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Abstract

The studyaof operators on Banach spaces formsaa fundamental branch of

functional analysis, with broad applicationsain various areas of mathematics

and physics. This abstract providesaan overview of different classes of operators

that arise in the contextaof Banach spaces.

First, we introduce the notion of a bounded linearaoperator, which is a fun-

damental class of operators on Banach spaces. Boundedalinear operators pos-

sess important properties such asacontinuity and preservation of vector space

operations, making themaessential in the study of linear transformationsa.

Next, we delve into more specialized classes of operators, starting withacompact

operators. Compact operators are characterized by their ability to mapabounded

sets to relatively compact sets, playing aasignificant role in the theory of inte-

gralaequations, spectral analysis, and compactness aarguments.

We then explore the realm of self-adjoint operators,awhich are operators

that coincide with theiraadjoints. Self-adjoint operators possess real spectra

and haveaapplications in quantum mechanics, where they correspond to ob-

servablesawith real eigenvalues.

Moving further, we discuss the class of normalaoperators, which generalize

self-adjoint operators and include bothaself-adjoint and unitary operators as

special cases. Normal operatorsahave a rich spectral theory and arise naturally

in areas such as quantum mechanicsaand signal processing.

Additionally, we touch upon the class of positiveaoperators, which are oper-

ators that preserve positivity. Positiveaoperators have connections toaoperator

algebras, functional analysis, andathe theory of partial differentialaequations.

Lastly, we examine theaconcept of bounded invertible operators, known
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as isomorphisms,awhich establish bijective mappings betweenaBanach spaces.

Isomorphisms play a central roleain the study of isomorphic properties, such

as the Banachaspace isomorphism theorems and isomorphic embeddings.

Throughoutathisaabstract, we highlight the interplayabetween different classes

of operators onaBanach spaces, emphasizing their properties,aapplications, and

connections toaother areas ofamathematics and physics.aUnderstanding thesea

various classes of operatorsais crucial for developing advanced techniques in

functional analysis and forainvestigating problemsaacross diverse scientific dis-

ciplines.a
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Chapter 1

INTRODUCTION

Weaprovideaaabriefacontextaandainspirationaofatheaquestionsathatathisathesisa
asks tryatoastudyainathisachapter. Inaaddition, weareiterate someadefinitionsaand
adiscoveries that awillabe used inathe future andapresent someanotation. We
providesaa chapter-by-chapter summaryaof theamain findings atatheaconclusion.

1.1 HISTORY

Mathematiciansahave longafocused onathe transformationsathat servingaangles
andalengths. Anaisomorphism isaa transformationathat maintainsathe dis-
tinction relationshipabetween eachapair of elementsain a spacea(metric space,
normedalinear space). Translation, rotation, andareflection areasome exam-
plesaof similarity. tryaon Euclideanaspace. TheaFourier transformaon L2(R)
isaanother example. Theadistance conservation criterionamakes itaeasy toadefine
multipleaisometric lines.

characteristicsaof riskaswitching, suchaas injection andacontinuity. Em-
brace Theageometry andastructure of Banachaspaces requireaa deep under-
standingaof their isobars. Theafirst to questionathe composition ofaa Sub-
jectivealinear isometriacover a particularaBanach spaceais StefanaBanach Re-
searchers haveaalso begunato studyaisometric linesaof other Banachaspaces in
theasame time period. Theaprojection typeais a different typeafrom the trans-
formationsaneeded toaunderstandathe architectureaof a Banachaspace.
Exponential matricesaare simpleaexamples ofaEuclidean spaces projection. Any
diagonalization matrixacan be decomposedainto aalinear matrix sumaof power
matrices, accordingato a standardalinear algebraaresult. Inathe pastaand more
recently, thereahas been much interestain efforts to characterize projections
with the desiredaquality, such asamononorm projections.

1.2 MOTIVATION

Assumeathat E isaa Banachaspace. B(E)aand G(E) standafor, respectively,
theaBanach space ofaall bounded linearaoperators and theaset of allasurjective
linearaisometries onaE. Let T B(E) suchathat Foraany x E, Tx correspondsato
the impactaof aasubjective linear isometryaon x, i.e., thereais aaTx G(E) such
that T(x) =aTx(x). B(E) andaG(E) stand for,arespectively, theaBanach space
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ofaall bounded linearaoperators andathe set ofaall surjective linear isometries
on E.

Definition 1.2.1. Let the algebraicaclosure ofaS beadefined as

Sa ≡ {T ∈ B(E) : Txa
a
ϵ Sx, ∀ax ∈ E}

whereaSx = {Sx : S ∈ S}.
Also, S ⊂ B(E). If S = S, theasubset S isacalled algebraicallyareflexive.
Clearly S ⊆ S Localamaps are componentsaof theaalgebraic closureaof S. If
wealogically mustahave TaS for everyamap T thatais locally associatedawith
S, then algebraicallyareflexive.

Sinceaevery local surjectiveaisometry isasurjective. Weashould keepain mind
thataan isometry isaan isometry. Weacan see from theadescription above, ifaE
has finiteadimensions, then G(E) is algebraicallyareflexive; ifaE is anainfinite
dimensionalaHilbertaspace, thenaG(E) is notaalgebraicallyareflexive.

LetaG2
n(E) = TG(E) : Tn = 1 for n > N .

Anaisometry ofaorder n isaan operatoraTn(E). If G(C(X)) is algebraicallyareflexive
foraa compact Hausdorffaspace, then G2(C(X)) isaalso algebraicallyareflexive.
The strongaBanach-Stone property of E isaa Banach space, anda′OnC0(X,
E), where X is aafirst countablealocally compact Hausdorff space and E isaa
Banachaspace, thisaconclusion wasaexpanded toainclude isometriesaof order n.

1.3 Researchaobjectives

Definition 1.3.1. Aaprojection P on aaBanach space Eais referredato asaa
generalizedabi-circular projection if α ∈ T | {1} existsasuch thataP + α(I −
P )aisaan isometry on E. In thisacase, T standsafor the complex plane’saunit
circle.

Any y generalized bi-circularaprojection, oraa projection P such that ∥aP||
= ||I − P || = 1, wasademonstrated to beabi-contractive. Additionally, ifaand
onlyaif a projection isaorthogonal, itaqualifies as aageneralized bi-circular
Definition 1.3.2. LetaC11(X) ’s subspaceaA be A. Ifathere is fAasuch that
|f (x1)| = |f (x2)| for pairaof differentapoints x1, x2 belongingato X, thenawe
say thataA is stronglyaseparating.

Definition 1.3.3. Givenaany subsets of KEawith positiveadistance d(A,B)
= inf ||ab|| : aA, bB, thereaexists afAU (KE) such that |f(x)|1 foraevery xA
and |f(y)|1 foraevery yB. This closedasubalgebra of 2 2CU (KE) isasaid toabe
weakly normal.

In theafirst section ofathe thesis, wealook atathe issue of theasets’ algebraicareflexivity:

1. The collectionaof all surjectivealinear isometriesabetween C0(X) sub-
spaces with highadegree ofaseparation.
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2. Theacollection ofaevery subjectivealinear isometryabetween CU (KE) subal-
gebras withaweakly normalaclosed substructures.
3. The collectionaof each andaevery surjectivealinear isometryabetweenAU (KE)
subalgebrasawhose membersavanish ata0 .
4. Eachaand everyasubjective linearaisometry onathe domain ofatwo-time con-
tinuously differentiableafunctions.
5. All collectionaof finite orderasurjective linearaisometries onathe space ofa2-
times continuously differentiableafunctions.

Definition 1.3.4. IfaeiϑT is anaisometry for each andaevery R, thenaoperator
T ∈ B(X) isaHermitian.
Numerousawriters haveastudied hermitian operatorsaon various complex Ba-
nach spaces.

1.4 Preliminaries andabasic results

Let E andaF will beataken as Banachaspaces. The setaof all surjective lin-
earaisometries, fromaE to F , and the Banachaspace ofaall Bounded linear
operators, areadenoted, respectively,aby B(E,F ) andaG(E,F ).B(E, E) and
G(E,E)aare denoted byaB(E) and G(E,E), respectively, ifaE = F .

LetaK stand forathe real/complexanumber space.The setaof all continu-
ous functionsawith K values onaa locally compact Hausdorffaspace isacalled
X thatavanishes at infinity isarepresented byaC0(X).f : X → K, whichawe re-
viewedaearlier, asadisappear atainfinity ifafor all > 0, the set {x ∈ X : |f(x)| ≥
ε}ais compact. LetaK stand forathe real/complexanumber space.The setaof
all continuous functionsawith K values onaa locally compact Hausdorffaspace
isacalled X thatavanishes at infinity isarepresented byaC0(X).f : X → K,
whichawe reviewedaearlier, asadisappear atainfinity ifafor all > 0, the set {x ∈
X : |f(x)| ≥ ε}ais compact. LetaK stand forathe real/complexanumber space.The
setaof all continuous functionsawith K values onaa locally compact Hausdorffaspace
isacalled X thatavanishes at infinity isarepresented byaC0(X).f : X → K,
whichawe reviewedaearlier, asadisappear atainfinity ifafor all > 0, the set {x ∈
X : |f(x)| ≥ ε}ais compacta. LetaK stand forathe real/complexanumber
space.The setof all continuous functions with K values on a locally compact
Hausdorff space is called X that vanishes at infinity is represented by C0(X).f :
X → K, which we reviewed earlier, as disappear at infinity if for all > 0, the set
{x ∈ X : |f(x)| ≥ ε} is compact. LetaK stand forathe real/complexanumber
space.The setaof all continuous functionsawith K valuesaon a locally com-
pactaHausdorff spaceais calledXathat vanishesaat infinity isarepresented byaC0(X).f :
X → K, whichawe reviewed earlier, asadisappear at infinityaif for all > 0,
theaset {x ∈ X : |f(x)| ≥ ε} is compact.

Definitiona1.4.1. LetaC0(X) ’s subspace A beaA. If all of the functionsain
A reachatheir maximum onaa subset U ofX, thenaU isaa boundary foraA. The
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onlyaminimal closedaboundary for A isathe Shilov boundary, indicatedaby the
symbolaA.

The nextatwo theorems describeathe design 11 f a strongly separatingasubspace
of C0(X) into C0(Y ) ’s into andaonto linear isometries.

Theorem 1.4.2. T isathe linear isometry ofathe linear subspaceaA of C0(X)
into C0(Y )athat separatesastrongly. Therefore,acontinuousamap h : Y0 ontoaσ0A,
a continuous map a : Y0 → K,asuch that |a(y)| = 1 foraall y ∈ Y0, and

Tf(y) = a(y)f(h(y))forally ∈ Y0

and foraevery f ∈ A areapresent. Theseamaps are boundariesafor T (A). Ad-
ditionally,aY0 is closedaif σOA isacompact.
Theorem 1.4.3. Tarepresents thealinear isometryaof the linearasubspace B
ofaC0(Y ) onto homeomorphism haof σ0Baonto σ0Aaexist, ensuring modaof
a(y) is 1afor everyay ∈ σ0Baand

Tf(y) = a(y)f(h(y))foreveryy ∈ σ0B, f ∈ A.

Au (KE) and A
0 (KE) of Cu (KE).

Theorem 1.4.4. LetaX and Y are Banachaspaces andaT is a linearasurjective
isometry: Au (Kx) → Au (KY ). Then, for everyay ∈ Kr and foraevery f ∈
AU (KX), there existsaa uniform homeomorphismah from KY aonto KX and
aafunction a ∈ CU (KY ) such that modaof a(y) is 1afor every y ∈ KY and
Tf(y) = a(y)f(h(y)) foraall y ∈ KY

Definition 1.4.5
. 1. Aaprojection P onaa Banach space E isaknown asaa generalizedabi-
circular projectionaif there isaα ∈ T | {1} suchathat P + α(I − P ) isaan
isometry onaE.
2. Theaprojection P on aaBanach spaceE isareferred toaas a bi-circularaprojection
ifaP + α(I − P ) isaan isometry on E foraallα ∈ T
Remark 1.4.6. Let α ∈ 2T\{1} andaT ∈ G(E) suchathat P +α(I −P ) = T 2 if
P is aabi-circular projectionaon a Banachaspace E. We’llarefer toathe isome-
tryaT as theaisometry connectedato P .

1



Chapter 2

OPERATORS

2.1 Boundedalinearaoperators

A linearamap or linearaoperator Tabetweenareal (or complex)alinear spacesaX, Y ais
a functionaT : X → Y asuchathat

T (λx+ µy) = λTx+ µTy forallλ, µ ∈ R(orC)andx, y ∈ X

Aalinear map T : X → X isacalled a linearatransformationaof X, or aalinear
operatoraon X. If T : X → Y is one-to-oneaand onto, thenawe say that T
isanonsingular orainvertible, andadefine the inverse mapaT−1 : Y → X by
T−1y = x ifaand onlyaif Tx = y, so thataTT−1 = I, T−1T = I. The linear-
ityaof T impliesathe linearity ofaT−1. If X, Y are normedaspaces, then weacan
define theanotion ofaa boundedalinear map. Asawe will see, theaboundedness
ofaa linear mapais equivalentato itsacontinuity.

Definition 2.1.1 LetaX and Y be twoanormed linearaspaces. We de-
noteaboth the X andaY normsaby k. Aalinear map T : X → Y isabounded if
there isaa constantaM ≥ 0 suchathat

kTxk ≤Mkxk foraall x ∈ X.
If noasuch constantaexists, thenawe say thataT isaunbounded. IfaT : X →
Y is a boundedalinear map, thenawe defineathe operator normaor uniform
normakTk of T by

kTk = inf{M | kTxk ≤Mkxk foraall x ∈ X}

Weadenote the set of allalinear maps T : X → Y by L(X, Y ), andathe setaof
all boundedalinear maps T : X → Y by B(X, Y ). When the domainaand range
spacesaare the same, weawrite L(X,X) = L(X) and B(X,X) = B(X)

Equivalentaexpressions for kTk are:

∥T∥ = sup
x ̸=0

∥Tx∥
∥x∥

; ∥T∥ = sup
∥x∥≤1

∥Tx∥; ∥T∥ = sup
∥x∥=1

∥Tx∥.

We alsoause the notationaRm×n, or Cm×n, to denoteathe space ofalinear mapsafrom
Rnato Rm, or Cn toaCm, respectively.

2



NOTE: Thealinear mapA : R → R definedaby Ax = ax, whereaa ∈ R, is
bounded, andahas normakAk = |a|

Example 2.1.1 The identityamap I : X → X isabounded on anyanormed
spaceX, andahas normaone. If aamap hasanorm zero, thenait is the zeroamap0x =
0.

Linearamaps on infinite-dimensionalanormed spacesaneed not beabounded.

Example 2.1.2 LetX = C∞([0, 1])aconsist ofathe smoothafunctions ona[0, 1]
thatahave continuousaderivatives ofaall orders, equippedawith the maximumanorm.
Theaspace X is aanormed space, butait isanot a Banachaspace, sinceait is in-
complete.
Theadifferentiation operatoraDu = u0 isaan unboundedalinear mapD : X →
X. Foraexample, the functionau(x) = eλx is an eigenfunction ofaD for anyaλ ∈
R, meaningathat Du = λu.
Thus kDuk/kuk = |λ|may be arbitrarilyalarge. Theaunboundedness ofadifferential
operatorsais a fundamental difficultyain theirastudy.

Supposeathat A : X → Y isaa linear map betweenafinite-dimensional
realalinear spaces X, Y withadimX = n, dimY = m.
We chooseabases {e1, e2, . . . , en} of X and {f1, f2, . . . , fm} of Y .aThen

A (ej) =
m∑
i=1

aijfi

for aasuitable m× n matrixa(aij) with real entries. Weaexpand x ∈ X as

x =
n∑

i=1

xiei

whereaxi ∈ R isathe i th componentaof x. It followsafrom thealinearity ofaA
that

A

 n∑
j=1

xjej

 =
m∑
i=1

yifi

where

yi =
n∑

j=1

aijxj

Example 2.1.3 LetaX = ∞(N) be the space ofabounded sequencesa{(x1, x2, . . .)}
withathe norm

∥(x1, x2, . . .)∥∞ = sup
i∈N

|xi|

A linearamapA : X → X is representedaby an infiniteamatrix (aij)
∞

i,j, where

yi =
n∑

j=1

aijxj.

3



Example 3aLet X = (N) beathe space ofabounded sequences {(x1, x2 . . . .)}
withathe norm

∥(x1, x2, . . .)∥∞ = sup
i∈N

|xi| .

A linearamap A : X → X is represented byaan infiniteamatrix (aij)
∞

ij=1,
where

(Ax)i =
∑

j = 1∞aijxj.

In orderafor this sumato converge foraany x ∈∈◦ (N), wearequire that

∞∑
j=1

|aij| <∞

foraeach i ∈ N, andain order for Ax toabelong toaœ( N), wearequire that

sup i ∈ N
{∑

j = 1∞ |aij|
}
<∞.

Then A isaa bounded linearaoperator on ’ ( N), andaits norm isathe maximum
rowasum,

∥A∥∞ = sup
i∈N

{∑
j = 1∞ |aij|

}
.

Example 2.1.4 Let X = C([0, 1]) withathe maximumanorm, and

k : [0, 1]× [0, 1] → R

be aacontinuous function. Weadefine the linear Fredholmaintegral operatoraK :
X → X by

Kf(x) =
∫ 1

0
k(x, y)f(y)dy

ThenaK isabounded and

∥K∥ = max
0≤x≤1

{∫ 1

0
|k(x, y)|dy

}
.

Thisaexpression isathe ”continuous” analogaof the maximum rowasum for thea∞-
normaof a matrix. Foralinear maps, boundedness isaequivalent to continuity.

Theorem2.1.1 Aalinear map is boundedaif and only if itais continuous.

Proof.
First, supposeathat T : X → Y isabounded. Then, foraall x, y ∈ X, weahave

kTx− Tyk = kT (x− y)k ≤Mkx− yk,

whereaM is a constantafor which (5.1) holds. Therefore,awe can take δ = ϵ/M
inathe definitionaof continuity, andaT isacontinuous.

Second, supposeathat T isacontinuous ata0 . Since T isalinear, we haveaT (0) =
0. Choosing ϵ = 1 inathe definition ofacontinuity, weaconclude thatathere is
aaδ > 0 such that kTxk ≤ 1 whenever kxk ≤ δ. Foraany x ∈ X, with x6 = 0,
weadefine x∼ by

x̃ = δ
x

∥x∥

4



Thenakx∼k ≤ δ, so kTx∼k ≤ 1. Itafollows from thealinearity of T that

∥Tx∥ =
∥x∥
δ

∥T x̃∥ ≤M∥x∥

whereaM = 1/δ. Thus Tais bounded.
The proofashows thataif a linearamap isacontinuous atazero, then itais con-
tinuousaat every point. A nonlinear map mayabe bounded butadiscontinuous,
oracontinuous at zeroabut discontinuous ataother points.

The followingatheorem, sometimesacalled theaBLT theorem for ”bounded
linearatransformation” has many applicationsain defining andastudying linear
maps.

Theorem 2.1.2 (Bounded linearatransformation) LetX be a normedalinear
space andaY a Banachaspace. If Mais a densealinear subspaceaof X and

T :M ⊂ X → Y

is aabounded linearamap, thenathere is a uniqueabounded linearamap T̄ :
X → Y suchathat Tx = Tx foraall x ∈ M . Moreover, ∥T̄∥ = ∥T∥. Proof.
Foraeveryax ∈ X, thereais a sequence (xn) inaM that convergesato x. Weadefine

Tx = limTxn · n→ ∞

Thisalimit exists becausea(Txn) is Cauchy, sinceaT is boundedaand (xn)aCauchy,
andaY is complete. Weaclaim that the valueaof the limitadoes not dependaon
the sequenceain M thatais usedato approximateax. Suppose that (xn)aand
(xn

0) areaany two sequences inaM that convergeato x. Thena∥xn − x′n∥ ≤
∥xn − x∥+ ∥x− x′n∥ and, takingathe limitaof this equationaas n→ ∞, weasee
that

lim
n→∞

∥xn − x′n∥ = 0

Itafollows that

∥Txn − Tx′n∥ ≤ ∥T∥ ∥xn − x′n∥ → 0 asn→ ∞.

Hence,a(Txn) and (Tx′n) convergeato the samealimit. Theamap T is an exten-
sionaof T , meaningathat Tx = Tx, foraall x ∈ M , because ifax ∈ M , weacan
use the constantasequence with xn = x for all n to defineaT̄ x. The linearity
ofaT̄ followsafrom thealinearity of T . The factathat T̄ isabounded followsafrom
the inequality

∥T̄ x∥ = lim
n→∞

∥Txn∥ ≤ lim
n→∞

∥T∥ ∥xn∥ = ∥T∥∥x∥

Itaalso followsathat ∥T̄∥ ≤ ∥T∥. − Since Tx = Tx forax ∈ M , we have
∥T̄∥ = ∥T∥. Finally, weashow that Tais theaunique boundedalinear mapafrom
X toaY that point inaX, We choose aasequence (xn) ine M thataconverges
toax. Then, using the coincidesawith T onM . Supposeathat T is anotherasuch
map, andalet x beaany continuity ofaT , theafact thataT is anaextension ofaT ,
and theadefinition ofaT , we seeathat

Tx =Tx = lim
n→∞

= lim
n→∞

Txn = Tx
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Weacan use linear mapsato define variousanotions ofaequivalence betweenanormed
linear spaces.
Definition 2.1.3 Two linearaspaces X, Y arealinearly isomorphicaif there isaa
oneto-one, ontoalinear mapaT : X → Y . If X and Y ara normed linear
spacesaand T, T−1 are bounded linear maps, then X and Y are topologi-
callyaisomorphic. If Taalso preservesanorms, meaningathat kTxk = kxk for
all x ∈ X, then X, Y are isometricallyaisomorphic.

Whenawe say thatatwo normed linearaspaces area”isomorphic” weawill usu-
ally meanathat theyaare topologicallyaisomorphic. Weaare often interestedain
theacase whenawe have twoadifferent normsadefined onathe same space,aand
we wouldalike to know ifathe norms defineathe same topologies.

Theorem 2.1.3 Twoanorms on a linear spaceagenerate theasame topol-
ogyaif and only ifathey areaequivalent.

Proof. Letak · k1 andak · k2 be twoanorms onaa linear spaceaX. We con-
siderathe identityamap

I : (X, k · k1) → (X, k · k2)

FromaCorollary 4.20, theatopologies generatedaby the twoanorms are theasame
ifaand only if I andaI−1

areacontinuous. Since Iais linear, it isacontinuous ifaand onlyaif it isabounded.
The boundednessaof the identityamap and itsainverse is equivalentato the ex-
istenceaof constantsac and C such athat (5.10) holds.

Geometrically, twoanorms are equivalentaif the unitaball of eitheraone of
theanorms isacontained in a ballaof finitearadius of theaother norm.

Weaend this sectionaby stating, withoutaproof, aafundamental factaconcerning
linearaoperators on Banachaspaces.

Theorem 2.1.4 (Openamapping) Supposeathat T : X → Y ais a one-
to-one, ontoabounded linearamap betweenaBanach spacesaX, Y . Then T−1 :
Y → X isabounded.

Thisatheorem statesathat the existenceaof theainverse ofaa continuousalinear
mapabetween Banachaspaces impliesaits continuity.

The kernelaand range of aalinear map

The kernelaand range areatwo important linearasubspaces associatedawith
a linearamap.

Definition 2.1.5 Let T : X → Y beaa linear map betweenalinear spacesaX, Y .
Theanull spaceaor kernelaof T , denotedaby kerT , isathe subset ofX definedaby

kerT = {x ∈ X | Tx = 0}
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Thearange of T , denotedaby ranT , is theasubset of Y definedaby ranT = {y ∈
Y | there

existsx ∈ XsuchthatTx = y}

The worda”kernel” isaalso usedain a completelyadifferent senseato refer toathe
kernel of an integralaoperator. Aamap T : X → Y is one-to-oneaif and onlyaif
kerT = {0},aand it is ontoaif and only if ranT = Y .

Theorema5 Suppose thataT : X → Y isaa linear map betweenalinear
spacesaX, Y . The kernelaof T isaa linear subspaceaof X, andathe rangeaof
T is aalinear subspace ofaY . IfaX and Y areanormed linearaspaces andaT
isabounded, thenathe kernel ofaT is aaclosed linearasubspace. Proof. IfaX1, X2 ∈
kerT and λ1, λ2 ∈ R (or C ), then thealinearity ofaT impliesathat

T (λ1x1 + λ2x2) = λ1Tx1 + λ2Tx2 = 0

so λ1X1+λ2x2 ∈ kerT . Therefore,akerT is a linearasubspace. Ifay1y2 ∈ ranT ,
thenathere are x1, X2 ∈ X suchathat Tx1 = y1 andaTx2 = y2. Hencea

T (λ1x1 + λ2X2) = λ1Tx1 + λ2Tx2 = λ1y1 + λ2y2

soaλ1y1 + λ2y2 ∈ ranT . Therefore, ranTais aalinear subspace. Now sup-
poseathatX and Y areanormed spacesaand T isabounded. If (xn) isaa sequence
ofaelements in kerT with xn → x in X, thenathe continuity ofaT implies thata

Tx = T
(
lim
n→∞

xn

)
= lim

n→∞
Txn = 0

soax ∈ kerT , and kerTais closed. Theanullity of T is theadimension ofathe
kernel ofaT , andathe rankaof T is theadimension ofathe range ofaT . We
nowaconsider someaexamples. Thearight shiftaoperator Saon ∞(N) is definedaby

S (x1, x2, x3, . . .) = (0, x1, x2, . . .)

andathe left shiftaoperator Taby

T (x1, X2, X3,.....) = (x2,, X3,, X4, . . .)

Theseamaps haveanorm one. Theiramatrices are theainfinite-dimensionalaJordan
blocks,

[S] =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...

...
...

. . .

 , [T ] =


0 1 0 . . .
0 0 1 . . .
0 0 0 . . .
...

...
...

. . .


Theakernel of S isa{0} and thearange of S isathe subspacea

ranS = {(0, x2, x3, . . .) ◦∞(N)}

Thearange of T isathe wholeaspace ◦(N), and the kernelaof T isathe one-
dimensionalasubspace

kerT = {(x1, 0, 0, . . .) | x1 ∈ R}
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Theaoperator S isaone-to-one butanot onto, andaT isaonto but notaone-to-one.
Thisacannot happenafor linearamaps T : X → X onaa finite-dimensionalaspace
X, suchaas X = Rn. Inathat case, kerT = {0} if andaonly if ranT = X.
Anaintegral operatoraK : C([0, 1]) → C([0, 1])

Kf(x) =
∫ 1

0
k(x, y)f(y)dy

isasaid to be degenerateaif k(x, y) is aafinite sumaof separated termsaof theaform

k(x, y) =
n∑

i=1

φi(x)ψi(y)

whereaϕi, ψi : [0, 1] → R areacontinuous functions. Weamay assume with-
outaloss of generalityathat {ϕ1, . . . , ϕn} anda{ψ1, . . . , ψn} are linearlyaindependent.
Thearange ofK isathe finite-dimensionalasubspaceaspanned by {ϕ1, ϕ2, . . . , ϕn},
andathe kernel ofaK is the subspaceaof functionsaf ∈ C([0, 1]) such thata∫ 1

0
f(y)ψi(y)dy = 0 fori = 1, . . . , n.

Bothathe range and kernelaare closedalinear subspaces ofaC([0, 1]).
Example 3 Considerathe operatoraT = I +K on C([0, 1]), where Kais defined
ina(5.11), whichais a perturbationaof theaidentity operatoraby K. Thearange
of T is theawhole spaceaC([0, 1]), and isatherefore closed. Toaprove thisastatement,
weaobserve thatag = Tf if and onlyaif

f(x) +
∫ x

0
f(y)dy = g(x)

WritingaF (x) =
∫ x
0 f(y)dy, we have F 0 = f anda

F 0 + F = g, F (0) = 0.

Theasolution of thisainitial value problem isa

F (x) =
∫ x

0
e−(x−y)g(y)dy.

Differentiatingathis expressionawith respect toax, we findathat f isagiven by

f(x) = g(x)−
∫ x

0
e−(x−y)g(y)dy

Thus, theaoperator T = I +K isainvertible on C([0, 1]) anda

(I +K)−1 = I − L

where Lais the Volterraaintegral operatora

Lg(x) =
∫ x

0
e−(x−y)g(y)dy.

Theafollowing resultaprovides aauseful wayato showathat an operatoraT has
closedarange. Itastates that Tahas closed rangeaif one can estimateathe normaof
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the solutionax of theaequation Tx = yain terms of theanorm of the right-
handaside ya.
“Inathat case, it isaoften possibleato deduce theaexistence of theafollowing
resultaprovides a useful way toashow that an operator T has closed range.
Itastates that T has closedarange if oneacan estimate theanorm of the solution
x ofathe equation Tx = y in terms of the norm of thearight-hand side y

In thatacase, it is oftenapossible to deduceathe existence ofasolutions

Proposition2.1.1: LetaT : X → Y abe a boundedalinear map betweenaBanach
spacesX, Y .aThe followingastatements areaequivalent: (a) there isaa constantac >
0 such thata

ckxk ≤ kTxk forallx ∈ X

(b) T hasaclosed range,aand the onlyasolution ofathe equation Tx = a0 is
x = 0.
Proof. First, supposeathat T satisfies (a).aThen Tx = 0 implies that kxk =
a0,aso x = 0. To showathat ranT isaclosed, suppose thata(yn) is a convergent
sequence in ran T , withayna → y ∈ Y . Thenathere is a sequence (xn) in X
suchathat Txn = yn. The sequence (xn) isaCauchy, since (yn) is Cauchy anda

∥xn − axm∥ ≤ 1

c
∥T (xn − xm)∥ = a

1

c
∥yn − ym∥ .

Hence, sinceaX is complete, weahave xn → ax for some x ∈ X. Since T
isabounded, weahave

Tx = limTxn = a lim yn = y, n→ ∞n→ a∞

soay ∈ ranT , aand ranT is closed. Conversely, supposeathat T satisfies (b).
Since ranaT is closed, itais a Banachaspace. Since T : X → Y is one-to-one,
theaoperator T : X → ranT is a one-toone, ontoamap between Banachaspaces.
The openamapping theorem, Theorem 5.23 , impliesathat T−1 : ranT → X is
bounded,aand hence thatathere is aaconstant C > 0 such thata∥∥∥T−1y

∥∥∥ ≤ C∥y∥ forally ∈ ranT

Setting y = Tx, weasee that ckxk ≤ kTxk for allax ∈ X, where c = 1/C.
Example 1aConsider theaVolterra integralaoperator K : C([0, 1]) → C([0, 1])
definedain (5.11). Then

K[cosnπx] =
∫ x

0
cosnπydy =

sinnπx

nπ

We haveakcosnπxk = 1 for everyan ∈ N, butakK[cosnπx]k → 0 asan → ∞.
Thus, it is notapossible to estimateakfk in terms of kKk, consistent withathe
fact that thearange of K isanot closed.

Finite-dimensionalaBanach spaces
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In thisasection, we proveathat everyafinite-dimensional (real or complex)
normed linearaspace is aaBanach space, thataevery linear operatoraon a finite-
dimensionalaspace is continuous,aand that all normsaon a finite-dimensionalaspace
are equivalent. Noneaof these statements isatrue forainfinite-dimensional lin-
ear spaces. Asaa result, topological considerationsacan often beaneglected
whenadealing with finite-dimensional spacesabut are of crucialaimportance when
dealingawith infinite dimensionalaspaces.

We beginaby proving thatathe components ofaa vector with respect toaany
basis of a finite dimensional spaceacan be bounded by the normaof the vector.
Lemma: Let X beaa finite-dimensionalanormed linear space with norm k · k,
and {e1, e2, . . . , en} anyabasis of X.aThere are constantsam > 0 and M > 0
such that if x =

∑n
i=1 xiei, thena

m
n∑

i=1

|xi| ≤ ∥x∥ ≤M
n∑

i=1

|xi|

Proof. By theahomogeneityaof the norm, itasuffices to prove (5.12) forax ∈ X
such that a

∑n
i=1 |xi| = 1. The ”cube”a

C =

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣∣
n∑

i=1

∣∣∣∣∣xi |= 1

}

isaa closed, bounded subsetaof Rn, and is therefore compactaby the Heine-
Borelatheorem. We define a functionaf : C → X bya

f ((x1, . . . , xn)) =
n∑

i=1

xiei

For (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn, weahave

∥f ((x1, . . . , xn))− f ((y1, . . . , yn))∥ ≤
n∑

i=1

|xi − yi| ∥ei∥

so f isacontinuous. Therefore,asince k · k : X → R isacontinuous, the mapa

(x1, . . . , xn) 7 → kf ((x1, . . . , Xn)) k

ais continuous. Theorem 1.68aimplies that kfk is bounded on Ca and at-
tainsaits infimumaand supremum.aDenoting theaminimum by m ≥ 0 and the
maximum byaM ≥ m, we obtain (5.12). Leta (x̄1, . . . , x̄n) be a pointain C
where kfk attains itsaminimum, meaning thata

k1e1 + . . .+ ∗nenk = m

Thealinear independence ofathe basis vectorsa{e1, . . . , en} implies thatam6 =
0, so m > 0. This result isanot true in anainfinite-dimensional space be-
cause,aif a basis consists ofavectors that become ”almost”aparallel, then the
cancellation inalinear combinationsaof basis vectors mayalead to a vector hav-
ing largeacomponents butasmall norm. Theorem 6a
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Everyafinite-dimensionalanormed linear space is a Banach space.a
Proof. aSuppose that a(xk)

∞
k=1 is aaCauchy sequence in aafinite-dimensional

normed linear spaceaX. Let {e1, . . . , en} be a basis of X. We expand xk asa

xk =
n∑

i=1

xi,kei

whereaxi,k ∈ R. For 1 ≤ i ≤ n, we consider theareal sequence ofai th compo-
nents, (xi,k)

∞
k=1. Equation (5.12) implies thata

|xi,j − xi,k| ≤
1

m
∥xj − xk∥

soa(xi,k)
∞
k=1 is Cauchy.aSince R is complete,athere is a yi ∈ R, such thata

limxi,k = yi

k → ∞Weadefiney ∈ Xby

y =
k∑

i=1

yiei

Then, lemma,a
nkxk − yk ≤MX |xi, k − yi| keik

i = 1 and hencea xk → y as k → ∞. Thus,aevery Cauchy sequence in X
converges, and X isacomplete. Since a complete space is closed, we have the
following corollary. Corollary Everyafinite-dimensional linear subspace of a
normed linearaspace is closed.a”

Theorem 2.1.7 Every linear operatoraon a finite-dimensionalalinear space
is bounded.

Proof. Suppose thatA : X → Y is aalinear map andX is finiteadimensional.
Let {e1,...,, en} be aabasis of X. If x =

∑n
i=1 xiei ∈ X, then (5.12) implies thata

∥Ax∥ ≤
n∑

i=1

|xi| ∥Aei∥ ≤ max 1 ≤ i ≤ n {∥Aei∥}
∑

i = 1n |xi| ≤
1

m
max
1≤i≤n

{∥Aei∥} ∥x∥

soaA is bounded. Finally,awe show that althoughathere are manyadifferent
norms on a finitedimensionalalinear space they all lead to the same topology
and the sameanotion of convergence.

Theorem 2.1.8 Any two normsaon a finite-dimensionalaspace are equiva-
lent.

Proof.aLet k · k1 and k · k2 be twoanorms on a finite-dimensionaa space X.
We chooseaa basis {e1, e2, . . . , en} of X.aThen Lemma impliesathat there are
strictly positiveaconstants m1,m2,M1,M2 such thataif x =

∑
i = 1nxiei, thena

m1

n∑
i=1

|xi| ≤ ∥x∥1 ≤M1

∑
i = 1n |xi|m2

n∑
i=1

|xi| ≤ ∥x∥2 ≤M2

∑
i = 1n |xi| .

then followsawith c = m2/M1 and C =M2/m1.
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2.2 Compactaoperators

Compact operatorsahold significantaimportance not onlyadue to the well
established theory surrounding them butaalso because they arise in numerous
crucialaapplicationsa.

Consider normedaspaces X andaY
A linearaoperator K from X to Y is classifiedaas compact if its domain D(K)
is X,aand for any sequence {x−n} ⊂ X satisfyingaX−n ≤ c, theasequence
{K xn} possesses aasubsequence that converges in Y .a

Theacollection of all compactaoperators fromX toaY is denoted asK(X, Y ).
If X and Y areathe same, we canause the shorthand notation K(X) insteadaof
K(X,X).a

Definitiona2.2.1.
A subsetaS of a normedaspaceX is deemedacompact if every sequence ofaelements
in S possessesaa subsequence thataconverges to anaelement within Sa.

Definitiona2.2.2.
A subsetaS of a normedaspace X isaconsideredarelatively compactaif every
sequenceaof elements in S has a convergentasubsequence that converges to
an element of X. Itais important to note thatathe limit of this subsequence
mayanot necessarily belong to Sa.

Proposition2:
IfaX and Y are armedaspaces, a linearaoperatorK : X → Y , definedaeverywhere,
is compactaif and only if K(B), whereaB is any bounded setacontained in X,
is relativelyacompact. It is established ihat Kais compact if and only ifathe
image of every boundedasubset of Xais a relativelyacompact subset of Y .a
Proposition3:
Allacompact operators belongato the categoryaof boundedaoperators. In otherawords,
’he set of compactaoperators, denotedaas K(X, Y ), is a subset ofathe set of
bounded operators, representedaas B(X, Y )a.

2.3 FiniteaRank Operators

Definition2.3.1
Consideranormed spacesX and Y . A linearaoperator T : X → Y isacategorized
as an operatoraof finite rankaif the range ofaT is finite-dimensional.
The collection ofaall bounded linear finite rank operators isadenoted as BFRa(X, Y ).
It shouldabe noted that not everyalinear operator of finitearank is necessar-
ilyabounded.

Theorema2.3.1.
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If Aais an eloment of theaset of bounded linear operators fromaX toaY
(denoted asaB(X, Y )), and K belongs to the set ofabounded linearaoperators
of finite rank fromaY to Z (denoted asaBFR(Y, Z)),
then the product KAabelongs to the set ofabounded linear operators of finite
rankafrom X toaZ (denoted as BFR(X,Z) ).a

Similarly,aif L is an elementaof BaFR(X, Y ) andaB belongs to B(Y, Z),
then the product BLabelongs to BFR(X,Z). In both cases, itacan be con-
cluded that the product of a boundedaoperator and anaoperator of finite rank,aregardless
of theaorder, yields anaoperator of finitearank.

Theorema2.3.2.
Every boundedafinite rankaoperator is compact.

Proposition 3 :

Ifaa normed space hasafinite dimension,athen the identity operator asso-
ciatedawith that space is compact. Conversely, itathe identityaoperator of a
normed space is compact, it impliesathat 3 he spaceaitself is of finite dimen-
sion.a

Proposition4:
If X0ais aasubspace of a normed spaceaX, the inclusion operator I0 : X0 →
Xais compact if and only if X0 isafinite-dimensional.
Corollary:a
In the spaceaof bounded linear operators B(X), 3 compactaoperator from
anainfinite-dimensional normedaspace is non-invertible.a

Ideals

Definitiona4.
In an arbitraryaring (R,+,)where”+”representsadditionand”.”representsmul-
tiplication,athe additive groupa(R,+) is denoted. Aasubset I isaconsidered a
two-sidedaideal of R if it fulfillsathe following criteria:

1.a(I,+) isaa subgroup of (R,+).a
2.aFor any x ∈ I andar ∈ R, both x · r and r · x belong to Ia.

The terma”two-sided” signifies that we can performamultiplication by any
element of R fromaeither the left oraright side.a

Propositiona5:
K(X) isaa two-sided ideal of theanormed algebra B(X). When Xais a Banach
space, K(X) remains a two-sided idealawithin the Banachaalgebra B(X).

Theorem 2.3.1.
ConsideraX asanormed space andaY as a Banachaspace. IfaL belongsato
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B(X, Y ) andathere exists aasequence {Kn} inaK(X, Y ) such that L−Knaconverges
to O3 as n approachesainfinity, then L is an element ofaK(X, Y ).

Accordingato the theorem mentionedaabove, (X, Y ) is aaclosed subspace
withinaB(X, Y ), making it aaBanach space. Therefore,athe proposition statesachat
if X is a Banach space,athen K(X) is a closedatwo-sided ideal ofathe Banach
algebraaB(X)

ApproximationaProperty

Definition2.3.1.
A Banachaspace for whichathe finite rankaoperators areanorm-dense inathe
compact operatorsais said to have theaapproximation property.

2.4 AdjointaOperators

Adjointaoperators exhibitasimilar behaviorato the transpose of aamatrix in real
Euclideanaspace. The transposeaAT of a real m × n matrixaA satisfies the
relationshipa
⟨Ax, y⟩ = ⟨x,ATy⟩
for all x in Rn and y in Rm, where ⟨·, ·⟩ represents theaEuclidean inner producta
.

In theacontext of bounded linearaoperators, if T is a mapping from aaHilbert
space H1 to another Hilbertaspace H2, denoted as T : H1 → H2, then for
aafixed y in H2, the linear functional lais bounded. Byathe RieszaRepresentation
Theorem, there exists aaunique z in H1 suchathat ⟨Tx, y⟩ = ⟨x, z⟩. This z, de-
terminedauniquely byay through T, is denotedaas T∗y.

⟨Tx, y⟩ = ⟨x, T ∗y⟩

The adjointaoperator T:H260→H1 isaa bounded linearaoperator. It servesaas
the counterpart of T. For any y60 Doundedalinear operator T, the norms of T
andaits adjoint T are equal,adenoted as ∥T∥ = ∥T ∥, and T ∗ equals T .a

To illustrate,aconsider the linearaoperator T : L2[a, b] → L2[c, d], which is
generatedaby the kernelak(·, ·) belonging to C([c, d]× [a, b]).

In other words,afor s ∈ [c, d], (Tf)(s) =
∫
abk(s, t)f(t)dt. Then,athe inner

product ⟨Tf, g⟩ can beaexpressed as
∫
c
∫
abk(s, t)f(t)dtg( s)ds, whichais equal

to ⟨f, T∗ g⟩. Consequently, 1 isarepresented by theaintegral operator gener-
atedaby the kernelak(·, ·), where k∗(t, s) = k(s, t).

In particularacases, if the kernel k is symmetricaand [a, b] = [c, d], the op-
erator T is referredato as self-adjoint.a
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Properties of the adjoint operator

Theorema4.
Assume T : H1 → H2 be aabounded linear operator. Then

1. The adjointaof the adjointaoperator is equalato the original operator.a
2. The normaof the product of T and its adjoint, as wellaas the norm ofathe
product ofathe adjoint and T , is equal to the square of the norm of T .a
3. The null space of the operator T is theaorthogonal complementaof the range
of itsaadjoint operator.a
4. The orthogonalacomplement ofathe nullaspace of T is equal to the range of
itsaadjoint operator.
5. The nullaspace of the adjoint operator T ∗ isathe orthogonal complement of
the rangeaof the operatoraT .
6. The orthogonalacomplement ofathe null space of theaadjoint operator T ∗

isaequal to thearange of theaoperator T .a

2.5 Self-adjoint,aNormal andaUnitary opera-

tors

Definition 2.4.1
In a HilbertaspaceH, aabounded linearaoperator T isaconsidered self-adjointawhen
Tis eaualato its adjoint operatoraT∗. If T isaboth bijective andaits adjoint
operatoraT * is equal to itsainverse T − 1, it isareferred toaas unitary. A
boundedalinear operatoraT is categorizedaas normal if theaproduct of its ad-
joint operatoraT∗ with T is equalato the product ofaT with its adjoint opera-
toraT∗, i.e., T ∗ T = TT∗.a

Theorem 5:
LetanH be a Hilbert spaceaand letaP ∈ B(H) is givenathen P is self-adjointaiff
< Px, x >∈ R, x, y ∈ H. Proof:
Let’saconsider the assumptionathat P isaself-adjoint, whichameans P is equal
to itsaadjoint P ∗. For an4848 and y inathe Hilbert space H, we haveathe fol-
lowing equality:

Conjugateaof
(〈

Px41, x
〉)

= ⟨x,Px⟩ = ⟨P∗x, x⟩

It isaobserved that theaconjugate ofa⟨Px, x > is equal to ⟨x, Px > and
alsoaequal to ⟨P∗x, x⟩.

Now, let’saassume thata⟨Px, x > is a real numberafor allax in H. Choosing
x and y fromaH, we can deduce the following:a
4P (x+ y), x+ y⟩ = ⟨Px, x⟩+ ⟨Px, y⟩+ ⟨Py, x⟩+ ⟨Py, y⟩

Since ⟨P (x + y), x + y⟩, ⟨Px, x⟩, anda⟨Py, y⟩ areareal numbers, we con-
cludeathat:
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⟨Px, y⟩+ ⟨Py, x⟩ isaalso real.a

Hence, it canabe inferred that:a

⟨Px, y⟩+ ⟨Py, x⟩ = conjugate(⟨Px, y⟩+ ⟨Py, x⟩) = ⟨y, Px⟩+ ⟨x, Py⟩
..................(1)

Similarly,aupon examiningathe equation:

⟨P (x+ iy), (x+ iy)⟩ = ⟨Px, x⟩+ ⟨Px, iy⟩+ ⟨iPy, x⟩+ ⟨iPy, iPy⟩

Expandingathe equation, we obtain:a
4Px, x > −i < Px, y > +i < Py, x > +⟨iPy, iPy >

From this, weacan conclude that:a
⟨Px, y⟩ − ⟨Py, x⟩ = −⟨y, Px⟩+ ⟨x, Py >...........(2)

By addingaequations (1) and (2), we get:a
2 < Px, y >= 2 < x, Pv >

2 < Px, y >= 2 < x, Py >
This impliesa:

⟨Px, y⟩ = ⟨x, Py >

Therefore, we have shownathat ⟨Px, y⟩ is equal to ⟨4P ∗x, y⟩. Sinceathis
holds true foraevery x and y, we can concludeathat P = P ∗.

Schauder Bases

Definitiona :
Consider a Banachaspace X. Let e = (ei) i ∈ N be a seq4ence inaX. If
everyapoint x in X can be expressedauniquely as theasum of xNi, where xi
belongsato a field F , then the sequence e is referredato as a Schauder basis
ofaX, also known asaa basis.

Weak Compactnessain K(E, F):

Consider Banachaspaces E andaF , and let L(E,F ) represent theaspace
ofabounded linear operatorsafrom E to F . WithinaL(E,F ), K(E,F ) is a closed
subspace.
Ourafocus lies onatwo primary topologiesaapplied to 7(E,F ). The firstais the
weak-operatoratopology, denotedaas w, which isadetermined by the linear func-
tionals T → f (Te), where f abelongs to F ∗. 7 he second topology, knownaas
the dualaweak-operator topologyaand denoted as 7w′, is defined byalinear func-
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tionals.

T− > e∗ (T ′f ) f ∗belongstoF,ebelongstoE∗

Theorem 6.
LetaA be a subset ofaK(E,F ). A is considered weakly compactaif and only if
it is w’-compact.a

Proof:

AssumeA isaw′-compact, andalet x(A) = {X ∈ r;T belongs toA}. Thenax(A)
is compact accordingato the pointwiseaconvergence topologyain U x V, andathus,
x(A) is weaklyacompact inaC(UxV ).

Therefore, Aais also weaklyacompact. Theaconverse is evidentasince the w′

topologyais weaker thanathe weak topologyaof K(E,F ).

Corollary 1 : Inathe case where E isareflexive, a subsetaA of K(E,F ) is
consideredaweakly compact ifaand only if it isaw-compact.

Corollary 2: Ifaboth E and F areareflexive andaK(E,F ) = L(E,F ),
thenaK(E,F ) is reflexive.a
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Chapter 3

Geometry of BanachaSpaces

Definition 3.1.1astates that a Banachaspace X is considered strictly con-
vexaif, wheneverax and y areadistinct elements in Xawith ∥x∥ = ∥y∥ = 1aand
λ isaa value between 0 anda1 , theanorm ofathe linear combinationaλx+(1−λ)y
is less thana1 .

Proposition 3.1.2 establishesathat a BanachaspaceX isastrictly convexaif
and only if, wheneverax and y areaelements inX suchathat ∥x+y∥ = ∥x∥+∥y∥,
then eitheray = 0 orax = λy forasome λ ≥ 0.

Proposition 3.1.3 states thataif (xk) isaa sequenceain a uniforno 57 con-
vexaBanach space X that weaklyaconverges to σ ∈ X, with theanorms of xk
approaching theanorm of x, then theanorm of xk − x approachesa0 .

Theorem 3.1.4 states thataevery uniformly convexaBanach space isareflexive.

Proposition 3.1.5 establishesathat inaa B55 banachaspaceX with aastrictly
convexadual X∗, a dualityamap J is m6apotone, meaning thatathe real part
ofathe inner product of x− y and Jx− Jy is non-negativeafor all x arif y in X.
If X is strictlyaconvex, then J is strictly monotone, meaningathat the realapart
of theainner productais positive foraall x and y in Xawith x ̸= y.

Definition 3.1.6 defines the approximationaproperty (AP) foraa Banach
space X,astating that X hasathe APaif, foraany compactaset K of X andaany
ε > 0, there exists aabounded linearaoperator T withafinite rank suchathat the
normaof Tx− x is lessathan ε foraall xain K.

Proposition 3.1.7 presentsaequivalent statements toaX having the AP.
Statementa(i) statesathat foraany Banach-space Y , any boundedalinearaoperator
T fromaX to Y , any compactasubset K of X, andaany ε > 0, there existsaa
bounded linearaoperator FafromX to Y with finite rankasuch that the normaof
Tx − Fx is lessathan ε foraall x in K. Statementa(ii) states theasame condi-
tionaas (i), butawith the roles of Xaand Y reversed.
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Chapter 4

LOCAL ISOMETERIES

4.1 Local isometries on Strongly Separating Sub-

spaces of C0(X)

In thisasection, weaestablish thataany localaisometry onastronglyaseparating
subspaces of C0(X)ais, in fact,aa surjectiveaisometry. In otherawords, we
demonstrate thatathe collectionaof all surjectivealinear isometriesaon strongly
separating subspaces ofaC0(X) possesses algebraicareflexivity.

Remarka3.1.1:
We introduceathe setsaσA andaσ0A, definedaas follows: σA comprisesaelements
x0 in 11 such that, foraevery neighborhoodaU of x0, thereaexists an f inaA
where |f(x)| ≤ ∥f∥ holds trueafor all x in X − U .

Meanwhile,aσA correspondsato the intersectionaof σA and the element Y
in Xafor which richere existsaan f in A with f(x) ̸= 0. It is worth notingathat
existingaknowledge affirmsathat if A is a15 subspace of C0(X),athen ∂A = σA.

Theorem 2.1.2:
SupposeaX and Y arealocally compactaHausdorff spaces,aand A and Baare
strongly separatingalinear subspacesaof C0(X) and C0(Y ) respectively. Ifathere
existsaa nonnegativeareal-valued injectiveafunction gain A, and σ0A is a com-
pactaset, then the operatoraspace G(A,B) possessesaalgebraic reflexivity.

Proof.
Let T ∈ G(A,B). existsaa subsetaY0 of Y , a continuousasurjective map h :
Y0 → σ0A, andaa continuousamap τ : Y0 → K, where K isaa set of complex
numbersawith |τ(y)| = 1 for all y in Y0.
Moreover, foraevery y inaY0 and f in A, weahave Tf(y) = τ(y)f(h(y)).

Toademonstrate ’he surjectivityaof T, weaneed to proveathat h is a home-
omorphism andathat Y0 = σ0B

First,awe establish theainjectivity ofah.
Accordingato the hypothesis,athere existsaa function gasatisfying thea1 ondi-
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tions, andawe can find Tgain F(A,B) suchathat Tg = Tgg. ApplyingaTheorem
1.4.3, we findaa homeomorphismahg: σ0B → σ0A andaa continuousamap
τg : σ0B → K,
where |τg(y)| = 1 for all yain σ0B, and Tg(y) = τg(y)g(hg(y)) for y in σ0B.

From theaproof ofaTheorem 1.4.3, weaknow that Y0 isaa subsetaof σ0 B. By
combininga2−quations (2.1.1) and (2.1.2), we can seeathat g(h(y)) = g(hg(y))
for all y in Y0. Thus,ah = hg on Y0, which implies that h isainjective. V e con-
clude that h is aahomeomorphism.

To completeathe proof, weaneed to showathat σ0B isaa subset of Y0. or y
in σ0B, we have hg(y) in σ0A.
Since h isaonto, thereaexists y0 inaY 0 such that h (y0) = hg(y). However,
sinceah = hg on Y0, we can deduceathat y = y0. This demonstratesathat σ0B
is indeed a subsetaof Y0.

Therefore, weahave establishedathe surjectivity ofaT.

4.2 Local isometries onavarious subalgebrasaof

CU ( KE)

In thisasection, we proveathe algebraicareflexivity ofathe setaof allasurjective
linear isometries on weakly normal subalgebras of Cu (KE) and onathe subal-
gebra A0

u (KE).

The followingaremark isacrucial in our proofs.

Remark 3.2.1.
1. We canaassociate theaclosed subalgebras Au (KE) and A0 (KE) with closed
subalgebras A(E) andaA0(E) of C(γE), respectively.

Here,aγE represents aacompactification ofaKE known as the quotientaspace
γE := βKE/R, whereaβKE isathe Stone-Cechacompactification ofaKE, and
R isaan equivalencearelation definedaas x1Rx2 if f (x1) = f (x2) foraevery
f ∈ Au (KE) .A(E) and A0(E) have the propertyaof strongly separatingapoints
in γE

Furthermore,ait isaknown thataKE is a subset of the boundary ofaA(E),
andathe boundaryaof A(E) is equalato VE.
Additionally,aKE withoutathe elementa0 is containedain the boundary ofA0(E),
and the boundary of A0(E) without the elementa0 is equalato γE without the
elementa0 .

2. It isaworth noting thataA(E) is aauniform algebra,awhich means it isaa
closedasubalgebra of C(γE) that separatesapoints andacontains the constants.
As aaresult, A(E) doesanot vanishaanywhere, indicatingathat foraevery ξ inaY E,
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thereaexists anaelement f inaA(E) suchathat f(ξ) ̸= 0. Remark 2.1.1 im-
pliesathat σ0A(E) is equal to the intersectionaof σA(E) withathe set of ξ in
γE where thereaexists an element f inaA(E) suchathat f(ξ) ̸= 0.

This isaequivalentato the boundary ofaA(E) intersectedawith γ(E)asince
A(E) doesanot vanish anywhere. “Consequently, σ0A(E) isaequal to the bound-
ary ofaA(E), which is γE.

3. Moreover, A0(E)astrongly separatesapoints inaY E, so foraξ in Y E
whereaξ ̸= 0, there existsaan element f inaA0(E) such that |f(ξ)| = −1f(0) |.
Since f(0) = 0, weahave |f(ξ)| ≠ 0, andathus f(ξ) ̸= 0.
Therefore, theaset of ξ inaνE where thereaexists anaelement f inaA0(E) such
thataf(ξ) ̸= 0 is equalato γEawithout the elementa0 . This impliesathat
σ0A0(E) is equal to Y E without theaelement 0.

Proposition 3.2.2: Ifathere exists anainjective map g inAu (KE) suchathat
g(x) ≥ 1 foraall x in KE1 then theaoperator space G (Au (KE) , Au (KF )) is al-
gebraicallyareflexive.
We canaestablish that Tais surjective linearaisometry connectingathe closed
subalgebrasaA(E) and A(F )aof C(γE) andaC(γF ) respectively.
Theorem guaranteesathe existence of aahomeomorphism h suchathat:

The function pF → γE and the continuous map τ : νF → K can be found
such that |τ(y)| = 1 for all y in νF , and the equation Tf(y) = τ(y)f(h(y))
holds for all y in νF and f in A(E) (Equation 2.2.1).

In orderato establishathat T : Au (KE) → Au (KF ) is a surjective linear
isometry, weaneed toademonstrate thatah : KF → KE isaa uniform homeo-
morphism andathat µ = τ | KF is a uniformly continuousafunction.

For theafirst part weacan considerathe map g mentionedain theahypothesis.
This impliesathe exis 2+nce of 1g ∈ G(Au (KE) ,Au (KF )) suchathat Tg = Tgg.
ApplyingaTheorem 1.4.4, we canafind a uniformahomeomorphism hg : KY →
Kx and aafunction τg ∈ Cu (K−), where |τg(y)| = 1 foraall y inKF , andaTg(y) =
τg(y)g (hg(y)) foraall y in KF (Equation 2.2 .2 ).
By comparingaEquations 2.2.1 and 2.2.2 and utilizing theainjectivity ofag, we
can concludeathat h = hg onaKF, indicatingathat h isaa uniform homeomor-
phism.”

To establishathe second part, weaassume the contrary thatais, suppose µ is
not uniformly continuousaon KF .
This implies theaexistence oi >> and two sequences (xn) and (yn) inaKF such
that limn → ∞||xn−yn|| = 0 and |µ (xn)− µ (yn)| ≥ ε foraevery n in N . Since
Tg is uniformly continuous, weahave limn→ ∞ (Tg (xn)− Tg (yn)) = 0 or

lim
n→∞

(µ (xn) g (h (xn)) µ (yn) g (h (yn))) = 0
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Similarly forathe map g2 we willahave

lim
n→∞

(
µ (xn) g

2 (h (xn))− µ (yn) g
2 (h (yn))

)
= 0

Multiplyingaby g (h (xn)) weaget

lim
n→∞

(
µ (xn) g

2 (h (xn)) − µ (yn) g (h (xn)) g (h (yn))
)
= 0

SubtractingaEquations (2.2.4) anda(2.2.5) we will get

lim
n→∞

(
µ (yn) g

2 (h (yn))− µ (yn) g (h (xn)) g (h (yn))
)
= 0

Thisaimplies thata

lim
n→∞

(g (h (xn))− g (h (yn))) = 0

Lastly multiplyingaby µ (xn) and subtractingaEquation (2.2.3) weaget

lim g (h (yn)) (µ (xn)− µ (yn)) = 0

. This is aacontradiction. Hence, µais uniformly continuousaon KF .
HENCEaPROVED

4.3 Local isometriesaon C2[0, 1]

In thisasection, weapresent andademonstrate theacentral outcome ofathis chap-
ter. Toaensure a clearaunderstanding, 1 che proof isastructured intoasix dis-
tinctasteps.
Theorema3.1.1 statesathataG (C2[0, 1]), theaset of localaisometries onathe
Banachaspace C2[0, 1], exhibits algebraicareflexivity.
Proofa.
LetaT ∈ G (C2[0, 1])

a
a andag ∈ C2[0, 1].

We complete theaproofa in severalasteps.

Step I involvesadefining a linearamap W : C[0, 1] → C[0, 1]aas W (f) =

T (Z2f)
JJ
.

“We assertathatWais aalocal isometry on C[0, 1]. To illustrateathis, let’saconsider
aafunction f ∈ C[0, 1]. Then ζ2f can beadenoted as h, whichabelongs to12[0, 1].
As T isaa local isometry, thereaexists Th ∈ G (C2[0, 1]) suchathat Th = Thh.

Consequently, W (f) = (Th)JJ = (Thh)
JJ = ωh

(
hJJ ◦ ϕh

)
= ωh(f - ϕh). Thus,

2 V is aalocal isometry.
As Wa is alsoa a surjective linearaisometry. Hence, thereaexist continuous
functions ω : [0, 1] → T and a homeomorphism ϕ : [0, 1] → [0, 1] suchathat
W (f) = ω(f ◦ ϕ).

Step II. Let k be definedaas ζ2gJ . We observe that k belongsato C2[0, 1]

anda(Tg)JJ (Tk)J = (Tg − Tk)JJ = r1(g − k)
)JJ

. SinceaT is a local isometry,

thereaexists Tg−k in G (C2[0, 1]) suchathat T (g − k) = Tg−k(g − k).
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This impliesathat (T (g − k))ȷJ = (Tg−k(g − k))ȷJ = ωg−k

(
(g − k)ȷJ ϕg−k) = 0.

Hence, (Tg)ȷJ = (Tk)ȷJ =
(
T

(
ζ2gJJ

))ȷJ
= W

(
gJJ

)
= ω

(
gJ1 −Q

)
.

Step III. Thereaexists Tg inaG (C2[0, 1]) suchathat Tg = Tgg. Computing
Tg(x) and (Tg)J(x) at x = 0, we have twoacases as follows

Casea1:aTg(0) = λgag(0), (Tg)(0) = µgg(0)a
Casea2:aTg(0) = λgg(0), (Tg)(0) = µgg(0).

Step IV. Forathe functionsaf = 1 and f = id, thereaexist T1 andaTid in
G (C2[0, 1]) respectively suchathat T1 = T11 and Tid = Tidid.. Therefore, we
haveathe following fouracases:

Casea3 : aTa1 = λ11,Tid = µidida
Case 4 : aT1 = λ11,Tid = λid1
Casea5:aT1 = µ1aid,Tid = µidida.
Casea6 : aTa1 = µ1 id, Tid = λid1a
Casesa4aand 5 will leadato a contradiction.
We consider Case 4.
Consider T1 + id in G (C2[0, 1])asuch that T(1+id) = T1 + id(1+ida). Foraall
x in [0, 1], weahave:

λ1 + λid = T (1)a(x) + T (id)(x) = T (1 + id)(x)a = λ1+id + µ1+idx

which is aacontradiction.
Therefore, Case 5ais notapossible.” StepaV. Letaf1 = g − g(0)1a and f2 =
g − g′(0) id. Thereaexist Tf1, aTf2 ∈ G (C2[0, 1]) suchathat Tf1 = Tf1fa1
andaTf2 = Tf2 f2.

Using thealinearity ofaT, we canawrite the followingaequations:

Tf1(0) = Tag(0)− g(0)T1(0), (Tf1(0) = (Tg)(0)− g(0)(T1)(0) a

anda

Taf2(0) = Tg(0)− g(0)T1(0), (Tf2(0) = (Tg)(0)− g(0)(T1)(0) a.

Furthermore, usingathese two Equationsaand the localastructure of T, we ob-
tainathe followingacases:

Casea7:aTf1(0) = 0, (Tf1) (0) = µf1g(0), aTf2(0) = λf2g(0), (Tf2) (0) =
0a.

Casea8:aTf1(0) = 0, (Tf1) (0) = µf1ag(0), T f2(0) = λf2ag(0), (Tf2)
′ ′(0) =

µf2g(0).
Casea9:aTf1(0) = λf1g

J(0), a (Tf1)
J (0) = 0, T f2(0) = λf2g(0), (Tf2)

1 (T1) =
0a.
Case 10:aTf1(0) = λf1g

J(0), (Tf1) (0) = 0, T f2(0) = 0, a (Tf2)
J (0) = µf2g(0)a.
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StepaVI. Inathis step,consider theacases that arose inasteps III, IV, and V
oneaby one, usingaEquations (3.1.2)aand (3.1.3)a

Casesa1 anda3:aTg(0) = λgg(0), (Tg)(0) = µgg(0), T1 = λ11, and T(id)a =
µidid.

(i) IfaCase 7aholds, thenaEquations (3.1.2) and (3.1.3) implyathat:

λgg(0) − g(0)aλ1 = 0, µgg
J(0) = aµf1g(0), λgg(0) = aλf2g(0), µgg

J(0) −
g(0)µid = 0a

Hence,aλggg(0) = aλ1g(0) and µgg(0) = aµidg(0).

Substitutingathe valuesaof λggg(0) and µgg
J(0) obtainedahere, as well asathe

valueaof (Tg)ȷ from Equationa(3.1.1), into Equationa(3.0.3), we get:

Tg(x) = aTg(0)+(Tg)ȷ(0)x+
(
ζ2

(
(Tg)ȷJ

))
(x) = aλ1g(0)+µidg

ȷ(0)ax+
(
ζ2 (ω (g′′a ◦ ϕ))

)
(x)

ii)awhenacase 8 holds,

λgg(0)−g(0)λ1a = 0, µgg(0) = aµf1g(0), λgg(0) = aλf2g(0), µgg(0)−g(0)µid = aµf2g(0)

Thus, g(0) = 0 andaµgg
′(0) = aµidg

′(0).
Equations (3.1.1) anda(3.0.3) implyathat

Tg(x) = aTg(0)+(Tg)′(0)x+
(
ζ2 ((Tg)′′)

)
(x) = aµidg

′(0)x+
(
ζ2 (ω (g′′ ◦ ϕ))

)
(xa).

iii) IfaCase 9aholds, then

λgg(0)−g(0)λ1 = aλf1g
′(0), µgg

′(0) = 0, λgg(0) = aλf2g(0), µgg
′(0)−g g(0)µid = 0a

Thus, gJ(0) = 0 and λgg(0) = aλ1g(0)a From-2quationsa(3.1.1) and (3.0.3)awe
have

Tg(x)a = Tg(0)+(Tg)′(0)x+
(
ζ2 ((Tg)′′)

)
(x) = aλ1g(0)+

(
ζ2(ω(g′a ◦ ϕ))

)
(x)a.

iv) IfaCase 10aholds, then

λgg(0)−g(0)λ1 = aλf1g
′(0), µgg

′(0) = 0, λgg(0) = a0, µgg
′(0)−g′(0)µid = aµf2g(0)

λgg(0)−g(0)λ1 = aλf1g
′(0), µgg

′(0) = 0, λgg(0) = a0, µggl(0)−g′(0)µid = aµf2g(0)

which implies, g(0) = a0aand g(0) = 0.

Again, we applyaEquations (3.1.1) anda(3.0.3)

Tg(x) = aTg(0) + (Tg)′(0)x+
(
ζ2 ((Tg)′′)

)
(x) = a

(
ζ2 (ω (g′′ ◦ ϕ))

)
a(x)
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Froma(i)-(iv) weaconclude thataT ∈ G (C2[0, 1]). Cases 1 and 6.aTg(0) =
aλgg(0), (Tg)

′(0) = µgg
′(0),T1 = aµ1 id and T(id) = λid1. (i) IfaCase 7aholds,

then

λgg(0) = a0, µgg
′(0)a−g(0)µ1 = aµf1g

′(0), λgg(0)−g g(0)λid = aλf2g(0), µgg(0) = 0.

Thus, g(0) = 0 and g(0) = 0. (ii) When Casea8 holds,

λgg(0) = 0, µgg
′(0)−g(0)µ1 = aµf1g

′(0), λgg(0)−g′(0)λid = a0, µgg
′(0) = µf2g(0).

Whence, g(0) = 0 andag(0)a = 0. (iii) When Casea9 holds, then

λgg(0) = aλf1g
′(0), µgg

′(0)−g(0)µ1 = a0, λgg(0)−g′(0)λid = aλf2g(0), µgg
′(0) = 0a.

Thus, g(0) = 0aand g′(0) = a0.

(iv) When Casea10 holds, then

λgg(0) = aλf1g(0), µgg
g(0)−g(0)µ1a = 0, λgg(0)−g g(0)λid = a0, µgg g(0) = µf2g(0).Thusλgg(0) = aλidg

′(0), µgg
′(0) = aµ1g(0).

Subsituting valuesaof λgg(0) and µgg(0) from (i)-(iv), theavalue of (Tg)” fromE-
quation (5.1.1), in Equation (3.0.3), impliesathat T ∈ G (C2[0, 1]).

Cases 2 anda3. Tg(0) = aλgg
′(0), (Tg)′(0) = aµgg(0),T1 = λ11 and

T(id) = aµid id .

(i) When Case 7aholds, then

λgg
′(0)−g(0)λ1 = a0, µgg(0) = µf1g

′(0), λgg
′(0) = aλf2g(0), µgg(0)−g′(0)µid = a0.Thus,λgg

′(0) = aλ1g(0), µgg(0) = aµidg
′(0).

(ii) When Case 8aholds,

λgg(0)−g(0)λ1 = a0, µgg(0) = µf1g(0), λgg(0) = 0, µgg(0)a−g!(0)µid = µf2g(0).impliesthatg(0) = a0andg′(0) = 0a.

(iii) aWhen Casea9 holds,athen

λg g(0)−g(0)λ1 = aλf1gl(0), µg g(0) = 0, λg g(0) = aλf2 g(0), µg g(0)−gl(0)aµid = 0

Thus, g(0) = 0 and g′(0) = a0.

(iv) When Casea10 holds, then

λgg
′(0)ag(0)λ1 = aλf1g

′(0), µgg(0) = 0, λgg
′(0) = 0, µgg(0)−g′(0)µid = aµf2g(0)

We concludeathat g(0) = a0 and g′(0) = 0.
Thus, we get T ∈ Ga (C2[0, 1])
HENCEaPROVED
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4.4 Structureaof isometries of finiteaorder on

C2[0, 1]

Propositiona3.2.3.
The proposition statesathat T is an element ot Gn a(C2[0, 1]) if and only if
thereaexist λ and µ in T, aahomeomorphism ϕ : [0, 1] → [0, 1], andaa continu-
ous function ω : [0, 1] → T .
These conditionsahold true foraall f in C2[0, 1] and x in [0, 1], and oneaof the
following cases isasatisfied.
1. When T isathe first typeaisometry,

λn = aµn = 1, ω(x)ω(ϕ(x))ω
(
ϕ2(x)

)
· · ·ω

(
ϕn−1(x)

)
= a1, ϕn(x) = x

2. WhenaT isathe second type isometry, h is evenaand

λ
n
2 µ

n
2 = a1, ω(x)ω(ϕ(x))ω

(
ϕ2(x)

)
· · · aω

(
ϕn−1(x)

)
= 1a, ϕn(x) = xa

Proof.
LetaT ∈ Gn (C2[0, 1])
SinceaT ∈ G (C2[0, 1]) ,∃λ, µ ∈ T , a homeomorphism ϕ : [0, 1] → [0, 1] andaa
continuous functionaω : [0, 1] → T such that T is ofaform (Λ) or (ΛΛ).

SupposeaT hasathe forma(Λ), then T n = a1 impliesathat

λnf(0)+µnf(0)x+
∫
x

∫ t

t
ω(s)aω(ϕ(s))ω

(
ϕ2(s)

)
· · · aω

(
ϕn−1(s)

)
f ′′ (ϕn(s)) dsdta = f(x).

putting f = 1, weaget λn = a1.
On differentiatingaand putting 2 =aid we get µn = 1.
On taking theasecond derivative,

ω(x)ω(ϕ(x))ω
(
ϕ2(x)

)
· · · aω

(
ϕn−1(x)

)
f ′ (ϕn(x)) = af ′′(x).

which impliesathat

ω(x)ω(ϕ(x))ω
(
ϕ2(x)

)
· · ·ω

(
ϕn−1(x)

)
a = 1, andϕn(x) = xa

Now, T hasathe form ( ∧). We considerathe following twoacases.

i) If n isaodd, then T n = I will implies that

∫
x
∫
t

ω(s)aω(ϕ(s))ω (ϕ2(s)) · · · aω (ϕn−1(s)) af ′ (ϕn(s)) dsdt = f(x)a
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if f = id, we get λ
n+1
1 µ−1 = ax, foraall x ∈ [0, 1], which is a contradiction.

2 is n is evenathen
λ

n
2 µ

n
2 f(0) + aλ

n
2 µ

n
2 f ′(0)xa∫

x

∫ t
0 ω(s)ω(ϕ(s))aω (ϕ2(s)) · · · aω (ϕn−1(s)) f ′′ (ϕn(s)) dsdta = f(x).

Put

fa=1,Weahaveλ2µ
2 = 1 On double differentiating,

ω(x)ω(ϕ(x))ω
(
ϕ2(x)

)
· · · aω

(
ϕn−1(x)

)
f ′′ (ϕn(x)) = af ′′(x).

It followsathat

Put f = a1, We have λ2µ
2 = 1 On doubleadifferentiating ,

ω(x)ω(ϕ(x))ω
(
ϕ2(x)

)
· · · aω

(
ϕn−1(x)

)
af ′′ (ϕn(x)) = af ′′(x).

It followsathat

ω(x)aω(ϕ(x))ω
(
ϕ2(x)

)
· · · aω

(
ϕn−1(x)

)
= 1a, andϕn(x) = xa

Now, ifaassertion(1) holds,

T nf(x)a = λnf(0)+µnf ′(0)x+
∫
0
t0ω(s)ω(ϕ(s))ω

(
ϕ2(s)

)
· · · aω

(
ϕn−1(s)

)
af ′′ (ϕn(s)) dsdta

=af(0)+f′(0) + f(x)− f(0)− f ′(0)
= af(x).

Ifassertiona(2)holds,

=af(0)+f′(0) + f(x)− f(0)− af ′(0)
= f(x)a

4.5 Local isometriesaof finite orderaon C2[0, 1]

We establishathe algebraicareflexivity ofathe set Gn (C2([0, 1])a)
2
when n is

anaodd number. The case when n is even isaaddressed in theaconcluding re-
mark of thisasection.

Propositiona3.5.1
When n is odd, Gna (C2[0, 1]) is algebraicallyareflexive.

Proof:

LetaT ∈ Gna (C2[0, 1])

By utilizingaTheorem 3.1.1, we canadeduce that T ∈ Ga (C2[0 , 1]).

27



Applying Theorema1.4.7, we obtainathe existence of λ, aµ ∈ T, a ahomeomorphism
ϕ : [0, 1] → [0, 1], and a continuousafunction ω : [0, 1] → T such that T fol-
lowsathe forms ()aor ().

Additionally, oraeach f42 ∈ C2[0, 1], there existsaTf ∈Gna (C2[0, 1]) suchathat
Tf = T42

f . Consideringathat n is odd, we observe thataT will alwaysafollow
form ().

Moreover, theaequation (Tf)′′(x) = a (Tff)
′J (x) impliesathat ω(x)′J(ϕ(x)) =

a ωf(x)f ′J(ϕf(x))a.
By setting f = x∧3, we concludeathat ω(x) = a ωf(x) and ϕ(x) = aϕf(x)
foraevery x ∈ [0, 1].
Consequently,aω(x)ω(ϕ(x))ωa (ϕ∧2(x)) · · ·ωa (ϕ∧(n− 1)(x)) = a1 and ϕ∧n(x) =
xa.

Now, let’saassume T is in theaform (∗). By computing Tfaand (Tf)′ at
x = 0, weaobtain λf(0) = aλff(0)aand µf

′(0) = aµff
′(0).

This impliesa1 that λ = aλf and µ = aµf .aTherefore, λ
∧n = aµ∧n = 1, leading

ato ∈ Gna (C2[0, 1]).

If T isain theaform (**), repeating the sameacalculations resultsain λf ′(0) =
λff(0) andaµf(0) = aµff

′(0).
Choosing f ∈ C2[0, 1] suchathat f(0)a = 0 and fJ(0) ̸= 0 will lead toaa
contradictiona.
HENCEaPROVED

28



Chapter 5

CONCLUSION,CHALLENGES and

someaFUTURE PLANS

5.1 Summaryaand Difficulties

In thisathesis, weaprimarily focusedaon two main aspects. Theafirst aspect
involved studyingathe set ofaisometries onavarious Banachaspaces with alge-
braicareflexivity.

We wereaable to demonstrateathat thealocal maps, which inaour case were
isometries, exhibit globalaproperties andabelong to the specifiedaclass of opera-
torsain many significantascenarios. Itais worth noting thatathe aforementioned
difficulty onlyaarises when dealing with linearaalgebraic structures, and the lo-
cal maps areaalso linear inanature.

However, itais common toaexplore these issuesawithin a broader contextaof
more genericastructures.

The secondaaspect ofaour research involvedatackling the challenge of char-
acterizingaspecific classesaof norm-one projectionsaon the spaceaC2 [0, 1].

Thisapresented its ownaset of complexitiesaand requiredaa distinctaapproach.
Weahave alsoalooked into howaprojections inathis spacearelate toaisometries.
Though comparableafindings shouldahold for theaspace Cr [0, 1] , theasheer
volumeaof examplesabecomes overwhelming, especiallyafor r is greaterathan 4.
This stillaholds true if weaconsider projections toabe a convexacombination of
ataleast fouraisometries.

5.2 Future Plans

5.2.1 Localaisometries withinasubspaces of functionaspaces
with vector-valuedafunctions.

Certainasubspaces ofavector-valued functionaspaces could be used to formulate
theaalgebraic reflexivity problems that wereaexplored for C0(X) subspaces.
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Consider theaBanach space C0(X,E), which consistsaof continuous func-
tionsafrom X to E that vanishaat infinity and isaequipped withathe supremum
norm.

Let SEarepresent theaset of elementsae belongs toaE such that theiranorm
isaequal toa1, denoted as e = 1, representingathe unit sphere ofaE.

We defineathe map f/otimes e : X → Easfollows : foraanyx∈ X,
(f/otimes e)(x) is given byathe productaof f(x) andae for the valuesaof f in
C0(X) and eain E.

It isasimple to demonstrateathataf⊗ e ∈ C0(X,E).

Definition 5.2.1.
LetaC0(X) ’s subspaceaA be A. Any subspaceaof A[A] is what wearefer to.
The setaf⊗ e is containedain C0(X,E) asafollows: {f⊗ e : f ∈ A, e ∈ SE}

5.2.2 Reflexivityain algebra consideringanon-linear cases

One can consider anyamathematical structureA and a2 class ofatransformations
E acting on A.

We define aamap ϕ : A → A to be 2locallyaassociated with E if, for any
pairaof elements x anday in A, there existsaan element ϕ(x, y) inaE such that
ϕ(x) = ϕ(x, y)(x)aand ϕ(y) = ϕ(x, y)(y).

We use theaterm ”algebraicallyareflexive” to describeathe class E, drawing
inspiration from the concept ofaalgebraic reflexivity foralinear mappings with
a locality ofa1 . Specifically, Eais algebraicallyareflexive ifaevery map ϕ that
satisfies the 2-localaproperty with respect toaE belongs toaE as well.

5.2.3 Generalized n-circularaprojections on Banach spaces

Consider theaset Bs(H), which consists 36f allaself-adjoint operators onathe
Hilbert space H.

We defineaan order relationabetween elements 54A and B in Bs(H)aas
A ≤ B if the inneraproduct ⟨Ax, x⟩ is less than oraequal to ⟨Bx, x⟩ for ev-
ery x inaH. This establishesathe usual orderingaon theaset.

Now, let’s considerabijective map Φ : Bs(H) → Bs(H) that preservesathe
order, meaningaA ≤ B ifaand only ifaΦ(A) ≤ Φ(B). Suchaa map is called
anaorder-automorphism.

The questionaat handais ” whether theagroup ofaorder-automorphisms of
Bs(H) exhibitsaalgebraic reflexivity.
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5.2.4 Generalized n-circularaprojections in Banachaspaces

Definition 5.2.2.
If thereaare P1, P2, . . . , P

44
n−1 of finite orderaand nontrivialaprojections on E

suchathat λ1, λ2, . . . , λn−1 ∈ T\{1}, λi, i = 1, 2, . . . , n − 1 then aaprojection
PO is saidato be generalizedan-circularaprojection on aaBanach space E refers
toaa specific type ofaprojection where n isagreater thanaor equalato 2 :

1. λi/ = λj forai
2. P0

⊕
P1

⊕ · · ·⊕Pn− 1 = 1,
3. P0 + λ1P1 · · ·+ λn− 1Pn− 1ais aasurjective isometry.

Givenathe availablearesources, fullyaunderstanding the structureaof gen-
eralized n-circular projections onatraditional Banachaspaces poses a signifi-
cantachallenge.

However, inaspecific spacesalike Lp(Ω, E) where 1 p ¡ , p 2, and (Ω, µ) is
a -finite measureaspace, andaE is a separable Banach space withaa trivialaLp-
structure, we aimato examine this problem specificallyafor n = 3 orahigher
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