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ABSTRACT 

With the exponential popularization of modern industries, more products are 

being produced, leading to water wastage and chemical disposal. These toxic chemicals 

are submerged in clean water resources, resulting in increased drinkable water toxicity. 

Separation of poisonous substances from wastewater is a pressing requirement to adopt 

the proof of concept of clean industrialization. Supported liquid membrane (SLM) is a 

popular and widely adopted non-dispersive membrane for the recovery and extraction of 

solutes from aqueous solution. The efficiency of cadmium and lead separation increases 

with the use of SLM. In this study, we have adopted an ANN-based approach to predict 

the results related to the recovery and extraction of cadmium and lead using the 

MATLAB deep learning toolbox. The experimental results are predicted by modeling 

the experimental data and analyzing the effect of the operating parameter. The accuracy 

of the predicted model is validated with experimental results, and the variation in the 

features helped in optimizing the study. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL  

Population growth and urbanization have led to an increase in demand for 

industrialization, agriculture, etc. This has led to the establishment of various industries 

and the use of pesticides and fertilizers to increase crop yield due to which many toxic 

materials enter the water bodies and create them unfit for consumption. The rise in 

different water usage caused by the growing global population has resulted in not only a 

reduction in the amount of accessible renewable freshwater but also contamination and 

a decline in the quality of freshwater reservoirs.                                                   

Cadmium and lead are among those creating toxicity in the water bodies. They can enter 

into the environment through natural or artificial discharge and get accumulated in air, 

water, or soil. Metals transfer from one constituent to another constituent has been 

spotted after the initial accumulation into any of the constituents [1].  

According to the guidelines set forth by the World Health Organization 

(WHO), the acceptable range for cadmium levels in drinking water is between 0.003 

and 0.005 mg/L, while a recommended safe limit of 0.003 mg/L is advised for 

wastewater[2] and for lead in drinking water advisable level is < 0.01 mg/L and for 

wastewater is 0.01 mg/L [2], [3].  
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1.2 USES OF CADMIUM AND LEAD  

Lead and its compounds are primarily found in occupations associated with 

lead, along with diverse sources such as the use of leaded gasoline, industrial activities 

like lead smelting and combustion, pottery making, boat construction, lead-based 

painting, the presence of lead-containing pipes, battery recycling, grid manufacturing, 

the arms industry, pigments, and the printing of books. Despite, the usage being 

discontinued in some countries it is still used in several industries such as car repair, 

battery production, recycling, refining, smelting, etc. [4]  

Cadmium has been used widely in Nickel-Cadmium batteries as electrodes. 

Its application holds good in the pigment industry, as stabilizers in plastic, and in the 

plating and coating industries. It is also used in electrical appliances as semiconductors 

and as an alloying element. Cadmium alloys can be categorized into three groups: alloys 

that exhibit higher electrical conductivity, alloys that have enhanced heat conductivity 

and alloys specifically engineered for electrical contact purposes. 

 

1.3   CAUSES OF CADMIUM AND LEAD  

 The release of cadmium and lead is due to discharge from various 

industries like steel works, electroplating, electrolytic depositing, conversion-coating, 

anodizing-cleaning, milling, and etching industries[5]. Corrosion of pipes and plumbing 

fixtures, leaching from landfills, hazardous waste sites, and other waste disposal can 

cause entry of cadmium and lead into water bodies. Some prevalent contributors to the 

presence of cadmium and lead are the dyes industry, pesticide industry, paper mill 

industry [6], pharmaceuticals [7].  
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1.4 NEGATIVE IMPACTS OF CADMIUM AND LEAD  

 Once these toxic metals enter the water bodies, they get accumulated into 

the food chain, potentially posing risks to human health [8] and harming aquatic life. [9] 

They can potentially cause adverse effects on bones and can be the root cause of cancer 

in the kidneys, and liver due to their accumulation as carcinogenic pollutants [10]. Its 

retention in the soil is less efficient so, it seeps down the groundwater and enters the 

food web [11]. The intake of vegetables containing high levels of heavy metals can 

significantly reduce essential nutrients in the body. This depletion can lead to decreased 

immune defenses, disabilities associated with malnutrition, and a higher occurrence of 

upper gastrointestinal cancer [8], [12], [13]. 

 

1.5   PREVENTION METHODS  

To prevent the harmful effects, water should be treated and toxic metals 

should be removed from waste water before disposing. There are several traditional 

methods used for removing Cadmium and Lead from wastewater including the activated 

charcoal method, ion exchange method [14]–[17],  chemical precipitation [18]–[20] 

,reverse osmosis [21],  ion flotation [22], [23]  Coagulation/flocculation [24], [25] , 

adsorption [26], and electrochemical removal[27]. Conventional methods have certain 

disadvantages as compared to more advanced or alternative techniques. They lack 

selectivity leading to low purity in the separation or incomplete separation for some 

metals. They suffer from low efficiency and yield leading to incomplete removal. The 

inefficiency can result in significant metal losses or require multiple treatment steps, 

leading to increased costs and waste generation like sludge or precipitates that require 
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further treatment for disposal. Some conventional methods use harmful chemicals, 

reagents, and high energy consumption which can add to expenses and pose 

environmental risks. To overcome these demerits modern techniques are used like 

absorption, chemical hydrogels, membrane separation, biosorption, photo catalysis, 

electro dialysis, nanotechnology and nanoparticles. 
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CHAPTER 2 

THEORY 

2.1 LIQUID MEMBRANE  

Liquid membrane technology is a specialized separation technique that 

involves the transport of specific molecules or ions across a liquid membrane to 

separate them from a mixture. In this process, a liquid membrane acts as a selective 

barrier that allows the passage of certain species while blocking others, based on their 

chemical or physical properties. 

 

2.1.1 USES OF LIQUID MEMBRANE  

Liquid membrane technology has been widely used in various fields, 

including chemical, pharmaceutical, environmental, and biotechnological industries, for 

the separation, extraction, concentration, and recovery of specific components from 

complex mixtures.  

 

2.1.2 ADVANTAGES OF LIQUID MEMBRANE  

 Liquid membrane technology is highly efficient, allowing for continuous 

and simultaneous extraction and transport of target components, resulting in reduced 

processing time and increased productivity. The operating system of liquid membrane 

technology is insensitive, making it robust and stable in various operating conditions, 

reducing the chances of system failures and downtime. Compared to other separation 
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methods, liquid membrane technology is a less costly affair in terms of capital 

investment, making it economically viable for industrial applications. One of the 

advantages of liquid membrane technology is the minimal production of secondary 

sludge, reducing the generation of waste and the need for additional disposal or 

treatment.  Liquid membrane technology is characterized by low energy and solvent 

consumption, making it an environmentally friendly option for separation processes, 

and reducing the overall environmental impact. This technology allows for high-

concentration factors, enabling the extraction and recovery of target components at 

higher concentrations, which can be beneficial in various applications. The high flux of 

liquid membrane technology enables the efficient mass transfer of gases, ions, and 

molecules through the permeation and transport process, ensuring effective separation 

and extraction. Liquid membrane technology offers selective mass transfer, allowing for 

precise separation of specific components from complex mixtures, based on their 

chemical or physical properties, leading to high selectivity and purity of the extracted 

components. 

 

2.1.3 CLASSIFICATION OF LIQUID MEMBRANE  

Liquid membranes can be classified into different types, including emulsion liquid 

membranes (ELMs), supported liquid membranes (SLMs), bulk liquid membranes 

(BLMs), strip dispersion membranes (SDMs), solvent-impregnated membranes (SIMs), 

polymer inclusion membranes (PIMs), and liquid membrane extraction modules 

(LMXMs).  

These types of liquid membranes differ in their composition and mode of operation.  

 

 ELMs – They use emulsifying agents to stabilize droplets of a carrier phase. 

Emulsion liquid membranes have a low thickness and a very large surface area per unit 

of volume, which makes the separation and accumulation process very quickly in the 

emulsion vehicle . In order to remove the transported species, the vehicles must be 
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created prior to the operation; they must be stable enough to minimise leakage to a 

minimum but not so stable that they can be destroyed after separation. As a result, the 

process requires several unit operations and isn't very attractive technologically. 

 SLMs immobilize a liquid phase on a porous support material. 

 BLMs have a liquid phase between two membranes. A water-immiscible liquid 

membrane phase is used in a U-tube that generally separates the aqueous feed and 

stripping phases of bulk liquid membranes. BLMs are frequently employed to determine 

the transport characteristics of new carriers, however they aren't very attractive 

technologically due to their small membrane surface area[28]. 

  SDMs use a continuous phase with a dispersed phase of stripping agent. 

  SIMs impregnate a solvent into a polymeric membrane. 

 PIMs contain an extractant in a polymeric membrane.  

 LMXMs are modular systems for selective mass transfer.  

  

2.2 SUPPORTED LIQUID MEMBRANE  

Supported Liquid Membrane (SLM) is a liquid membrane-based separation 

technology that uses a nondispersive membrane to selectively transport a target 

substance from a mixture. The supported liquid membrane (SLM) is a type of 

membrane that consists of a supported liquid layer sandwiched between two solid 

layers. The liquid layer contains a selective solvent that can selectively transport a target 

molecule from one side of the membrane to the other. The working of supported liquid 

membrane is represented diagrammatically in Figure 2.1. 

 

 The feed solution containing the target molecule is introduced on one side 

in the membrane is usually an organic solvent that can selectively transport certain 

molecules or ions across the membrane. This process occurs in three main steps: 
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1. Absorption: The feed solution containing the target molecules or ions is contacted 

with the liquid membrane. The target species selectively absorb into the liquid 

membrane through various mechanisms such as diffusion, complexation or ion-pairing. 

 

2. Transport: The absorbed species are transported across the liquid membrane by 

diffusion. The rate and selectivity of transport depends on the properties of the liquid 

membrane, such as its viscosity, polarity and affinity for the target species. 

 

3. Desorption: The target species are desorbed from the liquid membrane into the 

receiving solution on the other side of the membrane. This can occur spontaneously, or 

by addition of a desorbing agent. 

 

Figure 2.1 Separation process using supported liquid membrane 

 

2.2.1 USES OF SLM   

It is widely used for the simultaneous extraction and recovery of toxic 

metals like cadmium and lead from wastewater. Membrane-based separation is used for 

extraction and recovery of cadmium and lead that are more efficient, cost-effective, low 

energy consumption, and environmentally friendly. The process works by the selective 

partitioning of metal ions into a liquid membrane, which is then recovered and 

concentrated. The metal ions in the liquid membrane are then concentrated into a 
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separate fraction, leaving the remaining metal ions in the solution. The process is 

effective in removing cadmium and lead from a solution of metal ions since they have a 

higher partition coefficient than other metals. 

 

2.2.3 TYPES OF SLM  

SLM is divided into two types: 

2.2.3.1 FLAT SHEET SUPPORTED LIQUID MEMBRANE (FSSLM): 

It is the simplest form of the liquid membrane which uses a microporous 

solid support for the liquid membrane. The solid support is treated with the extractant 

and clamped between two half cells using gaskets to create two compartments. The feed 

solution is stored in one compartment, and the strip solution is kept in the other and 

stirred by mechanical stirrers [29]. 

 

2.2.3.2 HOLLOW FIBRE SUPPORTED LIQUID MEMBRANE (HFSLM): 

It is used to extract metal ions. The outer cell of the module is made up of a 

single nonporous substance, which prevents the solution from moving through the 

material. Many thin fibres are arranged in neat rows inside the shell [30]. With the help 

of pumps, the source phase travels through the fibres and the receiving phase travels 

through the shell side. 
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2.3 ARTIFICIAL NEURAL NETWORK  

ANN is a popular and flexible machine learning algorithm for modeling and 

predicting complex systems between input and output variables [31]. It is suitable for 

predicting many experimental data. MATLAB provides a comprehensive set of 

functions and tools for creating, training, and evaluating ANN. ANN consists of 

multiple layers of interconnected nodes, also called neurons. Each neuron receives one 

or more inputs, performs a mathematical operation on those inputs, and produces an 

output [31], [32]. The output of one neuron can be connected to the input of another 

neuron, forming a network of interconnected neurons. In Neural networks, the 

connections between their inputs and outputs are called architecture or topology. The 

architecture can be varied by changing the number of hidden layers or the number of 

neurons in the hidden layer. Each node processes the signal, operates on the data to 

produce the output, and has a variable magnitude associated with it called weight. 

The network can identify certain patterns in the dataset and then uses them for 

prediction, function estimation, etc.  

 

The neural network is composed of multiple layers that work together to process and 

transform input data into meaningful output. It is broadly divided into three layers:  

 

INPUT LAYER: The input layer neurons take in the input data, process it, and then 

send it on to the hidden layers for further processing. The number of neurons in the 

input layer corresponds to the number of parameters of input data.  

 

HIDDEN LAYER: These layers are located between the input and output layers. The 

number of hidden layers and the number of neurons in each layer depends on the 

complexity of the problem and the architecture of the network. Each neuron in the 

hidden layer performs a weighted sum of its input, applies an activation function, and 

passes the result to the next layer. 
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OUTPUT LAYER: this layer provides the final output of the neural network. The 

number of neurons in the output layer depends on the nature of the task.  

To measure the deviation between generated results and experimental results, we define 

a function called Mean Squared Error (M.S.E.). 

 

Mean squared error (MSE) is a function used to evaluate the performance of the 

network's predictions. It measures the average squared difference between the predicted 

output and actual output for a given input data set. The lower value of MSE indicates 

that prediction is closer to the actual output.  

 

Mean square error =
1

𝑛
∑ (𝑦𝑒𝑥𝑝
𝑛
𝑖=1 -𝑦𝑚𝑜𝑑𝑒𝑙)

2       (2.1) 

where, n is the number of the data point. 𝑦exp and 𝑦model represent the experimental 

output and model predictions, respectively 

 

2.3.1 LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt algorithm is an optimization method commonly used for 

solving nonlinear least squares problems, particularly in the context of training neural 

networks or fitting mathematical models to data. The Levenberg-Marquardt algorithm is 

known for its efficiency in finding the minimum of the objective function. It provides 

fast convergence for well-behaved problems and is less sensitive to the initial parameter 

estimates compared to other optimization techniques. It enhances the algorithm's 

robustness, convergence speed, applicability, stability, and user-friendliness, making it a 

popular choice for solving nonlinear least squares problems in various fields. 

Levenberg-Marquardt algorithm application extends beyond neural network training 

and is commonly used in various fields, including computer vision, robotics, and 

scientific data analysis. 
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CHAPTER 3 

PROCEDURE 

 

Data on the simultaneous extraction and recovery of cadmium and lead from wastewater 

was derived from relevant scholarly sources[8] that investigated the potential use of 

environment-friendly vegetable oils as solvents in liquid membrane separation 

techniques for transporting solutes. 

The experiment performed by [2] used  N-Methyl-N,N-dioctyloctan-1-

ammoniumchloride (Aliquat-336) as carrier agent, ethylenediaminetetraacetic acid 

(EDTA) as a stripping agent, polyvinylidene fluoride (PVDF) as a supporter and 

coconut oil-based flat sheet supported liquid membrane. They used the data to 

investigate the selectivity of individual metals with varying molar ratios in the feed 

solution.  

In this study, the extraction and recovery data were used to carry out the training of 

ANN. An evaluation of the experimental data from [8] and ANN assumptions are 

reported in Table 1. ANN model used a neural network fitting toolbox in MATLAB 

which uses a multi-layer network. Neurons in the hidden layer were optimized to layer 

size 7 to find the minimum MSE for the set of 41 experimental data points which was 

randomly divided into 3 sets to train, validate and test ANN.  
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Figure 3.1 Architecture of ANN 

 

The upper and lower range of the operating parameter is reported in Table 2. Using the 

same range, the data was simulated using Levenberg-Marquardt Algorithm in the 

feedforward approach. A surface graph was created by conducting simulations where 

two input parameters were changed within the range as reported in Table 2. One of the 

input parameters is considered as run time, varying the other parameter to plot the 

surface graphs. This allowed for an analysis of its effect on the separation of cadmium 

and lead, and how the variations in these two parameters interacted with each other.  

 

Table 2 - Inputs used for training the ANN model 

Input Parameters Range 

Run time (hr) 0.5-10 

Feed phase pH 3-7 

Carrier concentration (volume %) 0.25-1.0 

Stripping concentration (M) 0.01-0.05 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Artificial Neural Network Training and Validation: 

On Training, testing, and validating the data from experimental results of [8], a random 

selection of 70% of data was used for training, 15% was used for testing and 15% was used 

for validation. During training, the model learns from a labelled dataset, also known as the 

training dataset. The model adjusts its internal parameters through an optimization algorithm 

to minimize the difference between the predicted outputs and the true labels. The training 

dataset is typically divided into batches or mini-batches, and the model updates its parameters 

by computing gradients and propagating them through the network. No. of neurons in the 

hidden layer were optimized to layer size 7 as it achieved the minimum MSE. The MSE and 

Correlation coefficients between experimental result and model prediction (R) of the trained 

data is reported in Table 3. The regression plot depicts the relationship between experimental 

data and predicted data in Fig 4.1 which indicated the validation of the ANN model to predict 

the data by fitting with the experimental results. A correlation factor of more than 0.98 depicts 

the accuracy of predicting the data using the ANN model. 

On comparing the experimental results and predicted results, we found a maximum relative 

error of 15.7%. The absolute error is reported in Table 1. 

Table 3 – MSE and R value in training, validation and testing 

Steps No. of data points MSE Correlation coefficients between 

experimental result and model prediction (R) 

Training 29 7.7629 0.98531 

Validation 6 8.1126 0.98001 

Testing 6 8.6819 0.99172 
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Figure 4.1 Regression plots of experimental results and predicted results 

  

Figure  4.2 Experimental results vs. model predictions 
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4.2  Effect of feed phase pH: Fig 4.3 and 4.4 depict the effect of feed phase pH and run time 

on percentage extraction and recovery of cadmium and lead. The value of percentage 

extraction and recovery increased with increasing pH and run time. At low pH the cadmium 

and lead complex remain undissociated in the solvent inhibiting the extraction.  

 

Figure 4.3 Effect of feed phase pH and run time on extraction 

 

 

Figure 4.4 Effect of feed phase pH and run time on recovery 
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4.3  Effect of carrier concentration: 

The increase in the transportation of cadmium and lead is dependent on the rate of complex 

formation, which increases with the rise in no. of carrier. Fig 4.5 and 4.6 depict that on 

increasing in carrier concentration, percentage extraction and recovery increases but to a 

certain extent. An excessive rise in the concentration of carrier creates hindrance to the 

complex which decreases the rate of transport of cadmium and lead due to an increase in 

viscosity of the membrane phase which results in a low rate of diffusion. 

 

Figure 4.5 Effect of carrier concentration and run time on extraction 
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Figure 4.6 Effect of carrier concentration and run time on recovery 

 

4.4 Effect of stripping concentration: 

Fig 4.7 depicts the effect of stripping concentration on the percentage extraction of cadmium 

and lead. The graph shows the high rate of extraction during the initial hours with a low 

concentration of stripping agent. With increasing time and stripping concentration the 

percentage extraction reduces. This is caused by forming a saturated solution of stripping 

agent in the strip phase.  

 

Figure 4.7 Effect of stripping concentration and run time on extraction 
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Fig 4.8 depicts the effect of stripping concentration on the percentage recovery of cadmium 

and lead. The graph shows the low rate of recovery during the initial hours and eventually, 

recovery increases with increasing time and later decreases. The concentration of the stripping 

agent does not hold much impact on recovery as it impacts the extraction of cadmium and 

lead. 

 

Figure 4.8 Effect of stripping concentration and run time on recovery 
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CHAPTER 5 

CONCLUSION 

 

In this study, the artificial neural network approach successfully helped in modeling the 

separation of cadmium and lead using supported liquid membrane. The minimum mean 

squared error was found with seven nodes in the hidden layer with a correlation factor of 0.98. 

For a short run time, extraction increases with low stripping concentration. However, for 

longer run time, high feed phase pH, and high carrier concentration lead to a high percentage 

of extraction and recovery. 

We could conclude that optimum conditions for maximum extraction and recovery of 

cadmium and lead are high run time (9-10 hr), high feed phase pH (6-7), moderate carrier 

concentration (0.5% (v/v)) and low stripping concentration (0.1-0.2M). 
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APPENDICES 1 

 

Table 1 Comparison of experimental results and model prediction 

(Experimental data has been taken from [8] 

S.No. 

Initial 

feed 

sol. 

conc. 

(PPM) 

Volume 

of feed 

phase  

(ml) 

Volume 

of 

stripping 

phase  

(ml) 

Run 

time 

(hr) 

Feed 

phase 

pH 

Carrier 

conc. 

(Vol. %) 

Stripping 

Cons. 

(M) 

Experimental 

Result 

(%Extraction) 

Experimental 

Result 

(%Recovery) 

Model 

Prediction 

(%Extraction) 

Model 

Prediction 

(%Recovery) 

Absolute error 

(% Extraction) 

Absolute 

error(% 

Recovery) 

1 5 200 200 10 3.00121 0.5 0.015 34.7222 24.4895 33.66638076 24.63620226 3.040761368 -0.599041475 

2 5 200 200 10 3.49838 0.5 0.015 44.4444 36.2885 41.95294941 32.74844273 5.605769426 9.755314414 

3 5 200 200 10 3.98482 0.5 0.015 51.1111 44.78 52.12063582 43.12461824 -1.975179201 3.696698884 

4 5 200 200 10 4.49443 0.5 0.015 58.0555 49.1323 59.56851296 50.83921522 -2.606149225 -3.474120327 

5 5 200 200 10 5.00452 0.5 0.015 63.3333 56.2418 64.12065554 55.69391969 -1.243193607 0.974151458 

6 5 200 200 10 5.50266 0.5 0.015 69.7222 61.1472 68.98010661 61.03892169 1.064357395 0.177078121 

7 5 200 200 10 6.00097 0.5 0.015 75.5555 64.3962 74.05040169 66.67204565 1.992043348 -3.534130348 

8 5 200 200 10 6.47683 0.5 0.015 78.6111 66.8175 76.82135352 69.79368232 2.276709623 -4.454195859 

9 5 200 200 10 7.00162 0.5 0.015 73.3333 65.1011 77.87441668 71.04223601 -6.192434656 -9.126014782 

10 5 200 200 10 6.5 0.247239 0.015 71.7799 51.623 72.1753291 51.25266368 -0.550891133 0.717386287 

11 5 200 200 10 6.5 0.498732 0.015 79.0145 62.455 76.92068876 69.88423835 2.649907605 -11.89534601 

12 5 200 200 10 6.5 0.74612 0.015 68.8255 66.9448 71.13496139 67.12501826 -3.355531587 -0.26920427 

13 5 200 200 10 6.5 0.998409 0.015 63.9388 61.3211 62.86747074 60.98628522 1.675554222 0.546002574 

14 5 200 200 1 6.5 0.5 0.05 23.6264 9.74102 24.5957971 8.595332503 -4.103025019 11.76147361 

15 5 200 200 1.5 6.5 0.5 0.05 32.1096 14.2356 31.13089132 15.70017298 3.048025136 -10.2881015 

16 5 200 200 2 6.5 0.5 0.05 36.8868 22.0844 36.6263741 21.86555999 0.706013806 0.990925786 

17 5 200 200 3 6.5 0.5 0.05 45.7006 32.9406 44.92217407 31.93015489 1.703316645 3.067476351 

18 5 200 200 5 6.5 0.5 0.05 52.5874 44.2378 52.84550685 45.25047297 -0.490815 -2.289157622 

19 5 200 200 7 6.5 0.5 0.05 55.7746 52.939 54.50592213 52.10904761 2.274651666 1.567752305 

20 5 200 200 9 6.5 0.5 0.05 59.3282 59.0358 59.65428235 59.19852304 -0.549624552 -0.27563452 

21 5 200 200 10 6.5 0.5 0.05 61.4774 61.3438 62.67396246 62.07227782 -1.946345265 -1.187532917 

22 5 200 200 1.5 6.5 0.5 0.01 36.8268 29.1078 41.07637128 33.67001362 -11.53934438 -15.6735089 

23 5 200 200 2 6.5 0.5 0.01 45 44.0912 46.14072707 40.66066433 -2.534949041 7.780545032 

24 5 200 200 3 6.5 0.5 0.01 53.8754 59.4818 55.30077087 53.39430273 -2.645680349 10.23421832 

25 5 200 200 5 6.5 0.5 0.01 63.805 66.696 66.55789583 68.53672082 -4.314545609 -2.759866886 

26 5 200 200 7 6.5 0.5 0.01 69.9968 72.7906 71.69736148 72.85775335 -2.429484599 -0.092255523 

27 5 200 200 9 6.5 0.5 0.01 73.2058 75.0966 75.67361393 72.38808945 -3.371063395 3.606701967 

28 5 200 200 1 6.5 0.5 0.015 36.9598 21.6912 37.56984602 26.954559 -1.650566333 -24.26495076 

29 5 200 200 1.5 6.5 0.5 0.015 48.4038 34.5588 42.45368816 33.55917721 12.29265437 2.892527496 

30 5 200 200 2 6.5 0.5 0.015 53.5514 42.647 47.28253732 40.23501895 11.70625358 5.655687506 

31 5 200 200 3 6.5 0.5 0.015 60.145 54.7794 55.83469209 52.44298393 7.16652741 4.265136292 

32 5 200 200 5 6.5 0.5 0.015 69.2562 64.7058 66.50443722 67.69110687 3.973308937 -4.613661942 
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33 5 200 200 7 6.5 0.5 0.015 75.036 73.1618 71.65066515 72.47010987 4.511614221 0.945425243 

34 5 200 200 9 6.5 0.5 0.015 77.4784 79.4118 75.4438878 71.90816338 2.625908897 9.449019698 

35 5 200 200 10 6.5 0.5 0.015 78.8806 81.9854 76.90140904 69.88558622 2.509097248 14.7584982 

36 5 200 200 1.5 6.5 0.5 0.02 38.0376 30.263 43.79693825 33.52502843 -15.14117151 -10.7789328 

37 5 200 200 2 6.5 0.5 0.02 44.2922 40.004 48.22298195 39.65128783 -8.874659543 0.881692265 

38 5 200 200 3 6.5 0.5 0.02 52.7356 51.6728 55.98728947 51.00848503 -6.166023471 1.285618297 

39 5 200 200 5 6.5 0.5 0.02 61.8446 62.2308 66.1833777 66.41028375 -7.015612839 -6.716101593 

40 5 200 200 7 6.5 0.5 0.02 67.999 70.5602 71.4594659 71.86209203 -5.088995273 -1.84507984 

41 5 200 200 9 6.5 0.5 0.02 71.9208 72.4944 74.65768124 70.8036486 -3.805409898 2.332251042 
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