOTS and 

HAdFA. GAPSOTS takes more time to converge but has taken a smaller number of iterations 

to get optimal value. This is because one iteration of GAPSOTS corresponds to 3 phases. This 

leads to the conclusion that evolutionary algorithms are complicated and time consuming 

process. The best makespan is achieved by HAdFA irrespective of extra time to converge and 

it is due to the adaptive features of HAdFA.  
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Table 6.19 Convergence Comparison of Proposed Algorithms 

Algorithm Time (s) Best Makespan 

Iteration number 

when the best value 

is achieved 

GAPSOTS 2.216734 126 138 

HFPA 0.156754 121 240 

HADFA 0.245436 84 278 

 

 

 

 
 

Figure 6.14 Convergence Comparison of Proposed Algorithms 
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6.8 SUMMARY: 

               Simultaneous scheduling of Machines and AGVs is carried out for  single objective 

and multi objective. Minimization of makespan is considered as single objective and was 

solved by GAPSOTS, HFPA AND HAdFA for 82 problem sets proposed by Bilge and Ulusoy 

for two cases viz. t/p > 0.25; t/p < 0.25. A detailed analysis was performed and it is 

demonstrated that HAdFA outperforms GAPSOTS, HFPA and other existing algorithms. For 

multi objective optimisation, mean flow time and mean tardiness were considered in addition 

to makespan. They were tested for selective five test instances. For multi objective optimization 

also HAdFA proved to be more efficient in achieving best output results in comparison to other 

algorithms. The problem can be further expanded by assuming that each tool type has a single 

copy that is shared among all the machines and kept in a central tool magazine. 
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CHAPTER 7 

MULTI OBJECTIVE SCHEDULING OF A REAL-LIFE CASE STUDY 

 

7.1 INTRODUCTION 

This chapter discusses a case study that addresses the problem of Partial-flexible job 

scheduling in an Lube Oil Blending Plant. A lubricating oil blending plant is a facility designed 

to produce a variety of lubricating oils by blending various base oils and additives according 

to specific formulations. Lubricating oils are essential for the proper functioning of machinery 

and equipment in a range of industries, including automotive, manufacturing, and aviation. The 

lubricants used in these industries must be of the highest quality to ensure optimal performance 

and minimize wear and tear on equipment. The blending process involves mixing the base oils 

with carefully selected additives, such as detergents, anti-wear agents, and viscosity modifiers, 

to produce lubricants that meet the specific needs of each application. The blending process 

must be carefully controlled to ensure consistency and quality, and the final products are 

subjected to rigorous testing to ensure they meet the required specifications. A lube oil blending 

plant is a critical part of the lubricants industry, playing a key role in the production of high-

quality lubricating oils that keep machinery and equipment running smoothly and efficiently. 

 

Lube oil blending can be identified as a partial flexible job shop problem as some of 

the machines may be capable of performing multiple operations or that some jobs may have 

different routes through the blending process. Because of this, the problem becomes dynamic 

and complex in nature. The blending process involves multiple operations that need to be 

performed in a particular sequence and with specific equipment and personnel requirements. 

The production process can be influenced by various factors such as the type of base oil, the 

specific additives required for a particular lubricant, and the specific order and time constraints 

for the production of different products. Moreover, production demand can be highly volatile, 

meaning that the plant needs to be able to quickly adjust production plans and schedules to 

accommodate changes in demand. 

 

The flexible job shop problem is a well-known scheduling problem that involves 

scheduling jobs on various machines in a flexible manufacturing system. It is characterized by 

a high degree of variability in the production process, making it challenging to optimize 

production schedules and meet production targets. In the case of lube oil blending, the blending 

process is highly flexible, as the order of operations and the specific requirements can vary 
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significantly between different products. Moreover, there are many constraints that need to be 

taken into account, such as the availability of specific equipment and personnel, the time 

required to clean equipment between runs, and the need to adhere to specific quality control 

standards. 

 To address the partial-FJSSP of Lube oil blending process, problem instances are taken 

from a range of 4 jobs x 5 machines and 10 jobs x 10 machines and are tested and evaluated 

for the performance and validity of proposed methods. Two proposed methods viz GAPSOTS 

and HAdFA are used in this study to minimize three objectives of minimizing makespan, total 

workload and machine workload.  

 

7.2 STEPS IN LUBE OIL BLENDING PROCESS 

In lubricant manufacturing, there are ever-changing complex and exacting formation 

requirements, whether material is processed in an in-line blending system or as a batch process. 

This requirement demands a control and information system that allows great flexibility in 

making constant changes to formulas and procedures, as well as being highly reliable and 

accurate. Various steps are involved in lube oil blending which are described in subsequent 

sections. 

 

7.2.1 Base oil and additives selection:  

The first step in lube oil blending production is to select the appropriate base oil or 

combination of base oils, depending on the desired properties of the finished lubricant. The 

base oils are typically stored in bulk tanks and are selected based on their viscosity, volatility, 

and chemical composition. Next additives are added. Additives are chemicals added to the base 

oil to enhance its performance, such as detergents, dispersants, viscosity modifiers, and anti-

wear agents. 

 

7.2.2 Blending 

Blending is physical mixing of two or more components that are miscible in one another 

or made miscible to give a homogeneous mixture or solution. This is a purely Physical process. 

There is no change in chemical properties of components used in blending expect soluble 

cutting oil/coolant. Blending is a mechanical operation process involving the mixing different 

components in the correct proportion under the specified conditions, 
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The product is formulated in the laboratory to meet the end-user requirements after extensive 

evaluation in the laboratory, test benches and field trials. The product is then characterized by 

laying down the specification and the control test limits. 

For obtaining a homogeneous mixture or blend a certain sequence of charging of various 

components is followed in blending process, as per formulations. Charging sequence/order of 

each ingredient/component during blending is important for mutual compatibility/solubility of 

components. Any abrupt change in order/sequence may result to disruption of mutual of 

solubility of the components and which may further result separation of additives. Hence, in 

blending it is very essential to follow the recommended sequence of component while charging 

under specified condition as mentioned in BOM/formulations. 

 

7.2.2.1 Important Factors in Blending 

 
I. Cleanliness of kettle/blending sequence 

II. Component charging sequence 

III. Homogenization of all Components (Mixing/stirring) 

IV. Dry Bases oil is another importance aspect in blending. If wet base oils 

containing water are used for blending, the result blend may become hazy any 

impossible to rectify due to interaction of the inherent water some of the 

additives forming finely divided insoluble particles in suspension. 

V. Temperature of blending is yet another important parameter in manufacturing 

of lubricating oils, this is particularly important in blending of products with 

Group II/III base oils, soluble cutting oils, spray oils other specialty products. 
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Figure 7.1 Flow diagram of blending process 

 

 

Blending technologies 

Blending may be carried using formulations/Bill of Material (BOM), which Have optimized 

I. Volume (Components are Charged manually/auto in Volume unit) 

II. Weight (Components are charged manually/auto in weight unit) 

Blending is generally done by adopting one of the below mentioned technologies: 

Manual or Conventional Batch Blending 

Blending is carried out in kettles and all the operations are manually controlled. The 

charging of input i.e. base oils & additives may be partly automated in manual blending. 

Measurement of inputs either in volume or party in volume and party in weight (in case of solid 

additive).  

Auto Batch Blending (ABB) System 

ABB incorporates a primary blend vessel or tank equipped with a dynamic mixer, and 

one or dosing vessels mounted on load cells for measurement of liquid volume (or mass by 

ratio). Typically, all base oils and bulk additives are connected to the roof of the mixing kettle 

by dedicated piping to avoided contamination and accommodate automatic operation with 

minimal manual labour. 

Based on precise weighing technology, the Automatic Batch Blending (ABB) System 

provides an efficient means of producing small volume blends. Generally designed to 

accommodate 1KL to 20KL blends when load cell weighing is employed, the ABB can support 

larger blends with mass flow meter-based systems. This plant has five ABB systems. Figure 
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7.2 shows the Auto Batch Blending (ABB) System. Figure 7.2 shows the manufacturing 

process of Lube oil Blending. 

 

 
Figure 7.2 Auto Batch Blending (ABB) System 

 

 

7.2.3 Quality control:  

After the blending process, the lubricant is subjected to rigorous quality control testing 

to ensure that it meets the required specifications. The tests can include viscosity, pour point, 

flash point, and other physical and chemical properties. 

 

7.2.4 Packaging: 

  After passing the quality control tests, the lubricant is packaged into containers of 

various sizes, such as drums, totes, or bulk tanks, depending on the customer's requirements. 

 

7.2.5 Labeling and storage: 

 Finally, the lubricant is labeled with the appropriate information, including the product name, 

manufacturer, and specifications, and stored in a safe and secure location until it is shipped to 

the customer.  
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Figure 7.3 Manufacturing process of Lube oil Blending 

 

7.3 INPUT DATA 

  Here the jobs are the products i.e the different lube oils manufactured like SERVO- 

spindle oils, Textile oils, Knitting oil, Automotive lubricating oils and Greases. Machines are 

different components for blending like Charging units of base oils, Mixing (ABB units), 

Discharge, Rinsing, Final mixing etc 

 

Model 1 [4x5] 

Initially, a small-scale instance that is 4 - machines, 5 - jobs is used to show the ability 

to optimize and test the hybrid algorithm's efficiency. Where the table represent the 4 machines 

x 5 Jobs with the variable time units. Let illustrate briefly about the table, the machine 1 carries 

five jobs, likewise, machine 2, 3 and 4 also carries 5 jobs.  The variable time units are listed in 

the table, for example, in the given time period, machine 1 can process job 1 in 60 minutes 

followed by job 2 in 5 minutes, job 3 in 5 minutes, job 4 in 4 minutes and job 5 in 90 minutes. 

Similarly, for the machine 2 to 4, process is executed in the same way as machine 1. 

 

Table 7.1 Input Data 1 from Oil Blending Plant [4- machines, 5- jobs] 

 

Work Piece Job 1 Job 2 Job 3 Job4  Job5 

Machine 1 60 5 5 4 90 

Machine 2 8 2 51 16 10 

Machine 3 5 2 8 32 15 

Machine 4 23 4 4 45 49 
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Model 2 [10x10] 

In the case study 2, the small-scale instance that is 10 - machines, 10 - jobs is used to 

show the ability to optimize and test the hybrid algorithm's efficiency. Where the table 

represent the 10 machines x 10 Jobs with the variable time units. Let illustrate briefly about the 

table, the machine 1 carries ten jobs, likewise, machine 2, 3, 4, 5, 6, 7, 8, 9 and 10 also carries 

10 jobs. The variable time units are listed in the table, for example, in the given time period, 

machine 1 can process job 1 in 60 minutes followed by job 2 in 5 minutes, job 3 in 5 minutes, 

job 4 in 4 minutes, job 5 in 90 minutes, job 6 in 60 minutes, job 7 in 26 minutes job 8 in 5 

minutes, job 9 in 5 minutes and job 34 in 4 minutes. Similarly, for machine 2 to 10, process is 

executed in the same way as machine 1. 

 

Table 7.2 Input Data 2 (Oil Blending Plant) [10- machines, 10- jobs] 

 

Work Piece Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 Job 10 

Machine 1 60 5 5 4 90 60 26 5 5 34 

Machine 2 8 2 51 16 10 30 35 8 5 23 

Machine 3 5 2 8 32 15 67 34 3 8 65 

Machine 4 23 4 4 45 49 41 35 1 17 67 

Machine 5 4 4 5 24 90 52 65 2 18 43 

Machine 6 6 8 4 34 45 46 13 3 31 27 

Machine 7 8 6 51 22 10 53 21 6 5 43 

Machine 8 23 2 8 12 15 35 34 6 6 24 

Machine 9 23 24 45 34 49 35 32 7 6 31 

Machine 10 2 8 6 34 5 50 13 8 4 28 
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7.4 RESULTS AND DISCUSSIONS 

  

7.4.1 Model 1 Results: 

Table 7.1 represent the problem and processing time for 4 Machines x 5 jobs. The 

machine assignment vector and operation scheduling vector of a solution is done by two string 

encoding method. The solution for the Model 1 is represented by a vector {3     1     4     1   2}. 

The second part is the scheduling component that indicates the scheduling sequence {5     3     

1     2   4}. When a method of optimization is decoded, the operation scheduling vector is 

initially converted into an operation sequence. Then each operation is allocated to the 

processing machine to machine assignment vector. The Gantt chart for the decoded solution is 

illustrated in Figure 7.4 and 7.5 for HAdFA alone as it gives better results than GAPSOTS. 

 

 
 

 
 

 

           Figure 7.4 Gantt chart for 4x5                                    Figure 7.5 Gantt chart for 10x10  

 

 

Model 2 Results: 

Table 7.2 represent the problem and processing time for 10 Machines x 10 jobs. The 

machine assignment vector and operation scheduling vector of a solution for the given problem 

is done two string encoding method. The Gantt chart for the decoded solution is shown in 

Figure 7.5. The performance metrics obtained are shown in Table 7.3 
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Table 7.3 Obtained results using HAdFA for oil blending plant 

 4x5 10x10 

 GAPSOTS HADFA GAPSOTS HADFA 

Makespan 8 6 24 22 

Maximal machine 

workload  
36 33 145 146 

Total workload of 

machines 
464 455 815 811 

COF 12.24 10.91 11.468 9.23 

Computational time (s) 
0.990515 

seconds 

0.678546 

seconds 

1.130247 

seconds 

0.8843768 

seconds 

 

 

 

 
 

Figure 7.6 COF comparison for proposed algorithms 
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Figure 7.6 shows the COF comparison of the proposed algorithms GAPSOTS and 

HADFA. It can be inferred from Table 7.3 that HADFA tends to give better results than 

GAPSOTS. 

In all types of problems studied in this research, HADFA is consistently performing better 

thereby demonstrating that HADFA is the best algorithm in terms of computational wise and 

optimal results wise. The total time to perform the optimization is mere seconds proving it has 

high efficiency than GAPSOTS. 

 

7.5 SUMMARY  

 This chapter discussed about the implementation of GAPSOTS and HADFA for a real-

life case study conducted in a Lube Oil Blending plant in Faridabad. The problem type 

identified is partial-FJSSP. HADFA gave better performance than GAPSOTS for obtaining 

COF for combined objectives of makespan, total workload and maximum workload.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE SCOPE 

 
8.1 THESIS OUTCOME 
 

This thesis addresses the scheduling of various resources in an FMS environment for 

the minimization of various objectives in order to increase productivity and lower 

manufacturing costs. The proposed approaches have been tested using numerical problems of 

various sizes as well as benchmark problems. To verify the effectiveness of the suggested 

approaches, the results are compared and validated with those of alternative algorithms present 

in literature. Different objectives have been taken as single and multiple objectives for 

minimization. For multiple objectives, they are all taken into account combinedly. The entire 

research has been done in three parts.  

1. Flexible Job shop Scheduling Problem- A multi-objective approach 

2. Combined Objective Optimization of Flexible Manufacturing System Scheduling 

3. Concurrent scheduling of machines and AGVs. 

4. Application of Proposed Algorithm on a Real-Life case study. 

 

The contributions of the research scholar for this thesis include:  

• Identify the research problem in Flexible Manufacturing System 

• A thorough study of books and research articles that discuss the literature that is 

relevant to this work.  

• Gathering the necessary information from industry-related and cited literature studies 

for the improvement of FMS Scheduling.  

• HAdFA, GAPSOTS, and HFPA were chosen as the most appropriate Metaheuristic 

optimization strategies from the available techniques for this work to solve the 

identified research problem. 

• Developed the aforementioned algorithms and implemented for the Scheduling of FMS 

for a set of objectives. 

• Programmed the code for proposed algorithms in MATLAB 2019a. 

• Performed Optimization of FMS scheduling for single objective and multi-objectives. 

• Striking an effective analogy among three nature inspired algorithms, viz., HAdFA, 

GAPSOTS, and HFPA and the problems and processes of FMS to achieve optimal 

solution in minimum possible time so as to increase the production efficiency.  
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The conclusions derived from each part of research problems are discussed in subsequent 

sections. 

8.2 CONCLUSIONS FOR FJSSP 

• The multi-objective functions of minimizing makespan, total workload, maximum 

workload, total idle time, and total tardiness were considered as objectives to solve 

FJSSP .  

• The proposed HAdFA employs an adaptive strategy, where the parameters are 

dynamically updated during the iterations thereby striking a balance between 

exploration and exploitation leading to get new optimal solutions.  

• HAdFA and HFPA were tested on benchmark problems of Kacem, DP data, BR data, 

and Du data for several problems of different sizes for FJSSP.  

• Due to the adaptive strategies used in our approach, new Pareto optimal 

solutions MSmax = 10, WLmax = 8, and WLtotal = 32, and MSmax = 12, WLmax = 

9, and WLtotal = 34 were found for three problems in Test instance 1 (Kacem data). 

• In Test Instance 2 (DP data), new makespan (MSmax) values were obtained for all 

problems except five problems. 

• Best makespan values are obtained for large scale problems for BR data by HAdFA 

especially MK10 has new makespan value of 20.1 

• The convergence graph analysis shows that  HAdFA converges faster and obtain 

optimal makespan in less computational time. 

 

8.3 CONCLUSIONS FOR COMBINED OBJECTIVE FUNCTION FOR FMS 

• Four benchmark problems of varying jobs and machines for a particular FMS set up 

has been optimised. 

• The proposed algorithms GAPSOTS, HAdFA and HFPA are implemented to solve 

Combined Objective Function (COF) which minimizes the total idle time of a machine 

and total penalty cost.  

• It is found that HAdFA gave better COF when compared to HFPA and GAPSOTS. 

Nevertheless the other algorithms also gave near optimal solutions.  

• The results demonstrates that the methods created here may be effectively customized 

to work with any FMS that has numerous components and machines and can perform 

optimization for any mix of jobs and machines that are subject to multiple objective 

functions. 
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8.4 CONCLUSIONS FOR CONCURRENT SCHEDULING OF MACHINES AND 

AUTOMATIC GUIDED VEHICLES 

 

• Concurrent scheduling of Machines and AGVs is carried out for  single objective and 

multi objective. Minimization of makespan is considered as single objective and was 

solved by GAPSOTS, HFPA AND HAdFA for 82 problem sets proposed by Bilge and 

Ulusoy for two cases viz. t/p > 0.25; t/p < 0.25. 

• For multi objective optimisation, mean flow time and mean tardiness were considered 

in addition to makespan. They were tested for selective five test instances. 

• For simultaneous scheduling of machines and AGVs, improvement in scheduling is 

possible by HAdFA, particularly in settings where cycle durations are quick and trip 

times are comparable, or if the layout and the process routes don't work well together.  

• The outcomes confirms that HAdFA frequently produces superior results than other 

algorithms and conventional techniques. 

• A convergence analysis of proposed algorithms proves that HAdFA can perform better 

and converge better. 

 

8.5 CONCLUSIONS FOR REAL LIFE CASE STUDY 

 

• A real-life case study was performed in Lube Oil Plant in Faridabad. Lube oil blending 

production can be identified as a partial flexible job shop problem as some of the 

machines may be capable of performing multiple operations or that some jobs may have 

different routes through the blending process. Because of this, the problem becomes 

dynamic and complex in nature 

• The proposed algorithms GAPSOTS and HADFA are implemented for the identified 

problem. The problem is to optimize multi objectives of minimization of total 

makespan, workload and maximum workload is performed. 

• HADFA outperformed GAPSOTS and gave minimum makespan and COF. The 

computational time taken by HADFA is significantly less than GAPSOTS. For real 

time production these few seconds computational capacity matters most as it results in 

high efficiency of running a plant. 
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8.6  LIMITATIONS OF THIS WORK 

• Multi-objective optimization has only taken time-based objectives into account.  

• The tested data for single objective optimization, multi objective optimization and total 

holding cost optimization for AGV scheduling are benchmark problems.  

• Machine break down time, Tool set up time, Tool transfers are not considered. In future, 

the problems can be considered with these criteria.  

 

8.7 FUTURE SCOPE OF THE PRESENT WORK 

 

The future scope of Flexible Manufacturing System (FMS) scheduling is vast and diverse. 

Some of the potential areas for future research and development in this field include: 

 

• Integration with Industry 5.0 technologies: The adoption of Industry 5.0 technologies, 

such as the Internet of Things (IoT), cloud computing, and artificial intelligence (AI), 

can enable more efficient and intelligent FMS scheduling. For example, real-time data 

from machines and sensors can be used to optimize scheduling decisions, and AI 

algorithms can be used to automatically generate optimal schedules. 

• Dynamic scheduling: FMS scheduling is often performed offline, based on a 

predetermined set of jobs and operations. However, in dynamic environments where 

new orders and changes occur frequently, dynamic scheduling techniques that can adapt 

to changing conditions in real-time can be highly beneficial. 

• Distributed and decentralized scheduling: In FMS environments with multiple 

machines and resources, centralized scheduling may not be practical or optimal. Future 

research can focus on developing distributed and decentralized scheduling algorithms 

that can coordinate the scheduling decisions of multiple agents and resources. 

• Green manufacturing: With increasing concerns about environmental sustainability, 

future research can focus on developing FMS scheduling techniques that can minimize 

energy consumption, reduce waste, and promote eco-friendly production. 

• Overall, the future scope of FMS scheduling is vast and evolving, with many potential 

areas for research and development that can lead to more efficient, intelligent, and 

sustainable manufacturing systems. 
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