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ABSTRACT

Autonomous vehicle, also referred to as self-driving vehicles, represent a paradigm-
shifting advancement in the realm of transportation, characterized by their ability to
operate independently without any human intervention. Such vehicles require the usage
of drivable area detection systems. In this dissertation, a YOLOvV7 oriented framework
using detection and segmentation was proposed to detect the safe-drivable area effectively
and efficiently. The presence of numerous potholes on Indian roads is a serious problem
because they increase the likelihood of accidents. Pothole detection is hence a must for
drivable area detecting systems. Nonetheless, it can be challenging to tell the difference
between the roadways and the potholes. HybridNets, being an advanced drivable area
identification model, is limited to the tasks of lane-line segmentation and drivable region
recognition, lacking the ability to detect potholes due to this limitation. To address this
gap, the proposed approach suggests incorporating instance segmentation of road scenes
using YOLOv7, which utilizes the E-ELAN layer in its backbone to facilitate the learning
of more diverse and improved features. The utilization of various cardinalities and group
convolutions in the E-ELAN layer promotes expansion and enhances the model's ability
to acquire a wider range of features. Through extensive experimentation on our dataset,
the proposed method achieves an impressive mean Average Precision (mAP) of 87%,
outperforming the state-of-the-art HybridNets model which achieves an mAP of 67.8%.
This demonstrates the effectiveness and superiority of the proposed approach in drivable

area identification.

May, 2023 Dhruv Sharma

Delhi (India) (2K21/SPD/03)
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO AUTONOMOUS DRIVING

Autonomous vehicle, also referred to as self-driving vehicles, represent a
paradigm-shifting advancement in the realm of transportation, characterized by their
ability to operate independently without any human intervention. This conspicuously
remarkable technological marvel epitomizes an unprecedented growth and transformative
expansion within the transportation domain. It is amelioration of the human lifestyle and
technology that has spurred a profound interest among the experts, researchers and
industry enthusiasts on this clutter-breaking innovation of driverless vehicles [1]. Over
the years, the interest among the researchers in this domain has been catapulted by its
myriad of advantages including ameliorated road safety, decreased likelihood of road
accidents due to human error, enhanced mobility, and reduced traffic congestion. The
multifaceted merits of this domain continue to captivate researchers, driving them to

explore and innovate in pursuit of a future driven by autonomous technologies.

Within the structure of a typical driverless vehicle lies the integration of an
Advanced Driver Assistance System (ADAS). These intricately designed systems
incorporate a plethora of cutting-edge technologies, including state-of-the-art sensors,
advanced artificial intelligence algorithms, and sophisticated control systems. Such
components synergistically collaborate to empower the vehicle with the ability to
autonomously navigate and traverse roadways, all accomplished without any form of
human intervention. Among the myriad of advanced systems, one particular system is the
drivable area detection system, which leverages the power of deep learning
methodologies to discern and evaluate the boundaries of the safe and drivable region.
Through the utilization of intricate deep neural networks and sophisticated data
processing techniques, this system epitomizes the synergy between cutting-edge
technology and comprehensive analysis, thereby enabling the identification and

delineation of areas conducive to safe vehicular navigation. In this dissertation, a drivable



area detection model is proposed based on YOLOV7 [2]. It infuses detection of vehicles

on roads and segmentation of lane-lines, potholes and safe-drivable area.
1.2 LEVELS OF VEHICLE AUTOMATION

The concept of autonomous vehicles dates back several decades, with initial
research and development efforts focused on exploring the feasibility of automated
driving systems. Over the years, rapid advancements in computing power, machine
learning, sensor technologies, and connectivity have propelled the development of
autonomous vehicles to new heights. Today, major automotive companies, tech giants,
and startups are investing substantial resources in the development and testing of

autonomous vehicle technologies.

Over the past few decades, there has been a perpetual evolution in the operation
mode of the automobiles. Hence, a hierarchy has been framed by the “Society of
Automotive Engineers” (SAE) to categorize vehicles on the basis of their functioning and
mode of operation, as summarized in figure 1. It comprises of six levels that vary from
downright manual operations to accomplished fully automatic systems. While level 3 and
4 vehicles are available in the selected regions across the globe, the level 5 or the complete

automation is yet to become a reality.

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

Driver Partial Conditional

Automation Assistance Automation Automation Automation Automation

The vehicle is capable of
performing all driving

Zero autonomy; the Vehicle is controlled by Vehicle has combined Driver is a necessity, but The vehicle is capable of
driver performs all the driver, but some automated functions, is not required to monitor performing all driving
driving tasks. driving assist features like acceleration and the environment. The functions under certain
may be included in the steering, but the driver driver must be ready to conditions. The driver
vehicle design. must remain engaged take control of the may have the option to
with the driving task and vehicle at all times control the vehicle.
monitor the environment with notice.

functions under all
conditions. The driver
may have the option to

control the vehicle.

at all times.

Fig. 1.1 Levels of Vehicle Automation



1.3 DRIVABLE AREA DETECTION SYSTEM

This dissertation proposes to implement a drivable area detection system using
YOLOV7. The procedure of driveway area detection holds paramount importance within
the realm of automated car systems. This pivotal detection system serves the purpose of
assessing and determining the safe and drivable section of the road for a vehicle, by
processing and analyzing the intricate details and attributes of the surrounding
environment. Through the utilization of video frames and sensory inputs, this system
harnesses the power of data-driven algorithms to decipher and delineate the optimal path
for vehicular navigation, ensuring enhanced safety and efficiency in autonomous driving
scenarios. The proposed model implements a typical detection system for drivable regions
consists of vehicle detection, drivable region segmentation, lane-line segmentation, and

pothole segmentation.

The vehicles are the obstacles on the road. For safe driving, it is essential that the
autonomous car doesn’t collide with the other vehicles, resulting into accidents. Hence,
detection of the vehicles is a must. Potholes, or the uneasy concave depressions on roads,
are highly undesirable due to numerous reasons. Potholes that are more profound can
cause road accidents and damage to the vehicles. As described by Koch et al. [4], Potholes
are optically characterized by their shape which is usually oval, with craggier and darker
surfaces with respect to their circumambient roads. Such visually perceptible aspects
could be manipulated using segmentation and shape extraction techniques to obtain
numerical results that define a pothole mathematically. Segmentation of lane-lines are
used to localize a vehicle and predict its lane. Tasks like automatic indication can only be
informed if vehicle can recognize such lane-lines of varying widths. Finally, the drivable

region is to be segmented to evaluate the safe path over which the vehicle can commute.

The primary aim of this dissertation is to implement a driveway area detection
system using the YOLOv7 model. This model, characterized as an encoder-decoder
network, amalgamates the principles of segmentation and object detection to facilitate the
comprehensive detection of various aspects pertaining to driveways. Consequently, the
model incorporates two distinct decoders: the vehicle detection head and the segmentation
head. The overall workflow entails training the model weights utilizing driving scene

images and subsequently evaluating the model's performance by testing it on video frames
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sourced from a dedicated camera capturing the road during the driving process. Through
this approach, the dissertation aims to demonstrate the effectiveness and applicability of
the YOLOV7 model in detecting driveway areas in real-world scenarios [3]. Figure 2
shows the four tasks involved in the proposed drivable detection area system. Vehicles

are represented through the bounding boxes. The lane-lines are represented by red line

masks, potholes via pink masks and safe drivable region via orange mask.

Fig. 2. Proposed drivable area detection output classes.

1.4 CHALLENGES

There are several challenges and limitations of the existing deep learning methods for
detection of safe-drivable area. In real-time scenarios, where vehicles are operated at high
speeds, latency becomes a critical parameter that cannot be compromised. The trade-off
between latency and performance metrics is evident: when latency is improved, the
performance metrics tend to decline significantly, and vice versa. Object detection and
segmentation techniques individually exhibit impressive performance metrics, but when
combined, they can adversely impact the model's speed in terms of FPS, thereby
compromising latency. Encoder-Decoder architectures offer improved latency at the cost
of a noticeable decline in performance metrics. Consequently, one of the key challenges
in this field is to establish an efficient deep learning model that strikes a balance between

latency and performance metrics, effectively addressing the trade-off dilemma.
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The detection of potholes on roads using deep learning methods poses a significant
challenge in drivable-region detection algorithms and systems. Distinguishing these
concave-sculpted depressions from the road surface is particularly challenging, especially
during nighttime and unfavorable weather conditions. Currently, there is a lack of fusion
systems that incorporate the detection of both drivable regions and potholes present on
the roads. This gap in the existing research hinders the development of comprehensive
solutions for drivable-region detection that effectively address the issue of pothole

detection.

1.5 SCOPE OF WORK

Significant objectives and contributions of this work are:

e To extend the drivable area detection system to segment potholes as well, something
that the SOTA systems are devoid of.

e Proposing to use the YOLOv7, an encoder-decoder architecture mainly used for
detection and also extending it in order to the carry out the segmentation processes.

e To improve upon the performance metrics of the test results without reducing the
inference speed and vice-versa. This is achieved through trainable bag of freebies.

e To assess the performance of the proposed model and compare it with SOTA method
HybridNets. Notably, HybridNets is constrained to three specific tasks and does not

encompass the critical task of pothole segmentation.

1.6 DISSERTATION ORGANIZATION

The content of the dissertation is organized into six chapters:
e Chapter I INTRODUCTION TO AUTONOMOUS DRIVING
e Chapter Il LITERATURE SURVEY
e Chapter Il BACKGROUND TECHNIQUES
e Chapter IV PROPOSED METHODOLOGY
e Chapter V EXPERIMENTAL RESULTS

e Chapter VI CONCLUSION AND FUTURE SCOPE



Chapter I — Includes the introduction to autonomous driving system and overview about

drivable area detection tasks.

Chapter II — This chapter is literature survey, which gives an insight about the research

papers published based on object detection, segmentation and multi-task approaches.

Chapter III — This chapter gives an insight into the background techniques that are being

used in the implementation of the proposed work.

Chapter IV — This chapter covers the methodology that includes detection-segmentation

architecture of YOLOV7 and system architecture along with the model losses.

Chapter V — This chapter includes the experimental results. The results also involve

performance comparison between YOLOV7 and HybridNets.

Chapter VI — This includes the conclusion about the research work and future scope.



CHAPTER 2

LITERATURE SURVEY

In the field of accurate detection of drivable areas, significant research and
advancements have been accomplished over the past few decades. Arising from the realm
of conventional geometry-based modeling and energy-focused optimization schemes, the
detection methods have undergone a transformation, embracing intricate methodologies
rooted in deep learning. The approach of geometry-oriented modeling entails a
comprehensive solution that encompasses the detection of driveway edges and the
subsequent fitting of lines onto them [4]. In order to facilitate the detection of the road
edges accurately, filter-oriented strategies have been employed. Aspects such as texture
and colour may also be integrated to contribute to the aforementioned objectives. Such
strategies include incorporation of gradient-oriented methods such as Gaussian [5] and
Gabor filtering [6]. While Continuous Random Fields (CRF) represents a method that
leverages energy optimization to effectively identify the lanes [7], it is the Hough
transform techniques that have been employed to refine the alignment of lines over the
detected edges [8]. The emergence of deep learning techniques led to ousting of such
techniques with some of their usage being restricted to the pre-processing part. Based on
the application, intent, and requirement, such deep learning methods can be categorized

into three categories described in the following.

2.1 OBJECT DETECTION METHODS

Deep learning models specializing in bounding-box-based object detection on
two-dimensional image signals have can be particularly useful in predicting obstacles,
such as vehicles, on roadways. Several methods have been proposed over the years to
improve upon the process of object detection. Deep learning algorithms, notably
Convolutional Neural Networks (CNNs) [9], have demonstrated remarkable capabilities
in achieving precise object identification. However, they are often associated with much
prolonged inference times The Region-Convolutional Neural Network (R-CNN)
generates throughput comprising sets of bounding boxes corresponding to obstacles,

along with the corresponding class identification outputs [10]. RCNN relies on a selective
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search algorithm as its foundation, which aids in predicting objects within designated
regions. To accomplish this, RCNN employs linear Support Vector Machines (SVM) as
its classification method. The approach exhibits limitations in terms of real-time detection
speed primarily stemming from redundant feature computations. Subsequent
advancements were introduced through the enhancements made via Fast R-CNN [14] and
Faster R-CNN [15]. In contrast to RCNN, Fast R-CNN adopts the approach of utilizing
the entire image as input for feature extraction, rather than processing each proposed
region individually. However, it still faces challenges in achieving efficient detection
speed, primarily due to limitations imposed by proposal detection. Conversely, Faster R-
CNN eliminates the need for the selective search algorithm by enabling the network to
learn region proposals, thereby positioning itself as one of the pioneering near-real-time
deep learning object detectors. Although Faster R-CNN successfully overcomes the speed
limitations of Fast R-CNN, it still encounters computational redundancy in subsequent

detection stages.

In its quest to capture smaller objects, the Feature Pyramidal Network (FPN)
employs a strategy involving the utilization of straightforward image pyramids. By
rescaling the image to various sizes before inputting it into the main network, FPN
enhances its ability to capture diverse object scales. The final prediction generated by
FPN is derived from a fusion of outputs from different methods, resulting in a
comprehensive and inclusive detection capability across a wide range of scales [10]. The
Single Shot Detector (SSD) exhibits a commendable frame rate ranging from 22 to 59
frames per second (FPS) during inference, thanks to its efficient design. Leveraging
multi-resolution techniques, SSD carries out object detection effectively. Notably, SSD
employs a single progressive pass to seamlessly perform localization and categorization
steps. However, its performance deteriorates when dealing with smaller objects,
presenting a challenge in accurately detecting them [14]. Perceiving object detection as a
regression problem, the You Only Look Once (YOLO) approach [15] involves the
partitioning of ground truth into grids. Consequently, the implementation of this
methodology necessitates only a single forward propagation. YOLO is designed to
perform single stage detection. Notably, YOLO achieves the simultaneous prediction of
bounding boxes across all classes within an image, resulting in an impressive frame rate
of 45 frames per second. However, YOLO experiences a decline in localization accuracy

despite the rise in its inference speed, particularly for certain small objects. YOLOvV2 [16]
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and its subsequent iteration, YOLOV3 [17], demonstrated advancements in both object
detection accuracy and speed, yet there remains considerable room for further

enhancement.

2.2 SEGMENTATION METHODS

Numerous segmentation techniques encompassing both instance and semantic
segmentation have been introduced to facilitate the segmentation and masking of lane
lines and drivable road regions. When it comes to identifying potholes, the maintenance
team can opt for the bounding box method, which provides a general area of interest.
Alternatively, if a more precise representation of the pothole shape is necessary while
driving, segmentation methods can be employed to accurately delineate its boundaries on
the road. Further several segmentation methodologies have also been put into use to detect
the driveway area. Different segmentation methods sing deep learning have been
proposed over the years. The Fully Convolutional Network (FCN) is employed for
conducting semantic segmentation tasks [18]. It utilizes locally connected layers,
resulting in fewer model parameters and thus enhancing the network’s computational
efficiency. The FCN architecture incorporates downsampling and upsampling paths, with
the former focusing on feature extraction and the latter on the precise localization of
segmentation masks. By employing this approach, FCN achieves accurate semantic
segmentation while maintaining a faster net- work operation. Arjapure et al. [19] used
VGG annotator tool to annotate the images containing potholes. They further utilize
Mask-RCNN in order to identify potholes under the Regions of Interest (ROI).
Subsequently, the area occupied by the pothole is calculated based on the generated ROL.

UNet is also renowned for its semantic segmentation capabilities [20], under-
takes the task of categorizing each pixel within the ground truth. This attribute empowers
UNet with remarkable border differentiation capabilities. Its unique architecture
resembles a U shape, leveraging both contractive and expansive components to ensure
input and output have matching dimensions. LaneNet [21] adopts a sophisticated
approach by combining binary segmentation with clustering-oriented embedding to
achieve robust lane-line detection. Its primary focus lies in segmenting lane-lines
accurately. Operating on an encoder-decoder architecture, LaneNet utilizes the decoder

to generate pixel-wise predictions efficiently. Notably, LaneNet is designed specifically



for lane-line segmentation and does not cater to multi-class segmentation tasks. Spatial-
CNN (SCNN) exhibits the remarkable ability to capture translational and rotational
relationships among ground-truth pixels, resulting in significant enhancements in the
segmentation process [22]. This advancement is achieved through the utilization of a
slice-by-slice convolution method, which facilitates the exchange of information within
individual pixels. In the SCNN model, rows and columns of feature maps are treated as
layers, allowing for a sequential flow of pixel details. This unique approach proves
particularly advantageous in capturing long, continuous shapes with precision and

accuracy.

SegNet [23], an additional model employed for semantic segmentation,
incorporates an encoder, decoder, and a pixel categorization layer. Notably, the
novelty of SegNet lies in its decoder, which distinguishes itself by skillfully upsampling
both low-resolution and full ground-truth feature maps. Remarkably, the upsampling
process in SegNet is characterized by a non-linear nature, enabling the model to
effectively reconstruct detailed segmentation maps with higher resolution. This
distinctive feature of SegNet contributes to its superior performance in accurately
delineating object boundaries and capturing intricate semantic information within images.
ENet [24], a cutting-edge framework, adopts a compact encoder-decoder architecture that
effectively reduces the number of parameters and enhances processing speed. This
architecture is designed with a specific focus on efficiency. ENet leverages the Parametric
Rectified Linear Unit (PReLU) as its activation function. Additionally, ENet employs
dilated convolutions. Notably, ENet optimizes processing costs through early
downsampling, which strategically optimizes the initial stages of the network, leading to
improved overall performance and faster inference times. In the research work referenced
as [25], an innovative hybrid encoder-decoder network is introduced, incorporating both
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) units.
This advanced architecture is purposefully devised to efficiently handle data exhibiting
temporal sequence characteristics. Within this framework, the CNN component
undertakes the processing of input data, taking into account its inherent temporal
properties. Simultaneously, the LSTM component intelligently learns and captures
significant attributes from the data. The resultant learned features are subsequently
employed for accurate lane forecasting, showcasing the network’s ability to predict and

anticipate lane behavior. Through the integration of CNN and LSTM, this hybrid network
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exemplifies substantial potential in effectively addressing dynamic scenarios and

enabling informed decision-making processes.

2.3 MULTI-TASK APPROACH

Drivable area detection is a multi-task application that requires detection of the
road-obstacles such as vehicles., and segmentation of lane-lines, potholes and safe-
drivable region. This necessitates the usage of both detection as well as segmentation
processes in such a system. Consequently, there is a need to combine detection and
segmentation methods to effectively determine the safe drivable region. However,
integrating different models for fusion purposes poses challenges in terms of inference
speed and latency. The performance of the model is compromised, making it unsuitable
for real-time applications where timely coordination, aligned with the vehicle's speed, is
of utmost importance. In order to address this limitation, researchers have proposed
simpler architectures that integrate these networks into streamlined encoder-decoder-
based models. By utilizing these simplified architectures, the computational efficiency is
improved while still maintaining the ability to perform accurate driveway area detection
and segmentation. Mask R-CNN is an encoder-decoder-oriented network [26] that is
capable of performing segmentation of images along with the detection of objects. It is

an extension of Faster-RCNN.

The Drivable-area, Lane line and Traffic detection-Network (DLT-Net) is a
comprehensive framework designed to address the three crucial tasks of drivable-region
detection, lane line detection, and traffic detection. The architecture of DLT-Net heavily
relies on the contextual information provided by specially designed tensors, enabling
efficient coordination between the three task-specific decoders [27]. The encoder
component generates feature maps of various sizes, with the final feature map being fed
into the dedicated decoders for each task. The context tensors, strategically positioned
between the encoder and the decoders, contribute to improving the discriminative
capability among the tasks. However, DLT-Net does possess certain limitations. It
struggles to yield optimal results in scenarios involving intense reflection while driving.
Additionally, it demonstrates limitations in accurately predicting recurring divider lines
as lane-lines. These areas present opportunities for further refinement and improvement

in the performance of DLT-Net. The Dynamic Fusion Module-RGB Fusion Thermal
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Network (DFM-RTFNet) [28] is an advanced model that incorporates a feature fusion
technique through the dynamic integration of the DFM module into the RTFNet
architecture [40]. This methodology involves generating a dynamic kernel based on a
two-dimensional feature and applying it to another feature to achieve fusion. By
leveraging the properties of spatial variance and content dependency, distinct kernels can
be selectively applied to different regions of an image, optimizing the fusion process and
enhancing network efficiency. The RTF-Net, which forms the foundation of DFM-
RTFNet, consists of two encoders dedicated to RGB and Thermal inputs, drawing
inspiration from the renowned ResNet architecture. Subsequently, a series of five decoder
layers is employed to process the fused features. Finally, a softmax layer is applied to
generate detection and segmentation results, marking the conclusive stage of the

network's operation.

YOLOP, an innovative deep learning model for driveway-area detection [29], has
been developed by the authors specifically for real-time scenarios on the Jeston Tx2
embedded device. This model aims to excel in multiple tasks, including traffic object
detection, drivable-region segmentation, and lane-line detection. Built upon the
foundation of YOLOv4, the model utilizes Adam as the optimizer during training [29].
The encoder module is composed of two main architectures: the backbone architecture,
based on the Cross Stage Partial Dark Network (CSPDarkNet), and the neck architecture,
utilizing the Spatial Pyramid Pooling (SPP) module. The input to the heads is obtained
from the bottom layer of the neck. To restore the output feature map to the appropriate
size, triple-upsampling is employed in the heads. This approach, inspired by the trainable
Bag of Freebies (BoF), contributes to achieving high-precision throughput and faster
inference. HybridNets stand apart from models like YOLOP and others due to its unique
architecture, which features a shared encoder and only two decoders—one dedicated to
vehicle detection and the other to lane-driveway area segmentation—rather than three
separate decoders . The encoder component has been carefully designed to incorporate
model scaling, a critical aspect for efficient hardware system implementation. Model
scaling is achieved through the utilization of Bidirectional Feature Pyramid Networks
(BiFPN), which enables efficient information flow across different scales. The backbone
of the model is EfficientNet-B3, which plays a vital role in optimizing the network by
evaluating scaling parameters, ensuring the stability of the network design. The encoder

also incorporates a neck network based on EfficientDet, which receives the feature maps
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from the backbone [30]. The Bidirectional Feature Pyramid Networks (BiFPN) combine
attributes at various resolutions, leveraging cross-scale connections for each node through
bidirectional paths. This approach empowers the model to effectively handle complex
datasets. The segmentation head of the model focuses on examining three categories:
background, driveway-area, and lane-line, enabling comprehensive analysis and

detection.
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CHAPTER 3

BACKGROUND TECHNIQUES

3.1 ENCODER-DECODER ARCHITECTURES

Encoder-Decoder architectures are simple structures that perform feature
extraction by generation of feature maps in the first part and detection/segmentation in
the next part. In other words, the proposed architecture consists of an encoder component
designed to process input sequences of varying lengths, and a decoder component that
functions as a conditional language model. The encoder receives the input sequence and
performs encoding operations to capture its underlying features. On the other hand, the
decoder utilizes the encoded input as well as the preceding context of the target sequence
to predict the next token in the target sequence. This dynamic interaction between the
encoder and decoder enables the model to effectively generate accurate predictions for
subsequent tokens based on the contextual information. YOLOvV7 is also an encoder-

decoder architecture, with its backbone serving as the encoder and head as its decoder.

INPUT = Backbone

CBS layers EELAN [[ MP+EELAN1 MP+EELAN2 MP+EELAN3

CBS-1 Layers

P3, P4 P5

v

\4
RepConV Layers Concat. layers SPPCSPC

OUTPUT |¢—| Head(s)

Fig. 3.1 An Overview of YOLOv7 Architecture
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3.2 AN OVERVIEW OF HYBRIDNETS

The HybridNets model, similar to the proposed methodology, adopts an encoder-
decoder network architecture. It integrates both semantic segmentation and object
detection techniques, allowing for the comprehensive detection of various elements
within the scene. By incorporating these two decoders, namely vehicle detection and
driveway-lane segmentation heads, the model is capable of simultaneously addressing
multiple aspects of interest. This comprehensive approach enables the HybridNets model
to effectively analyze and interpret the complex visual information captured on the road.
EfficientNet-B3, an influential component of the architecture, assumes the role of the
encoder-backbone. Its primary function entails the optimization of the network through
the meticulous assessment of scaling parameters [31]. This pivotal contribution serves to
bolster the stability of the network design while concurrently mitigating the
computational burden. The neck network effectively receives the feature maps derived
from the backbone, thereby serving as an intermediary connecting element [32]. To
facilitate the seamless integration of attributes at distinct resolutions, the neck network
incorporates EfficientDet-inspired BiFPN (Bidirectional Feature Pyramid Network)
components. This innovative approach not only enables the fusion of multi-level features
but also contributes to the overall efficiency and effectiveness of the segmentation
process. Each grid of the multi-scale fusion feature maps from the Neck network will be
assigned nine prior anchors with different aspect ratios. K-means clustering is utilized

[33] to establish the anchor boxes.

Detection Head

Input Backbone Neck

Fig. 3.2 HybridNets Architecture [30]
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3.3 BOUNDING-BOX REGRESSION

Bounding box regression is a sophisticated technique employed to estimate the
precise spatial location of an object within an image. This technique involves training a
model to predict the coordinates that define the bounding box encompassing the object of
interest. By leveraging this approach, the model can effectively localize and outline the
object's boundaries. Despite its relative simplicity in implementation, bounding box
regression serves as an advantageous starting point in object detection tasks, facilitating

accurate localization and subsequent analysis of objects within an image.
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Fig 3.3 Bounding Box Detection [YOLO]

In figure 3.3, cx and cy represent the top upper left corner of the image while pw

and ph represent width and height.

3.4 SEGMENTATION

Image segmentation is a sophisticated technique employed in the realm of
computer vision to partition a digital image into discrete and meaningful subgroups
known as image segments. This process serves the purpose of simplifying the complexity
of the image, thereby facilitating subsequent processing or analysis on each individual
segment. From a technical standpoint, segmentation entails the intricate task of assigning
labels to individual pixels, thereby discerning and identifying objects, people, or other

significant elements present within the image. In order to optimize computational
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resources and improve the efficiency of object detection, a prevalent approach involves
the utilization of an image segmentation algorithm to identify and extract objects of
interest within the image. By employing this strategy, the subsequent object detector can
focus exclusively on the predefined bounding boxes derived from the segmentation
algorithm's output. This targeted approach eliminates the need for the detector to process

the entire image, resulting in enhanced accuracy and reduced inference time.

Fig 3.4 Segmentation Example of Road and Pothole
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CHAPTER 4

PROPOSED METHODOLOGY

4.1 PROPOSED SYSTEM

The proposed system is summarized in figure 4.1. The proposed methodology
employs a combination of segmentation and object detection techniques in order to

accurately detect and delineate the safe drivable area. By leveraging the capabilities of

ENCODER
(BACKBONE + NECK)

DETECTION
HEAD

SEGMENT.
NETWORK

(DECODER)

Fig. 4.1 Proposed System
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both segmentation and object detection, the methodology aims to enhance the precision
and reliability of the drivable area detection process. Road-scene images are firstly
annotated manually. For vehicles, bounding boxes are drawn around them, while
polygon-based annotations are used for segmentation-oriented classes. Prior to the
commencement of the training process, the road images undergo an annotation procedure
wherein detailed annotations are generated and formatted in a text (txt) file. Notably, these
annotations comprise numerical values represented as floating-point numbers, ranging
between 0 and 1, capturing the essential attributes of the road scene. Subsequently, these
annotated images are inputted into the training module, wherein the robust YOLOv7
model assumes a pivotal role. There are three segmentation labels that we have used, that
is, the drivable region, lane lines and the potholes and two object detection labels, cars
and trucks. Instance segmentation has been proposed in this model that is inspired from
YOLOVS5 [34] and YOLOVG6 [35]. Based on it, an anchor-free instance segmentation
method has been developed. The testing data is finally fed to the trained model to obtain

the detection and segmentation results from their heads, respectively.

4.2YOLOV7 ARCHITECTURE

4.3 At its core, YOLOV7 adopts an intricate encoder-decoder architecture, which
encompasses two essential components: the backbone and the neck network. The
backbone serves as a feature extraction network, responsible for generating feature maps
of distinct resolutions. Beginning with P1, representing a downsampled resolution of half
the original size, the feature maps progressively evolve up to P5, with a downsampled
resolution of 1/32 of the original size. This intricate process spans across approximately
50 layers within the network. The backbone integrates an array of sophisticated
techniques and components, strategically incorporated to enhance its performance and
overall efficacy. The backbone consists of the following modules.

o Extended Efficient Layer Aggregation Network — E-ELAN ameliorates the
feature learning capabilities of the backbone by leveraging the "Expand, Shuffle
and Merge” cardinalities and group convolutional techniques. This approach
significantly improves upon the diversity of aspect learning while still maintaining
the gradient path without compromising it.

e MaxPool Layer — The module incorporates a pooling technique where the input

tensor is pooled using various kernel sizes without deducting the resolution of the
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input(s), which signifies stride being unity. This is accomplished using a Max-
Pooling (MP) layer. The module then concatenates the input tensor with the
pooled outputs, generating multi-scale region aspects through this pooling and
concatenation operation.

e Convolution Batch Normalization — In the realm of deep learning, the merging of
convolution and batch normalization layers into a single convolutional layer is a
popular technique. The merits of this method have been well established,
including ameliorated efficiency and deducted computational cost. The
integration of the batch normalization step into the convolution operation enables
the model to learn more informative representations of the data, while

simultaneously normalizing the inputs to each layer.
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Fig. 4.2 YOLOV7 detailed Architecture

The YOLOv7 model uses a compound scaling method to multiple alternative
models with different inference speeds of variable scales. This constitutes of amendment
of scale factors including depth, width, resolution, and stage in an attempt to prepare
models of distinct sizes. By scaling depth and width factors, models can achieve optimal
performance while retaining the characteristics of the original representation. In order to
implement trainable BoF, the planned re-parameterized convolution technique with a
module-level ensemble is used in YOLOvV7, utilizing the RepConv method that combines

3x3 and 1x1 convolutions with an identity connection. However, in YOLOv7, RepConvN
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skips the identity connection to preserve residuals and concatenation. Additionally, re-

parameterization is also applied to CBN for superior results.
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Fig 4.3 E-ELAN Module [3]
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Fig 4.4 Compound Scaling [3]

The SPP (Spatial Pyramid Pooling) module plays a pivotal role in the network

architecture by employing pooling operations with various kernel sizes, without reducing
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the input resolution (stride == 1). Maxpooling layers are utilized for this purpose. The
module then combines the original input tensor with the pooled outputs through
concatenation. This process generates multiscale region features, leveraging the pooling

and concatenation operations.

On the other hand, the CSPNet (Cross Stage Partial Network) is designed to
address the issue of redundant gradient information by dividing the feature map of the
base layer into two parts. One part undergoes a block operation, such as a dense block or
a resblock, along with a transition layer. The other part is combined with the transmitted
feature map for the subsequent stage. This approach effectively reduces the computational
complexity, memory usage, and duplicate gradient information. As a result, the network

benefits from improved inference speed and accuracy.

The YOLOv7 model implements a novel two-headed approach to enhance its
ability to segment objects and locate them accurately. The lead head is responsible for the
final output, while the auxiliary head assists in training by utilizing shallow and
superficial weights, as well as an assistant loss to provide guidance. The model
incorporates deep supervision techniques, such as the label assigner, which generates soft
and coarse labels to optimize learning and allow the lead head to capture residual

information.

[ Lead Head }—b[ Loss ] [ Lead Head ]—P[ Loss ]

coarse

[ Aux Head H Loss ]i— [ Aux Head }—b[ Loss ]4-

Fig 4.5 Label Assignment in YOLOV7 [3]
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4.3 SEGMENTATION

The model architecture utilizes an instance segmentation method on YOLOV7 that
is inspired by YOLOVS [18] and YOLOV6 [19], which is an anchor-free approach. The
YOLOV7 segmentation architecture draws inspiration from a compact, fully connected
neural network known as ProtoNet. This influential concept serves as the foundation for
the object detection head integrated within the YOLOV7 framework. By combining the
ProtoNet principles with the object detection capabilities, YOLOvV7 achieves its
distinctive segmentation architecture. It consists of three convolutional layers. It operates
by generating prototype masks that are integral to the segmentation model. This approach
shares similarities with the concept of FCNs employed in semantic segmentation tasks.
By leveraging this network, the segmentation model is equipped with the ability to
generate prototype masks, enabling effective and precise segmentation of the desired

objects.

4.4 LOSS FUNCTION

The comprehensive loss function encompasses a range of individual losses to
address different aspects of the network's objectives. These include the segmentation loss,
which measures the dissimilarity between predicted and ground truth segmentation
masks. The bounding box loss quantifies the disparity between predicted and actual
bounding box coordinates. The detection loss evaluates the dissimilarity between
predicted and ground truth object detections. Lastly, the classification loss captures the
discrepancy between predicted and true class labels. By incorporating these diverse loss
components, the network can effectively optimize its performance across various aspects

of the task at hand.

loss = Segment. loss + Bounding Box loss + Detection loss + Class.loss (4.1)
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 DATASET PREPARATION

The dataset utilized for evaluating the proposed detection and segmentation task
was sourced from a renowned research group based at IIIT Hyderabad, India.
Specifically, a video dataset was selected, and a total of 1000 frames were extracted from
it for further analysis. These frames were meticulously annotated in a text (txt) format to
ensure compatibility with the YOLOvV7 model. The annotations encompassed five key
classes: cars, trucks, potholes, drivable regions, and lane lines. For the precise annotation
of cars and trucks, rectangular bounding boxes were employed, while polygons were used
to accurately delineate the boundaries of potholes, lane lines, and drivable regions.
Furthermore, binary masks were generated specifically for the segmented lane lines and
the overall road area, which were indispensable for the subsequent analysis and evaluation

of the HybridNets model.

5.2 PERFORMANCE METRICS

A diverse range of performance metrics has been employed to assess the
effectiveness of the model. Intersection over Union (IoU) is a metric that quantifies the
extent of overlap between the segmented areas by calculating the ratio of their common
intersection to their union. This metric has been utilized to evaluate the segmentation
aspect of the model, as referenced in [36]. For the vehicle detection component, precision,
recall, Fl-score, and mean Average Precision (mAP) have been adopted as evaluation
measures. Precision refers to the proportion of correctly identified positive detections out
of the total detections made. Recall, on the other hand, represents the proportion of actual
positive instances that are correctly identified. Fl-score is a combined metric that
balances both precision and recall. Lastly, mAP calculates the average precision across
different object categories, providing an overall assessment of the detection performance.

Recall(R) = TP/(TP + FN) (5.1)
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Precision(P) = TP/(TP + FP) (5.2)
F1 —score = 2RP/(R + P) (5.3)

mAP is calculated from the recall-precision curve. The PR curve helps in evaluating the

trade-off between the two parameters and evaluate the best result in terms of mAP. [37]

5.3 SYSTEM REQUIREMENTS

The implementation of the proposed methodology was conducted on the Linux
Ubuntu platform, specifically version 22.04.01. To facilitate the training, validation, and
testing processes of the model, the NVIDIA RTX A5000 GPU was employed, leveraging
its computational power. The model itself was developed using the PyTorch 1.10 library,
which provided a robust framework for deep learning tasks and facilitated efficient

execution of the proposed algorithms.

5.4 RESULTS AND DISCUSSION

A subset of 1000 frames was extracted from a video dataset for further analysis. Out
of these frames, 900 were utilized for training the model, while the remaining 100 frames
were reserved for validation purposes. The training process involved multiple iterations,
with variations in epoch numbers and batch sizes, in order to optimize the model's
performance. After thorough experimentation, it was determined that utilizing a batch

size of 8 over 100 epochs yielded the most favorable results.

To evaluate the model's effectiveness, a selection of video frames from the same
dataset was randomly chosen for testing purposes. In addition to our proposed detection
model, we also trained the state-of-the-art drivable area detection model, HybridNets,
using the same dataset. The outputs generated by both models, including the ground truth
and the combined driveway area detection output, are visually presented in Figure 5.1 for
comparative analysis. The precision recall curve, F!-confidence curve, Precision-
Confidence curve and Recall-Confidence curve are shown in the subsequent figures 5.2,

5.3,54 and 5.5.
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a) b) )

Fig. 5.1 Model Results a) Ground Truth b) HybridNets c) YOLOv7. HybridNets is
incapable of performing pothole detection. Also, it is only capable of identifying smooth
roads, as in casel and fails to detect roads that are improper or slightly damaged in rest

of the cases. YOLOV7 detects the roads in either of the cases.
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Figure 5.6 shows the resulting confusion matrix of the proposed model. The outcomes
of vehicle detection for both the proposed method and HybridNets have been succinctly
presented in Table 1. The comparative evaluation of these models has been conducted
based on key performance metrics such as mean Average Precision (mAP), Recall, and
Fl-score. The findings indicate that YOLOV7 exhibits superior performance over
HybridNets, even when accounting for the inclusion of pothole detection, with a

significant margin of 20% in terms of mAP.

Table 1. Comparison between HybridNets and YOLOv7-seg

Model Speed (FPS) | mAP@ 50% | Recall (%) | F1-Score

HybridNets 55 67.8 87.8 78.6
Proposed 160 88 93 87
Model
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Fig 5.7 Performance metrics plots.

Additionally, YOLOv7 showcases a substantially higher processing speed of 160
frames per second (FPS) in contrast to the 55 FPS offered by HybridNets, thus excelling

in both swiftness and accuracy. This notable achievement can be attributed to the
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enhanced bag of freebies integrated into the proposed method, enabling a harmonious
enhancement in both speed and precision without compromising either aspect. Fig 5.7

shows the performance metrics plots for YOLOV7.

The superior performance of YOLOvV7 can be attributed to the utilization of E-ELAN,
a technique that harnesses diverse cardinalities and group convolutions to achieve a
comprehensive expansion. This expansion results in the acquisition of a wider range of
varied and refined features, ultimately enhancing the model's capability. Furthermore, the
proposed method implements a dynamic label assignment process in its head, leveraging
soft labels that combine both ground truth and prediction outcomes. By incorporating this
strategic approach, the model becomes adept at capturing and learning residual
information from the image, thereby amplifying its capacity to extract meaningful

insights and optimize overall performance.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Autonomous vehicle, also referred to as self-driving vehicles, represent a
paradigm-shifting advancement in the realm of transportation, characterized by their
ability to operate independently without any human intervention. Such vehicles require
the usage of drivable area detection systems. In this dissertation, a YOLOV7 oriented
framework using detection and segmentation was proposed to detect the safe-drivable
area effectively and efficiently. The presence of numerous potholes on Indian roads is a
serious problem because they increase the likelihood of accidents. Pothole detection is
hence a must for drivable area detecting systems. Nonetheless, it can be challenging to

tell the difference between the roadways and the potholes.

HybridNets, being an advanced drivable area identification model, is limited to
the tasks of lane-line segmentation and drivable region recognition, lacking the ability to
detect potholes due to this limitation. To address this gap, the proposed approach suggests
incorporating instance segmentation of road scenes using YOLOvV7, which utilizes the E-
ELAN layer in its backbone to facilitate the learning of more diverse and improved
features. The utilization of various cardinalities and group convolutions in the E-ELAN
layer promotes expansion and enhances the model's ability to acquire a wider range of

features.

Furthermore, the proposed method employs a dynamic label assignment process
in the head of the model, allowing for the learning of residual information from the image.
Additionally, the introduction of a trainable bag of freebies contributes to improved

performance metrics without requiring excessive training costs.

Through extensive experimentation on our dataset, the proposed method achieves
an impressive mean Average Precision (mAP) of 87%, outperforming the state-of-the-art
HybridNets model which achieves an mAP of 67.8%. This demonstrates the effectiveness

and superiority of the proposed approach in drivable area identification.
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In the future scope, the detection system is to be extended to include vehicle

tracking, to make the system more advanced.
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