CLASSES OF OPERATORS ON
BANACH SPACES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE
OF

MASTERS OF SCIENCE

IN
APPLIED MATHEMATICS

Submitted by

SHAGUN SINGH (2K21/MSCMAT/48)
SAWAN (2K21/MSCMAT/57)

Under the supervision of

JAMKHONGAM TOUTHANG

f
\

*|
3

\DELTECH ¥

L

APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi 110042

MAY, 2023



DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’s DECLARATION

We, SHAGUN SINGH, SAWAN, Roll No’s—2K21/MSCMAT /48, 2K21/MS
CMAT /57 students of M.Sc (Applied Mathematics),hereby declare that the project
Dissertation titled “Classes of Operators on Banach Spaces” which is submit-
ted by us to the Applied Mathematics, Delhi Technological University, Delhi
in partial fulfilment of the requirement for the award of degree of Masters of
Science, is original and not copied from any source without proper citation.
This work has not previously formed the basis for the award of any Degree,

Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi Shagun Singh

Date: 24.05.23 Sawan



DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Classes of Opera-

7

tors on Banach Spaces 7 which is submitted by Shagun Singh, Sawan, Roll
No’s — 2K21/MSCMAT /48, 2K21/MSCMAT /57, Applied Mathematics , Delhi
Technological University, Delhi in partial fulfilment of the requirement for
the award of the degree of Masters of Science, is a record of the project
work carried out by the students under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Place: Delhi Jamkhongam Touthang

Date: 24.05.2023 Supervisor

11



DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY

(For merly Delhi College of Engineering)
Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

We wish to express our sincerest gratitude to Dr Jamkhongam Touthang
for his continuous guidance and mentorship that he provided us during the
project. He showed us the path to achieve our targets by explaining all the
tasks to be done and explained to us the importance of this project as well as
its industrial relevance. He was always ready to help us and clear our doubts
regarding any hurdles in this project. Without his constant support and mo-

tivation, this project would not have been successfu I.

Place: Delhi Shagun Singh

Date: 24.05.2023 Sawan

111



Abstract

The study of operators on Banach spaces forms a fundamental branch of
functional analysis, with broad applications in various areas of mathematics
and physics. This abstract provides an overview of different classes of operators
that arise in the context of Banach spaces.

First, we introduce the notion of a bounded linear operator, which is a fun-
damental class of operators on Banach spaces. Bounded linear operators pos-
sess important properties such as continuity and preservation of vector space

operations, making them essential in the study of linear transformations .

Next, we delve into more specialized classes of operators, starting with compact
operators. Compact operators are characterized by their ability to map bounded
sets to relatively compact sets, playing a significant role in the theory of inte-
gral equations, spectral analysis, and compactness arguments.

We then explore the realm of self-adjoint operators, which are operators
that coincide with their adjoints. Self-adjoint operators possess real spectra
and have applications in quantum mechanics, where they correspond to ob-
servables with real eigenvalues.

Moving further, we discuss the class of normal operators, which generalize
self-adjoint operators and include both self-adjoint and unitary operators as
special cases. Normal operators have a rich spectral theory and arise naturally
in areas such as quantum mechanics and signal processing.

Additionally, we touch upon the class of positive operators, which are oper-
ators that preserve positivity. Positive operators have connections to operator
algebras, functional analysis, and the theory of partial differential equations.

Lastly, we examine the concept of bounded invertible operators, known

v



as isomorphisms, which establish bijective mappings between Banach spaces.
Isomorphisms play a central role in the study of isomorphic properties, such

as the Banach space isomorphism theorems and isomorphic embeddings.

Throughout this abstract, we highlight the interplay between different classes
of operators on Banach spaces, emphasizing their properties, applications, and
connections to other areas of mathematics and physics. Understanding these
various classes of operators is crucial for developing advanced techniques in
functional analysis and for investigating problems across diverse scientific dis-

ciplines.
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Chapter 1

INTRODUCTION

We provide a brief context and inspiration of the questions that this thesis
asks try to study in this chapter. In addition, we reiterate some definitions and
discoveries that will be used in the future and present some notation. We
provides a chapter-by-chapter summary of the main findings at the conclusion.

1.1 HISTORY

Mathematicians have long focused on the transformations that serving angles
and lengths. An isomorphism is a transformation that maintains the dis-
tinction relationship between each pair of elements in a space (metric space,
normed linear space). Translation, rotation, and reflection are some exam-
ples of similarity. try on Euclidean space. The Fourier transform on L2(R)
is another example. The distance conservation criterion makes it easy to define
multiple isometric lines.

characteristics of risk switching, such as injection and continuity. Em-
brace The geometry and structure of Banach spaces require a deep under-
standing of their isobars. The first to question the composition of a Sub-
jective linear isometri cover a particular Banach space is Stefan Banach Re-
searchers have also begun to study isometric lines of other Banach spaces in
the same time period. The projection type is a different type from the trans-
formations needed to understand the architecture of a Banach space.
Exponential matrices are simple examples of Euclidean spaces projection. Any
diagonalization matrix can be decomposed into a linear matrix sum of power
matrices, according to a standard linear algebra result. In the past and more
recently, there has been much interest in efforts to characterize projections
with the desired quality, such as mononorm projections.

1.2 MOTIVATION

Assume that E is a Banach space. B(E) and G(E) stand for, respectively,
the Banach space of all bounded linear operators and the set of all surjective
linear isometries on E. Let T B(E) such that For any x E, Tx corresponds to
the impact of a subjective linear isometry on x, i.e., there is a Tx G(E) such
that T(x) = Tx(x). B(E) and G(E) stand for, respectively, the Banach space

vil



of all bounded linear operators and the set of all surjective linear isometries
on E.

Definition 1.2.1. Let the algebraic closure of S be defined as
S ={Te€B(E):Tx ¢Sz,¥ =€ E}

where Sx = {Sx: S € S}.

Also, S € B(E). If S = S, the subset S is called algebraically reflexive.
Clearly S C S Local maps are components of the algebraic closure of S. If
we logically must have T S for every map T that is locally associated with
S, then algebraically reflexive.

Since every local surjective isometry is surjective. We should keep in mind
that an isometry is an isometry. We can see from the description above, if E
has finite dimensions, then G(F) is algebraically reflexive; if E is an infinite
dimensional Hilbert space, then G(F) is not algebraically reflexive.

Let G*(E)=TG(E):Tn =1 forn > N.
An isometry of order nis an operator T, (F). If G(C(X)) is algebraically reflexive
for a compact Hausdorff space, then Go(C(X)) is also algebraically reflexive.
The strong Banach-Stone property of E is a Banach space, and 'OnCy(X,
E), where X is a first countable locally compact Hausdorff space and E is a
Banach space, this conclusion was expanded to include isometries of order n.

1.3 Research objectives

Definition 1.3.1. A projection P on a Banach space E is referred to as a
generalized bi-circular projection if & € T | {1} exists such that P + a(l —
P) is an isometry on E. In this case, T stands for the complex plane’s unit
circle.

Any y generalized bi-circular projection, or a projection P such that || P
= ||[I — P|| = 1, was demonstrated to be bi-contractive. Additionally, if and
only if a projection is orthogonal, it qualifies as a generalized bi-circular
Definition 1.3.2. Let Cj1(X) ’s subspace A be A. If there is fA such that
|f (z1)] = |f (x2)| for pair of different points x, x5 belonging to X, then we
say that A is strongly separating.

Definition 1.3.3. Given any subsets of Kp with positive distance d(A, B)
= inf||ab|| : aA,bB, there exists afAy (Kg) such that |f(z)[l for every xA
and |f(y)|1 for every yB. This closed subalgebra of 2 2Cy; (Kg) is said to be
weakly normal.

In the first section of the thesis, we look at the issue of the sets’ algebraic reflexivity:

1. The collection of all surjective linear isometries between Cy(X) sub-
spaces with high degree of separation.
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2. The collection of every subjective linear isometry between Cy (Kg) subal-
gebras with weakly normal closed substructures.

3. The collection of each and every surjective linear isometry between Ay (Kg)
subalgebras whose members vanish at 0 .

4. Each and every subjective linear isometry on the domain of two-time con-
tinuously differentiable functions.

5. All collection of finite order surjective linear isometries on the space of 2-
times continuously differentiable functions.

Definition 1.3.4. If €7 is an isometry for each and every R, then operator
T € B(X) is Hermitian.
Numerous writers have studied hermitian operators on various complex Ba-
nach spaces.

1.4 Preliminaries and basic results

Let E and F will be taken as Banach spaces. The set of all surjective lin-
ear isometries, from E to F', and the Banach space of all Bounded linear
operators, are denoted, respectively, by B(E, F) and G(E, F).B(E, E) and
G(E, E) are denoted by B(FE) and G(E, F), respectively, if £ = F.

Let K stand for the real/complex number space.The set of all continu-
ous functions with K values on a locally compact Hausdorff space is called
X that vanishes at infinity is represented by Cy(X).f : X — K, which we re-
viewed earlier, as disappear at infinity if for all > 0, the set {x € X : |f(x)| >
e} is compact. Let K stand for the real/complex number space.The set of
all continuous functions with K values on a locally compact Hausdorff space
is called X that vanishes at infinity is represented by Co(X).f : X — K,
which we reviewed earlier, as disappear at infinity if for all > 0, the set {x €
X :|f(x)] > €} iscompact. Let Kstand for the real/complex number space.The
set of all continuous functions with K values on a locally compact Hausdorff space
is called X that vanishes at infinity is represented by Co(X).f : X — K,
which we reviewed earlier, as disappear at infinity if for all > 0, the set {x €
X : |f(z)] > €} is compact . Let K stand for the real/complex number
space.The setof all continuous functions with K values on a locally compact
Hausdorff space is called X that vanishes at infinity is represented by Cy(X).f :

X — K, which we reviewed earlier, as disappear at infinity if for all > 0, the set

{z € X : |f(z)| > ¢} is compact. Let K stand for the real/complex number
space.The set of all continuous functions with K values on a locally com-

pact Hausdorff space is called X that vanishes at infinity is represented by Co(X).f :
X — K, which we reviewed earlier, as disappear at infinity if for all > 0,

the set {x € X : |f(z)| > e} is compact.

Definition 1.4.1. Let Cy(X) ’s subspace A be A. If all of the functions in
A reach their maximum on asubset U of X, then U is a boundary for A. The

1X



only minimal closed boundary for A is the Shilov boundary, indicated by the
symbol A.

The next two theorems describe the design '* f a strongly separating subspace
of Cy(X) into Cy(Y) ’s into and onto linear isometries.

Theorem 1.4.2. T'is the linear isometry of the linear subspace A of Cy(X)
into Cy(Y') that separates strongly. Therefore, continuous map h : Yy onto ogA,
a continuous map a : Yy — K, such that |a(y)| =1 for all y € Yp, and

Tf(y) = aly)f(h(y))forally € Yy

and for every f € A are present. These maps are boundaries for T'(A). Ad-
ditionally, Yj is closed if cOA is compact.

Theorem 1.4.3. T represents the linear isometry of the linear subspace B
of Co(Y') onto homeomorphism h of g¢B onto gpA exist, ensuring mod of
a(y) is 1 for every y € 0oB and

Tf(y) = a(y)f(h(y))foreveryy € oo B, f € A.

Theorem 1.4.4. Let X and Y are Banach spaces and T is a linear surjective
isometry: A, (K;) — A, (Ky). Then, for every y € K, and for every f €
Ay (Kx), there exists a uniform homeomorphism h from Ky onto Kx and
a function a € Cy (Ky) such that mod of a(y) is 1 for every y € Ky and

Tf(y) = a(y)f(h(y)) for all y € Ky

Definition 1.4.5

1. A projection P on a Banach space F is known as a generalized bi-
circular projection if there is @ € T | {1} such that P + a(l — P) is an
isometry on F.
2. The projection P on a Banach space E is referred to as a bi-circular projection
if P+ a(l — P)is an isometry on E for alla € T
Remark 1.4.6. Let o € ?T\{1} and T € G(E) such that P+ «(l — P) = T?if
P is a bi-circular projection on a Banach space E. We'll refer to the isome-
try T as the isometry connected to P.



Chapter 2

OPERATORS

2.1 Bounded linear operators

A linear map or linear operator 7' between real (or complex) linear spaces X,Y is
a function T : X — Y such that

T(A\x + py) = NXTx+ pTy  forall\, u € R(orC)andz,y € X

A linear map T : X — X is called a linear transformation of X, or a linear
operator on X. If T": X — Y is one-to-one and onto, then we say that T
is nonsingular or invertible, and define the inverse map 77! : ¥ — X by
T~y = z if and only if Tax = y, so that TT~* = I,T-'T = I. The linear-
ity of T implies the linearity of T_;. If XY are normed spaces, then we can
define the notion of a bounded linear map. As we will see, the boundedness
of a linear map is equivalent to its continuity.

Definition 2.1.1 Let X and Y be two normed linear spaces. We de-
note both the X and Y norms by k. A linear map 7' : X — Y is bounded if
there is a constant M > 0 such that

kTxk < Mkzk for all x € X.
If no such constant exists, then we say that T is unbounded. If T": X —

Y is a bounded linear map, then we define the operator norm or uniform
norm kTk of T by

kTk = inf{M | kTxk < Mkzk for all z € X}

We denote the set of all linear maps 7' : X — Y by L(X,Y), and theset of
all bounded linear maps 7' : X — Y by B(X,Y). When the domain and range
spaces are the same, we write L(X, X) = L(X) and B(X, X) = B(X)

Equivalent expressions for kTk are:

[T|
17| =sup T |7 = sup [[Tz[l; [T = sup |[Tz].

(Ed | <1 2| =1

We also use the notation R™*", or C™*", to denote the space of linear maps from
R™ to R™, or C" to C™, respectively.



NOTE: The linear mapA : R — R defined by Az = ax, where a € R, is
bounded, and has norm kAk = |al

Example 2.1.1 The identity map [ : X — X is bounded on any normed
space X, and hasnorm one. If a map has norm zero, then it is the zero map0z =

0.
Linear maps on infinite-dimensional normed spaces need not be bounded.

Example 2.1.2 Let X = C*([0, 1]) consist of the smooth functionson [0, 1]
that have continuous derivatives of all orders, equipped with the maximum norm.
The space X is a normed space, but it is not a Banach space, since it is in-
complete.

The differentiation operator Du = u" is an unbounded linear mapD : X —

X. For example, the function u(x) = e** is an eigenfunction of D for any \ €

R, meaning that Du = Au.

Thus kDuk/kuk = |A| may be arbitrarily large. The unboundedness of differential
operators is a fundamental difficulty in their study.

0

Suppose that A : X — Y is a linear map between finite-dimensional
real linear spaces X,Y with dimX = n,dimY = m.

We choose bases {ey,es,...,¢e,} of X and {f1, fo,..., fm} of Y. Then
Alej) = aifi
i=1
for a suitable m x n matrix (a;;) with real entries. We expand = € X as

n
xr = Z xT;e;
i=1

where z; € R is the i th component of x. It follows from the linearity of A
that

A (z ) S
j=1 i=1
where

n
Yi =) i
j=1

Example 2.1.3 Let X = *°(N) be the space of bounded sequences {(x1,zs,...)}
with the norm

(21, 22, . . ')||oo = sup ||
ieN

A linear mapA : X — X is represented by an infinite matrix (a;;)™ ;;, where

n
vi =) ;.
=1



Example 3 Let X = (N) be the space of bounded sequences {(x1,z5....)}
with the norm
(21, 23, - )| o = sup [ -
ieN
A linear map A : X — X is represented by an infinite matrix (a;;) ;j=1,
where

(Az)i =) j = 1%a;x;.

In order for this sum to converge for any x €€° (N), we require that
oo
> lai] < oo
j=1

for each i € N, and in order for Az to belong to ce( N), we require that

supi € N{Z]’ = 1°°|aij|} < 0.

Then A is a bounded linear operator on ’ ( N), and its norm is the maximum

row sum,
1Alloo = sup {3~ j = 1% |ay|}
1eEN
Example 2.1.4 Let X = C([0, 1]) with the maximum norm, and
k:10,1] x[0,1] = R

be a continuous function. We define the linear Fredholm integral operator K :
X — X by

1
Kf@) = [ k) f )y
Then K is bounded and

11 = o { [ i)y}

0<z<1

This expression is the ”continuous” analog of the maximum row sum for the oo-
norm of a matrix. For linear maps, boundedness is equivalent to continuity.

Theorem2.1.1 A linear map is bounded if and only if it is continuous.

Proof.
First, suppose that T': X — Y is bounded. Then, for all x,y € X, we have

kTx — Tyk = kT (z — y)k < Mkx — yk,

where M is a constant for which (5.1) holds. Therefore, we can take ® = ¢/M
in the definition of continuity, and 7T is continuous.

Second, suppose that T'is continuous at 0. Since T'is linear, we have 7'(0) =
0. Choosing ¢ = 1 in the definition of continuity, we conclude that there is
a 0 > 0 such that kT'zk < 1 whenever kxk < ¢§. For any = € X, with 26 = 0,

we define z™ by

P
]

4



Then kz~k < ¢, so kT'x~k < 1. It follows from the linearity of 7" that
R [
7ol = YT < M

where M =1/6. Thus T is bounded.

The proof shows that if a linear map is continuous at zero, then it is con-
tinuous at every point. A nonlinear map may be bounded but discontinuous,
or continuous at zero but discontinuous at other points.

The following theorem, sometimes called the BLT theorem for ”bounded
linear transformation” has many applications in defining and studying linear
maps.

Theorem 2.1.2 (Bounded linear transformation) Let X be a normed linear
space and Y a Banach space. If M is a dense linear subspace of X and

T -MCX =Y

is a bounded linear map, then there is a unique bounded linear map T -
X — Y such that Te = Tx for all x € M. Moreover, ||T| = ||T||. Proof.
For every x € X there isasequence (x,)in M that converges toz. We define

Ty =1lm7Tx, -n— oo

This limit exists because (T'z,,) is Cauchy, since T'is bounded and (z,) Cauchy,
and Y is complete. We claim that the value of the limit does not depend on
the sequence in M that is used to approximate x. Suppose that (x,) and
(2,Y) are any two sequences in M that converge to x. Then ||z, — 2| <
|z, — || + ||z — /|| and, taking the limit of this equation as n — oo, we see
that

. / _
dim [z, — 27| =0

It follows that
Tz, — T2, || < ||T| ||z — 2| = 0 asn — .

Hence, (T'z,) and (T'z),) converge to the same limit. The map 7 is an exten-
sion of T, meaning that Tx = Tz, for all x € M, because if v € M, we can
use the constant sequence with z,, = z for all n to define Tz. The linearity
of T follows from the linearity of 7. The fact that 7" is bounded follows from
the inequality

I Tall = lim [Tall < lim [T 2]l = [Tl
It also follows that ||T|| < ||T|. — Since Tz = Tx for x € M, we have

|T|| = ||T||. Finally, we show that T is the unique bounded linear map from
X to Y that point in X, We choose a sequence (x,) ine M that converges
to x. Then, using the coincides with 7" on M. Suppose that T is another such
map, and let  be any continuity of 7', the fact that 7' is an extension of T,
and the definition of T, we see that

Ter =Tx = lim = lim Tx, =Tx

n—oo n—o0



We can use linear maps to define various notions of equivalence between normed
linear spaces.

Definition 2.1.3 Two linear spaces X, Y are linearly isomorphic if there is a
oneto-one, onto linear map 7" : X — Y. If X and Y ar normed linear
spaces and T,7T~! are bounded linear maps, then X and Y are topologi-
cally isomorphic. If T also preserves norms, meaning that k7T'xk = kxk for
all x € X, then XY are isometrically isomorphic.

When we say that two normed linear spaces are ”isomorphic” we will usu-
ally mean that they are topologically isomorphic. We are often interested in
the case when we have two different norms defined on the same space, and
we would like to know if the norms define the same topologies.

Theorem 2.1.3 Two norms on a linear space generate the same topol-
ogy if and only if they are equivalent.

Proof. Let k-k; and k - kg be two norms on a linear space X. We con-
sider the identity map

](X,kkl)—> (X,kkg)

From Corollary 4.20, the topologies generated by the two norms are the same
if and only if I and !

are continuous. Since [ is linear, it is continuous if and only if it is bounded.
The boundedness of the identity map and its inverse is equivalent to the ex-
istence of constants ¢ and C' such that (5.10) holds.

Geometrically, two norms are equivalent if the unit ball of either one of
the norms is contained in a ball of finite radius of the other norm.

We end this section by stating, without proof, a fundamental fact concerning
linear operators on Banach spaces.

Theorem 2.1.4 (Open mapping) Suppose that 7' : X — Y is a one-
to-one, onto bounded linear map between Banach spaces X,Y. Then 77! :
Y — X is bounded.

This theorem states that the existence of the inverse of a continuous linear
map between Banach spaces implies its continuity.

The kernel and range of a linear map

The kernel and range are two important linear subspaces associated with
a linear map.

Definition 2.1.5 Let T': X — Y be a linear map between linear spaces X,Y.
The null space or kernel of T', denoted by kerT, is the subset of X defined by

kerT ={x € X | Tz =0}

6



The range of T', denoted by ranT', is the subset of Y defined by ranT = {y €
Y | there
existsx € XsuchthatTz = y}

The word "kernel” is also used in a completely different sense to refer to the
kernel of an integral operator. A map 7' : X — Y is one-to-one if and only if
kerT = {0}, and it is onto if and only if ranT =Y.

Theorem 5 Suppose that T : X — Y is a linear map between linear
spaces X,Y. The kernel of T is a linear subspace of X, and the range of
T is a linear subspace of Y. If X and Y are normed linear spaces and T
is bounded, then the kernel of T'is a closed linear subspace. Proof. If X, X5 €
kerT and A, Ay € R (or C ), then the linearity of 7" implies that

T ()\1]31 + )\21’2) = )\1Tl’1 + )\QTJJQ =0

S0 \1 X1 + Aoxo € kerT. Therefore, kerT is a linear subspace. If y,ys € ranT,
then there are x1, Xs € X such that Tz; = y; and Txy = y5. Hence

T (Mz1 4+ Ao Xa) = MTx + XoTws = My + Aaye

SO \y1 + \oys € ranT. Therefore, ranT is a linear subspace. Now sup-
pose that X and Y are normed spaces and T'is bounded. If (x,,)is a sequence
of elements in kerT with x,, — x in X, then the continuity of 7" implies that

n—oo

Tex=T (7}1_{20 a:n> = lim Tx, =0

so x € kerT, and kerT is closed. The nullity of T" is the dimension of the
kernel of T, and the rank of 7T is the dimension of the range of 7. We
now consider some examples. The right shift operator S on *°(N) is defined by

S (ZL‘l,ZEQ,I‘g, .. ) = (0, T1,Ta, .. )
and the left shift operator T by
T (x1, X2, X3,....) = (w2, X3, Xy,...)

These maps have norm one. Their matrices are the infinite-dimensional Jordan

blocks,

00 0
100
ST=10 1 0 1=

010

0 01

000

The kernel of S is {0} and the range of S is the subspace
ranS = {(0,xq, z3,...) “o0o(N)}

The range of T is the whole space °(N), and the kernel of T is the one-
dimensional subspace

kerT = {(x1,0,0,...) | z; € R}

7



The operator S is one-to-one but not onto, and 7'is onto but not one-to-one.
This cannot happen for linear maps 7T : X — X on a finite-dimensional space
X, such as X = R". In that case, kerT = {0} if and only if ranT = X.
An integral operator K : C([0,1]) — C([0,1])

Kf()= [ o) o)y

is said to be degenerate if k(x,y) isa finite sum of separated terms of the form

ko) = 3 oi(@)i(y)

i=1

where ¢;,1; : [0,1] — R are continuous functions. We may assume with-
out loss of generality that {¢1,...,¢,}and {¢1,...,1,} are linearly independent.
The range of K is the finite-dimensional subspace spanned by {¢1, ¢a, ..., dn},
and the kernel of K is the subspace of functions f € C(]0,1]) such that

/01 fi(y)dy =0 fori=1,... n.

Both the range and kernel are closed linear subspaces of C([0,1]).

Example 3 Consider the operator T'= I + K on C(][0, 1]), where K is defined

in (5.11), which is a perturbation of the identity operator by K. The range

of T'is the whole space C([0,1]), and is therefore closed. To prove this statement,
we observe that g = T'f if and only if

f@)+ [ F)y = gla)
Writing F(x) = |7 f(y)dy, we have F° = f and
F'+F=g, F(0)=0.
The solution of this initial value problem is
F(z) = /0 eV g(y)dy.
Differentiating this expression with respect to x, we find that f is given by
fla) = g@) = [" e Vgly)ay
Thus, the operator 7' = I + K is invertible on C([0,1]) and
(I+K)'=I-1L
where L is the Volterra integral operator
Lyg(x) = /0 eV g(y)dy.

The following result provides a useful way to show that an operator 7' has
closed range. It statesthat T has closed range if one can estimate the norm of
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the solution z of the equation Tx = y in terms of the norm of the right-
hand side y .

“In that case, it is often possible to deduce the existence of the following
result provides a useful way to show that an operator T has closed range.
It states that T" has closed range if one can estimate the norm of the solution
x of the equation Tx = y in terms of the norm of the right-hand side y

In that case, it is often possible to deduce the existence of solutions

Proposition2.1.1: Let T : X — Y beabounded linear map between Banach
spaces X, Y. The following statements are equivalent: (a) thereis a constant ¢ >
0 such that

ckek < kTzk forallr € X

(b) T has closed range, and the only solution of the equation Tz = 0 is

x = 0.

Proof. First, suppose that T satisfies (a). Then Tx = 0 implies that kxk =
0, so x = 0. To show that ranT is closed, suppose that (y,) is a convergent

sequence in ran T, with y, — y € Y. Then there is a sequence (z,) in X

such that T'z,, = y,,. The sequence (z,) is Cauchy, since (y,) is Cauchy and

1 1
n— Tm| < =T (xn —2n)|| = — |Yn — Yml| -
20 = ll < 2T @ =)l = =

Hence, since X is complete, we have z, — x for some x € X. Since T
is bounded, we have

Tr=limTz, = limy, =y,n— oon — o0

so y € ranT, and ranT is closed. Conversely, suppose that T satisfies (b).
Since ran T is closed, it is a Banach space. Since T : X — Y is one-to-one,
the operator T': X — ranT is a one-toone, onto map between Banach spaces.
The open mapping theorem, Theorem 5.23 |, implies that 77! : ranT — X is
bounded, and hence that there is a constant C' > 0 such that

HT’lyH <C|lyll forally € ranT

Setting y = Tx, we see that ckek < kTzk for all x € X, where ¢ = 1/C.
Example 1 Consider the Volterra integral operator K : C([0,1]) — C([0,1])
defined in (5.11). Then

sinnwx

K[cosnmzx] = / cosnmydy =
0 nm

We have kcosnmazk = 1 for every n € N, but kK[cosnmzlk — 0 as n — oo.
Thus, it is not possible to estimate kfk in terms of kKk, consistent with the
fact that the range of K is not closed.

Finite-dimensional Banach spaces



In this section, we prove that every finite-dimensional (real or complex)
normed linear space is a Banach space, that every linear operator on a finite-
dimensional space is continuous, and that all norms on a finite-dimensional space
are equivalent. None of these statements is true for infinite-dimensional lin-
ear spaces. As a result, topological considerations can often be neglected
when dealing with finite-dimensional spaces but are of crucial importance when
dealing with infinite dimensional spaces.

We begin by proving that the components of a vector with respect to any
basis of a finite dimensional space can be bounded by the norm of the vector.
Lemma: Let X be a finite-dimensional normed linear space with norm k - k,
and {ej,es,...,e,} any basis of X. There are constants m > 0 and M > 0
such that if z = Y7 | z;e;, then

n n
m Y o < ol < MY ||
i=1 i=1

Proof. By the homogeneity of the norm, it suffices to prove (5.12) for z € X
such that > | |z;| = 1. The ”cube”

is a closed, bounded subset of R", and is therefore compact by the Heine-
Borel theorem. We define a function f:C — X by

n

D

i=1

C= {(a:l,...,xn) € R"

F(@r,.zn) =) xe
i=1
For (zq,...,2,) € R" and (v1,...,y,) € R", we have

I (@1 ovzad) = F (w3 b= il e

so f is continuous. Therefore, since k -k : X — R is continuous, the map
(1, ..y 20) T = kf ((21,..., X))k

is continuous. Theorem 1.68 implies that kfk is bounded on C' and at-
tains its infimum and supremum. Denoting the minimum by m > 0 and the
maximum by M > m, we obtain (5.12). Let (Zi,...,Z,) be a point in C
where k fk attains its minimum, meaning that

kie; + ...+ *x,e,k=m

The linear independence of the basis vectors {ey,...,e,} implies that m6 =
0, so m > 0. This result is not true in an infinite-dimensional space be-
cause, if a basis consists of vectors that become ”almost” parallel, then the
cancellation in linear combinations of basis vectors may lead to a vector hav-
ing large components but small norm. Theorem 6

10



Every finite-dimensional normed linear space is a Banach space.
Proof. Suppose that (z),—, is a Cauchy sequence in a finite-dimensional
normed linear space X. Let {ej,...,e,} be a basis of X. We expand zj as

n
Ty = Tk
=1

where z;; € R. For 1 <14 < n, we consider the real sequence of 7 th compo-
nents, (z;x),—,. Equation (5.12) implies that

1
| — Tik] < . [l — x|

50 (Zix),, is Cauchy. Since R is complete, there is a y; € R, such that
limz;, =y

k — ocoWe definey € Xby

k
y= Z Yiti
i=1

Then, lemma,

nkz, — yk < MX|zi, k — y;| ke;k
t = 1 and hence =z, — y as k — oo. Thus, every Cauchy sequence in X
converges, and X is complete. Since a complete space is closed, we have the

following corollary. Corollary Every finite-dimensional linear subspace of a
normed linear space is closed. ”

Theorem 2.1.7 Every linear operator on a finite-dimensional linear space
is bounded.

Proof. Suppose that A : X — Y isa linear map and X is finite dimensional.
Let {e1. ,e,} be a basis of X. If 2 = >I' | x;¢; € X, then (5.12) implies that

" : . n 1
1Az < > lzl [ Aes]| < max1 < i <n{fAeill} 3 i =1" [z < — max {[[Aei]]} [l
=1 A

so A is bounded. Finally, we show that although there are many different
norms on a finitedimensional linear space they all lead to the same topology
and the same notion of convergence.

Theorem 2.1.8 Any two norms on a finite-dimensional space are equiva-
lent.

Proof. Let k-k1 and k- ko be two norms on a finite-dimensiona space X.
We choose a basis {ej,es,...,e,} of X. Then Lemma implies that there are
strictly positive constants mq, mq, M7, M5 such that if x =3 i = 1"x;¢;, then

mlz |z < ||zt < Mlzz’ =1" |xi\m22 |z < ||z||2 < MQZi =1"|z].

i=1 =1

then follows with ¢ = my/M; and C' = My/m,.

11



2.2 Compact operators

Compact operators hold significant importance not only due to the well
established theory surrounding them but also because they arise in numerous
crucial applications .

Consider normed spaces X and Y
A linear operator K from X to Y is classified as compact if its domain D(K)
is X, and for any sequence {r_n} C X satisfying X _n < ¢, the sequence
{K _xn} possesses a subsequence that converges in Y.

The collection of all compact operators from X to Y is denoted as K (X,Y).
If X and Y are the same, we can use the shorthand notation K (X) instead of
K(X,X).

Definition 2.2.1.
A subset S of anormed space X is deemed compact if every sequence of elements
in S possesses a subsequence that converges to an element within S .

Definition 2.2.2.
A subset S of a normed space X is considered relatively compact if every
sequence of elements in S has a convergent subsequence that converges to
an element of X. It is important to note that the limit of this subsequence
may not necessarily belong to S .

Proposition2:
If X andY are armed spaces, alinear operator K : X — Y, defined everywhere,
is compact if and only if K(B), where B is any bounded set contained in X,
is relatively compact. It is established ihat K is compact if and only if the
image of every bounded subset of X is a relatively compact subset of Y.
Proposition3:
All compact operators belong to the category of bounded operators. In other words,
'he set of compact operators, denoted as K(X,Y), is a subset of the set of
bounded operators, represented as B(X,Y) .

2.3 Finite Rank Operators

Definition2.3.1
Consider normed spaces X and Y. A linear operatorT : X — Y is categorized
as an operator of finite rank if the range of T is finite-dimensional.
The collection of all bounded linear finite rank operators is denoted as BFR (X,Y).
It should be noted that not every linear operator of finite rank is necessar-
ily bounded.

Theorem 2.3.1.

12



If A is an eloment of the set of bounded linear operators from X to Y
(denoted as B(X,Y)), and K belongs to the set of bounded linear operators
of finite rank from Y to Z (denoted as BFR(Y, 7)),
then the product KA belongs to the set of bounded linear operators of finite
rank from X to Z (denoted as BFR(X,Z) ).

Similarly, if L is an element of B FR(X,Y) and B belongs to B(Y, Z),
then the product BL belongs to BFR(X,Z). In both cases, it can be con-
cluded that the product of a bounded operator and an operator of finite rank, regardless
of the order, yields an operator of finite rank.

Theorem 2.3.2.
Every bounded finite rank operator is compact.

Proposition 3 :

If a normed space has finite dimension, then the identity operator asso-
ciated with that space is compact. Conversely, it the identity operator of a
normed space is compact, it implies that 3 he space itself is of finite dimen-
sion.

Proposition4:
If Xy is a subspace of a normed space X, the inclusion operator Iy : Xq —
X is compact if and only if X is finite-dimensional.
Corollary:
In the space of bounded linear operators B(X), 3 compact operator from
an infinite-dimensional normed space is non-invertible.

Ideals

Definition 4.
In an arbitrary ring (R, +,)where” +"representsadditionand”.” represents mul-
tiplication, the additive group (R,+) is denoted. A subset I is considered a
two-sided ideal of R if it fulfills the following criteria:

1. (I,+) is a subgroup of (R, +).
2. Forany x € [ and r € R, both x -r and r - z belong to I .

The term ”two-sided” signifies that we can perform multiplication by any
element of R from either the left or right side.

Proposition 5:
K(X) is a two-sided ideal of the normed algebra B(X). When X is a Banach
space, K (X) remains a two-sided ideal within the Banach algebra B(X).

Theorem 2.3.1.
Consider X as normed space and Y as a Banach space. If L belongs to
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B(X,Y)and there exists a sequence {Kn}in K(X,Y)suchthat L—Kn converges
to O3 as n approaches infinity, then L is an element of K(X,Y).

According to the theorem mentioned above, (X,Y’) is a closed subspace
within B(X,Y), making it a Banach space. Therefore, the proposition states chat
if X is a Banach space, then K(X) is a closed two-sided ideal of the Banach
algebra B(X)

Approximation Property

Definition2.3.1.
A Banach space for which the finite rank operators are norm-dense in the
compact operators is said to have the approximation property.

2.4 Adjoint Operators

Adjoint operators exhibit similar behavior to the transpose of a matrix in real
Euclidean space. The transpose AT of a real m X n matrix A satisfies the
relationship

(Ax,y) = (x, ATy)

for all x in Rn and y in Rm, where (-, -) represents the Euclidean inner product

In the context of bounded linear operators, if T is a mapping from a Hilbert
space H1 to another Hilbert space H2, denoted as T : H1 — H2, then for
a fixed y in H2, the linear functional I is bounded. By the Riesz Representation
Theorem, there exists a unique z in H1 such that (Tx,y) = (x,z). This z, de-
termined uniquely by y through T, is denoted as T*y.

(Tz,y) = (z, T"y)

The adjoint operator T'"H260—H1 is a bounded linear operator. It serves as
the counterpart of T. For any y% Dounded linear operator T, the norms of T
and its adjoint T" are equal, denoted as ||T'|| = ||T'||, and T™ equals 7.

To illustrate, consider the linear operator T' : L2[a,b] — L2[e,d], which is
generated by the kernel k(-,-) belonging to C([c,d] X [a, b]).

In other words, for s € [¢,d|,(Tf)(s) = [abk(s,t)f(t)dt. Then, the inner
product (T'f, g) can be expressed as [ ¢ [ abk(s, t)f(t)dtg( s)ds, which is equal
to (f, T* g). Consequently, 1 is represented by the integral operator gener-
ated by the kernel k(.,.), where k*(t,s) = k(s, ).

In particular cases, if the kernel k is symmetric and [a, b] = [c, d], the op-
erator 7' is referred to as self-adjoint.

14



Properties of the adjoint operator

Theorem 4.
Assume T : H1 — H2 be a bounded linear operator. Then

1. The adjoint of the adjoint operator is equal to the original operator.
2. The norm of the product of T" and its adjoint, as well as the norm of the
product of the adjoint and 7', is equal to the square of the norm of 7.
3. The null space of the operator T' is the orthogonal complement of the range
of its adjoint operator.
4. The orthogonal complement of the null space of T is equal to the range of
its adjoint operator.
5. The null space of the adjoint operator 7™ is the orthogonal complement of
the range of the operator T.
6. The orthogonal complement of the null space of the adjoint operator T
is equal to the range of the operator T

2.5 Self-adjoint, Normal and Unitary opera-
tors

Definition 2.4.1

In a Hilbert space H, a bounded linear operator T'is considered self-adjoint when
Tis eaual to its adjoint operator Tx. If T is both bijective and its adjoint
operator T" * is equal to its inverse T" — 1, it is referred to as unitary. A
bounded linear operator T is categorized as normal if the product of its ad-
joint operator T« with T is equal to the product of T with its adjoint opera-

tor T, i.e., T xT = TTx.

Theorem 5:
Let nH be a Hilbert space and let P € B(H) is given then P is self-adjoint iff
< Px,x >€ R,x,y € H. Proof:
Let’s consider the assumption that P is self-adjoint, which means P is equal
to its adjoint P*. For an*®*® and y in the Hilbert space H, we have the fol-
lowing equality:

Conjugate of <<PX41,33'>) = (z,Px) = (P*z, z)

It is observed that the conjugate of (Px,x > is equal to (z, Pr > and
also equal to (P*x,x).

Now, let’s assume that (Pz,x > is a real number for all z in H. Choosing
x and y from H, we can deduce the following:

‘Pz +y), v +y) = (Pz,x) + (Pr,y) + (Py,z) + (Py,y)

Since (P(z + y),z + y), (Pz,z), and (Py,y) are real numbers, we con-
clude that:
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(Px,y) + (Py,x) is also real.
Hence, it can be inferred that:

(Pz,y) + (Py,z) = conjugate((Pz,y) + (Py,r)) = (y, Px) + (x, Py)

Similarly, upon examining the equation:
(P(z +iy), (x +1iy)) = (Pz,x) + (Px,iy) + (iPy,x) + (iPy,iPy)

Expanding the equation, we obtain:
‘Pr,x > —i < Px,y > +i < Py,x > +(iPy,iPy >

From this, we can conclude that:
(Pz,y) — (Py,x) = —(y, Px) + (z, Py >........... (2)

By adding equations (1) and (2), we get:
2< Pr,y>=2<uz, Pv>

2< Pr,y>=2<ux, Py >
This implies :

(Pz,y) = (z, Py >

Therefore, we have shown that (Pz,y) is equal to (*P*z,y). Since this
holds true for every x and y, we can conclude that P = P*.

Schauder Bases

Definition
Consider a Banach space X. Let e = (e;)i € N be a seqdence in X. If
every point z in X can be expressed uniquely as the sum of x;, where xi
belongs to a field F', then the sequence e is referred to as a Schauder basis
of X, also known as a basis.

Weak Compactness in K(E, F):

Consider Banach spaces F and F, and let L(E, F) represent the space
of bounded linear operators from E to F. Within L(E, F), K(E, F) is a closed
subspace.

Our focus lies on two primary topologies applied to "(E, F'). The first is the
weak-operator topology, denoted as w, which is determined by the linear func-
tionals T — f(Te), where f belongs to F™*. 7 he second topology, known as
the dual weak-operator topology and denoted as “w’, is defined by linear func-
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tionals.

T— > e (T'f) f*belongstoF ebelongstoE*

Theorem 6.
Let A be a subset of K(E, F'). A is considered weakly compact if and only if
it is w’-compact.

Proof:

Assume A is w'-compact, and let z(A) = {X € r; T belongs to A}. Then z(A)
is compact according to the pointwise convergence topology in U x V, and thus,
z(A) is weakly compact in C(UzV).

Therefore, A is also weakly compact. The converse is evident since the w’
topology is weaker than the weak topology of K(FE, F).

Corollary 1 : In the case where E' is reflexive, a subset A of K(FE, F) is
considered weakly compact if and only if it is w-compact.

Corollary 2: If both F and F are reflexive and K(F,F) = L(E,F),
then K(E,F) is reflexive.
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Chapter 3

Geometry of Banach Spaces

Definition 3.1.1 states that a Banach space X is considered strictly con-
vex if, whenever x and y are distinct elements in X with ||z]| = ||y|| =1 and
Ais avalue between 0 and 1, the norm of the linear combination Az+(1—\)y
is less than 1 .

Proposition 3.1.2 establishes that a Banach space X is strictly convex if
and only if, whenever z and y are elements in X such that ||z+y| = ||z]|+|v/l,
then either y =0 or x = Ay for some A > 0.

Proposition 3.1.3 states that if (xk) is a sequence in a uniforno 57 con-
vex Banach space X that weakly converges to ¢ € X, with the norms of xk
approaching the norm of z, then the norm of xk — x approaches 0 .

Theorem 3.1.4 states that every uniformly convex Banach space is reflexive.

Proposition 3.1.5 establishes that in a Bs; banach space X with a strictly
convex dual X, a duality map J is mg potone, meaning that the real part
of the inner product of x —y and Jz— Jy is non-negative for all z arif y in X.
If X is strictly convex, then .J is strictly monotone, meaning that the real part
of the inner product is positive for all z and y in X with x # y.

Definition 3.1.6 defines the approximation property (AP) for a Banach
space X, stating that X has the AP if, for any compact set K of X and any
e > 0, there exists a bounded linear operator 7" with finite rank such that the
norm of T'r — x is less than ¢ for all x in K.

Proposition 3.1.7 presents equivalent statements to X having the AP.
Statement (i) states that for any Banach-space Y, any bounded linear operator
T from X to Y, any compact subset K of X, and any ¢ > 0, there exists a
bounded linear operator F' from X to Y with finite rank such that the norm of
Tx — Fx is less than ¢ for all x in K. Statement (ii) states the same condi-
tion as (i), but with the roles of X and Y reversed.
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Chapter 4

LOCAL ISOMETERIES

4.1 Local isometries on Strongly Separating Sub-
spaces of Cy(X)

In this section, we establish that any local isometry on strongly separating
subspaces of CO(X) is, in fact, a surjective isometry. In other words, we
demonstrate that the collection of all surjective linear isometries on strongly
separating subspaces of Cy(X) possesses algebraic reflexivity.

Remark 3.1.1:
We introduce the sets 0 A and oA, defined as follows: o A comprises elements
xo in 11 such that, for every neighborhood U of xg, there exists an f in A

where |f(x)| < || f]| holds true for all z in X — U.

Meanwhile, oA corresponds to the intersection of 0 A and the element Y
in X for which richere exists an f in A with f(z) # 0. It is worth noting that
existing knowledge affirms that if A is al5 subspace of Cy(X), then 0A = g A.

Theorem 2.1.2:
Suppose X and Y are locally compact Hausdorff spaces, and A and B are
strongly separating linear subspaces of Cy(X) and Cy(Y") respectively. If there
exists a nonnegative real-valued injective function g in A, and oA is a com-
pact set, then the operator space G(A, B) possesses algebraic reflexivity.

Proof.
Let T € G(A,B). exists a subset Y of Y, a continuous surjective map h :
Yy — 0pA, and a continuous map 7 : Yy — K, where K is a set of complex
numbers with |7(y)| = 1 for all y in Y.

Moreover, for every y in Yy and f in A, we have T'f(y) = 7(y) f(h(y)).

To demonstrate "he surjectivity of T, we need to prove that h is a home-
omorphism and that Yy = 09 B

First, we establish the injectivity of h.
According to the hypothesis, there exists a function g satisfying the 1 ondi-
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tions, and we can find 7, in F(A, B) such that T'¢ = T,g9. Applying Theorem
1.4.3, we find a homeomorphism hg: ¢¢B — 0¢A and a continuous map
Tg : 00B — K,

where |7,(y)| =1 for all y in 0oB, and T,(y) = 7,(v)g(hg(y)) for y in o B.

From the proof of Theorem 1.4.3, we know that Yjis a subset of c0 B. By
combining ? — quations (2.1.1) and (2.1.2), we can see that g(h(y)) = g(hg(y))
for all y in Y. Thus, h = hy on Yj, which implies that A is injective. V' e con-
clude that h is a homeomorphism.

To complete the proof, we need to show that o¢B is a subset of Y;. or y
in 00B, we have h,(y) in ogA.
Since h is onto, there exists yo in Y0 such that h(yy) = hy(y). However,
since h = hy on Yy, we can deduce that y = yo. This demonstrates that oo
is indeed a subset of Yj.

Therefore, we have established the surjectivity of T.

4.2 Local isometries on various subalgebras of

Cy ( Kg)

In this section, we prove the algebraic reflexivity of the set of all surjective

linear isometries on weakly normal subalgebras of C,, (Kg) and on the subal-
gebra AY (Kg).

The following remark is crucial in our proofs.

Remark 3.2.1.
1. We can associate the closed subalgebras A, (Kg) and A (Kg) with closed
subalgebras A(F) and Ag(E) of C(yE), respectively.

Here, vFE represents a compactification of K g known as the quotient space
vE = BKg/R, where SKg is the Stone-Cech compactification of Kp, and
R is an equivalence relation defined as z1Rxo if f(x1) = f(x2) for every
f €A, (Kg).A(E) and Ag(FE) have the property of strongly separating points
in vE

Furthermore, it is known that Kp is a subset of the boundary of A(FE),
and the boundary of A(F) is equal to VE.
Additionally, Kg without the element 0 iscontained in the boundary of Ag(E),
and the boundary of Ay(E) without the element 0 is equal to vFE without the
element 0 .

2. Tt is worth noting that A(F) is a uniform algebra, which means it is a

closed subalgebra of C(yFE) that separates points and contains the constants.
As a result, A(E) does not vanish anywhere, indicating that for every {in Y E,
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there exists an element f in A(FE) such that f(§) # 0. Remark 2.1.1 im-
plies that opA(E) is equal to the intersection of 0 A(E) with the set of £ in
~vE where there exists an element f in A(F) such that f(£) # 0.

This is equivalent to the boundary of A(FE) intersected with ~v(E) since
A(F) does not vanish anywhere. “Consequently, oo A(F) is equal to the bound-
ary of A(FE), which is vE.

3. Moreover, Ay(FE) strongly separates points in YE, so for £ in YE
where £ # 0, there exists an element f in Ag(F) such that |f(£)] = —1f(0) |.
Since f(0) =0, we have |f(§)| # 0, and thus f(£) # 0.

Therefore, the set of £ in ¥E where there exists an element f in Ay(F) such
that f(§) # 0 is equal to vE without the element 0 . This implies that
00Ao(F) is equal to Y E without the element 0.

Proposition 3.2.2: If there exists an injective map g in A, (Kg) such that
g(x) > 1 for all x in Kp, then the operator space G (A, (Kg),A, (KFr)) is al-
gebraically reflexive.

We can establish that T is surjective linear isometry connecting the closed
subalgebras A(FE) and A(F) of C(yE) and C(vF) respectively.

Theorem guarantees the existence of a homeomorphism h such that:

The function pF" — «FE and the continuous map 7 : vF' — K can be found
such that |7(y)| = 1 for all y in vF, and the equation T'f(y) = 7(y)f(h(y))
holds for all y in vF and f in A(F) (Equation 2.2.1).

In order to establish that 7" : A, (Kg) — A, (Kr) is a surjective linear
isometry, we need to demonstrate that h : Kr — Kpg is a uniform homeo-
morphism and that u = 7 | Kr is a uniformly continuous function.

For the first part we can consider the map g mentioned in the hypothesis.
This implies the exis 2*nce of 1g € G (Au(Kg),Au(Kp)) such that Tg = T}g.
Applying Theorem 1.4.4, we can find a uniform homeomorphism h, : Ky —
K, and a function 7g € Cu (K—), where |7,(y)| = 1 for allyin KF, and Tg(y) =
79(y)g (hy(y)) for all y in KF (Equation 2.2 .2 ).

By comparing Equations 2.2.1 and 2.2.2 and utilizing the injectivity of g, we
can conclude that h = hg on KF, indicating that h is a uniform homeomor-
phism.”

To establish the second part, we assume the contrary that is, suppose p is
not uniformly continuous on Kp.
This implies the existence oi >> and two sequences (z,,) and (y,) in K such
that limn — ool|z, —yn|| = 0 and |p (z,) — p (yn)| > € for every nin N. Since
T, is uniformly continuous, we have limn — oo (T'g (z,,) — Tg (y,)) = 0 or

lim (o (2n) g (h(2n)) 1 (yn) g (A (yn))) =0

n—oo
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Similarly for the map g2 we will have

lim (1 () 9° (R (20)) = 11 (yn) 9° (B () = 0

n—oo

Multiplying by g (h (x,)) we get

lim (4 (2a) g (B () = 1 (yn) 9 (0 (20)) g (B (ya))) = 0

n—oo

Subtracting Equations (2.2.4) and (2.2.5) we will get

lim (12 (yn) 6 (A (yn)) = 2. (yn) 9 (A (2)) g (B (ya))) = 0

n—oo

This implies that

lim (g (h(zn)) — g (h(ya))) =0

n—0o0

Lastly multiplying by u (z,) and subtracting Equation (2.2.3) we get

lim g (7 (yn)) (1 (xn) = g (yn)) = 0

. This is a contradiction. Hence, i is uniformly continuous on Kp.
HENCE PROVED

4.3 Local isometries on C?[0, 1]

In this section, we present and demonstrate the central outcome of this chap-
ter. To ensure a clear understanding, ! che proof is structured into six dis-
tinct steps.

Theorem 3.1.1 states that G (C?[0,1]), the set of local isometries on the
Banach space C?[0, 1], exhibits algebraic reflexivity.

Proof .

Let T € G (C?0,1))* and g € C?[0,1].

We complete the proof in several steps.

Step I involves defining a linear map W : C[0,1] — C[0,1] as W(f) =
T (Z2f)".
“We assert that W isa local isometry on C[0, 1]. To illustrate this, let’s consider
a function f € C[0,1]. Then (2f can be denoted as h, which belongs t0'20, 1].
As T is a local isometry, there exists Th € G (C?[0,1]) such that Th = Tjh.
Consequently, W(f) = (Th)’’ = (Thh)‘” = wy, (h” o ¢h) = wp(f - ¢pn). Thus,
2V is a local isometry.
As W is also a surjective linear isometry. Hence, there exist continuous
functions w : [0,1] — T and a homeomorphism ¢ : [0,1] — [0, 1] such that

W(f) =w(fo9)

Step II. Let k be defined as (?g’. We observe that k belongs to C?[0, 1]
J . :
and (T'g)’” (Tk)? = (Tg—Tk)" =r(g— k)) . Since T is a local isometry,
there exists T,  in G (C?[0,1]) such that T(g — k) =T, (g — k).
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This implies that (T'(g — k))*’ = (T,_1(g — k’))]J = Wg—k ((9 — k) ¢gx) = 0.
W) <o s ).

Step III. There exists 7, in G (C?[0,1]) such that Tg = T,g. Computing
Tg(x) and (Tg)’(x) at x = 0, we have two cases as follows

Hence, (Tg>]J _ (Tk)ﬂ" _ (T (CQQJJ>)JJ

Case 1: Tig(0) = Ay 9(0),(T'g)(0) = pgg(0)
Case 2: T'g(0) = Agg(0), (T'g)(0) = 1149(0).

Step IV. For the functions f = 1 and f = id, there exist 77 and T}y in
G (C?[0,1]) respectively such that T1 = T11 and Tid = Tidid.. Therefore, we
have the following four cases:

Case 3: T 1= XM\1,Tid = taia
Case4: T1=XM\1,Tid = \j41
Case 5: T1 = py id, Tid = pyqid .
Case 6: T 1= pyid, Tid = Ayl
Cases 4 and 5 will lead to a contradiction.
We consider Case 4.
Consider T1 + id in G (C?[0,1]) such that T(1+id) = T1 + id(1+id ). For all
x in [0, 1], we have:

)\1 + >\id = T(l) (33) + T(zd)(as) = T(l + zd)(x) = )\1+z’d + H1+idT

which is a contradiction.
Therefore, Case 5 is not possible.” Step V. Let f; = g — ¢(0)1 and fy =
g — ¢'(0) id. There exist Ty, Tp2 € G(C?[0,1]) such that Tfy = Tpf 1
and ng = ng 2.

Using the linearity of T, we can write the following equations:

Tf(0) =T g(0) = g(0)T1(0), (T'f(0) = (T'g)(0) — g(0)(T'1)(0)

and

T f2(0) = Tg(0) — g(0)T1(0), (T f2(0) = (T'g)(0) — g(0)(T1)(0)

Furthermore, using these two Equations and the local structure of T, we ob-
tain the following cases:

Case 7: Tf1(0) = 0,(Tf1) (0) = pupig(0), Tfa(0) = Ap2g(0), (T f2) (0) =
0.

f C<a§e 8: Tf1(0) = 0,(Tf1) (0) = uf1 g(0), Tf2(0) = A2 g(0),(T'fo)"'(0) =
ut2g(0).

Case 9: Tf1(0) = Ap1g7(0), (Tf)7(0) = 0,T£2(0) = A2g(0), (T fo)' (T1) =
0.

Case 10: Tf1(0) = Ap197(0), (T'f1) (0) = 0, Tf2(0) = 0, (T'f2)” (0) = pp2g(0) .
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Step VI. In this step,consider the cases that arose in steps III, IV, and V
one by one, using Equations (3.1.2) and (3.1.3)

Cases 1 and 3: Tg(0) = A\gg(0), (T'9)(0) = 1gg(0),T1 = A1, and T(id) =
Hidid-

(i) If Case 7 holds, then Equations (3.1.2) and (3.1.3) imply that:

Agg(0) = g(0) A\r = 0,497 (0) = 11519(0), Agg(0) = A29(0), 11997 (0) —
9(0)ptia = 0

Hence, A\ggg(0) = A1g(0) and 1159(0) = 11iag(0).

Substituting the values of Ag;g(0) and 11,97 (0) obtained here, as well as the
value of (Tg)’ from Equation (3.1.1), into Equation (3.0.3), we get:

Tg(x) = Tg(0)+(TgP(0)a+(¢ ((T9))) (@) = Mg(0)+1ag’(0) 2+ (¢ (W (" ©9))) (@)

ii) when case 8 holds,

Ae9(0)=g(0)A1 = 0, 1g9(0) = png(0), Agg(0) = Ar2g(0), 19(0) =g (0)ptia = 111,9(0)

Thus, ¢(0) =0 and £,9'(0) = 1iag’(0).
Equations (3.1.1) and (3.0.3) imply that

Tg(x) = Tg(0)+(Tg) (0)x+(¢*((T9)")) (x) = piag (0)x+(¢* (w (9" 0 9))) (x ).
iii) If Case 9 holds, then

Agg(0)=g(0)A1 = Az, '(0), 1y9'(0) = 0, 259(0) = A, 9(0), 11g9'(0)—g g(0)ptia = 0

Thus, ¢’(0) = 0 and A\,g(0) = X1g(0) From-2quations (3.1.1) and (3.0.3) we
have

Tg(z) =Tg(0)+(Tg) (0)a+(¢* (T9)") () = Mg(0)+(C(wlgr ©9))) () -
iv) If Case 10 holds, then

Agg(0)=g(0)A1 = A, g'(0), pgg'(0) = 0,A59(0) = 0, 1149'(0)=3g"(0)pria = 124,9(0)

Agg(0)=g(0)A1 = Ay, g'(0), pgg'(0) = 0, A09(0) = 0, 1,91(0)~g'(0)ptia = p1,9(0)

which implies, g(0) = 0 and ¢(0) = 0.
Again, we apply Equations (3.1.1) and (3.0.3)
Tox) = Tg(0) + (Tg)(0)z + (C (T9)") () = (C(w (9" 00)) (2)
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From (i)-(iv) we conclude that T € G (C?0,1]). Cases 1 and 6. Tg(0) =
Ag9(0), (Tg)(0) = pgg'(0), T1 = gy id and T(id) = Ajgl. (i) If Case 7 holds,
then

249(0) = 0,1199'(0) —g(0)pa = 11,9'(0), Ag9(0) =9 8(0)Aia = Ap,9(0), 1199(0) = 0.
Thus, g(0) = 0 and ¢g(0) = 0. (ii) When Case 8 holds,
249(0) = 0, 199" (0)=g(0) i = 11,9'(0), Ag9(0) =g (0)Xia = 0, 4149'(0) = 11, 9(0).
Whence, g(0) =0 and g(0) = 0. (iii) When Case 9 holds, then
209(0) = A1 g'(0), 119" (0)—g(0) 1 = 0,249(0) =g (0)Aia = Ap,g(0), p1gg'(0) =
Thus, g(0) =0 and ¢’(0) = 0.
(iv) When Case 10 holds, then
29(0) = A 9(0), 11997 (0)=9(0)p - = 0,299(0) =g 8(0)Aia = 0, p199 8(0) = 117, 9(0). ThusA,g(C

Subsituting values of A,¢(0) and 11,9(0) from (i)-(iv), the value of (Tg)” fromE-
quation (5.1.1), in Equation (3.0.3), implies that 7' € G (C?[0, 1]).

Cases 2 and 3. Tg(0) = A,g'(0),(Tg)'(0) = py9(0),T1 = M1 and
T(id) = pq id .

(i) When Case 7 holds, then
29 (0)=g(0) A1 = 0, 1g9(0) = p11,9'(0), Agg'(0) = Ay 9(0), 1299(0)—=3"(0) ptia = 0.Thuis, Aqg'(0)
(ii) When Case 8 holds,
Agg(0)=g(0)Ar = 0, 1139(0) = 11£,9(0), Agg(0) = 0, p1g9(0) —g!(0)ptia = 114,9(0).impliesthatg(0)
(iii)) When Case 9 holds, then
Ay 2(0)=g(0)Ar = Apgl(0), 19 8(0) = 0,0 2(0) = Ay, 2(0), g 8(0)—l(0) p1ia =0
Thus, ¢g(0) = 0 and g/(0) = 0.
(iv) When Case 10 holds, then
2a9'(0) 9(0)A = A g'(0), 1199(0) = 0, A49'(0) = 0, p1gg(0) =g (0)pia = 111,9(0)
We conclude that ¢(0) = 0 and ¢'(0) = 0.

Thus, we get T € G (C?[0,1])
HENCE PROVED
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4.4  Structure of isometries of finite order on

C?0, 1]

Proposition 3.2.3.

The proposition states that 7' is an element ot G" (C?[0,1]) if and only if
there exist A and p in T, a homeomorphism ¢ : [0, 1] — [0, 1], and a continu-
ous function w : [0,1] — 7.

These conditions hold true for all f in C?[0,1] and z in [0, 1], and one of the
following cases is satisfied.

1. When T is the first type isometry,

Proof.

Let T € G (C?)0,1])

Since T € G (C?[0,1]),3\, u € T, a homeomorphism ¢ : [0,1] — [0,1] and a
continuous function w : [0,1] — 7" such that 7" is of form (A) or (AA).

Suppose T has the form (A), then 7" = 1 implies that
NSO+ SOt [ [ wls) w(ole)w (8°(5)) -+ w (677(5)) 17 (@) dsdt = fo).
putting f =1, we get \" = 1.

On differentiating and putting 2 = id we get u" = 1.
On taking the second derivative,

w@)w(d(@)w (2(2) - w (6" (@) f1(6"@) = F'(x).
which implies that

w)w(@@)w (6*(@)) - w (6" (x)) =1,andg"(z) ==
Now, T" has the form ( A). We consider the following two cases.

i) If n is odd, then 7™ = T will implies that

/=)

w(s) w(e(s)w (*(s)) -+ w(@""H(s)) f1(¢"(s))dsdt = f(x)

26



if f = id, we get /\HTH,LFI = ux, for all z € [0, 1], which is a contradiction.
2 is n is even then

A2p f(0) + A%z f'(0)z
Jo Jyw(8)w(9(s)) w(@?(s)) -+ w (@™ (s)) f" (¢"(s)) dsdt = f(x).
Put
f =1, We havelyu® =1 On double differentiating,
w(a)w(@(@)w (6*(z)) - w (6" (@) £ (¢"(2) = ["(2).
It follows that
Put f = 1, We have Aoy = 1 On double differentiating ,
w@)w((a))w (¢*(x)) - w (¢" M) [ (¢"(x)) = f'(x).
It follows that
w(w) w(g(a)w (P*(@)) -+ w(¢"(2)) =1 ,and¢"(z) = x
Now, if assertion(1) holds,
T"f(z) = A\"fO)+p" f(0)a+ /0 t0w(s)w(d(s))w (6%(s)) -+ w (6"7(s)) f" (¢"(s)) dsdlt
£(0)+£'(0) + f(z) — f(0) = f'(0)

= f(x).
I fassertion (2)holds,

= H0)+£(0) + f(z) = f(0) = f"(0)
= f(x)

4.5 Local isometries of finite order on C?0, 1]
We establish the algebraic reflexivity of the set G® (C%([0,1]) )* when n is
an odd number. The case when n is even is addressed in the concluding re-

mark of this section.

Proposition 3.5.1
When n is odd, G™ (C?[0,1]) is algebraically reflexive.

Proof:
Let T € G" (C?[0,1])

By utilizing Theorem 3.1.1, we can deduce that T € G (C?[0, 1]).
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Applying Theorem 1.4.7, we obtain the existence of A, p € T, a homeomorphism
¢ :[0,1] — [0,1], and a continuous function w : [0,1] — T such that T fol-
lows the forms () or ().

Additionally, or each fis € C?[0,1], there exists Ty € G* (C?[0,1]) such that
Tf = T?. Considering that n is odd, we observe that T will always follow
form ().

Moreover, the equation (T'f)"(z) = (Tyf)"” (z) implies that w(z)” (¢(z)) =
Wi (@) (61(x) -
By setting f = 23, we conclude that w(z) = wf(x) and ¢(z) = of(x)
for every x € [0,1].
Consequently, w(x)w(¢p(z))w (¢"2(x)) - w (¢"(n—1)(x)) = 1land ¢"n(z) =

T .

Now, let’s assume 7T is in the form (*). By computing Tf and (T'f)" at
x =0, we obtain A\f(0) = Arf(0) and pf'(0) = purf'(0).
This implies ; that A= Ayand = puy. Therefore, \"n = p"n =1, leading
to € G (C?0,1]).

If T'is inthe form (**), repeating the same calculations results in Af’(0) =
Apf(0) and pf(0) = pyf'(0).
Choosing f € C?[0,1] such that f(0) = 0 and f7(0) # 0 will lead to a
contradiction .
HENCE PROVED
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Chapter 5

CONCLUSION,CHALLENGES and
some FUTURE PLANS

5.1 Summary and Difficulties

In this thesis, we primarily focused on two main aspects. The first aspect
involved studying the set of isometries on various Banach spaces with alge-
braic reflexivity.

We were able to demonstrate that the local maps, which in our case were
isometries, exhibit global properties and belong to the specified class of opera-
tors in many significant scenarios. It is worth noting that the aforementioned
difficulty only arises when dealing with linear algebraic structures, and the lo-
cal maps are also linear in nature.

However, it is common to explore these issues within a broader context of
more generic structures.

The second aspect of our research involved tackling the challenge of char-
acterizing specific classes of norm-one projections on the space C? [0, 1].

This presented its own set of complexities and required a distinct approach.
We have also looked into how projections in this space relate to isometries.
Though comparable findings should hold for the space Cr [0, 1] , the sheer
volume of examples becomes overwhelming, especially for r is greater than 4.
This still holds true if we consider projections to be a convex combination of
at least four isometries.

5.2 Future Plans

5.2.1 Local isometries within subspaces of function spaces
with vector-valued functions.

Certain subspaces of vector-valued function spaces could be used to formulate
the algebraic reflexivity problems that were explored for Cy(X') subspaces.
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Consider the Banach space Cy(X, E), which consists of continuous func-
tions from X to E that vanish at infinity and is equipped with the supremum
norm.

Let SE represent the set of elements e belongs to E such that their norm
is equal to 1, denoted as e = 1, representing the unit sphere of E.

We define the map f/otimes e : X — Fasfollows : for anyze X,
(f/otimes e)(x) is given by the product of f(x) and e for the values of f in
CO(X) and e in E.

It is simple to demonstrate that f® e € Cy(X, F).

Definition 5.2.1.
Let Cp(X) ’s subspace A be A. Any subspace of A[A] is what we refer to.
The set f® e is contained in Cy(X, E) as follows: {f®e: f€ Ajec€ Sg}

5.2.2 Reflexivity in algebra considering non-linear cases

One can consider any mathematical structure A and a® class of transformations
E acting on A.

We define a map ¢ : A — A to be 2locally associated with E if, for any
pair of elements x and y in A, there exists an element ¢(z,y) in E such that

¢() = ¢(v,y)(z) and ¢(y) = ¢(z,y)(y).

We use the term ”algebraically reflexive” to describe the class F, drawing
inspiration from the concept of algebraic reflexivity for linear mappings with
a locality of 1 . Specifically, E is algebraically reflexive if every map ¢ that
satisfies the 2-local property with respect to E belongs to E as well.

5.2.3 Generalized n-circular projections on Banach spaces

Consider the set By(H), which consists *f all self-adjoint operators on the
Hilbert space H.

We define an order relation between elements *A and B in By(H) as
A < B if the inner product (Az,x) is less than or equal to (Bz,z) for ev-
ery x in H. This establishes the usual ordering on the set.

Now, let’s consider bijective map ® : B;(H) — Bs(H) that preserves the
order, meaning A < B if and only if ®(A) < ®(B). Such a map is called

an order-automorphism.

The question at hand is 7 whether the group of order-automorphisms of
Bs(H) exhibits algebraic reflexivity.
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5.2.4 Generalized n-circular projections in Banach spaces

Definition 5.2.2.

If there are Py, Ps,..., P¥, of finite order and nontrivial projections on F
such that A, Ao, .., A1 € T\{1},\;;i = 1, 2,...,n — 1 then a projection
PO is said to be generalized n-circular projection on a Banach space F refers
to a specific type of projection where n is greater than or equal to 2 :

1. )\1/ = /\j for 1
2. POBBPD---PPn—1=1,
3. PO+ A\P1---4+ An—1Pn —1 is a surjective isometry.

Given the available resources, fully understanding the structure of gen-
eralized n-circular projections on traditional Banach spaces poses a signifi-
cant challenge.

However, in specific spaces like Lp(€2, E) where 1 pj,p 2, and (€, pn) is

a -finite measure space, and E is a separable Banach space with a trivial Lp-
structure, we aim to examine this problem specifically for n = 3 or higher
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