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Abstract 

The operation of nonlinear systems to perform complex tasks in dynamic environments has been a 

crucial area of control. Further, the technological advancements in autonomy, artificial intelligence, 

and robotics have broad applications across society, bringing both opportunities and risks. Most of 

these opportunities are directly related to path tracking, speed control, maneuverability, and 

balancing control which is highly affected by the complexity and unpredictable dynamics of the 

surroundings. Besides, efficient path tracking and balancing control are particularly important for 

the robots, in order to achieve autonomy without any collision and disturbances. Consequently, the 

parameters of the mechanical and electronic components need to be monitored and optimized for 

performing multiple tasks and maintaining the reliability of the system. In view of these aspects, 

this research identified the combination of intelligent approaches and machine learning methods to 

achieve unprecedented path tracking and balancing control, continuous monitoring, and robustness 

by relying solely on onboard computing. The approaches are developed based on multiple control 

algorithms and are implemented with two-degree freedom operation of ball balancer, inverted 

pendulum, TORA system, and two-degree freedom robotic manipulator. 

To assess the performance of the various nonlinear systems the different control techniques like 

sliding mode controller, fuzzy sliding mode controller, and neural sliding mode controller are 

investigated. A comparative study in terms of setpoint response analysis, convergence analysis, 

statistical analysis, and trajectory analysis has been done. 
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Chapter 1  

Introduction  

1.1 Overview  

Advanced mathematical techniques for control are being developed by researchers working 

on issues in engineering, computer science, biology and the physical sciences. The 

application of novel analytical approaches for tackling nonlinear issues has been 

significantly influenced by technological advancements [1]. The state may not be entirely 

quantifiable in most situations involving nonlinear control systems, making complicated 

control engineering problems difficult to address. The employment of a variety of distinct 

models and ideas, a lack of parameter standardization, a lack of suitable control approaches, 

external disruptions and the greater level of nonlinearity of the equations that drive 

processes are all important challenges in the field of control technology. Another difficulty 

is the lack of understanding of the critical variables since the system's states might 

significantly affect the nature of the control design stage, allowing for excellent 

performance. As a result, enhanced forecasting, control and optimization approaches are 

required to ensure optimal nonlinear system performance. Understanding the system's 

control needs necessitates knowledge of the system; nevertheless, nonlinearities are 

frequently so complicated that control design for system performance is challenging [2]. 

New control techniques have developed over time to maintain optimal system performance 

that prevents interruptions, pauses, and design flaws. Optimising the nonlinear system's 

parameters is among the most challenging elements of control theory. Any system's primary 

requirement depends on the controller's control action. The control action is made precisely 

to accomplish the goal. Additionally, when system complexity rises, it becomes harder for 

the researcher to attain optimal control performance. Furthermore, conventional controllers 

aren't any better at handling plant uncertainty due to their demanding complexity.  

 

To increase the effectiveness of control systems, many types of controllers are used. Based 

on design and analytical methodology, Linear systems and nonlinear systems are the two 

broad groups into which the controllers can be divided. The nonlinear controller responds 

dynamically well and is stable and resilient. Like linear control, the controller's design 

depends heavily on the feedback concept in nonlinear control. However, compared to linear 

control, the significance of feed forward is much more obvious. A nonlinear system is 
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frequently impossible to regulate steadily without including feed forward action into the 

control law. The use of nonlinear feedback makes the control system more robust and less 

susceptible to load disturbances and changes in the output filter circuit parameters.  

 

1.2 Background and Research Gap   

The current section provides a summary of earlier work on mechanical systems and 

nonlinear control that are pertinent to this study. Our primary concern in this thesis is 

nonlinear systems control design that results from the regulation of a significant and diverse 

class of mechanical standard systems. The majority of these mechanical control systems are 

found to be underactuated since there are fewer actuators (controls) than configuration 

variables. High order underactuated systems are decomposed into a number of nonlinear 

systems without compromising their global structure, this is one of the unique contributions 

of the thesis. The system's analytically tractable Lagrangian is used to obtain the appropriate 

change of coordinates at the global or the semi-global level. Lower-order nonlinear systems 

are then employed to control the high-order original system after this transformation. This 

provided as inspiration for the creation of unique control design methodologies for 

cascading nonlinear systems as well as other types. 

 

1.2.1 Nonlinear System  

To define the characteristics of complex nonlinear systems, the progression of linear 

systems to that of nonlinear systems in control techniques has been presented. The time-

invariant linear control systems are widely established for a while that state or output 

feedback may be used to controllably, observably, stabilise, and track this system. However, 

the control design for the system may become fairly challenging if further restrictions or 

specifications are added to the description of the system. The most common techniques for 

dealing with mildly nonlinear systems entail a frequency domain analysis or an approach to 

input-output stability. This idea of feedback connectivity between a linear system and a 

nonlinearity has been developed in the literature to include feedback between an LTI system 

and a gain-limited uncertainty (or operator). As a result, integral quadratic constraints [4] 

and robust stability theory [3] were developed. These techniques work well in the presence 

of linear, uncertain linear, and slightly nonlinear systems, but they cannot be used with fully 

nonlinear systems, which are systems where the temporal evolution is nonlinear and that do 

not include any basic linear parts.   
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To be more precise, a modification is titled, a saturation-type recurrent neural network (i.e., 

sigmoidal) nonlinearity, has no fundamental differences from control system of LTI type. or 

a somewhat nonlinear system in terms of controllability and observability. Additionally, 

while the system's time-evolution follows a nonlinear rule, its linearity as an output does not 

make system analysis any easier. The requirements for controllability (just in the discrete-

time situation) and observability of dynamic neural networks, which are instances of 

extremely nonlinear systems, were proposed in [5]. The previous work used a time-domain 

analysis technique that was somewhat complicated. Given that a frequency domain analysis 

only addresses systems, then the state development becomes linear in time. For nonlinear 

systems in a comprehensive local theory on disturbance decoupling, tracking, stability, 

observability, and controllability may be found in [6]. Differential geometry and Lie theory, 

which have become widely used in the literature, were the primary techniques used to 

address these control difficulties. Although these techniques were quite effective for local 

analyses, but in global studies with affine control based nonlinear systems, local analyses 

control typically fail. Furthermore, there is no resistance to f, g, and h uncertainty in lying 

algebraic circumstances. Additionally, in the theory of input-to-state stability [7], contains 

both theories of absolute stability and theories of robust stability for extremely nonlinear 

systems. Control Lyapunov functions (CLFs) are the primary instruments in this theory for 

robustness analysis against disturbances. The issue is that building CLFs for highly 

nonlinear systems is often not straightforward. Design and analysis of a global/semiglobal 

control system are necessary in many control applications. Additionally, after applying a 

specific change of coordinate variables to the nonlinear dynamics, the converted system or 

one or more of its components may be a nonlinear system that are not affine in terms of 

control. This inspired us to think about a stabilisation approach with either global or semi-

global scope, with the expectation that the research of mechanical systems leads to an 

understanding of very nonlinear systems that are not homonyms and understated.  

 

1.2.2 Nonlinear Control Problems   

The nonlinear control problems which are used in this work for efficiency and efficacy 

analysis of different existing and proposed algorithms are discussed below:  

 

A. Ball Balancer System   

An underactuated, multivariate electromechanical, and nonlinear system may be represented 

by the use of ball balancer systems. Two servo motors operate simultaneously to regulate 
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the position of the ball in a 2-DOF Ball Balancer. This is a nonlinear system. In many 

applications and approaches, it is one of the most complicated control benchmarking 

systems. Users may experiment with a variety of control methods to direct a ball towards a 

certain spot on a table. It's a horizontal plate with slants in both directions, which allows the 

ball to roll wherever on the plate. Nonlinear kinematics and control theory are shown 

dynamically in this system. Control algorithms and technologies are often evaluated using 

this system because of its inherent nonlinearity, instability and under-actuation [8].  

 

B. Inverted Pendulum  

Due to the Inverted Pendulum's broadest range of industrial applications, it serves as a 

benchmark example of a static unstable nonlinear system. A naturally unstable inverted 

pendulum is the ideal control benchmark system. The literature has investigated a variety of 

control techniques to stabilise a pendulum around its shaky equilibrium point. Both 

theoretically and empirically, the inverted pendulum approximation of input-output 

linearization has been used to balance a single link inverted pendulum, however this method 

makes use of sophisticated mathematics that alters the system's response [283].  

 

C. Robotic Manipulator  

The movement of an unknown item is directed by a manipulator robot. The following 

uncertainties need to be resolved in order to control the manipulator:  

 

1) Since the object itself is unknown beforehand, the object's weight is not known;  

2) Because they are challenging to accurately describe and measure, the friction and other 

variables in the dynamics of the manipulator may be unknown.  

 

D. TORA System  

In the TORA (Translational Oscillator with Rotational Actuator) system, a 

pendulum rotation governs an un-damped electromechanical oscillator M. The oscillator is 

undamped, which causes a lengthy oscillation to be visible in the active path of M in relation 

to a non-zero starting displacement. A successful oscillation intervention may be made 

possible by properly controlling the pendulum's motion. The majority of solutions are 

designed to balance the pendulum's angle and the oscillator's displacement (x).  
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1.2.3 Research Gap   

Nature is nonlinear, therefore nonlinear methods are the easiest way to cope with it. Despite 

this, linear control has been used effectively for years. The issue with linear systems is that 

they may not be capable of accommodating recent and innovative technologies. It may be 

challenging to decide whether to use linear or nonlinear control for a certain application. 

Linear control has been well researched and industry professionals trust it. For linear 

systems, there are many good analytic methods available, including the root locus, bode 

plot, Nyquist stability criterion, Laplace transform, Z-transform, Fourier transform and 

many more. Nonlinear systems, on the other hand, require more sophisticated numerical 

methods, such as the Lyapunov stability criteria, the Popov criterion and singular 

perturbation techniques. For nonlinear systems, implications of controllers are sometimes 

very intricate and difficult to due to its higher complexity, incomplete system understanding, 

lack of analysis method and their modelling may be time consuming. Limit cycles, chaos 

and bifurcation may occur in a system of nonlinear type. Most of the strategies can only 

guarantee local stability; global stability cannot be assured. Flaws such as time delays and 

oscillations in the response play vital role. Employment of advanced optimization 

techniques, different algorithms which precisely estimates the response of output made the 

nonlinear plants stable in performance and controller design can improve stability and 

performance. 

 

1.3 Optimization  

 

An important paradigm that is everywhere in addition to a variety of uses is optimization. In 

practically all application areas such as mathematics, computer science, operation research, 

industrial and engineering designs, we are continually attempting to upgrade something - 

regardless of whether to limit the expense and vitality utilization or to expand. The benefit 

yields execution effectiveness. In all actuality, assets, time and money are consistently 

restricted; thus, optimization is unmistakably progressively significant [8]. How the 

optimization algorithm works are shown in Figure 1.1.  

 

Optimization is the study of choosing the best choice among a debilitated hover of choices 

[1] or it tends to be seen as unitary of the major quantifiable mechanism in a system of 

dynamics in which judgments must be employed to enhance single or more evaluations in 
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some affirmed set of conditions [9]. Each problem of optimization accompanies some 

decision variables, certain objective (fitness) functions and few constraints [1]. A literature 

review of optimization algorithms reveals that, there is no systematic classification is 

available. In Figure 1.2, the hierarchy of optimization methods is displayed.  

 

Figure1.1. Flow chart of Optimization 

 

1.3.1 Existing Challenges in Optimization  

The effectiveness of an algorithm, the effectiveness and precision of a statistical simulator 

and assigning the correct methods to the stated problem are the three key challenges in 

simulation-driven optimization and modelling.   

Algorithm’s Effectiveness   

It's critical to have a good optimizer to get the best results. An optimizer is essentially an 

optimization technique that has been appropriately built to perform the required search. It 

may be connected and merged with other modelling elements. No free lunch theorem states 

that [2], there are several optimization methods in the literature and no one solution is suited 

for all issues.   

Algorithm’s Correctness   

Choosing the best optimizer or technique for a specific problem is critical from an 

optimization standpoint. The kind of issue, the structure of the methodology, the desired 

output quality, the contemporary computing sources, time frame, the method’s 

implementation availability and the selection experience will all influence the algorithm 

selected for an optimization job [10][11].  
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1.3.2 Classification of Optimization Techniques   

Figure 1.1 displays the categorization of optimization algorithms. To determine the best 

solution, mathematical optimization relies on gradient information. Although researchers 

continue to employ similar methods [12]. The primary difficulty with mathematical 

optimization approaches like Newton's method, steepest descent, etc. is that they have a 

problem with local optimum. The algorithm did not discover the best answer in this case, 

assuming that a local solution is also the global solution [13]. It frequently fails to solve 

issues whose derivations are unknown or expensive to compute. Prior to using metaheuristic 

algorithms, classical techniques like Hill-Climbing, random search, and simulated annealing 

were utilised to tackle optimization issues [14]. These techniques begin the search from a 

single place and use gradient information to guide additional searches to locate global 

optimums [15]. These algorithms failed to solve real-world applications including the 

economical optimization problem, engineering design issues, and structural optimization 

challenge [16] because of several limitations and complexity restrictions. The term 

"metaheuristic" refers to a directed random search approach that iteratively directs 

subordinate heuristics to explore and utilise the search space while avoiding becoming 

snared in local minima [17]. Additionally, it makes clever use of search history to direct 

future searches toward the best answers [18].  

 

According to [18], Metaheuristic algorithms share the following traits:   

• The algorithms are based on natural events or behaviours and they follow specific 

rules (e.g., biological evolution, physics, social behaviour).   

• Probability distributions and random processes are used in the selection phase, which 

contains random elements.   

• They provide several control parameters to modify the search method since they are 

intended to be general-purpose solvers   

• They don't depend on a priori knowledge, which is information about the process 

that is accessible before the optimization run begins. Nonetheless, such knowledge 

may be beneficial to them.  

 

1.3.3 Existing issues with Metaheuristic Optimization  

The primary challenge for metaheuristics is figuring out how to find the optimal point. Even 

though many metaheuristics have been suggested, only a handful of metaheuristics have 
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consistently attained the required success rate. Selecting the proper metaheuristic algorithm 

is a complex thing and recent developments is to liberalize metaheuristic methods to 

overcome these problems. Figure 1.2 shows the different type of search technique to 

optimize any problem. 

 

Figure 1.2 Classification of optimization techniques 

 

1.4 Robust Controller  

There are five different categories for robust control methods [19]-[22].  

1) linear-multivariable methodology;  

2) A strategy based on passivity.   

3) Controllers with a changeable structure;   

4) Dependable saturation strategy;   

5) Robust adaptive approach.  

Recent studies have addressed parametric uncertainty in [23] and expanded the findings to 

encompass nonparametric uncertainties in [24]. From all of the aforementioned methods, it 
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is similar to the robust saturation method, in that Lyapunov arguments of some form are 

employed. Except for the inclusion of an enhanced control to account for the unmatched 

uncertainty, the robust control issue is converted into an optimum control problem. It is 

demonstrated in [25] that the answer to the problem of resilient control is the same as the 

answer to the problem of optimal control with a condition on the size of the unmatched 

uncertainty. Any system's primary need depends on the controller's control action.  

The control action is made precisely to accomplish the goal. Additionally, traditional 

controllers aren't any better at handling plant uncertainty due to their horrifying complexity. 

One of the effective methods to design trustworthy controllers for complex, high-order, 

nonlinear dynamic plants that operate in a range of unpredictable circumstances is a sliding 

mode control technique. Because sliding mode is less sensitive to changes in plant 

parameters and disturbances, the demand for precise modelling is relaxed, which is one of 

its key advantages. 

 

1.4.1 Sliding Mode Control (SMC) 

Because of its unique qualities, namely its insensitivity to matched uncertainty, convergence 

of closed loop systems with zero error and lower order sliding mode equations provide a 

control of non-linear type. SMC has risen fast as a control in contrast to other robust control 

schemes. This strategy has a number of significant benefits since it modifies the system's 

dynamic behaviour by selecting the suitable switching mechanism, making the system's 

matched uncertainty insensitive to the response of closed loop response. Such an 

encouraging aspect draws emphasis to the role of the researchers in SMC development. 

SMC is used as automated controller for many different applications, such as motion control 

problems, robotics, power electronics, aerospace, and industrial process control. [26]-

[29][66]. 

The primary justification for SMC's use in various applications is that it performs better for 

nonlinear systems, is suitable for MIMO systems, and also recognises that discrete time 

systems can benefit from its use with the right design [30]. SMC technique performs better 

than other recognised techniques like vigorous adaptive control [32], H infinity control [33], 

and backstepping control [34] whenever bounded uncertainties or disturbances are present 

along with unmodeled dynamics [31][66][71].  
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1.4.2 Existing issues with Sliding Mode Control  

As it would suggest that the control travels at an infinite frequency, a perfect sliding mode 

does not actually exist. The feedback control's discontinuity creates a specific dynamic 

behaviour near the surface known as chattering in the presence of switching flaws, such as 

switching time delays and tiny time constants of systems. This phenomenon is problematic 

because, even if it is filtered at the process output, it may stimulate unmodeled high 

frequency modes that harm the system's performance and potentially cause instability [259]. 

Additionally, chattering causes significant electrical power circuit heat losses and severe 

mechanical moving parts wear. Recently, SMC design methods have been used to address 

important problems including reducing chattering, compensating for the effects of 

unstructured dynamics, adapting to uncertain systems, and improving the dynamic 

performance of closed loop systems.  

 

1.5 Motivation  

Following are some key insights from the previous research and observations that becomes 

the motivation for this research:  

• All the practical systems are nonlinear in nature and this is the main reason behind the 

growing interest in nonlinear control. There are many benchmarks example of a static 

unstable nonlinear system due to its widest scope in industrial application.  

• Implementation of less complicated algorithms are preferable, in the same way should 

be as straightforward as feasible. In practice, a robust algorithm is preferred with a 

simpler architecture for simplicity of implementation while still being efficient enough 

for real-world applications.  

• By using a standard PID controller, the researchers were able to create a nonlinear 

system response that was both stable and acceptable. The main benefit of using an SMC 

controller over a linear controller like PID is that SMC offers stability and robust 

performance in a variety of uncertain systems, whereas PID fails in the presence of 

uncertainty. 

• While the typical control approaches often adjust the system's control actions in 

response to changes in its operating conditions, they fall short when it comes to 

understanding the behaviour of the system. To address the random and parametric 

uncertainties in the system operation, metaheuristic algorithms have been created. These 
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algorithms are driven by the desire to handle uncertainties, increase the system's 

sensitivity to different disturbances, and execute effective control actions. 

• To get around the challenges of recognising quick and fleeting changes in system 

behaviour, fuzzy control and neural network control paired with sliding mode control 

have been created. These controllers use pre-calculated and fictitious control rules to 

learn the system's operational condition and provide the relevant control action. 

 

1.6 Methodology of the Research Work 

The methodology used to carry out the research work are following: 

• System configuration: 11th Gen Intel(R) Core (TM) I3-1125G4 running at 2.00 GHz 

and 2.00 GHz with 8 GB of RAM. 

• MATLAB coding and simulink is used for metaheuristic algorithms like particle 

swarm optimization, bat algorithm, and flower pollination algorithm. 

• MATLAB coding and simulink is used for various sliding mode controllers such as 

quasi sliding mode control, equivalent sliding mode control, reaching law sliding 

mode control, and decoupled sliding mode control. 

• The fuzzy operation in a single link inverted pendulum is carried out using the fuzzy 

toolbox. 

• In the single link inverted pendulum and two link robotic manipulator, neural 

operations are carried out using the neural network toolbox. 

Simulation is carried out using MATLAB 2015, which is powered by an Intel(R) Core (TM) 

2 Duo CPU T6400 running at 2.00 GHz and 1.20 GHz with 1.99 GB of RAM.  

 

1.7 Objectives   

The intelligent control of two-degrees-of-freedom mechanical systems (2DoF) is the major 

topic of this study. The widespread uses of underactuated systems and the conceptually 

difficult difficulties they provide serve as the driving force behind this. Based on the 

following identified motivations for the research, the aims of this study are to achieve 

control and stability of the benchmark systems:  

● Mathematical modelling of two degrees of freedom (2DoF) ball balancer. Single link 

inverted pendulum, two links robotic manipulator, and TORA system.  
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● For a two-dimensional ball balancer, traditional controlling methods like 

proportional derivative were designed, controlled, and implemented, along with 

other meta-heuristic optimization approaches including PSO, BA, and FPA.  

● Design, control, and implementation of various sliding mode controls on its reaching 

law, quasi law, and switching mode for inverted pendulum and compare their 

performance results.  

● Design, control and implementation of different decoupling algorithm-based sliding 

mode control for single link inverted pendulum and TORA system and compare their 

results in terms of their pole location.  

● Develop, implement, and compare the outcomes of various fuzzy-based sliding mode 

controls. 

● For single-link inverted pendulum and two-link robotic manipulator design, control, 

and implementation of neural sliding mode control and comparing the outcomes.  

  

1.8 Outline of the Thesis  

Following an introductory chapter that describes the basic concept of optimization along 

with a brief on metaheuristic optimization, robust controller along with various nonlinear 

control problems, further chapters of this thesis are arranged in the manner described below: 

  

A review of the literature is given in Chapter 2 on the various optimization strategies and 

the significant developments like variants, combinations with different controllers, 

applications in various fields, and hybrid algorithms approach in their respective areas. 

Literature review on robust control techniques of different sliding mode controller It also 

covers the various applications and performance evaluation of optimization techniques for 

nonlinear systems.  

  

Chapter 3 presents position control of a ball-balancing scheme utilising particle swarm 

optimization, BAT and Flower Pollination Algorithm”. In this chapter, the simulation 

findings of controllers on the control of a ball balancer are present. In this study for the ball 

balancer system, the ideal parameter choices, mathematical modelling, and controller design 

are made to solve the existing issues. The main goal is to compare several metaheuristics 

control strategies used on a ball balancer. The focus is on utilising simulink to develop and 

implement controllers for ball balancer setup. Adapting a metaheuristics algorithm for 
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optimising controllers proved to be an innovative adaptation, as evidenced by the Ball 

Balancer findings. Finally, the comparison is performed using various control algorithms.  

  

Chapter 4 focus on different types of sliding mode control techniques, are used in i.e. 

reaching law sliding mode, quasi-sliding mode, equivalent sliding mode and decoupled 

sliding mode on different nonlinear systems like inverted pendulum and TORA system to 

evaluate the effectiveness of these strategies. Maintaining the system's position at the 

intended position is the goal of control action. Each of these control strategies begins with 

the construction of a sliding mode surface, following which control functions are created to 

achieve control goals. Performance metrics are tracked for chattering, convergent time, 

disturbance rejection, and stability. Based on these performance criteria, a comparative 

study is then carried out.  

 

Chapter 5 discusses three distinct fuzzy controls using the sliding mode control method for 

nonlinear systems. A single link inverted pendulum serves as the nonlinear system being 

addressed here. The system is chatter-free as a set of linguistic based rule is created a result 

of fuzzy logic control. Fuzzy rules have been used to approximate the nonlinear system’s 

uncertainties while system parameters are accommodated as per adaptive laws of fuzzy 

controller. Different kinds of fuzzy controllers based on sliding modes, such as fuzzy sliding 

mode control methods based on approximation, equivalent control, and switch-gain 

regulation, have been discussed and shown here. All methodologies have also been 

compared, as evidenced.  

 

 In Chapter 6 discussed about a sliding mode control technique for nonlinear systems that 

takes various nonlinearities into account. A single link inverted pendulum and two link 

robotic manipulator make up the nonlinear system under consideration here. Maintaining the 

system's position at the intended position is the goal of control action. To enhance control 

performance, the RBF neural network employs an adaptive RBF-based sliding mode 

control. The RBF neural network compensates the disturbances using a minimal parameter 

learning technique.  

 

Chapter 7 concludes all the approaches and highlights the current state of potential research 

directions.  
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Chapter: 2  

Literature Review 

 

2.1 Introduction 

For nonlinear systems, several control strategies and optimization techniques have been 

proposed in the literature. Nearly all real-world systems have dynamic behaviour that 

evolves over time, which adds to their complexity. Researchers are paying increasing 

attention to nonlinear systems because of its uncertainties and unpredictable nature. 

Numerous controllers have been employed to manage nonlinearities and enhance system 

performance in the literature. The theories' fundamental and most recent advancement for 

collecting the benchmark's control elements nonlinear systems are summarised in this 

chapter (inverted pendulum, ball balancer, robotic manipulator, tora system). A thorough 

rundown of various position tracking and balance control mechanisms are presented. 

This chapter is combined into the portion, first portion is to deal with the algorithms and 

controlling techniques and in the second portion nonlinear systems with their mathematical 

modelling have been discussed. 

 

2.2 Review of Algorithms and Controllers 

 

2.2.1 Particle Swarm Optimization (PSO) 

Kenndy and Eberhart established PSO in 1995 for the purpose of training neural networks 

and solving non-linear optimization issues. Human cognition of natural behaviour, such as 

how human learning is influenced by their surroundings, how they interact with others, and 

how they encode their patterns into their learning methods, are simple findings in PSO. PSO 

uses this learning phenomenon to find an optimal solution. PSO has become increasingly 

natural for dealing with non-linear complex optimization problems, especially in a wide 

range of fields. A swarm in PSO is a population of vector solutions that is probing new 

search areas while hunting for food, resembling the evolution of a school of fish. To find the 

global optimum, all particles in the swarm translate information and follow eachother's best 

experiences as well as their own past best experiences [35]. Each particle must adhere to the 

basic rule of determining the location of its prior best or neighbour. Particle swarm 

optimization (PSO), a method based on swarm intelligence, was developed by Kennedy and 

Eberhart [36]. It has been widely utilized in every discipline since it just requires a small 
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number of parameters and no gradient information from the goal function. Each particle 

starts off with a velocity and is dispersed at random in the search space so that their fitness 

may be assessed [37]. Each particle goes to a new place with each iteration, improving the 

fitness value of the previous position [38]. Three components make form a velocity update in 

PSO [39] 

1. Particle momentum takes into account both the prior and present velocities. 

2. Particles are propelled toward their highest possible velocity by cognitive component. 

3. Particles are drawn toward their optimal velocity by the social component. 

The impact of the previous iteration on this iteration is controlled by inertia. Greater values 

of "w" enhance global search, whereas smaller values enhance local search functionality. The 

inertia parameter typically ranges from 0.9 to 0.4 for optimization processes, allowing 

particles to first investigate neighboring areas at a slower pace [40]. Algorithms are kept out 

of local minima using random numbers. PSO causes particles to become prematurely caught 

in local minima, which prevents the optimum solution from being found during the 

optimization process [41]. There is a periodic algorithm upgrade to address these search 

issues. The PSO algorithm's performance has been improved by Guochu [42] separating the 

swarm into better particles, ordinary particles, and the worst particles. To get rid of the 

influence of premature controlling search, Jau et al. [43] suggested a modified quantum 

behaving PSO (QPSO), which has been used to the study of the least trimmed squares 

technique. Gholizadeh and Moghadas [44] evaluated the performance for the best design 

process using an upgraded QPSO on two numerical cases. On nonlinear benchmark 

functions, Martins et al. [45] designed a condensed PSO to evaluate performance. This 

streamlined PSO provides significant performance while also requiring less computing work. 

Panda et. al. study's [46] evaluated the performance of the PID controller for an automated 

voltage regulator with that of other algorithms like ABC and DE. For an unstable search 

process, Vastrakar and Padhy [47] employed a PID controller with a PSO algorithm. The 

search space is divided into smaller areas in order to locate both local and global minima. For 

systems with many inputs and multiple outputs, Chang and Chen [48] uses the PSO method 

to maximise the gain of the PID controller. A new sensor-less system that exhibits a 

reasonable response for tracking performance was developed by Xiang et al. [49]. PSO 

algorithms aid the system in tracking under various circumstances. Iterative learning 

controller and PID controller gains were tuned using enhanced PSO by Huang and Li [50]. 

On a nonlinear gantry system, Jaafar et al. [51] combined the PSO algorithm with a PID 

controller to enhance system performance. 
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2.2.2 Flower Pollination Algorithm (FPA) 

A structure known as a flower is designed to house the reproductive organs that involves 

creating plant’s reproductive tissues (ovule and pollen), followed by the creation of seeds 

containing dormant offspring plants. While bisexual (ideal) flowers include both male and 

female reproductive parts in the same flower, other flowers feature distinct stamen and carpel 

blossoms, making them unisexual (not so perfect) flowers. During pollination, the male 

gamete also known as pollen is transferred to the stigma. [52] so that it can make the female 

gamete fertile. Flowers may possess scented petals, eye-catching petals, and nectar to attract 

pollinators like animals, insects, and birds. By having a strong enough attractiveness, certain 

flowers may persuade pollinators to only visit them, keeping the blossom constant. 

Additionally, pollinators can secure nectar availability with less exploration by returning to 

the same species of the flower. Pollen can occasionally be spread only through gravity, water 

dispersion, or the wind. Cross-pollination and self-pollination are the two basic categories 

into which pollination may be divided. In the former, pollen is moved from one bloom on 

one plant to another flower on another plant. In the latter, pollen is moved from one bloom of 

the same plant to another flower. Additionally, pollination may be divided into two 

categories: biotic and abiotic, depending on whether the pollinators are living or not. when an 

insect or mammal visits a flower to eat pollen or sip nectar that contains pollen the grains get 

attached to its body, this is known as biotic pollination. If the animal makes the same trip to 

another flower, pollen may be transferred to the stigma and result in flower fertilization. 

Abiotic pollination is rare since pollen is often spread. When the anthers and stigma are not 

placed exactly, they can be blown, diffused in water, or crushed by gravity. A brand-new 

data clustering method called FPAB has been created by researchers to replicate the bee 

pollination of flowers [52]. FPA or flower pollination algorithm imitates a more 

comprehensive understanding of the flower reproduction process, was then developed [53]. 

FPA has recently received a lot of attention due to its successful application to real-world 

issues. Due to its effectiveness and adaptability, the FPA has been used to manage a number 

of optimization issues in a variety of real-world circumstances. For certain fields, basic FPA 

provides the best answers, and it can yet be improved. The complexity of issues, their high 

dimensionality, the reduction of features in the search space, and the discretization of FPA 

for combinatorial problems are all addressed through FPA improvements. Continuous 

optimization difficult issues are solved with basic FPA. Binary versions of FPA are created 

to address distinct issues. Random numbers are generated via chaotic maps, and these 

random numbers are employed throughout FPA. The most effective metaheuristic algorithm 
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strikes a compromise between global and local search. While algorithms based on gradients 

excel at local search, algorithms based on swarms excel at global search. In order to enhance 

FPA's performance, several algorithms have been hybridised with it. To address issues in the 

actual world, various approaches of setting parameters and many objectives are also 

developed. Based on operators [54] – [55], FPA adjustments rely on the lowering 

characteristics strategy. It solves the optimization problem, designs structures, and offers an 

elite opposition FPA (EOFPA). The primary goal of the suggested strategy is to handle a 

sizable search space by achieving equilibrium between global and local search. Three 

additional initialization steps are enhanced by the forward and backward selection technique. 

This benefits from balancing local and international searches to discover the optimal answer 

and select the bare minimum of features in order to improve accuracy. Binarized FPA is 

known as BFPA [23] was proposed by the researcher for attribute selection. Its effectiveness 

as an optimization technique was shown on six datasets. a CEED method [56] to address 

problems with thermal and photovoltaic power generation proposed a method to combine a 

binary and euclidean economic dispatch FPA that outperforms existing metaheuristic 

algorithms. By utilising the best members of the population in local optimization methods, it 

is possible to minimise the fitness function value precisely while consuming little CPU time 

[56]. 

If a metaheuristic algorithm can balance local and global search, it is seen to be at its best. 

Swarm or population-based algorithms are some techniques that are effective for locally 

exploring the search space. Similar to local search operations, certain algorithms work well 

for global searches. These algorithms are often gradient-based or trust-region techniques. 

Compared to other FPP approaches, it has greater performance. Additionally, the Simulated 

Annealing-Hybridized FPA [58] is used to increase both searches locally and convergent 

rates, effectively delivering high-quality solutions and rapid global convergence uses a 

combination of FPA and CSA termed BCFA to address the attribute selection problem by 

employing a limited set of characteristics quickly and accurately. There are other swarm-

based algorithms that, when combined with FPA, produce superior results. One such 

approach is the FPA Bee Pollinated (BFPA) [60], which solves solar-power parameter 

problems quickly and robustly by combining artificial bee colony (ABC) with FPA with 

optimization. The suggested strategy yields the fastest convergence, better solution quality, 

and convergence to the world's best solution. When FPA and the Firefly algorithm [61] are 

used to solve multimodal functions, the convergence rate is improved as well as the ability to 

trap in local minima more quickly. Multi-objective problems are common in real-world 
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issues; therefore, optimization techniques should be changed appropriately. Additionally, 

multi-objective optimization requires a lot of computation for larger dimensions. The 

MOFPA, or a random weighted sum technique to solving a multi- objective problem, has 

also modified FPA [62]. The same two bi-objective test functions are then provided, along 

with numerous multi-objective functions to provide findings that are more effective. 

Performance of metaheuristic algorithms is significantly impacted by optimization settings. 

Some FPA variations are built on fine-tuning its parameters proposes a novel method known 

as adaptive levy FPA known as ALFPA [63] in order to enhance parameter tweaking of use. 

Its inclusion of operators for mutation, local lookup, and dynamic reversal distinguishes it 

from other algorithms as a superior choice. Global mutations give FPA its exploration 

capability, while improvements to the local search algorithm increase its capacity for 

exploitation. 

 

2.2.3 BAT Algorithm (BA) 

An echolocation property of microbats inspires using a population-based metaheuristic 

algorithm, the Bat Algorithm (BA) [64]. Researchers from numerous fields start to pay 

attention to BA after its development in 2010. It has been successfully used to solve several 

real-world engineering issues. The ability to fly in total darkness allows bats to attack their 

prey. Bats can do these activities thanks to their ability to use echolocation. They pulse 

loudly and then watch for the prey's echo [65]. The frequency of their pulses and their 

predation methods differ among bat species. Their level of noise changes as they look for and 

approach the prey. Most bats employ brief frequency modulated signals for echolocation, 

however some bats also use constant- frequency signals. The frequency range of the pulses 

that bats emit is between 25 and 150 kHz. These pulses may last 8 to 10 milliseconds [66]. 

While looking for prey, the microbat may produce up to a maximum of 10 to 20 noises per 

second, or 200 sonic cycles per second. Human ears cannot hear the sound that microbats 

make. These, however, may be quickly detected using some unique tools [67]. In order to 

distinguish between background noise and audible signal, bats use a unique acoustic system. 

Some types of bats are excellent hunters. They often keep an eye on the area while waiting 

for their prey. There is no prey in this area if the signal is received without any dispersal. If 

not, prey is present in the targeted area and can be found by vibrating at an echolocation 

frequency. BA uses frequency tuning while foraging together with adjustments to loudness 

and pulse emission rates. Since they maximise social interactions and rules with biological 
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inspiration, all of these algorithms may be characterised as swarm intelligence heuristic 

algorithms [68] - [69]. 

BA imitates bats' echolocation activity. BA is easy to use, comprehend, and is 

straightforward. The distinctive quality of echolocation draws researchers from other fields 

to BA. BA has been extensively employed in a variety of fields, including data mining, 

pattern recognition, cloud computing, mechanical engineering, and civil engineering. The 

literature has demonstrated an overview of BA [70] and highlighted applications, problems, 

and varieties of BA as well as their variations [71]. But in their study, new directions for 

research were not covered. The uses of BA in the discrete domain [72] together with a 

comparison of several uses. Researchers have been drawn to BA in recent years to find 

solutions to practical issues in a variety of fields. Because of this, researchers sought to alter 

BA's structure in order to improve its functionality. The three main areas have all undergone 

changes. First, by changing the control settings, BA's performance is improved. Second, 

parts of the BA are combined with different optimization procedures. Third, the search space 

and problem type were taken into consideration when modifying BA's structure. The six 

kinds of BA variants— binary, chaotic, improved, hybrid, Levy fight-based, and multi-

objective Bas—are based on the aforementioned characteristics. Four improvements have 

been suggested in BA [73] to boost performance. These changes were made to the way bats 

move, their heart rates, their volume levels, and their local search mechanism. The 

directional BA was the name of the projected BA (DBA). On benchmark tasks, DBA was 

compared to other algorithms and found to be superior. The Doppler Effect is added to BA to 

provide a guided BA (GBA) [74]. Bat frequency shift was caused by the Doppler Effect. As 

a result, bats were able to travel toward the most effective bat recently. A better position 

around the most recent bat was determined using the search procedure. 

GBA did not use the self-adaptive technique for doppler effect echoes. NBA the new bat 

algorithm uses a self-adaptive approach to overcome this issue [75]. In NBA, the habitat 

option was included. NBA delivered superior outcomes to GBA. It has difficulty with 

parameter adjustment, though. The bat's speed and direction are dynamically altered by an 

adaptable BA (ABA) [76]. To modernize the location of bats, the inertia weight was added to 

ABA. RBA is a new algorithm that combines BA and a remembrance mechanism based on a 

similar idea of ABA [77]. To update the position of the bats, the time-varying inertia weight 

was also included in RBA. The velocity and location of the bats are changed in a new 

variation of BA (BBA) [78]. A V-shaped transfer function was used to change the 

continuous search space into binary search space. For both unimodal and multimodal test 
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functions, BBA was successful in providing the best solutions. A perfect optical bulb design 

was created by BBA. The knapsack issues are solved using a new BBA (NBBA) [79]. The 

search was conducted in two stages. BBA's initial task was to identify the most effective 

solutions. After then, a local search method was used to block results from being in local 

optimal points. NBBA outperformed BBA in performance. To resolve the multidimensional 

knapsack issues, a discrete BBA (BinBBA) was used [80] 

Binary space is created by transforming the continuous search space. They employed a 

sigmoidal function. Compared to other binary metaheuristics, BinBBA performed better. A 

unique BA version built on chaotic map functions has also been addressed in literature [81]. 

Eleven different chaotic maps were used. Bat noise level was adjusted. Premature 

convergence was removed using CBA. The chaotic levy fight BA (CLFBA), which is based 

on the ideas of chaotic dynamics and levy battles [82], is an effective algorithm for 

identifying the best course of action. Different chaotic maps were employed in a chaos-based 

BA (CsBA) [83] to replace the control parameters of BA. By altering the frequency, pulse 

rate, loudness, and location of the bats, four distinct CsBAs were created. There were utilised 

thirteen different chaotic maps. The experimental findings show that the sinusoidal map-

based CsBA outperformed the other three BA variations. The feature selection problem is 

solved using a global CBA (GCBA) [84]. The population of bats was started using the 

chaotic approach. The GCBA removed the early convergence. A novel variation of BA 

called as LFBA was created as a result of the Levy fight (LF) behaviours in BA [85]. Bats' 

location and speed were altered. Regarding precision and convergence rate, LFBA fared 

better than the BA. Fractional LFBA (FLFBA) is the name given to research on fractional 

calculus that was conducted to further improve LFBA performance [86]. Local search was 

carried out using a random walk based on the Levy distribution. Calculating fractions 

allowed for the updating of bat velocity. On test functions, FLFBA was assessed, and it 

outperformed the other algorithms. To speed up convergence, a novel LF variation of BA 

(DLFBA) based on LF and differential operator is introduced [87]. The variety in BA was 

preserved by using LF. In comparison to the other Levy battle variation of BA, the suggested 

method was better. An enhanced variant of BA that made use of the ideas behind OBL and 

LF random walks [88]. To increase variety in BA, OBL is applied. The OBMLBA algorithm 

was more effective than the other methods. A double sub-population LFBA (DLBA) is used 

maintaining variety and intensification in harmony in the BA sub-population [89]. Position 

updating in internal and exterior subgroups was done using the LF model and the dynamic 

weight model, respectively. DLBA outperformed the competition in terms of performance. 
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The performance of BA is enhanced by BA-DE methods (differential evolution) [90]. The 

mechanics of DE's new local solution creation and solution selection were modified by this 

hybrid method. For high-dimensional benchmark issues, this method fared better than BA. 

The computational difficulty of this strategy, however, is not looked into. The optimization 

issues are solved by combining ABC and BA [91]. To further enhance the search capability, 

the inertia weight was added to BA. Benchmark test functions were used to assess the hybrid 

technique, and it was discovered that BA-ABC produced superior outcomes to BA and ABC. 

In this hybrid technique, BA's (92) and ABC's (4%) contributions were both much larger. 

However, compared to ABC and BA, BA-ABC has a somewhat larger temporal complexity. 

Multi objective optimization (MOO) issues are dealt with the BA (MOBAT) extension [92]. 

MOBAT performed better on Pareto fronts when assessed using benchmark test functions. 

To address generator planning, a multi-objective shuffled BA (MOShBAT) [93] is 

developed. ShBAT now includes crowding distance and non-dominated sorting methods. 

Distributed Pareto Fronts were produced by MoShBAT. Prakash and others multi objective 

BA (NSBAT-II) was developed using the principles of elitism and non-dominance [94]. 

When evaluated on a real-world reactor issue, NSBAT-II demonstrated better convergence 

than NSGA. The association rule mining problem is solved by a multi objective BA (MOB- 

ARM) [95]. MOB-ARM was successful in retrieving significant and credible regulations. 

VLSI problems are solved using an expanded form of multi objective BA (MOBA) [96]. and 

a new Pareto dominance notion in the multi objective improved BA (MOIBA) [97] 

framework. The crowding distance and non-dominated sorting were applied. MOIBA was 

put to the test for an electrical issue. The many Pareto Fronts might be produced via MOIBA. 

The relationship of the dominating solution is established using the new objective BA 

(MaOBAT) [98]. Based on the dominance connection, non-dominated solutions were 

chosen. MaOBAT achieved a higher rate of convergence than the alternative methods. The 

MBA (MOMBA) uses the Pareto dominance strategy to tackle complex problems and 

improve the capacity for exploration [99]. MOMBA was able to produce a variety of Pareto 

fronts. 

 

2.2.4 Sliding Mode Control (SMC) 

The Soviet Union is where variable structure control (VSC) was initial 1950s appearance. 

Emelyanov et.al. [100] in their key papers, saw the plant as a linear second-order system 

described in phase variable form. The capacity of VSC to provide extremely reliable control 

systems often invariant control systems is its most significant characteristic. When a system 
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is invariant, it totally ignores any external disturbances and parametric uncertainty. In spite 

of modelling mistakes, positive outcomes have been documented in terms of removing 

disturbances, resolving nonlinearities, and establishing tolerable control. The primary mode 

of operation in systems with changing structure is the sliding mode. VSC is still being used 

in research and development today in several engineering systems. In this field, many VSC 

articles have been published. The topics under investigation be sure to mention the sliding-

mode, its stability, the consequences of changes in the parameters of the system values and 

external disturbances, and the analysis of systems with unobservable state variables of 

system. In 1993 and 1999, respectively, two further survey articles [101] – [102] were 

released. High performance systems that are resistant to noise and parameter uncertainties 

are produced via variable structure control. Two phases are involved in the design of such 

systems: (a) selecting a collection of switching surfaces that correspond to a desired motion, 

and (b) creating a discontinuous control law that assures the convergence to the switching 

surfaces and the attractiveness of the switching surfaces. When the system's possible 

trajectories are the switching surfaces and don't leave them for the duration of the motion. 

Adaptive control is a key strategy for addressing model uncertainty, and sliding mode 

methods are yet another strategy that may be utilised to address control issues. These 

methods are currently drawing more attention. 

There may be disparities between the mathematical structure and the actual plant used to 

create the control system. Possible causes for this discrepancy may be a number of 

circumstances. Instead of such inconsistencies, the engineer's job is to guarantee that the 

system is performing at the needed levels. To get rid of any errors, a number of reliable 

control methods have been created in the sliding mode control methodology is one such 

approach. Any system's primary need depends on the controller's control action. The control 

action is made precisely to accomplish the goal. Additionally, as system complexity rises, 

achieving optimal control performance becomes increasingly difficult for researchers. 

Additionally, because to their horrifying complexity, traditional controllers are not 

substantially more suited to handling plant uncertainty. SMC method is used as a controller 

because it has the capacity to function adequately when nonlinear system characteristics are 

taken into account. Sliding mode control developed from groundbreaking studies done in the 

former Soviet Union in the 1960s [103]-[104]. Since that time, SMC has offered robust 

control techniques for all linear and nonlinear systems, including large-scale systems, MIMO 

systems, and time-variant systems. Due to fascinating characteristics of SMC, it is mostly 

used in the active control of ambiguous structures. SMC layout and implementation are 
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straightforward and economical. Additionally, order reduction and robustness are ensured by 

SMC. Against system uncertainties and disruptions [105] The SMC technique is one of the 

other control methods that is thought to be variable structured [101]. Every time a erratic 

control architecture flips the system. The stated surface is reached by the system state space 

and remains there forever. We call the surface of the state space as surface of sliding type. To 

acquire the progress of the state track solely moving in the direction of switch, several 

control structures have been developed. As a result, there is no control composition can 

specify or include a definite path. 

The definite path, however, moves in the direction of the controllers’ structure boundaries, 

and the sliding mode [106] is the name given to these system motions that slide around 

boundaries. The system dynamics should be constrained to move in the direction of the 

surface of sliding type for the optimum sliding motion. In general, when designing SMC, we 

adhere to two guidelines. The first rule calls for system responsiveness, which is 

accomplished by creating a sliding surface. The second group of equations defining the 

surface of switching of the plant are therefore forced to be satisfied by the state variable of 

the plant. The second principle calls for the creation of a switched feedback gain that drives 

the state track of the plant towards the surface of sliding type. Based on the extended 

Lyapunov stability theory [107], these two principals were developed even while SMC is a 

powerful tool for control systems, it still has certain limitations. The switching of control 

must be place with infinitely high frequency in ideal circumstances. Transitioning to the 

limited sliding type mode's subspace glide pushes the system dynamics trajectory. However, 

in practice, control switching at high frequencies is not practicable because of the physical 

constraints of switching devices and the length of time required for control calculation. And 

the oscillations known as chattering are the effects of this high frequency. Chattering can 

cause system instability, energy loss, and even plant harm. Another problem mentioned in 

the literature is the sliding-mode type control method which succeeds in the situation of 

matched uncertainties but fails in the case of mismatched uncertainties [108] – [109]. 

 

2.2.4.1 Quasi-Sliding Mode Control 

When direct digital implementation is tried, the sliding-mode type controllers also known as  

SMCS, that were initially designed for uninterrupted-time methods may not work effectively 

or may also cause the structure to become unstable. Since immediate execution has its limits, 

numerous academics have either addressed these restrictions or suggested methods that take 

the sampling process into consideration. The sampling procedure is said to restrict the 
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occurrence of a real sliding mode in the literature [110]. As a result, definitions of sliding-

mode of quasi types have been proposed as QSM, and the prerequisites for their presence are 

looked and specific attention is paid to the stability problem and the requirements for 

convergence and sliding [111]. The initial purpose of the sliding mode control systems 

(SMCS), as it is almost never possible to determine in practice the boundaries of unknown 

factors [113]-[114], a For the input-output structure, a suggested distinct vigorous adaptive 

QSM tracing controller is proposed [112]. This controller overcomes the unpractical 

assumptions without being aware of the parameters' higher and lower limits. On the other 

hand, a method [115] is provided that, as opposed to driving the system state to a vector with 

a different form [116], pushes it close to a switching hyperplane in the state space. They 

described a achieving law-based method for creating the law based on distinct-time sliding-

mode type control and outlined the required characteristics of the controlled systems. Later, 

to ensure higher resilience and increased performance, a revised quasi-sliding mode control 

of quasi type also known as QSMC technique using achieving law based method was 

presented [117]. 

 

2.2.4.2 Exponential Reaching Law Sliding Mode Control 

The flawless tracking performance of sliding-mode type control may potentially be 

guaranteed regardless of parameter or model uncertainty due to its resilience. Therefore, 

sliding mode control outperforms other nonlinear approaches in terms of resilience. 

However, the chattering issue might result in the system oscillating at high frequencies and 

becoming unstable throughout the real engineering application process. The changing of the 

reaching rule [118] by producing the discontinuous gain basing their study on this strategy to 

minimise or even eliminate chattering on control input is an intriguing method in the 

literature for chattering reduction. The system's approaching process can have better dynamic 

convergence quality thanks to the approaching legislation technique. Literature has proposed 

the exponential reaching law [119], power reaching law, and continuous reaching law. 

Numerous researchers have also studied the reaching law via research, and as a result, 

numerous new and improved reaching laws have been developed a fast power reaching law 

[120] that linearly combines the exponential reaching rule with the single power reaching 

law to reduce the reaching time. A unique exponential reaching law that incorporates the 

sliding mode variable's exponential term function is suggested in [121]. The exponential term 

can effectively decrease the chattering issue and react smoothly the changes in the sliding 

mode variable. In [122], a double-power sliding mode reaching law, which was applied to 
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the robot tracking issue, was created by doubling the order of the reaching rule. Despite the 

fact that this concept might speed up reaching, it did not provide a qualitative study of the 

reaching law. On the basis of a double-power sliding mode reaching law and qualitative 

analysis, a multipower sliding mode reaching law [123] was presented, which may increase 

the system's dynamic reaction time and successfully suppress the chattering phenomena. An 

uncertain discrete-time system was given a novel discrete reaching law sliding mode control 

approach in [124], and the quasi-sliding-mode domain was enhanced by redefining the 

change rate as the second-order difference of system uncertainties and adopting the 

continuous-approximate function. A complementary sliding mode control (CSMC) [125] 

significantly decreased system tracking errors, reduced chattering, and increased system 

resilience.A control strategy devised for the permanent magnet linear servo motor in [126] 

that combines complimentary sliding mode control and Elman neural network provides a 

strong dynamic response and steady-state control precision. 

 

2.2.4.3 Decoupled Sliding Mode Control (DSMC) 

The SMC method cannot be applied to nonlinear systems with non-canonical forms, so 

decoupled sliding mode controllers are used for nonlinear under-actuated systems as a 

straightforward method to achieve asymptotic stability. Numerous sophisticated features, 

including strong performance and robustness against parameter variations, are present in this 

method. Decoupled sliding mode theory has been put out [127], and acquired law design 

methodology for DSMCs has been provided [128]. Numerous scholars are working to correct 

this [129] – [130]. A nonlinear model of an inverted pendulum system has been given for 

DSMC [131], which structures uncertainty in this system by taking into account the 

possibility of a measurement error in the pendulum angle. For the purpose of simulating the 

stability of an inverted pendulum system and its design, a Pareto optimum DSMC has been 

presented [132]. Nonlinear systems built upon a multi-objective GA have been subjected to 

Pareto design of decoupled sliding-mode controllers [133]. An enhanced particle swarm 

optimization (PSO) approach has been used to find the ideal DSMC parameters [134]. The 

Moving Least Squares (MLS) approximation has then been used to adjust the optimum 

controller to any beginning situation. Finally, a ball and beam system has successfully used 

the suggested online optimum DSMC. Fourth-order systems have also been used with 

decoupled sliding-mode controllers based on time-varying sliding surfaces [135]. The input- 

output mapping of the one-dimensional fuzzy rule bases served as the basis for the linear 

functions that computed the time-varying sliding surface slope. In addition to having a more 
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straightforward structure than the decoupled control techniques now in use, the suggested 

approach does so without sacrificing speed [136]. A class of fourth-order nonlinear systems 

can easily reach asymptotic stability using the decoupling technique. For nonlinear systems, 

a decoupled sliding-mode with fuzzy-neural network controller has been developed [137]. 

This technique effectively controls nonlinear systems with a single input and several outputs. 

Additionally, the system's reaction time will converge more quickly when using this method. 

The application of GAs optimization to DSMCs is found in [138]. For a class of fourth-order 

nonlinear systems, a non-singular decoupled terminal sliding-mode control has been used 

[139]), which offers a significant increase in terms of quicker dynamic reactions. For a class 

of mechanical systems with underactuated actuators, direct adaptive fuzzy sliding mode 

decoupling control has been used [140]. Control for the cart-inverted pendulum system has 

been carried out using a decoupled third-order fuzzy sliding model [141]. On the other hand, 

in nonlinear systems, the existence of uncertainties such modelling error, outside disturbance, 

and measurement error can cause the system to become unstable in addition to affecting 

performance and reaction. The sensor's noise, poor resolution limit, and other issues are 

among those that might lead to measurement mistake. Therefore, DSMC is modified using a 

variety of approaches to provide a reliable controller that typically has supervisory 

performance. 

 

2.2.4.4 Fuzzy sliding mode Control (FSMC) 

Zadeh first proposed the fuzzy sets theory in 1965 [19]. Since then, the fuzzy set theory and 

its applications have advanced quickly as a result of several research initiatives. Mamdani 

put out the idea for the first productive use of fuzzy set theory in the control in 1974 [142]. In 

general, fuzzy controllers are very helpful when working with complicated or poorly 

specified systems, which makes it difficult to employ traditional control methods. The 

features of the system to be regulated are the foundation for the design of the fuzzy 

controller. This makes the effective and economical construction of the fuzzy controller a 

study area in fuzzy controller design. The "self-organizing controller" was subsequently 

suggested by researchers [143] and others [144], in which the fuzzy controller may be 

developed through a "learning" process. The creation of the performance index table still 

necessitates a lot of trial-and-error work, though. Based on the design requirement, it is 

equally challenging to maximize the performance of the resultant system. The capacity of 

fuzzy logic to capture the degree of uncertainty in human thought is one of its key 

characteristics. Consequently, fuzzy logic is an approach to deal with the unknown process 
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when the statistical prototype of one process is absent or exists but is not certain [145]. 

However, the analysis is difficult due to the enormous number of fuzzy based rules for a 

system of high order. Nowadays, the fusion of fuzzy logic with SMC has received a lot of 

attention. Multiple fields have developed composite fuzzy sliding mode controllers [146] – 

[151]. The membership function must be both broad enough to decrease the effect of 

sensitivity    in noise and sufficiently intense for precision when using fuzzy based logic 

reasoning systems to get a gain [152]. The performance of a traditional pure fuzzy controller 

can be enhanced by sliding mode qualities in a composite fuzzy SMC, on the other hand 

FSMC generate the control output based on sliding conditions of 3 types (approaching, 

sliding, and stable). Given that the fuzzy inference rules input variable is determined by the 

sliding surface, rules may be minimized. In terms of eradicating settling time, overshoot, 

tracking precision, and steady-state error removal, the suggested controller outperformed a 

pure fuzzy controller [154]. To deal with the chatter issue and attain zero steady-state error, 

the FSMC, proportional-integral control and state feedback control are used [155]. To allow 

for the best control attempts when uncertainties are present, membership function parameters 

cannot be changed. Fuzzy logic is used by the SMC during the reaching phase to reduce 

chattering without compromising robust performance [156]. The sign function is included in 

the final control law [157]-[158], There is, however, some chatter in the attempts while 

control. On the other hand, adding SMC to a fuzzy neural network offers a potential remedy 

for the chattering phenomenon. Intelligent uncertainty observers were developed in [159] and 

[160] to assess the constrain of lumped uncertainty, however the network architecture and 

inference method were overly complicated. By connecting the fuzzy controller's principles to 

those of a sliding-mode based controller with a bounded layer, a fuzzy sliding mode design 

method was made possible [161]. This layout can result in a solid closed-loop system while 

preventing the SMC's chattering issue. A similar paper on fuzzy sliding mode control 

research may be found in [162]. 

The desired sliding mode can ensure performance, but the same issues that plagued the fuzzy 

controller's design still exist, including choosing scaling factors [163] and creating a fuzzy 

rule base [164]. The computerized layout of fuzzy sliding mode control using a genetic 

algorithm is accomplished by recasting the issue of establishing the rule-base into one of 

parameter optimization [165]. It is not ideal for real-time applications since it takes a long 

time. In [166], two ways of adaptive SMC schemes have been developed that the fuzzy 

systems have utilised to estimate the new system operates while building the SMC of 

nonlinear systems. These approaches take into consideration the fuzzy approximation and 
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sliding mode control scheme. In the concepts of fuzzy based control and sliding mode type, 

the sliding surface of sliding mode control is dynamically optimized by fuzzy control. The 

controller considerably decreases the control chattering that is inherent to sliding mode 

controls, as well as uncertainty brought on by mismatched dynamics and disturbances from 

outside sources. This study compares the outcomes of several sliding mode fuzzy logic 

controller applications in terms of oscillation and settling time of controller output. 

 

2.2.4.5 Neural Sliding Mode Control 

The SMC is a reliable nonlinear control method with a quick transient response and 

effectiveness in overcoming uncertainty. The chattering and discontinuous control effort, 

however, might ignite the high-frequency dynamics. The creation of artificially intelligent 

control for robotic manipulators has drawn a lot of attention during the past 20 years. Neural 

network control (NNC) and fuzzy control are the two intelligent-control methods that are 

most often used. A nonlinear function may be learned and approximated by neural networks 

with any degree of precision. To represent complicated processes and account for 

unstructured uncertainty, the controller uses this capability. Learning, parallelism, and fault 

tolerance are characteristics of neural networks [167]. In several situations, NN-based SMC 

has been employed as the controller [168]–[171]. Wavelet neural networks (WNN) are 

created by fusing wavelets with neural networks. It blends wavelet decomposition's 

identification capabilities with artificial NN's online learning capabilities [172]. Its notable 

features are rapid convergence, excellent accuracy, and a small network size [173]. A 

approach called adaptive neural tracking control was put forth by certain researchers to 

handle control systems with dynamic uncertainties [174]. Robust control based on neural 

networks was used to manage the nonlinear multilayer systems [175]. Any function of 

nonlinear type over a neat set with random precision may be estimated by an RBF neural 

network, according to previous research on universal approximation theorems on RBF [176]. 

To follow a predetermined trajectory, the nonlinear system’s output is controlled. The 

Lyapunov synthesis method is used to establish an control algorithm adaptive type, which is 

based on the RBF model. A solid performance may be guaranteed with the chattering action 

reduced. The manipulator dynamic equation uses an RBF network to estimate the unknown 

portion, and sliding mode control may also be employed to account for approximation error 

and disturbance. 
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2.3 Review of control techniques of nonlinear systems 

In this section, a brief view on the implementation of optimization algorithms and controlling 

techniques is discussed on nonlinear systems with their mathematical modelling. The 

nonlinear systems which are considered here for the literature review are 2 DOF ball balancer 

system, inverted pendulum, robot arm manipulator, translational oscillator with rotational 

actuator (TORA) system. 

 

2.3.1 Review of Control Techniques for 2 DOF Ball Balancer Systems 

The modified PD [177] control on ball and beam system uses two configuration of PD 

controller i.e., serial and parallel. The stability is also analyzed with complete nonlinear 

model. A coupling free model of ball and beam system is given in [178] with objective to 

only control the ball position so they suggested separate control for ball and motor positions. 

The conventional, modern and intelligent controllers has been investigated in terms of step 

response to observe the performance of system [179]. The tracking of un-modeled dynamics 

system is control by filter based LQR control [180]. The proposed approach shows the 

effectiveness and feasibility as compare to existing methods. The decoupled fuzzy sliding 

mode controllers (DFSMC) with ACO algorithm [181] on ball and beam system. The ACO 

algorithm used to tune the DFSMC controller parameters and performance is compared with 

standard ACO algorithm. PSO algorithm with PID and fuzzy controller on the ball and beam 

[182] with parameter variations have already implemented to control the ball position. 

Fractional order PID (FOPID) controller on ball and beam model is implemented the both 

FOPID and conventional PID to control the ball position [183]. The FOPID gave better results 

as in controlling ball position. 2 DOF feedback controller on the system handles the 

uncertainty to enhance the tracking [184]. The results obtained were satisfactory compare to 

existing methods. Fuzzy logic controller (FLC) for ball and beam system is used with 

modified ACO algorithm (MACO) to tune membership function of FLC [185]. The 

performance of MACO compared with standard ACO algorithm and results shows better 

convergence and accuracy in position tracking. The PID controller is use to balance the ball 

position in ball and beam system and the parameters of controller have been optimized with 

trial and error method and PSO algorithm [186]. The PSO algorithm not only tuned the 

controller parameter well but also improves the system response and enhance the system 

efficiency. The optimal fuzzy controller on ball and beam system with gravitational search 

algorithm tuned the FLC parameters to improve the control performance [187]. The ball 

balancer system has intrinsic complexity, making it difficult to stabilise the system such that 
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the ball may be moved to a precise place and retained there while minimising tracking error 

and time. These problems arise from the system's intrinsic complexity. The goal of this study 

is to compare various metaheuristics control strategies used on a ball balancer. Results from 

the Ball Balancer demonstrate the effectiveness of modifying a metaheuristics strategy for 

controller optimization. 

 

2.3.2 Review of Control Techniques for Inverted Pendulum 

The cart pendulum system stabilizes the pendulum position [188] author used an energy 

control method in which an “energy well” was built within cart to prevent outside motion. 

When the position of the pendulum came upright, then stabilize controller was activated to 

hold the same position of the pendulum. From the above proposed method, the Lyapunov 

stability function was also derived. A FOPID and integer PID controller control the two-

wheeled inverted pendulum's pendulum position [189]. The FOPID and integer PID 

controller parameters were optimized with optimization algorithms like PSO, artificial bee 

colony (ABC), cuckoo search and GWO. The comparative study showed that ABC based 

FOPID gave better performance as compared to integer PID controller in stabilizing the 

pendulum position. Optimization based algorithm with LQR controller is designed to 

stabilize the position of double inverted pendulum [190]. The linearized system model was 

used with controller. The controller parameters are required to control the pendulum 

position. The viscous damping effect introduced into existing inverted pendulum system 

[191]. The PID controller with optimization algorithms was used to control the position. 

GSA and Genetic algorithms were used to optimize the controller parameters. The 

performance of both the algorithms was compared and found that GSA tuned PID control 

gave more effective and robust performance as compared to other one. The author studied 

and contributed in the analysis of rotary inverted pendulum system [192] found that most of 

controllers used on RIP system were based on model and depended integral motion. By using 

the trial-and-error method, the best linear quadratic controller for a nonlinear inverted 

pendulum is chosen. [193]. The matrix parameters of the LQR controller were selected by a 

synthetic bee colony. The ABC algorithms optimized controller parameters and gave better 

results as compare to conventional LQR controller. Ant colony optimization (ACO) based 

controller for inverted pendulum is also presented in literature to control the pendulum 

position [194]. The results found that ACO algorithm was efficient in tuning controller 

parameters and significantly minimizes the objective function by using the fractional order 

model (FOM) [195] for inverted pendulum and compared existing identified integer order 
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model (IOM). Sine Cosine algorithm (SCA) was used to tune the coefficients of FOM and 

IOM model. The FOPID controller of the FOM model outperformed the fuzzy PD controller 

of the IOM model in terms of precision and pendulum position control. The hybrid PSO 

based model reference adaptive PID control for rotational inverted pendulum is also 

implemented to control the pendulum in upward position [196]. 

 

2.3.3 Review of Control Techniques for Robotic Manipulator 

An adaptive fractional order PID sliding mode controller (AFOPIDSMC) with the Bat 

optimization approach is employed for the Caterpillar robot manipulator to reduce chattering 

and trajectory tracking inaccuracy [197]. Here FOPID controller is used to improve the 

trajectory tracking performance while SMC is neutralizing the chattering effect. The Bat 

algorithm is used to tune proposed controller parameter. The Lyapunov stability is also 

discussed for the proposed controller. The performance of controllers i.e., PID, FOPID, 

SMC, AFOPIDSMC, and BA-AFOPIDSMC have been compared and results indicate the 

effectiveness of system. A multi software platform for robot manipulator systems used 6-

DOF robot arm manipulator with optimization algorithm for the analysis [198]. Optimization 

algorithm gives proper tuning parameter which further enhance in accuracy, efficiency, 

reliability. Genetic algorithm used to tune parameters of system so that they can model 

accurately and improves the performance in trajectory tracking. Optimal FOPID controller 

with adaptive colliding bodies’ algorithm reduces the error to converge it and automatically 

update with next iteration on robotic arm manipulator [199]. The controller parameters are 

optimized by algorithm which further improves the convergence speed effectively. The 3-

DOF robot arm with fractional-order fuzzy PID controller (FOFPID) for trajectory tracking 

[200], genetic algorithm (GA) has been used to tune controller’s parameters. The 

performance of different controllers like PID, FOPID, Fuzzy PID and FOFPID have been 

compared. FOFPID gives better performance as compare to other in trajectory tracking. The 

performance of different controller on nonlinear systems is investigated on three controllers 

i.e., adaptive nonlinear model predictive control (NMPC), PID based NMPC [201]. These 

controllers are implemented experimentally on 2 link robot arm system. The comparative 

study has also been done for all the controllers. ABC based PID controller on robotic arm 

system is to control the arm position and improve the tracking performance [202]. The ABC 

algorithm tune the controller parameters and improves the system performance significantly. 

The optimized controller gives better trajectory response and make system more robust 

towards external disturbances. The mean square error, tolerance to disturbance, and 



32 
 

parameter modifications of the radial basis function network (RBFN) and multilayer feed-

forward neural network (MLFFNN) for robot systems are compared [203]. The performance 

obtained indicates the superiority of RBFN over MLFFNN for both robotic manipulators. 

2-DOF robot system with PID controller and adaptive PSO (APSO) algorithm has been 

used to adjust the gains of controller. The performance has also been investigated in terms of 

tracking error and cost function. The tuned controller minimizes the cost function and 

enhance the trajectory response well as compared to other numerical methods. The PID 

controller for optimal trajectory tracking control for 2 link robot manipulators with ant 

colony optimization (ACO) algorithm that optimizes the controller parameter and optimized 

controller is able to handle uncertainties of the system to very good extent [204]. The 

optimized controller improves the system trajectory response. A whale optimization 

algorithm (WOA)-based PID controller for nonlinear systems is used with a two-link robotic 

arm manipulator with the aim of managing the arm position and minimising the mean square 

error [205]. The WOA algorithm not only tuned controller parameters well but also controls 

the arm position subjected to step input [206]. The performance is analyzed in terms of time 

domain parameters and objective function i.e., MSE. A recently developed algorithms (PSO, 

WOA and GWO) with PID controller on robot manipulator is used to tune PID controller 

parameters [207]. They also compared the algorithm based controller performance in terms 

of settling time, tracking trajectory and ITAE. The results indicates that WOA based control 

gives better performance. The use of hybrid algorithm DE-TLBO based PID control for 

robotic arm system is used to optimize the controller parameter [208]. The performance of 

hybrid algorithm is compared with individual algorithm i.e. DE and TLBO. The results 

indicates that hybrid control well improves the transients and steady state performance of 

system. 

 

2.3.4 Review of Control Techniques for TORA system 

Cascade controllers and feedback passivating controllers are created to stabilise TORA 

systems asymptotically [209]. The TORA system is an underactuated system with certain 

unique properties that can encapsulate the fundamental idea behind dual-spin spacecraft. As a 

result, it has received a lot of academic interest [210] – [211]. Several researchers have 

concentrated on the control problems of single TORA systems in recent decades, and they 

have reported a number of amazing accomplishments. For underactuated TORA systems, a 

partial feedback linearization-based control approach is offered [212]. To stabilize the 

oscillation, the three state-feedback controllers for the TORA system [213] are used. On the 
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basis of the function approximation method, a backstepping-like adaptive controller is 

developed [214]. To stabilize TORA systems, a block-backstepping based control technique 

is used [215]. To accomplish stabilising control, the sliding mode control (SMC) approach is 

offered [216]. Incorporating a continuous sliding mode mechanism, a novel nonlinear control 

method was used to regulate underactuated TORA systems [217]. Several control 

mechanisms have been used, all based on the cascade and passivity principles of the TORA 

system [218]. The simultaneous control experiments for a TORA system with a mounted 

pendulum's total mechanical energy and actuated variables are provided [219]. To avoid 

velocity feedback, a pseudo-velocity signal-based output feedback controller is suggested 

[220] - [221]. A multi objective control approach based on linear matrix inequalities is used to 

address the control problem of TORA systems [222]. The TORA system is demonstrated as a 

nominal linear system by suggesting an identification-based approach that enables H robust 

control [223]. In [224], an additive state-decomposition-based tracking control is offered to 

address the tracking issue for TORA systems. In [225], a worldwide robust output regulation 

is presented and applied to a family of weakly minimal phase nonlinear systems, including 

TORA systems. In order to guarantee the robustness with regard to dynamic uncertainties, a 

stabilizing output feedback controller is built [226]. In addition to these traditional model-

based control strategies, numerous intelligent control algorithms are also developed and 

deployed for underactuated TORA systems [227] – [231]. TORA's decoupled underactuated 

dynamics were utilised after the development of an adaptive controller to account for various 

internal uncertainty and external disturbances [232]. 
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Chapter: 3 

Position Control of a Ball Balancer System using Particle Swarm 

Optimization (PSO), Bat Algorithm (BA) and Flower Pollination 

Algorithm (FPA) 

 

3.1 Introduction  

Nonlinear systems with underactuated actuators are approximated with intelligent-control 

and autonomous decision development methods [233]. They arose in a variety of contexts 

[234] and were attempted in a variety of ways.  The bulk of the research employ the inverted 

pendulum [235], TRMS system [236], ball and beam system [237], hovercraft [238], furuta-

pendulum [239], and, ball and plate system [240] as benchmark examples. In general, linear 

controllers make closed-loop control for such systems simple to implement [241], but their 

complex nonlinear dynamics limit the control rules for all generalized applications. This 

attracted the attention of several nonlinear control approaches [242], however these 

controllers struggle to handle external load and lagging brought on by extra feedback. For 

mechanically underactuated systems, the literature has developed feedback-linearization 

[243] and partial feedback-linearization [244]. However, challenges arising from a lack of 

resilience have limited their use in a variety of disciplines. Additionally, [245] provides a 

method for making available the system with a storage function which is based on passivity, 

at selected equilibrium point. This has the downside of being unable to amplify 

measurement noises with differential feedback. Additionally, these issues made it 

impossible to create a control system that could operate steadily. These goals are achieved 

by using a benchmark issue with an underactuated ball and plate to demonstrate position 

control and route tracking. Previous studies [246] – [247] presented a PID controller 

techniques for system control on a point-to-point basis using disturbance rejection 

controllers [248] and several optimization strategies [249], more evidence is provided to 

support the intended tracking performance for the systems. 

Sliding mode control (SMC) have extensively explored and achieve the self-balancing 

control [250], and also developed a fractional-order SMC [251] to more effectively reduce 

the basic SMC chattering issue [252]. The predictive controllers are frequently used with 

ball balancer systems due to significant advantages when compared to time-varying 

reference systems [253]. Apart from it a hybrid of intelligent controllers, such as fuzzy logic, 

are employed to control the ball and plate system's location and trajectory [254], fuzzy 
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cerebellar model articulation controller [255], and particle swarm optimization-based fuzzy-

neural controller [256]. In real-world engineering applications, the PID controller is widely 

used, although their control algorithms for establishing self-balancing control using balancer 

systems are not present in the literature. The PID controller provides a number of benefits, 

including a simple design, high dependability, and exceptional stability. On the other hand, 

traditional PID controllers have a severe problem with parameter tuning. In many 

engineering and industrial design applications, researchers try to find the solution of a 

problem while dealing with exceedingly complex limitations. Such limited optimization 

problems are frequently highly nonlinear, and finding the best solution can be time-

consuming. For issues involving nonlinearity and multimodality, traditional optimization 

does not produce good solutions. To solve such tough problems, the current tendency is to 

use nature-inspired metaheuristic algorithms, which have been demonstrated to be 

unexpectedly efficient. Researchers have only used a few natural properties so far, and there 

is still room for more algorithm improvement. There are a variety of strategies for tweaking 

PID parameters that may be found in the literature. These strategies make use of a variety of 

intelligent methods, including fuzzy [257], neural [258], self tuning algorithms [259], 

genetic [260], and evolutionary algorithms [261]. 

The development of an ideal multiobjective method for resolving combinatorial 

optimization problems, including particle swarm optimization (PSO), bat algorithm (BA), 

and flower pollination algorithm (FPA), has also been brought on by issues with intelligent 

controller optimizing parameters, memory limitations, fast convergence, poor searches, and 

excessive computing effort for genetic and other evolutionary algorithms. [262] – [263]. To 

construct a nonlinear algorithm that can try to address multimodal optimization difficulties, 

the attraction mechanism was integrated with light intensity fluctuations. An interpretative 

capability that is present in processing unit communication is known as swarm intelligence 

(SI) [264]. The theory of swarm explains stochastic manner, plurality, messiness, and 

unpredictability, but the theory of intelligence suggests that the analytical capacity is 

successful in some ways [265] – [266]. SI draws inspiration from social animal groups such 

flocks of birds and schools of fish as well as insects like termites, ants, wasps, and bees 

[267]-[268]. Individuals in the swarm can be described as simple solutions, yet they have a 

strong ability to work together to solve complex non-linear problems [269]. 

In this chapter, the simulation findings of controllers on the control of a ball balancer are 

present.  The ball balancer system struggles with problems including putting the ball on the 

plate while maintaining balance and stabilized the point control, which enables the ball to be 
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moved to a specific spot and kept there while minimising tracking error and time. These 

problems arise from the system's intrinsic complexity. This research makes a valuable 

contribution to the ball balancer system's mathematical modelling, parameter optimization, 

and controller design. The main goal is to compare the several metaheuristics control 

strategies used on a ball balancer system. The focus is on utilising simulink to develop and 

implement controllers for ball balancer setup. Adapting a metaheuristics algorithm for 

optimising controllers proved to be an innovative adaptation, as evidenced by the Ball 

Balancer findings. Finally, the comparison is performed using PSO, BA, and FPA.  

 

3.2 2-DOF Ball Balancer System 

A ball balancer is a well-defined problem for controlling balancing, monitoring ball 

position, and controlling visual servos. Creating a control system for a ball balancer utilizing 

two degrees of freedom is to maintain the ball's position on the balance plate. In order to 

accomplish this, it is essential to utilise the ball's X-Y position to control the position of the 

rotating servos connected to the bottom of plate. A ball and plate mechanism is pictured 

graphically in figure 3.1. 

 

Figure 3.1 Diagrammatic depiction of ball and plate system 

 

The 2 DOF Ball Balancer module comprises a free-moving plate on which a ball can be 

placed. Two DOF gimbals connect two actuation units to the sides of the plate. The plate 

can be rotated in both the X- and Y-axis directions. The servo motors are wired together in 

actuating units, which are controlled by a potentiometer. To balance the ball at a specific 

planar position, the plate's inclination can be adjusted by adjusting the position of the gear of 

servo load. The Faulhaber series DC micromotor [270] is utilised to balance the system in 

both directions using the rotational motion of the plate. 
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3.2.1 Mathematical Modeling of Ball Balancer System 

Two spinning servo base units are required to operate two actuators in a two degrees of 

freedom (DoF) ball balancer. The plate's configuration matches that of the servo devices, 

and it is anticipated that the dynamics of both devices would not change. As a result, the ball 

balancer can be modelled by two decoupled ball and beam systems [271]. 

The transfer function 𝑆𝑠(𝑠) represents the dynamics between the motor load gear  𝜃𝑔𝑒𝑎𝑟(𝑠) 

and the motor (s) input voltage 𝑉𝑚(𝑠).  Ratio of the ball's position dynamics 𝑥(𝑠) to the load 

gear angle 𝜃𝑔𝑒𝑎𝑟(𝑠)  is depicted with  𝑆𝑏(𝑠). Due to similar servo dynamics shared by the 

ball balancer coordinates, this research proposes a paradigm of control in the X direction. 

Figure 3.2 shows the ball and plate system's X-axis control. 

 

Figure 3.2  2-DOF ball balancer free body diagram 

 

A positive voltage servo motor rotates the gear in the positive direction, causing the beam to 

rise and the ball to roll in the positive direction. The forces exerted on the ball as it goes 

down the beam will be, according to Newton's first law of motion: 

𝒎𝒃𝒂𝒍𝒍�̈�(𝒕) = 𝑭𝒙,𝒕 − 𝑭𝒙,𝒓                (3.1) 

Where 𝒎𝒃𝒂𝒍𝒍 is the ball's mass, 𝒙(𝒕) is its displacement, 𝑭𝒙,𝒓 is its inertia force, and 𝑭𝒙,𝒕 is 

its gravitational translational force. When the momentum force and gravitational force are 

both equal, the ball is considered to be in equilibrium. 

The ball inertia force 𝑭𝒙,𝒓 is given as: 𝑭𝒙,𝒓 = 𝒎𝒃𝒂𝒍𝒍 𝒈 𝒔𝒊𝒏 𝒔𝒊𝒏 𝜶𝒃𝒆𝒂𝒎                       (3.2) 

Where, 𝑔 = gravitational constant, and 𝛼 = is beam angle. The gravitational translational 

force 𝐹𝑥,𝑡 is equal to, 𝐹𝑥,𝑡 =
𝐽𝑏𝑎𝑙𝑙�̈�(𝑡)

𝑟2𝑏𝑎𝑙𝑙
                                             (3.3) 

The nonlinear equation of motion of ball beam is given as. 

𝒎𝒃𝒂𝒍𝒍�̈�(𝒕) = 𝒎𝒃𝒂𝒍𝒍 𝒈 𝒔𝒊𝒏 𝒔𝒊𝒏 𝜶𝒃𝒆𝒂𝒎  −
𝑱𝒃𝒂𝒍𝒍�̈�(𝒕)

𝒓𝟐𝒃𝒂𝒍𝒍
              (3.4) 
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The acceleration is given as �̈�(𝒕) =
𝒎𝒃𝒂𝒍𝒍 𝒈 𝒓

𝟐
𝒃𝒂𝒍𝒍 

𝒎𝒃𝒂𝒍𝒍 𝒓
𝟐
𝒃𝒂𝒍𝒍+𝑱𝒃𝒂𝒍𝒍

                                    (3.5) 

The beam angle 𝜶, is influenced by the ball's placement on the plate, which is further 

influenced by the servo gear angle. The following is the relationship between gear angle and 

beam angle: 

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑔𝑒𝑎𝑟 =  
𝑠𝑖𝑛 𝑠𝑖𝑛 𝛼𝑏𝑒𝑎𝑚  𝑙𝑝𝑙𝑎𝑡𝑒

2𝑟𝑎𝑟𝑚
 

Where 𝜽𝒈𝒆𝒂𝒓 = is a gear angle, 𝒍𝒑𝒍𝒂𝒕𝒆= plate’s length, and 𝒓𝒂𝒓𝒎 = distance between the 

coupled joint and the servo output gear shaft. The nonlinear equation for ball motion in 

terms of gear angle is: 

�̈�(𝒕) =
𝟐 𝒎𝒃𝒂𝒍𝒍 𝒈 𝒓𝒂𝒓𝒎 𝒓𝟐𝒃𝒂𝒍𝒍

𝒍𝒑𝒍𝒂𝒕𝒆(𝒎𝒃𝒂𝒍𝒍 𝒓
𝟐
𝒃𝒂𝒍𝒍+𝑱𝒃𝒂𝒍𝒍)

𝒔𝒊𝒏 𝒔𝒊𝒏 𝜽𝒈𝒆𝒂𝒓                   (3.6) 

The ball's linearized equation of motion is given as at zero angle: 

�̈�(𝒕) =
𝟐 𝒎𝒃𝒂𝒍𝒍 𝒈 𝒓𝒂𝒓𝒎 𝒓𝟐𝒃𝒂𝒍𝒍

𝒍𝒑𝒍𝒂𝒕𝒆(𝒎𝒃𝒂𝒍𝒍 𝒓
𝟐
𝒃𝒂𝒍𝒍+𝑱𝒃𝒂𝒍𝒍)

𝜽𝒈𝒆𝒂𝒓                (3.7) 

Also, the following is the transfer function for regulating ball position for input 𝜽𝒈𝒆𝒂𝒓 and 

output 𝒙 

 𝑺𝒃(𝒔) =
𝒙(𝒔)

𝜽𝒈𝒆𝒂𝒓(𝒔)
=

𝑲𝒃

𝒔𝟐
                             (3.8) 

Where, 𝑲𝒃 =
𝟐 𝒎𝒃𝒂𝒍𝒍 𝒈 𝒓𝒂𝒓𝒎 𝒓𝟐𝒃𝒂𝒍𝒍

𝒍𝒑𝒍𝒂𝒕𝒆(𝒎𝒃𝒂𝒍𝒍 𝒓
𝟐
𝒃𝒂𝒍𝒍+𝑱𝒃𝒂𝒍𝒍)

 = Model gain 

Similarly, the servo motor's control of plate angle is expressed as a transfer function.  

𝑺𝒔(𝒔) =
𝜽𝒈𝒆𝒂𝒓

𝑽𝒎(𝒔)
=

𝑲𝒈

𝒔(𝟏+𝒔𝝉)
                 (3.9) 

The cascaded path in between the servo motor and ball balancer unit is described as having 

the following overall transfer action: 𝑺(𝒔) = 𝑺𝒔(𝒔)𝑺𝒃(𝒔) =
𝒙(𝒔)

𝑽𝒎(𝒔)
=

𝑲𝒃𝑲𝒈

𝒔𝟑(𝟏+𝒔𝝉)
        (3.10) 

The following equation of state-space representation is provided: 

[
 
 
 
 
�̇�(𝒕)
�̈�(𝒕)

�̇�𝒈𝒆𝒂𝒓(𝒕)

�̈�𝒈𝒆𝒂𝒓(𝒕)]
 
 
 
 

= [

𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝑲𝒃 𝟎
𝟎 𝟎 𝟎 𝟏

𝟎 𝟎 𝟎 −𝟏
𝝉⁄

]

[
 
 
 
 
𝒙(𝒕)
�̇�(𝒕)

𝜽𝒈𝒆𝒂𝒓 (𝒕)

�̇�𝒈𝒆𝒂𝒓(𝒕)]
 
 
 
 

+

[
 
 
 
 
𝟎
𝟎
𝟎

𝑲𝒃𝑲𝒈

𝝉 ]
 
 
 
 

𝒖(𝒕) 

 

3.3 Structure of Ball Balancing Control  

The two-degrees-of-freedom ball balancer's open-loop block diagram is shown in Figure 3.3 

as a decoupled approach, in which the x-axis servo has no influence on the y-response axes.
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(a) x-axis servo 

 

(b) y-axis servo 

 

(c) one dimensional representation 

Figure 3.3 2-DoF ball balancer system open-loop block diagram 

 

Figure 3.4 shows the SRV02's x-axis control model, which is combined with the ball 

balancer mechanism. The ball balancer block diagram depicts two loops of control. The 

SRV02 motor model is the first loop, and the 1D ball balancer is the second loop. The inner 

loop's goal is to control the servo motor's position and estimate the voltage in order to 

calculate the load's desired angle.  

 

Figure 3.4 Closed loop ball balancer system block diagram 

 

The inner loop for position control system is given as 
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Figure 3.5 SRVO2 closed loop system 

 

The inner loop that manages the SRV02 load shaft's position is finished. It is possible to 

consider the servo dynamics to be insignificant. It is therefore assumed that the target angle 

is equal to the actual load angle. 

𝜃𝑔𝑒𝑎𝑟(𝑡) = 𝜃𝑔𝑒𝑎𝑟,𝑑(𝑡)             (3.11) 

The outer loop shown in figure 3.6, will be employed to regulate the ball's position along x-

axis of the plate. 

 

Figure 3.6 x-axis 2DBB closed loop system 

The 1DBB controller must be modelled as a PID controller in the time domain in order to 

determine the first operating gains. 

𝛉𝐠𝐞𝐚𝐫,𝐝(𝐭) = 𝐊𝐩,𝐝𝐛𝐛(𝐱𝐝(𝐭) − 𝐱(𝐭)) + 𝐊𝐝,𝐝𝐛𝐛 (𝐡𝐬𝐝(
𝐝

𝐝𝐭
𝐱𝐝(𝐭)) −

𝐝

𝐝𝐭
𝐱(𝐭)) + 𝐊𝐢,𝐝𝐛𝐛 ∫(𝐱𝐝(𝐭) −

𝐱(𝐭))𝐝(𝐭)               (3.12) 

Where, 𝑲𝒑,𝒅𝒃𝒃, 𝑲𝒅,𝒅𝒃𝒃 and 𝑲𝒊,𝒅𝒃𝒃 is proportional gain, derivative gain and velocity gain 

respectively 𝒉𝒔𝒅 is a velocity weight parameter that is included by a controller to 

compensate for the derivative error. 

 

Figure 3.7 PID compensator with derivative set point weight 
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The closed-loop equation of a ball balancer's outer loop system when servo dynamics are 

disregarded. 

𝜽𝒈𝒆𝒂𝒓(𝒔) = (𝑲𝒑,𝒅𝒃𝒃 +
𝑲𝒊,𝒅𝒃𝒃

𝒔
) (𝒙𝒅(𝒔) − 𝒙(𝒔)) + 𝑲𝒅,𝒅𝒃𝒃𝒔(𝒉𝒔𝒅𝒙𝒅(𝒔) − 𝒙(𝒔))     (3.13) 

When the ball rotates along x-axis of the plate, the required gear load are equal (𝜽𝒈𝒆𝒂𝒓,𝒅 =

𝜽𝒈𝒆𝒂𝒓). The 1-D ball balancer system is used to replace the outer loop controller in order to 

obtain the closed-loop equation: 

𝒙(𝒔)

𝒙𝒅(𝒔)
=

𝑲𝒃𝒂𝒍𝒍(𝑲𝒑,𝒅𝒃𝒃 𝒔+𝑲𝒊,𝒅𝒃𝒃+𝑲𝒅,𝒅𝒃𝒃 𝒔
𝟐 𝒉𝒔𝒅)

𝒔𝟑+𝑲𝒃𝒃 𝑲𝒑,𝒅𝒃𝒃 𝒔+𝑲𝒃𝒃𝑲𝒊,𝒅𝒃𝒃+𝑲𝒃𝒃 𝑲𝒅,𝒅𝒃𝒃 𝒔
𝟐           (3.14) 

Where, 𝑲𝒃𝒂𝒍𝒍 is a ball balancer constant. 

To calculate the PID constant, the third order prototype equation is given as: 

(𝒔𝟐 + 𝟐𝜻𝝎𝒏𝒔 + 𝝎𝒏
𝟐)(𝒔 + 𝒑𝟎)           (3.15) 

Where 𝝎𝒏 is the system's natural frequency, 𝜻 is the damping ratio, and 𝒑𝟎  is the pole 

location. 

𝒔𝟑 + (𝟐𝜻𝝎𝒏𝒔 + 𝒑𝟎)𝒔
𝟐 + (𝝎𝒏

𝟐 + 𝟐𝜻𝝎𝒏𝒑𝟎)𝒔 + 𝝎𝒏
𝟐𝒑𝟎        (3.16) 

The closed-loop equation's third-order characteristic equation is: 

𝒔𝟑 +𝑲𝒃𝒂𝒍𝒍 𝑲𝒑,𝒅𝒃𝒃 𝒔 + 𝑲𝒃𝒂𝒍𝒍 𝑲𝒊,𝒅𝒃𝒃 +𝑲𝒃𝒂𝒍𝒍 𝑲𝒅,𝒅𝒃𝒃 𝒔
𝟐         (3.17) 

Equating equation no. (3.15) and (3.16), the following observations are made: 

𝑲𝒃𝒂𝒍𝒍 𝑲𝒑,𝒅𝒃𝒃 = 𝟐𝜻𝝎𝒏𝒔 + 𝒑𝟎            (3.18) 

𝑲𝒃𝒂𝒍𝒍 𝑲𝒊,𝒅𝒃𝒃 = 𝝎𝒏
𝟐𝒑𝟎                       (3.19) 

𝑲𝒃𝒂𝒍𝒍 𝑲𝒅,𝒅𝒃𝒃 = 𝝎𝒏
𝟐 + 𝟐𝜻𝝎𝒏𝒑𝟎           (3.30) 

Moreover, the PID control gains may be computed as follows: 

 𝑲𝒑,𝒅𝒃𝒃 =
𝟐𝜻𝝎𝒏+𝒑𝟎

𝑲𝒃𝒂𝒍𝒍
             (3.31) 

𝑲𝒊,𝒅𝒃𝒃 =
𝝎𝒏

𝟐𝒑𝟎

𝑲𝒃𝒂𝒍𝒍 
              (3.32) 

 𝑲𝒅,𝒅𝒃𝒃 =
𝝎𝒏

𝟐+𝟐𝜻𝝎𝒏𝒑𝟎

𝑲𝒃𝒂𝒍𝒍
              (3.33) 

To meet the specifications of proportional derivative gain, the pole location is adjusted at 

origin, i.e, 𝒑𝟎 = 𝟎. 

Hence the control gains of PD controller is given as: 

𝑲𝒑,𝒅𝒃𝒃 =
𝟐𝜻𝝎𝒏

𝑲𝒃𝒂𝒍𝒍
                          (3.34) 

𝑲𝒅,𝒅𝒃𝒃 =
𝝎𝒏

𝟐

𝑲𝒃𝒂𝒍𝒍
                          (3.35) 

The optimization the PD controller to balance and regulate the ball balancer system we have 
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used different metaheuristics techniques.  

Meta-heuristics are advanced methods for employing heuristics to address a variety of 

issues. The family of Soft Computing approaches, which allow for partially correct or faulty 

results, includes meta-heuristics. This comes at the expense of being unreliable in 

identifying the ideal answer to a specific issue. Such problem-solving approaches are 

necessary because they produce optimum or nearly optimal solutions in a reasonable amount 

of time, which justifies the necessity for them given the extreme magnitude of some 

problems and the failure of precise methods. The swarm intelligence technique family 

includes some of the algorithms. The primary source of inspiration in this field is the group 

behaviour of insects, animals, or any other type of species that results in intriguing global 

behaviours. The local interactions between individuals and their environments produce 

global decisions since there is no centralised control unit for decision-making. 

Some of the techniques are used here to optimize the controller parameters, such as: 

● BAT Algorithm (BA)   

● Particle Swarm Optimization (PSO) Algorithm  

● Flower Pollination Algorithm (FPO) 

 

3.3.1 Particle Swarm Optimization (PSO) Algorithm 

The PSO solution is frequently, nonetheless, pretty near to the overall ideal. PSO has been 

widely used to resolve nonlinear difficult optimization issues in a number of practical 

applications. A swarm-based intelligent stochastic optimization strategy called particle 

swarm optimization (PSO) was inspired by the way bees naturally swarm when they're 

looking for food. As a result, PSO has mostly been utilised to address a variety of 

optimization difficulties due to the adaptability of numerical experimentation. One of the 

most renowned swarm intelligence methods that has been widely applied in both science and 

business is the PSO algorithm. [272] - [273] The PSO is made up of a population of particles 

and shows a possible solution to the problem 𝑲𝒑 and 𝑲𝒅 in our situation. Each particle can 

be represented by an object having a position vector and a vector velocity, with the location 

relative to the search space and the velocity guiding the particle position during the process 

execution. 

The basic PSO algorithm consists of the equation of velocity and position, respectively: 

𝒗𝒊(𝒌 + 𝟏) = 𝒘. 𝒗𝒊(𝒌) + 𝒄𝟏𝒓𝟏(𝒑𝒃𝒆𝒔𝒕𝒊 − 𝒙𝒊(𝒌)) + 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊(𝒌))                   (3.36) 

𝒙𝒊(𝒌 + 𝟏) = 𝒙𝒊(𝒌) + 𝜟𝒌. 𝒗𝒊(𝒌 + 𝟏)             (3.37) 
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The population size is given by i=1....n. 𝒑𝒃𝒆𝒔𝒕  (personal best) and 𝒈𝒃𝒆𝒔𝒕 (global best) are 

the best positions achieved by a particle in a given position and the entire population in a 

given neighbourhood, respectively; w is the inertia constant; 𝒄𝟏 is a social factor; 𝒄𝟐 is the 

factor cognitive; 𝒓𝟏 and 𝒓𝟐 are random integers produced in the interval using a uniform 

distribution [0,1]; and t = 1. A social factor of 1.2 and a cognitive factor of 0.12 were 

employed in the simulation findings. The inertia constant, w, is set to 0.9. Figure 3.8 shows 

the flowchart of PSO with its initial parameters. 

 

Figure 3.8 Flow chart of PSO algorithm with initial parameters 
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3.3.2 Bat Algorithm 

The remarkable echolocation capacity of bats has drawn the interest of researchers from a 

variety of fields. Bats are attractive creatures. A type of sonar called echolocation is used by 

bats, primarily microbats, to determine an object's distance by producing a loud, brief pulse 

of sound that echoes back to their ears. This innovative positioning technique gives bats the 

ability to distinguish between an obstruction and a target, enabling them to hunt even in 

complete darkness. [274] - [278]. The fundamental BA algorithm is based on biological 

principles that mimic bat echolocation or sonar. Additionally, each agent in a swarm is 

capable of relocating to a prior optimal location discovered by the swarm [279] or 

discovering the most "nutritious" locations. The Bat method has demonstrated excellent 

efficacy in solving continuous optimization issues [280]. 

A set of bats stored in the form of a vector, each representing a candidate solution, is 

generated in this computational model. The goal is to go to the prey, which is the best 

approach for minimizing the cost function. 

Initially, all n bats 𝒙𝒊(𝒊 = 𝟏, 𝟐,… . 𝒏)are initialized with the following parameters: pulse rate 

𝒓𝒊 velocity 𝒗𝒊⃗⃗⃗⃗ = 𝟎, amplitude 𝑨𝒊, frequency 𝒇𝒊 and position �⃗⃗� 𝒊. For each instant the velocity 

and position are updated, respectively. The steps of bat algorithim is discussed in flow chart 

in figure 3.9. 

 

𝒗𝒊
𝒋(𝒕) = 𝒗𝒊

𝒋(𝒕 − 𝟏) + [𝒙𝒄𝒈𝒃𝒆𝒔𝒕
𝒊 − 𝒙𝒊

𝒋(𝒕 − 𝟏)]𝒇𝒊           (3.38) 

𝒙𝒊
𝒋(𝒕) = 𝒙𝒊

𝒋(𝒕 − 𝟏) + 𝒗𝒊
𝒋
(𝒕)              (3.39) 

 

The variable 𝜷 ∈ [𝟎, 𝟏] is an update using a random number created from a uniform 

distribution and weight 𝒇𝒊 ∈ [𝒇𝒎𝒊𝒏 , 𝒇𝒎𝒂𝒙]. The variable 𝒙𝒄𝒈𝒃𝒆𝒔𝒕
𝒊  denotes the current best 

option available globally for a decision variable d, which is determined by comparing all 

solutions offered by n bats. In order to explore the domain of candidate solutions to the 

problem, the algorithm executes a local search in the form of a random walk: 𝒙𝒊
𝒏𝒆𝒘 = 𝒙𝒊

𝒐𝒍𝒅 +

𝜺𝒎, where 𝒎 is the mean of the amplitude of all bats at particular time t, and 𝜺 is a random 

value derived from a uniform distribution. The algorithm comes to stop when 𝒓𝒊  hits a 

predetermined minimum value or after most iterations have been executed, which are known 

as stopping conditions. An amplitude of 0.5 and an initial pulse rate of 0.5 were used in this 

job. At maximum and minimum frequencies, 2 and 0 are formed, respectively.  
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Figure 3.9 Flow chart of bat algorithm with initial parameters 
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3.3.3 Flower Pollination Algorithm (FPA) 

The Flower Pollination Algorithm (FPA) is a method for pollinating flowers that was 

proposed by [281]. Because pollinators may fly great distances, they are classified as global 

pollinators, and the Lévy probability distribution can be used to describe their behaviors. 

Two key rules govern the implementation of the method utilizing the Lévy distribution. The 

direction of travel must be random. A uniform distribution can be used to generate a 

direction; however, the creation of steps must follow the Lévy distribution. 

The following rules [281] were devised by Yang: 1 – Pollen transporters flying from Levy 

are thought to be part of a worldwide pollination process known as biological pollination 

and crossover; 2 - local pollination includes self-pollination and abiotic pollination; 3 - 

Loyalty to a flower can be thought of as having a probability of reproduction proportionate 

to the similarity of the two plants involved; 4 - pollination on a local and global scale is 

controlled by a probability 𝒑 ∈ [𝟎 , 𝟏]. Due to physical proximity and additional factors like 

wind, local pollination can significantly contribute to total pollination activities. 

The best individual represented by𝒈∗. The first rule, along with a flower's loyalty, may be 

expressed mathematically as 𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝑳(𝒙𝒊
𝒕 − 𝒈∗) where  𝒙𝒊

𝒕 is the pollen 𝒊 in the vector 

of solutions 𝒙𝒊 at iteration t, and L is the pollination strength, whose value is determined by 

the Lévy distribution. The insects can move a long distance with just a few steps away, and 

this can mimic with a Lévy flight. That is 𝑳 > 𝟎 from a Lévy distribution. 

𝑳~
𝝀𝒓(𝝀)𝒔𝒆𝒏(𝝅𝝀 𝟐⁄ )

𝝅

𝟏

𝒔+𝝀
(𝒔 ≫ 𝒔𝟎 > 𝟎)             (3.40) 

Where ∐(𝝀) is the Gamma function and 𝒔𝟎 a minimum step. 

Local pollination (rule 2) and flower loyalty are represented by the equation 𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 +

𝝐(𝒙𝒋
𝒕 − 𝒙𝒌

𝒕 ) where 𝒙𝒋
𝒕 , 𝒙𝒌

𝒕  are pollens from separate plants of the same species in the same 

iteration. This is similar to a flower's allegiance in a small neighborhood. If  𝒙𝒋
𝒕 , 𝒙𝒌

𝒕  were 

from the same species or population, a survey of the neighbourhood random walk (local 

random walk) would be created by selecting ∐ from a uniform distribution. To switch 

between undertaking global pollination and enhancing local pollination, an exchange 

probability, or probability of closeness p, is employed according to rule 4. The reason for 

this characteristic is that the majority of pollination actions are carried out by bees. It might 

happen on a local or global level. In terms of practicality, flowers that are close by or not too 

far away from the neighborhood are more vulnerable to pollination than those that are 

farther away. Figure 3.10 shows the algorithm of flower pollination. 
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Figure 3.10 Flow chart of flower pollination algorithm with initial parameters 
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3.4 Simulation Results and Discussion 

MATLAB/ Simulink software was used to produce two degrees of freedom ball balancer 

model numerical simulation described in Section 2. The behaviour of the controller for one 

servo unit impacts the behaviour of the controller for the second servo unit because the 

plates of the two servo units are symmetrical. Regardless of the fact that both controllers are 

developed in a decoupled context, they operate them in a connected environment. The 

technology is set up to manage the ball's square trajectory on a plate. PD is used to operate 

the ball balancer by sending a square pulse width with a frequency of 0.08 Hz and an 

amplitude of 5 volts serves as the reference trajectory. The PD controller's values are 

originally determined using the method explained in section 3.2. Moreover, the 

specifications of the PD controller are optimised using three different optimization 

methodologies (PSO, BA, and FPA), and the difference between the desired and measured 

ball position is measured as shown in figure 3.11. It has been determined that the plate angle 

may be adjusted by monitoring the discrepancy between the reference trajectory and the ball 

location coordinates that were acquired. Therefore, the objective function is chosen to 

maximise the performance depends on the discrepancy between the measured and desired 

ball location trajectories. In order to evaluate the effectiveness of PSO, BA, and FPA on the 

PD controller, the results of the same simulation running over the same trajectory are 

compared to the behaviour of the usual PD controller. Errors are expressed as integrals 

square time and absolute and generally said to be an objective function. By calculating the 

integral of error over a predetermined amount of time, all of these functions represent error 

as an objective function. 

 

Throughout the optimization process, an objective function called ′𝑱′  is attached to the best 

solution. The integral square error, integral absolute error, and integral time absolute error 

were originally used to define the objective function. But their slow response and large 

oscillation time, an integral of squared time-multiplied square of the error (ISTSE) is use to 

improve the error performance in optimization of controller. The objective function ′𝑱′is 

given as: 

 

𝑱 = ∫ 𝒕𝟐𝒆𝟐(𝒕) 𝒅𝒕
𝑻

𝒐
             (3.41) 
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Figure 3.11 Ball position control using PSO, BA, FPA 

 

 

(a) 

 

(b) 



50 
 

(c) 

Figure 3.12 (a) Position of the ball on the x-axis, (b) servo angle response of plate at the x-

axis, (c) input voltage applied to the servo motor for the x-axis. 

 

Figure 3.12 contains a detailed description of the ball balancer system's ball position, servo 

angle, and voltage optimizations for PSO, BA, and FPA. Figure 3.12 (a) presents the 

comparison of the PSO, BA, and FPA algorithms for the ball's position on the x-axis. The 

results demonstrate that the x-axis position of the ball is within a defined range.  Therefore, 

the least change between the beginning and end locations illustrates the controller's 

performance. The FPA has a minimal final position and quickly obtains the goal value, 

followed by the BA algorithm delivering the minimum position and the PSO algorithm 

holding the minimum position. In addition, figure 3.12 (b) shows the ball's servo angle 

reaction on the x-axis, exhibiting the angle of servo motors. The controller accuracy to 

provide the balancing for a ball balancer system depends on the minimum control angle. In 

this situation, the FPA has a lower control angle than the BA and PSO controls, but the BA 

offers a better outcome than the PSO. The FPA algorithm uses a slow-moving plate to 

balance a ball, enabling the device to respond consistently.  Figure 3.12 (c) depicts the servo 

input voltage fluctuation as a function of the controller action. The servo units for the FPA 

optimization control are noted for running at a lower voltage and settling down earlier than 

the other controller. The servo motors' speed is decreased to the smallest value feasible since 

the enhanced FPA produces the smallest position control and balancing angle. This 

guarantees that while the ball is moving in the right direction, it stays in its proper place on 

the plate. As a result, when compared, the FPA performs better than the BA and PSO. 
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Table 3.1 Performance parameters for various control using PSO, BA and FPA on ball 

balancer system 

Controllers 
Peak time 

𝒕𝒑(𝒔) 

Settling time 

𝒕𝒔(𝒔) 

Peak overshoot 

𝑴𝒑(%) 

Particle Swarm Optimization (PSO) 1.57 2.21 30.2 

Bat Algorithm (BA) 1.45 2.178 25.1 

Flower Pollination Algorithm (FPA) 1.43 2.16 20.8 

 

In addition, time domain specifications are derived to examine the performance of PSO, BA, 

and FPA approaches, with the results displayed in table 3.1. The results show that the 

maximal overshoot of PSO is 30.2 percent, leading to huge oscillations and making it 

impossible to balance the ball on the plate. In contrast, as seen in the graph, FPA has a good 

response to peak overshoot of 20.8 percent and exhibits perfect ball-on-plate balance with 

less oscillation. The integral of squared time-multiplied square of the error (ISTSE) value of 

PSO, BA, and FPA optimizations is also determined during the ball balancer's operation for 

square trajectory in terms of ball position. The findings are summarised in table 3.2. 

 

Table 3.2 Integral of squared time-multiplied square of the error (ISTSE) for position during 

simulation results 

Controller 
ISTSE 

Ball Position 

Particle Swarm Optimization (PSO) 45.337023 

Bat Algorithm (BA) 45.446932 

Flower Pollination Algorithm (FPA) 44.375275 

 

PSO, BA, and FPA all produced outcomes that were near to one other when compared using 

the ISTSE performance measure. The FPA, on the other hand, achieved a better outcome 

and provides great position control of the system's ball balancer's plate with the ball on it. 

 

3.5 Conclusion 

In order to accomplish self-balancing and position control of a 2 dof balancer system, this 

study employs three alternative optimum algorithms to establish the parameters of PD 

controlller PSO, BA, and FPA. Simulation findings show that the developed strategy 
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improves performance significantly within the context of the standard control structure. On 

the basis of time response analysis, the outcomes of the established control approaches are 

validated. On the ball balancer system, the provided controller has adaptability and good 

control performance. According to the findings, the FPA optimised technique performs 

better in compare to BA and PSO in terms of ISTSE, settling time, peak time, and peak 

overshoot. 
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Chapter: 4 

Performance Analysis of Sliding Mode Controllers for Nonlinear systems 

 

4.1 Introduction 

Any system's primary need depends on the controller's control action. The control action is 

made precisely to accomplish the goal. Additionally, when system complexity rises, it 

becomes harder for the researcher to attain optimal control performance. Additionally, 

traditional controllers aren't any better at handling plant uncertainty due to their horrifying 

complexity. The sliding mode control (SMC) technique is used to stablize the system 

because it may function well when nonlinear system components are taken into account. 

Pioneering studies conducted in the former Soviet Union in the 1960s led to the 

development of sliding mode control [102] - [103]. Additionally, SMC is often employed in 

the dynamic control of uncertain systems due to its intriguing properties. SMC has a 

straightforward and economical design and execution process. Additionally, the system 

uncertainties and disruptions are enforced by SMC [100] - [104]. The SMC approach is one 

of the other control methods that is regarded as variable structured [105]. The state space's 

surface is referred to as a sliding surface. To acquire the movement of the state trajectory 

solely move in the same pattern of switching, several control structures have been 

developed. The absolute trajectory moves in the path of control structure margins. And these 

system motions that slide around their boundaries are referred as sliding mode [106]. The 

perfect sliding motion also occurs when the system motions are constrained to roll in the 

direction of the sliding surface. To design SMC, we typically adhere to two guidelines. 

Designing a sliding surface allows for the first guideline, which concerns system reaction. 

As a result, plant dynamics can be forced to change its state variable in order for it to meet 

the other set of equations that describe its switching plane. The second guideline is to create 

a switched gain that forces the plant's state trajectory in the direction of the sliding surface. 

The extended Lyapunov stability theory [282] is the foundation for these two laws. Since it 

would mean that the control commutes at an infinite frequency, a perfect sliding mode 

doesn't actually exist. The discontinuous pattern in the feedback control creates a specific 

dynamic behaviour near the surface known as chattering in the presence of switching flaws, 

such as switching delays and fractional time constants of systems. This behaviour is 

problematic because, due to its filtration process of output, it may stimulate unmodeled high 

frequency modes that harm the system's performance and even cause instability [283]. Some 
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underactuated systems don't meet the requirements for a stabilising smooth feedback rule to 

exist [106][284]. According to several research, continuous feedback stabilisation may solve 

the issues that smooth feedback stabilisation faces [285].  

When designing the sliding mode control for underactuated systems, the application of a 

decoupling method will produce results that are adequate in terms of system complexity and 

improved stability. A well-known resilient control method and common control tactic for 

nonlinear systems is sliding mode control (SMC) [289]. The following elements explain its 

appeal in the field of research: In certain circumstances, the systems' behaviours are 

independent of changes in plant parameters. In addition, the systems' sliding mode regime 

behaviour is reliable for the intended dynamical features. (iii) The systems' compensator's 

simplicity in realisation, (iii) Sliding mode regime invariance to shocks, and (iv) Two phases 

make up the SMC design [290]. In the first step, a sliding surface is selected, and in the 

second stage, a suitable control rule is developed to direct the system states to the sliding 

surface's desired states. SMC causes the system's order to decrease, enhancing the system's 

capacity to reduce the consequences of disruptions and uncertainty [32]. The potential for 

easy implementation in digital controllers makes the discrete-time sliding mode technique 

interesting. Discrete SMC design has been investigated by several scholars. [103][292][293]. 

For discrete SMC, the literature identifies two methods. The primary goal of the first 

strategy is to transfer continuous-time sliding mode control to discrete-time [294] - [295]. 

The disturbance observer and equivalent control design [296] – [298] are models for the 

second strategy. Some writers have reported using higher-order sliding mode controllers for 

various machines in the literature [32][117][119][299]. Sliding mode controllers with higher 

orders exhibit additional benefits like low chattering and excellent accuracy. The importance 

of sliding mode control strategies, including quasi-sliding mode, exponential reaching law 

sliding mode, equivalent sliding mode, and decoupled sliding mode, is tested in this chapter 

on a variety of nonlinear systems, including the inverted pendulum and the TORA system. 

Maintaining the system's position at the intended position is the goal of control action. Each 

of these control strategies begins with the construction of a sliding mode surface, following 

which control functions are created to achieve control goals. Performance metrics are 

tracked for chattering, convergent time, disturbance rejection, and stability. Based on these 

performance criteria, a comparative study is then carried out. 

 

4.2 Mathematical Modeling of Nonlinear System 

4.2.1 Mathematical modeling of TORA System 
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Figure 4.1 represents a model of the Translational Oscillator Rotational Actuator (TORA) 

system. A spring holds the cart with mass M to a firm wall and K is the spring stiffness. The 

cart can only be moved in one direction. The actuator is massed by m and has an inertial 

moment of I about its centre of mass. L is the distance between the mass's centre and the 

point it circles around. The movement only takes place in the horizontal plane, hence the 

gravitational force's impact is ignored. As shown in figure 4.1 the control torque 𝜏 applied to 

m as u. The rotary actuator of mass m is in the angular position indicated by 𝜃, and The 

disruption force affecting the cart is noted by 𝐹.  

 

Figure 4.1 Translational operational rotational actuator system 

 

Both the oscillator's and the pendulum's kinetic energy can be expressed as 

𝐾𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 =
1

2
(𝑀 +𝑚)�̇�2               (4.1) 

𝐾𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 =
1

2
(𝐼 + 𝑚𝑒2)�̇�2 +𝑚𝑒�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃             (4.2) 

Where I is the pendulum's moment of inertia, e is the eccentricity of the pendulum, and M 

and m are the oscillator and pendulum's respective masses. The total kinetic energy is the 

combination of 𝐾𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 and 𝐾𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 as 

𝐾 = 𝐾𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 + 𝐾𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 =
1

2
(𝑀 +𝑚)�̇�2 +

1

2
(𝐼 + 𝑚𝑒2)�̇�2 +𝑚𝑒�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃        (4.3) 

As a result of the system's potential energy being defined 

𝑉 = −𝑚𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 +
1

2
𝑘𝑥2                 (4.4) 

The Lagrangian equation can be given as: 

𝐿 = 𝐾 − 𝑉 =
1

2
(𝑀 +𝑚)�̇�2 +

1

2
(𝐼 + 𝑚𝑒2)�̇�2 +𝑚𝑒�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 +𝑚𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −

1

2
𝑘𝑥2

                   (4.5) 

It is possible to designate the generalised force vector and generalised coordinate vector as 

𝑞 = [𝑞1 𝑞2 ] = [𝑥 𝜃 ] ∈ 𝑅2                (4.6) 

𝜏 = [𝐹 𝑁 ] ∈ 𝑅2                 (4.7) 



56 
 

Where F is the disturbance driving the oscillator and N is the control torque given by a 

motor to drive the pendulum. Let's compute the values below to make it simpler to 

determine the equation of motion using the Lagrange equation. 

𝜕𝐿

𝜕�̇�
= (𝑀 +𝑚)�̇� + 𝑚𝑙�̇�𝑐𝑜𝑠 𝜃   

𝜕𝐿

𝜕𝑥
= −𝑘𝑥                 (4.8) 

𝜕𝐿

𝜕�̇�
= 𝑚𝑒�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 + (𝐼 + 𝑚𝑒2)�̇�  

𝜕𝐿

𝜕𝜃
= −𝑚𝑒�̇��̇� 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃   

The transient equation for the TORA system in the X-space may then be obtained using the 

Lagrange equation. 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝑞
= 𝜏                  (4.9) 

To have (𝑀 +𝑚)�̈� + 𝑚𝑒 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 �̈�−𝑚𝑒�̇�2 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 + 𝑘𝑥 = 𝐹        (4.10) 

(𝑚𝑒2 + 𝐼)�̈� + 𝑚𝑒 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 �̈� = 𝑁             (4.11) 

Define the normalized state, 𝑝 = √
𝑀+𝑚

𝐼+𝑚𝑒2
𝑥, normalized time 𝜏 = √

𝑘

𝑀+𝑚
𝑡, dimensionless 

control 𝑢 =
𝑀+𝑚

𝑘(𝐼+𝑚𝑒2)
𝑁 and dimensionless disturbance 𝑤 =

1

𝑘
√

𝑀+𝑚

𝐼+𝑚𝑒2
𝐹, then above equation 

becomes, 

�̈� + 𝑝 = 𝜀(�̇�2 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 − �̈� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 ) + 𝑤           (4.12) 

�̈� = −𝜀�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 + 𝑢              (4.13) 

Where ε stands for the coupling between the translational and rotational motions with 

respect to the normalised time  

 𝜀 =
𝑚𝑒

√(𝐼+𝑚𝑒2)(𝑀+𝑚)
 

Define the state vector 

𝑋 = [𝑝 �̇� 𝜃 �̇� ]𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4 ]
𝑇 ∈ 𝑅2 

And the state space representation for (4.8) becomes 

�̇�1 = 𝑥2 

�̇�2 = 𝑓2(𝑥) + 𝑏2(𝑥)𝑢 

�̇�3 = 𝑥4                               

�̇�4 = 𝑓4(𝑥) + 𝑏4(𝑥)𝑢 

Where, 𝑓2(𝑥) =
−𝑥1+𝜀𝑥4

2 sin𝑥3+𝑤

1−𝜀2𝑐𝑜𝑠2𝑥3
, 𝑏2(𝑥3) =

−𝜀 cos𝑥3

1−𝜀2𝑐𝑜𝑠2𝑥3
, 𝑓4(𝑥) =

𝜀𝑥1 cos𝑥3−𝜀
2𝑥4

2 sin𝑥3−𝜀 cos𝑥3𝑤

1−𝜀2𝑐𝑜𝑠2𝑥3
 

𝑏4(𝑥3) =
1

1−𝜀2𝑐𝑜𝑠2𝑥3
, 

(4.14) 
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The oscillator and pendulum dynamics equations in equation (4.14) have control u, as a 

result, the system consider as underactuated. 

 

4.2.2 Mathematical modeling of Inverted Pendulum 

A single link pendulum cart system, which consist a moving cart containing a rod has been 

shown in figure 4.1. While the data of different parameters related to the inverted pendulum 

are given in Table 1.  

 

Figure 4.2 Single link inverted pendulum 

 

Table 4.1.  Parameter specification of the inverted pendulum 

Parameter Meaning Unit 

θ Pendulum’s angle rad 

x Cart’s displacement m 

m Pendulum Mass  kg 

M Cart mass  kg 

l Pendulum length  m 

g Acceleration of gravity m/s2 

b1 Cart coefficient of friction  Nm-1s-1 

b2 Pendulum’s friction coefficient  Nrad-1s-1 

I Pendulum’s mass moment of inertia  kg/m2 

u Cart input force N 

 

Kinetic Energy of cart is 

𝐸𝐾𝑉 =
1

2
𝑀𝑥2 +

1

2
𝐼�̇�2                     (4.15) 

𝐸𝐾𝐾 =
1

2
𝑚�̇�2 +𝑚𝑙�̇��̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 +

1

2
𝑚𝑙2�̇�2                                                                    (4.16) 

Total Kinetic Energy of the system is 
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𝐸𝐾 = 𝐿 = 𝐸𝐾𝑉 + 𝐸𝐾𝐾 =
1

2
(𝑀 +𝑚)�̇�2 +

1

2
(𝐼 + 𝑚𝑙2)�̇�2 +𝑚𝑙�̇��̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃                  (4.17) 

By using Lagrange derivation for cart position ‘x’  

𝜕𝐸𝐾
𝜕�̇�
= (𝑀+𝑚)�̇� + 𝑚𝑙�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃                                                                     (4.18) 

𝑑

𝑑𝑡
(
𝜕𝐸𝐾
𝜕�̇�

) = (𝑀 +𝑚)�̈� + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −𝑚𝑙�̇�2 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃  

Since, 
𝜕𝐸𝐾

𝜕𝑥
= 0 

Hence, 𝑄𝑥 = 𝐹 − 𝑏1�̇�                                                                                 (4.19) 

Also, Lagrange derivation for angle θ  

𝜕𝐸𝐾
𝜕�̇�
= (𝐼 + 𝑚𝑙2)𝜃 +𝑚𝑙�̇� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃                                                                     (4.20) 

𝑑

𝑑𝑡
(
𝜕𝐸𝐾

𝜕�̇�
) = (𝐼 +𝑚𝑙2)�̈� + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −𝑚𝑙�̇��̇� 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃          (4.21) 

Since, 
𝜕𝐸𝐾
𝜕�̇�
= −𝑚𝑙�̇��̇� 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃  

So, 𝑄𝜃 = −𝑚𝑔𝑙 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 − 𝑏2�̇�                                                                     (4.22) 

According to Lagrange’s equation, pendulum angle ‘θ’ and cart velocity ‘x’ will be, 

𝑑

𝑑𝑡
(
𝜕𝐸𝐾

𝜕�̇�
) −

𝜕𝐸𝐾

𝜕𝑥
= 𝑄𝑥                                                                                  (4.23) 

𝑑

𝑑𝑡
(
𝜕𝐸𝐾

𝜕�̇�
) −

𝜕𝐸𝐾

𝜕𝜃
= 𝑄𝜃                                                                                  (4.24) 

After simplifying above equations, the resultant equations of motions. 

�̈� = −
𝑚𝑙

(𝑀+𝑚)
�̈� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −

𝑚𝑙

(𝑀+𝑚)
�̇�2 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 −

𝑏1

(𝑀+𝑚)
�̇� +

𝐹

(𝑀+𝑚)
         (4.25) 

�̈� =
𝑚𝑙

(𝐼+𝑚𝑙2)
�̈� 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 −

𝑏2

(𝐼+𝑚𝑙2)
�̇� −

𝑚𝑔𝑙

(𝐼+𝑚𝑙2)
𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃                                                     (4.26) 

Equation (4.25) and (4.26) represents dynamic equations for pendulum to stabilize at upright 

equilibrium position of cart pendulum system. For controller design the above equation must 

be represented in state space form.  

From equation (4.25) and (4.26), the state equations are,  

{
 
 

 
 

𝑥1̇ = 𝑥2

𝑥2 =
𝑔 sin𝑥1−𝑚𝑙𝑥22 cos𝑥1 sin𝑥1/(𝑀+𝑚)

𝑙(
4

3
−
𝑚𝑐𝑜𝑠2𝑥1
𝑀+𝑚

)

                     +
cos𝑥1/(𝑀+𝑚)

𝑙(
4

3
−𝑚𝑐𝑜𝑠2𝑥1/(𝑀+𝑚))

̇

            (4.27) 

Let, the inverted pendulum is having unwanted disturbance and parameter uncertainties 

Hence, the above equation will be- 
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x1̇ = x2 

 ẋ2 =
g sin x1−mlx2

2 cosx1 sin x1/(M+m)

l(
4

3
−
mcos2x1
M+m

)
+

cosx1/(M+m)

l(
4

3
−mcos2x1/(M+m))

+ d(t)          (4.28) 

Where d(t) is unknown disturbance. 

 

4.3 Sliding Mode Controller (SMC) 

Since model uncertainties can have a negative impact on nonlinear control systems, sliding 

mode control addresses this issue. Adaptive control is a key strategy for addressing model 

uncertainty, and additional strategies that may be utilised to address control issues include 

sliding mode methods. These methods are currently drawing more attention. The actual 

plant and the mathematical model that was used to develop the controller may not be exactly 

the same. A variety of factors could be accountable for this discrepancy. SMC has been used 

for a variety of systems, including stochastic systems, large-scale and infinite-dimension 

systems, discrete models, and nonlinear systems. To external disturbances and parametric 

errors, SMC is fully insensitive. VSC achieves two goals using a switching control rule. The 

sliding or switching surface, a predetermined surface in the state space, is initially projected 

using the nonlinear plant's state trajectory to control the state trajectory at the switching 

surface. And maintains the state trajectory of the plant on the same surface. To emphasise 

the significance of the sliding mode, the control is sometimes referred to as the sliding mode 

control. The system is designed to first drive the system state and then force it to stay close 

to the switching function when employing a sliding mode control technique 

Now since, 

𝑠 = 𝑐𝑥1 + 𝑥1̇, 𝑐 > 0                                                                     (4.29) 

The first order linear time invariant system described as: 

𝑥1̇ = −𝑐𝑥1                                                                             (4.30) 

High frequency switching, commonly referred to as the chattering effect, will really occur, 

implying that the states repeatedly move across the surface even though there shouldn't be 

any sliding mode. A nonlinear control method that assures that trajectories always move in 

the direction of a switching condition, change the dynamics of a nonlinear system. As a 

result, the ultimate trajectory won't be totally contained by a single control structure. There 

is no continuous function of time for the state-feedback control law. Instead, dependent on 

the location in the state space, it transitions from one continuous structure to another. To 

ensure that trajectories always go in the direction of a switching condition, control structures 

are created. The final trajectory will thus not be entirely contained by a single control 
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structure. The final trajectory will instead veer close to the confines of the control structures. 

Sliding mode is the name given to the system's motion as it slides along these limits, and 

sliding (hyper) surface is the name given to the geometric locus formed by the boundaries. 

Sliding mode control employs almost limitless gain to compel the paths a dynamic system 

would take to slide along a small sliding mode subspace. This reduced-order sliding mode 

yields control trajectories that have certain favourable characteristics (for instance, the 

system will inevitably slide along it until it reaches the required equilibrium.). 

The control doesn't have to be precise or sensitive to parameter mistakes because it can 

simply be a switch between two states. The sliding mode can be attained in a limited amount 

of time since the control rule is not a real-valued function (i.e., better than asymptotic 

behaviour). The SMC design involves two steps, to construct a sliding surface on which 

plant of system is attached then direct the plant's state trajectory toward the sliding surface is 

the second phase. The generalised Lyapunov stability theory serves as the foundation for 

these creations. In the state space, a sliding surface is a preset surface that a controller aids a 

system in reaching and then remaining on. The system's movement while being held to the 

surface is referred to as its sliding motion. The advantage of achieving this motion is that the 

system's order will be reduced, and the sliding motion is unaffected by changes in a plant's 

parameter. This technique is appealing for constructing robust control for various uncertain 

systems due to the latter attribute. 

 

The design process consists mostly of these two steps: 

1. Constructing a sliding surface that satisfies the system's requirements for lower order 

sliding motion in the state space. 

2. Control rule synthesis to steer closed-loop motion's paths toward the sliding surface. 

 

The generated closed loop dynamical behaviour is controlled by a variable structure control 

rule that has two different forms of motion. As the states are pushed toward the sliding 

surface, the first phase—also known as the reaching phase—occurs. The external 

disturbances have an impact on this sort of motion. Only when the states reach the surface 

and lose sensitivity to uncertainty is this abolished. There is a sliding surface if the state 

velocity vectors in its immediate vicinity are pointed in its direction. The graphic provides 

the clearest explanation of the sliding mode (4.3) 
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Figure 4.3 Sliding mode phases 

 

The reachability criterion that ensures a single input system's motion state trajectory, x(t). 

�̇� = 𝑓(𝑥, 𝑢, 𝑡)                                                                            (4.31) 

Now 𝜎 = 0 on either side of sliding surface, 

 �̇�  < 0; �̇�  > 0                                                                          (4.32) 

The result of combining the two equations above is 

𝜎�̇� < 0                                                                                       (4.33) 

 𝑙𝑖𝑚
𝜎→0

𝜎
𝑑𝜎

𝑑𝑡
< 0                                                                               (4.34) 

The path always follows the hypersurface s. 

 
𝑑𝜎

𝑑𝑡
= (

𝑑𝜎

𝑑𝑥
)
𝑇

�̇� = 0                                                                   (4.35) 

Therefore, if the global reachability requirement is met and therefore 

1

2

𝑑

𝑑𝑡
𝜎2 = 𝜎�̇� < 0                                                                   (4.36) 

Which gives, V (𝜎) =
1

2
𝜎2                                                                  (4.37) 

A Lyapunov function for 𝜎(𝑡). 

A high gain control input is applied once the aforementioned processes have been finished. 

Additionally, the input chattering caused by this high gain control results in a high frequency 

in plant dynamics, which has the potential to cause unforeseen instabilities [18] – [19]. Few 

of the several sliding mode control techniques that may be used to preserve the system state 

on a sliding surface and the chattering issue are discussed. 

 

4.3.1 Reaching Law Control SMC 

The reaching phase and sliding phase of the system are defined by the controller in the 

reaching law approach [16]. The system is kept stable by the reaching phase, and it is 

brought into equilibrium by the sliding phase. 

Let the plant output is given as, 
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�̈�(𝑡) = −𝑓(𝜃, 𝑡)+ 𝑏𝑢(𝑡)+ 𝑑(𝑡)           (4.38) 

Where 𝑓(𝜃, 𝑡) and 𝑏𝑢(𝑡) are plant constant and d(t) is external disturbance  

The sliding function may be described as 

𝑠(𝑡) = 𝑐𝑒(𝑡) + �̇�(𝑡)                                  (4.39) 

The hurwitz condition must be met by the constant "c.", which states that "c > 0." 

 Following is a definition of the tracking error and its derivative: 

𝑒(𝑡) = 𝑥(𝑡) − 𝜃(𝑡)                        (4.40) 

�̇�(𝑡) = �̇�(𝑡) − �̇�(𝑡)             (4.41) 

Where x(t) is ideal positional signal. 

Therefore, we have 

�̇�(𝑡) = 𝑐�̇�(𝑡) + �̈�(𝑡) 

 = 𝑐 (�̇�(𝑡) − �̇�(𝑡)) + (�̈�(𝑡) − �̈�(𝑡)) 

 = 𝑐 (�̇�(𝑡) − �̇�(𝑡)) + (�̈�(𝑡) + 𝑓(𝜃, 𝑡) − 𝑏𝑢(𝑡) − 𝑑(𝑡))           (4.42) 

The exponential reaching law,  

�̇� = −𝜖 𝑠𝑔𝑛(𝑠) − 𝑘𝑠                            (4.43) 

Where, 𝜖 > 0, 𝑘 > 0 

From equation (4.44) & (4.46),  

(�̇�(𝑡) − �̇�(𝑡)) + (�̈�(𝑡) + 𝑓(𝜃, 𝑡) − 𝑏𝑢(𝑡) − 𝑑(𝑡)) = −𝜖 𝑠𝑔𝑛 𝑠 − 𝑘           (4.44) 

The sliding mode controller has been designed as: 

𝑢(𝑡) =
1

𝑏
(𝜖 𝑠𝑔𝑛(𝑠) + 𝑘𝑠 + 𝑐 (�̇�(𝑡) − �̇�(𝑡)) +  �̈�(𝑡) + 𝑓(𝜃, 𝑡) − 𝑑(𝑡))                    (4.45) 

Since the disturbance‘d’ in the equations above is an unknown variable, it must be 

substituted with a conservative known quantity, such as “dc," to solve the issue. 

The controller's model equation based on sliding mode can therefore be expressed as; 

𝑢(𝑡) =
1

𝑏
(𝜖 𝑠𝑔𝑛(𝑠) + 𝑘𝑠 + 𝑐 (�̇�(𝑡) − �̇�(𝑡)) +  𝑥 ̈(𝑡) + 𝑓(𝜃, 𝑡) − 𝑑𝑐)         (4.46) 

By simplifying it, 

�̇�(𝑡) = −𝜖 𝑠𝑔𝑛(𝑠) − 𝑘𝑠 + 𝑑𝑐 − 𝑑                                   (4.47) 

Where reaching condition is 𝑑𝑐  ensures that d is bounded, therefore: 

𝑑𝐿 ≤ 𝑑(𝑡) ≥ 𝑑𝑈                                      ( 4.48) 

Where the bounds 𝑑𝐿 and 𝑑𝑈 are known. 

Hence, 



63 
 

i. When 𝑠(𝑡) > 0, �̇�(𝑡) = −𝜖 𝑠𝑔𝑛(𝑠) − 𝑘𝑠 + 𝑑𝑐 − 𝑑 and we want �̇�(𝑡) < 0 so 𝑑𝑐  =

𝑑𝐿 

ii. When 𝑠(𝑡) < 0, �̇�(𝑡) = −𝜖 𝑠𝑔𝑛(𝑠) − 𝑘𝑠 + 𝑑𝑐 − 𝑑 and we want �̇�(𝑡) > 0 so 𝑑𝑐  =

𝑑𝑈 

Therefore, if we define 𝑑1 =
𝑑𝑈−𝑑𝐿

2
, 

 𝑑2 =
𝑑𝑈+𝑑𝐿

2
                          (4.49) 

𝑑𝑐 = 𝑑2 − 𝑑1𝑠𝑔𝑛(𝑠)                         (4.50) 

 

 

4.3.2 Quasi-Sliding Mode SMC 

The SMC is a reliable control method but a drawback is chattering. Due to chattering, an 

unwanted oscillation phenomenon, the system's components are being harmed. It has been 

suggested to use continuous control to create a boundary layer around a switching surface in 

order to prevent chattering. The system requires its state to remain within range to nearby as 

part of the proposed strategy to decrease chattering. 

The sliding function defined as 

𝑠(𝑡) = 𝑐𝑒(𝑡) + �̇�(𝑡)                       (4.51) 

Where ‘c’ is a constant, c > 0. 

The tracking error and its derivative are described as follows: 

𝑒(𝑡) = 𝑥(𝑡) − 𝜃(𝑡)             (4.52) 

�̇�(𝑡) = �̇�(𝑡) − �̇�(𝑡)             (4.53) 

The ideal positional signal is x(t) in this case. 

Therefore, �̇�(𝑡) = 𝑐�̇�(𝑡) + �̈�(𝑡) 

 = 𝑐�̇� + (�̈�(𝑡) − �̈�(𝑡)) 

= 𝑐�̇� + (�̈�(𝑡) + 𝑓(𝜃, 𝑡) − 𝑏𝑢(𝑡) − 𝑑(𝑡))          (4.54) 

Hence, the proposed controller will be, 

𝑢(𝑡) =
1

𝑏
(𝑐�̇� + �̈�(𝑡) + 𝑓(𝜃, 𝑡) + 𝜂 𝑠𝑔𝑛(𝑠))                   (4.55) 

Lyapunov function is defined as, 

𝐿 =
1

2
𝑠2              (4.56) 

Therefore,  �̇� = 𝑠�̇� = 𝑠(�̈�(𝑡) − 𝑓(𝜃, 𝑡) − 𝑏𝑢(𝑡) + 𝑐�̇�) 

= 𝑠(�̈�(𝑡) − 𝑓(𝜃, 𝑡) − (−𝑓(𝜃, 𝑡) + 𝑐�̇� + �̈�(𝑡) + 𝜂 𝑠𝑔𝑛(𝑠))) 
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= 𝑠(−𝑑(𝑡) − 𝜂 𝑠𝑔𝑛(𝑠)) 

−𝑠𝑑(𝑡) − 𝜂 |𝑠|                        (4.57) 

A saturated function, or sat(s) function, is used to control chattering. 

𝑠𝑎𝑡(𝑠) = {

1                                                𝑠 > ∆

𝑘𝑠                             |𝑠| ≤ ∆, 𝑘 =
1

∆

−1                                          𝑠 < −∆

          (4.58) 

Where ∆ is define as boundary layer, a switch control is employed for the outer boundary 

layer, and linear feedback is used for the inner boundary layer. 

The sliding variable and state variables have a smooth control rule, thus they do not 

converge to zero but rather, under the impact of the disturbance, converge to areas around 

the origin. The aforementioned smooth control rule is sometimes referred to as quasi-sliding 

mode control. 

 

4.3.3 Equivalent Control SMC 

In equivalent control the SMC controller devided into the switching control usw and the 

equivalent control ueq. By switching between equivalent and different controls, the system 

state is controlled, and the system is kept on a sliding surface. If we disregard the plant's 

uncertainty and outside disruption, the plant may be described as: 

𝑥(𝑛) = 𝑓(𝑥, 𝑡) + 𝑏𝑢(𝑡)                           (4.59) 

The tracking error vector is defined as 

𝑒 = 𝑥𝑑 − 𝑥 = [𝑒 ė 𝑒(𝑛−1)] 
𝑇
                                   (4.60) 

And switch function 

𝑠(𝑥, 𝑡) = 𝑐𝑒 = 𝑐1𝑒 + 𝑐2ė + ⋯𝑒
(𝑛−1)                          (4.61) 

Where 𝑐 = [𝑐1  𝑐2⋯𝑐𝑛−1  1] 

Let �̇� = 0 

Then, �̇�(𝑥, 𝑡) = 𝑐1ė + 𝑐2ë + ⋯𝑒𝑛 

= 𝑐1�̇� + 𝑐2ë + ⋯𝑐𝑛−1𝑒
𝑛−1 + 𝑥𝑑

(𝑛) − 𝑥(𝑛) 

∑ 𝑐𝑖𝑒
(𝑖) + 𝑥𝑑

𝑛𝑛−1
𝑖=1 − 𝑓(𝑥, 𝑡) − 𝑏𝑢(𝑡) = 0                     (4.62) 

Hence, the control input is designed as 

𝑢𝑒𝑞 =
1

𝑏
[∑ 𝑐𝑖𝑒

(𝑖) + 𝑥𝑑
𝑛𝑛−1

𝑖=1 − 𝑓(𝑥, 𝑡)]                       (4.63) 

To fulfil the sliding mode's reaching criterion 

𝑠(𝑥, 𝑡). �̇�(𝑥, 𝑡) ≤ −𝜂|𝑠|,   𝜂 > 0 

The switching control law  
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𝑢𝑠𝑤 =
1

𝑏
𝐾𝑠𝑔𝑛(𝑠)                         (4.64) 

Where 𝐾 = 𝐷 + 𝜂 

Hence sliding mode controller 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤                         (4.65) 

Where, 𝑢𝑒𝑞 is equivalent control input and 𝑢𝑠𝑤 is switching control input. 

 

4.3.4 Decoupled Sliding mode control 

The sliding mode control system is divided into two subsystems in decoupled sliding mode 

control in order to achieve asymptotic stability for higher class nonlinear systems. A 

subsystem is said to have a primary purpose and a sub-control purpose if it is separated into 

two second-order systems. Through the decoupled subsystem's state variables, two sliding 

surfaces are created. We define the primary and sub-target criteria for these sliding surfaces 

and add an intermediate variable obtained from the sub-sliding surface condition. 

The decoupling sliding mode control have following advantages: 

a) It is possible to control complicated systems effectively without being familiar with 

the particular mathematical models. 

b) The decoupled sliding surface may roughly dominate the dynamic behaviour of the 

controlled system. 

c) The decoupled sliding mode control increases resilience to system uncertainties 

while reducing the chattering phenomenon of the traditional sliding-mode controller. 

 

4.3.4.1 Decoupled Sliding Mode Control for a Tora System 

A standardised system is created to evaluate the effectiveness of potential controllers on a 

TORA. The system is further enhanced and provides the following generic dynamics [23] 

for a TORA system: 

𝑧1̇ = 𝑧2 

𝑧2̇ =
−𝑧1 + 𝜀𝜃2

2𝑠𝑖𝑛𝜃1
1 − 𝜀2𝑐𝑜𝑠2𝜃1

− 
𝜀𝑐𝑜𝑠𝜃1

1 − 𝜀2𝑐𝑜𝑠2𝜃1
 𝑣 

𝜃1̇ = 𝜃2              (4.66) 

𝜃2̇ =
𝜀𝑐𝑜𝑠𝜃1(𝑧1 − 𝜀𝜃2

2𝑠𝑖𝑛𝜃1)

1 − 𝜀2𝑐𝑜𝑠2𝜃1
+ 

1

1 − 𝜀2𝑐𝑜𝑠2𝜃1
 𝑣 

Where v denotes control input, 𝑧1 is platform’s normalized displacement from the 

equilibrium position 𝑧2= 𝑧1̇. The objectives of control are: 
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𝑧1,  𝑧1,̇  𝜃1, 𝜃1̇ → 0, for, t →∞ 

Apply the decoupling algorithm to the above equation 

𝑓1 = 
−𝑧1+𝜀𝜃2

2𝑠𝑖𝑛𝜃1

1−𝜀2𝑐𝑜𝑠2𝜃1
,   𝑔1 =  

− 𝜀𝑐𝑜𝑠𝜃1

1−𝜀2𝑐𝑜𝑠2𝜃1
, 𝑓2 = 

𝜀𝑐𝑜𝑠𝜃1(𝑧1−𝜀𝜃2
2𝑠𝑖𝑛𝜃1)

1−𝜀2𝑐𝑜𝑠2𝜃1
, 𝑔2 = 

1

1−𝜀2𝑐𝑜𝑠2𝜃1
 , We have, 

𝑔1
𝑔2
= −𝜀𝑐𝑜𝑠𝜃1 

Let, 𝑥1 = 𝑧1 + 𝜀 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  

𝑥2 = 𝑧2 + 𝜀𝜃2 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1              (4.67) 

𝑥3 = 𝜃1 

𝑥4 = 𝜃2 

From equation (4.66), the control goals 𝑧1,  𝑧1,̇  𝜃1, �̇�1  → 0 are equivalent to 𝑥𝑖  →0, i=1, 2, 

3, 4. 

Since, 𝑥2̇ = 𝑧2 ̇ +  𝜀𝜃2̇𝑐𝑜𝑠𝜃1 − 𝜀𝜃2
2𝑠𝑖𝑛𝜃1 

=
−𝑧1+𝜀𝜃2

2𝑠𝑖𝑛𝜃1

1−𝜀2𝑐𝑜𝑠2𝜃1
 −  

𝜀𝑐𝑜𝑠𝜃1

1−𝜀2𝑐𝑜𝑠2𝜃1
𝑣 + 𝜀 (

𝜀𝑐𝑜𝑠𝜃1(𝑧1−𝜀𝜃2
2𝑠𝑖𝑛𝜃1)

1−𝜀2𝑐𝑜𝑠2𝜃1
+ 

1

1−𝜀2𝑐𝑜𝑠2𝜃1
𝑣) 𝑐𝑜𝑠𝜃1 − 𝜀𝜃2

2𝑠𝑖𝑛𝜃1 

=
−𝑧1+𝜀𝜃2

2𝑠𝑖𝑛𝜃1

1−𝜀2𝑐𝑜𝑠2𝜃1
 + 

𝜀2 𝑐𝑜𝑠𝜃1 (𝑧1−𝜀𝜃2
2𝑠𝑖𝑛𝜃1)

1−𝜀2𝑐𝑜𝑠2𝜃1
 −𝜀𝜃2

2𝑠𝑖𝑛𝜃1 

= 
−𝑧1(1−𝜀

2 𝑐𝑜𝑠𝜃1)+𝜀𝜃2
2𝑠𝑖𝑛𝜃1(1−𝜀

2 𝑐𝑜𝑠𝜃1)

1−𝜀2𝑐𝑜𝑠2𝜃1
 − 𝜀𝜃2

2𝑠𝑖𝑛𝜃1            (4.68) 

Let, 𝑢 =
𝜀𝑐𝑜𝑠𝜃1(𝑧1−𝜀𝜃2

2𝑠𝑖𝑛𝜃1)

1−𝜀2𝑐𝑜𝑠2𝜃1
− 

1

1−𝜀2𝑐𝑜𝑠2𝜃1
𝑣 

i.e., 𝑣 = 𝜀𝑐𝑜𝑠𝜃1(𝑧1 − 𝜀𝜃2
2𝑠𝑖𝑛𝜃1) − (1 − 𝜀

2𝑐𝑜𝑠2𝜃1)𝑢        (4.69) 

From equation (4.67) 𝑧1 can be written a 

 𝑧1 = − 𝑥1 +  𝜀𝑠𝑖𝑛 𝑥3                       (4.70) 

From equation (4.69) and (4.70), the control input is written as, 

v = ε cos𝑥3(𝑥1 − (1 + 𝑥4
2)𝜀𝑠𝑖𝑛𝑥3) − (1 − 𝜀

2𝑐𝑜𝑠2𝑥3)𝑢             (4.71) 

The above equation must be satisfied with three assumptions as follows for any kind of 

underactuated system: 

Assumption 1: 𝑓1(0,0) →0; 

Assumption 2: 
𝑑𝑓1

𝑑𝑥3
 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒; 

Assumption 3: If 𝑓1(0, 𝑥3) →0, then 𝑥3→0 

�̇�1 = 𝑥2 

�̇�2 = 𝑓1(𝑥1, 𝑥3) = −𝑥1 + 𝜀 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥3            (4.72) 

�̇�3 = 𝑥4 

𝑥4 = 𝑢 
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If equation (4.72) is not satisfying assumption 2, Then the function  𝑓1(𝑥1, 𝑥3) may be 

written as: 

𝑓1(𝑥1, 𝑥3) = − 𝑥1 +  𝜀𝑠𝑖𝑛 𝑥3 + 11𝜀𝑥3          (4.73) 

The equation (4.74) may be written as with the help of equation (4.75), 

�̇�1 = 𝑥2 

�̇�2 = 𝑓1(𝑥1, 𝑥3) = − 𝑥1 +  𝜀𝑠𝑖𝑛 𝑥3 + 11𝜀𝑥3          (4.74) 

�̇�3 = 𝑥4 

𝑥4 = 𝑢 

The primary goal in this case is to reach the target and create a sliding surface such that the 

tracking error vector's state response results in a satisfying response. The tracking mistake is 

described as 

�̇�1 = 𝑥2 

𝑒2 = �̇�1 = 𝑥2 

𝑒3 = 𝑓1(𝑥1, 𝑥3)             (4.75) 

𝑒4 = �̇�3 = 𝑓1̇(𝑥1, 𝑥3) =
𝑑𝑓1
𝑑𝑥1

𝑥2 +
𝑑𝑓1
𝑑𝑥3

𝑥4 

The sliding mode function is defined as: 

𝑠 = 𝑐1𝑒1 + 𝑐2𝑒2+𝑐3𝑒3 + 𝑒4                                (4.76) 

where, 𝑐1, 𝑐2, 𝑐3 are positive constant, from  
𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥1
) = 0, 

�̇�=𝑐1𝑒1̇ + 𝑐2𝑒2̇+𝑐3𝑒3̇ + 𝑒4̇ 

= 𝑐1𝑥2 + 𝑐2(𝑓1 − 11𝜀𝑥3)+𝑐3
𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥1
𝑥2 +  

𝑑𝑓1

𝑑𝑥3
𝑥4) + 𝑒4̇                               (4.77) 

where, 
𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥1
𝑥2 +  

𝑑𝑓1

𝑑𝑥3
𝑥4) = 

𝑑𝑓1

𝑑𝑥1
(𝑓1 − 11𝜀𝑥3)+

𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥3
𝑥4)+

𝑑𝑓1

𝑑𝑥3
𝑢       (4.78) 

From equation (4.77) & equation (4.78),  

�̇� =𝑐1𝑥2 + 𝑐2(𝑓1 − 11𝜀𝑥3)+𝑐3+
𝑑𝑓1

𝑑𝑥1
(𝑓1 − 11𝜀𝑥3)  + 

𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥3
𝑥4) + 

𝑑𝑓1

𝑑𝑥3
𝑢 + 𝑒4̇        (4.79) 

Let, 𝑀 = 𝑐1𝑥2 + 𝑐2(𝑓1 − 11𝜀𝑥3)+𝑐3+
𝑑𝑓1

𝑑𝑥1
(𝑓1 − 11𝜀𝑥3)  +

𝑑

𝑑𝑡
( 
𝑑𝑓1

𝑑𝑥3
𝑥4) + 𝑒4̇          (4.80) 

Then, the sliding mode controller is designed as, 

𝑈 = [
𝑑𝑓1

𝑑𝑓3
]
−1
(−𝑀 − 𝑛𝑠𝑔𝑛𝑠 − 𝑘𝑠)               (4.81) 

Where 𝑛 and 𝑘 are positive constant. To get stable and distortion less performance, the 

systems, and the sliding mode controller must obey the similar parameter functions in the 

algorithm. 

For stable operations, the sliding mode controller must follow the Lyapunov function. 
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To get this Lyapunov function,  �̇� = −𝑛𝑠𝑔𝑛(𝑠) − 𝑘𝑠         (4.82) 

The Lyapunov function is define as, V=
1

2
𝑠2 

Then,  �̇� = 𝑠�̇� = −𝑛|𝑠| − 𝑘𝑠2, must be negative. 

From equation (4.76) and equation (4.81) we can obtain that system stay at its switching 

manifold 𝑠 = 0 in finite time, on the switching manifold the error equation is given as  

𝑒4 = 𝑐1𝑒1 + 𝑐2𝑒2+𝑐3𝑒3  

Let the Hurwitz vector A is given as 𝐴 = [0 1 0 0 0 1 − 𝑐1  − 𝑐2  − 𝑐3 ] makes that the 

values of 𝑐𝑖 to stable. Then the error state equation is given as: 

�̇�1 = 𝑒2 

�̇�2 = 𝑒3 − 11𝜀𝑥3             (4.83) 

�̇�3 = −𝑐1𝑒1 − 𝑐2𝑒2 − 𝑐3𝑒3 

Let the error signal is defined as 𝐸 = [𝑒1 𝑒2 𝑒3 ]
𝑇 , 𝑑2 = −11𝜀𝑥3 

From equation (4.75) the error 𝑒3 is given as 𝑒3 = 𝑓1(𝑥1, 𝑥3) = −𝑥1 + 𝜀 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥3  +

11𝜀𝑥3 

Then 𝑑2 is defined as 𝑑2 = −11𝜀𝑥3 = −𝑒3 − 𝑥1 + 𝜀 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥3            (4.84) 

If we choose that 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥3  < 𝑥3, then we have |𝑑2| = 11𝜀|𝑥3| 

= |−𝑒3 − 𝑥1 + 𝜀 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥3 | ≤ |𝑒3| + |𝑒1| + 𝜀|𝑥3|         (4.85) 

Then 10𝜀|𝑥3| ≤ |𝑒3| + |𝑒1|, and |𝑑2| = 11𝜀|𝑥3| 

or, 1.1 ∗ 10𝜀|𝑥3| ≤ 1.1(|𝑒3| + |𝑒1|) ≤ 2.2‖𝐸‖
2
         (4.86) 

Let 𝐷 = [0 𝑒2 0 ]
𝑇, then ‖𝐷‖

2
≤ 𝛾‖𝐸‖

2
, where 𝛾 = 2.2 

Error 𝐸 is define as: 

�̇� = 𝐴𝐸 + 𝐷              (4.87) 

To guarantee that 𝐸 = [𝑒1 𝑒2 𝑒3 ]
𝑇 → 0, vector 𝐴 must be Hurwitz, hence the real part of the 

characteristic’s equation of 𝐴 must be negative. 

From |𝑨 − 𝜆𝑰| = |
−𝜆 1 0
0 −𝜆 1
−𝑐1 −𝑐2 −𝑐3 − 𝜆

| = 𝜆2(−𝑐3 − 𝜆) − 𝑐1 − 𝑐2𝜆 

= −𝜆3 − 𝑐3𝜆
2 − 𝑐2𝜆 − 𝑐1 = 0, i.e 𝜆3 + 𝑐3𝜆

2 + 𝑐2𝜆 + 𝑐1 = 0       (4.88) 

From function (𝜆 + 𝑎)3 = 0, then we have 𝜆3 + 3𝑎𝜆2 + 3𝑎2𝜆 + 𝑎3 = 0      (4.89) 

By comparing equation (4.88) and equation (4.89) we get, 

𝑐1 = 𝑎3, 𝑐2 = 3𝑎
2, 𝑐3 = 3𝑎, and let 𝑎 > 0, then vector 𝐴 will be Hurwitz.  

For the system should be controllable defining a term 𝑄 = 𝑄𝑇 > 0, then there exists a 

Lyapunov equation 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄, 𝑃 = 𝑃𝑇 > 0. 
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To satisfy the above condition let the Lyapunov function is designed as 𝑉1 = 𝐸𝑇𝑃𝐸,  

or, �̇�1 = �̇�𝑇𝑃𝐸 + 𝐸𝑇𝑃�̇� = (𝐴𝐸 + 𝐷)𝑇𝑃𝐸 + 𝐸𝑇𝑃(𝐴𝐸 + 𝐷) 

= 𝐸𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝐸 + 𝐷𝑇𝑃𝐸+𝐸𝑇= −𝐸𝑇𝑄𝐸 + 𝐷𝑇𝑃𝐸 + 𝐸𝑇𝑃𝐷 ≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝐸‖2
2 +

2𝜆𝑚𝑎𝑥(𝑃)𝛾‖𝐸‖2
2 

= (−𝜆𝑚𝑖𝑛(𝑄) + 2𝜆𝑚𝑎𝑥(𝑃)𝛾)‖𝐸‖2
2           (4.90) 

Where 𝐷𝑇𝑃𝐸 + 𝐸𝑇𝑃𝐷 ≤  2𝜆𝑚𝑎𝑥(𝑃)𝛾)‖𝐸‖2
2, 𝜆𝑚𝑖𝑛(𝑄) is the minimum eigen value of 

positive definite matrix 𝑄 and 𝜆𝑚𝑎𝑥(𝑃) is the maximum eigen value of positive definite 

matrix 𝑃. 

To get the desired response from nonlinear system, the system states must be approaches to 

zero i.e, 𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 ] → 0, and it will be achieved by making error signals to zero 𝐸 =

[𝑒1 𝑒2 𝑒3 ]
𝑇 → 0, and from 𝑠 → 0 we have 𝑒4 → 0. The condions of error signal only will be 

satisfied if vector 𝐴 is design in such manner that have real positive values and it must be 

Hurwitz. 

 

4.3.4.2 Decoupled Sliding Mode Control for an Inverted Pendulum System 

The decoupled model of above system is given as: 

Let,  𝑡1 = 𝜃, 𝑡2 = 𝑥 then 𝑤1 = �̇�, 𝑤2 = �̇� 

Define 𝑓1(𝑡, 𝑤) =
𝑚(𝑚+𝑀)𝑔𝑙

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
𝑡1, 𝑔1(𝑤2) =

𝑚𝑙

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
 , 𝑓2(𝑡, 𝑤) = −

𝑚2𝑔𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
𝑡1 , 

and 𝑔2(𝑤2) =
𝐼+𝑚𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
 Then, 

𝑔1(𝑤2)

𝑔2(𝑤2)
=

𝑚𝑙

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2

𝐼+𝑚𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2

= −
𝑚𝑙

𝐼+𝑚𝑙2
 

By using decoupling algorithm, 

𝛾1 = 𝑡1 − ∫
𝑔1(𝑠)

𝑔2(𝑠)

𝑡2
0

𝑑𝑠 = 𝑡1 +
𝑚𝑙

𝐼+𝑚𝑙2
𝑡2   

𝛾2 = 𝑡1 −
𝑔1(𝑡1)

𝑔1(𝑡2)
𝑤2 = 𝑤1 +

𝑚𝑙

𝐼+𝑚𝑙2
𝑡2𝛿1 = 𝑡2          (4.91)                     

𝛿1 = 𝑡2 

𝛿2 = 𝑤2 

The system under stable point when both pendulum angle and cart position both comes at 

rest position, means𝜃 = 0, 𝑥 = 0, �̇� = 0, �̇� = 0. Then 𝛾1 = 0, 𝛾2 = 0, 𝛿1 = 0, 𝑎𝑛𝑑  𝛿2 = 0 

By using decoupling algorithm, the state equation of inverted pendulum is written as, 

�̇�1 = 𝛾2 

�̇�2 = (
𝑚(𝑚+𝑀)𝑔𝑙

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
−

𝑚𝑙

𝐼+𝑚𝑙2
𝑚2𝑔𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
)𝑤1         (4.92) 
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�̇�1 = 𝛿2 

�̇�2 = −
𝑚2𝑔𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
𝑤1 +

𝐼+𝑚𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
(𝑢 + 𝑑(𝑡))  

Let, 𝑇1 = (
𝑚(𝑚+𝑀)𝑔𝑙

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
−

𝑚𝑙

𝐼+𝑚𝑙2
𝑚2𝑔𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
), 𝑇2 = −

𝑚2𝑔𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
 , and 𝑇3 =

𝐼+𝑚𝑙2

(𝑀+𝑚)𝐼+𝑀𝑚𝑙2
  

Then the equation (4.92) may be written as, 

�̇�1 = 𝛾2 

�̇�2 = 𝑇1𝑤1            (4.93) 

�̇�1 = 𝛿2 

�̇�2 = −𝑇2𝑤1 + 𝑇3(𝑢 + 𝑑(𝑡)) 

Considering 𝑤1 = 𝛾1 −
𝑚𝑙

𝐼+𝑚𝑙2
𝑤2 = 𝛾1 −

𝑚𝑙

𝐼+𝑚𝑙2
𝛿1 = 𝛾1 − 𝑇4𝛿1, and 𝑇4 =

𝑚𝑙

𝐼+𝑚𝑙2
, then 

equation (4.92) may be written as, 

�̇�1 = 𝛾2 

�̇�2 = 𝑇1𝛾1 + 𝑇1𝑇4𝛿1           (4.94) 

�̇�1 = 𝛿2 

�̇�2 = −𝑇2𝛾1 + 𝑇2𝑇4𝛿1 + 𝑇3(𝑢 + 𝑑(𝑡)) 

Equation (4.94) may be define in terms of  𝜇1 = 𝛿2 , 𝜇2 = [𝛾1 𝛾2 𝛿1 ]
𝑇
, then the surface of 

sliding mode controller is design as,  

𝜎 =  𝜇1 −  𝐶𝜇2            (4.95) 

where 𝐶 =  [𝑐1 𝑐2 𝑐3 ], then the surface equation may be written as,  

�̇� = 𝜇1̇ −  𝐶𝜇2̇ = 𝑇2𝛾1 + 𝑇2𝑇4𝛿1 + 𝑇3(𝑢+ 𝑑(𝑡))−  𝐶𝜇2̇          (4.96)                                  

Hence the control input is designed as 

𝑢 =  
1

𝑇3
(−𝑇2𝛾1 − 𝑇2𝑇4𝛿1 +  𝐶𝜇2̇ −  ℎ𝑠𝑔𝑛(𝜎))          (4.97) 

where ℎ ≥  |𝑑(𝑡)|. 

The stability of sliding mode controller is defined by Lyapunov function. The Lyapunov 

function is designed as, 𝑉 =  
1

2
𝜎2, 

Then, the sliding function is written as, 

𝜎�̇� =  𝜎(−ℎ𝑠𝑔𝑛(𝜎)+ 𝑑(𝑡))  ≤ 0                    (4.98) 

From equation (4.98) it is clear that, system can reach and thereafter stay on the manifold 

𝜎 = 0 in finite time 𝑡𝑆. On the sliding manifold the sliding function is given as, 

When 𝑡 ≥ 𝑡𝑆, we have 
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𝜇2̇ = [

𝛾2
𝑇1
𝛿2

𝛾2 + 𝑇1𝑇4𝛿1] =  𝐴1𝜇1 + 𝐴2𝜇2 = (𝐴1𝐶 + 𝐴2)𝜇2           (4.99) 

where 𝐴1 = [0 0 1]𝑇 , 𝐴2 = [
0 1 0
𝑇1 0 𝑇1𝑇4
0 0 0

]. 

For stable operation 𝜇2 must be tends to zero, for that 𝐴1𝐶 + 𝐴2 should be Hurwitz. Thus we 

can say that 𝜇1 =  𝐶𝜇2 → 0.  

From 𝜇1 = 𝛿2, 𝜇2 = [𝛾1 𝛾2 𝛿1]
𝑇, since we know that if 𝑡 → ∞, then we have 𝛾1 →

0, 𝛾2 → 0, 𝛿1 → 0, and 𝛿2 → 0, hence 𝜃 → 0, �̇� → 0, 𝑥 → 0, and �̇� → 0. 

The equation 𝐴1𝐶 + 𝐴2 is define as, 

 𝐴1𝐶 + 𝐴2 = [0 0 1]𝑇[𝑐1 𝑐2 𝑐3] + [
0 1 0
𝑇1 0 𝑇1𝑇4
0 0 0

]  

= [
0 0 0
0 0 0
𝑐1 𝑐2 𝑐3

] + [
0 1 0
𝑇1 0 𝑇1𝑇4
0 0 0

] = [
0 1 0
𝑇1 0 𝑇1𝑇4
𝑐1 𝑐2 𝑐3

]   

The poles of  𝐴1𝐶 + 𝐴2 can be designed by the following: 

|𝑠𝐼 − ( 𝐴1𝐶 + 𝐴2)| =  |
𝑠 −1 0
−𝑇1 𝑠 −𝑇1𝑇4
−𝑐1 −𝑐2 𝑠 − 𝑐3

|  =  𝑠3 − 𝑐3𝑠
2 − 𝑇1𝑇4𝑐1 − 𝑐2𝑇1𝑇4𝑠 −

 𝑇1(𝑠 − 𝑐3) =  𝑠
3 − 𝑐3𝑠

2 − (𝑐2𝑇1𝑇4 + 𝑇1)𝑠 − 𝑇1𝑇4𝑐1 + 𝑇1𝑐3 = 0        (4.100) 

By comparing above equation with (𝑠 + 𝑘)3 = {

−𝑐3 = 3𝑘

−𝑐2𝑇1𝑇4 − 𝑇1 = 3𝑘
2

−𝑇1𝑇4𝑐1 + 𝑇1𝑐3 = 𝑘
3

 

To make  𝐴1𝐶 + 𝐴2 Hurwitz, the sliding mode parameters are designed as follows: 

{
 
 

 
 

𝑐3 = −3𝑘

𝑐2 =
−3𝑘2 + 𝑇1
𝑇1𝑇4

𝑐1  = −
𝑘3 − 𝑇1𝑐3
𝑇1𝑇4

 

 

4.4 Simulation Results and Discussion 

To assess the outcomes for various controller situations, simulation is carried out in the 

MATLAB/Simulink environment. The system's algorithm needs to be implemented, 

according on the simulation findings. 
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Figure 4.4 Block diagram of simulink model 

 

Simulation Results of Inverted Pendulum for Reaching Sliding Mode Control (RSMC), 

Decoupled Sliding Mode Control (DSMC), Quasi Sliding Mode Control (QSMC) and 

Equivalent Sliding Mode Control (ESMC) Algorithm 

The following parameters were chosen for simulation: M=1 gm; m=.010gm ; L=0.50m, 

g=9.8m/s2. The other constants are given as c=15, 𝜖 = 0.5, k=10. Figure 4.5, gives the 

pendulum angle and cart speed for different algorithm of sliding mode control and the 

control input for plant is shown in figure 4.6. 

 

(a) 

(b) 

Figure 4.5 (a) Pendulum angle (b) Cart speed of inverted pendulum 
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Figure 4.6 Control input of inverted pendulum 

 

Table 4.2.  Comparative analysis of equivalent, reaching, quasi, and decoupled sliding mode 

control  

Parameters 
Rise Time  

(s) 

Peak Time 

(s) 

Max Overshoot 

(%) 

Settling Time 

(s) 

Equivalent SMC 0.5 0.7 17.9 0.25 

Reaching SMC 0.2 0.35 18.1 0.6 

Quasi SMC 0.1 0.9 18.6 0.4 

Decoupled SMC 0.15 0.2 17.9 0.25 

 

The aforementioned findings suggest that all four control options function satisfactorily in 

terms of stability. Due to time domain measurement, sliding mode controller with decoupled 

law stands out, with quasi mode mode producing the superior results. As has already been 

mentioned, the plant's discrete time implementation and unmodeled dynamics make the 

chattering a bad characteristic. Also, the mechanical components' control precision and 

strength are being compromised by this issue. And in all of the approaches mentioned 

above, the decoupled algorithm dramatically lessens chattering than the quasi, equivalent, 

and sliding mode controller. 

 

Simulation Results of TORA System for Decoupled Sliding Mode Controller (DSMC) 

Algorithm 

For TORA system: The initial states are [1 0 п      0 ], to satisfy𝜆𝑟𝑒𝑓(−𝐴) > 𝜸, a=5, 

η=0.50, and switch function Δ=0.10, when the poles are moves far away from imaginary 
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axis its resonant frequency comes to zero, so its damping coefficient and transient response 

time are reduced to zero as shown in the figure 4.8 and figure 4.9, the control input of 

TORA system is shown in figure 4.7.   

 

 

Figure 4.7 Control input of TORA system for decoupled sliding mode control 

 

(a) 

(b) 

Figure 4.8 (a) Actuator angle, and (b) derivative of actuator angle of TORA system  



75 
 

 

(a) 

 

(b) 

Figure 4.9 (a) Actuator displacement, and (b) derivative of actuator displacement of TORA 

system 

It is clear from above results that the system experiences oscillations and overshoot, which further 

increased chattering in case of equivalent sliding mode control and reching sliding mode control and 

improved in quasi sliding mode control and decoupled sliding mode mode control. 

 

4.4 Conclusion 

In this study, reaching sliding mode control (RSMC), decoupled sliding mode control 

(DSMC), quasi sliding mode control (QSMC) and equivalent sliding mode control (ESMC) 

algorithm is used to improve the performance of inverted pendulum systems and TORA 

system and reduces the chattering. The above study is divided into two parts, in first part 

implementation of switching sliding mode controller, quasi sliding mode controller, 

equivalent sliding mode controller, and decoupled sliding mode controller is applied on 

inverted pendulum to check the system performance. And as per the result decoupled sliding 

mode controller gives best result among all four. 
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While in second part a decoupled algorithm was investigated to stabilize TORA systems. The 

performance of the control scheme was evaluated based on transient performance and 

stability. Simulation results showed that proposed sliding mode controller was able to give a 

robust performance in a wide range of operations and disturbances. Further the chattering 

phenomenon is also discussed and found that decoupled algorithm reduces the chattering 

sufficiently compare to other methods i.e., quasi sliding mode controller, equivalent sliding 

mode controller, switching sliding mode controller. 
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Chapter: 5 

Comparison of Approximation, Equivalent, and Switch-Gain Regulation 

Fuzzy Sliding Mode based Controller for Single Link Inverted Pendulum 

 

5.1 Introduction  

All the practical systems are nonlinear in nature and this is the main reason behind the 

growing interest in nonlinear control. The Inverted pendulum is a benchmark example of a 

static unstable nonlinear system due to its widest scope in industrial application. The best 

control benchmark system is an inverted pendulum which is inherently unstable. To stabilize 

a pendulum around its unstable equilibrium point, different control approaches have been 

reviewd in the literature. To balance a single link inverted pendulum, approximation of 

input-output linearization have been used theoretically and experimentally both, but this 

scheme uses complex mathematics which affects the response of the system [300]. Many 

controls theorem such as Lasalle’s invariant, feedback linearization on the basis of input-

output, and second theorem of Lyapunov's have been already used but at zero input case. 

[301]. Use of conventional controllers like PID based control tuned by trial and error method 

[302], optimization tools like a linear quadratic regulator and soft computing technique like 

neural and fuzzy control [303]-[304] has been given in the literature. But the common 

problem with all the said technique is that the system gives optimal result for certain specific 

operations. To handle the uncertainty in terms of external disturbance sliding mode control 

shows promising result which further enhance the system robustness [305] – [307]. In this 

method, a sliding surface is developed on the basis of state space, which works as a switch 

to control and observe plant behaviours with the input-output condition along with the 

constraints of modeling uncertainties and disturbance.  

Despite the fact, sliding mode control is the best techniques for controlling, but it suffers 

from a few drawbacks. In ideal conditions switching of control should occur at high 

frequency. Due to these switching forces, the dynamic system changes there trajectories and 

slide along the given restricted subspace of sliding mode. But practically, it is impossible to 

control the switching at high speed due to the physical limitations of switching devices and 

time delay computational control. This high speed switching produces a oscillation at very 

high frequency known as chattering in sliding mode control. Chattering may result in energy 

loss, system instability and sometimes it may lead to plant damage. Various techniques have 

been reviewed in the literature which focuses on chattering. A boundary layer is created and 



78 
 

overlap in nearby region of the sliding surface [308], boundary layer solution is proposed 

[101], higher-order sliding mode technique [309]-[312] estimation techniques of 

disturbance [313]-[314] control technique based on adaptive sliding mode [315], 

and adaptive fuzzy based sliding technique [316]-[317] are proposed in the literature to 

minimize the chattering. Each proposed technique has its advantages and disadvantages, but 

the selection criterion of the controller is depending on the ability to reduce the chattering 

which is related to the order of the mathematical model, plant uncertainty, and the type of 

application. Hence in all mentioned techniques fuzzy sliding mode control is simpler access 

to accord with chattering and plant uncertainties. The relation in the sliding mode controller 

and fuzzy is a physical phenomenon [318], which forces a sliding surface to follow the 

fuzzy rules. Hybrid control approach of fuzzy and SMC gives more stability and robustness 

against external disturbances due to unmatched plant dynamics. Fuzzy controller requires 

expert knowledge for designing of the controller which is a model-free, insensitive 

peripheral disturbances and variations in parameters [319]. The concept of fuzzy sliding 

mode control has been adapted by combining both fuzzy logic and SMC. The suitable 

controller not only attenuates uncertainties caused by unmatched dynamics and disturbances 

due to external sources but also significantly reduces the control chattering which is 

inherently found in the sliding mode control’s structure. This paper focus on application of 

sliding mode on fuzzy controller and compare their results in terms of oscillation and 

settling time of controller output. By comparing the output results of the three controllers it 

has been observed that the results corresponds to equivalent control based fuzzy sliding 

mode controller gives better response than approximation theory based fuzzy sliding mode 

controller and switching gain based fuzzy sliding mode control in order to reduce the 

chattering. 

In this chapter, the approximation, equivalent, and switch-gain regulation fuzzy sliding 

mode based controller for inverted pendulum systems is address keeping external 

disturbances and uncertainty into considerations. The system is chatter-free because a set of 

linguistic rules are created in fuzzy logic control. Fuzzy rules have been used to 

approximation the uncertainties of the nonlinear system while system parameters are 

accommodated according to adaptive laws fuzzy controller.  

 

5.2 Implementation of fuzzy sliding mode controller (FSMC) 
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In many areas, fuzzy control (FC) has replaced traditional approaches. The capacity of fuzzy 

logic to capture the degree of uncertainty in human thought is one of its key characteristics. 

Thus, FC is a different approach to dealing with the unknown process when the 

mathematical model of the process is absent or exists but has uncertainties. The study is 

complicated, however, due to the enormous number of fuzzy rules for high-order systems. 

The FSMC has so received a lot of attention. In this chapter, a fuzzy inference engine is 

employed to arrive at the phase and a fuzzy sliding mode control approach is suggested in 

order to solve the chattering problem. The primary benefit of this approach is the assurance 

of the system's resilient behaviour. The second benefit of the suggested plan is that it 

outperforms the identical SMC approach without FLC in terms of the system's ability to 

eliminate chattering. 

Figure 5.1. Control structure of fuzzy logic based sliding mode control 

 

Sliding control mode is robust to parameter variation and designs an accurate function of the 

system. The real continuous system is easily approximated by fuzzy logic [320]-[323]. 

Therefore, logic rules are designed and realized accordingly on a fuzzy sliding mode 

controller, based on experience. Fuzzy system based on the universal theory of 

approximation is used to design the model and to realized its external disturbances.  

The above block diagram, figure 5.1 explains the control operation for the position of an 

inverted pendulum through a fuzzy sliding mode controller. The above diagram shows two 
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main blocks namely, ‘single link inverted pendulum’ and ‘fuzzy sliding mode controller’. 

The fuzzy sliding mode controller operates on the IF-THEN rules of the fuzzy system. 

Moreover, the detailed steps of fuzzy operation has been explained through the block 

diagram mentioned as fuzzification, fuzzy inference engine, fuzzy rule, and defuzzification. 

Besides the fuzzy controller, an ‘adaptive law’ has also been incorporated with the fuzzy 

sliding controller. In the adaptive law, the parameters corresponding to the fuzzy system 

have been controlled and set to a new value. The adaptive law of the controller makes the 

system trajectory to track the reference trajectory.  

 

5.2.1 Classical sliding mode control 

This section describes a nonlinear system that contains uncertainty and outside disturbances. 

The nonlinear system's state equation is the following second-order differential equation: 

�̈� = 𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝑢(𝑡) + 𝑑(𝑡)                         (5.1) 

Where 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are nonlinear functions representing the uncertain term of the 

unmodeled dynamics or structural variation of system and 𝑑(𝑡)is the disturbance of the 

system. In general, the uncertain term 𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡) and the disturbance term 𝑑(𝑡) are 

assumed to be bounded. 

The control problem is to get the system to track the desired position of inverted 

pendulum 𝑥𝑑(𝑡), = [𝑥𝑑1(𝑡) 𝑥𝑑2(𝑡) 𝑥𝑑3(𝑡) ………… ]
𝑇𝜖𝑅𝑛             (5.2) 

Let the tracking error be 

 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡) =  [𝑥1(𝑡) − 𝑥𝑑1(𝑡) 𝑥2(𝑡) − 𝑥𝑑2(𝑡) …… . . 𝑥𝑛(𝑡) − 𝑥𝑑𝑛(𝑡)]
𝑇 =

[𝑒1(𝑡)𝑒2(𝑡)… . . 𝑒𝑛(𝑡)]
𝑇                  (5.3) 

The main aim is here to achieve the target 𝑥𝑑(𝑡), and design a sliding surface, such that the 

resulting state response of the tracking error vector satisfies 

 ‖𝑒(𝑡)‖ = ‖𝑥(𝑡)− 𝑥𝑑(𝑡)‖ → 0                              (5.4) 

Due to its order reduction feature and low susceptibility to disturbances and changes in plant 

parameters, ISMC is an effective instrument for controlling complex high-order dynamic 

plants that are working under uncertainty. In SMC, the controlled system's states are initially 

directed to dwell on a sliding surface in state space before being constrained there by a 

shifting law (based on the system states). The variable 𝑠(𝑥, 𝑡), specified is equated to zero to 

define a time-varying surface 𝑠(𝑡) in the state space. 

The sliding function is designed as, 𝑠 = �̇� + 𝑘𝑒 

Where 𝑘 > 0, then  
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�̇� = �̈� + 𝑐�̇� = �̈�𝑑 − �̈� + 𝑐�̇�𝑥1(𝑡) − 𝑥𝑑1(𝑡) = �̈�𝑑 − 𝑓(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)𝑢(𝑡) − 𝑑(𝑡) + 𝑐�̇�    (5.5) 

The control law is given as, 

𝑢 =
1

𝑔(𝑥,𝑡)
[−𝑓(𝑥, 𝑡) + �̈�𝑑 + 𝑐�̇� + 𝛿𝑠𝑔𝑛(𝑠)]                        (5.6) 

In control law equation (5.6), the switch term 𝛿𝑠𝑔𝑛(𝑠) is a robust term, which is used to 

overcome 𝑑(𝑡) 

The sliding mode surface is designed as, 

�̇� = �̈� + 𝑐�̇� = �̈�𝑑 − �̈� + 𝑐�̇� 

�̈�𝑑 − 𝑓(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)𝑢(𝑡) − 𝑑(𝑡) + 𝑐�̇� =  𝛿𝑠𝑔𝑛(𝑠) − 𝑑(𝑡)                 (5.7) 

 

5.2.2 Approximation theory based FSMC 

The fuzzy approximation theory shows that a fuzzy system can be represented as any 

continuous system. In this theorem, the unknown plant nonlinearities are approximated by 

fuzzy set IF-THEN rules of the fuzzy system. According to online adaptive law the 

parameters corresponding to fuzzy system have been controlled and set to a new value. 

The adaptive law of the controller makes the system trajectory track the reference trajectory, 

and at the same time also reduces its chattering. 

If function  𝑓(𝑥, 𝑡) is unknown of a nonlinear system, then a fuzzy estimation 𝑓(𝑥) is used 

to get feedback control. The universal approximation theorem is given as: 

1. For 𝑥𝑖(𝑖 = 1,2… . 𝑛) define the fuzzy sets 𝐴𝑖
𝑙𝑖 , 𝑙𝑖 = 1,2, … . , 𝑞𝑖. 

2. Follow ∏ 𝑞𝑖
𝑛
𝑖=1  fuzzy rules to construct fuzzy system f̂(x|θf). 

If 𝑥1 is 𝐴1
𝑙1….. 𝑥𝑛 is 𝐴1

𝑙𝑛 then 𝑓 is 𝐸𝑙1…….𝑙𝑛, where 𝑙𝑖 = 1𝑖, 2𝑖, … . . 𝑞𝑖 and 𝑖 = 1,2, … . . , 𝑛 

The fuzzy output can be described as 

f̂(x|θf) =

∑ …
p1
l1=1

∑ y
f

−l1,….,ln(∏ μ
A
i

li
(xi))

n
i=1

p1
ln=1

∑ …
p1
l1=1

∑ (∏ μ
A
i

li
(xi))

n
i=1

pn
ln=1

                      (5.8) 

Where 𝜇
𝐴𝑖
𝑙𝑖(𝑥𝑖) is the membership function of 𝑥𝑖. 

In the above equation, a column vector €(x) is introduced due to free parameter 𝑦𝑓
−𝐼1,..𝐼𝑛. 

Hence the fuzzy estimation is written as: 

𝑓(𝑥|𝜃𝑓) = 𝜃𝑓
𝑇€(𝑥)                        (5.9) 

Where €(𝑥) is the ∏ 𝑝𝑖
𝑛
𝑖=1 - a dimensional column vector.  

€𝑙1,…..𝑙𝑛(𝑥) =

∏ 𝜇
𝐴
𝑖

𝑙𝑖
(𝑥𝑖)

𝑛
𝑖=1

∑ …
𝑝1
𝑙1=1

∑ (∏ 𝜇
𝐴
𝑖

𝑙𝑖
(𝑥𝑖))

𝑛
𝑖=1

𝑝𝑛
𝑙𝑛=1

                   (5.10) 
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Assuming, the optimum solution for fuzzy approximation, 

𝜃𝑓
∗ =𝑎𝑟𝑔 𝑎𝑟𝑔 (𝑠𝑢𝑝|𝑓(𝑥|𝜃𝑓)   − 𝑓(𝑥)|           (5.11) 

Function 𝑓(𝑥, 𝑡) represents the unmatched uncertainty component of the nonlinear system 

which appears in the input and 𝛼𝑓 is the set of 𝜃𝑓. 

The unknown function 𝑓(𝑥, 𝑡) is written as, 𝑓 = 𝜃𝑓
∗𝑇€(𝑥) + 𝜀       (5.12) 

In the above equation the term 𝑥 is the input signal of fuzzy system, €(𝑥) is set of fuzzy 

vectors and 𝜀 is the fuzzy error, 𝜀 ≤ 𝜀𝑁. 

The unknown function 𝑓(𝑥, 𝑡) is approximated by fuzzy system. The input of fuzzy system 

is selected as 𝑥 = [𝑒 �̇�]𝑇 , and the output of the fuzzy system is given as, 𝑓(𝜃𝑓) = 𝜃𝑓
𝑇€(𝑥) 

The control equation no (5.6) may be written as to design the sliding mode controller, 

𝑢 =
1

𝑔(𝑥,𝑡)
[−𝑓(𝑥, 𝑡) + �̈�𝑑 + 𝑐�̇� + 𝛿𝑠𝑔𝑛(𝑠)]          (5.13) 

The equation of fuzzy sliding surface,   

�̇� = −𝑓̌− 𝑑(𝑡) − 𝛿𝑠𝑔𝑛(𝑠)                   (5.14) 

Where, 𝑓̌ = 𝑓 − 𝑓 = 𝑓 = 𝜃𝑓
∗𝑇€(𝑥) + 𝜀                 (5.15) 

To drive the plant trajectory on a sliding surface Lyapunov function is designed as, 

𝐿 =
1

2
𝑠2 +

1

2
𝛾�̃�𝑓

𝑇�̃�𝑓                    (5.16) 

From equation (5.14), (5.15) and (5.16) 

�̇� = 𝑠�̇� + 𝛾�̃�𝑓
𝑇�̃�𝑓
̇  

= �̃�𝑓
𝑇 (𝑠€(𝑥) + 𝛾�̇̃�𝑓) − 𝑠(𝜀 + 𝑑(𝑡)𝛿𝑠𝑔𝑛(𝑠)                    (5.17)  

The adaptive rule of fuzzy controller �̇̃�𝑓 =
1

𝛾
𝑠€(𝑥)        (5.18) 

�̇� = −𝑠(𝜀 + 𝑑(𝑡) + 𝛿𝑠𝑔𝑛(𝑠)) = −𝑠(𝜀 + 𝑑(𝑡)) − 𝛿|𝑠|        (5.19) 

Since the approximation error 𝜀 is so small hence 𝛿 ≥ 𝜀𝑁 + 𝐷, the Lyapunov function is 

approximated as 𝐿 ≤ 0̇ . 

 

5.2.3 Switching gain based FSMC 

In this section, FSMC controller has been implemented for the purpose of switching gain 

based operation. The switching control technique in sliding mode control derive the system 

states on sliding surface in the presence of unwanted external disturbances. And the fuzzy 

controller maintains system states on surface to improve the control performance and 

reduces the chattering in the sliding mode. 
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In this method there is a discontinuous switch pattern of sliding surface which has been 

substituted with fuzzy logics for further control.  

The switching function of sliding mode be,  

𝑠 = −(𝑘1𝑒 + 𝑘2�̇� + ⋯+ 𝑘𝑛−1𝑒
(𝑛−1) + 𝑒(𝑛−1)                (5.20) 

The error of switching function e, 

 𝑒 = 𝑥𝑑 − 𝑥 = [𝑒 �̇� …  𝑒(𝑛−1) ]
𝑇
, 𝑘1, 𝑘2… 𝑘𝑛−1         (5.21) 

The control equation no (5.6) may be written as to design the sliding mode controller, 

  𝑢(𝑡) =
1

𝑔(𝑥,𝑡)
(−𝑓(𝑥, 𝑡) + ∑ 𝑘𝑖𝑒

(𝑖)𝑛−1
𝑖=1 + 𝑥𝑑

(𝑛) − 𝑢𝑠𝑤)        (5.22) 

The switched input   𝑢𝑠𝑤of the controller is written as: 

  𝑢𝑠𝑤 = 𝛿𝑠𝑔𝑛(𝑠), 𝛿 > 𝐷            (5.23) 

The sliding surface of switching gain fuzzy controller is designed as: 

�̇� = ∑𝑘𝑖𝑒
(𝑖)

𝑛−1

𝑖=1

+ 𝑥(𝑛) − 𝑥𝑑
(𝑛)

 

= ∑ 𝑘𝑖𝑒
(𝑖)𝑛−1

𝑖=1 + 𝑓(𝜃, �̇�) + 𝑔(𝜃, �̇�)𝑢(𝑡) + 𝑑(𝑡) − 𝑥𝑑
(𝑛)

          (5.24) 

�̇� = 𝑑(𝑡) − 𝛿𝑠𝑔𝑛(𝑠)               (5.25) 

i.e.,  𝑠�̇� = 𝑑(𝑡)𝑠 − 𝛿|𝑠| ≤ 0                     (5.26) 

Where‘d’ disturbance and switching term ′𝛿′ both are large, which increases chattering. 

Then  ℎ̂ is used to approximate 𝛿𝑠𝑔𝑛(𝑠) which reduces the switching function, which will 

further reduce chattering.  

Using product deduction and centre average fuzzy, the equation (5.22) may be written as: 

𝑢(𝑡) =
1

𝑔(𝑥,𝑡)
(−𝑓(𝑥, 𝑡) + ∑ 𝑘𝑖𝑒

(𝑖)𝑛−1
𝑖=1 + 𝑥𝑑

(𝑛) − ℎ̂(𝑠))                     (5.27) 

Where ℎ̂(𝜃ℎ) output is for the universal approximation based fuzzy controller of the 

equation (5.9), 𝜑(𝑠) is the fuzzy vector, which will vary as per the rules adopted.  

The ideal ℎ̂(𝜃ℎ) is given as ℎ̂(𝜃ℎ) =  𝛿𝑠𝑔𝑛(𝑠) 

The adaptive rule to optimized the fuzzy controller is given as �̇�ℎ = 𝛾𝑠𝜑(𝑠), where 𝛾 > 0. 

The optimization parameter of adaptive law is 

𝜃ℎ
∗ = arg min

𝜃ℎ𝜖Ωℎ
[sup|ℎ̂(𝑠|𝜃ℎ) − 𝛿𝑠𝑔𝑛(𝑠)|]                      (5.28) 

Sliding surface �̇� of the controller is designed as per switched gain regulation algorithims: 

�̇� = −∑𝑘𝑖𝑒
(𝑖)

𝑛−1

𝑖=1

+ 𝑥(𝑛) − 𝑥𝑑
(𝑛)
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=∑𝑘𝑖𝑒
(𝑖)

𝑛−1

𝑖=1

+ 𝑓(𝜃, �̇�) + 𝑔(𝜃, �̇�)𝑢(𝑡) + 𝑑(𝑡) − 𝑥𝑑
(𝑛)

 

= −ℎ̂(𝑠|𝜃ℎ) + 𝑑(𝑡) + ℎ̂(𝑠│𝜃ℎ
∗  ) − ℎ̂(𝑠|𝜃ℎ

∗) 

= �̃�ℎ
𝑇𝜑(𝑠) + 𝑑(𝑡) − ℎ̂(𝜃ℎ

∗)                               (5.29) 

Lyapunov function for the system can be defined as, 

𝑉 =
1

2
(𝑠2 +

1

𝛾
�̃�ℎ
𝑇�̃�ℎ)                   

�̇� = 𝑠�̃�ℎ
𝑇𝜑(𝑠) +

1

𝛾
�̃�ℎ
𝑇�̃�ℎ
̇ + 𝑠(𝑑(𝑡) − ℎ̂(𝜃ℎ

∗)                

�̇� =
1

𝛾
�̃�ℎ
𝑇(𝛾𝑠𝜑(𝑠) − �̇�ℎ) + 𝑠𝑑(𝑡) − 𝛿|𝑠|                            (5.30) 

From equations (5.29) and (5.30), �̇� = 𝑠𝑑(𝑡) −  𝛿|𝑠| < 0                  (5.31) 

 

5.2.4 Equivalent control based FSMC 

A switch control equation and an equivalent control equation make up the control law of an 

equivalent sliding mode controller. Switch control forces the system state to stay on the 

sliding surface while analogous control drives the system states on the sliding surface. In 

order to lessen the chattering phenomena of sliding mode controllers, fuzzy rules of fuzzy 

controller are established based on comparable control and switch control. When 

disturbance magnitudes are small, switch control with a little gain is used, and when 

disturbance magnitudes are big, a switch control with a large gain is used. 

The tracking error of the switching surface is given as: 

𝑒 = 𝑥𝑑 − 𝑥                         (5.32) 

The switching function of sliding mode is given as: 

𝑠 = 𝑐𝑒 + �̇�              (5.33) 

By applying the reverse fuzzification method, the fuzzy control is designed as: 

𝑢 = 𝑢𝑒𝑞 + 𝜇 ∗ 𝑢𝑠              (5.34) 

The chattering phenomenon of sliding mode controller is reduced by varying the 

membership function 𝜇 . 

 

5.3 Simulation Results and Discussion 

The performance of fuzzy sliding mode control on the inverted pendulum is evaluated via 

numerical simulation. The parameters for single link inverted pendulum are given as, 

M=1.0kg, m=0.1kg, l=0.5 m, g=9.8m/s2. Simulation is carried out while considering the 
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movement of the cart and pendulum both are in one plane. The objective of the controller is 

to stabilize the pendulum position in upward. 

 

Sine Wave 

Input

M

U

X

Controller Plant

M

U

X

Output 2

Output 1

Derivative

 

Figure 5.2 Block diagram of Simulink model 

 

5.3.1 Simulation Results of Approximation theory based FSMC 

In the case of approximation theory based FSMC the initial states of the system are 𝜃(0) =

−600, �̇�(0) = 0, 𝑥(0) = 5.0, �̇�(0) = 0 and the desired states 𝜃(0) = 0, �̇�(0) = 0, 𝑥(0) =

0, �̇�(0) = 0, 𝜃𝑓 = 0.5, 𝛿 = 0.1, k1 = 20, k2 = 10 and the adaptive parameter is γ = 0.005. 

To fuzzify the state vectors 𝑥1 and 𝑥2, five membership function is selected and figure 5.3 

shows the membership function. 

𝜇𝐻𝑁 = exp [−(
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𝜋
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𝜋
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)

2

] 

 𝜇𝑁 = exp [− (
𝑥𝑖+

𝜋
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𝜋
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)
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] 

𝜇𝑍 = exp [−(
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  𝜇𝑃 = exp [− (
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] 

𝜇𝐻𝑃 = exp [−(
𝑥𝑖 −
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𝜋
12⁄

)

2

] 
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Figure 5.3 Membership function of input error for approximation theory based FSMC 

 

5.3.2 Simulation Results of Switched gain based FSMC 

The switching function sliding surface is given as, 𝑠 = −𝑘1𝑒 − �̇�, where 𝑘1 = 50 and the 

adaptive parameter is γ = 0.005, the initial states of the system are 𝜃(0) = −600, �̇�(0) =

0, 𝑥(0) = 5.0, �̇�(0) = 0 and the desired states 𝜃(0) = 0, �̇�(0) = 0, 𝑥(0) = 0, �̇�(0) = 0. 

Membership functions developed and considered for the switching gain-based method is 

defined as  

𝜇𝑁𝐵 =
1

(1 + 𝑒(5(𝑥+2)))
 

𝜇𝑁𝑀 = 𝑒(−(𝑥+1.5)
2) 

𝜇𝑍𝑂 = 𝑒
 (−(𝑥2)) 

𝜇𝑃𝑀 = 𝑒
(−(𝑥−1.5)2)  

𝜇𝑃𝐵 =
1

(1 + 𝑒(5(𝑥−2)))
 

 

Figure 5.4 Membership function of input error for switched gain based FSMC 

Fuzzy logic based controller approximated discontinuous switching gain by the, the 

membership function adapted as shown in figure 5.4. 
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5.3.3 Simulation Results of Equivalent control based FSMC 

Let the disturbance d(t) is given in form of gaussian function is given as, 𝑑(𝑡) =

5𝑒
(−

(𝑡−𝑐𝑖)
2

2𝑏𝑖
2 )

, where 𝑏𝑖 = 0.050, 𝑐𝑖 = 5.0 and γ = 0.5 the initial states of the system are 

𝜃(0) = −600, �̇�(0) = 0, 𝑥(0) = 5.0, �̇�(0) = 0 and the desired states 𝜃(0) = 0, �̇�(0) =

0, 𝑥(0) = 0, �̇�(0) = 0. 

Generally, sliding mode-based control operates using switch rule and equivalent rule. The 

logics of equivalent rule has been replaced by a fuzzy equivalent rule, which are mentioned 

below as follows;  

IF x is HN THEN μ is HP 

IF x is N THEN μ is P 

IF x is Z THEN μ is Z 

IF x is P THEN μ is P 

IF x is HP THEN μ is P 

Where the fuzzy sets HP, P, HN, N and, Z denote highly positive, “positive”, “highly 

negative”  “negative”, and “zero”, respectively. 

 

Figure 5.5 Membership function of input error for equivalent control based FSMC 

Membership function 𝜇 equivalent control method is shown in figure 5.5.  Control input is 

divided in two steps, first step is equivalent control 𝑢𝑒𝑞𝑢  which takes the system states 

toward the sliding surfaces, and second step ensure the system trajectory well on sliding 

surface by switch control 𝑢𝑠. Further, fuzzy control method is also devoloped as 𝑢 = 𝑢𝑒𝑞𝑢 +

𝜇. 𝑢𝑠, by the implementation of reverse fuzzification. 

Where 𝑢𝑒𝑞𝑢= equivalent control law and 𝑢𝑠= switch control law.  
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Figure 5.6 Control input of inverted pendulum 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.7 (a) Pendulum angle (b) Pendulum speed of inverted pendulum (c) Cart Position 

(d) Cart Speed 

Figure 5.6 shows control input of inverted pendulum for switching, approximation and 

equivalent fuzzy sliding mode controller and figure 5.7 shows the response of inverted 

pendulum such as pendulum angle, pendulum speed, cart position and cart speed for 

switching, approximation and equivalent fuzzy sliding mode controller.  The equivalent 

control based fuzzy sliding method reduces oscillation of the system. The reduced 

oscillation sufficiently minimizes the chattering phenomenon. Hence equivalent control 

based method is the most suitable method to eliminate chattering over approximation based 

sliding control mode and switching gain based sliding control mode. 
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In equivalent control based sliding mode is directly replaced by the fuzzy controller, 

whenever the trajectory of system is trying to leave the switching surface, large control force 

is provided by fuzzy rules to drive the trajectory again on the switching surface. Whereas 

approximation based fuzzy sliding mode and switching gain based sliding mode controller 

has been approximated with fuzzy values. Also, the equivalent control based sliding mode 

controller obtained a stable position through tracking of an inverted pendulum. This has 

been achieved with zero steady error within a specified bounded area. 

 

5.4 Conclusion 

The current work depicts three types of fuzzy sliding mode controller named as 

approximation based method equivalent control based method, and switching gain based 

method have been implemented to stabilize the tracking issue of inverted pendulum system. 

The equivalent control based sliding mode controller shows effective results in terms of 

system uncertenities and disturbances. A control strategy of fuzzy sliding mode involves a 

chattering free and stabilized nature for an inverted pendulum.  
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Chapter: 6 

Sliding Mode Control of Nonlinear Systems using RBF Neural Network 

 

6.1 Introduction 

Every physical system has a nonlinear character by definition. The failure of the 

superposition principle, which underlies linear control analysis, in the nonlinear situation 

necessitates the study of nonlinear systems. Improvements in linear control systems, 

nonlinearity analysis, and the necessity to deal with model designs are the main drivers of 

the increased interest in nonlinear system analysis. Nonlinear systems are challenging to 

examine since there is no single method that can be used to study all nonlinear systems. 

Since it is challenging to locate the direct solutions to nonlinear differential equations, 

laborious attempts have been undertaken to build suitable instruments for doing so. Sliding 

mode approaches have been cited as a superior option for robust control of non-linear 

systems due to its basic structure and straightforward implementation. Numerous strategies 

have been employed in the literature to control non-linear systems and determine their 

stability. Additionally, order reduction and adaptation against system uncertainties and 

disruptions are enforced via control of sliding mode type [324]–[325]. There are several 

proposals for non-linear control approaches based on sliding mode control in the literature 

[326]-[331]. It has been established that sliding mode approaches are a superior option for 

handling uncertainty and disturbances. Due to the discontinuous signum function of the 

control rule, the main problem with traditional sliding mode control is inherent chattering. 

Many methodologies described in the literature can be used to improvise the functionality of 

classical sliding mode control [332]. The first and second phases of classical sliding mode 

control are called the reaching mode phase and the sliding phase, respectively. Yet only the 

sliding mode phase demonstrates immunity to changes in the system's parameters. The SMC 

is able to handle the chattering issue in classical sliding because it is based on the innovative 

reaching law. A global SMC that avoids the reaching mode phase, preserves the resilience of 

the system, and is present during the whole reaction period was also presented by a few 

researchers. Some control systems have been subjected to this methodology [333] – [334]. 

Sliding mode control combines with other intelligence controllers, including fuzzy, neural, 

etc., to eradicate the chattering phenomena [335] – [339]. Every nonlinear function over a 

RBF neural network can approximate an efficient set with arbitrary precision, according to 

earlier research on the universal approximation theorem [340]. There have been many 
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different control strategies for neural sliding mode control developed, such as using a neural 

network as an observer for equivalent control estimation. In addition, a synthetic NN is 

employed in tandem with a modified switching function of the sliding mode controller for 

online diagnosis of model flaws. This improves controller performance and lessens 

chattering. To approximate the system's unknown nonlinearities, the RBF neural network 

can be utilised. Its weight value parameters are updated in real time in accordance with 

adaptive rules with the aim of directing the nonlinear system's output to create a specific 

trajectory. The chattering activity is reduced by using the Lyapunov function to create an 

adaptive control mechanism based on the RBF model. 

In this chapter, a resilient sliding mode control method for nonlinear systems taking into 

account various nonlinearities has been explored. A single link inverted pendulum and a 

robotic manipulator are the nonlinear systems that are taken into account here. The aim of 

control action is to keep the system's position where it is meant to be. To enhance control 

performance, an adaptive sliding mode control based on RBF compensation is used by the 

RBF neural network. 

 

6.2 Mathematical Modeling of Nonlinear System 

6.2.1 Mathematical Modeling of Robotic Manipulator 

The nonlinearities in a nonlinear system may be cancelled, converting the system dynamics 

into a linear form. This is demonstrated in the control scheme for the two-link robot in figure 

6.1. 

 

Figure 6.1 Two link robotic maniputaor 

Two-link planar robot arm manipulator’s arm dynamics are determined by assuming that the 

link masses  𝑚1 and 𝑚2 are primarily found at the terminals of the length linkages.𝑎1 and 𝑎2 
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respectively. The initial link's angle 𝜃1, 𝜃2 are with regard to the initial link's oriented 

torques 𝜏1 and 𝜏2 respectively. 

Let's use the fundamentals of Lagrange's equation of motion to calculate the dynamics of the 

two-link arm: 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕�̇�
− 

𝜕𝐿

𝜕𝜃
=  𝜏;  𝜃 = [𝜏1 𝜏2 ]

𝑇                                                       (6.1) 

The Lagrangian L is defined as follows using the kinetic energy K and potential energy P: 

𝐿 = 𝐾(𝜃, �̇�) − 𝑃(𝜃)                   (6.2)  

Locations and velocities for connection 1 are: 

𝑥1 = 𝑎1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1                                                                 

𝑦1 = 𝑎1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1   

�̇�1 = −𝑎1 �̇�1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1                            (6.3)                                      

�̇�1 = 𝑎1 �̇�1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1                                                       

𝑣1
2 = �̇�1

2 + �̇�1
2 = 𝑎1 

2 �̇�1
2                                               

For link 1, the kinetic and potential energy are 

 𝐾1 = 
1

2
𝑚1𝑣1 

2 = 
1

2
𝑚1𝑎1

2�̇�1
2                                                    (6.4) 

 𝑃1 = 𝑚1𝑔𝑦1 = 𝑚1𝑔𝑎1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1                                                (6.5) 

For link 2, the positions and velocities are given as: 

𝑥2 = 𝑎1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1  + 𝑎2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 + 𝜃2)                                  (6.6)                 

𝑦2 = 𝑎1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  + 𝑎2 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 + 𝜃2)                                                           (6.7) 

�̇�2 = −𝑎1�̇�1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  − 𝑎2(�̇�1 + �̇�2) 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 + 𝜃2)                    (6.8)                                        

�̇�2 = 𝑎1�̇�1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1  + 𝑎2(�̇�1 + �̇�2) 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 + 𝜃2)                         (6.9)                                  

𝑣2
2 = �̇�2

2 + �̇�2
2 = 𝑎1

2�̇�1
2 + 𝑎2

2(�̇�1 + �̇�2)
2 + 2𝑎1𝑎2(�̇�1

2 + �̇�1�̇�2) 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2                      (6.10) 

Therefore, kinetic energy for link 2 is 

𝐾2 = 
1

2
𝑚2𝑣2 

2 = 
1

2
𝑚2𝑎1

2�̇�1
2 +

1

2
𝑚2𝑎2

2(�̇�1 + �̇�2)
2 +𝑚2𝑎1𝑎2(�̇�1

2 + �̇�1�̇�2) 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2   (6.11) 

The potential energy for link 2 is 

𝑃1 = 𝑚2𝑔(𝑎1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  + 𝑎2 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 + 𝜃2)                                                 (6.12) 

The complete arm's Lagrangian equation is 

𝐿 = 𝐾 − 𝑃 = 𝐾1 + 𝐾2 − 𝑃1 − 𝑃2                                                                                     (6.13) 

=
1

2
(𝑚1 +𝑚2)𝑎1

2�̇�1
2 +𝑚2𝑎2

2(�̇�1 + �̇�2)
2 +𝑚2𝑎1 𝑎2(�̇�1

2 + �̇�1�̇�2) cos 𝜃2 − (𝑚1 +

𝑚2)𝑔𝑎1 sin 𝜃1 −𝑚2𝑔𝑎2 sin(𝜃1 + 𝜃2)                       (6.14)                                                        

The vector equation, which is made up of two scalar equations, is equation (6.14). To put 

out these two equations, the individual terms are 
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𝜕𝐿

𝜕𝜃1̇
= (𝑚1 +𝑚2)𝑎1

2�̇�1
2 +𝑚2𝑎2

2(�̇�1 + �̇�2)𝑚2𝑎1𝑎2(2𝜃1 +̇ �̇�2) 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2                     (6.15) 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝜃1̇
= (𝑚1 +𝑚2)𝑎1

2𝜃1̈ +𝑚2𝑎1𝑎2(2𝜃1̈ + 𝜃2̈) 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2  −𝑚2𝑎1𝑎2(2𝜃1�̇�2 +
̇ �̇�2

2)

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2                             (6.16) 

𝜕𝐿

𝜕𝜃1
= −(𝑚1 +𝑚2)𝑔𝑎1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃1  −𝑚2𝑔𝑎2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 + 𝜃2)                                  (6.17) 

𝜕𝐿

𝜕𝜃2̇
= 𝑚2𝑎2

2(�̇�1 + �̇�2) + 𝑚2𝑎1𝑎2�̇�1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2                                                               (6.18) 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝜃2̇
= 𝑚2𝑎2

2 (�̇�1 + �̇�2) + 𝑚2𝑎1𝑎2𝜃1̈ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃2  −𝑚2𝑎1𝑎2�̇�1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2                 (6.19) 

𝜕𝐿

𝜕𝜃2
= −𝑚2𝑎1𝑎2(�̇�1

2 + �̇�1�̇�2) 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2  −𝑚2𝑔𝑎2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 + 𝜃2)                          (6.20) 

The two linked nonlinear differential equations provide the arm dynamics according to 

Lagrange's equation. 

𝜏1 = [(𝑚1 +𝑚2)𝑎1
2 +𝑚2𝑎2

2 + 2𝑚2𝑎1𝑎2 cos 𝜃2]𝜃1̈ + [𝑚2𝑎2
2 +𝑚2𝑎1𝑎2 cos 𝜃2]𝜃2̈ −

𝑚2𝑎1𝑎2(2�̇�1�̇�2 + �̇�2
2) sin 𝜃2 +(𝑚1 +𝑚2)𝑔𝑎1 cos 𝜃1 +𝑚2𝑔𝑎2 cos(𝜃1 + 𝜃2)             (6.21) 

𝜏2 = [𝑚2𝑎2
2 +𝑚2𝑎1𝑎2 cos 𝜃2]𝜃1̈ +𝑚2𝑎2

2𝜃2̈ +𝑚2𝑎1𝑎2�̇�1
2 sin 𝜃2 +𝑚2𝑔𝑎2 cos(𝜃1 + 𝜃2) 

                  (6.22)                                                                                                                   

The manipulator dynamics in vector form are: 

[
(𝑚1 +𝑚2)𝑎1

2 +𝑚2𝑎2
2 + 2𝑚2𝑎1𝑎2 cos 𝜃2 𝑚2𝑎2

2 +𝑚2𝑎1𝑎2 cos 𝜃2
𝑚2𝑎2

2 +𝑚2𝑎1𝑎2 cos 𝜃2 𝑚2𝑎2
2 ] [

𝜃1̈
𝜃2̈
] +

[
−𝑚2𝑎1𝑎2(2�̇�1�̇�2 + �̇�2

2) sin 𝜃2

𝑚2𝑎1𝑎2�̇�1
2 sin 𝜃2

] + [
(𝑚1 +𝑚2)𝑔𝑎1 cos 𝜃1
𝑚2𝑔𝑎2 cos(𝜃1 + 𝜃2)

]   = [
𝜏1
𝜏2
]                             (6.23) 

The dynamics of two link manipulator is given as: 

𝑀(𝜃)�̇� + 𝑉(𝜃, �̇�) + 𝐺(𝜃) = 𝜏                                                           (6.24) 

Where the symmetric inertia matrix 

𝑀(𝜃) = [
𝛼 + 𝛽 + 2𝜇 cos 𝜃2 𝛽 + 𝜇 cos 𝜃2
𝛽 + 𝜇 cos 𝜃2 𝛽

]                                                                  (6.25) 

And nonlinear terms 

𝑁(𝜃, �̇�) = 𝑉(𝜃, �̇�) + 𝐺(𝜃)                                                                              (6.26) 

𝑉(𝜃, �̇�) = [
𝜇(2𝜃1�̇�2 +

̇ �̇�2
2)

𝜇�̇�1
2 sin 𝜃2

]                                                                                            (6.27) 

𝐺(𝜃) = [
𝛼𝑒1 cos 𝜃1 + 𝜇𝑒1 cos(𝜃1 + 𝜃2)

𝜇𝑒1 cos(𝜃1 + 𝜃2)
]                                                                        (6.28) 

𝛼 = (𝑚1 +𝑚2)𝑎1
2; 𝛽 = 𝑚2𝑎2

2; 𝜇 = 𝑚2𝑎1𝑎2; 𝑒1 =
𝑔

𝑎1
                      (6.29) 
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Finding an appropriate state space transformation will allow the general state to be 

converted to Brunovsky form. 

Defining the state vector as 

𝑥 = [𝑥1 𝑥2 ] = [𝑥11  𝑥12 𝑥21  𝑥22 ] = [𝜃 �̇� ] = [𝜃1 𝜃2 �̇�1  �̇�2 ]                                          (6.30) 

we get the following state equations: 

 �̇�1 = �̇� = 𝑥2                                                       

�̇�2 = �̈� = −𝑀−1(𝜃)[𝑉(𝜃, �̇�) + 𝐺(𝜃)] + 𝑀−1(𝜃)𝜏 = −𝑀−1(𝑥1)[𝑉(𝑥1, 𝑥2) + 𝐺(𝑥1)] +

𝑀−1(𝑥1)𝜏 = 𝑓(𝑥) + 𝑔(𝑥)𝜏                                                                                              (6.31) 

Where, f(x)= −𝑀−1(𝑥1)[𝑉(𝑥1, 𝑥2) + 𝐺(𝑥1)];  𝑔(𝑥) = 𝑀
−1(𝑥1) 

The control law is given as, 

 𝜏 = 𝑔−1[−𝑓(𝑥) + 𝑢]             (6.32) 

The linearized state equation is given as, 

[

𝑥11̇
𝑥12̇
𝑥21̇
𝑥22̇

] = [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

] [

𝑥11
𝑥12
𝑥21
𝑥22

] + [

0 0
0 0
1 0
0 1

] [
𝑢1
𝑢2
]                                           (6.33) 

Equation (6.33) may be also expressed as, 

[
𝑥1̇
𝑥2̇
] = [

0 1
1 0

] [
𝑥1
𝑥2
] + [

0
𝐼
] 𝑢                                                               (6.34) 

 

6.2.2 Mathematical Modelling of Inverted Pendulum 

In Chapter 4, the inverted pendulum mathematical model was already covered. 

 

6.3 RBF Neural Network 

Neural network techniques have advanced significantly since the 1940s, when the idea of 

networks composed of fundamental neuronal models was first put forth, and have found 

successful applications in a variety of fields, including modelling, signal processing, 

learning, pattern recognition, and system control. The employment of neural networks in the 

detection and control of nonlinear systems is greatly encouraged by their key advantages, 

which include learning capability, nonlinear function approximation, fault tolerance, and 

well implemented analogue VLSI for real-time applications [342]. Numerous factors, 

including the following important ones, have sparked intense research interest in the neural 

networks as alternatives to conventional control approaches. 

 

• Any function may be taught to neural networks. As a result, many classic adaptive 
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and optimal control approaches do not utilise the intricate and challenging 

mathematical analyses that neural networks are capable of. 

• The incorporation of activation function in multilayered neural networks hidden 

neurons provides nonlinear mapping capabilities for tackling extremely nonlinear 

control issues for which conventional control techniques have not yet produced a 

workable solution. 

• Traditional adaptive and optimum control strategies require extensive a priori 

knowledge about the plant to be managed, such as mathematical modelling, before 

they can be put into practise. Such extensive knowledge is not necessary for neural 

controllers because of neural networks capability for self-learning. Therefore, it 

appears that neural controllers may be used in a larger range of uncertain situations. 

• The remarkable parallel computing of neural networks, when used in conjunction 

with neural chips or parallel hardware, provides extremely quick multiprocessing. 

 

The creation of reliable adaptive neural network control methods has engaged numerous 

research teams. Many research studies [343] – [347] have shown that neural networks are 

capable of approximation, and several books [348] – [354] propose numerous adaptive 

neural network controllers based on approximation skills. Radial basis function (RBF) 

networks are a prominent type of artificial neural network for problems involving function 

approximation. Radial basis function networks have a universal approximation, unlike other 

neural networks creating a faster rate of studying. A feed-forward neural network, also 

referred to as an RBF network, has three layers: output, hidden, and input. 

A single hidden layer of linearly independent functions makes up the RBF feed-forward 

connection topology 𝑓𝑚: 𝑅
𝑁 → 𝑅 on which an m-dimensional function space is built [355]. 

Several nonlinear mappings i.e., 𝑓𝑚 ∈ 𝑠𝑝𝑎𝑛{∅1, ∅2, ⋯∅𝑚} RBF network architecture as 

shown in figure 6.2. The linear regression equation below yields its transfer function: 

 

𝑓𝑚(𝑥) = ∑ 𝑤𝑘∅𝑘(𝑥) + 𝑤0
𝑚
𝑘=1                          (6.35) 

 

Where ∅𝑘(𝑥) = ∅(
|𝑥−𝑐𝑘|

𝑠𝑘
) are the basis functions being translated to increase the size of a 

radially-symmetric prototype function ∅: 𝑅𝑁 → 𝑅 and 𝑤𝑘, 𝑘 = 0,1,2, … . ,𝑚 are the 

adjustable weight coefficients of linear regression. 
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Figure 6.2 RBF neural network architecture 

 

Once the computed error has achieved the desired values (i.e. 0.01) or the required number 

of training iterations (i.e. 500), the RBF model's training is finished. It is decided to use an 

RBF network with 10 nodes or more in the hidden layer. In computing units, the transfer 

function is a Gaussian function. Depending on the situation, it is frequently seen that the 

RBF network took less time to complete training. 

 

An appropriate radial basis function relies on the system and area of interest [356], and a 

variety of functions, including the Gaussian function, are provided. 

∅(𝑟) = 𝑒𝑥𝑝 (−𝑟2), inverse multiquadric ∅(𝑟) =
1

√𝑟2+1
, cubic ∅(𝑟) = 𝑟3, liner ∅(𝑟) = 𝑟,  

multiquadric ∅(𝑟) = √𝑟2 + 1, etc. The Gaussian and the remaining radial functions are 

referred to as non-local, whereas the Gaussian and inverse multiquadric are referred to as 

localised functions. Localized radial functions are closely related to receptive fields, which 

are responsive to inputs situated within a restricted range of the input space and are seen in 

biological neuronal systems. However, compared to localised RBFs, non-local radial 

functions are more effective in approximating smooth input-output mappings [357]. The 

idea behind RBF neural networks was to reframe the stringent interpolation condition as the 

function approximation issue, where the number of radial basis functions is purposefully 

smaller than the number of training points that are available.   

Multivariate interpolation in high-dimensional areas leads to the development of the radial 

basis function neural network approximation approach [359] and potential functions [358] 

shown that for a given set of {(𝑥𝑖, 𝑦𝑖) ∈ 𝑅
𝑑 × 𝑅}𝑖=1

𝑃  interpolation knots 𝑦𝑖, i.e.,𝑥𝑖 scalar 

values given at 𝑓𝑚(𝑥) = ∑ 𝑤𝑖∅(‖𝑥 − 𝑥𝑖‖)
𝑚=𝑃
𝑖=1   coordinates, the approximation function can 

be used 𝑓𝑚(𝑥𝑖) = 𝑦𝑖, 𝑖 = 1,2, … . . , 𝑚 = 𝑃 satisfies the interpolation condition 𝑓(𝑥). 

According to the universal theory of approximation for any continuous input-output 

mapping function 𝑚. It is possible to divide the multi-output RBF network into a number of 
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independent networks that share the same set of RBFs. RBF networks may therefore be 

thought of as universal approximators with many inputs and outputs. Three applications of 

RBF network approximation include identification of nonlinear dynamic systems, control, 

and time-series prediction. 

Models are used to determine the relationships between system inputs u(t) and system 

responses y(t), 

𝑦(𝑡 + 1) = 𝑆(𝑦(𝑡), 𝑦(𝑡 − 1), … . 𝑦(𝑡 − 𝑘); 𝑢(𝑡 + 1), 𝑢(𝑡), … . 𝑢(𝑡 − 𝑛))         (6.36) 

Where S(.) is the multivariate function defined as dimensional vector inputs which will be 

approximated by the network.  

 

6.4 RBF Neural Sliding Mode Control 

Due to its reliable control methods, SMC offers the finest answer for any plant uncertainty 

and external disruption. The most notable characteristic of SMC is that, while in sliding 

mode, it is fully indifferent to plant uncertainty and outside perturbations [360]. It offers a 

Switched control law for high speed that allows the plant's state trajectory of non-linear type 

to be moved onto a chosen sliding or switching surface of state space and maintained there 

for the duration of the period. The system state is intended to control the state and then 

confine it to be in close proximity to the switching function. Its two main benefits are the 

ability to change the system's dynamic behaviour by choosing a switching criterion and the 

response of closed-loop becoming insensitive to a certain class of uncertainty. SMC is 

appealing from a design standpoint since it allows for direct performance specification. A 

sliding mode controller stabilises a system's trajectory. 

 

 

Figure 6.3 Ideal concept of sliding mode 

 

Figure 6.3 illustrates how throughout the line, the mechanism "slides" s=0 once it reaches 

state trajectory of the plant on the chosen surface. The surface at s=0 was picked because, 

when limited to it, it exhibits good reduced-order dynamics. The SMC design has two 

stages. The first stage in getting the plant that is restricted to it to behave creating a surface 
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of sliding type as intended. It implies that a supplementary equations’ set defining the 

‘switching surface' must be satisfied by the dynamics of the state variables of the plant. The 

second stage involves making the switching feedback gains necessary to orient the plant's 

state trajectory towards the surface of sliding type. These inventions are based on the 

generalised Lyapunov stability theory. One issue in SMC design is ensuring that the system 

state converges to the sliding surface. Another challenge is assuring control target 

achievement on the sliding surface (i.e., providing robustness). As shown in figure 6.3, the 

artificial intelligence integration (AI) into sliding mode control (SMC) represents a 

milestone for the more than 50-year-old sliding mode theory. For increased responsiveness, 

various sliding surface configurations have been suggested for sliding mode control. The 

various integration strategies are looked at. Technical descriptions of composite SMC and 

computational intelligence controllers are available.[361]. Also, emphasis has been made on 

the particular advantages and disadvantages of integrating AI methods into SMC. SMC and 

AI were both incorporated into sliding mode controllers for a number of reasons, including 

enhancing the performance of the controller by merging the two, enhancing the primary AI 

controllers by utilising SMC's advantages, and reducing chattering. In a few studies, SMC, 

AI, and adaptive control methodologies have all been combined. Adaptive control systems' 

independence from precise prior knowledge of dynamic characteristics is one of its key 

advantages. Their capacity to efficiently suppress mistakes induced by uncertainties of 

parameters, and their capability to partially neutralise the effects of SMC high-frequency 

switching. 

 

Figure 6.4 Performance improvement techniques of SMC 
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For the approximate solution of non-linear functions, neural networks are employed. Any 

function of practical importance can have its input-output behaviour approximated by a 

neural network with sufficient neurons in at least one hidden layer and acceptable starting 

weight values. Given that they execute and learn the mapping from input data to output data, 

neural networks may be thought of as instruments for pattern recognition. The primary 

drawback of using neural networks in control applications is the traditional back propagation 

technique, which only allows for a delayed and ineffective learning process. 

Learning, parallelism, and fault tolerance are characteristics of neural networks [169]. In 

several situations, NN-based SMC has been employed as the controller [170]–[174]. Its 

notable traits include rapid convergence, great accuracy, and a small network size [176]. To 

address the problem of uncertainty bound in SMC design, position control of nonlinear, 

uncertain system dynamics was anticipated using a NN bound observer. For a variety of 

operating situations, this composite NN-SMC controller enabled reliable position control. 

 

6.4.1 RBF Based Neural Sliding Mode Control for Inverted Pendulum 

Let the state space representation of an inverted pendulum is given as – 

�̇�1 = 𝑥2            (6.37) 

�̇�2 =
𝑔𝑠𝑖𝑛𝑠𝑖𝑛 𝑥1 −𝑚𝑙𝑥2

2𝑐𝑜𝑠𝑐𝑜𝑠 𝑥1 𝑠𝑖𝑛𝑠𝑖𝑛 𝑥1 /(𝑚𝑐+𝑚)

𝑙(4/3−𝑚𝑐𝑜𝑠2𝑥1/(𝑚𝑐+𝑚))
+

𝑐𝑜𝑠𝑐𝑜𝑠 𝑥1 /(𝑚𝑐+𝑚)

𝑙(4/3−𝑚𝑐𝑜𝑠2𝑥1/(𝑚𝑐+𝑚))
𝑢 + 𝑑(𝑡)  

  

Where 𝑓(𝑥1, 𝑥2) =
𝑔𝑠𝑖𝑛𝑠𝑖𝑛 𝑥1 −𝑚𝑙𝑥2

2𝑐𝑜𝑠𝑐𝑜𝑠 𝑥1 𝑠𝑖𝑛𝑠𝑖𝑛 𝑥1 /(𝑚𝑐+𝑚)

𝑙(4/3−𝑚𝑐𝑜𝑠2𝑥1/(𝑚𝑐+𝑚))
, 𝑔(𝑥1, 𝑥2) =

𝑐𝑜𝑠𝑐𝑜𝑠 𝑥1 /(𝑚𝑐+𝑚)

𝑙(4/3−𝑚𝑐𝑜𝑠2𝑥1/(𝑚𝑐+𝑚))
 is an unknown function of any nonlinear plant, 𝑥1, 𝑥2 are the angle 

and speed of inverted pendulum respectively, 𝑑(𝑡) is the disturbance |𝑑(𝑡)| ≤ 𝐷. 

The control problem's objective is to obtain the nonlinear system to track the target position 

at an angle defined by 𝑥1𝑑, the tracking inaccuracy is therefore stated as:  

 𝑒 = 𝑥1 − 𝑥1𝑑 

�̇� = 𝑥2 − �̇�1𝑑         (6.38) 

The sliding mode function is defined as, 

𝑠 = 𝑐𝑒 + �̇�, 𝑐 > 0         (6.39) 

The above sliding function may be represented in term of state equation, 

�̇� = 𝑐�̇� + �̈� = 𝑐�̇� + 𝑥2 − �̈�1𝑑 = 𝑐�̇� + 𝑓(𝑥1, 𝑥2) + 𝑔(𝑥1, 𝑥2)𝑢 + 𝑑(𝑡) − �̈�1𝑑                 (6.40) 

From equation (6.39), we can say that, if 𝑠 → 0, then 𝑒 → 0 and �̇� → 0. 

The algorithm of neural RBF network is given as: 
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ℎ𝑖𝑗 =𝑒𝑥𝑝 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑐𝑖𝑗‖

2

𝑏𝑖𝑗
2 )  , 𝑗 = 1,… . ,𝑚         (6.41) 

 𝑓(𝑥1, 𝑥2) = 𝑤𝑖
𝑇ℎ𝑖 + 𝜖𝑖         (6.42) 

Where 𝑥𝑖 = [𝑒𝑖  �̇�𝑖  𝑞𝑑𝑖  �̇�𝑑𝑖  �̈�𝑑𝑖     ] are input of RBF, ℎ𝑖 = [ℎ𝑖1ℎ𝑖2… . ℎ𝑖𝑚]
𝑇 is a gaussian 

output, 𝜖𝑖 is the neural network's approximation error, 𝜖 ≤ 𝜖𝑁 and 𝑤𝑖 is ideal neural network 

weight value, 𝑗 is the hidden layer nodes in the network. 

The controller's sliding mode design was created in such a way that, 

𝑢 =
1

𝑔(𝑥,𝑡)
[−

1

2
𝑠∅̂ℎ𝑇ℎ + �̈�1𝑑 − 𝑐�̇� − 𝜂𝑠𝑔𝑛(𝑠) + 𝑑 − 𝜇𝑠]          (6.43) 

The Lyapunov function is defined as, 

𝐿 =
1

2
𝑠2 +

1

2𝛾
�̃�2               (6.44) 

Where 𝛾 > 0. 

From equation 6.9 and 6.10, the Lyapunov function may be written as, 

�̇� = 𝑠�̇� +
1

𝛾
�̃��̇̂� = 𝑠 (𝑊𝑇ℎ + 𝜖 −

1

2
𝑠∅̂ℎ𝑇ℎ − 𝜂𝑠𝑔𝑛(𝑠) + 𝑑 − 𝜇𝑠) +

1

𝛾
�̃��̇̂� 

≤
1

2
𝑠2∅ℎ𝑇ℎ +

1

2
−
1

2
𝑠∅̂ℎ𝑇ℎ + (𝜖 + 𝑑)𝑠 − 𝜂 +

1

𝛾
�̃��̇̂� − 𝜇𝑠2  

= −
1

2
𝑠2∅̃ℎ𝑇ℎ +

1

2
+ (𝜖 + 𝑑)𝑠 − 𝜂|𝑠| +

1

𝛾
�̃��̇̂� − 𝜇𝑠2  

= ∅̃(−
1

2
𝑠2ℎ𝑇ℎ

1

𝛾
�̇̂�) +

1

2
+ (𝜖 + 𝑑)𝑠 − 𝜂|𝑠| − 𝜇𝑠2  

≤ ∅̃(−
1

2
𝑠2ℎ𝑇ℎ

1

𝛾
�̇̂�) +

1

2
− 𝜇𝑠2              (6.45) 

The adaptive law of RBF function is derived as: 

∅̇̂ =
𝛾

2
𝑠2ℎ𝑇ℎ − 𝑘𝛾∅̂, where 𝑘 > 0. 

Then,  

�̇� ≤ −𝑘∅̃∅̂ +
1

2
− 𝜇𝑠2 ≤ −

𝑘

2
(∅̃2 − ∅2) +

1

2
− 𝜇𝑠2 = −

𝑘

2
∅̃2 − 𝜇𝑠2 + (

𝑘

2
∅2 +

1

2
)        (6.46) 

Let us define, 𝑘 =
2𝜇

𝛾
, then equation (6.46) may be written as: 

�̇� ≤ −
𝜇

𝛾
∅̃2 − 𝜇𝑠2 ++(

𝑘

2
∅2 +

1

2
) = −2𝜇 (

1

2𝛾
∅̃2 +

1

2
𝑠2) + (

𝑘

2
∅2 +

1

2
) = −2𝜇𝐿 + 𝑄   (6.47) 

Where 𝑄 = (
𝑘

2
∅2 +

1

2
) 

As per the Lemma: Let 𝑓, 𝑉: [0,∞] ∈ 𝑅, then �̇� ≤ −𝛼𝑉 + 𝑓, ∀𝑡 ≥ 𝑡0 ≥ 𝜏 

Implies that 𝑉(𝑡) ≤ 𝑒𝛼(𝑡−𝑡0)𝑉(𝑡0) + ∫ 𝑒−𝛼(𝑡−𝜏)𝑓(𝜏)𝑑𝜏
𝑡

𝑡0
 For any finite constant 𝛼. The 

solution of equation 6.46is given as: 

𝐿 ≤
𝑄

2𝜇
+ (𝐿(0) −

𝑄

2𝜇
) 𝑒−2𝜇𝑡,             (6.48) 
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Then, lim
𝑡→∞

𝐿 =
𝑄

2𝜇
=

𝐾

2
∅2+

1

2

2𝜇
=

𝑘∅2+1

4𝜇
=

2𝜇

𝛾
∅2+1

4𝜇
=

∅2

2𝛾
+

1

4𝜇
          (6.49) 

It is obvious from equation (6.49) that γ and μ have an impact on the convergence precision. 

 

6.3.2 RBF Based Neural Sliding Mode Control for Manipulators 

Let the dynamic equation of two-link manipulator is given as: 

𝐷(𝑞)�̈� + 𝐶(𝑞, 𝑞)̇�̇� + 𝐺(𝑞) + 𝐹(�̇�) + 𝜏𝑑 = 𝜏           (6.50) 

𝐷(𝑞) (Inertia Matrix) = [
𝑝1 + 𝑝2 + 2𝑝3 cos 𝑞2 𝑝2 + 𝑝3 cos 𝑞2
𝑝2 + 𝑝3 cos 𝑞2 𝑝2

] 

𝐶(𝑞, 𝑞)̇ (Centripetal Matrix) = [
−𝑝3�̇�2 sin 𝑞2 −𝑝3(�̇�1 + �̇�2) sin 𝑞2
𝑝3�̇�1 sin 𝑞2 0

] 

𝐺(𝑞) (Gravity Vector) = [
𝑝4𝑔 cos 𝑞1 + 𝑝5𝑔 cos(𝑞1 + 𝑞2)

𝑝5𝑔 cos(𝑞1 + 𝑞2)
] 

𝐹(�̇�) (Friction force) = 0.2𝑠𝑔𝑛(�̇�), 𝜏𝑑 (Unknown Disturbance) = [0.2 sin(𝑡) 0.2 sin(𝑡)]𝑇 

and τ is the control input. 

The control problem is to get the system to track the desired position of nonlinear system, 

the tracking error is defined as: 

𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡)           (6.51)         

To get the desired position the control goals are 𝑒(𝑡) → 0, and �̇�(𝑡) → 0 as 𝑡 → ∞.  

The sliding mode function is defined as: 𝑠 = �̇� + 𝑐𝑒 

Where 𝑐 = 𝑐𝑇 > 0, then �̇� = −𝑟 + �̇�𝑑 + 𝑐𝑒 

𝐷�̇� = 𝐷(�̈�𝑑 − �̈� + 𝑐�̇�) = 𝐷(�̈�𝑑 + 𝑐�̇�) − 𝐷�̈�  

= 𝐷(�̈�𝑑 + 𝑐�̇�) + 𝐶�̇� + 𝐺 + 𝐹 + 𝜏𝑑 − 𝜏  

= 𝐷(�̈�𝑑 + 𝑐�̇�) − 𝐶𝑟 + 𝐶(�̇�𝑑 + 𝑐𝑒) + 𝐺 + 𝐹 + 𝜏𝑑 − 𝜏               

= −𝐶𝑟 − 𝜏 + 𝑓 + 𝜏𝑑           (6.52) 

Where 𝑓 = 𝐷(�̈�𝑑 + 𝑐�̇�) + 𝐶(�̇�𝑑 + 𝑐𝑒) + 𝐺 + 𝐹 

Since 𝑓 is unknown function, because of this, the RBF neural network is utilised with 

minimal parameter learning to approximate function.  

Let the �̂�𝑖 as an estimation of 𝑤𝑖, then the weight function is approximated as 

�̃�𝑖 = 𝑤𝑖 − �̂�𝑖, ‖𝑤𝑖‖𝐹 ≤ 𝑤𝑖𝑚𝑎𝑥           (6.53) 

Let the minimum parameter function is defined as ∅ = 𝑚𝑎𝑥1≤𝑖≤𝑛{‖𝑤𝑖‖
2}, where ∅ is a 

positive constant, and ∅̂ is an estimation of ∅, ∅̃ = ∅̂ − ∅. 

Define 𝑊 = [

𝑤1
⋮
𝑤2
] , 𝐻 = [

ℎ1
⋮
ℎ2

] , �̃� = 𝑊 − �̂�, according to GL operator, we define: 
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𝑊𝑜𝐻 = [
𝑤1
𝑇ℎ1
⋮

𝑤𝑛
𝑇ℎ𝑛

] , 𝑠𝑜𝑠 = [
𝑠1
𝑇𝑠1
⋮

𝑠𝑛
𝑇𝑠𝑛

] and 𝐻𝑜𝐻 = [
ℎ1
𝑇ℎ1
⋮

ℎ𝑛
𝑇ℎ𝑛

], then 𝑓 can be expressed as 

𝑓 = 𝑊𝑜𝐻 + 𝜖           (6.54) 

The control law is designed as: 𝜏 =
1

2
∅̂𝑟𝑜(𝐻𝑜𝐻) + 𝐾𝑣𝑠 − 𝜐          (6.55) 

Where 𝜐 is the robust term to overcome approximation error 𝜖. 

The robust term 𝜐 is designed as  𝜐 = −(𝜖𝑁 + 𝑏𝑑)𝑠𝑔𝑛(𝑠)          (6.56) 

Where 𝑏𝑑 is constant and ‖𝜏𝑑‖ ≤ 𝑏𝑑 

From equation (6.52) and (6.56), we get: 

𝐷�̇� = −(𝐾𝑣 + 𝐶)𝑠 −
1

2
∅̂𝑠𝑜(𝐻𝑜𝐻) + (𝑓 + 𝜏𝑑) + 𝜐           (6.57) 

Let the Lyapunov function is defined as  

𝐿 =
1

2
𝑠𝑇𝐷𝑠 +

1

2𝛾
∅̃2, where 𝛾 > 0. 

Then, �̇� = 𝑠𝑇𝐷�̇� +
1

2
𝑠𝑇�̇� +

1

𝛾
∅̃∅̇̂ 

= 𝑠𝑇 [−(𝐾𝑣 + 𝐶)𝑠 −
1

2
∅̂𝑠𝑜(𝐻𝑜𝐻) + (𝑓 + 𝜏𝑑) + 𝜐] +

1

2
𝑠𝑇�̇� +

1

𝛾
∅̃∅̇̂ 

= 𝑠𝑇 [−𝐾𝑣𝑠 −
1

2
∅̂𝑠𝑜(𝐻𝑜𝐻) +𝑊𝑜𝐻 + (𝜐 + 𝜖 + 𝜏𝑑)] +

1

2
𝑠𝑇(�̇� − 2𝐶)𝑠 +

1

𝛾
∅̃∅̇̂ 

= 𝑠𝑇 [−
1

2
∅̂𝑠𝑜(𝐻𝑜𝐻) +𝑊𝑜𝐻 +] − 𝑠𝑇𝐾𝑣𝑠 + 𝑠

𝑇(𝜐 + 𝜖 + 𝜏𝑑) +
1

𝛾
∅̃∅̇̂       (6.56) 

Since 𝑠𝑇(�̇� − 2𝐶)𝑠 = 0 

𝑠𝑇(𝜐 + 𝜖 + 𝜏𝑑) = 𝑠𝑇(𝜖 + 𝜏𝑑 − (𝜖𝑁 + 𝑏𝑑)𝑠𝑔𝑛(𝑠)) ≤ 0                     (6.57) 

𝑠𝑇𝑊𝑜𝐻 = [𝑠1 ⋯ 𝑠𝑛] [
𝑤1
𝑇ℎ1
⋮

𝑤𝑛
𝑇ℎ𝑛

] = 𝑠1𝑤1
𝑇ℎ1 +⋯+ 𝑠𝑛𝑤𝑛

𝑇ℎ𝑛 = ∑ 𝑠𝑖𝑤𝑖
𝑇ℎ𝑖

𝑛
𝑖=1        (6.58) 
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2
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1

2
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𝑠𝑇[𝑊𝑜𝐻] ≤
1

2
∅∑𝑠𝑖

2ℎ𝑖
𝑇ℎ𝑖 +

𝑛
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𝑛
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𝑠𝑇 [−
1

2
∅̂𝑠𝑜(𝐻𝑜𝐻)] = −

1

2
∅̂[𝑠1 ⋯ 𝑠𝑛] ([

𝑠1
⋮
𝑠𝑛
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ℎ1
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= −
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= −
1

2
∅̂(𝑠1

2‖ℎ1‖
2 +⋯+ 𝑠𝑛

2‖ℎ𝑛‖
2) = −

1

2
∅̂ ∑ 𝑠𝑖

2‖ℎ𝑖‖
2𝑛

𝑖=1                     (6.60) 

Where 𝑛 denotes number of joints, for second link manipulators, 𝑛 = 2. 

Then we have �̇� ≤ −
1

2
∅̂ ∑ 𝑠2𝑖

2‖ℎ𝑖‖
2𝑛

𝑖=1 +
1

2
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𝑛

2

𝑛
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1

𝛾
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−
1

2
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𝑛

2
− 𝑠𝑇𝐾𝑣𝑠           (6.61) 

As per design of adaptive law, 

∅̇̂ =
𝛾

2
∑ 𝑠𝑖

2‖ℎ𝑖‖
2𝑛

𝑖=1            (6.62) 

Then, �̇� ≤
𝑛

2
− 𝑠𝑇𝐾𝑣𝑠       

To guarantee �̇� ≤ 0, one must ensure 
𝑛

2
≤ 𝑠𝑇𝐾𝑣𝑠, then  

‖𝑠‖ ≤ √
𝑛

2𝐾𝑣
                     (6.63) 

 

6.5 Simulation Results and Discussion 

Control in neural sliding mode performance such as inverted pendulum and manipulator is 

evaluated via numerical simulation. Simulation is carried out while considering to stabilize 

the position of nonlinear system. 

Simulation Results of Results of Single Link Inverted Pendulum 

The parameters for single link inverted pendulum are given as, M = 1.0 kg; m = 0.1 kg; l = 

0.5 m, g = 9.8 m/s2. Simulation is carried out while considering the movement of the cart 

and pendulum both are in one plane. The objective of the controller is to remain the 

pendulum in an upward position for stable operation. 

 

Simulation Results of Results of Classical Sliding Mode Control of Inverted Pendulum 

 

Figure 6.5 Angular displacement of the pendulum system with SMC 
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Figure 6.6 Angular velocity plot of the cart with SMC 

 

By observing the pendulum angle and cart velocity, the simulation study of the conventional 

SMC controller on a single inverted pendulum system is performed.. Figure 6.6 represents 

the angular displacement of the pendulum system and figure 6.7 gives the cart velocity.  

 

Simulation Results of Results of RBFNN Sliding Mode Control of Sliding Mode Control 

Inverted Pendulum 

 

Figure 6.7 Angular displacement of the pendulum system with RBFNN-SMC 

 

 

Figure 6.8 Angular velocity of the cart with RBFNN-SMC 
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Table 6.1 Comparision of single link inverted pendulum for classical SMC and RBFNN 

SMC 

Parameters 

Classical SMC RBFNN SMC 

Position Velocity Position Velocity 

Delay Time (sec) 1.28 0.7 1.37 0.49 

Rise Time (sec) 1.9 0.92 1.73 0.65 

Peak Time (sec) 2.35 1.07 2.09 0.88 

Settling Time (sec) 7.2 5.1 5.46 4.35 

Max. Overshoot (%) 3.9 6.4 1.1 5.20 

 

The position of pendulum and its velocity is controlled and stabilized by function of radial 

type on the basis of neural network-based sliding-mode controller as shown in figure 6.7 and 

6.8 respectively. In phrases of rise time, settling time, delay time, peak time, and 

peak overshoot, table 6.1 compares classical SMC and RBFNN SMC. It is evident from the 

table above that RBFNN SMC performs better than classical SMC while controlling the 

position and velocity of a single link inverted pendulum. 

 

Simulation Results of Results of Two Link Robotic Manipulator 

Simulation of the two-connect robot arm's controller of sliding mode type (l1=1m, l2=1m, 

m1=1kg, m2=1kg, g= 9.8kgm/s2, 𝜃𝑑1 =𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜋𝑡) , 𝜃𝑑2 = 𝑐𝑜𝑠(𝜋𝑡)) was carried using 

MATLAB. 

Physical Specifications of Two Link Robot Manipulator: 

Link 1’s mass; m1= 1kg, Mass of link 2 m2= 1kg 

Link 1’s length l1= 1m, Length of link 2 l2= 1m 
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Results of Classical Sliding Mode Control of Two Link Robotic Manipulator 

 

Figure 6.9 Desired and actual trajectory of link 1(𝜃1) using SMC 

 

 

Figure 6.10 Desired and actual trajectory of link 2 (𝜃2) using SMC 
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Simulation Results of Results of RBF NN Sliding Mode Control of Two Link Robotic 

Manipulator 

 

Figure 6.11 Desired and actual trajectory of link 1(𝜃1) using RBFNN-SMC 

 

Figure 6.12 Desired and actual trajectory of link 2 (𝜃2) using RBFNN-SMC 
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Figure 6.13 Control Input (torque) of 𝜃1 using RBFNN-SMC 

 

Figure 6.14 Control Input (torque) of 𝜃2 using RBFNN-SMC 
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Figure 6.15 ||f(x)|| using RBFNN 

 

Table 6.2 Comparison of two link robotic manipulator for position of link 1 and link 2 for 

classical SMC and RBFNN SMC 

Parameters 
Classical SMC RBFNN SMC 

Link 1 Link 2 Link 1 Link 2 

Delay Time (sec) 0.02134 0.1969 0.01874 0.1472 

Rise Time (sec) 0.1524 0.7317 0.1224 0.6283 

Peak Time (sec) 0.4113 0.9213 0.3216 0.8163 

Max. Overshoot (%) 17.9 0.9978 14.18 12.44 

 

The simulation results of two link robotic manipulator is carried out by applying classical 

SMC and RBFNN SMC. Classical sliding mode control technique has been applied first and 

desired actual trajectory of link 1 and link 2 are shown in figure 6.9 and figure 6.10, 

respectively. Then RBFNN SMC is applied which gives better result for both link trajectory 

control and also for control torque of both links as shown in figure 6.11, figure 6.12, figure 

6.13 and figure 6.14 respectively. Figure 6.15   gives the result of approximation of RBF 

approximation function. The performance of both methods are shown in table 6.2 in terms of 
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system delay time, rise time, peak time and maximum overshoot, depict that RBFNN gives 

better results. 

 

6.6 Conclusion 

The objective of the study is to improve the tracking performance of the nonlinear 

mechanical systems to reduce the nonlinear phenomenon’s occurring which drastically 

effects the performance and stability of these nonlinear system. The chattering effect 

produced due to the presence of nonlinearities has been reduced to a greater extend by 

applying the control techniques on these nonlinear systems.  

First of all, mathematical model of two DOF robot manipulator model has been designed for 

the first system in the form of differential equation then a feedback linearization technique 

has been applied to obtain the plant model for the manipulator. After getting the exact model 

for the two link robot manipulator, the two control techniques are implemented to study the 

effect of tracking performance of the robot manipulator system. The sliding mode control 

technique has been applied first and parameters are evaluated and then RBFNN-SMC 

scheme is carried out on the model to improve the result of the nonlinear model. Similar 

system equations have been obtained for the second system, an inverted pendulum system, 

providing a physical model on which controller techniques may be used.  Same two 

techniques are carried out on this system as well. After studying the effect on both the 

system, it can easily be deduced that after applying the RBFNN-SMC, tracking 

performances of the nonlinear system can be improved and it gives the best robust control 

for the systems which is insensitive to the parameter variations and hence achieve stability 

effectively. 
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Chapter 7 

Conclusion & Future Scope of Work 

 

7.1 Introduction  

Based on observation and simulation findings, a concluding remark on the control 

approaches are presented in thesis. Modeling the benchmark systems was initially used to 

identify the issues with the mechanical systems. Also, the difficulties are resolved using a 

variety of nonlinear control theory methodologies. By addressing the drawbacks caused by 

uncertainty and failure modes, controller development is primarily focused on attaining 

velocity, and position control for the nonlinear systems. In subsequent parts, a thorough 

summary of the work covered in Chapters 1 through 6 is provided. 

 

7.2 Principal Elements of the Work 

The thesis can be summed up as follows: 

The chapter 1 gives an introduction to nonlinear system, as well as the fundamentals of 

nonlinear control theory and their governing strategies, and optimization, are covered. The 

need for advancements in nonlinear control theory is acknowledged, and the necessary goals 

are established. In addition, the thesis' significant contributions are emphasised, followed by 

other chapters outline. 

The chapter 2 gives the background information of nonlinear systems such as, TORA 

system, 2DoF ball balancer, single link inverted pendulum, and two link robotic 

manipulators. A thorough analysis of the literature is also provided, bearing on sliding mode 

controller and meta-heuristic optimization methods. The complex nonlinear dynamics 

constrain the broad applications of control principles and limit the capacity to offer a 

believable solution. To address the issues with underactuated systems, a number of 

nonlinear control approaches were developed as a result of this. In the past few years, many 

nonlinear controllers, including Lagrangians, the lambda technique, and back-stepping 

controllers, have been developed. Throughout the early stages of their development, these 

controllers encountered some issues, including the lambda method's limits in handling 

external load. By doing partial feedback linearization for mechanical systems as well as 

feedback linearization, these problems in the standard nonlinear approaches were resolved. 

By eliminating the nonlinearities through a feedback control, these techniques converted the 

nonlinear system into linear.  However, when adapting the partial feedback linearization 
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strategy and its approach, the issue with lack of robustness is viewed as a significant 

disadvantage. The sliding mode approach is viewed as a viable option for achieving 

robustness while regulating The findings showed how the control techniques worked and 

highlighted their shortcomings as a result of how external disruptions, parametric 

uncertainties, and defects affected the operation of the plant. In Chapters 3 to 6, several 

intelligent, and learning algorithms are created in response to these disadvantages. 

Chapter 3 discuss three (PSO, BA, and FPA) optimal strategies used to set the parameters of 

convention controller such as PD to stabilize the position control of a two-degree-of-

freedom ball balancer system. Simulation shows the developed strategy and improve 

performance significantly within the context of the standard control structure. On the basis 

of time analysis, the outcomes of the established control approaches are validated. On the 

ball balancer system, the provided controller has adaptability and good control performance. 

According to the findings, the FPA optimised technique performs BA and PSO in terms of 

ISTSE, settling time, peak time, and peak overshoot. 

In Chapter 4 quasi-sliding mode, exponential reaching law sliding mode, equivalent sliding 

mode, and decoupled sliding mode controller improve the performance of two nonlinear 

systems i.e., single link inverted pendulum and TORA ststem, and also to reduces the 

chattering. The above study is divided into two parts, in first part comparison of three 

different sliding mode controller like switching SMC, quasi SMC and equivalent SMC is 

applied on inverted pendulum to check the system performance in terms of stability, 

chattering, disturbance rejection and convergence. As per the result obtained quasi sliding 

mode controller gives best result among all three. 

A decoupling technique was looked into in the second section to stabilise underactuated 

systems. Two test cases were used: the inverted pendulum and the TORA system. On the 

basis of transient performance, stability, overshoot, and settling response, the control 

scheme's performance was assessed. The results of the simulations demonstrated that the 

suggested sliding mode controller could provide a reliable performance in a variety of 

operations and disturbances. With increment type control input to the system, the system's 

stability, accuracy, and transient performance metrics like overshoots and response time 

increased. 

In Chapter 5 three types of fuzzy sliding mode controller named as approximation based 

method, equivalent control based method, and switching gain based method have been 

implemented to stabilize the tracking issue of inverted pendulum system. The equivalent 

control based sliding mode controller with fuzzy shows effective results in terms of system 
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uncertainties and disturbances. A control strategy of fuzzy sliding mode involves a 

chattering free and stabilized nature for an inverted pendulum.  

In Chapter 6, a mathematical model of a two-DOF robot manipulator has been developed for 

the first system in the form of a differential equation. The plant model for the manipulator 

has then been obtained by using a feedback linearization technique. Using a single-link 

inverted pendulum and a two-link robotic manipulator, a radial basis function neural sliding 

control is used, and the performance characteristics are described its performance indices. 

The results of both classical SMC and RBFNSMC have been compared, and it has been 

determined that RBF neural sliding mode control produces better system stabilisation and 

chattering phenomenon removal results. 

 

7.3 Suggestions for further work  

With various research recommendations for future investigations, this study may be 

expanded and improved.  

● For the evaluation of highly computational systems, novel metaheuristic algorithms, 

such as bio-simulated and nature-inspired algorithms, can be used with intelligent 

controllers. There is still a lot of possibility for exploration because this field has not 

yet been properly examined. 

● The sliding mode controller allows some work to be done in terms of developing 

Observers to lessen the chattering features. Many complex system control issues can 

be resolved with the aid of higher-order sliding mode control and higher-order 

differentiators. 
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