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ABSTRACT 

 

Using the solvent casting approach, a new composite hydrogel film based on ascorbic acid loaded 

carboxymethyl guar gum (CMG) and citric acid (CA) was produced for food packaging 

applications. The addition of glycerol to the formulation increased the film's flexibility and 

mechanical strength. The films were tested for anti-oxidant and anti-microbial properties against 

Escherichia coli and Staphylococcus aureus using the DPPH+ assay. MTT assay was used to assess 

the film's cytotoxicity. FTIR, XRD, SEM, and TGA were used to perform structural, 

morphological, and thermal investigation on the film. The film's viscosity and mechanical strength 

were investigated. The film's fruit shelf life-enhancer qualities were also evaluated utilizing orange 

as a fruit sample. 
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CHAPTER-1 

INTRODUCTION 

 

Plastic packaging has recently posed major disposal and environmental concerns, 

endangering human health and development. Food packaging contains a substantial 

amount of these plastic components. Only 9% of plastic garbage is recycled globally, 

while 22% is improperly disposed of. Given the need for improved food product safety, 

it is critical to examine new food packaging with a variety of functional aspects.  When 

it comes to packaged food, consumers appreciate the naturalness of the product and the 

extended shelf life. According to Mintel study, two out of every five Indians (44% of 

the population) would choose one product over another if it had a longer shelf life. 

Synthetic plastics are not biodegradable, have limited reuse and recycling alternatives, 

and have additional negative environmental implications. The use of bioactive packing 

materials as a replacement for plastic packaging may be a solution to such issues. 

Natural polymer-based hydrogel films (bio-based films) can be an excellent choice for 

food packaging materials. Natural materials are emphasized and encouraged to be used 

instead of other possibilities since they are better for the environment. [2] Bio-based 

films could be made from lipids, proteins, polysaccharides, or a combination of these 

substances. Carbohydrate polymers stand out as attractive food packaging materials due 

to their exceptional mechanical properties (such as tensile strength, toughness, and 

elongation). [3] 

Carboxymethyl guar gums cross-linked with citric acid hydrogel films and loaded with 

ascorbic acid (CMG-CA-AA) have been proposed as a potential replacement in this 

area. All of the raw materials used to make CMG-CA-AA films are non-toxic and low-

cost, and the manufacturing method is easy and economical. 
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Guar gum (GG) is a seed gum derived from Leguminosae embryos of Cyamopsis 

tetragonolobus. [4-6] CMG is a GG derivative that is preferred over pure GG because to 

its low thermal stability, uneven hydration rate, lower viscosity upon storage, and higher 

risk of microbiological contamination. [7] Carboxymethylation is a chemical process 

that bonds pendant carboxymethyl groups to pure GG. [8] 

Cross-linking is a common way for improving polymer performance. Citric acid, a 

polycarboxylic acid found naturally in citrus fruits such as lemons, is a low-cost and non-toxic 

example that has been used to improve the characteristics of polymers.
 [9, 10] 

CMG cross-linked CA hydrogel sheets are devoid of intrinsic antioxidant and antibacterial 

capabilities.
 [1]Food packaging films with antimicrobial and antioxidant qualities can improve 

food quality and inhibit microbial development.
 [11] Ascorbic acid (AA) is a naturally occurring 

chemical with high polarity and antioxidant activity that can be found in a variety of foods such 

as mangoes, oranges, lemons, blackberries, and vegetables.
 [12, 13] 

When designing packing material, mechanical strength is an important component to consider. 

A plasticizing chemical, glycerol, was added to the produced biofilm to improve this feature. 

Glycerol is an odorless, colorless, and slightly sweet-tasting naturally occurring alcohol that was 

discovered to improve the mechanical strength and flexibility of the films.
 [16] 

The bioactive films were made from CMG that had been cross-linked by CA, with the addition 

of AA and glycerol to improve the film's characteristics. The film is biodegradable, non-toxic, 

colorless, and odorless, as well as having strong oxygen transmission barriers.
 [17] High oxygen 

transmission barrier materials are ideal for protecting packages.
 [18] 
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CHAPTER 2 

LITERATURE REVIEW 

Research work in the field of food packaging using guar gum based films has been 

explored in the recent times. Modified PVP-CMC hydrogel film based on bacterial 

cellulose and guar gum has been used as a packaging film. Food sample testing on fruit 

samples such as berries were done to evaluate its effectiveness. [19] 

Applications and characterization of films made from GG and CMG have been studied. 

Various combination of the gum with other polysaccharide like chitosan, cellulose etc. 

[20] 

GG AND CMG films cross linked with citric acid also showed studies as a food 

packaging material. CA as a cross linker being incorporated in packaging films 

increases the networking of the film thus enhancing the strength of films. It is also a 

natural derivative therefore is safe for usage in food packaging. [21, 22]  

2.1 RESEARCH GAP 

Reviewing the available research work on food packaging, it was concluded that use of 

CMG cross linked with CA, loaded with AA and glycerol as a plasticizer have not been 

explored. The research gap here leads to the studies of the work in this thesis. 

CMG was used over GG due to its enhanced mechanical and other properties. CA was a 

natural cross linker for enhancing the network of polymer film. AA was incorporated to 

incorporate antimicrobial property in the film. Glycerol worked as a plasticizer to 

enhance the film’s mechanical strength. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

3.1 MATERIALS 

CMG powder was purchased from local market and CA was purchased from CDH, 

New Delhi. AA was purchased from CDH. Glycerol used in the preparation was from 

Fisher chemical, UK. 

3.2 METHODOLOGY 

The polysaccharide films were created using a solvent casting method. CMG powder 

was first weighed and dissolved in deionized water.  The gum mixture was stirred on a 

magnetic stirrer at 450 rpm for 1 hour to obtain a homogenous solution. After stirring 

for 1 hour, 0.1% (w/v) CA was added to the homogenized gum solution and again left 

for an hour of stirring. To the cross-linked CMG 0.1% (w/v) of AA was added. After 1 

hour of stirring, 1ml of glycerol was added and the solution was thoroughly 

homogenized. The solution was sonicated for 30 min to remove any air bubbles in the 

solution. The final solution was oil cured for 5-7 minutes at a temperature of 140°C. 

Except for the addition of AA, controlled CMG-CA films were prepared with the same 

procedure. The f solution was transferred to petri dishes and dried for 24 hours at 45°C. 

 

 

 

 

 



5 
 

 

 

 

 

FIGURE 1 Preparation method of CMG-CA and CMG-CA-AA films 
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CHAPTER 3 

CHARACHTERIZATION 

3.1 MECHANICAL PROPERTIES                                                                                     

UTM (Instron RP01 5982) was used to study the mechanical properties of the CMG-CA 

and CMG-CA-AA films, such as thickness, elongation at break (EB %), and tensile 

strength (TS). The machine's load range was 1-20 N, its extension range was 1000 mm, 

and its gauge length was 25 mm. With no preload, the approach and test speeds were 

500 mm/min. Each film was sliced into a 15 mm wide by 150 mm long strip for 

mechanical testing. Under room temperature, each sample received four readings, and 

the average result was utilized to analyze the mechanical feature. 

 

FIGURE 2 UTM (Instron RP01 5982 
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3.2 FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 

The FTIR spectra of CMG-CA and CMG-CA-AA films were obtained using a Perkin-

Elmer model 2000 Fourier transform infrared spectrophotometer. At room temperature, 

the spectral range observed was preserved between 4000-400 cm
-1

. 

                                   

FIGURE 3 Perkin-Elmer model 2000 Fourier transform infrared spectrophotometer 

3.3 X-RAY DIFFRACTION (XRD) 

To obtain crucial information regarding the solid-state structure of CMG-CA and CMG-

CA-AA films, an Expert Pro MDR, Panalytical X-Ray diffractometer was used. The 

scan rate was 10 per minute in the range of 2  = 50-800 with a Copper diode emitting 

Kα radiation of λ = 1.5406 A⁰. [23] 

                                        

FIGURE 4 Expert Pro MDR, Panalytical X-Ray diffractometer 
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3.4 THERMO GRAVIMETRICANALYSIS (TGA) 

Thermal degradation of CMG-CA and CMG-CA-AA films was measured by thermo 

gravimetric analysis (Perkin Elmer, USA, TGA 4000). In a N2 gas environment, 

roughly 5 mg of each sample was heated in a platinum crucible at a heating rate of 100 

°C/min in a temperature range of 25-800°C. [24] 

 

FIGURE 5 Perkin Elmer, USA, TGA 4000 

3.5 SCANNING ELECTRON MICROSCOPY (SEM) 

The morphological and physical properties of CMG-CA and CMG-CA-AA were 

examined using a scanning electron microscope (SEM) (ZESIS EVO MA15). During 

the investigation, the samples were gold-coated to prevent electrostatic charge under a 

strong electron beam and low resolution. At 10,000 magnifications, film samples were 

seen with an accelerating voltage of 5.0 kV. [24]  

 

FIGURE 6 SEM ZESIS EVO MA15 
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3.6 IN VITRO ANTIMICROBIAL ACTIVITIES OF THE HYDROGELS 

To assess the antibacterial activity of the films, a disc diffusion susceptibility test was 

performed. [25,26] The microorganisms tested positive on agar plates were gram-

positive Staphylococcus aureus and gram-negative Escherichia coli. The experiment 

was performed using overnight broth cultures of both microorganisms. The agar 

solution was placed into Petri dishes under sterile conditions and allowed to harden. 

Bacterial inoculums were evenly distributed across the agar plates. A 1cm disc of 

CMG-CA and CMG-CA-AA film was cut and placed on agar plates exhibiting bacterial 

spread. These plates were sealed and placed in an incubator at 35°C for 24 hours. The 

inhibitory zone width (mm) around each sample was measured. The inhibition zones 

were measured in millimeters using a digital ruler.  

3.7 ANTIOXIDANT ACTIVITY BY DPPH RADICAL SCAVENGING ASSAY 

The free radical DPPH
+
 (2,2-diphenyl-1-picrylhydrazyl) has an absorbance maxima of 

515 nm. [25] Antioxidants diminish DPPH absorption. The DPPH
+
 radical scavenging 

capacity of the samples was determined using the DPPH
+
 radical scavenging assay. To 

be employed as a radical solution, 1 mg DPPH
+
 was dissolved in 20 ml of methanol. 

DPPH produces a violet or purple color in methanol solution. When an antioxidant is 

present, the violet color fades to bright yellow. 1 ml of CMG-CA-AA homogeneous 

solution was mixed with 3 ml of methanol to make the antioxidant solution. For the 

photometric experiment, 1 mL of DPPH+ solution was mixed with 4 mL of antioxidant 

solution. [29] First, the absorbance of 1 mL DPPH+ was measured as a blank (using 

Ultraviolet-visible spectroscopy), and then the DPPH+ solution was mixed with the 

antioxidant solution. The readings were then taken promptly and at 30-minute intervals. 

The identical technique was followed for each of the five different CMG-CA-AA 

concentrations. The antioxidant activity was assessed by analyzing and estimating the 
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reduction in DPPH+ absorbance at various doses. [23] The % DPPH+ radical scavenging 

was calculated using the following equation (Blois and Desmarchelier) 

                                             
   

 
                                                                         [3.1] 

where, a is the absorbance of sample solution, b is the absorbance of blank solution and 

c is the absorbance of DPPH+ 

A percentage higher than 85 indicates antioxidant activity. [29] 

3.8 CYTOTOXICITY EVALUATION BY MTT ASSAY 

An SRB assay was used to assess the cytotoxicity of the films on the HepG2 cell line. 

The cells were cultivated in 96-well plates for 24 hours in DMEM media supplemented 

with 10% FBS and 1% antibiotic solution at 37°C with 5% CO2. The following day, 

cells were treated with varied concentrations (0.075-5%). (Several concentrations were 

produced in an inadequate media.) After incubating for 24 hours, Tri Chloro Acetic 

Acid (TCA, 10%) was added to each well and incubated for an additional hour. After 

that, the plate was rinsed with DM water and left to dry at room temperature. Each well 

was given 0.04% SRB Solution, which was then added and left for an hour. After 1 hour 

of incubation, the plates were allowed to air-dry at room temperature. They were then 

rinsed with 1% (v/v) acetic acid to remove any leftover unbound color. Tris base 

solution (pH=5) was added to solubilize the protein-bound dye, which was then agitated 

for 10 minutes on an orbital shaker and read at 510 nm in an Elisa plate reader (iMark, 

Biorad, USA).  

3.9 FOOD SAMPLE TESTING 

The bioactive films' capacity to preserve fresh fruit oranges was tested in packaging 

studies. Oranges are commercially stored at a temperature of 3-9°C with an ideal 

humidity of 90-95% to avoid spoiling and extend shelf life. [30]Food spoils and wastes 

when such ideal circumstances are not available. The bioactive film that was created is 
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an attempt to produce sustainable packaging material with the fewest additional storage 

conditions. Three oranges were obtained and placed in separate petri dishes. The first 

orange was left unpackaged, that is, without any protective film. Then it was wrapped in 

CMG-CA film. Third, it's wrapped in a bioactive CMG-CA-AA film. The coating fully 

sealed the fruits. For 8 days, all of the samples were evaluated. The samples were stored 

at room temperature under natural light. The samples' deterioration and freshness levels 

were examined between the first and last days (8th). These modifications were 

examined in order to get a conclusion about the preservation capabilities of the 

produced bioactive film (CMG-CA-AA). 

3.10 RHEOLOGICAL ANALYSIS 

By integrating basic principles with other qualities, rheology is a useful tool for 

measuring the flow and deformation of matter. At 25°C, rheological experiments of 

liquid CMG-CA-AA were carried out using the Anton Paar Modular Compact 

Rheometer 302 (MCR). For the tests, 40 mm parallel plates were used. For the steady 

shear rheology tests, the constant shear rate ranged from 0.1 to 500 s
-1

, whereas the 

variable shear rate ranged from 10 to 100 s
-1

. [31] 

 

FIGURE 7 Anton Paar Modular Compact Rheometer 302 (MCR 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 MECHANICAL PROPERTIES 

The thicknesses of the CMG-CA and CMG-CA-AA films were found to be 0.08 mm 

and 0.03 mm, respectively. The mechanical testing results for both films are shown in 

Table 1. CMG-CA could withstand a maximum load of 17.65 N, whereas CMG-CA-

AA could withstand a maximum force of 19.41216 N. CMG-CA and CMG-CA-AA had 

tensile strengths of 14.708 MPa and 43.138 MPa, respectively. The results show that the 

bioactive film CMG-CA-AA has a higher tensile strength than CMG-CA, indicating 

that it can withstand more force without breaking. The presence of glycerol in bioactive 

films accounts for their improved mechanical characteristics. 

TABLE 1 Mechanical properties of the films. 

 

 

Film 

 

Width 

(mm) 

 

Thick-

ness 

 

Max 

Force 

 

Tensile 

Strength 

 

Elongation at 

Break 

   (N) (MPa) (%) 

 

CMG-CA 

 

15.00 

 

 0.0800 

 

17.650 

 

14.708 

 

11.392 

 

CMG- 

CA-AA 

 

15.00 

 

 0.0300 

 

19.412 

 

43.138 

 

13.240 

 

 

FIGURE 8 A) CMG-CA film, B) CMG-CA-AA film 
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4.2 FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 

The functional groups of the films were determined using FTIR spectroscopy. The 

spectra of CMG, CMG-CA, and CMG-CA-AA films are shown in Figure 9. Large, 

conspicuous peaks in the CMG spectrum between 3500 and 3000 cm
-1

 demonstrated the 

vibrational stretching of -OH. The asymmetric stretching of -CH was confirmed by the 

medium's peaks at 2852 cm-1 and 2925 cm
-1

. [28] The maximum presence was 

attributed to the ester groups -CO at 1720 cm
-1

. The C-O-C length of CMG's glycoside 

bond, resulting in its peak existence at 1023 cm
-1

. The ester cross-links and carbonyl 

bond of free carboxylic acid were visible in the FTIR spectra of the cross-linked films 

CMG-CA and CMG-CA-AA at 1738cm-1 and 1726 cm-1, respectively. [33] 

 

FIGURE 9 FTIR graphs of CMG, CMG-CA and CMG-CA-AA 

4.3 X-RAY DIFFRACTION (XRD) ANALYSIS 

The XRD results provide crucial information about how composition influences crystal 

structure and shape. The X-ray diffractograms of CA, CMG, CMG-CA, and CMG-CA-

AA are shown in Figure 10. At 19.08°, CMG films display a large peak. The amorphous 
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nature of the CMG-CA and CMG-CA-AA films was indicated by large peaks at 2  = 

18.16° and 17.66°, respectively. Powder CMG is less amorphous, as evidenced by the 

large peak at 2 = 21.2°. Cross linking via CA led the hydroxyl groups in CMG-CA and 

CMG-CA-AA to be replaced by carboxymethyl groups, resulting in an increase in 

amorphous structure. The breaking of CMG crystal hydrogen bonds by cross linking 

promotes the amorphous character due to lower crystal stability. The moderately 

broader peak of CMG-CA-AA in comparison to CMG-CA at 18.36° suggests a smaller 

particle size which in turn suggests a higher amorphous nature of CMG-CA-AA. [29] 

 

FIGURE 10 XRD graphs of CA, CMG, CMG-CA and CMG-CA-A 

4.4 THERMAL ANALYSIS (TGA) ANALYSIS 

The TGA curves, (Figure 11) of CA, CMG, CMG-CA, and CMG-CA-AA were studied 

to determine the thermal stability of the bioactive film. CMG-CA and CMG-CA-AA 

films showed 4 stages of thermal degradation due to water evaporation, decomposition 

of CA and AA, breaking of polymer linkage bonds, and degradation of polymer 

backbone. The 1st stage of mass loss at is due to the evaporation of water molecules in 

all the samples tested. 
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In CA 1st stage of degradation was observed at 29–220°C with 13.66% weight loss.2nd 

stage was at 220–585 °C (13.21%). 

In CMG gum 1st stage of degradation was observed at 60–24°C with 15% weight 

loss.2nd stage occurred at 245–384 °C (38.56%). 

In CMG-CA 1st stage of degradation was observed at 58.27–180°C with 6.88% weight 

loss. 2nd stage was observed at 1800–2670 °C (15.23%). The 3rd stage degradation 

ranged between 267-485⁰C (45.27 %). The 4th and final stage of decomposition ranged 

from 485-7920C (26.99%). 

In CMG-CA-AA 1st stage of degradation was observed at 5–220°C with 11.906% 

weight loss. 2nd stage was observed at 2200–3430 °C (39.39%). The 3rd stage 

degradation ranged between 343-493⁰C (10.539 %). The 4th and final stage of 

decomposition ranged from 493-714 (15.76%).  

In CMG-CA-AA, a slower thermal degradation occurred initially. Cross linking 

decreased the mass loss in both films in comparison to CMG. The temperature ranges 

responsible for major weight loss were increased in cross linked films, indicating 

improved thermal stability. CMG-CA-AA showed higher thermal stability than CMG-

CA. [30] 
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      FIGURE 11 TGA curves of CA, CMG, CMG-CA and CMG-CA-AA 

 

4.5 SCANNING ELECTRON MICROSCOPY (SEM) 

Figure 12 shows scanning electron micrographs of the surface morphology of CMG-CA 

and CMG-CA-AA films. Because of their higher electrical conductivity than CMG-CA, 

SEM pictures of CMG-CA-AA were considerably easier to generate. Both films have 

particles of small sizes and unusual shapes. According to Z. Wu et al. (2019), SEM 

image analysis shows that the control CMG film has a non-porous and compact surface 

with a few clusters of particles visible on the surface. [34] CMG-CA-AA active films, on 

the other hand, have a smoother, more compact and homogenous surface with a 

patterned distribution of particle clusters. 
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FIGURE 12 A) Scanning electron microscope (SEM) image of CMG-CA film and B) 

CMG- CA-AA film at 5000 magnification 

 

4.6 ANTIBACTERIAL ACTIVITY EVALUATION 

The antibacterial activity of CMG-CA and CMG-CA-AA films is depicted in Figure 13. 

The images show that controlled CMG films had no antibacterial action, but CMG-CA-

AA had good antibacterial activity. CMG-CA-AA inhibited both gram-positive 

(Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria in a different 

zone. The presence of AA contributed to CMG-CA-AA's ability to limit bacterial 

growth. Incorporating 0.5 mg of AA into CMG-CA films resulted in a 15 mm zone of 

inhibition against Staphylococcus aureus and an 18 mm zone of inhibition against 

Escherichia coli. As a result of the findings, it is possible to conclude that CMG-CA-

AA films can inhibit the growth of bacterial strains. [35] CMG-CA-AA films' 

antibacterial qualities may be important for their use as a food packaging material. [36] 



18 
 

                         

FIGURE 13 Antibacterial Assay, A) CMG-CA film in Staphylococcus aureus, B) 

CMG- CA film in Escherichia coli C) CMG-CA-AA film in Staphylococcus aureus, 

D)CMG-CA- AA film in Escherichia coli 

 

4.7 ANTIOXIDANT ASSAY 

CMG-CA-AA at five different doses were examined for antioxidant activity by 

analyzing the decrease of DPPH
+
 radicals. Figure 8 shows plots of % DPPH scavenging 

against concentration. At max, the absorbance of DPPH+ was measured and found to be 

0.863. The percentage of scavenging was highest (95%) at 100 L concentration and 

lowest (85.2%) at 500 L. As a result, increased scavenging was seen as concentration 

decreased. The scavenging activity of the samples was measured in the following order: 

100 L, 200 L, 300 L, 400 L, and 500 L. Antioxidants can diminish DPPH free radicals 

by donating hydrogen, which is critical for preventing free radicals' damaging function 

in a variety of illnesses, including cancer. Because of their hydrogen donating or 

electron transfer capabilities, the results indicate that all of the loaded CMG-CA-AA 

samples have antioxidant qualities or radical scavenging activity. 
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TABLE 2 Percentage radical scavenging activity 

 

Concentration 

(µL) 

 

Absorbance 

(after 30 min) 

 

Percentage scavenging 

activity 

 

100 

 

0.044 

 

95% 

200 0.077 91.1% 

300 0.103 88.1% 

400 0.113 86.8% 

500 0.128 85.2% 

   
 

FIGURE 14 DPPH
+
 scavenging percentage (antioxidant activity) graph of CMG-CA-

AA 

4.8 CYTOTOXICITY EVALUATION BY MTT ASSAY 

The cytocompatibility of CMG-CA-AA films was evaluated using human hepatic cells 

(HepG2) as a model cell line. Figure 15 depicts the cytotoxicity data for various 

concentrations. The cells could stick to the film surfaces, distribute, and grow there, 

according to the results of the HepG2 cell culture experiment. After incubation, the cells 
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on the CMG-CA-AA films had a normal morphology compared to the control. [37] 

Figure 9 shows that all film samples of varying doses had cell viability values greater 

than 80%. This demonstrates the films' good biocompatibility with HepG2 cells. [37,38] 

As a result, the decreased cytotoxicity of CMG-CA-AA films verifies the bioactive 

film's cytocompatibility.

 

FIGURE 15 SRB assay-HepG2 of CMG-CA-AA at different concentrations 

 

4.9 FOOD SAMPLING TEST EVALUATION 

The dietary trials lasted 8 days in order to acquire precise findings, as shown in Figure 

16. On the first day, all fruit samples seemed fresh and orange, with no microbial 

development. The oranges in the first and second Petri dishes began to ripen on day 2, 

while the third stayed unaltered. On day 3, the oranges in the first two Petri dishes 

began to darken, while the third orange maintained the same color. On days 4 and 5, 
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brown spots appeared on the oranges in the first and second Petri dishes, but there were 

no visible changes in the third. The brown stains on the first and second oranges grew 

larger on days 6 and 7, and white microbiological growth was noticed on the first 

orange. The third orange began to ripen. On day 8, the first two oranges had 

deteriorated dramatically and were no longer fit for consumption; however the third 

orange, which had been covered with the bioactive film, appeared exactly the same as 

on day 1 and was perfectly safe to eat. These findings suggest that the bioactive film 

protected the fruit successfully and might be employed as a packaging material. 

 

 

FIGURE 16 Food sampling assay A) Uncovered orange at day 1,  B) Orange covered  

with CMG-CA film at day 1, C) Orange covered with CMG-CA-AA film at day 1, 

a)Appearance of uncovered orange after 8 days, b)CMG-CA covered orange after 8 

days and c) CMG-CA-AA covered orange after 8 days. 
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4.10 RHEOLOGICAL PROPERTIES 

4.10.1 Viscosity 

Rheology, or the study of matter's movement and deformation, reveals the relationship 

between force, deformation, and time. The rheological experimental method is used to 

determine the rheological properties of materials. The CMG-CA-AA solution was 

shown to exhibit stronger shear thinning behavior than the CMG-CA solution. The 

breakdown of junctions initially stabilized by non-covalent associations (e.g., hydrogen 

bonding, van der Waals, etc.), which can be disrupted as shear rate increases, could be 

the reason of the junctions' considerable shear-thinning propensity. In either scenario, 

shear-induced structural alignment along the flow direction reduces viscosity 

significantly. [39] 

 

 

FIGURE 17 Viscosity sweeps of CMG-CA and CMG-CA-AA solutions 
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CHAPTER-5 

CONCLUSION 

The findings of the study reveal that CMG manufacturing was effective in producing a 

bioactive film. The generated biofilm outperformed the controlled film in terms of 

thermal stability and tensile strength. SEM images revealed small particle size, while 

FTIR measurements confirmed cross linking in the films. The XRD results showed that 

the films were amorphous, and the shift in peaks showed that crystallinity had been lost 

due to cross-linking. CMG-CA-AA films effectively suppressed both gram positive 

(Staphylococcus aureus) and gram negative (Escherichia coli) bacterial growth. The 

films are both antioxidant and biocompatible. The research on food packaging revealed 

its utility as a packaging material by enhancing the freshness and shelf life of fruits.  
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