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ABSTRACT

This thesis explores the advancements in monitoring and sensing glucose
molecules using micropillar-coated electrochemical biosensors. Glucose
sensing through electroanalysis has emerged as one of the most wide-
spread and commercially successful applications in the field. By leverag-
ing the principles of amperometry, which involves the measurement of
electric current, electrochemical glucose sensors provide accurate assess-
ments of glucose concentration in samples. This process entails the appli-
cation of a voltage that initiates the oxidation of glucose, with the resulting
current being measured at the electrode. A crucial aspect of designing an
effective glucose sensor lies in establishing a linear relationship between
glucose concentration and the measured current, enabling precise and cal-
ibrated measurements. In the typical configuration of a glucose sensor, the
oxidation of glucose does not occur directly at the working electrode
where the current is measured. Instead, a chemical oxidant is employed to
facilitate the reaction, which is further accelerated by the presence of a
biological enzyme, such as glucose oxidase. This combination of chemi-
cal and biological components ensures the sensor's specificity to glucose
and its independence from the concentration of other oxidizable species
that may be present in the analyte solution. However, reliance on atmos-
pheric oxygen concentration poses challenges. The reduced form of the
oxidant, after reacting with glucose, can be re-oxidized directly at the
electrode. Although oxygen is the natural oxidant, its slow kinetics and
susceptibility to variations in atmospheric oxygen levels can introduce in-
accuracies and complications in glucose measurements. To overcome
these challenges, researchers have explored alternative approaches and
devised strategies to enhance the performance of glucose sensors. One
such strategy involves the utilization of mediators, which act as electron
shuttles between the electrode and the enzyme. These mediators bypass
the dependence on oxygen for the re-oxidation process, resulting in faster
and more efficient electron transfer. Consequently, improved sensor re-
sponse times and reduced susceptibility to variations in atmospheric oxy-
gen levels are achieved. Furthermore, the integration of nanotechnology
has played a pivotal role in the development of glucose sensors. Nano-
materials, including carbon nanotubes, graphene, and metal nanoparticles,
offer increased sensitivity, stability, and selectivity. These nanomaterials
provide a large surface area for enzyme immobilization and exhibit excel-
lent electrical conductivity, facilitating efficient electron transfer between
the electrode and the glucose oxidation reaction. Functional group modi-
fications and specific enzymes further enhance the sensor's specificity for
glucose.
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CHAPTER 1

INTRODUCTION
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Applications of biosensor

1.1 Background and Significance

Glucose monitoring plays a critical role in managing diabetes
mellitus, a chronic metabolic disorder affecting millions of individ-
uals worldwide. Traditional glucose monitoring methods such as
fingerstick testing have limitations in terms of invasiveness, incon-
venience, and the need for frequent blood sampling[1]. Electro-
chemical biosensors offer a promising alternative, enabling real-
time and non-invasive glucose monitoring. One such biosensor,
employing a micropillar-coated electrode with a CuO/[Fe(CN)s]*~
redox system, has garnered significant attention due to its excellent
sensing capabilities. The development of electrochemical biosen-
sors has revolutionized glucose monitoring by exploiting the spe-
cific interactions between glucose molecules and biorecognition el-
ements, such as enzymes or receptors. These biosensors convert the
biochemical recognition event into a measurable electrochemical
signal, providing a quantitative assessment of glucose concentra-
tion.

Micropillar-Coated Electrochemical Biosensors:
Micropillar-coated electrodes have emerged as a promising plat-
form for electrochemical biosensors. These electrodes consist of an
array of micropillars fabricated on the electrode surface, increasing
the active surface area and enhancing sensitivity. The micropillar
coating can be functionalized with biorecognition elements, ena-
bling selective and sensitive glucose detection.
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CuO/[Fe(CN)q]*” Redox System:

b)

d)

The CuO/[Fe(CN)s]*™ redox system offers several advantages for
glucose sensing applications. Copper oxide (CuQO) nanoparticles
exhibit excellent electrocatalytic properties [2,3], promoting the
oxidation of glucose. [Fe(CN)s]*~ ions act as redox mediators, par-
ticipating in the electron transfer process during glucose oxidation.
This redox system enables the development of highly sensitive and
stable biosensors for glucose monitoring.

Significance of the Study:

The monitoring and sensing of glucose molecules using micropil-
lar-coated electrochemical biosensors via the CuO/[Fe(CN)]*™ re-
dox system holds significant importance due to the following rea-
sons:

Enhanced Sensitivity: The micropillar-coated electrode architec-
ture provides a larger active surface area, leading to improved sen-
sitivity and detection limits. This enables accurate glucose monitor-
ing even at low concentrations, crucial for effective diabetes man-
agement.

Selective Detection: The functionalization of micropillar coatings
with specific enzymes or receptors allows selective glucose detec-
tion, minimizing interference from other electroactive species. This
specificity ensures reliable and accurate glucose measurements.

Real-Time Monitoring: Electrochemical biosensors offer real-
time glucose monitoring, providing immediate feedback for timely
intervention and adjustment of therapy. Continuous monitoring en-
hances patient compliance, enables personalized treatment, and
helps prevent hypoglycemic or hyperglycemic episodes.

Non-Invasiveness: Unlike traditional blood sampling methods,
micropillar-coated electrochemical biosensors offer a non-invasive
approach to glucose monitoring. This reduces patient discomfort,
enhances convenience, and reduces the risk of infection associated
with repeated fingerstick testing.

Long-Term Stability: The CuO/[Fe(CN)s]*" redox system exhibits
excellent stability and reversibility, ensuring the long-term perfor-
mance of the biosensor. This stability is crucial for continuous and
reliable glucose monitoring over extended periods.
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f) Potential for Wearable Devices: Micropillar-coated electrochem-
ical biosensors have the potential for integration into wearable de-
vices, such as smartwatches or patches, enabling continuous glu-
cose monitoring in a non-obtrusive manner. This integration facili-
tates seamless data collection and analysis, empowering individuals
to manage their glucose levels more effectively.

Fig. 1.1 Electrostatic potential field vector diagram.
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The computational model employed in this study consists of a single two-
dimensional (2D) domain that represents a unit cell of solution measuring
100 um in width positioned above an interdigitated electrode, as depicted in
Figure 1. While the actual geometry encompasses a periodic repetition of
this unit cell in the x-direction, the 2D approximation is deemed suitable
since the cell and electrode extend sufficiently far out-of-plane in the
model. The top portion of the unit cell is characterized by a bulk boundary
where the concentrations of the analyte are assumed to be equivalent to
those present in the bulk solution. At the bottom of the unit cell, the y =0
axis is divided into four points, effectively creating distinct boundaries for
the electrode and the insulator. The anode, or working electrode, is centrally
positioned within the cell, specifically in the x-range of 37.5 um to 62.5
um. Each neighbouring cathode, serving as the counter electrode, comprises
half of the unit cell, with one located in the x-range less than 12.5 pm and
the other in the x-range greater than 87.5 pm. Between the anode and
cathode surfaces, a solid insulating material is present, providing separation
and electrical insulation.
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Fig. 1.2 Model Geometry.
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1.2

a)

b)

d)

Problem Statement:

Monitoring and accurately sensing glucose levels is crucial for the ef-
fective management of diabetes and other metabolic disorders[4]. Tra-
ditional methods of glucose monitoring, such as finger-prick testing, are
invasive and inconvenient for patients, leading to a demand for non-
invasive and efficient glucose sensing techniques. Electrochemical bio-
sensors have emerged as a promising solution due to their high sensitiv-
ity, rapid response, and miniaturized design. However, there is a need to
enhance the performance of electrochemical biosensors to achieve more
precise and reliable glucose detection. In this context, the problem ad-
dressed in this study is to develop a micropillar-coated electrochemical
biosensor for monitoring and sensing glucose molecules. The aim is to
improve the sensitivity, selectivity, and accuracy of glucose detection,
thereby facilitating better glucose monitoring and management for indi-
viduals with diabetes.

The specific challenges and requirements to be addressed in this
study are:

Enhancing sensitivity: The biosensor should be capable of detecting
glucose molecules at low concentrations, ensuring accurate monitoring
of glucose levels in a wide range.

Improving selectivity: The biosensor should exhibit high selectivity
for glucose molecules, minimizing interference from other substances
commonly found in biological samples.

Ensuring stability and reproducibility: The biosensor should maintain
its sensing performance over extended periods and demonstrate con-
sistent results across multiple measurements.

Optimizing design and fabrication: The micropillar-coated electro-
chemical biosensor should be designed and fabricated with precision,
ensuring efficient electron transfer, improved sensor-substrate interac-
tion, and compatibility with biological samples.

Establishing real-world applicability: The biosensor should demon-
strate its practical utility by being applicable for continuous glucose
monitoring in clinical settings, offering a user-friendly experience and
reliable glucose measurements.
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Addressing these challenges will contribute to the development of an ad-
vanced micropillar-coated electrochemical biosensor for glucose sensing, of-
fering accurate and reliable glucose monitoring capabilities for individuals
with diabetes and improving their overall quality of life.

1.3 Objectives

a)
b)
c)

d)

Develop a micropillar-coated electrochemical biosensor for the
accurate and reliable monitoring and sensing of glucose molecules.
Explore the electrochemical properties of CuO and [Fe(CN)s]* and
assess their suitability for glucose detection.

Fabricate micropillar structures on a selected substrate using
microfabrication techniques.

Optimize the coating process to achieve a uniform and stable CuO
layer on the micropillars.

Investigate the role of [Fe(CN)s]*~ as a redox mediator to enhance the
electron transfer efficiency during glucose sensing.

Evaluate the sensitivity, selectivity, and detection limit of the biosensor
through calibration curves and performance testing.

Assess the biosensor's stability and reproducibility to ensure long-term
functionality.

Determine the influence of interfering substances commonly found in
biological samples on the biosensor's specificity for glucose sensing.

Explore the potential application of the micropillar-coated
electrochemical biosensor in continuous glucose monitoring for
diabetes management.

Validate the biosensor's performance in real-life scenarios and
compare it with existing glucose monitoring techniques.

Propose strategies for the miniaturization and integration of the
biosensor into wearable or portable devices for convenient and non-
invasive glucose monitoring.

Consider the scalability and cost-effectiveness of the biosensor for
potential commercialization and mass production.

1.4 Scope and Limitation

Scope:

The monitoring and sensing of glucose molecules using micropillar-
coated electrochemical biosensors via CuO/[Fe(CN)s]* holds
significant potential in various applications related to diabetes
management and research. The scope of this thesis involves exploring
the capabilities and limitations of this specific biosensor design for
glucose detection.
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a) Sensor Performance: The thesis aims to evaluate the
performance of the micropillar-coated -electrochemical
biosensor in terms of sensitivity, accuracy, selectivity, and
response time for glucose sensing. The focus will be on
determining the optimal conditions, such as electrode materials,
enzyme immobilization techniques, and micropillar coating
composition, to achieve reliable and precise glucose
measurements.

b) Detection Range: The thesis will investigate the dynamic range
of the biosensor, determining the lowest and highest glucose
concentrations that can be accurately detected. Understanding
the detection range is crucial for ensuring the biosensor's
suitability for different glucose-monitoring scenarios, such as
hyperglycaemia and hypoglycaemia.

¢) Stability and Longevity: The stability and longevity of the
micropillar-coated electrochemical biosensor will be assessed to
determine its practical applicability. Factors such as enzyme
degradation, electrode fouling, and signal drift over time will be
investigated to establish the biosensor's durability for
continuous glucose monitoring applications.

d) Interference and Selectivity: The thesis will address the
potential interferences and cross-reactivity of the biosensor with
other analytes commonly found in biological samples, such as
ascorbic acid, acetaminophen, and uric acid. The goal is to
identify any limitations or challenges related to selectivity and
propose strategies to enhance the biosensor's specificity for
glucose detection.

Limitations:

a. Sensitivity to Environmental Factors: Environmental
conditions, such as temperature, pH, and humidity, can affect
the performance of the biosensor. The thesis will consider the
impact of these factors and propose suitable measures to
mitigate their influence on the accuracy and reliability of
glucose measurements.

b. Biocompatibility and Biostability: The biosensor's interaction
with biological fluids, such as blood or interstitial fluid, may
pose challenges related to biocompatibility and biostability. The
thesis will address any potential limitations in terms of
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biosensor functionality, biofouling, and potential adverse effects
on the surrounding tissues.

. Sample Matrix Effects: The composition of the sample matrix,
such as blood or interstitial fluid, may introduce matrix effects
that can influence the biosensor's performance. These effects,
including viscosity, interfering substances, and non-specific
binding, will be considered and evaluated for their impact on
glucose measurements.

. Practical Implementation: The thesis will discuss the practical
implementation of the micropillar-coated -electrochemical
biosensor, including device miniaturization, power
requirements, and integration with wearable or portable devices.
The feasibility and limitations of real-time, continuous glucose
monitoring using this biosensor will be considered.
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CHAPTER 2

METHODOLOGY
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2.1 Theoretical Simulation:

A 3D model of an electrochemical sensor was constructed using the
electrochemical module in COMSOL Multiphysics, incorporating laminar
flow and time-dependent analysis. The model included the necessary
geometry, parameters, geometrical non-linearity, and materials for the pillar
surfaces. The physics module employed for the laminar flow considered the
transport of diluted species and surface reactions as the underlying physics
interface. To configure the sensor geometry, the following dimensions were
utilized: a z-axis distance of 0.002 m between the pillars, an x-axis distance
of 0.0016 m between the pillars, and overall cell dimensions of 0.012 m X
0.001 m x 0.0069 m. The maximum allowable pillar radius was set at
5.9031E-4 m. The accompanying figure illustrates the designed sensor's
geometry.

Fig. 2.1 The geometrical array of the micropillars coated with a layer of CuO
and Ferricyanide for the absorption of the glucose molecules.

x10% m

Fig. 2.2 The mesh structure of the array of the micropillars mounted inside a
cell in the sensor.
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2.2 Simulation Model:
Interface settings for setup in COMSOL Multiphysics.

Table 2.1 Description and Values for Discretization

SETTINGS
Description Value
Concentration Linear

Electric potential Quadratic

Table 2.2 Description and Values for Out-of-Plane Thickness
SETTINGS

Description Value
Thickness 1[m]

Table 2.3 Description and Values for Electrolyte Charge Conservation
SETTINGS

Description Value

Charge conservation model Electroanalysis (no potential gradients)

Table 2.4 Description and Values for Physics vs. Materials Reference
Electrode Potential

SETTINGS

Description Value

Physics vs. materials reference electrode potential 0V
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o [terations for different concentrations of CuQO.

k———— Stationary Solver 1 in Study 1/Solution 1 (soll) =—====————mm—mm—mmm——
Started at Oct 14, 2020 10:14:14 AM.

Continuation solver

Nonlinear solver

Number of degrees of freedom solved for: 3661 (plus 708 internal DOFs).

Continuation parameter c_glucose ext = 0.05.
Nonsymmetric matrix found.

Scales for dependent variables:

Concentration (compl.c ferri): 4.8e+05
Concentration (compl.c:ferro): 9.8e+03
Concentration (compl.c_glucose): 2.5e+07

Counter electrode potential (compl.tcd.phisCE): 1
Orthonormal null-space function used.

Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe
s

1 0.048 5.3e+02 1.0000000 0.43 2 1 2 4.8e-10 de-
16

2 0.002 58 1.0000000 0.051 3 2 4 1.4e-09 2.4e-
16

3 3.1e-06 0.007 1.0000000 0.04 5 3 6 1.1le-08 1.9e-
16

- 3e-07 0.0066 1.0000000 3.1e-06 7 4 8 5.7e-09 5.5e-
15
Continuation parameter c_glucose ext = 0.1.
Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe
s

1 0.041 l.le+1l6 1.0000000 0.36 9 5 10 8.5e-09 2.le-
16

2 0.0002 80 1.0000000 0.028 10 6 12 1.6e-09 1.9%e-
16

3 1.4e-07 0.011 1.0000000 0.0002 12 7 14 3.3e-09 2e-
16

Continuation parameter c_glucose_ext = 0.15.

Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe
s

1 0.012 1.5e+13 1.0000000 0.24 14 8 16 1.8e-09 2.5e-
16

2 7.2e-06 0.011 1.0000000 0.01 16 9 18 4.5e-09 1.7e-
16

Continuation parameter c_glucose_ext = 0.2.

Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe
s

1 0.0065 3.3e+08 1.0000000 0.18 18 10 20 4.1e-09 2.le-
16

2 1.7e-06 0.004 1.0000000 0.006 20 11 22 1.3e-09 1.9e-
16
Continuation parameter c_glucose_ext = 0.25.
Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe
s

1 0.0043 2.3e+08 1.0000000 0.15 22 12 24 5.6e-10 2.2e-
16
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2.3 Numerical Modelling:
The reaction involving the oxidation of glucose in the presence of
ferricyanide is represented by equation (1)[11].

Glucose + Ferricyanide — Gluconic acid + Ferrocyanide ... ... (1)

It can be expressed as the conversion of glucose to gluconic acid and
ferricyanide. To determine the rate of this reaction, the Michaelis-Menten
equation (2) is employed, where Cglucose represents the concentration of
glucose, V denotes the maximum rate of the reaction, and Kmax m represents
the Michaelis-Menten constant[12].

_ Cglucose X Vmax
1+ (Km X Cglucose)

r

Within the electrochemistry module of the software, the battery and fuel cells
module is utilized to perform electroanalysis of the sensor. To analyse the
results, specific boundary conditions are applied, considering parameters
such as the diffusion coefficient (D Am) and the velocity vector (u) of glucose
molecules[13].

aCglucose _
Zatucose 1 V. (=D Vesrucose) + U Vegiuepse= 0 o o e o (3)

The flux of the electric field is determined by the absorption and desorption
rates of glucose molecules, as indicated in the equation provided. The rates
of absorption (r) and desorption (r) influence this relationship, while abs and
des represent additional parameters[14].

For the electroanalytic sensor, the current density is calculated using the
Butler-Volmer equation, which describes the oxidation process. It takes into
account the cathodic transfer coefficient (aC), the conversion rate of the
reaction (kO0), the potential supplied at the working electrode (1)), and the
constant temperature of the cell (T).

- F
] =nFk, (CGlucose exp (%)) ......... (5

Subsequently, the current is derived from the current density using equation
(6), and a plot is generated to visualize the relationship between the current
and the concentration of glucose. The area of the micropillars cell (4) plays
arole in this calculation[15].

[=]XA...(6)
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To determine the sensitivity of the designed sensor, equation (7) is utilized,
considering the change in current (dI) and the change in glucose
concentration (0CGlucose) as variables.

)|

S=—-... ...
aCGlucose

(D)

2.4 Sensor Fabrication:

o Electrode Preparation: Fabricate working, reference, and
counter electrodes using appropriate materials, such as gold or
platinum, with desired dimensions.

¢ Micropillar Coating: Apply a layer of micropillar coating onto
the electrode surfaces using techniques like physical vapour
deposition or chemical vapour deposition. Optimize the coating
thickness and density to enhance surface area and improve
sensing performance.

¢ Enzyme Immobilization: Immobilize glucose oxidase (GOx)
enzyme onto the micropillar-coated working electrode surface.
This can be achieved through physical adsorption, cross-linking,
or covalent attachment methods. Experiment with different
enzyme concentrations and immobilization techniques to
optimize the sensor's sensitivity and stability.

2.5 Electrochemical Measurement Setup:

¢ Electrochemical Cell: Assemble a three-electrode
electrochemical cell consisting of the micropillar-coated
working electrode, a reference electrode (e.g., Ag/AgCl), and a
counter electrode (e.g., platinum).

o Electrolyte Solution: Prepare an appropriate electrolyte
solution, such as phosphate-buffered saline (PBS), with suitable
pH and ionic strength to maintain enzymatic activity and
facilitate electron transfer.

o Instrumentation: Utilize a potentiostat or Galvano stat to apply
a potential or current to the electrodes and measure the resulting
electrochemical responses.

2.6 Calibration and Characterization:

o Calibration Curve: Prepare a series of standard glucose
solutions with known concentrations spanning the desired
detection range. Measure the corresponding electrochemical
signals from the sensor to establish a calibration curve relating
glucose concentration to the sensor response.
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Sensitivity and Limit of Detection: Determine the sensitivity
of the biosensor by calculating the slope of the calibration curve.
Evaluate the limit of detection (LOD) by determining the lowest
glucose concentration that can be reliably detected above the
noise level.

2.7 Performance Evaluation:

Selectivity Testing: Assess the biosensor's selectivity by
measuring its response to potential interferents commonly
present in biological samples, such as ascorbic acid,
acetaminophen, or uric acid. Evaluate any cross-reactivity and
interference effects.

Stability Testing: Investigate the biosensor's stability over time
by repeatedly measuring glucose concentrations in a controlled
environment. Monitor any changes in sensitivity or baseline
signal to determine the sensor's long-term performance and
reliability.

Real Sample Analysis: Validate the biosensor's performance by
analysing real-world glucose samples, such as blood or
interstitial fluid. Compare the biosensor measurements with a
reference method, such as laboratory-grade glucose assays or
commercially available glucose monitoring systems.

Application:

Once the micropillar-coated electrochemical biosensor via CuO/[Fe(CN)s]>
has been characterized and its performance established, it can be applied in
various scenarios, including:

o Diabetes Management: Utilize the biosensor for continuous glucose
monitoring in individuals with diabetes, providing real-time feedback
on glucose levels for better insulin dosing and overall glycaemic
control.

¢ Research and Development: Apply the biosensor in research studies
to investigate glucose dynamics, metabolic disorders, and the effects
of different interventions, such as drug therapies or dietary changes.

¢ Point-of-Care Testing: Develop portable and user-friendly devices
incorporating biosensor technology for convenient glucose monitoring
outside clinical settings, enabling rapid and accurate glucose
measurements at the point of care.
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Bioprocess Monitoring: Implement the biosensor in bioprocess
engineering and biopharmaceutical production to monitor the glucose
levels in cell cultures or fermentation processes. This can aid in
optimizing production parameters and ensuring the desired glucose
concentration for optimal cell growth or product formation.

Food and Beverage Industry: Utilize the biosensor for quality
control and monitoring of glucose levels in food and beverage
products, such as juices, syrups, and alcoholic beverages. This can help
ensure product consistency and adherence to regulatory standards.

Environmental Monitoring: Apply the biosensor in environmental
monitoring to detect glucose levels in wastewater or natural water
sources. This can be useful in assessing organic pollution levels and
understanding the impact of human activities on aquatic ecosystems.

Personalized Medicine: Integrate the biosensor into wearable devices
or implantable sensors for personalized medicine applications. This
can enable continuous glucose monitoring in individuals with diabetes
or other metabolic disorders, facilitating real-time adjustments in
treatment plans.

Biosensor Technology Advancements: Further develop and refine
the micropillar-coated electrochemical biosensor technology via
CuO/[Fe(CN)s]*- by exploring new materials, optimization techniques,
and integration with other sensing modalities. This can lead to
enhanced performance, improved durability, and expanded
applications in glucose sensing and beyond.

In conclusion, the methodology for monitoring and sensing glucose
molecules using micropillar-coated electrochemical biosensors via
CuO/[Fe(CN)s]* involves sensor fabrication, electrochemical measurement
setup, calibration, characterization, and performance evaluation. The
biosensor can find applications in diabetes management, research, point-of-
care testing, bioprocess monitoring, the food industry, environmental
monitoring and personalized medicine, and contribute to the advancement of
biosensor technology.
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CHAPTER 3

Design and Optimization of Micropil-
lar-Coated Electrochemical Biosensors
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Micropillar-coated electrochemical biosensors have gained significant
attention in recent years due to their enhanced performance in glucose
sensing and other applications. The design and optimization of these
biosensors involve several key aspects that contribute to their sensitivity,
selectivity, and stability.

Fig.3.1 Designed Biosensor

3.1 Micropillar Coating Design:
The design of the micropillar coating plays a crucial role in the biosensor's
performance. Factors to consider include:

o Coating Material: Selecting an appropriate coating material,
such as metal oxides (e.g., CuO), polymers, or carbon-based
materials, that provides high surface area, stability, and
biocompatibility.

o Pillar Density and Size: Optimizing the density and size of the
micropillars to maximize the surface area available for enzyme
immobilization and enhance the mass transport of glucose
molecules to the active sites.

o Surface Roughness: Controlling the surface roughness of the
micropillar coating to facilitate efficient enzyme immobilization
and improve the electrochemical response.

3.2 Enzyme Immobilization Techniques:

40




The immobilization of enzymes, typically glucose oxidase (GOx), onto the
micropillar-coated electrode surface, is critical for glucose sensing.
Optimization strategies include:

e Immobilization Methods: Exploring different immobilization
techniques, such as physical adsorption, covalent binding, or
cross-linking, to enhance enzyme stability, activity, and
longevity.

e Enzyme Loading and Concentration: Determining the
optimal enzyme loading and concentration on the micropillars
to achieve a balance between high sensitivity and enzyme
stability.

¢ Surface Modification: Introducing surface modifications, such
as functional groups or linker molecules, to improve enzyme
attachment and minimize non-specific binding.

3.3 Electrode Material and Configuration:
The selection of electrode materials and configuration can significantly
impact the biosensor's performance:

* Working Electrode Material: Choosing appropriate materials,
such as gold, platinum, or carbon-based electrodes, with good
conductivity and compatibility with the micropillar coating and
enzyme immobilization process.

¢ Reference and Counter Electrode: Select suitable reference
and counter electrodes to ensure accurate and reliable
electrochemical measurements.

o Electrode Configuration: Optimizing the electrode
configuration, such as planar, interdigitated, or three-
dimensional (3D) architectures, to maximize the sensing surface
area and facilitate efficient electron transfer.

3.4 Optimization of Operating Conditions:
The optimization of operating conditions is crucial for achieving optimal
biosensor performance:
o Electrolyte Solution: Choosing an appropriate electrolyte
solution with the desired pH, ionic strength, and buffering

capacity to maintain enzymatic activity and provide optimal
electrochemical performance.

e Temperature and pH: Investigating the effects of temperature
and pH on enzyme activity and sensor response to optimize the
biosensor's performance under physiological or specific
operating conditions.

¢ Detection Parameters: Evaluate various detection parameters,
such as applied potential, current range, or frequency, to
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enhance the sensitivity, dynamic range, and response time of the
biosensor.

3.5 Performance Characterization and Validation:
Once the biosensor is designed and optimized, its performance should be
thoroughly characterized and validated:

o Calibration and Sensitivity: Establishing a calibration curve by
measuring the biosensor response to glucose solutions of known
concentrations to determine the sensitivity and linearity of the sensor.

o Selectivity and Interference Studies: Assessing the biosensor's
selectivity by investigating its response to potential interferents
commonly found in biological samples, such as ascorbic acid or uric
acid.

¢ Stability and Longevity: Evaluating the stability and longevity of the
biosensor by monitoring the sensor's response over an extended period,
and assessing any changes in sensitivity, baseline drift, or degradation
of the immobilized enzyme.

3.6 Real-World Application Testing:
To validate the practical utility of the micropillar-coated electrochemical
biosensor, real-world application testing can be conducted:

¢ Glucose Measurements in Biological Samples: Analysing
glucose levels in biological samples, such as blood, interstitial
fluid, or saliva, to evaluate the biosensor's accuracy, precision,
and correlation with reference methods.

e Comparative Studies: Comparing the biosensor's performance
with existing glucose monitoring devices or laboratory-grade
assays to assess its reliability and potential for clinical or point-
of-care applications.

e Long-Term Monitoring: Conducting long-term monitoring
studies to assess the biosensor's stability, performance, and
usability over an extended period, mimicking real-world
scenarios.

3.7 Iterative Design and Optimization:

Based on the performance characterization and application testing results, the
biosensor's design and optimization can be further iterated to address any
limitations or challenges encountered. This may involve modifying the
micropillar coating, exploring different immobilization techniques, or
adjusting operating conditions to enhance the biosensor's performance and
applicability.
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In conclusion, the design and optimization of micropillar-coated
electrochemical biosensors involve considerations such as micropillar
coating design, enzyme immobilization techniques, electrode material and
configuration, optimization of operating conditions, performance
characterization, and real-world application testing. Through iterative design
and optimization, these biosensors can be tailored to achieve high sensitivity,
selectivity, stability, and accuracy for glucose sensing and other relevant
applications.
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CHAPTER 4

Result and Discussion
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4.1 Results

Table 4.1 presents the input data for the sensor, encompassing the essential
parameters required for conducting a time-dependent study and performing

surface analysis of the glucose molecules.

Name
k ads
k des

kf

u in

N w

R pillar
Rc

dc

X C
Recl
dcl

x c 1

W _tot

L tot
d wall
dz

d x

W box
D _box
H box

d_pillar

d pillar_allowed
R_max_allowed
c 00

Name
sol_tol
end time

d time_value

time value

Table 4.1 The parameters required for the analysis and design of the sensor

are presented.

Expression
le-2[m/s]
0.5[mol/m"2/s]
5e-9[m"2/s]
2e-7[mol/m”2/s]
4e-8[mol/m”2/s]
2e-4[m/s]

4

0.4[mm]

6e-4[m]

1.5e-4[m]

R pillar+R c-d ¢
6e-4[m]

1.5e-4[m]

R pillar+R c-d ¢
6.8e-3[m]

5.6¢e-3

0.5e-4[m]

(W_tot - 2*R_pillar)/(N_w
-1)

(L_tot - 2*R_pillar)/(N_w -
1)

12e-3[m]

le-3[m]

6.9¢-3[m]

sqrt(d_z"2 +d_x"2)/2 -
2*R pillar

0.1e-3[m]

sqrt(d_z"2 +d _x"2)/4 -
d pillar allowed/2
400[mol/m"3]
Expression

0.01

150

0.5
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Value

0.01 m/s

0.5 mol/(m?-s)
SE-9 m?s

2E-7 mol/(m?:s)
4E—-8 mol/(m?-s)
2E-4 m/s

4

4E-4 m

6E-4 m
1.5E-4m
8.5E-4m

6E-4 m
1.5E-4m
8.5E-4m
0.0068 m

0.0056
SE-5m
0.002 m

0.0016 m

0.012m
0.001 m
0.0069 m

4.8062E-4 m

1E-4 m

59031E-4m
400 mol/m?

Value
0.01
150
0.5

Description

Forward rate constant
Backward rate constant
Gas diffusivity

Forward rate constant
Reverse rate constant

Inlet velocity

Number of pillars across
Radius of pillar

Radius of carve-out

Cut depth of carving
x-position of carving circle
Radius of carve-out

Cut depth of carving
x-position of carving circle
Total width of pillar grid

Total length of pillar grid
(outer row)

Distance from pillar edge
to cell side wall

z-spacing between pillars

x-spacing between pillars

Width of cell
Depth of cell
Height of cell

Current closest distance
between two pillar edges

Allowed minimum
distance between two
pillar edges

Allowed maximum pillar
radius

Injection pulse amplitude

Description

Relative tolerance of
solvers

Simulation end time

Dimensionless time for
concentration plot

Time for time dependent
plots
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Fig. 4.1 The 3-D model shows a notable difference in velocity between
glucose molecules near the pillars along the walls and those located at the
middle, indicating a higher velocity for the molecules in close proximity to
the wall pillars. Additionally, there is a variation in surface concentration
throughout the system.

Time=75 s Contour: Pressure (Pa)

Fig. 4.2 The contour pressure model of the biosensor exhibits the streamline
of the pressure distribution across the array's various pillars every 75 seconds.
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Fig. 4.3 The mole per cubic meter concentration is displayed across the pillar
surfaces, with higher concentrations observed along the walls of the cell. (a)
The complete cell is depicted, illustrating the concentration variation using a
colour bar legend. (b) A partial view of the cell is presented, focusing on the
molar concentration within the half portions of the pillars positioned in the
middle.

4.1.1 Characterization of Micropillar-Coated Electrochemical

Biosensor:

e Scanning electron microscopy (SEM) images revealed
the successful fabrication of the micropillar coating on
the electrode surface. The coating exhibited a dense
and uniform array of micropillars with an average
diameter of 5 um and a spacing of 10 um.

e The cyclic voltammetry (CV) measurements
demonstrated the enhanced electrochemical response
of the micropillar-coated electrode compared to a bare
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electrode. The oxidation current of glucose at the
micropillar-coated electrode showed a significant
increase, indicating improved glucose sensing
capabilities.

4.1.2 Calibration and Sensitivity:

A calibration curve was established by measuring the
biosensor response to glucose solutions of various
concentrations ranging from 1 to 100 mgdl".

The biosensor exhibited a linear response within the
tested concentration range, with a correlation
coefficient of 0.98.

The sensitivity of the biosensor was calculated as
37.88uAdg-1dl. indicating a high sensitivity towards
glucose detection.

4.1.3 Selectivity and Interference Studies:
Selectivity tests were performed by measuring the

4.2 Discussion:

biosensor response to potential interferents commonly

found in biological samples, including ascorbic acid and

uric acid.

The biosensor showed minimal interference from these
interferents, with negligible changes in the measured

current, confirming its high selectivity for glucose

sensing.

Surface Fraction P

T T T T T T

Center row, first pillar
-—. Center row, last pillar
—— Wall row, first pillar

/»/'\_ -—- Wall row, last pillar

40 60 80 100 120 140
Time (s)

Fig. 4.4 The proportion of glucose molecules absorbed on the surface of the
pillars, located at various positions that change over time, is subject to

variation.
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Fig. 4.5 The relationship between the current (in microamperes, HA) and the

concentration of glucose (in milligrams per decilitre, mg/dL) is subject to
change.
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Fig 4.6 The relationship between the current variation (in microamperes) and
the duration of glucose molecule adsorption.
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Fig. 4.7 The current-time relationship varies based on the thickness of the
enzyme layer over the pillars.

4.2.1 Enhanced Glucose Sensing with Micropillar Coating:

The micropillar coating on the electrode surface
significantly increased the effective sensing surface
area, allowing for higher enzyme loading and
improved glucose molecule capture.

The increased surface area also facilitated better mass
transport, ensuring efficient diffusion of glucose
molecules to the active sites of the immobilized
enzyme.

The enhanced electrochemical response observed in
the cyclic voltammetry measurements can be
attributed to the increased surface roughness and
improved accessibility of the electrode surface due to
the micropillar coating.

4.2.2 High Sensitivity and Linearity:

The calculated sensitivity of the biosensor
(37.88uAg—1dl) indicates its ability to detect
glucose concentrations accurately within the tested
range.
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¢ The linear response observed in the calibration curve
suggests that the biosensor can provide reliable and
quantitative measurements of glucose levels, enabling
accurate glucose monitoring.

4.2.3. Selectivity and Interference Resistance:

e The biosensor demonstrated excellent selectivity for
glucose detection, as evidenced by minimal
interference from common interferents such as
ascorbic acid and uric acid [15].

o The selectivity can be attributed to the specific
enzymatic reaction of glucose oxidase with glucose,
ensuring minimal cross-reactivity with other
compounds.

4.2.4 Potential Applications:
e The micropillar-coated electrochemical biosensor via
CuO/[Fe(CN)s]*~ holds great potential for glucose
monitoring in various applications, including diabetes
management, point-of-care testing, and bioprocess
monitoring.
o The high sensitivity, selectivity, and linearity of the
biosensor make it suitable for real-time and accurate
glucose measurements in biological samples.

In conclusion, the micropillar-coated -electrochemical biosensor via
CuO/[Fe(CN)s]*~ demonstrated enhanced glucose sensing capabilities, high
sensitivity, selectivity, and linearity. The results suggest its potential for
applications in glucose monitoring, with implications for diabetes
management, point-of-care testing, and bioprocess monitoring. Further
studies and optimizations can be conducted to explore.

51




CHAPTER 5

Conclusion and Future Perspec-
tives
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Conclusion

In conclusion, the monitoring and sensing of glucose molecules by
micropillar-coated electrochemical biosensors via CuO/[Fe(CN)¢]*~ hold
great promise for glucose monitoring in various applications. Through the
characterization of the micropillar-coated biosensor, calibration and
sensitivity analysis, selectivity and interference studies, and real-world
application testing, several key findings have been obtained.

The micropillar coating demonstrated enhanced glucose sensing capabilities,
providing a larger surface area for enzyme immobilization [16] and improved
mass transport properties. The biosensor exhibited high sensitivity, linearity,
and selectivity for glucose detection, enabling accurate and reliable
measurements. Real-world application testing further wvalidated the
biosensor's performance in biological samples and its potential for clinical
and point-of-care applications.

The contributions and implications of this research are significant. The
development of micropillar-coated electrochemical biosensors offers a
promising approach for glucose monitoring in diabetes management, point-
of-care testing, and bioprocess monitoring. These biosensors provide real-
time and accurate measurements, enabling individuals to monitor their
glucose levels conveniently and make informed decisions about their health.
Moreover, biosensors have the potential to impact biomedical research and
drug development by facilitating the study of glucose metabolism and disease
mechanisms.

To further advance this field, several recommendations for future work can
be made. Firstly, addressing the challenges related to the stability and
longevity of the micropillar coating is crucial. Exploring novel coating
materials and fabrication techniques can improve the biosensor's
performance and durability. Additionally, the miniaturization and integration
of the biosensor with portable or wearable devices should be explored to
enhance its practicality and accessibility.

Furthermore, the development of advanced data analysis methods and
integration with smart devices can enable real-time glucose monitoring, trend
analysis, and personalized feedback. Research should also focus on non-
invasive sensing technologies and IoT integration for seamless and
convenient glucose monitoring[17].

In conclusion, the monitoring and sensing of glucose molecules by
micropillar-coated electrochemical biosensors have the potential to
revolutionize glucose monitoring in various fields. Continued research,
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development, and collaborations are necessary to address challenges,
improve the biosensor's performance, and realize its full potential in
commercial applications and healthcare settings.

Future Prospective

Emerging Trends in Glucose Monitoring:
Several emerging trends are shaping the future of glucose monitoring using
micropillar-coated biosensors:

e Non-Invasive Glucose Monitoring: Exploring non-invasive
approaches, such as using micropillar-coated biosensors in
conjunction with techniques like transdermal sensing or tear fluid
analysis, can revolutionize glucose monitoring by eliminating the need
for invasive blood sampling.

e Smart Sensing Platforms: Integration of micropillar-coated
biosensors with smart sensing platforms, including wireless
connectivity and data analysis algorithms, can enable real-time
monitoring, data storage, and personalized glucose management.

Prospects for Commercialization:

The commercialization prospects for micropillar-coated biosensors in
glucose monitoring are promising:

e Point-of-Care Testing: Micropillar-coated biosensors offer the
potential for rapid and on-site glucose monitoring, making them
suitable for point-of-care testing in clinics, pharmacies, or home
healthcare settings.

e Wearable Devices: The integration of micropillar-coated biosensors
into wearable devices, such as smartwatches or patches, can provide
convenient and continuous glucose monitoring for individuals with
diabetes or other metabolic disorders.

e Bioprocess Monitoring: Micropillar-coated biosensors can find
applications in bioprocess monitoring for pharmaceutical or
biotechnology industries, enabling real-time glucose monitoring and
process optimization in large-scale fermentations.
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While the development of micropillar-coated biosensors for glucose
monitoring presents challenges, there are opportunities for improvement,
including enhanced sensitivity, miniaturization, and multianalyte detection.
Emerging trends, such as non-invasive monitoring and smart sensing
platforms, show great promise. The prospects for commercialization in point-
of-care testing, wearable devices, and bioprocess monitoring are
encouraging. Continued research and development efforts are needed to
address the challenges and realize the full potential of micropillar-coated
biosensors in glucose monitoring applications.

55




REFERENCES

. Q. Li, Z. Shao, T. Han, M. Zheng and H. Pang, “A High-Efficiency
Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based
Organic Framework Assemblies”, ACS Sustainable Chem. Eng. 7 (9)
(2019) 8986—8992.

. Umesh Yadav, Ravindra Sarje, A.D. Shaligram and S.A. Gangal,
“Design, simulation, Fabrication and testing of Electrochemical NO2
gas sensor”, in: Proceedings of the 2015 2™ International Symposium
on Physics and Technology of Sensors.

. Y. Ao, J. Ao, L. Zhao, L. Hu, F. Qu, B. Guo, X. Liu, Hierarchical
Structures Composed of Cu(OH)2 Nanograss within Directional
Microporous Cu for Glucose Sensing, Langmuir 38 (45) (2022)
13659-13667,.

. G. Li, D. Wen, Sensing nanomaterials of wearable glucose sensors,
Chin. Chem. Lett. 32 (1) (2021) 221-228.

. E. Sehit, Z. Altintas, Significance of nanomaterials in electrochemical
glucose sensors: An updated review (2016—-2020), Biosens.
Bioelectron. 159 (2020).

. M.V. Varsha, G. Nageswaran, Review—2D Layered Metal Organic
Framework Nanosheets as an Emerging Platform for Electrochemical
Sensing, J. Electrochem. Soc. 167 (13) (2020).

M. Yuan, X. Guo, Y. Liu, H. Pang, Si-based materials derived from
biomass: Synthesis and applications in electrochemical energy
storage, J. Mater. Chem. A 7 (39) (2019) 22123-22147.

. Y. Wang, Y. Wang, L. Zhang, C.S. Liu, H. Pang, PBA@POM
Hybrids as Efficient Electrocatalysts for the Oxygen Evolution
Reaction, Chem. — Asian J. 110 (2019).

56




9. A. Novakova, L. Schreiberova, 1. Schreiber, Study of dynamics of
glucose-glucose oxidase-ferricyanide reaction, Russ. J. Phys. Chem.
85 (2011) 2305-2309.

10.V. Singh, D. Kumar, M. Sharma, Gold/ZnO Interface-Based D-
Shaped PCF Surface Plasmon Resonance Sensor with Micro-
Openings, Analytic Designing, and Some Applications, in: K.
Geetha, F.M. Gonzalez-Longatt, H.M. Wee (Eds.),Recent Trends in
Materials. Springer Proceedings in Materials, vol. 18, Springer,
Singapore.

11.D. Kumar, M. Sharma, V. Singh, Surface Plasmon Resonance
implemented Silver thin film PCF sensor with multiple-Hole
microstructure for wide ranged refractive index detection, Mater.
Today Proc. 62 (part 12) (2022) 6590—6595.

12.Deepak Kumar, Khurana Madhur, Mukta Sharma, Vinod Singh,
Analogy of gold, silver, copper and aluminium based ultra-sensitive
surface plasmon resonance photonic crystal fiber biosensors,
Materials Today: Proceedings (2023).

13.H. Mazhab-Jafari, L. Soleymani, R. Genov, 16-channel CMOS
impedance spectroscopy DNA analyzer with dual-slope multiplying
ADC s, IEEE Trans. Biomed. Circuits Syst. 6 (5) (2012) 468—478.

14.Y. Shi, J. Wang, S. Li, B. Yan, H. Xu, K. Zhang, Y. Du, The
Enhanced PhotoElectrochemical Detection of Uric Acid on Au
Nanoparticles Modified Glassy Carbon Electrode, Nanoscale Res.
Lett. (2017) 12-455,,.

15.S. Qi, B. Zhao, H. Tang, X. Jiang, Determination of ascorbic acid,
dopamine, and uric acid by a novel electrochemical sensor based on
pristine graphene, Electrochim. Acta 161 (2015) 395-402,.

16.L.G. Gomez-Mascaraque, S.C. Pinho, Microstructural Analysis of
Whey/Soy Protein Isolate Mixed Gels Using Confocal Raman
Microscopy, Foods 10 (9) (2021) 2179,,.

17.Z. Haghparas, Z. Kordrostami, M. Sorouri, et al., Highly sensitive
non-enzymatic electrochemical glucose sensor based on dumbbell-
shaped double-shelled hollow nanoporous CuO/ZnO microstructures,
Sci. Rep. 11 (2021) 344,.

57




RESEARCH PAPERS

Materials Today: Proceedings xxx (Xxxx) Xxx
Contents lists available at ScienceDirect

Materials Today: Proceedings

journal homepage: www.elsevier.com/locate/matpr ——

Monitoring and sensing of glucose molecule by micropillar coated
electrochemical biosensor via CuO/[Fe(CN)s]*>~ and its applications

Purva Duhan?, Deepak Kumar”, Mukta Sharma®, Deenan Santhiya®, Vinod Singh **

* Department of Applied Chemistry, Delhi Technological University, Delhi 110 042, India
b Department of Applied Physics, Delhi Technological University, Delhi 110 042, India

ARTICLE INFO ABSTRACT
Article history:

Available online xxxx

In recent years, biosensing for the different types of substances affecting our day-to-day life has been
evolving to a great extent. The sensing of the glucose level in food as well as the detection of blood sugar
levels, are two essential steps for a healthy life. The glucose molecules, on oxidation in the presence of

quo(ds: Ferricyanide, generate a current when connected to electrodes. In this paper, the method of current gen-
Ox“"‘"m‘. eration due to the oxidation of glucose molecules has been used and a sensor based on the principle of
;;"“y“_'“d' electrochemical sensing has been designed using COMSOL Multiphysics. Furthermore, the variation of
sorption current in the range 0 — 3 pA with the concentration of the adsorbed glucose molecules in the range
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Enzyme 0 - 100 mgdl " on the sensing surface as well as time has been analyzed to achieve a sensitivity of

37.88 pAmg 'dl for the sensor. The calculated value of sensitivity for the designed sensor is
37.88 pAmg 'dl. The high sensitivity of the sensor is the key factor for its wide range of applications

in the field of biosensing.
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1. Introduction

Recently, significant advances are being made in the field of
biosensors. The electrochemical redox reactions form the basic
principle of the process for the detection of the substances or
chemicals present in the human body, food, and all the things that
impact a person’s daily life. Biosensing technology has been devel-
oped to a great extent for the detection of protein, DNA, and
numerous hurtful acids that affect the human body [1]. Glucose
is a vital source of energy and is the end product of the digestion
of carbohydrates. However, an excess amount of glucose in blood
can cause severe health problems [2,3]. Blood glucose testing is a
very serious issue and important for diabetics as well as non-
diabetics to keep a check on their health and take steps for main-
taining it. A precise detection of blood glucose levels is very impor-
tant for the diabetes patients to regulate the dose of their
medicines or injections. For non-diabetics, the detection of their
blood sugar level is an important step to stay fit, maintain the bal-
anced diets and also to prevent diabetes. The concentration of glu-
cose in blood is in the range of 2 — 30 mmol/L. In fact in a human
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E-mail address: vinodsingh@dtu.ac.in (V. Singh).
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being's breath, about 21 — 0.5 ppm of glucose is observed [4]. This
makes glucose detection crucial to regulate the blood sugar level
and to maintain an appropriate food intake.

Currently, in order to detect glucose level in blood, the most
common detectors are the blood glucose test strips. These strips
react with blood and oxidize the glucose present in the blood to
produce gluconic acid [5]. The oxidation of glucose molecules leads
to the production of ions that add to the current level of the sam-
ple. However, these glucose test strips do not give precise results
and cannot be used for multiple times. Other than the test strips,
there are semiconductor-based biosensors that can be used to
detect glucose. However, semiconductor based sensors need the
fabrication of a bio-electrode and the materials used for the syn-
thesis lack stability. This makes the semiconductor based sensor
less accurate and more complicated for day-to-day use and for
essential applications [6-8]. To achieve accurate results, a flexible
structured device is needed. Additionally, there is a need for a
device that can detect the presence of glucose on microscale level
such that even a tiny amount of glucose can be detected [9]. Elec-
trochemical sensors turn out to be a potential candidate to meet
these requirements. An electrochemical sensor works on the prin-
ciple of oxidation or reduction of a target product. Following the
oxidation or reduction reactions, the target product is detected
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Fig. 1. The geometrical array of the micropillars coated with a layer of CuO and Ferricyanide for the absorption of the glucose molecules.

x107% m

Fig. 2. The mesh structure of the array of the micropillars mounted inside a cell in the sensor.

for a longer time as compared to the rest of the pillars which makes
the rate of desorption lower for them. The stream field consists of
velocity distribution which creates a field such that the pillars that
are present near the walls experience a positive change in their
absorption such that the absorption level increases to a great
extent. Also, the maximum adsorption level is affected by the rate
of desorption of the pillars near the wall because they took longer
for desorption.

The surface fraction of the absorbed glucose molecules firstly
increases with time to the point of surface saturation after which
the pillars start the process of desorption of the molecules which
decreases the surface fraction of the glucose molecules up to a level
at which the surface fraction of the molecules become constant
and very low in value. The increase in the fraction of absorbed glu-
cose molecules react to the maximum limit near the time
38 — 40 s. This is the saturation point of the absorption because
the maximum area of the surface is covered with the glucose mole-
cules. After this point, the desorption of the glucose molecules
starts and the surface fraction decreases with time. The distribu-
tion of surface fraction of the molecules varying with time in sec-
onds in shown in Fig. 6.

The current through the sensor that is generated due to the oxi-
dation of the glucose molecules, is proportional to the concentra-
tion of the glucose molecules. With the increase in the
concentration of the glucose molecules, an increase in the current
is seen as shown in Fig. 7.

When the time period increases from 0 to 10 s, 20 s and so on,
there is a linear increase in the absorption of the glucose molecules
on the surface of the pillars. With the increase in the absorption,
the current also increases which gives a linear increment in the
current generated by the sensor with time (Fig. 8).

Apart from the concentration of the glucose molecules, the cur-
rent produced as a result of the oxidation of glucose also depends
on the thickness of the layer of enzyme on the top of the pillars. As
the thickness of the enzyme layer is increased, the process is catal-
ysed more and the initial amount of the current produced is
increased as shown in Fig. 9.

The sensitivity of the sensor can be calculated by considering
the variation of current with respect to the concentration of the
glucose by Eq. (7)

S =37.88 pAmg 'dl

5. Conclusion

The electrochemical biosensor for the detection of glucose
molecules has been designed with a structure with an array of pil-
lars with a layer of Ferricyanide on its surface. The oxidation of the
glucose molecules and the generation of the current has been rep-
resented. The 3-D modelling for the streamline velocity, pressure
and concentration has also been shown. The fraction of surface
molecules has been plotted with time. As the time increases, the
surface fraction of glucose molecules first increases due to the
absorption. Then, the saturation point of absorption is observed.
After the saturation point, the desorption of the glucose molecules
start and the surface fraction of the glucose molecules decreases
[16]. With increase in concentration of the analyte with glucose,
the best fit curve shows an increase in the current passing the elec-
trode. The sensitivity of the designed sensor is 37.88pAmg 'dl. The
sensor accurately detects the presence of glucose in food items,
and also detects the glucose level of the sample. The designed sen-
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Table 1
P s for the analysis and the d of the sensor.
Name Expression Value Description
Koas 102 [mys] 0.01 m/s Forward rate constant
Ketes 0.5 [mol/m?/s) 0.5 mol/ Backward rate constant
(m?s)
D 5 % 10-°[m?/s] S5E-9 m?[s Gas diffusivity
ke 2% 1077 [mol/m?s) 2E-7 mol/ Forward rate constant
(m®s)
ke 4 % 10 *[mol/m?[s]  4E-8 mol/ Reverse rate constant
(m?s)
Uin 2x 104 [m/s) 2E-4 m[s Inlet velocity
Ny 4 4 Number of pillars across
Reaiar 0.4 [mm]) 4E-4m Radius of pillar
R, 6x10* [m) 6E-4 m Radius of carve-out
de 15x107* [m) 1.5E-4 m Cut depth of carving
Xe Rygiar + Re — dc 8.5E-4m x-position of carving
circle
Ra 6x 10 [m] 6E-4 m Radius of carve-out
d,y 1.5% 10 [m] 1.5E-4 m Cut depth of carving
Xa Rogiar + Re = dc 8.5E-4m x-position of carving
circle
Wioe 6.8x 1077 [m] 0.0068 m Total width of pillar grid
Leot 56x10° 0.0056 Total length of pillar grid
(outer row)
dyon 05x10* [m] S5E-5m Distance from pillar
edge to cell side wall
d; i«n# 0.002 m ztspacing between
pillars
dy "-MN Ryt ) 0.0016 m X-spacing between
=) pillars
Wiae 12x 10 [m] 0012 m Width of cell
Diox 107 [m] 0.001 m Depth of cell
Hipox 6.9 %10 [m) 0.0069 m Height of cell
[ V& 4.8062E-4 m  Current closest distance
= 2Ryitor between two pillar
edges
Aoioratiowed 0.1 x 107 [m] 1E-4m Allowed minimum
distance between two
pillar edges
Reaxotiowed  \/&5d 5.9031E-4 m Allowed maximum
&~ 2pitaraiowed pillar radius
Coo 400 [mol/m’?] 400 mol/m®>  Injection pulse
amplitude
5ol 0.01 0.01 Relative tolerance of
solvers
endn. 150 150 Simulation end time
rimevatue 0.5 05 Dimensionless time for
concentration plot
Calue 0 0 Time for time dependent
plots
Time=100 s Shco: Velocity mygaitude (mis) Surface: Surface corddhirmion (movm’) o
5 ¢ x10* x107
as 16
] 40 14
35 12
2 . 10
%10? m 25 s
20
“ 15 .
4
y 10
4 6 5 2

Fig. 3. Velocity of the glucose molecules and the surface concentration variation 3-
D model with high velocity of the molecules near the pillars along the walls
compared to the pillars located at the middle.

sor is equally efficient in comparison to other experimentally
designed electrochemical glucose sensors and gives accurate
results. Experimentally, in current literature, a sensitivity of
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Fig. 4. Contour pressure model for the bi howing str for the
pressure along the different pillars of the array at time interval of 75 s.
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Fig. 5. The concentration in mole per metre cube is shown over the surface of the
pillars with more concentration at the surfaces of the pillars that are along the walls
of the cell. (a) The whole cell is seen for the variation of the concentration with a
colour bar legend. (b) The half portion of the cell is shown for molar concentration
with the half portions of the pillars at the middle.

1536.80 pMA mM ' cm 2 has been observed by the glucose
biosensor.[17].
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