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ABSTRACT 
 
 

Surface based gesture recognition utilizes electrical signals generated by muscles 

during voluntary actions to recognize human gestures. Gesture recognition has gained 

significant attention due to its potential application in various domains, including 

human-computer interaction, rehabilitation and robotics. 

The primary objective of this thesis is to develop and evaluate algorithms for 

improving accuracy of sEMG based gesture recognition systems for systems with 

multiple degrees of freedom. Electromyogram (EMG) signals are crucial to record 

muscle activity. Several papers have been proposed about EMG signals and mostly 

machine learning techniques have been used to extract information from EMG signals. 

In this paper, a molecular-based feature extractor model has been presented. This 

architecture uses Singular Spectrum Analysis (SSA) to form sub-bands which are then 

subjected to number of statistical features extraction. The sub-bands are also used to 

generate textural features using the Local Graph Structure method described in this 

paper. The feature matrix generated using these methods has been reduced in 

dimensionality using the Neighborhood Component Analysis (NCA). Finally, an 

Extreme Learning Machine model for classification has been used for the classification 

of gestures into their respective classes. The model achieved an accuracy of >97% for 

10 classes and outperformed its predecessors. 

EMG gesture recognition holds immense potential for revolutionizing human-machine 

interaction. By harnessing the electrical activity of muscles, we can create seamless 

interfaces that enable users to effortlessly control devices, interact with virtual 

environments, and improve the quality of life for individuals with motor impairments. 

Continued research and advancements in this field will unlock exciting opportunities 

for the development of intuitive and immersive human-machine interfaces. 
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CHAPTER 1 : INTRODUCTION 

 

1.1 Overview 

The upper limb is an important part of the body that allows us to perform various 

activities of daily living. It has fine motor skills that help us grasp and sense objects, 

and it also allows us to communicate through hand gestures, sign language, and artistic 

expressions [1]. Losing one or both arms can severely limit a person's ability to 

perform tasks during daily activities, leading to a decrease in their quality of life. 

Amputees may also experience phantom limb pain, depression, changes in body 

image, and psychological burden. In some cases, upper limb loss can affect a person's 

stability, making them prone to falls or collisions [2].  

 

Upper limb prostheses are commercially available to aid amputees in carrying out tasks 

that require their arm functions [3]. Body-powered prostheses operate by using cables 

to link the movement of the body to the device, enabling simple hand tasks such as 

opening or closing a hook or gripper. However, they are nonintuitive and require 

significant effort to perform simple tasks, limiting their functionality to a single degree 

of freedom [4]. Motorized upper limb prostheses that use electromyography (EMG) 

recordings to characterize upper limb movement intentions of the amputee are 

considered as a viable alternative for intuitive restoration of multiple DOF arm 

functions [4]. EMG signals are encoded in the form of control commands to the 

prosthetic controller, which then actuates the device accordingly. The motorized upper 

limb prosthetic technology has progressed over the last two to three decades, leading 

to the development of better control methods and designs. This article focuses on 

EMG-based prosthetic control methods/technologies that could help improve the 

overall performance and acceptability of prostheses systems [5]. 

 

1.1.1 Acquisition of sEMG signals from forearm  

The forearm plays a crucial role in recording electromyography (EMG) signals for 

gesture recognition. EMG is the measurement and analysis of electrical activity 

produced by skeletal muscles [6]. When muscles contract, they generate electrical 

signals that can be detected and recorded using surface electrodes placed on the skin. 
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The relevant biology involved has been listed below: 

 

Muscles: The forearm contains several muscles responsible for controlling hand and 

finger movements. These include the flexor and extensor muscles, which allow for 

bending and extending the wrist and fingers, as well as the muscles responsible for 

individual finger movements [7]. 

 

Motor Units: Muscles are composed of individual motor units, consisting of a motor 

neuron and the muscle fibers it innervates. Motor neurons transmit electrical signals 

from the brain or spinal cord to the muscle fibers, causing them to contract. When a 

gesture or movement is performed, specific motor units are activated, resulting in 

unique patterns of electrical activity [7]. 

 

EMG Signals: Surface electrodes are placed on the skin overlying the forearm muscles 

to detect the electrical signals produced during muscle contractions. These electrodes 

capture the action potentials generated by motor units and transmit them as voltage 

signals. The recorded EMG signals reflect the timing, duration, and intensity of muscle 

contractions, providing information about the underlying movements [7]. 

 

Signal Processing: Recorded EMG signals undergo further processing to extract 

relevant features for gesture recognition. This involves amplifying and filtering the 

signals to remove noise and interference. Additionally, techniques such as 

rectification, smoothing, and spectral analysis may be employed to enhance the desired 

features and make them suitable for analysis and classification [8]. 

 

Gesture Recognition: Once the EMG signals have been processed, they can be 

analyzed using machine learning algorithms or other pattern recognition techniques to 

classify and interpret the performed gestures. By training a system with a dataset of 

known gestures, it can learn to associate specific EMG patterns with corresponding 

movements or gestures, enabling gesture recognition and control of external devices 

or interfaces [9]. 

 

It is to be noted that the quality of EMG recordings can be influenced by various 

factors, such as electrode placement, signal-to-noise ratio, muscle fatigue, and 
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individual anatomical differences. Proper electrode positioning and signal acquisition 

techniques are essential to obtain reliable and accurate EMG signals for gesture 

recognition applications [9]. 

 

1.2 Literature review 

 

Electromyography (EMG) is the technique in which signals resulting from muscle 

contraction are captured by sensors mounted on the skin [1-2]. These signals can then 

be used for sending control commands to the prosthesis. EMG based techniques for 

upper-limb control have been receiving a lot of attention in recent studies. 

Myoelectric control-based prosthesis was first proposed in the 1940s but significant 

development in that technology took place only in the late 1960s. It is this version, 

which is still widely used in commercial applications for upper-limb prostheses. These 

early myoelectric devices operated in an “on/off” mode, where the state of was decided 

on the basis of a threshold. The amplitude of the EMG signal was compared to this 

threshold and accordingly the device would be activated or deactivated [6]. Naturally, 

these devices limit the movements of the prosthetic as the more complex muscle 

contraction procedures cannot be performed. [1,2] 

With the emergence of pattern recognition technologies, several improvements were 

made in the development of myoelectric prosthesis. The basic assumption in this is 

that each of the intended movement of the limb the user can be mapped to a specific 

EMG pattern. This is done by processing the EMG signal to extract relevant features 

and then classifying them to different movements for commanding the prostheses 

controller to perform the action. Use of Pattern Recognition based algorithms to 

operate upper-limb prostheses resulted in a huge improvement in the recent decades.  

Another innovation that resulted in better result is the targeted muscle reinnervation 

[5] (TMR) that provided signals which are physiologically appropriate with the former 

functions of the missing arm [3,4]. This enabled using PR control in above elbow 

amputees as well and achieve accuracies of higher than 95%. However, these methods 

are still limited to lab environments and have not yet been accepted commercially.  

Major reasons for clinical unacceptability of these methods are the lack of sensory 

feedback. The problem lies in not moving the device on command, but on the 
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avoidance of unnecessary movements and knowing when not to move. Having 

multiple degrees of freedom will help in bringing the prosthetic hand movements 

closer to that of the human hand. In order to overcome these problems with the current 

prostheses the focus of research should be moved to solving these problems. 

Earlier the myoelectric prostheses were controlled by the comparing the amplitude of 

the signal with some threshold [1,2,12]. These direct control systems could achieve 

high accuracies but they could achieve only on or two degrees of freedom (DoF). Here, 

DoF is the number of motions that the prosthesis could perform, for example, if a 

device can perform “hand close” and get back to “relax” types of position, it has 

achieved one degree of freedom. To effectively replicate the human hand function, 

control over multiple DoFs is desirable to perform complex actions with fingers, wrist 

and elbow control, especially in cases of high-level amputation.  

Pattern Recognition has emerged to overcome the barrier of conventional control. 

These systems assume that myoelectric signals like EMG and sEMG will be the same 

for a given movement class, and distinct for different movement classes [2]. In PR 

based approaches the classification accuracy is the main measure to evaluate the 

performance of the system. Mostly classification accuracy remains the same in cases 

of different myoelectric signal like iEMG or sEMG. However, sEMG or surface EMG, 

is preferred more over iEMG for solving PR based myoelectric control of prostheses 

control because of its non-invasive nature.  

The steps involved in before performing pattern analysis of a signal are signal 

detection, preprocessing, data windowing, feature extraction, classification, post-

processing and proportional control [8-11]. The number of channels is limited because 

of the electrodes have to embedded in the prosthetic limb. To overcome this challenge 

surgical procedures like targeted muscle reinnervation are used to identify optimal 

points for recording the myoelectric signals for prosthesis control [3].  

Analysis windows formed by segmenting the myoelectric signal data are used to 

extract features. The length of the analysis window versus the processing time required 

to reach a decision are tradeoffs. The window should be short enough to avoid long 

processing delays while also being long enough to make an informed decision. The 

maximum allowable delay between signal generation and prosthetic actuation for a 

reliable system must be less than 300 ms [13]. The standard window length is usually 
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100 to 250 ms. The windows can be separated or overlapped. About available 

computing capability, an overlapping analysis window capable of producing a dense 

decision stream is generally preferred. The pattern associated with each limb is 

described by features extracted from these windows. The feature mostly used are based 

on time domain, frequency domain and time-frequency domain methods. Post feature 

extraction, dimensionality reduction techniques are employed to reduce the size of 

high dimensional feature space. A number of classifiers have been explored to 

discriminate the intended movements using the features extracted. It was proved in 

[14-17] that if an appropriate set of features is there, different classifiers will perform 

in a similar way. Therefore, in the project more emphasis will be given to selecting 

appropriate features instead of choosing classifier. 

 

1.2.1 Gesture recognition role in prosthetics 

 

Gesture recognition plays a crucial role in prosthetics by enabling intuitive and natural 

control of prosthetic limbs. Here are some key aspects of the role of gesture recognition 

in prosthetics: 

Control of Prosthetic Limbs: Gesture recognition allows individuals with limb loss or 

limb differences to control their prosthetic limbs using natural movements and 

gestures. By analyzing signals such as electromyography (EMG) or other sensor data 

from the residual limb, gesture recognition algorithms can interpret the user's intended 

movements and translate them into control commands for the prosthetic limb. This 

enables more intuitive and precise control, enhancing the functionality and usability 

of the prosthetic device [18]. 

Improved Range of Motion: Gesture recognition systems can provide users with a 

broader range of motion and control options for their prosthetic limbs. By recognizing 

different gestures or movements, users can perform various tasks and actions with their 

prosthetic limb, such as grasping objects of different shapes and sizes, manipulating 

tools, or performing delicate movements that require fine motor control. This helps 

individuals regain functional capabilities and improves their overall quality of life [19]. 

Multi-DOF Control: Prosthetic limbs with multiple degrees of freedom (DOF) allow 

users to perform complex movements similar to natural limbs. Gesture recognition 

enables users to control these multi-DOF prosthetic limbs by mapping specific 
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gestures or combinations of gestures to different joint movements or actions. This 

provides users with a more natural and coordinated control of their prosthetic limbs, 

allowing them to perform a wide range of tasks and activities [20]. 

User Customization and Personalization: Gesture recognition systems can be 

personalized and customized to meet the unique needs and preferences of individual 

users. By training the gesture recognition algorithms on the specific muscle patterns 

or gestures of each user, the prosthetic limb can be tailored to their specific abilities 

and control requirements. This adaptability helps improve the accuracy and 

responsiveness of the prosthetic limb, leading to a more seamless integration into the 

user's daily life [21]. 

Cognitive Load Reduction: Gesture recognition can help reduce the cognitive load 

associated with controlling a prosthetic limb. Instead of relying on conscious effort to 

control each joint or movement individually, users can rely on intuitive gestures or 

movements that come naturally to them. By simplifying the control process, gesture 

recognition allows users to focus more on the task at hand rather than the mechanics 

of controlling the prosthetic limb, promoting greater efficiency and reducing mental 

fatigue [22]. 

Overall, gesture recognition in prosthetics empowers individuals with limb loss or limb 

differences to regain functional control over their prosthetic limbs, enhancing their 

independence, mobility, and overall quality of life. Ongoing research and 

advancements in gesture recognition technologies are further improving the 

capabilities and effectiveness of prosthetic devices 

 

1.3 Research Gap 

 

Gesture recognition using electromyography (EMG) signals is an active and evolving 

area of research. While significant progress has been made in this field, there are still 

several research gaps and opportunities for further investigation. The research gaps 

addressed here are: 

 

Robustness to Variability: EMG signals are influenced by various factors, including 

electrode placement, muscle fatigue, and inter-subject variability. Research can focus 

on developing robust techniques that can handle these variabilities and still achieve 



 

7  

accurate gesture recognition. This may involve investigating methods for adaptive 

feature extraction, model adaptation, or data augmentation techniques that account for 

the variability in EMG signals [22]. 

 

Multi-User Gesture Recognition: Most studies in gesture recognition using EMG 

signals focus on single-user scenarios. However, there is a need to explore multi-user 

scenarios where multiple individuals are interacting simultaneously. Research could 

investigate techniques for distinguishing and recognizing gestures from different users 

in a shared EMG signal environment [20]. This may involve developing user-specific 

models, signal separation techniques, or advanced machine learning approaches 

capable of handling multiple users. 

 

These research gaps highlight areas where further investigation and advancements can 

contribute to the development of more accurate, robust, and practical gesture 

recognition systems using EMG signals. 

 

1.4 Research Objective 

This dissertation has the following objectives: 

1. To explore the effects of different feature extraction models:  

(a) Testosterone pattern local graph structure-based method  

(b) Singular Spectrum Analysis (SSA) and statistical features  

The effects of these two methods will be explored when applied on the dataset 

individually and in combination. 

2. To evaluate the performance of the proposed model on a multiclass gesture 

recognition problem, and classify gestures into 10 predefined classes. 

 

 

1.5 Structural organization of the dissertation 

The remaining part of the dissertation is arranged in the following manner: Chapter 2, 

describes the feature extraction techniques in detail. It also gives the algorithm to extract 
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testosterone structure based local graph features, and the algorithm for singular 

spectrum analysis (SSA). It also depicts the overview of the methodology. Chapter 3 

describes the machine learning techniques and the reason for their efficiency in sEMG 

based classification problems. Chapter 4 describes the dataset used for study and also 

includes the comparative results parameters and validation of the method. It also 

enlists the work's advantages and limitations. Chapter 5 is the conclusion and future 

aspects. 
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CHAPTER 2: PROPOSED FEATURE EXTRACTION 

TECHNIQUE FOR MULTICLASS CLASSIFICATION 

OF sEMG SIGNALS 

 

2.1 Introduction 

This chapter is focused on the step-by-step execution of the proposed methodology in 

the following ways: 

1. The singular spectrum analysis of sEMG signal 

2. The testosterone pattern based local graph structure for feature extraction 

3. Statistical features and their significance with respect to the EMG signals 

 

 

Figure 2.1 Outline of the methodology followed in this work 

 

2.2 Singular Spectrum Analysis 

Singular Spectrum Analysis (SSA) is a data analysis technique that involves 

decomposing a time series into a set of components called Singular Spectrum 

Components (SSCs). These components represent different patterns or trends present 

in the data and can be used for various purposes such as noise reduction, signal 

filtering, and forecasting [23]. 
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The mathematical framework of Singular Spectrum Analysis (SSA) for this paper 

involves the following steps: 

 

1. Embedding the time series: The time series was embedded into a trajectory 

matrix by concatenating successive lagged vectors of the time series. 

Window length, 𝐾 determines the number of lags [23]. 

 

Given a time series 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛], a trajectory matrix 𝐻 of dimension 

(𝑁 − 𝐾 + 1) × 𝐾, where N is the length of the time series. The elements 

of 𝐻 are given by: 

𝐻(𝑖, 𝑗) = 𝑋(𝑖 + 𝑗 − 1)            (2.1) 

 

Where, 𝑖 = 1,2,… , 𝑁 − 𝐾 + 1 and 𝑗 = 1,2,… , 𝐾  

This forms a Hankel matrix, which is a special type of Toeplitz matrix 

2. Decomposing the trajectory matrix: The trajectory matrix is decomposed 

using Singular Value Decomposition (SVD) [23]. 

𝐻 = ∑ 𝐻𝑖
𝐿
𝑖=1 = ∑ √𝜆𝑖𝑣𝑖𝑝𝑖

𝑇𝐿
𝑖=1    (2.2) 

Here Hi denotes the elementary matrix, 𝜆𝑖 is for the eigenvalues in 

decreasing order of magnitude and 𝑣𝑖 are the corresponding eigenvectors 

of the covariance matrix defined by 𝐶 = 𝑀𝑀𝑇, and 𝑝𝑖 = 𝑀
𝑇𝑣𝑖/√𝜆𝑖 are 

termed as the principal components. 

 

3. Forming the singular spectrum: Singular values are used to form the 

singular spectrum, which represents the amount of variability in the data 

captured by each singular value. The singular values are typically plotted 

in descending order and shown in Figure 2.2 
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Figure 2.2 sEMG signal decomposed into 5 bands using SSA 

 

2.3  Local Graph Structure based on Testosterone Pattern 

The graph-based feature extraction method in this paper, a local graph structure (LGS) 

has been proposed which uses the chemical depiction of the testosterone hormone as 

its reference. The LGS is used in the form of a directed graph in this paper and is shown 

in Figure 2.3  

It was found in literature that LGSs can generate discriminative features, they are low 

in execution time and their time complexity is also low. The directed graph 

implemented in this paper has a total of 24 edges which are shown in the figure. The 

start and end point of each arrow represent the value that will be used as input to the 

signum function defined by 

𝑓(𝑎, 𝑏) = {
0, 𝑐 − 𝑑 < 0
1, 𝑐 − 𝑑 ≥ 0

         (2.3) 

The testosterone pattern has been overlayed on an example matrix, let it be 𝐾, to show 

the traversal of the directed graph.  

The steps followed to generate features from an EMG signal using a testosterone 

pattern have been given below: 

1. The signal is divided into blocks of size 𝑏𝑖 = 54 

2. The vector of length 54 is transformed to a matrix of size 6 × 9 

3. In testosterone figure 3, 24 directed edges can be seen, the 24 bits from 

these are extracted using the signum function. The value of indices with 
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respect to the matrix formed from a block 𝑏𝑖 are given below. 

 

𝑔𝑟𝑜𝑢𝑝1 = 𝑓

(

 
 
 
 
 
 

𝐵𝑖(6,1) 𝐵𝑖(5,2)
𝐵𝑖(5,2) 𝐵𝑖(4,2)
𝐵𝑖(4,2) 𝐵𝑖(3,3)

𝐵𝑖(3,3) 𝐵𝑖(4,4)
𝐵𝑖(4,4) 𝐵𝑖(5,4)
𝐵𝑖(5,4) 𝐵𝑖(6,3)
𝐵𝑖(6,3) 𝐵𝑖(5,2)

𝐵𝑖(4,4) 𝐵𝑖(3,4))

 
 
 
 
 
 

   (2.4) 

𝑔𝑟𝑜𝑢𝑝2 = 𝑓

(

 
 
 
 
 
 

𝐵𝑖(4,4) 𝐵𝑖(3,5)
𝐵𝑖(3,5) 𝐵𝑖(4,6)
𝐵𝑖(4,6) 𝐵𝑖(5,6)

𝐵𝑖(5,6) 𝐵𝑖(6,5)
𝐵𝑖(6,5) 𝐵𝑖(5,4)
𝐵𝑖(3,5) 𝐵𝑖(2,5)
𝐵𝑖(2,5) 𝐵𝑖(1,6)

𝐵𝑖(1,6) 𝐵𝑖(2,7))

 
 
 
 
 
 

   (2.5) 

𝑔𝑟𝑜𝑢𝑝3 = 𝑓

(

 
 
 
 
 
 

𝐵𝑖(2,7) 𝐵𝑖(3,7)
𝐵𝑖(3,7) 𝐵𝑖(4,6)
𝐵𝑖(2,7) 𝐵𝑖(1,7)

𝐵𝑖(2,7) 𝐵𝑖(1,8)
𝐵𝑖(1,8) 𝐵𝑖(2,9)
𝐵𝑖(2,9) 𝐵𝑖(3,8)
𝐵𝑖(3,8) 𝐵𝑖(3,7)

𝐵𝑖(1,8) 𝐵𝑖(1,9))

 
 
 
 
 
 

   (2.6) 

 

These would extract 3 groups of 8 bits each, which are converted to decimal using 

binary to decimal conversion and added to a new vector. This would generate 3 feature 

maps whose length will be equal to each other, and will depend on the signal being 

processed. This process will be iterated for all blocks of size 54 

4. The histogram of these three feature maps will be calculated with bin size 

1 hence making length of each histogram extracted as 256(= 28) 

5. The feature vector extracted from this method will always be of the same 

size because, the three histograms will be concatenated to make the feature 

vector as 768 (= 256 × 3) 
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Figure 2.3 Directed graph formed using the chemical structure of Testosterone hormone (in blue) overlaid on an 

example matrix formed using signal of block size 54, the red numbers indicate the edge numbers 

2.4 Statistical Features 

Features for the analysis of EMG signals are generally of three groups, 

namely time domain, frequency domain, and time-scale representation or 

time-frequency. In this project, only the time domain features have been 

utilized for classification. There are a total of twenty-six time-domain 

conventional features out of which only eighteen have been extracted in 

this project. Five new features [31] were also calculated for this project. 

The definitions of these signals in the context of EMG signals have been 

listed below along with their mathematical formulations: 

 

1. Waveform Length (WL): It is a measure of the complexity of the EMG 

signal. Its formula in words can be defined as the cumulative length of the 

EMG waveform over the time segment [33]. Mathematically: 

    (2.7) 

2. Mean Absolute Value (MAV): The most frequently used feature. It is 

defined as the mean of all the absolute values of all points of the EMG 

signal [33,34]. 

     (2.8) 

3. Mean Absolute Value Slope (MAVSLP): it is a modified version of the 

MAV feature to establish multiple features [35]. Differences between 

MAVs of the adjacent segments are determined. The equation can be 



 

14  

defined as 

 

𝑀𝐴𝑉𝑆𝐿𝑃 = 𝑀𝐴𝑉𝑘+1 −𝑀𝐴𝑉𝑘;    (2.9) 

 

4. Willison Amplitude (WAMP): Willison amplitude measures the frequency 

information of the EMG signal, similar to ZC. It integrates the times the 

difference between two segments in EMG signal exceed a given threshold 

[34]. This value is then representative of the firing of motor unit action 

potentials (MUAP) and also the muscle contraction force. The definition 

is as follows 

   (2.10) 

 

5. Auto-Regressive Model (AR): It is a prediction model defining each 

sample of the EMG signal as a linear combination of the previous samples 

(𝑥𝑖−𝑝)  plus a white noise error term named 𝑤𝑖. In the classification of the 

EMG signal, the coefficients of the AR model 𝑎𝑝 have been used as feature 

vectors [36]. Here, 𝑝 is the order of the temporal moment, in this study the 

order is taken as 𝑝 = 4. The model is expressed in the following form: 

   (2.11) 

6. Integrated EMG (IEMG): It is normally used as an onset detection index 

in EMG [31] non-pattern recognition and in clinical application. It is 

related to the EMG signal sequence firing point. Definition of IEMG 

feature is defined as the summation of absolute values of the EMG signal 

amplitude, which can be expressed as 

𝐼𝐸𝑀𝐺 = ∑ |𝑥𝑖|
𝑁
𝑖=1    (2.12) 

 

7. Modified Mean Absolute Value of Type 1 (MAV1) [38]: Modified mean 

absolute value Type 1 (MAV1) is an extension of the MAV feature. The 

weighted window function 𝑤𝑖 is assigned to the equation for improving 

the robustness of the MAV feature. It is calculated by 
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𝑀𝐴𝑉1 =
1

𝑁
∑ 𝑤𝑖|𝑥𝑖|
𝑁
𝑖=1     (2.13) 

𝑤𝑖 = {
1,           𝑖𝑓 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁
0.5,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

  (2.14) 

 

8. Modified Mean Absolute Value of Type 2 (MAV2): Modified mean 

absolute value type 2 (MAV2) is an expansion of the MAV feature which 

is similar to the MAV1 [38]. However, the weighted window function 𝑤𝑖 

that is assigned into the equation is a continuous function. It improves the 

smoothness of the weighted function. The equation is defined as  

   (2.15) 

9. Simple Square Integral (SSI): Simple square integral (SSI) as the name 

suggests, integrates the squared values of the EMG signal points and uses 

the scalar value as a feature [39]. The feature can also be called as an 

energy index, which is expressed as: 

    (2.16) 

10. Variance of EMG (VAR): VAR is another power index. Generally, 

variance is defined as an average of square values of the deviation of that 

variable [34]; however, the mean value of the EMG signal is close to zero 

(~10−10). Hence, the variance of the EMG signal can also be defined as 

   (2.17) 

11. Temporal Moment: Temporal moment is a statistical analysis that was 

proposed in the study of [40] to be used in the control of a prosthetic arm. 

Normally, the absolute value was taken to greatly reduce the within-class 

separation for the odd-moment case. The first moment and the second 

moment are similar to the MAV and VAR features, respectively. In this 

project, only the third moment has been extracted as a feature, which is 

defined by: 
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𝑇𝑀3 =
1

𝑁
∑ 𝑥𝑖

3𝑁
𝑖=1    (2.18) 

12. Root Mean Square (RMS): Root mean square (RMS) is another popular 

feature in the analysis of the EMG signal. Following the name, is the 

square root of the mean of squared values of EMG signal amplitude. It is 

representative of the constant force and the non-fatiguing contraction [34]. 

The mathematical definition of the RMS feature can be expressed as 

𝑅𝑀𝑆 = (
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 )

1

2
    (2.19) 

13. V-Order (V): It is a non-linear detector that is an estimator of the muscle 

contraction force 𝑚𝑖. It is defined from a functional mathematical model 

of the EMG signal generation [34] given by 

𝑥𝑖 = 𝛾𝑚𝑖
𝛼𝑛𝑖    (2.20) 

Here, 𝛾 and 𝛼 are constants, and 𝑛𝑖 is the class of the ergodic Gaussian 

processes. The feature V is defined as 

𝑉 = (
1

𝑁
∑ 𝑥𝑖

𝑣𝑁
𝑖=1 )

1

𝑣
    (2.21) 

14. Log Detector (LOG): This also provides an estimated value for the muscle 

contraction force [34]. It is defined as  

𝐿𝑂𝐺 = 𝑒
1

𝑁
∑ log(|𝑥𝑖|) 
𝑁
𝑖=1    (2.23) 

15. Average Amplitude Change (AAC): It is similar to the WL feature with an 

addition of averaging the wavelength [41]. Defined as: 

𝐴𝐴𝐶 =
1

𝑁
∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑁−1
𝑖=1    (2.24) 

16. Difference Absolute Standard Deviation Value (DASDV): It is the 

standard deviation value of the wavelength [41]and looks similar to the 

standard deviation formula 

𝐷𝐴𝑆𝐷𝑉 = √
1

𝑁−1
∑ (𝑥(𝑖 + 1) − 𝑥𝑖)2
𝑁−1
𝑖=1   (2.25) 

17. Zero crossing (ZC): Gives the frequency information of the EMG signal 

that is defined in the time domain. It is the number of times that amplitude 

values of the EMG signal cross zero amplitude level [33]. It can be used 

as a noise filter by using a threshold to avoid low voltage fluctuations and 

background noises. The calculation is defined as: 
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  (2.26) 

18. Myopulse Percentage (MYOP): Myopulse percentage rate (MYOP) is an 

average value of myopulse output which is defined as one when an 

absolute value of the EMG signal exceeds a pre-defined threshold value 

[42]. It can be calculated as: 

   (2.27) 

19. Slope Sign Change (SSC): Slope sign change (SSC) is related to ZC, 

MYOP, and WAMP features. It is another method to represent the 

frequency information of the EMG signal. It is the number of times that 

the slope of the EMG signal changes sign [33]. The number of changes 

between the positive and negative slopes among three sequential segments 

is performed with the threshold function for avoiding background noise in 

the EMG signal. This can be mathematically expressed as: 

  (2.28) 

 

20. Integrated Absolute of Second Derivative (IASD): it behaves as a filter for 

noise reduction by capturing the relative changes in the second derivative 

of the signal [31] 

𝐼𝐴𝑆𝐷 = ∑ |𝑥′[𝑛 + 1] − 𝑥′[𝑛]|𝑁−2
𝑛=1   (2.29) 

Here, 𝑥′[𝑛] = 𝑥[𝑛 + 1] − 𝑥[𝑛] 

21. Integrated Absolute of Third Derivative (IATD): Similar to IASD this 

feature also filters out noise and captures the relative changes of the third 

derivative [31] 

𝐼𝐴𝑇𝐷 = ∑ |𝑥′′[𝑛 + 1] − 𝑥′′[𝑛]|𝑁−3
𝑛=1      (2.30) 

Here, 𝑥′′[𝑛] = 𝑥′[𝑛 + 1] − 𝑥′[𝑛] 

22. Integrated Exponential of Absolute Values (IEAV): This function 
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amplifies the samples that are large and suppresses the samples that are 

small for all positive and negative samples [31]. 

𝐼𝐸𝐴𝑉 = ∑ exp (|𝑥[𝑛]|)𝑁
𝑛=1    (2.31) 

23. Integrated Absolute Log Values (IALV): This function suppresses the 

samples that are large and amplifies the small ones. Here 𝑇 is the threshold 

that must be empirically tuned [31]. In this project, the value of the 

threshold is set to 2 

𝐼𝐴𝐿𝑉 = ∑ |log (𝑥[𝑛] + 𝑇)|𝑁
𝑛=1    (2.32) 

24. Integrated Exponential (IE): This feature is similar to IEAV but it also 

distinguishes between positive and negative samples [31], i.e. it amplifies 

positive samples and suppresses the negative ones. 

𝐼𝐸 = ∑ exp (𝑥[𝑛])𝑁
𝑛=1     (2.34) 

 

The table provided below also presents a concise compilation of the features, 

offering a comprehensive overview of their attributes, formulae, abbreviation, 

and short description. These statistical features were utilized in the formation of 

the feature matrix. 

 

Table 2.1 List of features extracted in this work, their abbreviations, formula and 

brief description 

Statistical Metric Abbrev. Formula Short Description 

Waveform 

Length [21] 

WL 
∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

Measure of complexity of EMG 

signal 

Mean Absolute 

Value [22] 

MAV 1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

Mean of all points of EMG signal 

Mean Absolute 

Value Slope [23] 

MAVSLP 𝑀𝐴𝑉𝑘+1 −𝑀𝐴𝑉𝑘 Modified MAV, differences 

between adjacent segments 

Willison 

Amplitude [22] 

WAMP 
∑ |𝑓(|𝑥𝑛 − 𝑥𝑛+1|)|

𝑁−1

𝑖=1

 

 

Measures the frequency information 

Integrated EMG 

[18] 

IEMG 
∑|𝑥𝑖|

𝑁

𝑖=1

 

Onset detection index in EMG 
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Simple Square 

Integral [24] 

SSI 
∑𝑥𝑖

2

𝑁

𝑖=1

 

Energy index 

Variance of 

EMG [22] 

VAR 1

𝑁 − 1
∑𝑥𝑖

2

𝑁

𝑖=1

 

Power index 

Temporal 

Moment [25] 

TM3 1

𝑁
∑𝑥𝑖

3

𝑁

𝑖=1

 

Statistical analysis tool 

V-order [22] V 

(
1

𝑁
∑𝑥𝑖

𝑣

𝑁

𝑖=1

)

1
𝑣

 

 

Estimator of the muscle contraction 

force 

Log Detector 

[22] 

LOG 
𝑒
1
𝑁
∑ log(|𝑥𝑖|) 
𝑁
𝑖=1  

Gives measure of muscle 

contraction 

Average 

Amplitude 

Change [26] 

AAC 1

𝑁
∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

Similar to WL feature 

Difference 

Absolute 

Standard 

Deviation [26] 

DASDV 

√
1

𝑁 − 1
∑(𝑥(𝑖 + 1) − 𝑥𝑖)

2

𝑁−1

𝑖=1

 

Standard deviation value of 

wavelength 

Zero Crossing 

[21] 

ZC 
∑𝑠𝑔𝑛(𝑥𝑖 × 𝑥𝑖+1)

𝑁−1

𝑖=1

∩ |𝑥𝑖 − 𝑥𝑖+1| 

Gives frequency information of 

EMG signal 

Myopulse 

Percentage [27] 

MYOP 1

𝑁
∑|𝑓(𝑥𝑖)|

𝑁

𝑖=1

 

Average value of the myopulse 

output 

Slope Sign 

Change [21] 

SSC 
∑𝑓(𝑥𝑖

𝑁

𝑛=1

− 𝑥𝑖−1) × (𝑥𝑖

− 𝑥𝑖+1) 

Represents the frequency 

information 

Integrated 

Absolute of 

Second 

Derivative [18] 

IASD 
∑|𝑥′[𝑛 + 1]

𝑁−2

𝑛=1

− 𝑥′[𝑛]| 

Acts as a noise reduction filter 

Integrated 

Absolute of 

Third Derivative 

[18] 

IATD 
∑ |𝑥′′[𝑛 + 1]

𝑁−3

𝑛=1

− 𝑥′′[𝑛]| 

Also acts a filter for noise reduction 

Integrated 

Exponential of 

IEAV 
∑exp (|𝑥[𝑛]|)

𝑁

𝑛=1

 

Amplifies the samples that are large 

and suppresses the samples that are 
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Figure 2.4 Formation of feature matrix using the methods described 

 

The figure shows the flow of the formation of feature matrix using a combination 

of two feature sets. The total number of features extracted using these methods 

is calculated as follows: 

1. The 1000-point signal was subjected to singular spectrum analysis, here the 

embedding dimension of 5 was selected empirically. The length of feature 

matrix generated using SSA and statistical features is described as follows, each 

signal was decomposed into 5 sub-bands which were windowed into 20 snippets. 

These 6 signals (= 5 𝑠𝑢𝑏 − 𝑏𝑎𝑛𝑑𝑠 + 1 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙) were used for 

extraction of 21 statistical measures. Absolute values of the signal were also 

considered for statistical feature extraction, hence making the length of the 

feature matrix 5040 (= 6 × 20 × 21 × 2) 

2. The local graph structure using testosterone pattern will give a feature vector 

of length 768 as described in the section above 

 

Total number of features extracted using the methods described is 5808 

Absolute Values 

[18] 

small 

Integrated 

Absolute Log 

Values [18] 

IALV 
∑|log (𝑥[𝑛] + 𝑇)|

𝑁

𝑛=1

 

Suppresses the samples that are 

large and amplifies the small ones 

Integrated 

Exponential [18] 

IE 
∑exp (𝑥[𝑛])

𝑁

𝑛=1

 

Similar to IEAV but differentiates 
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2.5 Conclusion 

In conclusion, this thesis chapter focused on feature extraction, which is a critical 

step in the process of analyzing and understanding complex data. The two 

methods used for feature extraction in this thesis were discussed in detail. The 

resulting matrix from this methodology was dimensionally reduced which will 

be explained in the next chapter. 

Feature extraction techniques provide a powerful means to extract meaningful 

information from complex data, enabling improved decision-making, pattern 

recognition, and knowledge discovery in diverse domains. 
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CHAPTER 3: PROPOSED METHODOLOGY FOR 

CLASSIFICATION 

 

3.1 Introduction 

Neighbourhood Component Analysis (NCA) and Extreme Learning Machine (ELM). 

two promising methodologies in the realm of machine learning, are introduced in this 

chapter. Using local neighbourhood relationships in the data, NCA focuses on 

developing a distance measure to optimise classification or regression models. ELM, 

on the other hand, uses random feature generation and straightforward learning models 

to overcome issues with massive data and real-time learning. 

 

The goal of NCA is to find a distance measure that increases the prediction accuracy 

or improves the separation of data points from distinct groups. It has applications in 

fields such as document categorization, picture recognition, and recommendation 

systems. NCA offers important insights into the underlying structure of the data by 

learning a precise distance metric. 

 

3.2 Neighborhood Component Analysis (NCA) 

 

The machine learning technique known as Neighbourhood Component Analysis 

(NCA) is categorised as metric learning. In this technique, learning a distance metric 

or similarity function between data points is performed using metric learning. To 

enhance the precision of the closest neighbor classifiers, NCA focuses primarily on 

learning a distance metric that is customized to the job of classification. 

The goal of metric learning algorithms is to discover a similarity or distance metric 

that accurately reflects the underlying structure of data. Traditional distance measures 

that regard all dimensions equally, such as the Euclidean distance or cosine similarity, 

might not be appropriate for all jobs. The NCA is a metric learning algorithm that 

attempts to learn a better metric that emphasizes the important dimensions of a 

particular activity. 

For classification nearest neighbour classifier is used in this technique. Given a new 

data point, it classifies it based on the class label of its nearest neighbors in the training 

set. However, the performance of this classifier heavily relies on the choice of the 
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distance metric. NCA aims to improve the accuracy of the nearest neighbor classifier 

by learning an appropriate metric from the data. 

The motivation behind NCA is to address two key challenges in this problem, (1) high 

number of features, so it acts as and effective way of identifying the most informative 

dimensions in the data in classification and (2) classification consistency, it is what 

aims to ensure that nearby points in the input space are assigned the same label. NCA 

addresses these challenges by learning a metric that optimizes a specific objective 

function. 

Objective Function: NCA formulates the learning problem as an optimization task, 

where the goal is to maximize the expected accuracy of the nearest neighbor classifier. 

The objective function consists of two components: a neighborhood assignment 

probability and a classification probability. The neighborhood assignment probability 

measures the likelihood of a point being assigned to its correct class based on the 

distances to its neighbors. The classification probability quantifies the likelihood of 

assigning the correct class label to a point based on the distances to all other points in 

the dataset. 

 

Optimization: To optimize the objective function, NCA employs a stochastic 

optimization technique called stochastic gradient descent (SGD). SGD iteratively 

updates the parameters of the distance metric based on small subsets of training data. 

The updates are driven by the gradients of the objective function with respect to the 

parameters. By iteratively adjusting the metric, NCA aims to find a distance function 

that maximizes the classification accuracy. 

 

The NCA algorithm can be summarized in the following steps: 

 

a. Initialize the distance metric parameters. 

b. Select a training sample. 

c. Compute the gradients of the objective function with respect to the metric 

parameters. 

d. Update the metric parameters using SGD. 

e. Repeat steps b-d for a fixed number of iterations or until convergence. 

f. Use the learned distance metric to classify new data points. 
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Evaluation and Applications: 

To evaluate the performance of NCA, various metrics such as classification accuracy, 

precision, recall, and F1 score can be used. NCA has been applied to various domains, 

including image classification, face recognition, document retrieval, and 

recommendation systems. Its ability to learn task-specific distance metrics makes it 

useful in scenarios where the underlying data structure is complex and conventional 

metrics may not be optimal. 

Some advantages of NCA are, its ability to handle high-dimensional data, its 

interpretability, and its potential for feature selection. However, it also has some 

limitations. NCA requires labeled training data, which may not always be available.  

To summarize, Neighborhood Component Analysis (NCA) is a metric learning 

algorithm that aims to improve the accuracy of nearest neighbor classifiers by learning 

a distance metric tailored to the task of classification. By optimizing an objective 

function using stochastic gradient descent, NCA finds a metric that emphasizes 

relevant dimensions and promotes classification consistency. NCA has been 

successfully applied to various domains and offers advantages in interpretability and 

feature selection. However, it also has limitations related to the availability of labeled 

data and computational complexity.  

 

3.3 Extreme Learning Machine (ELM) 

 

Extreme Learning Machine (ELM) is a machine learning algorithm that belongs to the 

family of feedforward neural networks. It was proposed as an efficient alternative to 

traditional neural networks for solving regression and classification problems. 

The key idea behind the Extreme Learning Machine is to randomly initialize the input 

layer weights and calculate the output weights analytically in a single learning step. 

This random initialization makes ELM faster and simpler compared to other gradient-

based learning methods, such as backpropagation. 

Here are the main steps involved in the ELM algorithm: 

In an ELM network, as shown in Figure, if 𝑥𝑗 is input and 𝑜𝑗 is output, the mathematical 

expression of the output of a network with a single hidden layer and the number of 

nodes in the hidden layer as 𝐿 is defined as [30]: 
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Figure 3.1 Architecture of an Extreme Learning Machine [32] with L neurons in the hidden layer 

 

Input Layer: ELM starts by defining the input layer, which consists of a set of input 

nodes equal to the dimensionality of the input data. 

Random Weight Assignment: Random values are assigned to the input layer weights. 

These weights serve as the parameters that connect the input nodes to the hidden nodes. 

Activation Function: An activation function is applied to the weighted sum of inputs 

for each hidden node. The most commonly used activation function is the sigmoid 

function, but other activation functions like radial basis functions (RBF) can also be 

used. In this thesis, the radial basis function has been used as the activation function 

Output Weights Calculation: The output weights are calculated analytically using a 

linear least squares approach. The hidden layer outputs and the corresponding target 

outputs are used to solve this system of linear equations. 

𝑜𝑗 = ∑ 𝛽𝑛ℎ(𝑤𝑛𝑥𝑗 + 𝑏𝑛)
𝐿
𝑛=1 ,    (3.1) 

Here, 𝑘 = 1,2, …𝑁, 𝑤𝑖 are the weights between input and hidden layer and 𝑏𝑖 are the 

bias values affecting the input. ℎ(. ) Is the activation function. The weights between 

the hidden and output layer represented by 𝛽 are determined analytically as explained 

in [31].  

Training and Testing: The trained ELM model can then be used for prediction by 

applying the activation function and the output weights to the input data. The output is 

obtained by multiplying the hidden layer outputs with the calculated output weights. 

 

The major advantages of Extreme Learning Machines are their computational 
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efficiency and fast learning speed. They can handle large datasets and achieve good 

generalization performance. ELM also avoids the need for fine-tuning or iterative 

training processes typically associated with gradient-based methods. 
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CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter describes the application of the methods described in former chapters on 

a sEMG dataset for multiple classes. It then discusses the validation of the 

methodology adopted for the problem 

4.1 Dataset Description 

The dataset used in this project was taken from [33]. It contains data recorded from 

eight healthy subjects, six males and two females between the ages of 20 to 35. The 

data was recorded using two electrodes as shown in Figure 1. The participants were 

asked to perform 10 finger movements, that were grouped in two i.e., Individual finger 

movements and combined finger movements, these two have been considered as the 

two classes in this study as seen in Figure 2. Each gesture was performed six times and 

recorded for five seconds each. Sampling frequency of the data is 4000Hz, the signals 

recorded were filtered with a bandpass filter (20 and 450 Hz). 

 

Parameters Selection 

The table describes the parameters selected for statistical feature extraction, the 

values for these were selected to be the conventional ones. 

 

 

 

 

 

Table 4.1 Features and their specified parameters 

Figure 4.1 Images for the 10 classes considered in this study 
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Feature Parameter 

Willison Amplitude (WAMP) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1 

Autoregressive Model (AR) 𝑝 = 4, temporal moment 

Temporal Moment 3 

V Order (V) 3 

Zero Crossing (ZC) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1 

Myopulse Percentage Rate (MYOP) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.016 

Slope Sign Change (SSC) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.01 

 

In extreme learning machine, the number of hidden neurons is an important 

factor to be considered for the effectiveness of the model. The figure shows the 

trend between hidden layer neurons and the accuracy. It was observed that with 

the increase in the number of neurons, the accuracy is improving 

correspondingly, but the increase in amplitude is very subtle and the complexity 

of computing nodes is getting higher. Therefore, number of neurons were set to 

250. 

 

Figure 4.2 Number of neurons in hidden layer vs accuracy 

Classification Results 

Table 1 shows the investigative results of the comparison of performance using two 

distinct methods when applied individually and in combination. It was observed that 

the integration of SSA and LGS features yielded superior results compared to the 

application of either method alone. The results obtained demonstrate clearly that 

utilization of both methods gave improved outcomes. 

Table 4.2 Accuracies achieved using the discussed feature extraction techniques 



 

29  

Subject SSA features + LGS LGS features SSA features  

Subject 1 94.04 79.0 75.4 

Subject 2 91.16 70.3 67.3 

Subject 4 91.34 72.5 70.2 

Subject 5 95.85 81.1 𝟕𝟖. 𝟒 

Subject 6 95.85 76.8 69.4 

Subject 8 95.49 79.9 76.6 

Subject 9 𝟗𝟕. 𝟐𝟏 𝟖𝟏. 𝟒 73.0 

Subject 10 92.96 71.4 68.7 

 

4.2 Advantages 

The proposed method attained over 95% accuracies for a classification problem with 

10 classes. It used a combination of SSA features and Local Graph Structure of 

Testosterone based features and can successfully discriminate between different 

gestures. The sEMG signal acquisition technique is non intrusive and can be used in 

various applications like HCI, Prosthetics etc.   

 

4.3 Limitations 

 

The proposed method is user dependent and not tested for subject independent 

application of the technique, it is also susceptible to placement and calibration of the 

electrodes.
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CHAPTER 5: CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

In this project, a gesture recognition problem has been approached based on the extreme 

learning machine. The model could discriminate efficiently between ten classes and achieved 

more than 97% accuracy. For making the feature vector space, the EMG signals were 

windowed and decomposed using SSA. More than 5800 features were extracted using 

statistical metrics and Local Graph Structure of the testosterone chemical compound. These 

were selected using NCA and a total of 270 features were selected to be used in the 

classification model. The results of the project confirmed that the presented method is correct 

and effective. 

 

5.2 Scope for future work 

 

In future work, this method will be extended for recognition of more hand and finger 

gestures. Also, the problem of domain shifts while recording will be considered in 

further research, and the attempts to make gesture recognition model user independent 

will be made.  
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