

ANDROID MALWARE DETECTION USING STATIC MALWARE
ANALYSIS AND NATURAL LANGUAGE PROCESSING

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted by:

HIMANSHU VERMA

2K21/ISY/09

Under the supervision of

 Rahul Gupta

Assistant Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY 2023

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Himanshu Verma, 2k21/ISY/09 of M.Tech (Information System), hereby declare that the

Dissertation titled “Android Malware Detection using Static Malware Analysis and Natural

Language Processing” which is submitted by me to the department of Information System,

Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of

the degree of Master of Technology, is the original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any Degree,

Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi Himanshu Verma

Date: 31-05-2023

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, Himanshu Verma, 2k21/ISY/09 of M.Tech (Information System), hereby declare that the

dissertion titled “Android Malware Detection using Static Malware Analysis and Natural

Language Processing” which is submitted by me to the department of Information System,

Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of

the degree of Master of Technology, is the original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any Degree,

Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi RAHUL GUPTA

Date: 31-05-2023 SUPERVISOR

 ASSISTANT PROFESSOR

iv

ACKNOWLEDGEMENT

I want to thank my Mentor, Mr Rahul Gupta, for his constant support, patience, and trust in

me, as well as for providing a good environment and giving helpful comments to me to research

in this area. It has been a totally new area to work upon, but sir has generously supported us to

research this area.

HIMANSHU VERMA

v

ABSTRACT

Android malware detection represents a current and complex problem, where black hats use

different methods to infect users’ devices. One of these methods consists in directly uploading

malicious applications to app stores, whose filters are not always successful at detecting

malware, entrusting the final user the decision of whether installing or not an application.

Although there exist different solutions for analysing and detecting Android malware, these

systems are far from being sufficiently precise, requiring the use of third-party antivirus

software which is not always simple to use and practical. We propose a novel method for

analysing and detecting malicious Android applications by employing meta-information

available on the app store website and also in the Android Manifest. Its main objective is to

provide a fast but also accurate tool able to assist users to avoid their devices becoming

infected. The method is mainly based on a text mining process that is used to extract significant

information from meta-data, that later is used to build efficient and accurate classifiers.

vi

CONTENTS

Candidate’s Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

Contents vi

List of Figures vii

CHAPTER 1 INTRODUCTION 1

1.1 Preface

 1.2 LITERATURE SURVEY 5

CHAPTER 2 METHODOLOGY 8

2.1 ANDROID MALWARE DETECTION USING META-INFORMATION 8

2.2 NATURAL LANGUAGE PROCESSING 9

2.3 CLASSIFICATION 10

2.4 DATASET 10

2.5 TEXT MINING 11

2.6 ANDROID PERMISSIONS 12

CHAPTER 3 IMPLEMENTATION 15

CHAPTER 4 RESULT 21

CHAPTER 5 22

5.1 Conclusion 22

5.2 Future Work 22

REFRENCES 23

vii

LIST OF FIGURES

Figure Name Page
Figure 1 Dataset Snapshot 11
Figure 2 Workflow Diagram 14
Figure 3 Attributes with NaN 15
Figure 4 Applying Clean up 16
Figure 5 Finding Outliers 17
Figure 6 Vectorization 17
Figure 7 Pipeline Designing 18

Figure 8 XG BOOST 19
Figure 9 Logistic Regression 20
Figure 10 Random Forest 20
Figure 11 Effect Of Vocab Size on Prediction 21

1

CHAPTER 1

INTRODUCTION

1.1 PREFACE

In modern time the number of people owning and using mobile device has increased

exponentially and it is set to increase furthermore because of upcoming technological

advancement in this field. Mobile devices enable us to conveniently access many online

services with ease like online banking, Commuinication via voice or video call, accessing video

content, etc. But this penetration of technology comes with onset of getting attacked by a

malware. Programs and file stored within the device itself are attacked by the malware aka the

malicious software. As per the technique used by this malicious software, malware is of

different type like spyware, and adware, trojans, worms, rootkit, spyware and backdoor.

Spyware as the name suggest are used by attacker for surveillance and snooping purposes.

Adware on other hand provides with inquisitive and unwanted unnecessary ads to the user.

Since android operating system has highest penetration thus they are hotspot of attack by the

malware. Malware frequently starts off by tricking users into opening bogus messaging. Users

who show interest in these communications are then charged for fictitious services. Less risks

often affect other systems. A virus is a piece of software that can replicate by itself and

can infect programs by altering the host or its abode, and it can spread quickly through network

propagation. A worm is a piece of self-replicating software which have ability expand over a

network.; generally, completely self-contained are created which may propagate on their own.

Thus, Android Malware analysis and detection is area of research due to alarming rise of

amount malicious apps of android. In the literature, several ways for detecting and categorising

Android malware have been created and evaluated.

We can use static or dynamic analysis to collect the characteristics utilised while evaluating

malware. We can also use a combination of both. The phrase static analysis refers to

information acquired without the code being run. On the other hand, dynamic analysis entails

executing (or simulating) the code. Though dynamic analysis has the potential to be more

2

comprehensive and revealing and is regarded to be less vulnerable to code obfuscation but

other is faster.

While it has analysis has several drawbacks especially in contrast to dynamic malware analysis,

such as the difficulty in combating code obfuscation, it also offers unique benefits:

● Complete Code Coverage: By analysing code or metaphorical pseudo execution

can encompass all code and all resource. Dynamic analysis is unlikely to

encompass the whole code. Many apps ask users to give login credentials in

order to utilise many of the features. This makes it hard to identify in dynamic

analysis, functions fail to extract enough features, resulting in inadequate

feature extraction.

● More Efficient: It can accomplish discovery process within predicted since

wouldn't require the app to be running state. Dynamic analysis, on the other

hand, necessitates invoking multiple functions during code execution, which

takes a long time. It takes some time for the software to replicate the real thing.

While executing software may do extremely complicated operations or enter an

endless loop. Due to these circumstances, completing the detection process

within the stipulated time range is challenging.

● Abstracted from malware: Because this analysis does not need the execution of

the programmes, rogue apps are unaware of fact of being monitored. Even

though certain malicious app attempts to make it more difficult via adding

interfering programs, these additional programs might be utilised as a marker to

aid in the detection of malicious software.

● Facile Identification: The extraction of characteristics with non-linearities and

ubiquity is more likely with malicious sample analysis. Dynamic analysis, on

the other hand, is extremely expected to be influenced due to operational

conditions. It is possible to employ statically derived features for identification

and to detect a wide range of hostile code fast.

3

Analysing different characteristics of Android applications to find probable malware indicators

is necessary when trying to detect Android malware using meta-information. Data like the app's

1 1 1 1 1 7 permissions, certificate details, package name, desired features, and more are all

included in meta-information. Android applications are signed with digital certificates to prove

their legitimacy and integrity, according to a certificate analysis. Apps issued with shady or

selfsigned certificates, which may signal malicious intent, can be found by analysing certificate

information. An app's package name contains details about the creator and intended use of the

programme. Applications with false or suspicious names that can be connected to malware can

be found by looking at the package name. Android apps may ask for particular hardware or

software characteristics from the device, according to a feature analysis. When requested

features are analysed, it becomes easier to spot programmes that ask for unusual or superfluous

characteristics, which might be a sign of malicious behaviour. While not precisely classified as

meta-information, examining the app's actual code and API calls can provide us important

information on how the app behaves. In order to find any harmful or suspicious activity, this

stage uses techniques like dynamic analysis or reverse engineering. By using machine learning

algorithms on the gathered meta-data, it is possible to create models that automatically

categorise programmes as benign or malicious. Using a labelled dataset of well-known

malware and innocuous programmes, a model is trained to discover patterns and attributes

typical of malware. The detection model may be combined with security tools like antivirus

software or mobile device management (MDM) programmes to offer real-time malware

detection and prevention after it has been created.To enable real-time malware detection and

prevention, the created detection models may be included into security solutions like antivirus

software or MDM systems.The detection model analyses the meta-data associated with an app's

installation so that appropriate actions, such as banning installation or marking the programme

as possibly hazardous, may be implemented. It's crucial to keep up with the most recent

malware trends and to constantly modify the detection strategies to tackle new and developing

threats. The efficiency of Android malware detection utilising meta-information may also be

increased by working with security researchers and utilising community-driven threat

intelligence. Malware creators are constantly improving their methods of avoiding detection.

They could employ polymorphism, encryption, or obfuscation techniques to hide their virus

from detection by meta-data alone. Malware detection frequently results in both false positives

and false negatives. To maintain user confidence and usefulness, it's essential to strike a balance

between detecting accuracy and reducing false alarms.The whole range of virus behaviour

might not be captured by metainformation analysis alone. A more thorough defence against

4

Android malware may be achieved by combining it with additional detection techniques

including static and dynamic 8 analysis, network traffic monitoring, and anomaly detection.

Android malware is a neverending task and new threats appear often. Using threat information

feeds, different detection approaches, and keeping up with the most recent malware trends may

all assist to increase efficiency of utilising meta-data to find Android malware.

Instead of undertaking software analysis (which complicates and slows the analysis), the

project seeks to contemporary and enhanced offering by studying meta-information. Because

of the vast and representative set of features, it is possible to create an easy-to-use technology

while maintaining high accuracy. This methodology can also be used to feed recommender

systems, which can assist users in making decisions. In order to increase the categorization

quality, we've additionally used supervised learning for this strategy. Most used approach for

detecting malware are Anomaly and Signature-based. The signature-based approach relies on

recognising the signature of the malware behaviour. In contrast, the anomaly-based approach

uses its knowledge to compare the normal and abnormal behaviours of a system. Programmes

that deviate from the specifications are assessed as anomalous and, usually, as malware. We

will be using anomaly-based detection approach. A text mining evaluation where various meta

information to build classifier is present which help user to take final decision is also present.

1.2 LITERATURE REVIEW

Machine Learning based approach automates android malware’s analysis and detection via

spotting out malware patterns. High success rate of picking out malware can be achieved from

it. Use of dataset is fundamental in this specific application of artificial intelligence for making

future decision and predcit output. It refers to the process of characterising malware behaviour

and applying classifiers to evaluate the dataset [1]. In previous studies, the classifiers most

frequently used to assess the necessary features and malware detection include Naive Bayes,

support vector machines, decision trees, Random Forest, K-means, K-nearest Neighbours

AdaBoosting, logistic regression, and J48 [2]. Random Forest aka hybrid method incorporates

trump card of incorporating different tree classifiers. Mechanism invoved here uses multiple

decision tree which are trained. Each decision tree is assigned different weightage. Now the

decision is taken combing results from all these decision tree. Sanz [3] used random forest and

developed a method that extracts several features from the manifest file to build machine

5

learning classifiers. Permissions used by the application are sued as feature set. Input vector

was made using application permission. After that experiment was enacted using various

classifiers like J48, Naive Bias, Random Forest, and other classifiers to perform experiments.

Out of all the classifiers best result was obtained via Random Forest. It had a Accuracy and

AUC of 94.83% and 98% respectively. Tiwari and Shukla [4] proposed a method to detect

android malware using permissions and API. A four-step approach was used by the author.

First step was reverse engineering done for second step of feature extraction. Based on

extracted feature, feature vector was generation which was their third step and finally

classification was carried out. Reverse engineering tools were used on apk to get Smali and

AndroidManifest. Smali Files have APIs AndroidManifest.xml helped to obtain permissions

used. XGBoost [5] is a decision tree ensemble based on gradient boosting designed to be highly

scalable. XGBoost reduces loss function for additive expansion of objective function. For

accelerating training speed and reducing overfitting randomizations were added. XGBoost

implements several methods to increment the training speed of decision trees not directly

related to ensemble accuracy.[6]Method used by author for the similarity function just returns

a value between 0–1 measuring the strength of similarity between two documents making it

more or less like a black box uninterpretable similarity. Though it might limit the performance

of applications like recommender systems that mostly rely on document similarity as their

base. [7]Process of picking out critical words pertinent to given document is termed as keyword

extraction. It enables quicker search over document as in above process they are indexed as

document alias. Nature of cateogarization of text can be extractive or abstractice i.e

corresponding keywords are from outside of relevant text or are present there itself. Authors

work on Swisscom AG on extractive keyphrase extraction in an example of unsupervised way.

Author’s specifically chose unsupervised way because of the advantages and flexibility it

delivers over supervised methods such as out-of-domain generalization, no demand for large

hand-annotated corpus with keywords, etc. Many present-day extraction systems have

shortcoming either because of their slower speed or with respect of creating keyword thath ar

relevant and are not redundant. Here, in this paper author’s address both these problems with

their proposed unsupervised algorithm. [8]A deliberate attempt was made to use sensitive API

calls and permissions to discover and detect malware. The test produced interesting findings,

showing that these particular traits demonstrated a high level of success in identifying Android

malware. This finding shows that using sensitive API calls and permissions can be a reliable

way to spot and remove malicious software, which is very encouraging for the field of malware

detection on the Android platform. [9]The author presented two unique methods for extracting

6

keyphrases from a single document. These techniques make use of sentence embeddings and

provide easy scaling of the extraction process.EmbedRank and EmbedRank++, in contrast to

conventional methods, are unsupervised and do not rely on a particular corpus or outside

training data. They are only reliant on the document's content, making them helpful even in the

absence of a large corpus. These approaches deviate from traditional methods by using text

embeddings rather than graph representations. They successfully capture the document's

informativeness and diversity by utilising the power of sentence embeddings. These innovative

techniques enable effective extraction of keyphrases from individual documents while

considering the informational value and diversity of sentences. [10]The researchers unveiled

DroidFusion, a state-of-the-art fusion method that integrates various machine learning (ML)

approaches to improve malware detection accuracy. To capture various features of malware

detection, the approach entails applying ML algorithms to train a variety of classifiers. The

predicted accuracy is then evaluated, and the most useful features are chosen for the final

classifier using a feature ranking algorithm. DroidFusion is more accurate than the commonly

utilised stacking ensemble approach, according to experimental data, proving its efficacy in

identifying malware. This development in malware detection demonstrates DroidFusion's

potential to increase the precision and dependability of malware detection systems and

demonstrates its superiority to current approaches. [11] The usefulness of intentions in

identifying dangerous apps was studied by the researchers. In contrast to permissions, they

discovered that intentions are more important for the categorization of malware. According to

the findings of their investigation, 91% of intentions were detected, compared to 83% of

permits. The scientists also noted that combining the purpose and permission features produced

a detection accuracy of 95.5%, which was greater than the accuracy obtained by utilising each

feature alone. [12] For detecting malware, the authors suggested a mechanism called

Significant Permission Identification (SigPID). The three-level pruning method used by

SigPID includes gathering permission data in order to find pertinent permissions that can

reliably distinguish between malicious and good programmes. The authors used methods for

machine learning (ML) to categorise Android applications.. [13] To evaluate the risk connected

with permissions in Android apps, the authors conducted a research. To rank certain licences

according to their degree of danger, they used statistical approaches including the T-test,

correlation coefficient, and mutual information. To find the permission subsets that were

considered dangerous, sequential forward selection and principal component analysis were

used. The authors used the Decision Tree (DT), Support Vector Machine (SVM), and Random

Forest (RF) algorithms to assess how well these hazardous permissions worked in identifying

7

dangerous programmes. With a False Positive Rate (FPR) of 0.6, the findings showed that the

Malapp detector had a detection accuracy of 94.62%. This demonstrates the detector's

effectiveness and accuracy in detecting malicious applications based on the chosen dangerous

permissions.

8

CHAPTER 2

METHODOLOGY

2.1 ANDROID MALWARE DETECTION USING META-INFORMATION

We have built a novel android malware detection system which rely on meta information

extracted from the manifest file and application description. The objective of this project is to

provide user with a dependable and quick android malware classifier.

 Our method offers android malware analysis using anomaly detection in which android

applications are analysed with executing them rather by extracting meta information, in our

case we have extracted meta information from the android manifest file. Meta information

extracted is quite essential and is key to identify the malicious app. There are 182 features of

android manifest file present in dataset like rating_number, description, devoloper name,

country, etc and permissions like bluetooth, read_logs, Min_SDK, Read_External_Storage, etc

.

In the first step we will perform data preprocessing. Dataset has metadata of 11476 applications

and have 182 features i.e meta information from android manifest file. Out of all the available

applications 8058 applications are benigware applications and 3418 applications are malicious

applications. First of all in preprocessing we will look for features(columns) with missing

values. We will look for relevance of that features in analysing malware and will drop it if that

feature is not relevant or else if it is essential then we will work for correcting redundant entries.

For example, we found columns MD5, Min_SDK, Locality, etc columns with redundant

values. Now MD 5 algorithm is a crpytography algorithm used to protect password. This

column contains hash values for the same. So we can drop this column. Min_SDK column tells

the minimum android version required too run the app. Generally higher the Min_SDK version

the better it is. Here we will place 0 in place of unknown values and will dop NaNvalues. SO

in this way we will deal with missing values in dataset.

9

Now after checking and acting upon missing values we will analyse data we have got. Upon

analysing we find that we have 166 numerical features. Out of these 160 are binary features

and 6 are continuous features. We will look for outliers in continuous variables. We will have

to remove outliers from the continuous variables before inputting to training model. We will

use turkey’s rule to eliminate outliers. It says that outliers are those values which are out of

bound of 1.5 times the inter quartile range. And for boolean columns, we will look for variance.

We will remove boolean columns with low variance.

2.2 NATURAL LANGUAGE PROCESSING

Now to work on NLP Data we will have to preprocess our Text. We will remove non Latin

characters as there are application description available in other language too. After data

cleanup for classifier, we will initiate vectorizer aka design pipeline. Will perform TF IDF

Vectorization and will tune parameters using Grid Search Cross Validation. After that we will

analyse performance of different classifiers.

The method used is based on the traditional term-document matrix, in which each description

is treated as a document, and a set of words is retrieved from the whole corpus of descriptions.

These words are picked via a cleaning procedure that gets rid of irrelevant terms and

harmonises those with shared etymologies.

The description or metadata of Android applications may be examined using NLP to spot

possibly shady or harmful behaviour. NLP models can assist in identifying suspicious

applications for additional examination by analysing the text and extracting pertinent

characteristics, such as the usage of certain keywords, peculiar language patterns, or deceptive

information. Approaches should be used in combination with other malware investigation

techniques even if they might offer useful insights into the programme description. From the

application description, essential words or phrases may be extracted using NLP algorithms.

These keywords can be used to spot potentially hazardous programmes by comparing them to

a list of known malicious or suspicious phrases. Words such as "free," "unlimited," for instance,

may denote a programme engaged in illicit activity. Network traffic monitoring, static or

dynamic code analysis, and meta-information analysis may all be used with NLP to improve

the precision and efficiency of Android malware investigation.

10

2.3 CLASSIFICATION

Differentiating between malware (malicious programmes) and benign-ware (legal

applications) utilising patterns found in their authorization policies and instructions is the

classification procedure for Android malware analysis using NLP. The objective is to teach a

classifier to recognise the essential distinctions between these two categories of applications.

A labelled dataset is necessary to begin the classification process, in which each programme is

assigned to one of two categories: malware or benign-ware. The authorization guidelines and

instructions connected to each application are included in the dataset. The language of the

authorization regulations and instructions is then processed and analysed using NLP methods.

Tokenization, stopping words removal, stemming or lemmatization, and extracting pertinent

characteristics are a few of the processes involved in this. Machine learning techniques are

used to train the classifier once the dataset has been preprocessed and the features have been

retrieved. Classifiers like Random Forest, XGBoost, and Logistic Regression are frequently

utilised in this situation. These classifiers are trained on a labelled dataset, with the goal

variable being the associated labels (malware or benign-ware), and the input variables being

the characteristics gleaned from the authorization regulations and instructions. The classifier

gains the ability to identify patterns and connections in the data that differentiate between

malicious and benign software during the training phase. It creates a model that can extrapolate

these trends to forecast outcomes for novel, unforeseen uses.

2.4 DATASET

The dataset includes various information such as the application's description, developer, rating

score, and other meta-information. However, it was observed that a significant number of

samples in the dataset did not have a description. As a result, those applications were removed

from the dataset, leading to a decrease in its size. After the initial data collection, data pre-

processing techniques were applied to prepare the dataset for further analysis. Data

preprocessing involves transforming and cleaning the data to make it suitable for applying

classification techniques. In this case, the dataset consists of 11478 rows (representing

individual applications) and 183 columns (features). Among the features, 166 are numerical,

out of which 160 are binary (taking values of 0 or 1) and 6 are continuous (taking continuous

numeric values). To improve the performance of the classification techniques, it is important 1

11

11 to consider the variance of each feature. Features with low variance may not provide much

discriminatory information and can potentially hinder the performance of the classifiers.

Therefore, it is common practice to remove features with low variance to reduce the

dimensionality of the dataset. By examining the variance of each feature, it is possible to

identify those features with low variance and remove them from the dataset. This helps to

streamline the dataset and focus on the most informative features that contribute significantly

to the classification task.

Figure 1: Dataset Snapshot

2.5 TEXT MINING

Text mining is the practise of analysing textual data related with Android applications, such as

their descriptions, user reviews, permissions, and other metadata, using natural language

processing (NLP) techniques. Text preprocessing refers to the steps are taken to clean and

normalise the data before the text is analysed. In order to get rid of stopwords (common words

like "the," "is," etc.) and get terms down to their simplest forms, this may entail eliminating

punctuation, changing the case to lowercase, managing stopwords, and stemming or

lemmatization. In order to extract useful information from the textual material, pertinent

characteristics must first be retrieved. N-grams (word sequences), bag-of-words encoding, and

12

term frequency-inverse document frequency (TF-IDF) are a few examples of these properties.

Analysis of User Reviews: User reviews offer insightful information on the usability and

enjoyment of an application. Text mining may aid extract sentiment analysis, which identifies

whether users expressed positive or negative feelings. Specific complaints or unfavourable

sentiment patterns in the reviews may be signs of malware or other questionable activity.

Classification and Detection: Machine learning methods may be trained on labelled datasets to

categorise programmes as benign or malicious based on their textual properties. Examples of

these algorithms are decision trees, random forests, and support vector machines. By

combining textual data with additional variables, text mining can improve the precision of virus

detection algorithms. When analysing Android malware, text mining offers a complimentary

method to static analysis and dynamic analysis. It makes use of the rich textual data connected

with Android applications to derive insights, spot trends, and raise the precision of models for

malware detection and categorization.

2.6 ANDROID PERMISSIONS

Android permissions are essential for understanding Android malware since they reveal what

functions and activities an application may carry out on a user's device. Android applications

ask for permission to use particular resources or carry out particular tasks on a user's device.

One can learn more about the application's intended functionality by looking at the permissions

that are being asked for. The application's AndroidManifest.xml file contains declarations of

permissions.To Spot Malicious Behaviour, a malicious programmes frequently ask for too

many rights, beyond what is necessary for their intended use. A torch app that requests access

to the user's contacts or SMS messages, for instance, may be a warning sign. An application's

requests for permissions might reveal questionable or potentially harmful behaviour. Misuse

of Permissions as Authors of malware may take advantage of valid permissions to engage in

bad behaviour. They could take advantage of certain rights to gather private user data, monitor

user behaviour, place unauthorised calls or send unauthorised messages. Detecting such misuse

involves looking at the permissions that are sought. Vulnerabilities Caused by Permissions

occurs if Some permissions, if misused, might leave an application open to security flaws. The

requested permissions can be examined to find any security flaws or hazards that malware or

attackers could try to exploit.

 Android permissions may be divided into many areas according on how they work, such as

access to the camera, location, contacts, storage, and network. the authorization groups are

13

examined. Analyzing the permission groups can provide insights into the scope of access an

application requires. Mapping permissions to their corresponding functionalities helps in

understanding the potential impact on user privacy and security. Permission-Based Access

Control of android's permission system acts as a security mechanism to control access to

sensitive resources and user data. By analyzing an application's requested permissions, one can

assess whether the requested permissions are necessary for its intended functionality.

Applications that request excessive or unnecessary permissions may be flagged for further

investigation. Detection of Permission-Evasive Techniques is required as some malware may

employ techniques to avoid requesting permissions explicitly. For example, they may

dynamically download additional code or modules after installation to bypass the scrutiny of

the initial permission requests. Such evasive tactics can be found by analysing permission-

related patterns and behaviours. Permissions may be utilised as characteristics in machine

learning-based classification models for detecting malware on Android devices. Classifiers can

learn to distinguish between benign and dangerous programmes based on their permission

requests by training models on labelled datasets with permission characteristics. In conclusion,

Android permissions offer useful data for analysing Android malware. Understanding access

control, spotting potentially harmful behaviour, detecting permission abuse or vulnerabilities,

and improving the precision of malware detection models all benefit from analysing the

requested permissions.

14

Figure 2: Workflow Diagram

15

CHAPTER 3

IMPLEMENTATION

Firstly, we are required to pre-process data so that we can feed them to our machine learning

algorithms and for natural language processing. We will split up our data into training and

testing data. We will look up at training data so as to get insight into meaning of different

features. Then we will try to uncover trends with the plots of data. We will inspect for missing

and erroneous entries in our dataset. We will drop NaN values, Replace unknown values with

0 and will drop attributes with too many unique values since then they will not help much in

classification. Min_SDK' - Verdict: Drop NaN Values, repalce "Unknow" with 0 and convert

to int. Min_Screen- Verdict: Drop the NaN and replace values with 0,1,2...,

Min_OpenGL Verdict: Convert NaN to 0, keep values as is, Supported_CPU- Drop the feature,

no idea how to make sense of it, Signature - Drop it Too many unique values to turn in into

useful numerical feature, Developer- Drop it Too many unique values to turn in into useful

numerical feature, Organization Verdict: Drop it Too many unique values to turn in into useful

numerical feature Country Verdict: Drop it State, Verdict: Drop it, Entirely empty,

LocalityVerdict: Drop it.

Figure 3: Attributes with NaN

16

Figure 4: Applying Clean up

Now we will look out for outliers, data distribution, columns with useless information and their

datatypes. We will look for column with constant value, binary and continuous values. For

continuous variables, we note outliers. We need to exclude those for our training model. Most

apps have no rating and rating counts. Will have to eliminate outliers to make values sensible.

Outlier detection applies only on TRAINING data. Tukey's rule says that the outliers are values

more than 1.5 times the interquartile range from the quartiles — either below Q1 − 1.5IQR, or

above Q3 + 1.5IQR.

17

Figure 5: Finding Outliers

Now we will work on NLP columns. Will check if we can I understand what a feature is about

by skimming the entries, does it use the Latin alphabet and is it all in the same language, what's

the pre-processing functions needed, What's the most compact and representative way to

transform the text. We will perform TDIF vectorization.

Figure 6: Vectorization

18

After applying clean up to training and testing data, we will first apply XG Boost. We will

initiate pipeline design and subsequently initialise grid search.

Figure 7: Pipeline Designing

19

We will compare and try to find best classifier among XGBoost, Logistic Regression and Random

Forest (Trees). Text data tends to be sparse and can result in a high number of features. Features are

related, therefore a classification method like Naive Bayes does not seem like a good fit here.

Figure 8: XG BOOST

20

Figure 9: Logistic Regression

Figure 10: Random Forest

21

CHAPTER 4

RESULTS

In our analysis, we achieved a noteworthy Area Under the Curve (AUC) value of 0.94 using

logistic regression. What's particularly noteworthy is that the weights for the model were

primarily derived from the numerical features extracted from the Android manifest. This

indicates that the information contained in the text data had limited influence on the analysis,

as can be observed from the graph presented below. The emphasis is on the fact that the

numerical features played a more significant role in the model's predictive capabilities, leading

to the high AUC score.

Figure 12: Effect Of Vocab Size On Prediction

22

CHAPTER 5

5.1 CONCLUSION

First, we pre pre-processed data to handle missing entries. Then we removed outliers from

continuous numerical attributes and removed low variance Boolean attributes. After that we

processed our data for NLP. After that we created common vector for our classifier and

analysed the AUC and F1 scores of different models. At last, we checked the influence of

corpus size on our prediction which we found to be negligible and hence we can conclude that

numerical attributes had more effect on prediction.

5.2 FUTURE WORK

Some apps have no description. In addition, there’s little to no useful information in knowing

the app name or what version it’s on. In the future we can divide the prediction model in two

kinds i.e Numerical feature only (so no NLP work) and Hybrid: Numerical features + NLP.

Also, we can target applications from other application store or can amalgate and compare

information of same application present on different application stores and can incorporate

further meta data.

23

LIST OF REFERENCES

[1] Yan P. and Yan Z., “A survey on dynamic mobile malware detection,” Softw. Qual J,
no. May 2017, pp. 891–919, 2018

[2] Razak M. F. A., Anuar N. B., Othman F., Firdaus A., Afifi F., and Salleh R., “Bio-

inspired for Features Optimization and Malware Detection,” Arab. J. Sci. Eng., vol. 43,
no. 12, pp. 6963–6979, 2018

[3] T. K. Ho, “The random subspace method for constructing decision forests,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, no. 8, pp. 832–844,
2018.

[4] B. Sanz, “MAMA: manifest analysis for malware detection in android,” Cybernetics

and Systems, vol. 44, pp. 6-7, 2013.

[5] S. R. Tiwari and R. U. Shukla, “An android malware detection technique based on
optimized permissions and API,” in Proceedings of the 2018 International Conference
on Inventive Research in Computing Applications (ICIRCA), IEEE, Coimbatore, India,
July 2018.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785 794, New York, NY, USA, 2016.
ACM.

[7] Malte Ostendorff, Terry Ruas, Till Blume4 Aspect-based Document Similarity for

Research Papers Proceedings of the 28th International Conference on Computational
Linguistics, pages 6194–6206 Barcelona, Spain (Online), December 8-13, 2020

[8] S. Y. Yerima, I. Muttik, and S. Sezer, ‘‘High accuracy Android malware detection using
ensemble learning,’’ IET Inf. Secur., vol. 9, no. 6, pp. 313–320, Nov. 2015

[9] Kamil Bennani-Smires, Claudiu Musat1, Andreaa Hossmann Simple Unsupervised
Keyphrase Extraction using Sentence Embeddings Data, Analytics & AI, Swisscom
AG 5 Sep 2018

 [10] S. Y. Yerima, and S. Sezer, “Droidfusion: A novel multilevel classifier fusion a
 pproach for android malware detection,” IEEE transactions on cybernetic, vol. 49, no.
 2, pp. 453-466, 2018

 [11] A. Feizollah, N. B. Anuar, R. Salleh, G. S. Tangil, and S. Furnell, “Androdialysis:
 Analysis of android intent effectiveness in malware detection,” Computers &
 Security, vol. 65, pp. 121-134, 2017.

24

 [12] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisaan, and Y. Heng, “Significant permission i
 dentification for machine-learning-based android malware detection,” IEEE T
 ransactions on Industrial Informatics, vol. 14, no. 7, pp. 3216-3225, 2018.

 [13] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring permission-
 induced risk in android applications for malicious application detection,” IEEE
 Transactions on Information Forensics and Security, vol. 9, no. 11, pp. 1869-1882,
 2014.

 [14] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring permission-
 induced risk in android applications for malicious application detection,” IEEE T
 ransactions on Information Forensics and Security, vol. 9, no. 11, pp. 1869-1882, 2
 014.

