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                                                         ABSTRACT 

 

 

As protection of the environment gains more and more attention, the economic emission 

dispatch problem has emerged as an intriguing and crucial task in the power system. In 

essence, the EED problem is a multi-objective optimization problem, which concurrently 

reduces fuel costs and pollutant emissions while also satisfying certain system constraints like 

power balance and generating restrictions. The thesis developed a method based on the meta- 

heuristic Particle swarm optimization for single objective, bi objective and multi objective 

power system optimization problems based on cost of fuel function, emission criterion 

function and operational constraints of the generating system.  

 In this thesis comprehensive, a systematic and chronological effort has been made for 

literature review from 1983 to 2019 with historical development, addition of new parameters, 

tuning or refinement of parameters and its variants for different optimization problems with 

constraints, multi-objectives. In addition it also covers the parallel PSO, its hybrids, 

communication topology and for multi-objective problems strategy used for parallel 

computing are covered in detail. 

The new variant Perfectly Convergent Particle Swarm Optimization (PCPSO) developed is 

an intelligent algorithm which does not get trapped in local optima by using personal best 

value along with new parameters and new velocity update equation for better exploration in 

the search space. The velocity clamping effectively helped to control the maximum velocity 

of the particles from explosion state and align them towards the true global optimal with 

increased computational efficiency in less time. It has been implemented on uni-modal, 

multi-modal with local optima and noisy function. 

PCPSO technique was used to solve combined economic and multiple emissions dispatch 

scenarios with max-max price penalty factor using quadratic functions, while considering the 



implications of emissions. Implementing this method on three different standard IEEE test 

systems , such as the IEEE six-unit system, IEEE ten-unit system, and IEEE forty-unit 

system, and comparing the results with other meta - heuristic algorithms, allowed for the 

evaluation of this algorithm's effectiveness.  

Moreover same strategy  is used for solving combined economic and multiple emissions 

dispatch problems while taking into account the impacts of various pollutants  with seven 

price penalty factors using cubic functions. Cubic cost functions are more accurate and show 

the actual response of all thermal units. This algorithm has better search capabilities with 

strong convergence characteristics that minimizes the cubic cost and cubic multiple emissions 

functions at various load demands with minimum transmission losses for an IEEE 30 bus,6 

generators test system. 

PCPSO was able to provide balanced exploration and exploitation in the search space. The 

suggested algorithm's effectiveness was tested on different separate test systems, both small 

and large, with differing degrees of complexity. In the realm of Multi Area Load Dispatch 

(MALD), this technique aids in the refinement of the global solution as well as local search. 

Energy transfer between locations and fossil fuel emissions from generating units are key 

concerns. As a result, the goal of MAPD is to minimize the overall generation cost of the 

areas while also lowering pollutant emissions. To appreciate the value of resolving the entire 

region into tiny regions, a comparison with the Single Area load Dispatch (SALD) method is 

made. The Price Penalty Factor (PPF) method is used to reduce a multi-objective 

optimization problem into a single-objective optimization problem while satisfying its 

different equality and inequality constraints. System security is ensured by keeping the tie 

line transfer limits between areas and the constraints in the multi area load dispatch.  Various 

benchmark IEEE models were applied to this algorithm to test the developed PCPSO 

effectiveness and reliability. 
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CHAPTER I 

INTRODUCTION 

 

1.1 General 

In the civilized era, electrical power is crucial to addressing a diversity of requirements. In 

order to meet the demand for power, it is crucial that the electrical power generated is 

transmitted and distributed effectively. There are numerous techniques to produce electrical 

electricity. The much more important challenge in managing and running a power generation 

system involves effectively managing each generator to fulfill the necessary demands. For a 

specific load requirement, the strategy for the most cost-effective operation of the committed 

units is determined. The emissions from thermal power plants must be reduced together with 

the operating costs due to the negative effects on the environment. As more power is 

produced, the unit's emissions and operating expenses increase. These two goals change 

nonlinearly in relation to the production of unit power. The first set of constraints is that each 

dedicated unit must produce power within its own minimum and maximum possible bounds. 

Additionally, the total power produced by each unit must only be sufficient to meet the entire 

load demand including system transmission losses. Another constraint is provided by the 

power balance. Reduced emissions are produced as fuel quality is better, albeit at a higher 

cost. As a result, it is impossible to achieve both cheap cost and low emission concurrently. 

As a result, the combined economic emission dispatch problem has nonlinear constraints and 

multi-objective in character. 

In today's deregulated electricity market, any network operator's top priority is to find a good 

strategy for economic dispatch. To address and optimize economic load dispatch (ELD) 

difficulties, numerous proprietary and conventional methods are utilized. Even while these 



approaches assume that the cost curve for generator units is increasing linearly, it is actually 

rather nonlinear. 

When two or even more generators are utilized to generate electricity and their combined 

capacity is greater than the amount of energy required, ELD is used in the power system. 

ELD responds with the amount of power required from each generator unit to meet all 

requirements while using the least amount of fuel possible. 

How well these approaches correspond to the actual circumstance is another crucial issue. An 

illustration would be the fact that, in the real world, not all power plans are situated close to 

the load centers. Fuel prices may vary as a result of this. Numerous scheduling techniques are 

used to avoid this situation. Modern power systems are also interconnected, making them part 

of a network of connected power systems. In order to create the best permutation, it is crucial 

to take the requirements of the entire grid and limits brought about by the grid into account. 

How all these techniques respond to adjustments in the characteristics and limitations, which 

are crucial in the grid situation, is also crucial. 

Combined economic emission load dispatch is a highly nonlinear, non-convex, 

discontinuous, and non-differentiable optimization problem in which the objective function 

may have more than one local minimum. Numerous strategies, including traditional and 

stochastic ones, have been developed to address the optimizing of ELD. The main issue with 

economic dispatch in the power system is the choice of heuristic optimization technique. 

Analysis and optimization of carbon emissions are crucial since carbon footprints were 

created to encourage commercial and industrial organization to ensure extremely low 

emissions. This makes it crucial for any issues with economic dispatch to take the carbon 

emissions into account. When we evaluate the optimum fuel cost and the costs associated 

with emissions, the system is frequently forced to adopt a non-optimum cost option. The 

economic dispatch problem must therefore be changed to the economic and emission dispatch 



problem. Power companies aim for the most economical operation possible due to the 

increasing cost of fuels globally, the rising demand for electricity, and the growing concern 

for the environment. We are also taking combined economic dispatch and emission dispatch 

into account in our study using new developed variant of Particle swarm optimization. 

1.2 Economic Dispatch 

 

Another issue in a power system that requires top priority is the Economic Dispatch (ED) 

optimization problem. This involves a thorough plan for the output from each associated 

generator in a power system so that the entire cost is kept as low as possible, all load demand 

needs are satisfied, and the desired quality is guaranteed. Conventionally, electrical power 

systems are managed to keep system restrictions while lowering operating costs. Fuel, labor, 

supplies, and maintenance costs are all included in the total cost of operating a generator. 

Since the costs of lab our, supplies, and maintenance typically represent set percentages of 

the cost of fuel, we will simply consider the cost of fuel to be the only variable cost. 

As regards to the power generated vs generator capacity, the cost of fuel is typically assumed 

to be a smooth quadratic function.  Such approach, though, has a number of quite 

suppositions, some of which have been stated under. 

Following is a list of a few of those. 

i. It presumes a smooth cost function—in a real-time setting, this expression would require 

many factors and be more complex. 

ii. It makes the assumption that the issue is static; however, the actual instance of such a 

power system involves several dynamic changes. 

iii. This curve does not take into account emissions variables that are a consequence of the 

thermal plant's operation and pay the costs of pollutants in accordance with the carbon credit 

regulations. 



iv. Complete disregard is given to the start-up and shutdown expenses of generators, that 

account for a sizeable portion. 

The ED issue can be resolved utilizing native techniques such lambda iteration, gradient 

search, base point, participation factor approach, dynamic programming, linear programming, 

etc. if the fuel-cost curve is assumed to be a smooth curve. Such presumptions were 

extremely unrealistic due to the factors listed above and the valve point loading effect that is 

described beneath. 

 

                                     Fig 1.2 Fuel cost curve 

 1.3 Non Smooth characteristics 

If valve point effects were taken into account in such a real-world scenario, the objective 

function of an ED problem contains non-differentiable regions. As a result, the effect appears 

to be produced in numerous steps and the goal function is created as a composition of a 

number of non-smooth cost functions. Primarily for two key scenarios, non-smooth cost 

functions are therefore considered. The valve-point loading (VPL) scenario is the first 

instance where the goal function is treated as the superposition of quadratic and sinusoidal 

functions. The objective function in the second situation, which involves considering the 

identical problem as a multiple-fuel problem, can be represented as either bitwise or 



piecewise quadratic cost functions. The responses in both of the aforementioned situations 

include several minimum. 

1.4 Non Smooth characteristics with valve point effects 

The input-output curve of a generator with multiple valve steam turbines would differ from 

the smooth cost function due to the effects of the valves. This main effect being brought on 

by waves produced as steam valves are opened. The prior quadratic cost functions are being 

supplemented with a number of sinusoidal functions to account for the effects of valve-points 

on generators.  

 

            Fig 1.4    Discontinuities in Fuel cost curve due to Valve point loading effects. 

 

                    Fig 1.5 Quadratic piecewise cost function  



 

In this instance, the generator uses a variety of fuels. The optimization problem could then be 

written as bitwise or piecewise quadratic cost functions. 

1.5 Emission Dispatch 

Fossil fuels are now used as sources of energy to produce mechanical power that is applied to 

generating units' rotor shafts. This results in significant emissions of nitrogen oxides, sulphur 

oxides, and carbon dioxide, which pollute the atmosphere. Environmental regulation 

enforcement and emission control have received a great deal of attention due to the 

environmental damage caused by fossil-fueled generating units. Additionally, the utilities 

have been compelled to change their design or operational tactics to reduce carbon emissions 

and atmospheric emissions from the thermal power plants as a result of rising public 

awareness of environmental degradation and the passing of the Clean Air Act Amendments 

in 1990. Additionally, there are many stringent regulations governing carbon credits. 

1.6 Combined economic emission load dispatch (CEED) 

The optimization problem for the economic dispatch needs to take into account fuel and 

emission optimization in order to get global optima, as mentioned above. As a result, the 

entire issue is now a financial and emissions-related dispatch issue. The previous approaches 

are no more capable of offering an acceptable solution to economic dispatch with integration 

of all these aspects, such as valve-point-effect and pollution optimization. This is because the 

economic and emission dispatch issue evolves into a multi-objective, highly 

multidimensional, non-convex challenge. Consequently, modern meta-heuristic techniques 

have been applied to address the economic and emission dispatch problems. Few of the 

algorithms that are extensively used are the genetic algorithm (GA), evolutionary 

programming(EP), particle swarm optimization(PSO), Biogeography Based 

Optimization(BBO) , harvest season artificial bee colony, differential evolution(DE), 



Backtracking search algorithm(BSA), Gravitational search algorithm(GSA), epsilon-multi-

objective genetic algorithm variable(ev-MOGA), Flower pollination algorithm(FPA), quasi 

oppositional teaching learning based optimization(QOTLBO), modified artificial bee colony 

algorithm (MABC/D/Cat , MABC/D/Log) , Kernel search Optimization (KSO) 

The most of the economic and emission dispatch issues are solved utilizing such methods or 

their combination. However, there are indeed issues in this domain. These are some of the 

other difficulties. 

I Large processing time: The majority of techniques have a high computational cost, which is 

troublesome when taking into account dynamical system changes. 

ii. Converging to a local optimal solution: In several cases, the problem's solution converges 

into a local minimum, which is then treated as the problem's optimum. The global optimal 

solution, however, might not be the same. 

Iii Solutions that are not practical: This possibility exists and is more frequent whenever 

pollutants are being restricted. 

iv. Algorithm failures for large- and moderate systems: The technique could breakdown and 

produce incorrect outputs, which is much more serious than any other issue if all the 

situations or use situations are still not handled appropriately and accurately. 

Because of this, it is frequently required to use combinational techniques or new methods. 

Therefore, current research is focused on boosting the performance of solutions and resolving 

all the issues mentioned earlier. It's worth noting that research has shown that hybridising 

tactics increases their effectiveness. 

 

1.7 Outline of Thesis 

 

This thesis consists of seven chapters including introduction, literature review, development 

of new technique of particle swarm optimization, Machine Learning through Back 

Propagation networks using PCPSO in higher dimensions, combined economic emission 



dispatch with quadratic function  with point valve loading using perfectly convergent particle 

swarm optimization, Multi-area Economic Emission load dispatch using perfectly convergent 

Particle swarm optimization and conclusion and future scope followed by references. 

Chapter1: This chapter provides the insight into the economic dispatch, Non Smooth 

characteristics, Non Smooth characteristics with valve point effects, emission  dispatch, 

Combined economic emission load dispatch with the meta-heurastic optimization algorithms. 

Chapter2: Literature review is presented in this chapter from the development of the 

technique. The entire journey of Particle swarm optimization is presented in a systematic and 

chronological effort has been made for literature review from 1983 to 2019 which fits the 

need of researcher from starting with all the developments like historical development, 

addition of new parameters, tuning or refinement of parameters and its variants for different 

optimization problems with constraints, multi-objectives. In addition, this also covers the 

literature survey of parallel PSO, its hybrids, communication topology and for multi-

objective problems strategy used for parallel computing is covered in detail. This review will 

give me a correct direction for development of new version. 

Chapter3: Development of new version of Particle swarm optimization is represented in this 

chapter and it is tested on the various benchmark functions including uni-modal, multi modal 

and multi modal with noisy environment.  

Chapter4:This chapter focus on the machine learning on the data sets are taken from the 

experiments carried out on benchmark functions using opposition based Particle swarm 

optimization with Cauchy mutation (OPSO) and Perfectly convergent Particle swarm 

optimization (PCPSO) as a set of input vectors and there corresponding output values. 

Artificial Neural Networks gives us various methods to learn the mapping of any data sets 

Chapter5: This study presents perfectly convergent particle swarm optimization (PCPSO) for 

solving combined economic and multiple emissions dispatch scenarios with max-max price 



penalty factor using quadratic functions, while considering the implications of emissions. 

Implementing this method on three different standard IEEE test systems , such as the IEEE 

six-unit system, IEEE ten-unit system, and IEEE forty-unit system, and comparing the results 

with other meta - heuristic algorithms, allowed for the evaluation of this algorithm's 

effectiveness. 

Chapter6:This chapter presents perfectly convergent Particle swarm optimization (PCPSO) 

for solving combined economic and multiple emissions dispatch problems while taking into 

account the impacts of various pollutants  with seven price penalty factors using cubic cost 

and emission functions. Also results are compared with latest meta-heuristic techniques. 

Chapter7: In this chapter Multi Area Economic Emission Dispatch (MAEED), this 

technique aids in the refinement of the global solution as well as local search. Energy transfer 

between locations and fossil fuel emissions from generating units are key concerns. As a 

result, the goal of MAEED is to minimize the actual generation cost of the areas while also 

lowering pollutant emissions. 

Chapter8: This chapter presents the conclusion of research work in this thesis and future 

scope of the research work is discussed in brief. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                              CHAPTER2. 

                    LITERATURE REVIEW OF PARTICLE SWARM OPTIMIZATION 

 

2.1 Introduction 

Nature computing paradigms are the correct way to solve real world problems due to 

dynamic in nature, noisy or multi dimension problems. Many species solve their complex 

tasks in nature by (PSO) emerged from biological research and simulation on swarming 

animals. Reeves [1] in 1983 firstly attempted in computer animation to show natural 

phenomena by generating moving particles to predefined locations with initial velocity and 

having characteristics like texture, colour, lifetime and angular movements. It was widely 

used for special effects and natural looking. The first computer simulation and movies related 

work was given by Craig Reynolds [2] about simulating bird swarms in 1986. He also added 

orientation and communication in them. The result was some simulated swarm of who's the 

individual he called as Boids [3] directed by three simple rules. Heppner F and Grenander [4] 

in 1990 reviewed Reynolds work for doing more detailed bird flock animation and studies. 

They introduced the concept of need of roosting or swarming, which results in too realistic 

nature like. Hoffmeye J[5] a biologist in 1994 studied the semiotics and defined the swarm in 

concept of algorithm. This algorithm being in Ontogeny group are co-operative in nature. 

2.2 Particle Swarm Optimization and its Refinement: 

 

Kennedy and Eberhart [6] in 1995 sought to extend the work of Reynolds to reflect social 

behaviour in swarms and make a realistic goal oriented. It uses simply mimic swarm 

behaviour in birds flocking, fish schooling or swarms of bees in solving optimization 

problems. Another version" Lbest" of PSO developed by Eberhart and Kennedy [ 7] in order 

to examine how changes in the paradigm effects the number of iterations to meet the error 



criterion. Eberhart et al. [8] in 1996 proposed a velocity clamping strategy to control the 

velocity of the particles.  Kennedy [9] in 1997 performed analysis of PSO algorithm for 

social interaction with new four types of models (full model, cognition only, social only and 

selfless model) and suggested cognition only and social only performed well but did not want 

to replace the core algorithm as it will result in premature convergence. Kennedy and 

Eberhart [10] suggested in 1997 a first discrete binary version of PSO, by changing the 

velocity in each vector with probability of each bit by zero or one value. In starting PSO was 

without inertia weight but in 1998, Shi and Eberhart [11] initially introduced constant inertia 

weight to balance between exploration and exploitation and this algorithm was called 

standard PSO.PSO is initialized by initial solutions of the particles moving in the search 

space, each particle is represented by a position and velocity and keeps updating as follows 

 𝑥𝑗(𝑘 + 1) =  𝑥𝑗(𝑘) +  𝜈𝑗(𝑘 + 1)                                                                             (2.1) 

𝜈𝑗(𝑘 + 1) =  𝜔𝜈𝑗(𝑘) + 𝑐1𝑟1(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2𝑟2(𝑔(𝑘) − 𝑥𝑗(𝑘))              (2.2) 

Where, j =1, 2, 3…i            

       k+1 denotes next iteration, k is the current iteration number, 𝜈𝑗is velocity of the particle j, 

       𝑥𝑗is position of the particle j, 𝜔is Inertia weight factor,  𝑐1,𝑐2 are acceleration factors, 𝑝𝑗is 

personal best of particle j, g is the global best of the entire swarm, 𝑟1,𝑟2 are pseudo random 

numbers between 0 and 1. 

Ozcan and Mohan [12, 13] in 1998, 1999 observed that the particles surf on sine wave instead 

of flying and made many simplifications and removed the stochastic element of the 

algorithm. The optimal strategy of using inertia weight w by Eberhart and Shi [14] in 1999 

from 0.9 to 0.4 in a linearly decreasing way improved exploration and optimal global 

minimum. Maurice Clerc [15] in 1999, modified the PSO by derived a constraint coefficient 

which operates without Vmax. Kennedy [16] in1999 worked on four topologies: circles, 

wheels, stars and random edges and concluded that topology affects the swarm’s performance 



but also dependent on objective function. Suganthan [17] in 1999 introduced linear and non-

linear methods that determine the inertia weight depending on iteration number. Eberhart and 

Shi [18] in 2000 suggested two approaches using constriction factor χ and inertia weight ω 

are used and found to be mathematically equivalent and  the initial value of ω to be set at 0.9 

and reducing it linearly to 0.4 for better exploration and exploitation. Carlisle and Dozier [19] 

in 2000, proposed this technique to forget the former experience by periodically resetting 

particles memory and replacing their best fitness value and position with the current position 

and fitness value. Kennedy [20] in 2000, performed cluster analysis of best performer 

particles but with high computational cost and real time. Van Den Berg and Engelbrecht [21] 

in 2001 proposed optimal size of swarm depends on the problem and larger swarm size when 

the search space is more complex. Carlisle and Dozier [22, 24] in 2001, 2002 proposed to 

deploy special particles called ‘sentry’ to monitoring the environment change and inform all 

other particles to reset memory. It slows down the particles and difficult to track moving 

optimum. In 2001 Carlisle and Dozier [23] suggested to start with constricted model with a 

global neighbourhood of 30 particles which are updated asynchronously but without improve 

the optimizer from initial configuration. Later in 2002 Clerc and Kennedy [25] suggested the 

use of constriction factor χ, which alleviates the requirement of velocity clamping shows 

better results with new velocity equation as: 

𝜈𝑗(𝑘 + 1) = 𝜒[𝜈𝑗(𝑘) + ɸ
1

(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + ɸ
2

(𝑔(𝑘) − 𝑥𝑗(𝑘)) ]            (2.3) 

Χ = 
2

|2−ɸ−√ɸ
2−4ɸ|

  where ɸ = ɸ1 + ɸ2, ɸ> 4(4) 

 Ratnaweera et al.[26] in 2002, proposed to decrease c1 linearly with time while c2 to be 

increased linearly. Kennedy and Mendes [27] in 2002 suggested local version of PSO with 

inertia weight and the other with constriction factor and suggested a small neighbourhood is 

suitable for complex problems and large for simple problems. Van Den Berg and Engelbrecht 



[28] in 2002 proposed Guaranteed Convergence PSO (GCPSO) for avoiding swarm 

stagnation problem with different velocity update equation, within a radius with random 

search around global position. Fan [29] in 2002 introduced an adaptive scaling term as an 

efficient speedup strategy for better control and convergence.  Trelea [30] in 2003analysed 

the convergence boundaries, convergence point and parameter setting procedure of PSO 

showed ω =0.6 and ɸ1 = ɸ2=1.7 results in good performance of PSO. Zheng et al.[31] in 

2003 observed with increasing inertia weights was used yielding good results. Ratnaweeraet 

al.[32] in 2004proposed the value of ɸ1 is decreased and ɸ2 is increased for better 

exploration and exploitation, further the author modified by using adaptation rule to re-

initialize the velocity of particles. Chatterjee and Siarry [33] in 2006 introduced non-linear 

variation of inertia weight with the particle old velocity for improvement in the speed of 

convergence and fine tuning in search space. Bratton and Kennedy [34] in 2007 defined a 

standard PSO as the baseline for the researchers a common grounding to work from. 

Arumugam et al.[35] in 2008 proposed smaller acceleration coefficients and larger inertia 

weights if the personal best are not comparable to global best of the particles. Chen and Zhao 

[36] in 2009 suggested an adaptive variable swarm size and periodic partial increasing or 

declining of particles in the form of ladder function. Nakagawa et al. [37] in 2009 proposed 

by adding a random number to the velocity of particle depending upon the distance from the 

global best position for the velocity control. Van Den Berg and Engelbrecht [38] in 2010 

proposed a mutation operator may be used to avoid the stagnation for the local convergence 

problem in standard PSO. Nickabadi et al. [39] in 2011 proposed adaptive change in inertia 

weight during the search process and possesses a linear relationship between inertia weight in 

current iteration and improvement in number of particles in previous iteration. Bansal et al.  

[40] in 2011 proposed 15 different strategy of inertia weight in PSO and suggested chaotic 

inertia weight strategy is best for accuracy and random inertia weight is best for efficiency. 



Engelbrecht [41] in 2012 advocated through study is to initialize particles to zero or close to 

zero without imposing a personal best bound. Schmitt and Wanga [42] in 2013 suggested to 

reinitialize the velocity in each dimension whenever there is a stagnation. Cleghorn and 

Engelbrecht [43] in 2014 suggested that topology does not effect the convergence boundaries 

but effects the speed of convergence and divergence through the first order stability analysis. 

Van Zyl and Engelbrecht [44] in 2015 proposed initialization strategy called seed set which is 

a set of randomly generated n- dimensional orthogonal unit vectors obtained from modified 

Gram Schmit method and is suited to high dimension problems. This strategy forces the 

swarm within the subspace of search space for better exploration. Bonyadi and Michalewicz 

[45] in 2016 investigated the behaviour of particles and suggested the oscillation patterns into 

four groups based on the maximum frequency of oscillations and the boundaries does not 

depend on the number of dimensions. Liu et al. [46] in 2016 studied the effect of 198 regular 

topology with 09 different number of particles and devised formulae to help to choose 

optimal topology parameters. Bonyadi and Michalewicz [47] in 2017 examined the 

relationship between the base frequency’ F’ and the correlation between the particle position, 

particles with smaller’ F’ will exhibit smooth trajectories and larger’ F’ values are prone to 

more oscillations with large steps between positions. Oldewage [48] in 2018 proposed the 

initialization strategy which forces the swarm on sub space of search spacefor exploration 

rather than entire search space with optimal number of seed set size depending upon 

dimensionality. Shi et al. [49] in 2018 proposed new strategy called Oscillatory PSO which 

uses a particle to drive into oscillatory trajectories for complete search space. The cognitive 

and social factors are made to sum to unit, thus ensuring that particles converge toward the 

weighted sum between current global best and particle wise best solutions. Inertia weight is 

selected to ensure a complex roots are obtained from PSO update equation. Oldewage et al. 

[50] in 2019 investigated different particle swarm movement patterns behaviour are highly 



influenced by inertia weight and acceleration coefficients in higher dimensions space. 

Parameter configuration with inertia weight ω=0.9694 and c1=c2=0.099381 gives smooth 

particle trajectories and restrict unwanted roaming behaviour due to initial velocity explosion 

in range even in higher dimensions. Sun et al.[51] in 2019 proposed the random sampling of 

control parameters with immediate particle updating strategy is used along with stochastic 

correction approach on each dimension is also used to take information from other particles 

for better convergence rate and accuracy. 

2.3 Hybrids of Particle swarm optimization  

 

Hybrid models of PSO has been developed whose objective is to combine the good properties 

of different algorithms to mitigate their individual weakness. Following are the different PSO 

based hybrid approaches which is used to refine the properties of PSO to achieve global 

values. 

Discrete PSO-For binary problems first discrete version [52] was developed by Kennedy and 

Eberhart in 1997 by changing the velocity to the probability of each bit being in one state or 

other. 

GA Selection based PSO-Angeline [53] in 1998, applied GA tournament based selection 

criterion which replaced velocity and position of worst performing particle with good 

performers particles velocity and position. This improved the local search capabilities of 

PSO. 

Fuzzy PSO-Shi and Eberhart [54] in 2001 suggested this algorithm where PSO is with an 

explicit selection procedure. Here replication, mutation, reproduction, evaluation and 

selection operation are employed.  

PSO-GA-Lovbjerg et al.[55] Presented in 2001 introduced breeding between particles in 

different sub populations which result in faster convergence and a better optimal solutions. 



Dissipative PSO-In 2002 Xie et al.[56] suggested this algorithm to overcome the problem of 

entrapped in local minima, a dissipative system was implemented which uses negative 

entropy and produces craziness between particles resulting to come out of stagnant stage. 

Multi-phase Discrete PSO- ln 2002 Al-Kazemi and Mohan[57] suggested this hybrid 

version to fewer objective function with small swarm by using three coefficients whose 

values were set either 1 or-1 depending upon the phase of optimization and personal best was 

replaced with the previous position.   

Evolutionary PSO-Miranda and Fonseca[58] proposed this algorithm in 2002 having hybrid 

characteristics of EA and of PSO. In EPSO there is replication, mutation, reproduction, 

evaluation and selection of particles which generates new solutions in search space.  

Attractive-Repulsive PSO-This algorithm[59] was suggested by Riget et al. in 2002 which  

has two phases as attractive and repulsive with two operators as addition and subtraction 

which are used to update PSO equations to avoid premature convergence.  

Niche PSO-In 2002 Britis et al. [60] devised a technique in which GCPSO is run and only 

those particles are separated out as multiple sub swarms whose fitness do not show any 

change during running of algorithm. These multiple sub swarms explore and exploit the 

search space simultaneous with the PSO. 

Spatial Extension PSO-Krink et al. [61] in 2002 proposed three strategies: Random 

direction changer, Realistic bounce and Random velocity changer to avoid collision system. 

The last two strategies were helpful in multi-modal functions. 

Stretching PSO(SPSO) –Parsopoulos and Vrahatis [62] in 2002 suggested to use deflection, 

stretching and repulsion technique were used in original PSO. First two techniques apply the 

concept transforming the objective function by incorporating the already found minimum 

points and repulsion technique avoids the particle to go to already found minimum points. So 

more global minimum points can be found out. 



NBest PSO-Brits et al. [63] in 2002 proposed to use local neighbourhoods based on spatial 

proximity and got a parallel niching effect in a swarm.   

Barebone PSO (BBPSO)-Kennedy [64] in 2003 proposed that the velocity and position 

update rules are substituted by a procedure that samples a parametric probability density 

function. 

Gaussian PSO(GPSO)-A new hybrid algorithm was developed by Secrest et.al [65]in 

2003which is based on probability distribution of the moving swarm with a Gaussian distance 

from the global and local best.  

Fitness to Distance Ratio PSO -Peram etal. [66] in 2003 suggested a new concept in the 

algorithm each particle tracks that particle in the neighbourhood having better fitness value 

instead of attracting towards global best particle. It uses the relative fitness and the distance 

of other particles for direction purpose.  

Dynamic Double PSO (DDPSO) -In 2004 Cui [67] et al. proposed a way for guarantied 

convergence to global minima using convergence analysis and position of particles are set 

dynamically with constraints.  

Fully Informed PSO (FIPS) -Mendes et al. [68] developed a strategy in 2004 about a 

topology that all the particles are equally informed. 

Hybrid Gradient Descent PSO-Noel et al. proposed a method [69] in 2004 for using the 

gradient information for faster convergence to global minima by employing random size and 

avoiding calculations of local neighbourhood.  

Quantum Delta PSO-Sun et al.[70] developed an algorithm in 2004 where the concept is 

taken from quantum physics which obeys uncertainty principle (position and velocity cannot 

be measured simultaneously) but the motion of particles is quantum in nature and it has only 

one parameter to control.  



Unified PSO(UPSO)-Parsopoulos and Vrahatis [71] in 2004 proposed a technique which 

only uses the features of Gbest and Lbest and its velocity updating is done in two parts 

depending on the information. 

Co-operative PSO(CPSO)-Van den berg and Engelbrecht [72] in 2004 proposed to use co-

operative behaviour to improve original PSO and uses multiple swarms to optimize the 

different component of the solution vector.  

Species based PSO (SPSP) - Li [73] in 2004 proposed on the bases in there similarity of 

species of sub-populations of swarm where each species is grouped around a dominating 

particle called species seed. At every iteration species seed are identified and taken as 

neighbourhood best for the species group .Finally after many successive iteration this 

algorithm provides many local minima from which global minima can be identified.  

Kalman PSO (KPSO) –Monson and Seppi [74] in 2004 suggested to use Kalman filter to 

update the particle position and thus enhances exploration without effecting the ability to 

converge rapidly to good optimal solutions. 

Parallel PSO (PPSO)- Chang et al.[75] suggested in 2005 a technique in which fitness was 

calculated of each particle independently and efficiency of strategy communication was 

calculated. In correct strategy was given sub optimal and correlation was unknown, a hybrid 

strategy is considered to be good.  

Angle Modulated PSO (AMPSO) -Again in 2005, Pam para et al. [76] developed an 

algorithm in which a bit string is generated by using trigonometric functions. It changes high 

dimension problem to four dimension problem and makes it highly efficient in operation and 

also saves memory.  

Exploring Extended PSO (EEPSO) -In 2005 Poli et al. [77] proposed that Genetic 

Programming can be used routinely evolve specialist position update for use by PSO in 

special domain problems.  



Hierarchical PSO-Stefan and Martin [78] in 2005 introduced a new method in which 

particles are arranged in a hierarchical way depending on the fitness value. Good particles are 

on the top of hierarchy and have more, influence on the swarm.  

New PSO(NPSO)-Yang and Simon [79] in 2005 suggested that each particle adjust position 

from its own previous worse position and its group previous worst to obtain optimal fitness 

solution. No changes are made in velocity and position equations, only the term uses is worst 

position rather best position. This technique tries to get away from the worst instead of 

coming closer to best position.  

Interactive PSO-Madar et al. proposed in 2005 that procedure of IPSO [80] is same that of 

PSO with a difference that best particle selection is done by the user in every 

iteration.Interactive PSO is different from Interactive EC from information sharing point of 

view. 

Neural PSO-Duo et al. suggested a technique [81] in 2005 to combine feed forward neural 

network with PSO to acquire good learning in movements by the best particles previously in 

the search space.  

Perturbation PSO-Yaun et al. in 2005 developed an algorithm [82] it keeps on changing 

velocity and position equations keeping the existing equations of PSO for other particles.  

Principal component PSO (PCPSO)-Voss et al .in 2005 propose a strategy [83]in which 

particles are flown simultaneously in two different dimension search spaces to reduce the 

time in higher dimensions.  

Opposition based PSO (OPSO)-Tizhoosh in 2005 proposed a novel concept [84] by 

considering counter estimates, opposite numbers, anti-chromosomes, counter actions, and 

opposite's weights in machine learning algorithms has proven to be effective method by 

making revolutionary jumps in starting as time saving.  



Fuzzy Adaptive Turbulence PSO (FATPSO) -Hongbo et al. [85] Proposed in 2005 that 

premature convergence can be effectively avoided by using minimum threshold velocity to 

control the velocity parameter which is tuned adaptively by fuzzy logic controller in TPSO 

algorithm.  

Adaptive PSO Guided by Acceleration Information-In 2006 Zeng et al. [86] proposed that 

acceleration term is also added to the position and velocity updating equations, thus making 

PSO fast and efficient. 

Comprehensive Learning PSO-In this technique Liang et al. [87] in 2006 the particle 

velocity is updated by analysing the other particle velocity history information and the 

diversity of swarm is maintained.  

PSO with Escape Velocity-A novel technique[88] is proposed by Zang et al. in 2006 equips 

the particles with the escape velocity to avoid to get trapped in local minima and increase the 

diversity of population which outperforms PSO for high dimension and multi modal 

problems. 

Genetic PSO-Yin [89] in 2006 proposed this novel technique which incorporates crossover 

and mutation features of GA in PSO  

Genetic Binary PSO-Sandri et al. in 2006 proposed [90]keeping the dynamic conditions of 

the swarm, in binary state each particle is treated as chromosome and the chain with the size 

of dimension. 

Gregarious PSO-IN 2006 Pasupelti and Battiti [91] suggested a new technique in which 

particles uses only social knowledge and stochastic velocity vector is used in the search 

space. Self-setting of parameters is done by the integration to obtain the parameters.  

Hybrid Discrete PSO-In 2006 Chandrasekaran et al. proposed [92] that each particle shows 

the job sequence as an optimal solution in job scheduling problem.  



Hybrid Taguchi PSO-Roy and Ghosal in 2006 proposed [93] to select the intelligent 

particles only in Taguchi selection method with PSO.  

Improved PSO-Zhao [94] in 2006 proposed to usePSO with Passive Congregation with 

harmony search and utilises a mechanism called fly-back for constraints. 

Augmented Langrangian PSO-Sedlaczek and Eberhart [95] in 2006 suggested this method 

for equal and unequal constraints by combining augmented langrangian method with PSO for 

optimization problems.  

Optimised PSO-Meissner et al. in 2006 proposed a technique [96] in which swarms are 

within a swarm to optimize the parameters of PSO and showed better optimal results.  

Parallel Asynchronous PSO-Koh et al. in 2006 suggested a novel technique [97]which 

generates a dynamic view of load balancing along with a chain duty central approach to 

reduce the unbalance in load and velocity update is continuously done by the latest 

information.  

PSO with craziness and hill climbing-In 2006 ozcan and Yilmaz [98] proposed to enhance 

a balance between discovery and extract by using craziness and hill climbing for optimizing 

multi modal functions.  

Restricted velocity PSO (RVPSO)-Liu and Chen in 2006 developed [99] a restriction in 

velocity due to limited search space for unconstrained problems.  

Self-organisation PSO-Jie [100] et al. proposed in 2006 that an extra feedback agent is 

required to improve swarm performance in next iteration and hence stagnation can be 

avoided. 

Two Swarm PSO-Lie et al. [101] in 2006 suggested that two swarms are flown in different 

paths from each other by setting different parameters. One swarm will explore global and the 

other will enhance the local search by using Roulette wheel selection. 



Unconstrained PSO-Moore and Venayagamoorthy [102] in 2006 proposed not of using the 

constraints for position and velocity equations unlike the classic form of PSO.  

Velocity Limited PSO-Xu and Chen [103] in 2006 suggested in this approach that only those 

particles who satisfy the constraints for velocity and position are considered otherwise 

discarded.  

Adapted Dissipative PSO-Shen et al.[104] proposed an approach in 2007 by introducing 

adaptive mutation and adaptive inertia weight strategy into dissipative PSO which improve 

the diversity of the swarm and avoids premature convergence problem. 

Area extension PSO-Atyabi and Phon-Amnuaisuk [105] in 2007 introduced this technique 

for solving multi-robots task problem with large area by adding new elements in the equation 

which results in new velocity equation for correct direction,premature convergence is solved 

by adding hot area/zone,new credit assignment and boundary methods avoided the particles 

to struck in the areas and communication limitation helped to solve real world problems. 

Behaviour of Distance PSO-Wang and Qian [106] in 2007 proposed that the particle 

changes fly behaviour guided by optimum of each particle and the optimum of the swarm and 

the individual can adapt themselves to search for best position more effectively. 

Best Rotation PSO-Alviar et al. [107] in 2007 proposed this approach that a swarm 

population is divided into sub swarms and stagnation problem is avoided by forcing swarm 

from one local minima to another local minima and a periodic rotation is performed from 

particles of sub swarms which makes better exploration in search space.  

Rotation Invariant PSO -Wilke et al. [108] in 2007 proposed was rotation invariant and 

uses random matrices rather than random diagonal matrices to perturb the direction of 

movement in every iteration using exponential map method.  

Combi national PSO-Jarbouria et al. [109] in 2007 suggested a new clustering technique 

based on this algorithm with each particle is represented as a string of length’ n’ where i th 



element of the string denotes the group number assigned to the object’ i ‘and an integer 

vector corresponds to candidate solution to the clustering problem, The performance of this 

algorithm depends upon the choice of parameters and initial population. 

Co-operative Multiple PSO (CMPSO)-Felix et al. [110] proposed in 2007 that this 

technique works well in multi dimensions problems and is more efficient than conventional 

PSO. 

Dual Layer PSO (DLPSO)-Subrarnanyam et al. in 2007 [111] suggested a strategy that 

optimizes the neural network in an architectural layer and uses joint weights in neural 

network. 

Dynamic and Adjustable PSO (DAPSO)-Liao et al. [112] proposed novel concept of 

keeping the distance of each particle to the best position is calculated to adjust the velocity of 

next step for the diversity of particles.  

Estimation of Distribution PSO-Kulkarani and Venayagamoorthy [113] in 2007 proposed 

(hybrid of EDA and PSO) to introduce Estimation of Distribution algorithm which uses 

stochastic models to locate the optimal solution areasduring the optimization process. This 

increases the diversity and efficiency of PSO.  

Evolutionary Iteration PSO (EIPSO) -Lee [114] in 2007 pointed a new combination of 

PSO and Evolutionary programming to avoid the trapping of particles in local minima and 

provides a strength to PSO efficiency.  

Evolutionary Programming PSO (EPPSO)-Wei et al. [115] proposed in 2007 by 

combining the two algorithm (EP and PSO) gives more diversity among the particles to 

explore local and global minima and faster convergence.  

Greedy PSO-Lamet al. proposed in 2007 a new concept of hybrid Evolutionary algorithm 

[116] of combining binary PSO with Greedy transform. The greedy transform method was 

successfully tested on knapsack problem. 



Heuristic PSO-Lam et al.[117] proposed in 2007 that rate of convergence to local optima is 

faster than conventional PSO.To avoid stagnation or premature convergence near the global 

minima the positions of particles is randomly re-initialised and this combination of heuristic 

updating and position re initialization makes this algorithm powerful and efficient.  

Map Reduce PSO-McNabb [118] et al. proposed in 2007 a novel technique to solve big data 

problems which is time consuming with conventional PSO but in fact this technique runs a 

parallel PSO for computationally compressed functions. 

Modified Binary PSO- Yuan and Zhao [119] in 2007 suggested this strategy that the 

particles are produced randomly as binary vectors and the lowest value of position is used to 

map to permutation space.  

Novel Hybrid PSO- Li and Li [120] in 2007 proposed the hybrid of PSO and Harmony 

search for better exploration in high dimension problems resulting in increasing exploitation 

of PSO.  

Predator Prey PSO- Jang [121] et al. in 2007 suggested a new concept [ ] that predator 

follow prey and prey escapes from predator means avoiding to get trapped in local minima 

and move towards  optimal global minima.  

Quadratic Interpolation PSO (QIPSO)-Pant et al. [122] in 2007 proposed that the hybrid 

use of EA and PSO in which swarm leader is selected in each iteration and other partners are 

selected for cross over and an offspring is produced as Quadratic cross over. This new 

particle is accepted only if it is better than the current best particle of the swarm.  

Shuffled Sub swarm PSO -Wang and Qian et al. [123] proposed in 2007 for a better 

diversity and performance of the swarm.  

Trained PSO (TPSO)-Gheitanchi et al. [124] in 2007 proposed this technique to the ad-hoc 

communication networks to reduce completion complexity and time by training the particles.  



2-D OTSU PSO- Wei et al. [125] in 2007 suggested to use optimal threshold selecting search 

with PSO for better performance. The threshold selecting method is used for image 

segmentation based on PSO is combined with two-dimension Otsu method. 

Vertical PSO- Yang in 2007 [126] proposed that the particles can fly both to global and 

vertical directions to avoid stagnation or entrapped near to global points.  

Opposition based PSO Cauchy Mutation- Wang et al.[127] in 2007 suggested this 

technique opposition based learning for every particle and dynamic Cauchy mutation is 

applied to the global best particle in every generation resulting in fast search speed in 

complex optimization problems.  

Clonal PSO (CPSO)- Tan and Xia no [128] in 2007 suggested a method which clones and 

mutates the best particles of specific generations and then select the best one to continue 

evolving.  

Hybrid combination of PSO and GA (HEA)-Yang [129]et al. in 2007 proposed two stage 

evolution strategy where evolution process is performed by PSO and diversity is maintained 

by GA  and is used to solve three unconstrained and three constrained problems. 

Active Target PSO-Zhang [130] et al. suggested in 2008 a new term as active target along 

with best position and previous best position for the diversity of PSO and avoiding trapped in 

local minima.  

Adaptive Mutation PSO- Pant [131] et al. in2008proposed a new concept of using beta 

distribution in adaptive mutation in two forms. One form uses best individual position in a 

swarm and the other for the best global position.  

Co-operatively Coevolving Particle Swarms- Yao [132] in 2008 suggested that the bigger 

problems can be braked up into smaller ones with least values such that there inter 

dependence cooperation is generated.  



Geometric PSO (GPSO)- Moragila et al. [133] propose in 2008 about the geometric 

between the PSO and Evolutionary algorithm and can be used for problems of continuous and 

combinational spaces. 

Immune PSO (IPSO) - Lin et al. [134] in 2008 suggested to improve the mutation 

mechanism of immune algorithm with PSO. Moreover information is conveyed as immune 

operator in the PSO in some cases. 

Modified Genetic PSO (MGPSO) -Zhiming et al. [135] in 2008 proposed a combinational 

algorithm of Genetic PSO and Differential Evolution. Position updating is done by both 

algorithm for each particle and the better results become the reference for next position.  

Orthogonal PSO (OPSO) -Ho et al. [136] in 2008 suggested to intelligent move methodfor 

velocity update in which divide and conquer approach is used for finding next particle 

position and gives better results with large problems than conventional PSO.  

PursuitEscape PSO (PEPSO) -Higashtaini et al. [137] in 2008 proposed to divide the 

swarm in two groups as escape group and pursuit group on behaviour basis. First group 

results in intensification and the other group results in diversification thus making a perfect 

balance in algorithm.  

Self-adaptive Velocity PSO (SAVPSO) -Lu and Chen [138] in 2008 investigated the impact 

of constraints on PSO due to its lack of knowledge of feasible solution.  

Velocity Limited PSO {VLPSO) -Xu and Chen [139] in 2008 suggested to keep those 

particles which satisfy the constraints for velocity and position otherwise they are eliminated 

for further participating.  

Frankenstein's PSO(FPSO)-Montes de Oca et al. [140] in 2009 proposed to combine 

together PSO variants to eliminate the various deficiencies .Velocity update from FIPS, 

inertia weight from decreasing inertia PSO (DIPSO), acceleration co-efficient and maximum 



velocity from self-organising hierarchical PSO and time varying acceleration co-efficient 

PSO(HPSO-TVAC)and its topology.  

Adaptive Particle swarm optimization (APSO)-Zhan et al. [141] in 2009 suggested 

adaptive change in inertia weight as per location of particles, adaptive change in acceleration 

co-efficient as per evolution state and new update rules in selected evolution state to avoid 

stagnation.  

Regrouping PSO (RegPSO)-Evers and Ghalia [142] in 2009 proposed automatically 

triggering swarm regrouping when premature convergence is detected.Particles areregrouped 

in range in each dimension proportionally to the degree of uncertaintyimplied by the 

maximum deviation of any particle from globally best position. 

Discrete PSO with Embedded GA Operators – Premlatha and Natarajan [143]in 2009 

suggested that during stagnation of the particles GA operator initiates reproduction and 

named this method DPSO with mutation-crossover. 

Hybrid PSO -Li et al. [144] in 2010 suggested to combine three algorithm non-linear 

simplex method for fast convergence and integrated Tabu search into PSO for Tabu attribute 

local regions solutions.  

Tabu List PSO (TL-PSO) -Nakano et al.[145]in 2010 proposed to store the history of Pbest 

particles in Tabu list which will be used only when particle is not performing well for updates 

and thus avoiding stagnation issues.  

Cultural based PSO -Daneshyari and Yen[146] in 2010 proposed to find global minimum 

by using multiple evolution and multiple progresses simultaneously strategy as compared to 

conventional PSO. 

Genetically improved PSO (GIPSO)- Abdel-Kader [147] in 2010 suggested this algorithm 

for k-means clustering and used to find initial kernel of solutions containing cluster centroids 

which are then used by the k-means for local search. 



Perturbed PSO – Xinchao[148] in 2010 proposed to mutate global best particle during the 

run of the algorithm to avoid premature convergence.  

Dynamic PSO based on improved Artificial Immune network (IAINPSO)-Tang et 

al.[149] in 2010 proposed this technique based on the variance of the population fitness a 

convergence factor is used for faster convergence with high precision and less number of 

iterations. 

Feedback Learning PSO (FLPSO}-Tang et al. [150] in 2011 proposed for use of DIPSO for 

inertia weight, acceleration co-efficient uses some changes HPSO-TVAC with adaptive 

approach, for velocity updates adaptive strategy along with a mutation operator.  

Self-Adaptive Learning PSO (SALPSO) -Wang et al. [151] in 2011 suggested to use four 

velocity updates rules from different variants of PSO and at every fixed number of iteration 

best update rule is selected and applied to every particles depending on situations. It is 

compared with its previous values then update rule is selected for next iteration. 

Hybrid of PSO and Tabu Search (TS) – Zhang et al. [152] in 2011 proposed to solve non-

linear integer program using hybrid of PSO and TS in which new heuristic rules were 

prepared to solve infeasible solutions. 

Self-Learning PSO (SLPSO)- Changhe et al. [153] in 2012 suggested a different strategy of 

probability update and rule as that of SALPSO.  

Orthogonal Learning PSO (OLPSO) – Zhan et al. [154] in 2011 proposed an orthogonal 

learning (OL) strategy which guide the particles to fly in better directions by constructing an 

efficient exemplar and can be applied to any topological structure for faster global 

convergence with high quality solutions. 

Adaptive Fuzzy PSO- Juang et al. [155] in 2011 suggested to use fuzzy set theory to adjust 

PSO acceleration coefficient adaptively for better optimal and accurate values. 



Enhancing PSO using generalised Opposition -based learning – Wang et al. [156] in 2011 

proposed an enhanced PSO algorithm which employed generalised opposition based learning 

and cauchy mutation which helped the particles to escape local minima and results in faster 

convergence. 

Genetic Simulated Annealing Ant Colony system with PSO- Chen and Chien [157] in 

2011 presented this method to solve travelling sales man problem with percentage deviation 

in average solution is much better than existing techniques. 

Multiple-Adaptive Methods for PSO (PSO-MAM) - Hu et al. [158] in 2012 put up another 

idea of using updating only the global particles by two techniques randomly either by 

mutation or gradient descent method at every iteration.  

Self- learning PSO {SLPSO) -- Li et al. [159] in 2012 proposed a novel algorithm where 

each particle has a set of four strategy to handle different situations in the search space by an 

adaptive learning framework at individual level which in turn help the particle to choose 

optimal strategy according to its own fitness. 

Chaotic Particle swarm fuzzy clustering – Liu et al.[160] in 2012 proposed a combination 

of new chaotic PSO and gradient method. The new chaotic PSO is used to search fuzzy 

clustering model using searching capabilities of fuzzy C-means for exploitation and gradient 

operator to accelerate the convergence. 

Opposition based chaotic GA/PSO hybrid – Dong et al.[161] in 2012 proposed the method 

by combining the strengths of GA, PSO and chaotic dynamics. The velocity and position 

updates were fromPSO,selection, cross over, mutation from GA,and opposition based 

learning was done in chaotic hybrid algorithm for population initialisation. 

Opposition based Natural Discrete PSO (ONDPSO)-Khan et al.[162] in 2012 introduced a 

new method in which particles were encoded by Natural Encoding scheme and position 

updating is done by  new designed updating rule and opposition based learning is used in this 



process. The encoding scheme and position update rule used this technique allowed the 

individual term used corresponding to different attributes within the rule antecedent to be a 

disjunction of the values of those attributes. 

Grey PSO – Leu and Yeh[163] in 2012 proposed two grey based parameter strategies, inertia 

weight and acceleration co-efficient. Each particle has its own inertia weight and acceleration 

co-efficient whose values are dependent on corresponding grey rational grade which is 

varying over iterations, those parameters are also varying. Even in the same iteration those 

parameters may be different for different particles. This strategy gives information about 

particle distribution in search space. 

Mutation linear PSO (MLPSO} - Bonyadi et al.[164] in 2013 came with idea of multi-start 

PSO by combining the mutation operator with linear decreasing PSO (LPSO) to solve 

constraint problems.  

Automatic Particle Injection PSO (APIPSO)- Elsayed et al.[165] in 2013 proposed to have 

good balance between exploration and exploitation by using standard PSO in starting and 

linear decreasing PSO latter phase. In order to prevent from trapping in local minima a 

mutation operator and automatic injection of new particles is done. 

Essential PSO queen (EPSOq)- Ktari and Chabchoub [166] in 2013 suggested to use 

essential and strong feature of Tabu search to form improved discrete PSO.  

PSO Using Dimension Selection method-Jin et al.[167] in 2013 proposed to use random 

dimension selection instead of stochastic coefficient is the another way of using randomness. 

Modified PSO is developed using dimension selection method shows better results and 

randomness is correct and important. 

Recombination based hybridisation of PSO and ABC Algorithm -Kiran and Gndz [168]in 

2013 proposed of combiningartificial bee colony (ABC) with PSO with five strategies and 

counters to update the solutions. Artificial agent perform the search process and counters are 



used to determine the rule that is selected by the bees.Depending upon the characteristic of 

problem, the artificial agent learn which in turn update the rule to find better solutions. 

Novel Fuzzy PSO – Aminian and Teshnehlab [169] in 2013 proposed a novel method inertia 

weight, cognitive and social co-efficient are adjusted by fuzzy logic for each particle 

separately. 

PSO –AIN Hybrid-Liu et al. [170] in 2013 suggested that the whole population is divided 

into two kinds of subpopulations as Elite and several normal sub populations. The best 

individual of normal sub population will be memorised into the Elite sub population during 

the evolution process. 

Hybrid strategy in Continuous Ant Colony optimization (ACO) and PSO-Haung et 

al.[171] in2013 suggested to hybrid ACO and PSO for better searching capabilities of global 

minima without entrapping in local minima and introduced four types of hybridization. 

Sequence approach with the enlarged pheromone table was better than the other types due to 

diversified generation of new solutions. 

Hybrid PSO-Simulated Annealing(SA) Approach- Jiang and Zou [172] in 2013 proposed 

an improved parameter method based on PSO by changing the fitness function in the 

traditional evolution process of support vector machines and then combined with SA global 

searching method which results in avoidance of local minima and better results. 

Hybrid of PSO and Artificial Bee Colony(ABC)- El-Abd[173] in 2013 introduced 

component based one, and the PSO was augmented with the ABC component and was tested 

on the CEC13 test bed to improve the personal best of particles. 

Blend of local and global variant of PSO in ABC –Sharma et al. [174] in 2013 suggested a 

technique called local-global variant ABC (LGABC) to balance between exploration and 

exploitation in the search space of ABC with good optimal results after testing on bench 

marks.  



Combining Differential Evolution(DE) and PSO –Maione and Punzi[175] in 2013 

introduced a hybrid two step approach in which DE determine the fractional integral and 

derivative actions satisfying the required time-domain specification and PSO determine 

rational approximations of the irrational fractional operators.  

Improved Quantum behaved PSO Simplex (IQPSOS) - Davoodi et al. [176] in 2014 

proposed to combine QPSO which gives direction to global region and Nelder-Mead simplex 

method for local search in the global region.  

Centripetal Accelerated PSO (CAPSO) - Beheshadi et al.[177] in 2014 proposed to 

combine improved PSO with Newton laws of Motion which accelerates the rate of 

convergence and learning.  

Improved Quantum behavedPSO – Li and Xaiao [178] in 2014 proposed an encoding 

approach based on Qubits described on Bloch sphere where each particle contained three 

groups of Bloch coordinates of qubits and all the three groups of coordinates were regarded 

as approximate solutions. Particles were updated using the rotation of qubits about an axis on 

the Bloch sphere. 

Linear Constraint Minimum Variance (LCMV) assisted by PSO- Darzi et al. [179]in 

2014 introduced by incorporating PSO, dynamic mutated AIS and Gravitational search 

algorithm into the LCMV method in order to improve the weights of LCMV.  

Restarted Simulated Annealing PSO – Zheng et al.[180] in 2014 proposed an approach to 

decompose structuring elements of an arbitrary shape. And suggested a combination of 

restarted SA and PSO.  

Adaptive hybrid of PSO and Differential Evolution(DE) –Yu et al.[181] in 2014 proposed 

a novel algorithm by balancing the parameter of PSO and DE and adaptive mutation is 

carried out on current population when clustering of population is near to local minima and 

thus diversity is also maintained. 



Improved Accelerated PSO with DE-Wang et al. [182] in 2014 suggested a hybrid 

approach by using DE mutation operator to the accelerated PSO for solving optimization 

problems. 

Co Swarm PSO with DE - Yadav and Deep [183] in 2014 proposed by hybridizing 

shrinking hyper sphere PSO(SHPSO) with DE approach by dividing the population in two 

sub swarms. First sub swarm use SHPSO and the other sub swarm uses the DE approach and 

are able to solve any real constrained optimization problems effectively.  

Biogeography based PSO with Fuzzy Elitism – Guo et al. [184] in 2014 introduced to split 

the entire population into many sub groups where BBO was employed to search within group 

and PSO for global search. 

Enhanced Comprehensive learning PSO – Yu and Zhang [185] in 2014 proposed two 

enhancements of comprehensive learning PSO ,first a perturbation term is added into each 

particle velocity update equation to achieve better exploitation .Normative knowledge about 

dimensional bounds of personnel best position is used to activate the perturbation based 

exploitation, second the particles learning probabilities are determined adaptively based on 

not on rankings  of personal best fitness values but also the particles exploitation progress to 

facilitate convergence. 

Levy Flight PSO –Husevin and Harun [186] in 2014 proposed to combine PSO with levy 

flight where limit value is defined for each particle and if the particle could not improve self- 

solution at the end of current iteration, then limit is increased .If this limit is exceeded by the 

particle, the particle is redistributed in search space by levy flight method to get rid of local 

minima. 

Teaching and Peer-learning PSO(TPLPSO)–Lim and Isa[187] in 2014 proposed this 

technique consisting of teaching phase,the peer learning phase and the stagnation prevention 

strategy to improve PSO performance with high searching accuracy and convergence 



speed.The particle first enters in teaching phase and updates its velocity on its historical best 

and global best positions. If the particles fails to improve its fitness then it enters the peer-

learning phase where an exemplar is selected as guidance particle and finally the last phase is 

used to alleviate the premature convergence. 

Random Drift PSO (RDPSO) - Sun et al.[188] in 2015 got motivated by the model of free 

electron in metals placed in magnetic field have a drift velocity with thermal motion leading 

to a minimum potential energy.  

Social Learning PSO (SL-PSO)-Cheng and Jin[189] in 2015 proposed that social learning 

technique inspired by learning methods, which requires no fine tuning of control parameters 

and is performed on sorted swarm.Unlike learning from the historical best positions, the 

particles learn from any better particles called demonstrators in the current swarm. 

Heterogeneous Comprehensive learning PSO - Lynn and Suganthan[190] in 2015 

proposed this technique where particles in a swarm will be allocated different search 

behaviours by randomly selecting velocity and position update rules from a behaviour pool 

thereby efficiently addressing the exploration-exploitation trade off. 

PSO with Adaptive Inertia Weight using Bayesian Techniques -Zhang et al. [191] in 2015 

proposed to apply Bayesian technique for better search ability in the exploitation of the past 

particle positions and for exploring Cauchy mutation for faster convergence rate with better 

solution.  

Self- Regulating PSO - Tanweer et al. [192] pointed two learning strategies in 2015, the first 

one uses a self -regulating inertia weight which is employed by the best particle for better 

exploration and second uses the self-perception of the global search direction is employed by 

the rest of the particles for exploitation in the solution space.  



Enhanced Leader PSO (ELPSO) -Jorde hi et al. [193] in 2015 proposed a five stage 

successive mutation novel strategy which is applied to the swarm leader at every iteration for 

mitigating convergence problem.  

PSO based on Two Swarm Evolution -Wang et al. [194]in 2015 suggested a new strategy 

by adopting linear decreasing inertia weight to one swarm and random inertia weight to the 

other swarm. A random disturbance is added to the particle position at the stagnation point 

where it breaks the swarm into new escaped swarm from the local minima. 

Feature selection Algorithm based on Bare bones PSO –Zhang [195]in 2015 proposed to 

find optimal feature subset to solving classification problems. A reinforced memory strategy 

was made to update the local leaders of particlesfor avoiding the degradation of outstanding 

genes in the particles and balance combination of exploration and exploitation. 

Chaotic Simulating Annealing PSO –Geng et al. [196] in 2015 introduced to search more 

appropriate parameter combination where robust v-support vector regression is used to 

forecast port throughput. 

ABC to generate diversity in PSO – Vitorino et al.[197] in 2015 proposed a method based 

on ABC to create diversity when all the particles of PSO converged to a single point by 

switching between two predefined behaviours by using fuzzy rules. 

Novel Self Adaptive PSO -Pornsing et al. [198]in 2016 suggested a novel technique by 

diving the whole swarm into many sub-swarms thus allowing the particles to disperse the 

whole search space where the worst performer dies out and the best performer produces the 

offspring. Survival sub swarm adaptive PSO and Survival sub swarm adaptive PSO with 

velocity line bouncing approaches outperformed other algorithms. 

Genetic Learning PSO (GLPSO)-Gong et al. [199] in 2016 develops a new framework by 

hybridizing PSO with another optimization technique learning called learning PSO ,which 

have two layers first for exemplar generation  and the other for particles update by PSO 



algorithm. Genetic operators are used to generate exemplars from the particles learn and from 

the history search information of particles gives guidance to evolution of exemplars. 

PSO with Inters warm Interactive Learning Strategy (IILPSO)-Cheng et al.[200] in 2016 

put up a new concept of interactive learning behaviour in which particles are divided into two 

swarms .When there is no significant change in the fitness value then inter-swarm interactive 

learning strategy will start and check the best particle fitness values in both swarms. Softmax 

and Roulette method is used to classify them as learning swarm and learned swarm. 

Exploration with global search ability is increased by using velocity mutation operator and 

global best vibration strategy.  

Distribution-Guided Bare-bones PSO (DBPSO)-Zeng and Shen [201] in 2016 suggested to 

overcome the problem of getting trapped in local minima by jumping and its probability is 

adaptively adjusted according to its current location.  

Elite Promotion Quantum-Behaved PSO-Yang et al. [202] in 2016 proposed to use 

differential evolution operators to elite particles of the swarm for more local search and 

produce more global results efficiently for complex optimization problems.  

Parallel Clustered PSO – Hoassin et al. [203] in 2016 proposed to combine PSO and K-

means clustering which runs in parallel using MapReduce in the Hadoop platform and takes 

less time to compute. 

Sophisticated PSO(Sop PSO) - Xia et al.[204] in 2017 suggested that this technique by 

using multilevel adaptation and purposeful detection .In Sop PSO a particle not only updates 

its learning model but also chooses its target that the particle learns from neighbours while 

adaptive strategy is applied in multi- level .Tabu search and local searching strategies are to 

jump the local minima.  

Hierarchical Bare Bones PSO-Guo and Sato [205] in 2017 proposed that particles are 

separated into different groups and play different roles where group leader exchange 



information with the global particle and rest particles learn from the leaders.In the next 

iteration any particle can have better position from their group leaders.  

New Social-Based Radius PSO -Munlin and Anantathanavit [206] in 2017 proposed to 

regroup the particles in a given radius of the circle and finds the agent particle which is best 

particle of the group for each local minima which helps to achieve global minima. 

Primal-Dual Asynchronous PSO (pdPSO) –Gbenga et al.[207] in 2017 proposed a novel 

algorithmby combining Asynchronous PSO and Primal dual interior point algorithm. This 

algorithm combines the explorative ability of PSO with the explorative ability of Primal dual 

method thereby possessing a strong capacity to avoid premature convergence. 

Movement PSO (MPSO)-Hudaib and Hwaitat[208] in 2018 proposed this algorithm that 

enhances the behaviour of PSO by using random movement function to search for more 

optimal points in the search space. This algorithm has good features like exploration, 

exploitation and local optima avoidance. 

Centroid PSO – Anwar[209]  in 2018 proposed a dubbed centroid PSO inspired by centre 

based sampling theorem which states that centre region of the search space contains points of 

high probability closer to optimum solution for data classification problems. 

Scout particle swarm optimization (ScPSO) –Koyuncu and Ceylan[210] in 2018 suggested 

an efficient technique to hybrid PSO and Artificial Bee Colony (ABC),by adding a scout bee 

phase to standard PSO. The scout bee phase in ABC regenerates the useless particles that 

cannot improve their individual best positions and this process is operated through the 

parameter limit. 

Fuzzy Controlled COBRA-fas (Co-operation of Biology Related Algorithm) –

Akhmedova et al.[211] in 2019 developed based on six optimization methods namely PSO, 

Wolf Pack search(WPS),Firefly Algorithm(FFA), Cuckoo Search Algorithm(CSA), Bat 

Algorithm(BA)and Fish School Search(FSS) for solving real valued unconstrained 



optimization problems and is better in both exploration and exploitation than any other bio 

inspired algorithm. 

Diversity-Guided Multi-Mutation PSO (DMPSO)-Tian et al.[212] in 2019 proposed 

Opposition based learning is used to get the high quality initial particles acceleration along 

with self-regulating inertia weights with three mutation strategies (Gaussian, Cauchy and 

Chaotic) to maintain diversity of the whole swarm. An Auxiliary velocity-position update 

mechanism is applied to the global best particle for convergence. 

Triple Archives PSO –Xia etal. [213] in 2019 proposed this model in which particles in 

three archives are used. First the elite particles are recorded in one archive while other 

particles which show faster progress called profiteers are in another archive. Second, when 

breeding each dimension of a potential exemplar for a particle, we select a pair elite and 

profiteers from corresponding archive as two parents to generate the dimension value by 

genetic operators. Third, each particle carries out a specific learning model as per the fitness 

of potential exemplars. Finally the outstanding exemplar are saved in third achieve and 

reused by worse particles for better exploitation.  

Fractional-order quantum PSO –Xu et.al[214] in 2019 proposed by using concepts of 

quantum mechanics and PSO with fractional calculus to achieve better global search ability. 

Grunwald-Letnikov is most frequently used fractional differential definition uses its discrete 

expression for its position updating of quantum behaved PSO. 

Dual-Environmental Particle swarm optimizer – Zhang et.al [215] in 2019 proposed PSO 

variant that uses a weighted search centre based on top k-elite particles to guide the 

population. It averages there position rather than re-sampling fitness values of particles to 

achieve noise free environment. 

2.4 Constrained optimization problems (COPs) 

  



Many practical engineering optimization problems have constraints and require the solutions 

in that search space. PSO can easily solve such problems using certain strategy like static 

penalty, dynamic penalty, death penalty, MO approach, co-evolutionary, stochastic ranking, 

α-constrained,ϵ-constrained, hybrids, Del Valle’s approach and Debs approach along with 

some modifications. Most commonly used are death penalty which is simple and parameter 

free whereas Debs approach is simple, derivative free and explore in infeasible regions also. 

Trial and Error approach to constrained PSO-Hu and Eberhart [216] in 2002 proposed 

this method with two modifications, one the particles are initialized in feasible position and 

the other are only those solutions who satisfy the constraints are used for local and global 

positions. 

PSO for Constrained problems –Parsopoulos and Vrahatis [217] in 2002 introduced 

dynamic penalty functions for the three variants of PSO and compared with other EA and 

found good results. 

Death Penalty PSO – Coath and Halgamuge [218] in 2003 proposed this approach in which 

initialization is done in feasible solution search space and memories are updated, particles 

keep only feasible solution in memory .This approach is simple and parameter free. 

Constraint handling Mechanism for PSO – Pulido and Coello [219] in 2004 presents a 

simple criterion based on closeness of a particle to the feasible solution as a leader with a 

turbulence operator for exploration in search space. 

Constraint PSO – Zavala et al.[220] in 2005 proposed a novel PSO which uses a ring 

topology and a combination feasibility and domination in the selection of local best particle 

to maintain diversity and exploration within the swarm. 

Dynamic Multi-swarm PSO for Constraints -Liang and Suganthan in 2006 [221] proposed 

that the swarm is divided periodically into sub swarms and particles are selected randomly. 

For better exploration the sub swarms search optimal solutions in constrained space. 



Constrained PSO – Bochenek and Forys [222] in 2006 proposed controlled reflection 

technique for dealing with inequality constraints and particle trap strategy is used for equality 

constraints. If the particle is entrapped, then a penalty term is added to the objective function 

to force the captured particle and the constraints become active at the optimum.  

Constrained optimization via PSO(COPSO)-Aguirre et al. [223] in 2007 proposed to use 

Lbest PSO to investigate the constraints and has external file called Tolerant to do analysis of 

particles. Lifetime of particles is developed by using the tolerant file with ring topology 

which maintains diversity. 

Handling Constraints of PSO using small population size – Cabrera and Coello [224] in 

2007 proposed to use leader selection scheme based on a distance of a solution to a feasible 

region along with a mutation operator to improve the exploration search using small 

population size of five. 

PSO in constrained space – Flores and Mezura[225] in 2008 suggested a modified version 

of Debs approach, here computing the sum of constraint violation is done differently for 

equality and inequality constraints and comparing infeasible solutions. 

New Vector PSO – Sun et al. [226] in 2009 proposed a vector PSO algorithm to solve 

constrained optimization problem in which one dimensional search methods were used to 

find a feasible position for each escaped particle.  

Cooperation Comprehensive Learning PSO (CCLPSO)-Liang et al. [227] in 2010 

presented a novel idea for solving constraints problem along with objective function where 

CLPSO was used either to satisfy constraints or optimise the objective and sequential 

quadratic programming was used for solution improvement during the run.   

Improved vector PSO– Sun et al. [228] in 2011 proposed for search of feasible position in a 

local region consisting of dimensions of the parent and current position of the escaped 

particle using multi-dimension search algorithm solution.  



Cultural Based constrained PSO – Daneshyari and Yen [229] proposed in 2012 combined 

the objective function and constrained violation in four sections of the belief space, 

specifically normative knowledge, spatial knowledge and temporal knowledge. With this 

information communication is good at personal level, swarm level and global level.  

Extension of constrained PSO – Afsha r [230] in 2013 suggested that three constrained 

version of PSO based on identifying and excluding infeasible region of search space. 

PSO based Hyper-Heuristic – Koulinas et al. [231] in 2014 proposed a PSO based on 

hyper-heuristic which worked as upper level algorithm and controlled many low level 

heuristic which operated to the solution space. The solutions are represented based on random 

keys and active schedules were made using the priorities of activities which were modified by 

low level heuristic. 

Constrained PSO – Singh et al. [232] in 2014 proposed to detect a silent object in two 

phases using this technique. In first phase features like multi-scale contrast, centre-surround 

histogram and colour spatial distribution was obtained and in next phase constrained PSO 

determined an optimal weight vector to combine these features to obtain saliency map to 

distinguish salient object from the image background. 

Multi-Target PSO- Cui et al.[233] in 2014 presented a novel approach multi-target (m PSO) 

to solve the parallel model of independent component analysis constrained by 5 parameter 

reference curve. 

Hybrid PSO – Shou et al.[234] in 2015 suggested to solve the pre-emptive resource 

constrained project scheduling problem in which a maximum of one interruption per activity 

was allowed. Particle representation of four types were used and two schedule generation 

schemes were used to decode the particle representations. Peak cross over operator were used 

for particle updating for particle representations. 



Constrained modified PSO (SASPSO 2011) – Tang et al. [235] in 2016 proposed the 

adaptive relaxation method which is integrated with the feasibility based rule to handle the 

constrained optimization problems of modified PSO ( named as SASPSO 2011) so as to 

increase the diversity of solutions along with a parameter selection principle which 

guarantees the convergence. 

Augmented Lagrange constrained PSO – Lu et al. [236] in 2017 proposed to optimize the 

objective function which combines the constrained PSO (CPSO) with the Augmented 

Lagrange multiplier (ALM) method. A new particle swarm is generated each time initially in 

order to avoid falling into a local best value and the best value can be easily found because 

the best value of the previous generation is saved and delivered to the next generation during 

the process. 

Strongly Constrained space PSO – Ma et al. [237] in 2018 proposes a strongly constrained 

particle swarm optimization algorithm that brings water balance constraint into the search for 

feasible regions and this algorithm pays importance of the water constraint and rest of the 

constraints uses the constant penalty function method to avoid the problem of feasible 

regions. 

2.5 Multi-Objective Particle Swarm Optimization  

For solving real world multi-objective or multi criteria problems we optimize a solution and 

create feasible solutions across a parento optimal front but due to the unconstrained nature of 

PSO, the technique is modified to achieve a set of elite non dominated solutions. 

Multi-Objective PSO {MOPSO) -Coello and Lechuga[238] in 2002 firstly proposed using 

the adaptive grid method to preserve the external file.  

PSO Method in Multi-Objective Problems-Parsopoulos et al. [239] in 2002 suggested that 

three variants in weighted aggregation methods for multi-objective PSO. In linear 



aggregation function weights are fixed in objective function but in bang-bang aggregation 

function weights keep changing more than dynamic aggregation function in all the iterations.  

Swarm Metaphor for Multi-objective Design optimization – Ray and Liew [240]  in 2002 

proposed to choose particles whose performance is better to be leaders and other particles 

select their leader randomly from the leader group where the leader with low followers have 

highest probability of being selected. 

Vector Evaluated PSO -Omkar et al. [241] in 2002 suggested a multi swarms strategy 

depending on the number of objectives. Every swarm has its own objective function to 

optimize and the velocity update is done from the information from other swarms. This 

strategy gives a set of parento front solutions. 

Dynamic Neighbourhood PSO {DNPSO)-Another strategy by Hu et.al [242] in 2003 was 

proposed to use Nbest instead of current Gbest and is the best particle in the specific 

neighbourhood. In this way the selection of neighbours for the current particle is one 

objective and the other selection of their best.  

Particle Swarm with Extended Memory-Hu et al. [243] in 2003 suggested for Multi-

objective optimization to combine extended memory to DNPSO as the number of Parento 

front solution are limited and some best solution are lost. 

Divided Range PSO-Ji et.al [244] proposed a multi objective PSO in 2004 where the 

particles are divided in sub-swarms for one objective function then discrete PSO is run for 

each sub-swarms till stopping criteria is meet otherwise particles are again ordered for next 

objective function and the categorizing take place once more.  

PSO with Passive Congregation (PSOPC) – He et al. [245] suggested interesting concept in 

2004 about passive congregation (selfish behaviour in information sharing and forms passive 

group} where this passive group is added to PSO to increase its efficiency.  



Parento Optimality and PSO - Baumgartner et al. [246] in 2004 proposed that parento 

based approach generates a set of solutions satisfying the main objective without effecting the 

performance of other objectives.  

Handling Multiple Objectives with PSO - Coello et al. [247] in 2004 suggested to use the 

mutation strategy to solve multi-objectives using PSO.  

Improved PSO based Multi-Objective optimization using Crowding,Mutation and E-

dominance-Sierra and Coello[248] in 2005 proposed the crowding distance and E-

dominance for diversity and divided the population to be divided into small sub populations 

with different mutation operator from escaping the local minima.  

Variable Neighbourhood PSO- Liu et al. [249] proposed in 2006 that in the multi-objective 

problems trapping in local minima can be escaped by local search repeatedly from starting 

point to local optimum till better than current value. 

Two level of Non-dominated solution approach - Abido [250] in 2007 proposed to find 

non-dominated solutions at local set and global set levels in multi objectives PSO.  

Scalable Co-evolutionary Multi-Objective PSO -Zheng and Liu [251] in 2010 suggested to 

use decomposed decision variables and cooperative co-evolutionary sub swarms to solve 

multi-objective PSO.   

Multi-Objective PSO based on Decomposition - Mart et al. [252] in 2011 proposed to use 

decomposition method to solve multi-objection problems.  

Binary PSO hybrid with Artificial Immune network (AIN) – Ibrahim et al.[253] in 2011 

proposed first the concept of topological monitor reach area and used binary PSO hybridized 

with AIN to solve multi-objective problem.  

Local search based hybrid PSO for Multi-Objective optimization - Mousa et al. [254] in 

2012 proposed that by combining GA and PSO the two character features of these algorithm 

can be used for Multi objective  optimization. Firstly evolution of the particle is done to 



achieve non dominated solutions by initializing a set of random particles then local search 

done to explore more dominated solutions.  

Trust Region (TR) algorithm based local search for Multi-Objective optimization - EI-

Sawy et al.[255]in 2012 suggested to solve multi-objective optimization problems by using 

trust region method based on local search (LS)technique, where a multi-objective 

optimization problems is converted into single objective optimization problem by using 

reference point  method. For each reference point the TR method is used to obtain a point on 

a Parento frontier and LS method is used to find more points on parento-front. 

Bare Bones Multi-Objective PSO- Zhang et al. [256]in 2012 proposed an algorithm that 

have three features namely particle updating strategy which do not require tuning of control 

parameters, mutation operator for search capability and an strategy based on particle diversity 

to update global particle. 

Fuzzy PSO for Multi-objective – Khan and Engelbrecht [257] in 2012 proposed to 

incorporate fuzzy logic in PSO to solve multi-objective problem where unified And-OR 

operator were used to aggregate the objective. 

Multi-objective PSO (MOPSO) with K- Means – Qiu et al. [258] in 2013 proposed this 

technique with new Gbest selection strategy and used K-means algorithm. A Gbest particle is 

selected by using proportional distribution approach and a mutation operator is used to 

enhance exploration. 

Co-evolutionary Multi-Swarm PSO for Multi-objective –Zhan et al.[259] in 2013 

proposed this technique based on multiple population with multiple objectives (MPMO) by 

using an external shared archive for different to exchange search information and by using 

two designs to enhance the performance. 

Multi-objective PSO (MOPSO) and Fuzzy Ant Colony Optimization (FACO)-Elloumi et 

al.[260 ] in 2014 introduced combination ofbest particle of fuzzy Ant Colony and integrate it 



as local best particle of PSO to formulate a new approach as hybrid MOPSO with FACO for 

solving multi-objective problems. 

Multi objective hybrid Quantum PSO(QPSO)- Chen et al. [261]in 2014 suggested to use 

elitist hybrid QPSO with mutation where elitist mechanism with crowding distance sorting 

was used to improve the diversity and quantity of optimal solutions. 

Multi objective planning using PSO – Ganguly [262] in 2014 proposed a PSO based multi 

objective planning algorithm with minimizing the three objectives simultaneously to obtain a 

set of non- dominated solutions. 

Multi objective Reliability Redundancy problems using Extended Bare Bones 

PSO(BBPSO)– Zhang et al.[263] in 2014 proposed a two stage algorithm in which Bare 

bones PSO multi objective PSO is developed and applied to the first stage and find parento 

optimal set .This algorithm is the combination of Bare bones PSO and sensitivity based 

clustering for solving multi objective reliability redundancy allocation problems. 

Improved Multi objective PSO with Preference Strategy – Cheng et al. [264] in 2015 

proposedthis strategy by using preference factors were used for certain attributes in constraint 

space. The performance of this technique was strengthen by using dynamic selection of 

global best, circular non dominated selection of particles and a mutation operator. 

Co-operation of Biology related Algorithms for Constrained Multi-Objective Problems 

(COBRA-m) –Akhmedova and Semenkin [265]in 2015 proposed the cooperation work of 

five algorithm namely PSO, Wolf Pack search(WPS),Firefly Algorithm(FFA), Cuckoo 

Search Algorithm(CSA) and Bat Algorithm(BA) with the use of Pareto optimality theory for 

the multi-objective problems and works effectively. 

Multi swarm Comprehensive learning PSO for solving multi objective problems 

(CLPSO)- Xiang and Zhang [266]in 2017 proposed that each swarm focus on separate 

objective using CLPSO without learning from other swarm ,mutation is applied to elitists 



only and modified differential evolution strategy is applied to some extreme least crowded 

elitists. 

External Archive-Guided Multi objective PSO – Zhu et al. [267] in 2017 proposed a novel 

algorithm where multi objective problems are converted into sub problems using 

decomposition method and then each particle is assigned accordingly to optimize sub 

problem. This technique is designed for better exploration and the external archive is used 

from immune-based evolution strategy for speedup convergence. 

Multi-objective PSO using Ring topology - Yue et al.[268]  in 2018 proposed this 

technique to solve multi-modal multi-objective problems using ring topology and special 

crowding distance, where ring topology helps in finding much more parental-optimal 

solutions and special crowding distance considers the crowding distance both in decision and 

objective space to maintain  multiple parento solutions.  

Adaptive Gradient Multi objective PSO(AGMOPSO) – Han et al.[269] in2018 suggested 

state of art technique in which stocktickerMOG method will update the archive for better 

convergence, local exploitation and self- adaptive flight parameters mechanism, according to 

diversity information of the particles will maintain balance convergence and diversity. 

Self-organising RBF Neural network usingAdaptive Gradient Multi objective PSO 

(AGMOPSO) – Han et al.[270] in 2019 proposed to optimize both the structure and 

parameters of RBF Neural networks by developing AGMOPSO then the AGMOPSO based 

self- organising RBF Neural network can optimize the parameters (centres, width and 

weights) as well as network size. 

Surrogate assisted PSO with Parento Active learning - Zhiming et al. [271] in 2019 

proposedto save computational costof multi-objective optimization problems. PSO is 

regarded as a sampler to generate candidate solutions and the performance is improved by 



preselecting results with the improved ε-PAL. A hybrid mutation sampling method based on 

simulated evolution is used to improve the performance of sampler.  

Multitasking Multi-swarm optimization (MTMSO) – Song et al. [272] in 2019 proposed 

to divide randomly the whole swarm into multiple task swarms for particular task and each 

swarm is further divided into sub swarms. Each task group works on dynamic multi-swarm 

optimization algorithm and probabilistic crossover of personnel best of particles from 

multiple task group is done for cross task knowledge. Task group and each group sub swarm 

are reformed periodically to maintain search diversity. 

Fig2.1 Shows the distribution of all research papers published from 1995 to end of2019 using 

Refinements in PSO, Hybrid PSO, COPs PSO and Multi-objective PSO 

2.6 Parallel Implementation  

 

The main problem in PSO implementation is its runtime when dealing with large 

optimization problems or in higher dimensions and parallel implementation is best suited to 

solve this problem. In parallel computing computations are carried out simultaneous. The 

multiple processing units of a single computer do the independent calculations  in the 

inherently parallel structure of PSO by using the parallel sub-swarms to the different 

processors with the exchange of information between them. On the other hand multiple 

computers uses Grids, clouds and clusters [273] to perform the same task.  

2.6.1Multi core 

PSO 
Refinements

17%

Hybrid PSO
62%

COPs PSO
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Optimization problem can be solved speedily by splitting into parts and each part is computed 

simultaneously by a single or multiple machines by using parallel computing strategy with 

multi core or multiprocessor. There are various parallelization techniques like Hadoop 

MapReduce[274 ],Rparallel package [275] ,MATLAB Parallel Toolbox [276],OpenMP with 

C++ [277 ],Parallel computingmodule in Python [278 ],Julia- Parallel for and MapReduce 

[279],MPI [280]to access the multiple cores with one or more CPUs. 

Parallel Implementation - Gies and Rahmat-Samii in 2003 showed [281] a performance 

gain of eight times using a system with 10 nodes for a parallel implementation over s serial 

one. 

Parallel Global Optimization with PSO–Schutte et al.[282] in 2004 proposed parallel 

implementation on two types of problems .Firstly on large scale analytical problems with 

inexpensive function evaluations and secondly medium scale problems on bio-mechanical 

system identification with computationally heavy function evaluations. It uses a synchronous 

scheme based on a master-slave approach. 

Parallel PSO accelerated by Asynchronous Evaluations–Venter et al. [283] in 2005 

proposed to use this parallel scheme based on Message Passing Interface to provide master-

slave implementation. The asynchronous algorithm updates all the design point information 

as soon as point is available and directly starts the next iteration without waiting for all the 

points to be assessed. 

Parallel PSO with Communication strategies – Chang et al. [284] in 2005 suggested three 

strategies used according to the independence of the data. The first strategy is designed for 

solution parameters that are independent or loosely correlated whereas second strategy 

applied to strongly correlated parameters and third strategy is applied to properties of 

unknown parameters. 



Relative velocity updating in Parallel PSO – Chusanapiputi et al. [285] in 2005 introduced 

synchronous implementation with relative velocity updating based on parallel relative PSO. 

In this technique after exploring nearby slave send the best position and velocity updating to 

the master and master selects best velocity and the next move is decided accordingly. 

Parallel Asynchronous PSO (PAPSO) – Koh et al. [286] in 2006 proposed a parallel 

asynchronous PSO that exhibits good parallel performance for large number of processors as 

well as good optimization performance. PAPSO gives 3.5 times faster than parallel 

synchronous PSO results in heterogeneous computing condition  

Parallel PSO using MapReduce (MRPSO) – McNabb et al.[287] in 2007 proposed novel 

technique as MapReduce parallel programming model in Hadoop[288]  where in mapping 

phase particle is mapped and obtains updated  velocity ,position, pbest and in reduced phase 

gbest is calculated by collecting all the information. 

Two Phase Parallel PSO(TPPPSO)– Liu et al.[289] in 2007 suggested individual 

orientation factor function uses exploration and overall orientation factor function uses 

expanded search area in second phase. 

Parallel Multi-Population PSO using OpenMP – Wang et al.[290] in 2008 suggested 

asynchronous version using OpenMP where the particles were ranked as per performance in 

fitness function then  sub-populations were created and the best position in population and 

sub population is considered for updating position and velocity. 

Multiprocessor modelling of Parallel PSO – Waintraub et al. [291] in 2009 proposed this 

technique using master-slave approach and developed many PPSO using the enhanced 

network topologies implemented by communication strategy in multiprocessor architectures. 

Parallel PSO (PPSO) – Jeong et al.[292] in 2009 expressed this technique for PC cluster that 

exchanges the information with sub swarms one by one using coarse grain topology in order 

to maintain diversity and avoid premature convergence.  



Parallelization of PSO using Message Passing Interface (MPIs) – Singhal et al. [293]in 

2009 implemented asynchronous PSO using MPI commands  on the multiple processes  and 

this algorithm split the particles in such a finest way for every number of processors  and the 

processor with good result becomes the root processor at the end of each cycle. 

Synchronous Parallelization of PSO with digital pheromones – Kalivarapu et al. [294] in 

2009 suggested to use multiple swarms in n-dimensions search space in parallel computing 

technique with new PSO variant with digital pheromones increased the efficiency with lower 

time period in higher dimensions. 

Agent based Parallel PSO –Lorion et al.[295] in 2009 introduced a coordination agent 

between swarms and other coordination swarm agents for distributing and managing a 

particle swarm on multiple interconnected processors. 

Parallel Scalable hardware implementation of Asynchronous discrete PSO – Farmahani-

Farmahani et al. [296] in 2010 proposed a hardware pipelined PSO for performing 

computational operation of algorithm with the notion of system on a programmable 

chip(master slave multi-processor) for discrete optimization problems. Sub-particle method is 

used to bring the benefit of full scalability and asynchronous PSO gives better efficiency for 

large and complex problems. 

Communication latency tolerant Parallel PSO – Li and Wada [297] in 2011 suggested 

globally synchronised parallel PSO with delayed exchange parallelization which improves 

PSO performance on distributed environment by hiding communication latency. This method 

delays the best function fitness exchange to one loop later. 

Parallel PSO implemented by multiple threads – Tu and Liang[298] in 2011 proposed that 

communication among the sub groups is implemented by parallel computation models  based 

on broadcast, star, migration and diffusion network topologies .Due to the expense and 



difficulty of true parallel computation multiple threads are used for simultaneous particle 

interaction. 

Parallel PSO Clustering based on MapReduce – Alijarah and Ludwig[299] in 2012 

proposed this algorithm for optimal clustering in three sub-modules. Sub-module first updates 

the particle swarm centroid in MapReduce and in second sub module fitness evaluations are 

for new centroid and finally updating in personal best and global best centroids. 

Particle Co-operative Micro-PSO – Parsopoulus [300] in 2012 proposed an algorithm 

based on decomposition of search space into smaller search spaces of smaller dimension 

using two types of computer systems as academic cluster and desk top multi core system for 

evaluating this approach. 

Twin PSO – Yu [301] in 2014 proposed the incorporation of local search heuristic into PSO 

algorithm and this new hybrid version is called Twin PSO and was applied to flow shop with 

multiprocessors scheduling problem. 

Parallel Multi-swarm algorithm based on Comprehensive learning PSO – Gulcu and 

Kodaz [302] in 2015 proposed multi swarm which work co-operatively and the local best get 

exchanged in every migration process to maintain diversity of solutions. 

Parallel PSO using Message passing Interface – Zhang et al.[303] in 2015 proposed to 

combine Global model PSO, Local model PSO, Bare bones PSO and Compressive Learning 

PSO these four versions by using the MPI to achieve high quality solutions  as compared to 

serial versions of these four PSO variants.  

Parallel PSO-Back Propagation Neural network based on MapReduce – Cao et al. 

[304]in 2016 proposed a parallel design realization method for PSO optimized BP neural 

network based on map-reduce on the Hadoop platform and PSO algorithm is used to optimize 

the inertia weights and thresholds for the back propagation neural network. 



Parallel Evolution of quantum behaved PSO-Tian et al.[305] in 2016 introduced the 

splitting of high dimension problem into sub problems and get optimized individually with 

the intermittent communication resulting in high quality solutions. 

Fine Grain Parallel PSO (FGPPSO) – Nedjahet al.[306]in 2017 proposed this technique for 

multi core and many core architectures along with serial implementation and the termination 

criterion was taken as leaning upon the accessibility of solution. 

Parallel PSO for Multi core Environment – Abdullah et al.[307] in 2018 proposed Parallel 

PSO on multi core processing kernel to decrease the determination and transfer information 

easily among particles of shared area and exchange information by random replacement 

strategy. This shared PSO technique is more effective than serial PSO can avoid the reduction 

on test accuracy when applied on single core environment.  

Adaptive Parallel PSO – Lai and Zhou [308] in 2018 suggested parallel PSO based on 

Osmosis and is capable to obtain three parameters as migration interval, migration direction 

and migration rate which is helpful in determine the number of particles migrated from one 

sub population to another sub population. 

2.6.2 GPU Computing 

In November 2006,NIVIDA a computer games company introduced the CUDA model which 

enables the programmers to write their own code using C programming language with 

NIVIDA extensions[309,310] and capable to compute big data parallel computations .GPU 

has thousands of cores installed and the power of multiple CPUs in single processor. CUDA, 

OpenACC [311], Intel Xeon Phi bootable host processors, TPU [312], FPGA [313] are the 

GPU based parallelization approaches. 

Fine- Grained Parallel PSO based on GPU-Acceleration – Li et al.[314]  in 2007 first 

proposed that the particles were mapped into textures on a graphics card and calculated in 



parallel without Compute unified deice architecture (CUDA) support and then implemented 

on CUDA. 

GPU-based Parallel PSO – Zhou and Tan [315] in 2009 proposed a novel parallel approach 

to run PSO on GPU based on software platform of CUDA from NVIDIA [309]. The running 

speed of GPU is more than 11times faster than CPU and running time is also reduced. High 

dimension problems and large swarm population application are its special advantage in real 

optimizing problems. 

Swarms Flight: Accelerating the particles using C-CUDA - Veronese and Krohling [316] 

in 2009 suggested the implementation of PSO algorithm in C-CUDA, which showed high 

computing capabilities with lesser time on well-known bench marks as compared to C and 

MATLAB. 

Parallel PSO based Particle filtering - Rymut and Kwolek [317] in 2010 proposed in their 

work that CUDA -capable GPU can accelerate object tracking algorithm performs using 

adaptive appearance models with a speed factor of 40 over CPU. The object tracking is done 

by PSO algorithm. 

Evaluation of Parallel PSO within CUDA – Mussi et al. [318] in 2011 showed the 

performance evaluation of two variants of parallel algorithms with the sequential 

implementation of PSO over bench mark functions. 

Collaborative multi-swarm PSO for task-making using GPU – Solomon et al. [319]in 

2011 proposed collaborative multi-swarm PSO procedure on GPU using multi-swarms rather 

than one, when applied to real world problems  in a heterogeneous distributed computing 

environment. 

Paralleling Euclidian PSO (pEPSO) in CUDA – Zhu et al. [320] in 2011 proposed this 

algorithm to use fine grain data paralleling to evaluate the fitness function with GPU for fast 

and better convergence. 



Accelerating Parallel PSO via GPU(GPSO) – Hung and Wang [321] in 2012 suggested this 

algorithm by using thread pool model and implement GPSO on a GPU. The GPU architecture 

fitted with PSO framework reduces the computational timing and high efficiency with better 

optimal results. 

GPU based Parallel Co-operative PSO using C-CUDA – Kumar et al. [322] in 2013 

suggested that computational time is reduced  huge computations  got benefit from the GPU 

with Compute unified deice architecture (CUDA).They performed detailed study of Parallel 

implementation  of co-operative PSO and a comparative study on CPSO in implemented in C 

and C-CUDA. 

SIMT GPU Based PSO Approach- Awwad et al. [323] in 2013 suggested to compute 

CUDA GPU solution to solve the topology problem and achieved a performance speed up 

factor of 392 over a CPU implementation for the large scale optimization problems.  

Co-operative Evolutionary multi-swarm optimizer based on CUDA – Souza et al. [324] 

in 2013 proposed this technique based on CUDA to solve optimization problems. This 

method use the concept of master-slave swarm with the mechanism of data sharing for the 

acceleration of convergence. 

Parallel GPU based implementation of High Dimension PSO –Calazan et al. [325] in 

2013 proposed that each particle gets implemented as a block of threads and each dimension 

is mapped onto a distinct thread for faster rate of convergence.  

Parallel PSO – Chen et al. [326] in 2014 proposed an efficient PSO based algorithm to find 

optimal uniform designs with respect to the CCD criterion. Parallel computation technique 

based on the state of art graph processing unit (GPU) is employed to accelerate the 

computations. 

FJSP based on CUDA Parallel Cellular PSO – Shenghui and Shuli [327] in 2014 proposed 

this algorithm by putting large number of GPU threads to each particle and employs CA logic 



where each particle is considered as CA model. Calculation space is provided to each particle 

on respective thread and number of threads in GPU equals to number of particles. 

PSO Efficient implementation on GPU using Low Latency Memory – Silva and Filho 

[328] in 2015 developed this technique using the shared memory available in the GPU of 

CUDA platforms. Each dimension of each particle is mapped as thread and are executed in 

parallel in GPU block which has maximum number of allowed parallel threads and use 

multiple sub-swarms. Each sub swarms Is executed in a GPU block aiming at maximizing 

data alignments and avoiding instructions bifurcations with two communication strategies 

and two topology. 

Parallel PSO based on CUDA in the AWS Cloud – Li et al. [329] in 2015 proposed this 

algorithm to run all the processes in parallel for updating current position, velocity,best 

fitness and global best fitness .This algorithm is speeds up 80 times as compared to PSO 

algorithm on CPU. 

Parallel PSO approaches on GPU for constraint – Dali and Bouamama[330] in 2015 

suggested two approaches to solve constraint satisfaction problems (CSPs), first one by 

parallel GPU-PSO for max-CSPs and the other by GPU distributed PSO for reducing the 

calculation time to explore the search space efficiently. 

CUDA implementation on Standard PSO – Hussain et al.[331] in 2016 proposed the use of 

coalescing memory access ,video RAM memory is used which is more efficient in 

simultaneous memory  access by threads in a wrap for a standard PSO on GPU based on 

CUDA  and found 46 times faster than CPU serial implementation.  

Parallel PSO on GPU with application to trajectory optimization – Wu et al.[332] in 

2016 presented the full implementation of PSO in parallel through GPU on CUDA platform 

and studied the effect of number of particles, dimensions, size of thread block in the GPU and 

there interaction on computational time. 



GPU-Based Parallel PSO for Graph Drawing – Que et al.[333] in 2017 developed two 

procedures, one serial and the other parallel for undirected graph drawing. The serial PSO 

procedures were executed on CPU with lesser time on small graphs whereas parallel PSO is 

executed on GPU with lesser time on large graphs. 

Adaptive PSO with heterogeneous multi-core parallelism and GPU acceleration – 

Wachowiak et al. [334] in 2017 adapted this method for parallelization on heterogeneous 

parallel hardware that contain multi-core technologies speeded by GPU and Intel-Xeon Phi 

co-processors expedited with vectorization. Task-parallel elements are carried out with multi-

core parallelism and while data-parallel components get executed via co-processing by GPU. 

PSO based Parallel Road Network method on GPU- Wan et al. [335]in 2018 developed 

this technique based on the features of two stages as computation and matching relationship 

identification using data partition and task partition strategies are used, to fully use GPU 

threads. This method can easily handle massive data with good efficiency. 

MS2 PSO – Tangherloni et al.[336] in 2018 proposed efficient parallel and distributed 

implementation of a Parallel Estimation (PA) based on PSO for the estimation of reaction 

constants of biochemical systems.MS2 PSO is based on Master-Slave distributed computing 

in which master process offloads the time consuming calculations. Each Slave exploits cup 

SODA which allows to run in parallel on the cores of GPU to calculate the fitness values for 

optimization. 

Performance evaluation of PSO,GA based on GPU – Kawano  et al.[337] in 2018 

proposed to execute PSO,GA using the original code on the processor against the modified 

algorithm where the certain process of the algorithm are integrated on video card to compare 

the execution time. Also graphical interface was made for both algorithms to facilitate the 

process of handling the parameters. 



Integrated motor optimization and Route planning for EV using GPU –Roberge et al. 

[338] in 2019 proposed PSO and the Bellman-Ford (BF) routing for minimizing energy 

consumption for EV and are implemented in CUDA..PSO is used to calculate magnetic flux 

settings for an Induction motor for various operating points and losses are also calculated 

prior to trip.BF is used to calculate optimized routes and Parento front of routes are prepared.   

2.6.3 Cloud computing using PSO 

Cloud computing technologies provide method to deal with massive data,delivering a 

flexible, pay-as-you-go for [339,340] and are needed for high performance complex 

application. Cloud computing helps user applications dynamically provision as many 

compute resources at specified locations (currently US east1 a-d for Amazon [341]) as and 

required. Applications can choose the storage locations to host there data (Amazon S3) [342] 

at global locations. These services are called Infrastructure as a service (IaaS), Platform as 

service (PaaS) and Software as a service (SaaS).Cloud computing has four layered 

architecture as data centre layer, platform layer, infrastructure layer and application layer. 

There are four types of cloud such as Public cloud, Private cloud, hybrid cloud and 

community cloud. It is found that there has been frequent use of PSO to solve all problems of 

cloud computing liketask scheduling, Energy optimization, Load balancing and workflow 

scheduling problems to get efficient solutions over the different virtual machines on the cloud 

environment. 

PSO based heuristic for Scheduling workflow in cloud computing environments – 

Pandey et al.[343] in2010 proposed to minimize the total cost of execution of application of 

workflows on cloud computing environments by varying communication cost between 

resources and the execution cost of compute resources. The results showed three times saving 

in cost as compared to Best Resource Selection (BRS) heuristic. 



Discrete PSO for cloud workflow scheduling – Wu et al. [344] in 2010 proposed to 

schedule applications among cloud services by combining the data transmission cost and 

computational cost for optimal cost to user. Moreover this algorithm is not better for larger 

search space. 

Set-based discrete PSO for cloud workflow scheduling with user defined Qos 

constraints – Chen and Zhang [345] in 2012 proposed to optimize the user Qos such as make 

span, user cost and reliability separately. 

Sort based PSO in Cloud computing – Guo et al. [346]in 2012 adopted a small position 

value rule by sorting all the dimensions in position according to the real value and giving 

each dimension an integer value rank number and then map this value to the cloud resource 

index . A single objective was formed by combining the data transmitting time and the user 

cost. 

PSO for energy aware virtual machine placement optimization – Wang et al. [347] in 

2013 proposed for lowering the energy consumption of a virtualized data centres by means of 

virtual machine placement optimization while keeping in view the necessary requirements of 

cloud services .An improved version of PSO is used by redefining the parameters and 

operators, then adopting an energy aware fitness strategy and coding scheme. 

Round based PSO in cloud computing – Rodriguez and Buyya [348] in 2014 proposed to 

round the real number to integer number to indicate the resource index that the workflow was 

scheduled on but it does not reflect the features of resources. 

Energy efficient resource allocation of Virtual machine– Xiong and Xu [349] in 2014 

suggested this algorithm by using Energy efficient resource allocation model and PSO 

method in cloud data centre to reduce the energy consumption. The fitness function of PSO is 

defined as the total Euclidean distance to determine the optimal point between resource 

utilization and energy consumption. 



Task based system load balancing using PSO (TBSLB-PSO) – Ramezani et al. [350] in 

2014 suggested for system load balancing by only transferring extra tasks from an overloaded 

virtual machine (VM) instead of migrating the entire overload VM. Then PSO is applied to 

migrate these extra tasks to the new host VMs for reducing the downtime, cost and amount of 

memory involved in this process. 

Renumber strategy enhanced PSO in cloud computing – Li et al. [351] in 2015 suggested 

a number strategy to use the metric of the price per unit time to record the resources and thus 

making the learning among the particles more efficient. 

Cloudlet scheduling with PSO – Al-Olimat et al.[352] in 2015 proposed a hybrid of PSO 

and Simulated Annealing is implemented inside the CloudSim is used to minimize the 

makespan and maximize the resource utilization. 

Dynamic Power saving Resource allocation using PSO (DPRA) – Chou et al. [353] in 

2018 suggested this mechanism based on PSO which consider the energy consideration of 

physical machine (PM)and virtual machine (VM) and also take care of energy efficiency of 

air-conditioners ,total electricity bill, VM migration, and number of shut downs of VMs. 

Quantum PSO (QPSO) Based Load Balancing – Sivakumaret. al [354]in 2019 proposed to 

decrease the traffic surrounded by the incoming requests to the server which is  protected by 

firewalls ,sends to the load balancer that acts as reverse substitute and distributes network 

transversely to servers .This algorithm consider data dependences in cloud environment and 

data intensive workflow features. 

2.7 Hybrid PSO using Parallel Implementation 

Parallel hybrid Moving boundary PSO(hmPSO)– Zhang et al. [355] in 2009 proposed that 

this algorithm consists of three components global bpso, local bpso and direct local search by 

Nelder-Mead method. The hardware for parallel implementation is a LINUX cluster 



consisting of 96 dual processor dual-core operation.This hybrid model improves the 

efficiency and avoid premature convergence to local minima’s. 

Parallel PSO with Genetic Migration – Jin and Lu [356] in 2012 proposed coarse grained 

parallel PSO on GPU and  implemented genetic strategy for communication using selection, 

crossover and mutation operators on the particles and after competition of migration among 

swarms, new swarms run on PSO. 

Comparison Parallel GA and PSO – Roberge et al. [357] in 2013 proposed the hybrid GA 

and PSO to reduce the execution time for the solutions by using single programming, 

multiple data parallel programming. By using parallel implementation on multi-core CPUs, a 

real time path planning for UAV is possible with a quasi-linear speedups 0f 7.3 to 8 cores 

with low execution time. 

Hybrid approach based on neighbourhood search and PSO for parallel machine 

(VNPSO) – Chen et al.[358] in 2013 proposed this algorithm to multi stage problem and 

formulated as a mixed integer linear programming model. The algorithm addresses both 

sequence independent as well as sequence dependent setup time. 

Parallel Co-operative Co-evolution based PSO (PCCPSO) – Yuan et al. [359] in 2015 

proposed this technique to solve conditional nonlinear optimal perturbation (CNOP) problem. 

A hybrid using advancement in PSO with Tabu search algorithm was used and then 

parallelizing was performed. 

Spark based Parallel C0-operative Co-evolution PSO – Cao et al.[360] in 2016 introduced 

a hybrid algorithm by combing probability distribution functions (Gaussian, Cauchy and 

Lcvy distribution functions) with the global and local version of PSO and implemented on 

spark platform for solving high dimension problems in parallel. 

Parallel Quantum-behaved PSO with neighbourhood search – Long et al.[361] in 2016 

suggested to use global search and local search neighbourhood strategy in quantum behaved 



PSO and employ parallel technique for reducing runtime and increased the diversity of the 

population. 

Hybrid of Multi Swarm PSO and GA – Franz and Thulasiraman [362] in 2016 proposed 

this algorithm by parallelizing the hybrid algorithm on an accelerating processing unit (APU) 

which is a hybrid multi core computer to improve performance and close coupling between 

GPU and CPU. 

Hybrid Iterative Truncated singular value decomposition (TSVD) and Parallel PSO –

Ge et al. [363] in 2016 suggested the new inversion algorithm can achieve favourable results 

for signals with signals to noise ratio larger than 10 by inversing the relaxation time (T1) and 

transversal time (T2) spectrum in a low field nuclear magnetic resonance to obtain optimal 

truncated position with high computational speed.  

Multi-Core Parallel PSO (PPSO) -Peng et al.[364] in 2017 proposed three multi-core 

parallel PSO algorithms  ( PPSO_ring, PPSO_star, PPSO_share) based on Fork/Join 

framework and concurrency in Java for exchange of information among the threads (sub-

swarms).Fork/Join framework assigns threads to different CPU cores ,whereas 

synchronization and communication mechanisms are employed exchanging information 

among the threads. 

Hybrid GA-PSO in Cloud Computing – Manasrah and Ali[365] in 2018 proposed to 

allocate the task to resources efficiently and to insure the fair distribution of the workload 

among the available virtual machines so as to reduce the make span and the processing cost 

of the workflow applications with minimum time in the cloud computing environments. 

Hybrid GA-PSO in Cloud Computing – Senthil et al. [366] in 2019 proposed to combine 

GA and PSO to minimize the execution time for task scheduling. Initially GA will randomly 

generate the population and encoding the chromosomes is done with mapping task and 

matched resources. Fitness is calculated and elite are divided into two halves.GA is applied to 



best elite first half. Anew population is resulted after applying crossover and mutation. With 

PSO, pbest and gbest are evaluated with every iteration for particle position and velocity. 

Results are combined both of GA and PSO. Finally results are sorted based on fitness values 

and global best is the optimal solution. 

2.8 Multi-Objective Particle Swarm optimization using Parallel Implementation  

Parallel Vector evaluated PSO (VEPSO) – Vlachogiannis and Lee [367]in 2005 

implemented this algorithm which contains equal number of objective functions and number 

of swarms with the same number of PCs working in parallel for solving the multi-objective 

optimization problems in short computing time with precise results. 

Parallel PSO for multi-objective problems – Fan and Chan [368] in 2009 developed the 

idea based upon the concept of parento-dominance as well as parallel computing in which 

after standard PSO run, each swarm shares a fixed number of crowed member after the 

migration period .Fixed number of non-dominated solutions were obtained by external 

archive which keeps on updating after each cycle. 

GPU based Parallel multi-objective PSO- Zhou and Tan[369] in 2011 firstly proposed this 

approach for optimizing parallel multi-objective problems via PSO using the GPU is more 

efficient in running time and speed range from 3.74 to 7.92 times as compared to CPU 

sequential platform. 

Parallel implementation of MOPSO on GPU using OpenCL and CUDA – Arun et al. 

[370] in 2011 implemented this technique on the popular GPU frameworks which results in 

90% improvement in performance as compared to sequential implementation. 

Multi-objective parallel PSO – Soares et al. [371] in 2013 proposed to solve the dual 

objective of Vehicle to grid scheduling by applying parallel computing parento weights to 

multi-objective parallel PSO. 



Multi objective Parallel PSO-SA (P-PSOSA)- Khoshahval et al.[372]in 2014 proposed two 

different fitness  function  were defined  considering multiplication factor maximizing and 

power peaking factor minimizing objectives simultaneously ,thus achieving near global core 

pattern. 

Parallel multi-objective PSO based on Decomposition – Li et al. [373] in 2015 proposed to 

use both MPI and OPENMP to implement the algorithm with a hybrid of distributed and 

shared memory programming models. 

Weighted sum approach using Parallel PSO–Borges et al. [374] in 2016 implemented 

parallel PSO to the non- linear multi-objective combinational resources scheduling problem 

of distributed energy in which single objective function is formed by the weighted sum of 

two objectives. 

Workload Distributor with a Resource Allocator (WDRA) – Alsubhai and Gaudiot[375] 

in 2017 proposed to combine workload distribution, core scaling, and thread allocation into a 

multi-objective optimization problem using PSO in order to reduce the execution time, 

energy consumption, under peak power and peak CPU temperature constraints. 

Scalable Parallel co-operative Co-evolutionary PSO - Atashpender et al. [376] in 2018 

firstly suggested this variant of speed constrained multi-objective PSO and scalability 

analysis in the terms of number of variables and parallelization. This method gives high 

computation speed ups and higher convergence speed with quality solutions. 

Parallel Multi-objective PSO for large swarm and high dimensions (MOPSO) – Hussian 

and Fujimoto[377]in 2018 introduced parallel implementation MOPSO on a GPU based 

CUDA architecture using coalescing memory access ,pseudo random number generator, 

thrust library, atomic function, parallel archiving and so on. This implementation uses master 

slave model provides up to 182 times speedup as compared to CPU MOPSO. 



Bi-Objective PSO – Varshney and Singh[378] in 2018 proposed this technique in which two 

swarms are used one for each objective such that information of one swarm is used to update 

the velocity of the other and both swarm co-operate each other to get better optimal solutions 

and is better in terms of reliability and execution time in cloud computing environment. 

Parallelized Multi-objective Cultural algorithm PSO (CAPSO) – Stanley et al. [379] in 

2019 proposed a parallelized hybrid optimization system by combining elements from 

cultural algorithm(CA), PSO and Vector Evaluated Genetic algorithm(VEGA).This algorithm 

works by dividing the search space within multiple swarms joined by sharing of CA 

knowledge among themselves. 

Parallel Multi-swarm PSO strategies for Multi-objective – Campos Jr. et al. [380] in 2019 

proposed two strategies, firstly based on parento dominance and the second on 

decomposition. Multi-swarms execute on independent processors and communicate on a fully 

connected network. Parallelization has more impact on convergence and diversity on multi-

objectives. 
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Fig 2.3 Pie chart represents the complete distribution of published research papers using both 

PSO and Parallel Implementation of PSO. 

 

Fig2. Shows the distribution of all research papers published from 2003 to end 2019 for 

Parallel implementation of PSO using Multi-core, GPU Computing, Hybrid versions of PSO, 

and Multi-objective PSO. Whereas Fig 3.represents completes distribution of research papers 

published from 1995 to 2019 of all PSO papers. 

2.9 Conclusion 

PSO is computationally an intensive method and suffers with long run time while solving real 

world large optimization problems. The review article focus on PSO based  algorithmic 

approach, communication topologies and parameter setting based approaches, hybridized 

approaches and multi-objective approach for its robustness and efficient for solving large 

optimization problems. For the present review article we have studied 1050 research articles 

from IEEE Journals, IEEE Transactions on Evolutionary Computation, Nature Computing, 

Soft computing, IEEE Access, Springer Nature, IEEE Transactions on Parallel Distribution, 

Proceedings of the IEEE International Conference on Control and Automation, Int. IEEE 

Conf. on Systems, Man, and Cyber; IEEE International Conference on Machine Learning and 

Cyber, Neuro Computing, Journal  of Innovative Computing, Applied soft computing, IEEE 
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Latin America Transactions, IEEE Symposium Series on Computational Intelligence (SSCI), 

: IEEE Symposium Series on Computational Intelligence (SSCI), International Journal of 

Communication Systems, International IET Conference on Software Intelligence 

Technologies and Applications, The Scientific World Journal, and more. In review we found 

that search performance and convergence speed and run time are effected by different 

strategy. This paper gives a through survey with more emphasis from its development, 

improvements from its basic form, various methods derived from this algorithm are 

introduced. PSO as single objective optimizer motivated many researchers to extend to multi-

objective and constrained optimization. The review will help the researchers to choose the 

correct constraint handling strategy for optimization problems in real life.  

The publication chronological review of parallel PSO based on the parallelization strategy 

suggests descending order strategy MPI, GPU, Multi-core, OpenMP, Hadoop and MATLAB 

and then cloud computing. Literature survey on communication based suggest master-slave is 

most popular parallelization approach then coarse grained and finally fine grained approach. 

Hybrid approaches have little share as compared parallel PSO parallelization strategy. Multi-

objective using parallelization strategy has also low share but is very effective in the real life 

optimization problems as this reduces computational time significantly. 

 

 

 

 

 

 

 

 



                                                           CHAPTER 3 

DEVELOPMENT OF NEW VERSION OF PARTICLE SWARM OPTIMIZATION 

 

3.1 Introduction 

Particle Swarm Optimization (PSO), one of the Bio-Inspired algorithm, was firstly introduced 

by Kennedy and Eberhart [6]. It is very simple, population- based search algorithm and is 

motivated from simulation of social and cognitive behaviour (Eberhart and Kennedy [7], 

Couzin et al. [382], Conradt et al.[381], Nagy et al.[387], zoltan toth et al [392]) of particles 

in the swarm. PSO is initialized with population of solutions called particles having random 

velocities and keep track while moving on its co-ordinates in the specified search space 

which are the personal best solution of the particles achieved so far called (Pbest). Among all 

the personal best values is the global best which is experienced by the particles in the swarm 

known as Gbest. PSO is found to be fast, robust, and less susceptible to entrapment due to its 

nature and can easily solve non-linear, non-differentiable multi-modal optimization problems 

even of higher dimensions. (Engelbrecht [383], Jain et al. [384], Jain et al. [386])  

PSO has a long dynamic journey and have many variants. Shi and Eberhart [11, 14] outlined 

the selection criterion for inertia weights &velocity and proposed empirical study of PSO 

with linearly decreasing inertia weight from 0.9 to 0.4, keeping both acceleration constants c1 

& c2 equal to 2 with asymmetric initial range. Clerc and Kennedy [25] suggested that PSO 

has common problem of stagnation because of premature convergence, especially in multi-

modal functions. Ajith Abraham et al. [40] proposed various Inertia weight strategies that 

effect the convergence and exploration-exploitation trade off in PSO. The premature 

convergence behavior in PSO is a major problem and is studied by many researchers; 

however the particles tend to converge before true global minimum. Van den Berg [389] 

suggested GCPSO (Guaranteed Convergence PSO) for guaranteed convergence to local 



minimum by using different velocity equations. Further addressing to this problem Van den 

Berg (2002) developed MPSO (Multi-start PSO) which restarts itself whenever stagnation is 

detected by applying various criteria for detecting premature convergence. A different 

approach called Opposition based learning has been originally proposed by Tizhoosh [84] by 

considering counter estimates, opposite numbers, anti-chromosomes, counter actions, and 

opposite’s weights by making revolutionary jumps in starting. Wang et al. [390] used the 

opposition based learning approach along with Cauchy mutation on the best particle to 

accelerate the convergence and avoid to get trapped in local minima. Cui Z et al. [391] 

proposed a dynamic adjustment strategy of optimum radius to improve the global search 

ability by updating the position of optimal solution by adaptive bat search algorithm with 

better accurate results as compared to other algorithms. A new mechanism called re-grouping 

(Reg PSO)/re-organize proposed by Evers and Ghalia [142] can efficiently re-group the 

swarm when premature convergence is detected and enables them to move towards global 

minimum, but it uses only global best of the swarm without further exploration. In this paper, 

a new approach PCPSO (Perfectly convergent PSO) is proposed which has both the qualities 

of exploration and faster convergence to escape from many local minima’s even with noisy 

environment. The new algorithm differs from the previous work ( Van den Berg [389], 

Tizhooh [84], Wang et al.[390], Evers and Ghalia [142]) opposition based PSO, opposition 

based PSO with Cauchy Mutation, GCPSO and MPSO(using Reg PSO). It was tested on the 

uni-modal, multi- modal with local minima and noisy environment and results were 

compared. 

3.2 Motivation 

Particle swarm optimization is originally inspired from social & personal behaviour, and is 

now being used widely for optimizing purposes. Several approaches are applied to achieve 

efficiency, but many a times they go away from original idea. Psychological findings suggest 



that the living organisms go for personal experience and they find the similarities in living 

organism who had experienced personally in life time. This thought gave me the inspiration 

to use Personal best in place of global PSO mechanism. Opposition based PSO, opposition 

based PSO with Cauchy Mutation, GCPSO and MPSO, as all have tendency of being trapped 

into the local minima whether few or many. Stagnation can be eliminated if premature 

convergence is diagnosed at appropriate time. 

3.3 Particle Swarm Optimization  

 

     3.3.1 Standard Particle Swarm Optimization  

 

PSO came into the existence in 1995 by Kennedy and Eberhart [6]  derived from the basic 

Physics displacement equations called “Lbest” PSO was developed by Kennedy and Eberhart 

considered only information between close neighbourhood of two and six particles and 

investigated its effects on convergence. Eberhart et al. [7] developed a velocity clamping 

technique for controlling the initial rapid growth of velocity to prevent particles to leave the 

search space by choosing some maximum velocity in each dimension as  𝜈max 𝑗 .Each 

dimension j of velocity vector is checked and if the absolute exceeds then the j-th component 

velocity is revised. The velocity update is as follows: 

𝑣(𝑘 + 1)𝑖,𝑗 = {

𝑣(𝑘 + 1)𝑖,𝑗  𝑖𝑓    −𝑣𝑚𝑎𝑥,𝑗 ≤ 𝑣(𝑘 + 1)𝑖,𝑗 ≤ 𝑣𝑚𝑎𝑥,𝑗

𝑣𝑚𝑎𝑥,𝑗 𝑖𝑓              𝑣𝑚𝑎𝑥,𝑗 < 𝑣(𝑘 + 1)𝑖,𝑗

−𝑣𝑚𝑎𝑥,𝑗  𝑖𝑓             𝑣(𝑘 + 1)𝑖,𝑗 < −𝑣𝑚𝑎𝑥,𝑗

(3.1) 

          Whereas 𝑣𝑚𝑎𝑥,𝑗  =  𝜆(𝑢𝑗 − 𝑙𝑗)    (3.2) 

                        λϵ (0, 1) 

𝑣𝑚𝑎𝑥,𝑗 is fraction of the search space ,𝑢𝑗 , 𝑙𝑗 are the upper and lower limits of the search space 

in j dimension and λ is the velocity clamping percentage, is usually lie between 0 and 

1.Another technique for velocity clamping is based on the magnitude of velocity vector is to 

maintain the search direction of the particle and maintains the overall velocity vector 

magnitude. If the magnitude of the particle velocity reaches a selected limit, then the whole 



velocity vector is modified such that its magnitude is within limits and its direction is retained 

and is as follows: 

𝑣(𝑘 + 1)𝑖 = {

𝑣(𝑘 + 1)𝑖             𝑖𝑓 ‖𝑣(𝑘 + 1)𝑖‖  ≤ 𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥𝑣(𝑘 + 1)𝑖

‖𝑣(𝑘 + 1)𝑖‖
   𝑖𝑓 ‖𝑣(𝑘 + 1)𝑖‖ > 𝑣𝑚𝑎𝑥

(3.3) 

𝑣𝑚𝑎𝑥 =  𝜆√∑(𝑢𝑗 − 𝑙𝑗)
2

𝑛

𝑗=1

   (3.4) 

=  𝜆‖𝑈 − 𝐿‖                    (3.5) 

Whereas ‖∙‖ represents Euclidean norm, 𝑈 =  [𝑢1, 𝑢2, … , 𝑢𝑛]𝑇 and 𝐿 =  [𝑙1, 𝑙2, … , 𝑙𝑛]𝑇 are the 

n dimension vectors which are bound in search space for dimension j. The value of 𝑣𝑚𝑎𝑥 is 

calculated on some fraction of the maximum step size. This strategy does not alter the 

velocity direction but retains the information and components of velocity vector can be 

modified even though there are large components resulting in the particles to move slowly in 

most directions due to large velocity in other dimension. Kennedy [9] carried out an analysis 

of this algorithm for social interaction with the latest four types of models as full model, 

cognition model only, social model only and selfless model and indicated that cognition and 

social model only worked well but did not want to substitute the core algorithm as it would 

result in premature convergence. In starting PSO was without inertia weight but in (1998), first 

time Shi and Eberhart [11] introduced constant inertia weight and this algorithm was called 

standard PSO.PSO is initialized by initial solutions of the particles moving in the search space, 

each particle is represented by a position and velocity and keep updating as follows: 

                                               𝑥𝑗(𝑘 + 1) =  𝑥𝑗(𝑘) + 𝜈𝑗(𝑘 + 1)(3.6)           

𝜈𝑗(𝑘 + 1) =  𝜔𝜈𝑗(𝑘) + 𝑐1𝑟1(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2𝑟2(𝑔(𝑘) − 𝑥𝑗(𝑘))  (3.7) 

 Where, j =1, 2, 3,…i            

 k+1 denotes next iteration, k is the current iteration number,  𝜈𝑗 is velocity of the particle j,𝑥𝑗 

is position of the particle j, 𝜔 is Inertia weight factor, 𝑐1,𝑐2 are acceleration factors,𝑝𝑗is 



personal best of particle j, g is the global best of the entire swarm,𝑟1,𝑟2 are pseudo random 

numbers between 0 and 1. 

Eberhart and Shi [14] suggested a better strategy of inertia weight in a linearly decreasing 

way from 0.9 to 0.4 for improved exploration and optimal global optima Maurice Clerc [15] 

proposed to use constriction factor χ which ensures better convergence and ability to control 

velocity in PSO algorithm as follows: 

𝜈𝑗(𝑘 + 1) = 𝜒[𝜈𝑗(𝑘) + 𝑐1𝑟1 (𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2𝑟2 (𝑔(𝑘) − 𝑥𝑗(𝑘)) ]                  (3.8) 

                            Χ = 
2

|2−ɸ−√ɸ
2−4ɸ|

                    where ɸ = 𝑐1+𝑐2, ɸ> 4                         (3.9) 

.Again, Eberhart and Shi [18] proposed the comparison of two techniques using constriction 

factor χ and inertia weight ω are used which were found to be mathematically equivalent and 

linearly decreasing inertia weight from 0.9 to 0.4 was used for better results. Clerc and 

Kennedy [25] suggested to use constriction factor χ which eliminate the need for velocity 

clamping. Trelea [30] investigated the convergence boundaries, convergence point and 

procedure for parameter setting with inertia weight ω =0.6 and ɸ1 = ɸ2 =1.7, resulting in 

improved performance of the PSO. Ratnaweera [32] suggested adaption rule for reinitialize 

the velocity of particles with the values of ɸ1 to be decreased and ɸ2 is increased for better 

exploration and exploitation in search space. Bratton and Kennedy [34] defined a standard 

PSO as a basis for researchers to act as common grounding to work from. Nakagawa [37] 

suggested by adding a random number to the particle velocity for better control on velocity 

depending on the distance from global best particle location. Bonyadi and Michalewicz [45] 

examined the behaviour of particles and proposed that during the exploration the exploration 

the particles oscillate in various patterns in four classes based on maximum oscillation 

frequency and there boundaries do not depend on the number of dimensions. The standard 

PSO flow chart is shown in fig. 1 as follows: 
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Fig.3.1 Standard PSO flow chart 

Again Bonyadi and Michalewicz [47] investigated the relationship between the base 

frequency and correlation between particle positions and suggested that the particle with 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑥𝑗 𝑎𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑣𝑗 

Calculate Fitness function 𝑓(𝑥(𝑘)𝑗) 

K = K max End 

Update Personal best position 𝑝𝑗(𝑘) 

Update Global best position 𝑔(𝑘) 

¡ =1 

¡ ≤ N  

Update particle position and velocity vectors 

using equation (6) and (7) 𝑥𝑗(𝑘 + 1), 𝑣𝑗(𝑘 +

1) 

¡ = ¡ +1  

 

𝑘 = 𝑘 + 1 

Set Iteration k=0, kmax, No of particles N, Inertia weight 

w  wwwωwωω 



small base frequency will show smooth trajectories while particles with high base frequency 

will show more oscillations with large steps between positions. 

3.3.2 Guaranteed convergence particle swarm optimization (GCPSO)  

The concept behind the GCPSO is to induct a particle whose personal best is equal to the 

global best and that particle will search the global minimum in that part of the search space, 

so the velocity eq. will be as follows: 

 𝜈𝑗
′ (𝑘 + 1) = −𝑥𝑗

′(𝑘) + 𝑔(𝑘) + 𝜔𝜈𝑗
′ (𝑘) + 𝜌(𝑘)(1 − 2𝑟)                          (3.10) 

𝑥𝑗
′ = 𝑔(𝑘) + 𝜔𝜈𝑗

′ (𝑘) + 𝜌(𝑘)(1 − 2𝑟)                            (3.11) 

Where,  

−𝑥𝑗
′(𝑘) Resets the particle position to global best position g(k) and 𝜔𝜈𝑗

′ (𝑘) help in searching 

current direction, 

r is a vector randomly generating numbers between 0 and 1, 

ρ(k) (1-2r) generates a random search in the neighborhood area of global best particle, 

ρ(k) is the diameter of  random search space defined as follows: 

ρ (k) = ρ(k + 1) =  {

2ρ(k)          Successes > sc  
(0.5)ρ(k)               failure > fc

 ρ(k)   otherwise

                            (3.12) 

# failures>𝑓𝑐  

#successes (k+1)> #successes (k) => # failures (k+1) =0     and, 

# failures (k+1)> # failures (k)=> #successes (k+1)=0 

Where, #successes & # failures are the number of consecutive successes or failures, 𝑠𝑐= 15 

&𝑓𝑐=5 are the threshold parameters. 

The strategy of ρ setting is to punish the low performers and reward to good performers. This 

algorithm do well with uni-modal functions with low number of particles, but get trapped to 

local optima in case of multi modal functions. But it is faster and has better convergence than 

standard PSO. 



3.3.3 New variant PCPSO (Perfectly Convergent PSO)  

The purpose of this new variant is to avoid premature convergence which leads to stagnation 

and to give opportunity to the personal best particles in place global particle as they give 

better exploration in the search space. In this new variant, I have introduced an additional 

particle as used in GCPSO but it will search around personal best position in place of global 

position. Searching areas near to global position lacks in exploration and faces to get trapped 

in multi-modal problems with one or many local minima, keeping in view the new velocity 

update is as follows: 

 𝜈𝑗
′ (𝑘 + 1) = −𝑥𝑗

′(𝑘) + 𝑝𝑏𝑒𝑠𝑡(𝑘) + 𝜔𝜈𝑗
′ (𝑘) + 𝜌(𝑘)(1 − 2𝑟)      (3.13) 

Whereas other particles in the swarm will update the velocity as per this new variant: 

 𝜈𝑗
′ (𝑘 + 1) = 𝜔𝑥𝑗

′(𝑘) + 𝑐1𝑟1(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2𝑟2(−𝑥𝑗(𝑘))     (3.14) 

Where, −𝑥𝑗
′(𝑘) + 𝑝𝑏𝑒𝑠𝑡(𝑘) component will make the search in the personal best 

region, 𝜔𝜈𝑗
′ (𝑘) gives the momentum to search in current direction, ρ(k) (1-2r) generates a 

random search in the neighborhood area of personal best particle with side length of  2𝜌(𝑘), 

ρ(k) is the diameter of  random search space defined as follows: 

𝜌(𝑘 + 1) =  {

2𝜌(𝑘)            𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 > 𝑠𝑐      
(0.5)𝜌(𝑘)        𝑓𝑎𝑖𝑙𝑢𝑟𝑒 > 𝑓𝑐

𝜌(𝑘)                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                (3.15) 

#successes (k+1)> #successes (k) => # failures (k+1) =0     and, 

# Failures (k+1)> # failures (k) => #successes (k+1) =0 

Where, #successes & # failures are the number of consecutive successes or failures, 𝑠𝑐= 15 

&𝑓𝑐=5 are the threshold parameters and can be finely adjusted.This technique uses an 

adaptive 𝜌 for obtaining the optimal sampling volume in its current state of this method. If a 

particular value of repeatedly results in a success then a large sampling volume is chosen to 

increase the maximum distance travelled in one step. On the other hand when 𝜌 produces 



consecutive failures 𝑓𝑐 then sampling volume is too big and must therefore be reduced. In the 

end stagnation is absolutely prevented if 𝜌> 0 for all steps. 

This following is convergence criteria requirements for the Perfectly convergent PSO  which 

works on the basis as defined by Solis and Wets [388] They investigated the convergence of 

stochastic search algorithms, in particular those of pure random search algorithm providing 

conditions by which the called global search or local search algorithm. 

Global search convergence theorem: Suppose that f is a measurable function, S is a 

measurable subset of 𝑅𝑛 and H1 and H2 are satisfied. Let (𝑦𝑘)𝑘=0
∞  be a sequence generated 

by algorithm, then lim
𝑘→∞

𝑃 [𝑦𝑘  ∈ 𝑅𝑀] = 1 

Where 𝑃[𝑦𝑘  ∈ 𝑅𝑀] is the probability that at step k, the point 𝑦𝑘 generated by the algorithm 

is in 𝑅𝑀 . 

Proposition: Given a function f from 𝑅𝑛 𝑡𝑜 𝑅 and S is a subset of 𝑅𝑛. We seek a point y in S 

which minimizes f on S or at least which yields an acceptable approximation of the infimum 

of ƒ on S. 

This proposition sets out the concept of what the global optimizer must generate as output, 

provided the function f and search space S. The stochastic algorithm uses basic random 

search algorithm to perform this role. 

Basic Random search Algorithm 

Step 0.Find 𝑦0 in S and set k= 0 

Step 1.Generate 𝜉𝑘  vector in sample space  (𝑅𝑛 , в , 𝜇𝑘). 

Step 2. Set𝑦𝑘+1 = 𝐷(𝑦𝑘 , 𝜉𝑘), choose𝜇𝑘+1 and set k= k+1 and return to step 1. 

Where 𝑦0a random initial starting point in S,𝜇𝑘  is a probability measure (corresponding to 

distribution function on 𝑅𝑛) on  в and в is anσ-algebra of subsets of𝑅𝑛, D is a function that 

builds the better solution to problem than current solution and satisfies the following 

condition: 



H1ƒ(𝐷(𝑦, 𝜉))  ≤ ƒ(𝑦)   𝑎𝑛𝑑 𝑖𝑓 𝜉 𝜖 𝑆 𝑡ℎ𝑒𝑛, ƒ(𝐷(𝑦, 𝜉))  ≤ ƒ(𝜉)             (3.16) 

Global convergence mean that with probability 1, the sequence ƒ(𝑦𝑘)𝑘=1
∞  converges to 

infimum of ƒ on S but if it occurs at a point at which ƒ is singularly discontinuous, then we 

cannot find minimum point. Now replace the search for infimum by essential infimum δ as 

follows: 

𝛿 = inf (𝑡: 𝑣[𝑦 𝜖 𝑆|ƒ(𝑦)< 𝑡| > 0)                                                           (3.17) 

Whereas  𝑣 |𝐴| is the Lebesgue measure on set A.and typically is the n-dimensional volume 

of set A. Therefore we aim aspire to produce convergence towards a small region a minimum 

solution. The optimum region can be defined as follows: 

𝑅𝑀 =  (𝑥 𝜖 𝑆|ƒ(𝑦) < 𝛿 +  𝜖 )                                                                  (3.18) 

Where δ ˃ 0 and the point found in this region is good approximation to the true global 

minima .In the execution of this algorithm, we distinguish between local and global search 

algorithm based on the 𝜇𝑘properties of sequence of probability measures used. In local search 

algorithms 𝜇𝑘  with bounded support𝑀𝑘, such that 𝑣|𝑆 ∩ 𝑀𝑘| < 𝑣|𝑆| possibily with all values 

of k.Second assumption for global search is as follows: 

H 2 For any (Borel) subset of A of S with 𝑣[𝐴] > 0, we have 

∏ (1 − 𝜇𝑘[𝐴])∞
𝑘=0 = 0                                                                            (3.19) 

Whereas 𝜇𝑘[𝐴] is the probability of A generated by 𝜇𝑘 .This implies that for any subset A of S 

with positive v, the probability of repeatedly missing the set A with random samples must be 

zero and the likelihood of sampling a point in the optimum region 𝑅𝑀  ⊂ 𝑆 must be non-zero. 

H3.  To any  𝑦0  𝜖 𝑆 , there corresponds a β ˃0 and a0 < 𝜂 ≤ 1  such that: 

𝜇𝑘[(𝑑𝑖𝑠𝑡(𝐷(𝑦, 𝜉), 𝑅𝑀) < 𝑑𝑖𝑠𝑡(𝑦, 𝑅𝑀) − 𝛽)    𝑜𝑟 (𝐷(𝑦, 𝜉), 𝑅𝑀)]  ≥ 𝜂    (3.20) 

       For all k and all y in the compact set 𝐿𝑜 = [𝑦  𝜖 𝑆|ƒ(𝑦) ≪  ƒ(𝑦𝑜)] 

Whereas 𝑑𝑖𝑠𝑡(𝐷(𝑦, 𝐴))denotes the distance between y and set A defined as: 

𝑑𝑖𝑠𝑡(𝑦, 𝐴) = 𝑖𝑛𝑓 𝑑𝑖𝑠𝑡(𝑦, 𝑐)
𝑐𝜖𝐴
𝑖𝑛𝑓

 



At every step in a local optimization method can move y in close approximation to the 

optimum region by at least distance β or y is in optimum region with a probability greater or 

equal to 𝜂 

Local search convergence theorem: Suppose that f is a measurable function, S is a 

measurable subset of 𝑅𝑛 and H1 and H3 are satisfied. Let (𝑦𝑘)𝑘=0
∞  be a sequence generated 

by algorithm, then lim
𝑘→∞

𝑃 [𝑦𝑘  ∈ 𝑅𝑀] = 1 

Where 𝑃[𝑦𝑘  ∈ 𝑅𝑀] is the probability that at step k, the point 𝑦𝑘 generated by the algorithm 

is in the optimum region 𝑅𝑀 . 

The Perfect convergent PSO (PCPSO) satisfies the necessary and sufficient condition to 

converge because: 

1. PCPSO can always generate a sample around a point. 

2. PCPSO algorithm make a non-degenerate sampling volume with non- zero probability of 

sampling a point near to optimum region, irrespective of the initial state of the particles. 

Following is the block diagram explanation of PCPSO procedure as shown in fig 3.2. 

Initialization phase Exploration and Exploitation phase Final phase 
Initialize parameter setting: 

Swarm size, no of iterations, 

inertia weight, no of 

trails,dimension,c1,c2, position 

,velocity,𝑠𝑐= 15 &𝑓𝑐=5,calculate 
fitness function. 

 Introduced additional particle which 

search around current pbest position 

and follow eq 5. 

 Other particles as per eq 6 with 

regrouping mechanism for 
stagnation. 

 Find global optimal                     

 

 Update position value of each 

particle 

Repeat till stopping criterion 

meets. 

 

                                               Fig3.2 Block diagram of PCPSO 

 

Basically, this version gives chance to all particles in participating whether they are in 

exploring stage /got better personal best than the previous iteration or at the verge of global 

optima and makes it true global search algorithm. This algorithm overcomes the limitation of 

GCPSO. 



3.4 Experiments  

    3.4.1 Benchmark Problems 

Five of the well-known benchmark functions are used in this paper. Two functions f1, f2 are 

uni-modal functions & f3, f4 are multi-modal functions while f5 is multi-modal with noise. 

Generally, multi-modal functions are the most difficult functions for optimization. Symmetric 

initialization is used in this paper, where the initial population is uniformly distributed in the 

entire search space. All the functions used in this paper are to be minimized. Table 3.1 shows 

the detail of these functions.  

Table 3.1 Benchmark Dimensionality  
 

Benchmark Objective function Search Space 
(Initialization 
Range) 

Optimal 
Function 
value 

Number of 
Dimensions 

Sphere Min f1(x) = ∑ 𝑥𝑖
2𝑛

𝑖=1  -5.12≤ 𝑥𝑖 ≤ 
5.12 

0 30 

Weighted 
Sphere 

Min f2(x) =∑ 𝑖.𝑛
𝑖=1 𝑥𝑖

2 -5.12≤ 𝑥𝑖 ≤ 
5.12 

0 30 

Ackley 
Min f3(x) = 20+e-20𝑒

√
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛

−0.2

 -𝑒
∑ cos (2𝜋𝑥𝑖)𝑛

𝑖=1
𝑛  

-30≤ 𝑥𝑖 ≤ 30 0 30 

Griewenk 
Min f4(x) = 1+∑

𝑥𝑖
2

4000

𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1  -600≤ 𝑥𝑖 ≤ 
600 

0 30 

Quartic with 
Noise 

Min f5(x) = 𝑟𝑎𝑛𝑑𝑜𝑚[0,1) + ∑ 𝑖. 𝑥𝑖
4𝑛

𝑖=1  -1.28≤ 𝑥𝑖 ≤ 
1.28 

0 30 

 

3.4.2 Parameter Settings: 

The selection of parameters have strong impact on the performance of PSO algorithms .In 

this paper, following parameters were set as shown in Table 3.2 for two groups of 

experiments. First group uses linearly decreasing inertia weights from 0.9 to 0.4 and in the 

second group constant inertia weight 𝜔 =  0.729844  were used without and with 0%, 15% 

velocity clamping in their respective ranges. OPSO is without mutation whereas OPSO with 

Cauchy Mutation uses 0.5 mutation probability. 

Table 3.2 The Parameter setting for experiments    

       

Parameter Name Setting Reference 

Acceleration constants c1 1.49618 [8] 



and c2 

Inertia weights, 𝝎 linearly decreasing from 0.9 to 0.4 [8] 

0.729844 [8] 

Swarm size 10  

Maximum iterations 5000 per trial  

Dimensions 30  

Number of trials 05  

Velocity clamping 𝜆 = 0%  and 𝜆 = 15%, [17] 

Stagnation threshold,ϵ 1 × 10−6 [17] 

regrouping factor =1.2𝜺−𝟏 50 for uni-modal  functions [17] 

1,20,000 for multi modal functions [17] 

Mutation Probability 0 for only OPSO [16] 

 0.5 for OPSO with Cauchy mutation [16] 

No of Starts in MPSO 100 [14] 

 

3.4.3 Experimental setup  

This section will examine behavior of PCPSO algorithm by systematically manipulating the 

parameter that affects the rate of convergence.  Each algorithm was tested on all the 

benchmarks listed in table 3.1.For each experiment the MatLab programme was run 05 times 

of 5000 iteration each with all statistical values like mean ,median, best and worse were 

recorded on MATLAB-2015a,excuted on Compaq 6720s,intel core2 Duo. PCPSO uses only 

500 iterations rest all the PSO variants uses 5000 iterations.  

3.5. Computational results and discussion  

 

Table 3&4 show the comparison of proposed algorithm PCPSO with the OPSO, OPSO with 

Cauchy mutation, GCPSO (using RegPSO) and MPSO (using RegPSO) for the function f1 to f5 

using linearly decreasing inertia weight and constant inertia weight with velocity clamping at 

0% and 15% respectively. Whereas “Mean”, “Best”, “Worse” are the mean of the last 

function value of the 5 trails conducted, Best is the minimum function value among 5 trials 

and worse is the maximum function value achieved over 5 trials. Table 3.3 &3.4 also shows 

highly impressive optimal solution with merely 500 iterations as compared to other variants 

which have 5000 number of iterations as stopping criteria. Bold values are the best values in 

the Table 3.3 & Table 3.4 respectively. Fig3.5 and Fig 3.6 shows the plot between Mean 



Function value and the number of iterations with linear inertia weight and with constant 

inertia weight with and without velocity clamping (0% and 15%) respectively. 

3.5.1 Algorithms using linearly decreasing inertia weight  

The idea behind using the linearly decreasing inertia weight is that it gives more exploration 

during the initial stages of the iteration before they start to converge. Fig3.5 and Fig3.6 shows 

the characteristic of various algorithms between mean function value and the number of 

iterations applied to different benchmarks function. Moreover, the different algorithms fail to 

detect stagnation stage at appropriate time when applied on the benchmark function. 

Following table 3.3 shows the statistical results using linearly decreasing inertia weight 

The two uni-modal functions f1 & f2 with all the statistical values (Median, Mean, Best& 

Worse) show the stronger property of convergence of PCPSO with velocity clamping 15% as 

compared to other algorithms. The performance of GCPSO, MPSO, and OPSO &OPSO with 

Cauchy mutation showed the results for 5000 iterations but PCPSO was able to converge in 

merely 500 iterations. Function f1(spherical) without velocity clamping shows OPSO is 

worse among the competitive performer, PCPSO detected stagnation in just 100 iterations 

without getting trapped and acted too fastly but when 15% velocity clamping is applied to all 

algorithms, it again showed excellent statistical values. In case of Function f2 (weighted 

sphere) without velocity 

Table 3.3 Results using linearly decreasing inertia weight from 0.9 to 0.4 

 
Fu

nct

ion 

Statist

ics 

Opposition based 

PSO 

OPSO with 

Cauchy Mutation 

GCPSO MPSO PCPSO 

λ = 0% λ=15% λ=0%  λ=15% λ=0% λ=15% λ=0% λ=15% λ=0% λ=15% 

𝑓1 Median 

 
3.4823e-20 

2.0634e-20 3.5559e-

22 

3.1153 e-

20 

4.1189 e-

24 

3.2356 e-

27 

5.7145 e-

22 

1.6391 e-

22 
2.4009𝑒−53 𝟏. 𝟐𝟐𝟎𝟗𝒆−𝟓𝟔 

Mean 
5.5831e-25 

8.3488e-20 4.9064e-

22 

9.5368 e-

22 

7.7595 e-

24 

1.5818 e-

22 

8.5252 e-

22 

5.0625 e-

5 
7.2725𝑒−53 𝟑. 𝟒𝟖𝟗𝟕𝒆−𝟓𝟓 

Best 6.6045e-27 1.8298e-24 4.1694e-

22 

3.5758 e-

25 

3.4937 e-

26 

2.9763 e-

22 

1.6433 e-

24 

9.2299 e-

42 
4.0611𝑒−55 𝟏. 𝟕𝟏𝟑𝟖𝒆−𝟓𝟖 

Worse 2.7909e-24 2.8776e-20 2.3179e-

22 

4.5747 e-

25 

2.4474 e-

22 

7.8928 e-

22 

4.2214 e-

20 

2.5303 e-

7 
2.5672𝑒−52 𝟏. 𝟓𝟓𝟕𝟏𝒆−𝟓𝟒 

𝑓2 Median 

 

0.0001759

6 

2.1495e-7 1.4849e-

22 

1.7497 e-

27 

6.4827 e-

22 

1.9702 e-9 5.3606 e-

22 

1.0372 e-

9 
4.5032𝑒−53 𝟏. 𝟕𝟖𝟓𝟗𝒆−𝟓𝟔 

Mean 0.064589 0.006511 2.2212e-

22 

1.3407 e-

26 

6.553 e-22 1.2997 e-5 6.9548 e-

22 
2.2595𝑒−5 7.4025𝑒−53 𝟏. 𝟑𝟐𝟔𝟐𝒆−𝟓𝟔 



Best 3.6428e-6 4.8283e-3 1.3726e-

24 

2.6444 e-

27 

1.0525 e-

22 

5.3936 e-

27 

1.7164 e-

22 

2.1909 e-

24 
1.0972𝑒−53 𝟖. 𝟕𝟑𝟒𝟓𝒆−𝟔𝟎 

Worse 0.31705 0.032554 1.0723e-

20 

5.4714 e-

26 

1.6167 e-

22 

6.4735 e-5 2.3343 e-

22 

0.000108

13 
2.3649𝑒−52 𝟐. 𝟓𝟔𝟒𝟒𝒆−𝟓𝟔 

𝑓3 Median 

 

18.3748 0.0050057 8.8898 0.000791

1 

0.000368

66 

0.000104

49 

0.003314

1 

0.000122

59 
𝟐. 𝟔𝟏𝟔𝟔𝒆−𝟕 0.028696 

Mean 18.2143 0.14123 8.827 0.13462 0.000443

2 

0.001852

8 

0.36086 0.000451

46 
𝟗. 𝟒𝟗𝟔𝟒𝒆−𝟔 0.09583 

Best 16.8906 0.0006749

4 

8.2601 0.000108

73 

7.7437e-5 2.4579 e-5 0.000217

75 

6.8047 e-

5 
𝟏. 𝟓𝟏𝟖𝒆−𝟖 0.0077893 

Worse 19.2307 0.67394 9.1203 0.66892 0.001014

5 

0.008603

3 

1.7769 0.001241

6 
𝟒. 𝟔𝟐𝟎𝟑𝒆−𝟓 0.22102 

𝑓4 Median 

 

0.059178 0.085436 0.078426 0.09117 0.093275 0.03677 0.01478 0.06671 0 0.0002053

5 

Mean 0.074378 0.091973 0.080624 0.09583 0.072113 0.041237 0.025541 0.08348 0 0.0099559 

Best 0.049064 0.0098769 1.6403e-2 0.041667 7.7805 e-

7 

0.012321 0.009867

7 

0.034421 0 1.7131 

Worse 0.13677 0.1688 0.16414 0.16316 0.12279 0.080990

1 

0.075957 0.1693 0 0.024901 

𝑓5 Median 

 

0.011207 0.011963 0.008660

9 

0.010514 0.016763 0.006050

4 

0.015058 0.006310

5 

0.000796

56 
0.0004960

6 

Mean 0.012741 0.012125 0.010822 0.010982 0.019234 0.006248

8 

0.016059 0.00715 0.000670

99 
0.0004853

6 

Best 0.0091362 0.0074706 0.006241

2 

0.006613

3 

0.011164 0.004383

1 

0.004665

9 

0.004585

5 

6.0567 0.0001336

4 

Worse 0.016367 0.016588 0.017634 0.013956 0.030663 0.009125

4 

0.030966 0.010239 0.001370

7 
0.0008138

7 

 

Clamping GCPSO and MPSO performed better in about 200 iterations than OPSO and OPSO 

with Cauchy mutation are the worse while PCPSO performed in about 100 iterations with 

remarkable statistical results. More over with 15% velocity clamping PCPSO is ahead of 

other algorithms. Function f3 & f4 are multi- modal and are considered as the difficult 

benchmark because of many wells with local minima, but PCPSO results shows highly 

impressive even by using the high dimensions of 30.Function f3 (Ackley) has the lowest 

mean and median values without velocity clamping in the case of PCPSO in 200 iterations 

followed by MPSO and GCPSO but OPSO with Cauchy mutation and OPSO faced 

stagnation problem and got trapped in local minima. Function f4 (Griewenk function) shows 

all statistical values higher in other algorithms but in our case it is perfectly 0 without 

velocity clamping and is very impressive as it is capable to overcoming the stagnation 

problem without getting trapped in the local minima. It shows the stronger convergence 

property of PCPSO and the rate of convergence of any stochastic algorithm is dependent on 

the volume of sample space as the number of points in the sample space increases 

exponentially with the dimension in search space, then other algorithm takes longer to find 



the global minima in a finite number of iterations and fails very rapidly as the dimension 

increases. 

  

Fig.3.5 Comparison of Mean Function value v/s Number of Iterations for linearly decreasing 

inertia weight with and without velocity clamping. 

 

 

 



 



  



 

. Function f5(Quartic with noise) which is noisy in nature, but PCPSO again showed even 

good results at 15% velocity clamping as compared to GCPSO and MPSO (both using 

RegPSO) using linear decreasing inertia weight.Figure3.5.shows superior performance 

between PCPSO and comparison algorithms. 

3.5.2 Algorithms using constant inertia weight 

Table 3.4 Results using Constant inertia weight 𝝎 = 𝟎. 𝟕𝟐𝟗𝟖𝟒𝟒 

 
Fu

nct

ion 

Statisti

cs 

Opposition based 

PSO 

OPSO with 

Cauchy Mutation 

GCPSO MPSO PCPSO 

λ = 0% λ=15% λ=0%  λ=15% λ=0% λ=15% λ=0% λ=15

% 

λ=0% λ=15% 

𝑓1 Median 
 

0.50512 2.3584

𝑒−6 

1.7504

𝑒−30 

2.7199

𝑒−27 

5.9203

𝑒−13 

0.00450
84 

7.8125

𝑒−25 

1.1436

𝑒−8 
𝟐. 𝟑𝟕𝟐𝟔𝒆−𝟑𝟒 4.7686𝑒−33 

Mean 0.42057 1.429

𝑒−5 

1.9704

𝑒−25 

1.4058

𝑒−26 

9.7924

𝑒−11 

0.05511
5 

2.2379

𝑒−23 

0.0017
072 

𝟏. 𝟏𝟎𝟕𝟔𝒆−𝟑𝟑 5.798𝑒−32 

Best 0.00654

57 

9.7844

𝑒−7 

9.1656

𝑒−32 

1.5526

𝑒−32 

1.1651

𝑒−13 

1.0952

𝑒−7 

2.6748

𝑒−25 

1.8587

𝑒−13 
𝟓. 𝟖𝟔𝟒𝟏𝒆−𝟑𝟓 9.7633𝑒−37 

Worse 0.72107 5.3353

𝑒−5 

9.852

𝑒−25 

6.1768

𝑒−26 

4.8781

𝑒−10 

0.23801 1.08

𝑒−22 

0.0075
333 

𝟐. 𝟕𝟒𝟎𝟑𝒆−𝟑𝟑 2.6407𝑒−31 

𝑓2 Median 

 

7.9933

𝑒−22 

1.5052

𝑒−14 

4.4835

𝑒−25 

9.0918

𝑒−20 

2.6643

𝑒−16 

9.9429

𝑒−5 

3.6526

𝑒−14 

2.278

𝑒−14 
9.5597𝑒−35 𝟏. 𝟐𝟑𝟏𝟔𝒆−𝟑𝟓 

Mean 3.8258

𝑒−20 

3.4048

𝑒−10 

1.2779

𝑒−23 

3.0692

𝑒−14 

2.2606

𝑒−14 

0.04650
9 

4.2234

𝑒−11 

9.3119

𝑒−13 
1.6567𝑒−33 𝟏. 𝟓𝟕𝟒𝟓𝒆−𝟑𝟑 

Best 1.2528

𝑒−22 

3.4531

𝑒−18 

8.535

𝑒−29 

2.1222

𝑒−22 

1.7906

𝑒−18 

1.5483

𝑒−5 

9.2341

𝑒−18 

9.3474

𝑒−19 
1.5093𝑒−35 𝟓. 𝟏𝟑𝟕𝟖𝒆−𝟑𝟕 

Worse 1.6686

𝑒−22 

1.7023

𝑒−9 

5.5919

𝑒−23 

1.5338

𝑒−13 

5.6876

𝑒−14 

0.23198 2.0971

𝑒−10 

4.3858

𝑒−12 
7.876𝑒−33 𝟕. 𝟕𝟐𝟑𝟔𝒆−𝟑𝟑 

𝑓3 Median 
 

1.1552 0.00116
64 

0.72782 2.4671

𝑒−5 

1.3404 001230
4 

0.93142 2.5985

𝑒−5 
1.6692𝑒−5 𝟏. 𝟔𝟐𝟓𝒆−𝟏𝟏 

Mean 0.9547 0.60724 0.61036 0.00808
75 

0.83846 0.42031 0.83492 0.2770
5 

7.1372𝑒−5 𝟒. 𝟐𝟗𝟏𝟗𝒆−𝟏𝟎 

Best 6.4216

𝑒−5 

3.9595

𝑒−6 

6.1661

𝑒−6 

1.786

𝑒−6 

0.00264
49 

6.8812

𝑒−5 

0.00113
11 

2.2421

𝑒−6 

3.4887𝑒−7 𝟑. 𝟓𝟓𝟐𝟕𝒆−𝟏𝟓 

Worse 1.3451 1.5331 1.1569 0.04036
1 

1.5029 1.1552 1.1555 1.3404 0.000196
27 

𝟏. 𝟗𝟏𝟑𝟖𝒆−𝟗 

𝑓4 Median 
 

0.02945
9 

0.04179
4 

0.06617
3 

0.01232
1 

0.11799 0.04412
7 

0.01232
1 

0.0464
83 

0 7.5873𝑒−11 

Mean 0.03435
4 

0.05892
4 

0.06020
3 

0.01913
9 

0.10866 0.04503
7 

0.02655
6 

0.0460
37 

0 10.9232 

Best 0.01722
6 

0.01231
6 

1.036

𝑒−10 

5.7732

𝑒−15 

0.00985
73 

8.2934

𝑒−14 

1.2517

𝑒−12 

2.7978

𝑒−14 

0 2.1649𝑒−14 

Worse 0.06112
7 

0.15211 0.13949 0.05628
9 

0.19819 0.09302
7 

0.07615
4 

0.0882
46 

0 54.6153 

𝑓5 Median 

 

0.01267

4 

0.01761

2 

0.01508

2 

0.01782

1 

0.01179

3 

0.00800

03 

0.00503

04 

0.0093

713 

0.000641

79 
0.0004227

1 

Mean 0.01190
4 

0.01859
4 

0.01696
4 

0.01758
9 

0.01330
9 

0.00757
24 

0.00823
26 

0.0077
502 

0.000597
5 

0.0005871

3 

Best 0.00850
33 

0.01236
1 

0.00777
5 

0.01209
3 

0.01095
6 

000523
98 

0.00407
62 

0.0041
969 

0.000141
12 

0.0001363

6 

Worse 0.01376

8 

0.02903 0.02786

6 

0.02344

2 

0.01615

1 

0.00911

9 

0.01438 0.0102

72 

0.000957

18 
0.0011979 

 



In this experimental set up inertia weight 𝝎 = 𝟎. 𝟕𝟐𝟗𝟖𝟒𝟒 is kept constant throughout the 

simulation run using MATLAB. Table3.4 clearly indicate that PCPSO shows the stronger 

convergence property whether it is uni-modal or multi-modal with many minima due to its 

better exploration & good strategy. The mechanism behind is very powerful which easily 

liberate particles in all the conditions and easily avoids premature convergence. Following 

table 3.4 shows the statistical results using linearly decreasing inertia weight. 

 

The two uni-modal functions f1with 0% & f2 with15% velocity clamping shows all the 

statistical values (Median, Mean, Best& Worse) of PCPSO are lowest as compared to other 

algorithms. Multi-modal function f3 with 15%& f4 without velocity clamping again shows 

remarkable perforance.f4 (Griewenk function) shows quality solutions as again it has 

achieved perfectly zero as function values by using PCPSO showing convergent behaviour 

irrespective of the type of inertia weight used. Noisy function f5 again showed PCPSO with 

good results as compared to GCPSO, MPSO (both using RegPSO) and other algorithm using 

constant inertia weight.Figure2.shows efficient performance between PCPSO and comparison 

algorithm. 

 Fig3.6 Comparison of Mean Function value v/s Number of Iterations for Constant inertia 

weight with and without velocity clamping. 



 

 



 

 



 

Performance results of PCPSO are compared with Koyuncu and Ceylan(2018) with nine 

variants(Global PSO-w, Global PSO-cf, Local PSO-w, Local PSO-cf, UPSO,CLPSO,SG-

PSO,SP-PSO, Scout PSO) of PSO,GA(Genetic Algorithm) and four variants (norm ABC, Bin 

ABC, Dis ABC, Bit ABC) of ABC (Artificial Bee Colony optimization on the benchmark 

functions. PCPSO outperformed in achieving true global minima in all the variants of PSO 

and ABC in the high dimension search space due to better convergence characteristics and 

avoids in getting trapped in local minima due to premature convergence and stagnation. 

3.6 Conclusion 

A new algorithm Perfectly Convergent Particle Swarm Optimization has been developed. It 

has been implemented on uni-modal, multi-modal with local minima and noisy function. The 

proposed algorithm has been compared with the OPSO, OPSO with Cauchy mutation, 

GCPSO and MPSO existing variants of PSO for linearly decreasing inertia weight and 



constant inertia weight with and without velocity clamping. Five trials were conducted for 

each case and were compared statistically in terms of mean, median, best and worse .It is 

observed that PCPSO achieved the global minima in much less number of iterations as 

compared to other algorithms by a rather large margin. The problem behind the entire 

algorithm gave an approach to solve plagued PSO from premature convergence for 

overcoming the stagnation in multi-modal with few minima and many minima and the noisy 

function. PCPSO can also be used to solve multi-objective optimization problems. PCPSO 

consistently outperformed with comparison algorithm with low iterations and approximate 

the true global minimize. This algorithm helps and gives chance to all particles which face 

premature convergence and stagnation by automatically triggering a new particle mechanism 

.PCPSO gives a penalty if the best particle changes its position each time for𝜌(𝑘)to readjust 

and stabilize. Velocity clamping restricted the particles in initial explosion by taking small 

step size and selecting the values of inertia weight with acceleration co-efficient results in 

smooth trajectories movement in high dimension search spaces. PCPSO results are quite 

impressive in the case of Griewenk where all the statistical values like mean, median, best 

and worse are zero, irrespective of the type of inertia weight. The additional particle helps the 

PCPSO to solve the problem fast with large diversity. PCPSO was able to give balanced 

exploration and exploitation in the search space by helping particles in premature 

convergence states and opportunity to all particles to reach true global minima. 

 

 

 

 

 

 



                                                              CHAPTER 4 

            MACHINE LEARNING THROUGH BACK PROPAGATION   

                NETWORKS USING PCPSO IN HIGHER DIMENSIONS                      

4.1 Introduction 

Particle swarm optimization (PSO) was firstly developed by Kennedy and Eberhart [6] in 

1995 for solving optimization problems motivated by the behavior of a flock of birds, fishes 

or the social behavior of the group of people. It is a stochastic population[382,383] based 

approach that maintains a set of solutions  within a search space called particles. Particles 

freely fly over the search space called exploration and gathers information like local best 

(Pbest) and global best (Gbest) before converging to optimum point [385,393]. PSO has a 

long journey with changes and have many variants. Shi and Eberhart  outlined the selection 

criterion for inertia weights &velocity and proposed empirical study[394,14]of PSO with 

linearly decreasing inertia weight from 0.9 to 0.4, keeping both constants c1 & c2 equal to 2 

with asymmetric initial range. PSO has common problem of stagnation because of premature 

convergence, especially in multi-modal function [25]. The premature convergence behavior 

in PSO is a major problem and is studied by many researchers, however the particles tend to 

converge before true global minimum. Van den Berg suggested GCPSO (Guaranteed 

Convergence PSO) for guaranteed convergence to local minimum[389]. Wang et al. used the 

opposition based learning approach along with Cauchy mutation on the best particle to 

accelerate the convergence and avoid to get trapped in local minima[390] .This stagnation 

problem was overcooked by regrouping mechanism when premature convergence is 

detected[142]. 

Kennedy and Eberhart [395] in 2001 implemented the PSO to train the Artificial Neural 

Networks (ANN) due to its simplicity, strong learning rate and when the data relationship is 

unknown. It processes the information fast through its multi- layer perceptron (MLP) having 



three separate layers: input, output and hidden layers. Each neuron of the layer is connected 

to all the neurons of next layer. Performance of training level dependent on the architecture 

which determines the number of hidden layers and neurons [396].The training is stopped 

once the inputs are equal to targets or reach to specified errors. Many algorithms are used for 

training purposes [397] Lavenberg-Marquardt Back propagation [398] and Bayesian 

Regularization Back Propagation algorithms [399] are the most powerful techniques used in 

this research. The sufficient layers of hidden layers are able to approximate to any degree of 

accuracy by suitable training. 

4.2 Artificial Neural Network: 

A two layered feed forward network with sigmoid hidden neurons and linear output neurons 

can fit multi-dimensional mapping problems easily. Supervised learning finds the correct 

weights that minimize the mapping error. The data sets used to train the network contains the 

input vectors and their corresponding output values. The aim is to train the network with 

minimum error called training data set. Second data set is called test set which has both the 

input and output values then it are possible to make approximation in error with respect to 

new data. The mapping error over test set is called test set error. Data here is randomly 

divided into three samples as training, validation and testing samples. Training samples are 

presented to the network during training and the network is adjusted as per the error. 

Validation is used to network generalization and to stop training when generalization does 

not show any improvement. Testing do not affect the training but it is independent measure of 

network performance during and after training. 

4.3 Proposed steps to train PSO using Artificial Neural Networks: 

1) Collect data. 

2) Create the network. 

3) Configure the network 



4) Initialize the weights and biases. 

5) Train the network using back propagation algorithms. 

6) Validate the network. 

7) Use the network 

 

                      Fig 4.1  A typical artificial neural network structure. 

4.4 Training of PSO variants (OPSO with Cauchy mutation & PCPSO) from following 

algorithms: 

 4.4.1 Lavenberg-Marquardt Back propagation Algorithm (LMBP): 

This algorithm is an approximation to the Newton method and is more efficient used for 

training of moderate sized feed forward ANNs [16].The updated weights and biases are 

calculated as follows: 

𝑥𝑘+1  = 𝑥𝑘 −  [𝐽𝑇 𝐽 + 𝜇𝐼]−1𝐽𝑇  𝑒                                                   (4.1) 

 

Where J is the Jacobin matrix which contains first derivatives of network errors with respect 

to weights and biases, 𝑥𝑘 is the current weight and biases, e is the network errors, μ is a scalar 

and I is an identity matrix. 

During the training, weights and biases are adjusted in such a way to minimize the network 

performance function that is mean square error given as: 



  Mean square error =  
1

𝑁
∑ (𝐹𝑖 − 𝐹𝑖

′)
2𝑁

𝑖=1                                     (4.2) 

1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖=1                                                                                                       (4.3) 

Where 𝐹𝑖 ,𝐹𝑖
′ are the input function value and target or output values of neural network, N is 

the size of training data set and 𝑒𝑖 is the error due to difference between input and output of 

the neural network. 

4.4.2 Bayesian Regularization Back Propagation Algorithm (BRBP): 

This algorithm minimizes the combination of squared errors and weights and determines a 

correct value for the network [17]. The performance function is given as: 

𝐹𝑟𝑒𝑔 =  𝛽 ∑ 𝑒𝑖
2𝑛

𝑖=1 +  𝛼 ∑ 𝑤𝑖
2𝑛

𝑖=1                                                   (4.4) 

  Where ‘n’ is the total number of weights and biases,𝑒𝑖 is the errors. The function controls 

the weights and biases to be small for good network response. Depending on the values of 𝛼 

and 𝛽the training errors are decided. If 𝛼<< 𝛽  errors will be smaller otherwise training will 

pay more emphasis on weight reduction. 

4.5  Experiments 

4.5.1Parameter Settings: 

The selection of parameters have strong impact on the performance of PSO algorithms, 

parameters were set as shown in  table 4.1 and benchmark as taken in previous chapter table 

3.1 for one set I group of experiments for OPSO with Cauchy mutation and PCPSO and uses 

linearly decreasing inertia weights from 0.9 to 0.4. 

Table 4.1 The Parameter setting for OPSO with Cauchy mutation and PCPSO      

                 experiments 

 

Parameter Name Setting Reference 

Acceleration constants c1 

and c2 

1.49618 [8] 

Inertia weights, 𝝎 linearly decreasing from 0.9 to 0.4 [8] 

Swarm size 10  

Maximum iterations 5000 per trial  

Dimensions 30  



Number of trials 05  

Stagnation threshold,ϵ 1 × 10−6 [17] 

regrouping factor =1.2𝜺−𝟏 50 for uni-modal  functions [17] 

1,20,000 for multi modal functions [17] 

Mutation Probability 0 for only OPSO [16] 

 0.5 for OPSO with Cauchy mutation [16] 

 

Set II group of experiments were conducted on Lavenberg-Marquardt Back propagation and 

Bayesian Regularization Back Propagation Algorithms using the following fixed parameters. 

Table4.2 The Experimental setting for training of PSO variants using ANN Back  

                Propagation Training Algorithms: 

Parameter Name Setting Reference 

Maximum number of Iterations 1000  

Number of Hidden Layer Neurons 4,8 and 12  

Number of Training data  samples 3500 ;70% of  5000  

Number of Validation data  

samples 

750;15% of 5000  

Number of Testing data  samples 750;15% of 5000  

Number of Validation Checks 6  

 

4.5.2 Experimental setup: 

A Intel(R) core(TM) 2 Duo CPU T7250 @ 2.00GHz was used to train network. Both training 

algorithms were tested on all the parameters listed in table 3.1. All the experiments were 

conducted for one trail consisted of maximum 1000 iterations and the stat ices were recorded 

as follows: 

4.6 Computational results: 

Training capabilities of two algorithms (Lavenberg-Marquardt and Bayesian Regularization 

Back propagation) are compared in the table 4.3 and table 4.4 respectively. Here the numbers 

of hidden layer neurons are taken as 4, 8 and 12 with training data samples of 3500, 



validation sample of 750 and testing sample of 750 respectively. Mean square error (MSE) 

and Regression (not shown in table, but its value is 9.99999e-1 for all test in table 4.3 and 

table4.4) is calculated and is shown table 4.3 and table 4.4. Bold values are the best values in 

the Table 4.3. & Table 4.4.respectively. 

Table 4.3 Results obtained using Lavenberg-Marquardt Back propagation Algorithm 
Fu

nct

ion 

Statistics OPSO with Cauchy Mutation Perfectly convergenct Particle swarm 

Optimization (PCPSO) 

Mean Square Error(MSE) 

Number of Hidden units 

 

Mean Square Error(MSE) 

Number of Hidden units 

 

4 units 8 units 12 units 4 units 8 units 12 units 

MSE MSE MSE MSE MSE MSE 

𝑓1 Training 

 

4.84094e-8  2.92557e-9 2.47267 e-10 1.54905 e-1 4.57828 e-1 1.75369 e-0 

Validation 4.48375e-8 3.60944 e-8 2.50441 e-10 1.82873 e-1 8.02968 e-1 33025.08624 e-6 

Testing 4.36761e-8 2.66474 e-8 2.10818 e-10 1.94060e-1 1.75773 e-1 1.51892 e-0 

 

Time 

(Sec) 

126 140 169 136 150 5 

𝑓2 Training 

 

5.63367 e-3 1.85586e-0 5.12020e-5 4.10265e-4 1.66592e-6 3.33124e-8 

Validation 5.65288e-3 15.20507e-0 6.18798e-5 1.20584e-3 2.38399e-6 3.23339e-7 

Testing 1.39606e-0 28.12770e-0 11.41788e-0 1.08926e-3 1.71753e-6 10273.4493e-8 

Time 

(Sec) 

130 139 164 129 146 172 

𝑓3 Training 

 
4.79715e-9 

2.93883e-9 3.65410e-10 6.97988 e-9 5.33756 e-8 7.90251 e-9 

Validation 5.00058e-9 3.48987 e-9  2.9472e-7 8.2438 e-9 1.08536 e-7 1.15509 e-8 

Testing 4.63391e-9 5.37890 e-8  5.09331e-10 6.09155 e-9 5.36647 e-8 7.52407 e-6 

Time 

(Sec) 

143 160 145 123 133 155 

𝑓4 Training 

 

3.0076 e-6 3.9787 e-7 6.32707e-8 1.42249e-4 3.66950 e-5 1.52101 e-6 

Validation .34462e-6 5.97617e-7 1.14552 e-6 2.81389e-4 3.45382 e-5 2.81896e-6 

Testing 2.68597 e-6 1.86605 e-7 1.19177 e-6 1.45248e-4 3.88082e-5 2.12479 e-6 

Time 

(Sec) 

119 132 156 139 152 159 

𝑓5 Training 

 

1.57805e-6
 2.73600e-4

 3.62640e-7
 2.39091e-5

 4.80165e-7
 6.02854e-8

 

Validation 2.78513e-6
 5.07811e-4

 5.54823e-7
 1.68116e-5

 3.46217e-6
 6.80893e-8

 

Testing 2.23884e-6
 3.25443e-4

 5.02938e-1
 1.52752e-5

 6.17321e-6
 2.58184e-8

 

Time 

(Sec) 

170 154 165 139 165 182 

 

 The uni-modal functions f1 with all the statically values (Training, validation, testing and 

time in seconds) in both the algorithms shows the time period is almost same in both cases 



but remarkable low error  results  using LMBP( with 12 neurons  for OPSO with Cauchy 

mutation and 8 neurons  for PCPSO) whereas  BRBP shows ( with 8 neurons  for OPSO with 

Cauchy mutation  and 12 neurons  for PCPSO).The learning ability for function f2 again 

shows LMBP MSE goes on decreasing as the neurons increases to 12 but BRBP learning rate 

is good but at the cost of time. The functions f3 and f4 are multi modal in nature with many 

minima BRBP showed very less time period with low MSE (for f3 with 12 neurons  for 

OPSO with Cauchy mutation  and 4 neurons  for PCPSO) as compared to LMBP which uses 

( for f3 with 12 neurons  each  for OPSO with Cauchy mutation  PCPSO) and  same 

happened to function f4 ( with 8 neurons each  for OPSO with Cauchy mutation  and 

PCPSO).So, BRBP had shown excellent learning rate with lesser number of neurons 

.Function f5 being noisy in nature showed promising results by using BRBP ( with 12 

neurons each  for OPSO with Cauchy mutation  and 4 neurons  PCPSO) 
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Fig4.2 Comparison of Mean Square Error v/s Number of Iterations/Epochs for OPSO with 

Cauchy mutation & PCPSO using Lavenberg-Marquardt Back propagation for benchmark 

functions listed in table 4.4 

 

 Table4.4. Results obtained using Bayesian Regularization Back Propagation Algorithm 

 
Fu

nct

ion 

Statistics OPSO with Cauchy Mutation Perfectly  convergent Particle swarm 

Optimization (PCPSO) 

Mean Square Error(MSE) 

Number of Hidden units 

 

Mean Square Error(MSE) 

Number of Hidden units 

 

4 units 8 units 12 units 4 units 8 units 12 units 

MSE MSE MSE MSE MSE MSE 



𝑓1 Training 

 

1.93397e-4  2.12916e-5 1.47216e-5 3.33201e-5 1.44089 e-3 1.88491 e-6 

Validation 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 

Testing 1.46312e-4 5.28909e-8 1.29301e-5 1.73145e-5 2.05511 e-3 1.425256e-6 

 

Time 

(Sec) 

126 150 168 124 144 166 

𝑓2 Training 

 

1.90360e-7 1.77918e-6 6.70603e-10 4.49739e-5 3.37153e-9 6.41304e-9 

Validation 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 

Testing 1.51232e-3 9.19846e-7 5.87142e-7 7.58700e-5 3.52374e-9 6.98132e-9 

Time 

(Sec) 

162 161 176 177 209 247 

𝑓3 Training 

 
1.52452e-10 

2.59183e-12 8.23540e-13 7.95311 e-12 1.53066 e-

10 

7.99911 e-11 

Validation 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 

Testing 1.43423e-10 2.42614e-12 1.15359 e-12 2.59923 e-11 1.49225 e-

10 
1.10975 e-10 

Time 

(Sec) 

123 19 5 44 149 164 

𝑓4 Training 

 

4.50967e-9 1.65281e-10 1.45932e-10 5.26674e-8 7.27369 e-

10 

4.84695 e-10 

Validation 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 

Testing 8.84201e-9 1.57775 e-10 2.75283 e-11 5.17896e-8 1.20945e-9 2.96973 e-2 

Time 

(Sec) 

128 132 162 133 152 175 

𝑓5 Training 

 

5.03515e-7
 2.97393e-7

 5.82964e-7
 2.80067e-11

 1.01210e-11
 2.63593e-11

 

Validation 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 0.00000e-0 

Testing 8.26916e-7
 1.06588e-7

 7.36863e-7
 8.61405e-8

 1.02099e-10
 9.21393e-11

 

Time 

(Sec) 

142 163 181 129 162 174 

 

 

                                f1                                                                        f1   



 

 

                                  f2                                                                           f2 

 

                                    f3                                                                               f3 



                                                                                                           
f4                                                                                                             f4  

 

                                   f5                                                                                f5 

Fig.4.3.Comparision of Mean Square Error v/s Number of Iterations/Epochs for OPSO with 

Cauchy mutation & GCPSO using Bayesian Regularization Back propagation Algorithm for 

benchmark functions listed in table 4.4 

 

4.7 Conclusions 

Detailed experiments were conducted to train the PSO variants (OPSO with Cauchy mutation 

& PCPSO) using Back Propagation algorithms (Lavenberg-Marquardt and Bayesian 

Regularization) on the bench mark functions in 30 dimensions. By changing number of 

neurons in hidden layer from 4,8,12 learning by Lavenberg-Marquardt algorithm showed 

remarkable accuracy to train.  ANN is able to train uni-modal, multi modal with many 

minima as well as noisy functions with very low (near to zero) using PSO. The simulation 



results shows that Lavenberg-Marquardt algorithm is more efficient for uni-modal functions 

and Bayesian Regularization out performs for multi modal /noisy functions. The training of 

ANN using PCPSO is very fast and has efficient learning rate when high precision is 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                 CHAPTER 5 

 

COMBINED ECONOMIC EMISSION DISPATCH WITH QUADRATIC FUNCTION  

                                         WITH POINT VALVE LOADING USING                                             

           PERFECTLY CONVERGENT PARTICLE SWARM OPTIMIZATION 

 

 

5.1 Introduction 

 

Fossil fuels are one of the most major part of power generation, make up a majority of global 

generation. Sulphur-di-oxide, nitrogen dioxide, carbon dioxide, ozone, and other hazardous 

gases and particles are released into the air, contributing to global warming. The final 

Affordable Clean Energy regulation (ACE), which repealed the Clean Power Plan [400] for 

generating units, was published by the Environmental Protection Agency (EPA) in June 

2019. As a result, an innovative technique is designed to decrease emissions from thermal 

power stations. 

Numerous approaches have been proposed and introduced to overcome the power system's 

economic dilemma. Linear programming, Lagrangian relaxation, and the Lagrange multiplier 

are some of the early methodologies that have been used. To enhance existing techniques, 

such as the genetic algorithm (GA), evolutionary programming(EP), particle swarm 

optimization(PSO), Biogeography Based Optimization(BBO) , harvest season artificial bee 

colony, differential evolution(DE), Backtracking search algorithm(BSA), Gravitational 

search algorithm(GSA), epsilon-multi-objective genetic algorithm variable(ev-MOGA), 

Flower pollination algorithm(FPA), quasi oppositional teaching learning based 

optimization(QOTLBO), modified artificial bee colony algorithm (MABC/D/Cat , 

MABC/D/Log) , Kernel search Optimization (KSO) and more alternative generations 

composed by intelligent techniques have been developed. In comparison to other options, 

very few of the heuristic search algorithms has yet to be able to provide adequately high 

performance to resolve all optimization problems. As a result,creating a population-based 

heuristic search technique capable of preventing premature convergence while maintaining 



the rapid converging feature remains a difficulty. The use of this technique yielded good 

optimal results in a short amount of time. 

5.2 Formulation of Combined Economic Emission Dispatch problem 

The mathematical formulation of the CEED problem is presented in this section, which 

includes the quadratic fuel cost function model, quadratic emission model, and max-max 

price penalty function. 

5.2.1 Quadratic fuel cost function  

As the initial objective of the committed generating units, coupled with equality and 

inequality requirements, the significant portion of the operating cost of thermal power plants 

is described as a second order of quadratic function: 

𝑀𝑖𝑛 𝐹𝐶𝑇 = ∑ 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖

𝑛
𝑖=1 +|𝛼𝑖 sin (𝛽𝑖(𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖))|

$

ℎ
     (5.1) 

 

Subject to constraints: 

Power balance constraint: The total real power generation is equal to the sum of total power 

demand and transmission losses. 

∑ 𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿
𝑛
𝑖=1                                                                            (5.2) 

Generator limit constraint: The real power generation of 𝑖𝑡ℎ committed generating unit 

should be within following limit. 

𝑃𝑖 𝑚𝑖𝑛 ≪ 𝑃𝑖 ≪ 𝑃𝑖 𝑚𝑎𝑥                                                                      (5.3) 

Transmission loss constraint: The total transmission loss 𝑃𝐿should be minimum and is 

given as George’s formula: 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                                                             (5.4) 

Where 𝐹𝐶𝑇is the fuel cost of all generators in $/h,𝑃𝑖 is the real output power in MW of 𝑖𝑡ℎ 

generator,𝑃𝐷 , 𝑃𝐿 are total demand and transmission losses in MW,𝑃𝑖 𝑚𝑖𝑛 , 𝑃𝑖 𝑚𝑎𝑥are the 

minimum and maximum power limits of 𝑖𝑡ℎ generator, n is the number of committed 



generating units,𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 are the fuel cost curve co-efficient of the 𝑖𝑡ℎ generators 

respectively.𝐵𝑖𝑗is the matrix of transmission loss coefficient of generating units. 

5.2.2 Quadratic Emission function 

Due to the burning of fossil fuels, all thermal power plants create hazardous gases such as 

SO2, NOx, and CO2, which add to the overall emissions and must be reduced individually. 

All three emissions are mathematically defined in this model using quadratic polynomials as 

follows: 

  𝐸𝑇 = ∑ (𝑑𝑖𝑃𝑖
2 + 𝑒𝑖𝑃𝑖 + 𝑓𝑖 ) + 𝛾𝑖𝑒𝑥𝑝(𝛿𝑖𝑃𝑖)  𝐾𝑔/ℎ𝑛

𝑖=1                         (5.5) 

Whereas 𝐸𝑇 is the total emission with valve loading effect in ton/h, 𝑑𝑖, 𝑒𝑖,𝑓𝑖 are coefficients of 

emission of   𝑖𝑡ℎgenerating unit in ton/M𝑊2ℎ, ton/MWh  and ton/h  , 𝛾𝑖  𝑎𝑛𝑑 𝛿𝑖 are the valve 

point loading effect emission coefficient of 𝑖𝑡ℎgenerating unit.  

5.2.3 Price Penalty Factors (PPF) 

Price penalty factors are calculated by dividing the fuel cost by the emission value and are 

used to transform emission criteria into equivalent fuel costs. The Max-Max price penalty 

factor, ℎ𝑖 employed is as follows. 

ℎ𝑖 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

2 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥+𝑐𝑖)+|𝛼𝑖 sin(𝛽𝑖(𝑃𝑖,𝑚𝑖𝑛−𝑃𝑖))|

(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥+𝑐𝑖)+𝛾𝑖𝑒𝑥𝑝(𝛿𝑖𝑃𝑖)

                                  (5.6) 

5.2.4 Bi-objective CEED 

The bi-objective CEED equations are shown below, which incorporate fuel cost with each 

emission and are then converted to a single objective by multiplying a price penalty factor to 

emissions independently. 

𝐹𝑇 = ∑[(𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖) + |𝛼𝑖 sin (𝛽𝑖(𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖))|

𝑛

𝑖=1

+ ℎ𝑖 𝑆𝑂2 (𝑎𝑖 𝑃𝑖
2 + 𝑏𝑖  𝑃𝑖 + 𝑐𝑖 + 𝛾𝑖𝑒𝑥𝑝(𝛿𝑖𝑃𝑖))]

$

ℎ
        (5.7) 

 



5.3 Particle Swarm Optimization 

Kennedy and Eberhart [6] established PSO without inertia weight in 1995, but for the first 

time in 1998, they developed it with constant inertia weight, and this method became known 

as conventional PSO. Initialized with candidate solutions of particles moving through the 

search space, each particle having a position and velocity, and updates as follows: 

           𝑥𝑗(𝑘 + 1) =  𝑥𝑗(𝑘) +  𝜈𝑗(𝑘 + 1)    (5.8) 

𝜈𝑗(𝑘 + 1) =  𝜔𝜈𝑗(𝑘) + 𝑐1(𝐾)𝑟1(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2(𝐾)𝑟2(𝑔(𝑘) − 𝑥𝑗(𝑘))     (5.9) 

Where, j =1, 2, 3 … n 

𝜔(𝐾) = 𝜔𝑚𝑎𝑥 − 𝑘 × (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)÷𝐾𝑚𝑎𝑥      (5.10) 

𝐶1(𝐾) = 1.167 × 𝜔(𝐾)2 − 1.167 × 𝜔(𝐾) + 0.66  (5.11) 

𝐶2(𝐾) = 3 − 𝐶1(𝐾)   (5.12) 

𝐶1(𝐾), 𝐶2(𝐾)are asynchronous learning factors with non-linear dynamic adjustable features 

which have high chances of converging to optimal global solution. 

  k+1 denotes next iteration,  k is the current iteration number, 𝜈𝑗 is velocity of the particle j,𝑥𝑗 

is position of the particle j, 𝜔 is Inertia weight factor,𝑐1,𝑐2 are acceleration factors,𝑝𝑗is 

personal best of particle j, g is the global best of the entire swarm,𝑟1,𝑟2 are pseudo random 

numbers between 0 and 1.𝜔𝑚𝑎𝑥 , 𝜔𝑚𝑖𝑛 are having maximum and minimum value of 0.9 and 

0.4 of inertia weights 

Proposed algorithm as Perfectly Convergent Particle Swarm Optimization (PCPSO) 

The purpose of this proposed version [401-403] in our scenario is to eliminate premature 

convergence, which contributes to stagnation, and to allow personal best particles to replace 

global particles because they provide more search space exploration. I've introduced an 

additional particle in this new form, similar to the one used in GCPSO [404], but instead of 

searching for global position, it will hunt for personal best position. Searching areas close to 



global position, while taking into consideration the current velocity update, lacks exploration 

and risks entrapment in multi-modal situations with one or more local minima: 

 𝜈𝑗
′(𝑘 + 1) = −𝑥𝑗

′(𝑘) + 𝑝𝑏𝑒𝑠𝑡(𝑘) + 𝜔𝜈𝑗
′(𝑘) +  𝜌(𝑘)(1 − 2𝑟)    (5.13) 

Other particles in the swarm, on the other hand, will adjust their velocity according to this 

new variant: 

 𝜈𝑗
′(𝑘 + 1) = 𝜔(𝑘)𝑥𝑗

′(𝑘) + 𝑐1𝑟1(𝑝𝑗(𝑘) − 𝑥𝑗(𝑘)) + 𝑐2𝑟2(−𝑥𝑗(𝑘))    (5.14) 

𝜔(𝑘) = 𝜔𝑚𝑎𝑥 − 𝑘 × (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)÷𝐾𝑚𝑎𝑥 

𝐶1(𝑘) = 1.167 × 𝜔(𝑘)2 − 1.167 × 𝜔(𝑘) + 0.66 

𝐶2(𝑘) = 3 − 𝐶1(𝑘)  

𝐶1(𝑘), 𝐶2(𝑘) are asynchronous learning factors with non-linear dynamic adjustable features 

which have high chances of converging to optimal global solution. 

Where, −𝑥𝑗
′(𝑘) + 𝑝𝑏𝑒𝑠𝑡(𝑘) component will make the search in the personal best 

region, 𝜔𝜈𝑗
′(𝑘) gives the momentum to search in current direction, ρ(k) (1-2r) generates a 

random search in the neighborhood area of personal best particle with side length of  2𝜌(𝑘) , 

ρ(k) is the diameter of  random search space defined as follows: 

𝜌(𝑘 + 1) =  {

2𝜌(𝑘)            𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 > 𝑠𝑐      
(0.5)𝜌(𝑘)        𝑓𝑎𝑖𝑙𝑢𝑟𝑒 > 𝑓𝑐

𝜌(𝑘)                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

      (5.15) 

#successes (k+1)> #successes (k) => # failures (k+1) =0     and, # failures (k+1)> # failures 

(k) => #successes (k+1) =0 

Where, #successes & # failures are the number of consecutive successes or failures, 𝑠𝑐= 15 & 

𝑓𝑐=5 are the threshold parameters and can be finely adjusted. 

In its current version, this method employs an adaptive for determining the best sampling 

volume. If a certain value of consistently yields a positive result, a high sampling volume is 

used to increase the maximum distance walked in a single step. When, on the other hand, 



yields multiple failures in a row, the sampling volume is too large and must be lowered. At 

the conclusion of the day,  if > 0 for all stages, there will be no standstill. 

This variant, in essence, enables all particles to compete, irrespective whether they're in the 

exploratory stage/have a better personal best than the previous iteration or are on the edge of 

global optima, resulting in a true global search algorithm. This technique gets over GCPSO's 

restrictions 

5.4 PCPSO execution in CEED 

Step1. Specify the lower and upper limitations for each unit's generation, as well as the area 

load demand and tie line transfer restrictions. 

Step2. For a size of population S in the jth-dimensional space, produce particles at random 

between the min and max operating limits of the N units, using the 𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝑃𝑖 =

[(𝑃𝑖1
𝑛 , 𝑃𝑖2

𝑛 , 𝑃𝑖3
𝑛 … 𝑃𝑖𝑁

𝑛 )]where i=1, 2...S. 

To meet the generation limit criteria of (5.3), in this case, r is a uniformly distributed random 

number between 0 and 1. 

𝑃𝑖𝑗
𝑛 = 𝑃𝑚𝑖𝑛 + 𝑟(𝑃𝑖𝑗 𝑚𝑎𝑥 − 𝑃𝑖𝑗 𝑚𝑖𝑛)                                   (5.16) 

Step3: Constraints imposed by prohibited operating zones 

If any element 𝑃𝑖𝑗 of the starting population (or updated population) is determined to be 

within the kth forbidden operating zone, it is adjusted and given the generation value 

corresponding to the zone's (𝑃𝑖𝑗
𝑙𝑜𝑤𝑒𝑟) or higher (𝑃𝑖𝑗

𝑢𝑝𝑝𝑒𝑟
) boundary, as stated by the logic. 

𝑃𝑚𝑖𝑑,𝑘 .is the kth restricted zone's midpoint.  

𝑃𝑖𝑗 = {
𝑃𝑖𝑗

𝑙𝑜𝑤𝑒𝑟   𝑖𝑓 𝑃𝑖𝑗
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑃𝑖𝑗 < 𝑃𝑚𝑖𝑑,𝑘

𝑃𝑖𝑗
𝑢𝑝𝑝𝑒𝑟

  𝑖𝑓 𝑃𝑚𝑖𝑑,𝑘 ≤ 𝑃𝑖𝑗 < 𝑃𝑖𝑗
𝑢𝑝𝑝𝑒𝑟                          (5.17) 

Step4. Set particle velocity in the [𝑣𝑖
𝑚𝑖𝑛𝑣𝑖

𝑚𝑎𝑥] in N-dimensional space. 

Step5. Evaluate the fitness of each individually using the equation (5.1, 5.5, 5.7). 



Step6: The parameters are iteratively changed to improve fitness. The parameters of PCPSO 

are updated using equations (5.8, 5.9, 5.13-5.15). 

Step7: The evaluation function values for the changed particle positions are found. PCPSO 

sets the new value to pbest if it is better than the old pbest. Similarly, gbest's value is changed 

to reflect its position as the best vector among pbest. 

Step8. Stop criteria  

The position of particles is denoted as Gbest for the optimal solution and stop if equation (17) 

is less than the stagnation threshold of 휀 = 1𝑥10−6 

5.5 Simulation results and discussion 

The CEED problem was solved using the proposed PCPSO methodology using three 

different test platforms. To do this, we created a software in the MATLAB 2015a platform on 

Compaq 6720s lab-top with 4GB RAM and tested it on three different IEEE test unit systems 

with six  units, ten  units, and forty units, including for the losses in variability transmission 

and other constraints. Number of particles in swarm is 20, number of iterations are 250, 

number of trails is 5, linearly decreasing inertia weight with maximum and minimum inertia 

w=0.9 to 0.4, acceleration constants c1 = c2 =2 are some of the parameters of proposed 

PCPSO 

5.5.1 Test system 1 

To highlight the effectiveness of the PCPSO approaches for addressing the CEED problem 

with line flow limits, the CEED problems are investigated and validated on the IEEE 30-bus, 

6-generator system[405] at a demand load of 283.4 MW, also in appendix. Using the PCPSO 

approach including all system limitations, optimal generator scheduling was accomplished. 

All buses have a lower and upper voltage limit of 0.94 p.u. and 1.06 p.u, respectively, with a 

maximum voltage variation of 6%.The proposed PCPSO algorithm is compared with latest 

research papers algorithms BBO [406], GA[407], EP[407], PSO[407] and DE[407] with 



lowest 𝐹𝐶𝐸𝐸𝐷   of 2004.30$/h as shown in table 5.1.The simulation results shows power loss 

𝑃𝐿of 5.78MW with computational time of  6.08 seconds resulting in excellent convergence 

characteristics.  

Table5.1Comparision of CEED results for six generating system with other techniques. 

 PCPSO BBO[406] GA[407] EP[407]  PSO[407] DE[407] 

𝑃1 120.28 127.84 58.41 114.29 107.73 121.65 

𝑃2 48.40 42.41 76.27 50.38 46.60 56.58 

𝑃3 30.62 31.19 47.82 30.19 27.93 36.30 

𝑃4 31.44 33.27 33.44 32.78 35.00 28.91 

𝑃5 29.00 29.97 28.75 29.36 30.00 22.88 

𝑃6 29.43 29.40 39.98 30.66 40.00 21.90 

𝐹𝐶𝐸𝐸𝐷  2004.30 2084.78 2107.19 2094.39 2109.47 2122.53 

 

5.5.2 Test system 2. 

This scenario involves a thermal system with 10 units of generation and valve point effects. 

The fuel cost coefficients matrix, generator constraint matrix, emission coefficient matrix, 

and transmission loss coefficient matrix are taken from [408] and in appendix.. Table 5.2 

displays the outcomes of using PCPSO to solve CEED for a 2000MW load demand and 

contrasts them with other approaches. 

 The proposed PCPSO algorithm shows the lower fuel cost with emission cost along with 

lowest combined economic emission dispatch of 216166.43 $/h which is lower than BSA, 

MODE[408], PDE[408], GSA[418], QOTLBO[412], NGPSO, FPA[410], ev-MOGA[420], 

ABCDP-LS[417], by 2948.85$/h, 2015.07$/h, 1701.25$/h, 1687.24$/h, 1624.31$/h, 4.11$/h,  

2761.69$/h and 1848.61 $/h respectively in achieving optimal global minimum solution in 

low iteration and computing time. This shows the excellent performance of PCPSO without 

getting trapped in minima solution 

5.5.3 Test system 3. 

The actual Tai power system, which is a large-scale and varied generating system with coal-

fired, oil-fired, gas-fired, diesel, and combined cycle all present, has 40 generating units 



[408]. The ramp rate limit (RRL), banned operating zones (POZ), non-smooth cost function 

with valve point effects, and emission function all contribute to the system's load demand of 

10500 MW given in appendix. The PCPSO's best simulation results as shown table 5.3. are 

compared to with MODE[408], PDE[408], MABC/D/Cat[409], MABC/D/Log[409], 

FPA[410], KSO[411], QOTLBO[412], GQPSO[413], SAIWPSO[414], PSOGSA[415] ,MA 

θ-PSO[416], HPSOGSA[415], IABC[417], GSA[418,427], NSGA-II[419] , SPEA2[408], 

IABC-LS[417] , TLBO[425] , ev-MOGA[420] , ABCDP[417] , MBFA[421] , DE-HS[422] , 

MLTBO[423] , RCCRA[424] and BPO[425]  is lowest in fuel cost 12430.00 $/h along with 

emission cost .The 𝐹𝐶𝐸𝐸𝐷  is 220810.00 $/h with low power loss 𝑃𝐿 of 81.59MW which is also 

lower from the results in a very low computation time of 3.16 seconds in few iterations. 

Following table 5.2 and table 5.3 shows the comparison of fuel cost and emission cost of all 

the recent algorithms 

Table 5.2 Shows the comparison of fuel cost, emission cost and 𝑭𝑪𝑬𝑬𝑫 of PCPSO with 

the other algorithms. 
 BSA[4

26] 

MODE[

408]  

PDE[4

08] 

GSA[4

27] 

QOTLBO

[412] 

NGPSO[

428] 

FPA[4

10] 

ev-

MOGA[
420] 

PCPS

O 

𝑃1 55.00 54.9487 54.985

3 

54.999

2 

55.0000 55.00 53.188 54.1807 55.00 

𝑃2 80.00 74.5821 79.380
3 

79.958
6 

80.0000 80.00 79.975 78.4981 80.00 

𝑃3 86.53 79.4294 83.984

2 

79.434

1 

84.8457 81.2398 78.105 84.7653 78.248

9 

𝑃4 86.98 80.6875 86.594
2 

85.000
0 

83.4993 80.8334 97.119 81.3502 81.844

3 

𝑃5 129.15 136.895

51 

144.43

86 

142.10

63 

142.9210 160.00 152.74

0 

138.052

6 
157.89

00 

𝑃6 146.92 172.639
3 

165.77
56 

166.56
70 

163.2711 235.0087 163.08
0 

166.266
7 

231.87

00 

𝑃7 300.00 283.823

3 

283.21

22 

292.87

49 

299.8066 289.3507 258.61

0 

295.466 290.07

35 

𝑃8 323.90 316.340
7 

312.77
09 

313.23
87 

315.4388 297.4542 302.22
0 

326.764
2 

299.24

67 

𝑃9 435.99 448.592

3 

440.11

35 

441.17

75 

428.5084 401.5072 433.21

0 

428.933

8 
403.67

84 

𝑃10 440.01 436.428
7 

432.67
83 

428.63
06 

430.5524 401.4275 466.07
0 

429.630
9 

403.52

42 

𝐹𝐶  11280

7.37 

1.1348e

5 

1.1351

e5 

1.1349

e5 

113460 116179.6

487 

1.1337

e5 

113422.

34 
11336

0.46 

𝐸𝐶 4188.0 4124.9 4111.4 4111.4 4110.2 3939.227 4147.1 4120.52 3910.7



9 8 7 04 8 

𝐹𝐶𝐸𝐸𝐷  21911
5.28 

218181.
5 

21786
7.68 

21785
3.24 

217790.74 216170.5
4 

21892
8.12 

218015.
04 

21616

6.43 

 

Table5.3. Fuel cost  𝑭𝑪 and Emission cost 𝑬𝑪 of PCPSO is compared to other latest 

algorithms 

 PCPSO MODE[40
8] 

PDE[40
8] 

MABC/
D/Cat[4

09] 

MABC/D
/Log[409] 

FPA[410] KSO[411] 

𝑃1 114.00 113.53 112.15 110.79 110.79 43.40 112.80 

𝑃2 114.00 114.00 113.94 110.79 110.79 113.95 112.68 

𝑃3 108.98 120.00 120.00 97.39 97.39 105.86 119.67 

𝑃4 166.32 179.80 180.26 174.55 174.55 169.65 179.66 

𝑃5 97.00 96.77 97.00 87.79 97.00 96.65 96.68 

𝑃6 131.44 139.27 140.00 105.39 105.39 139.02 139.72 

𝑃7 286.80 300.00 299.88 259.59 259.59 273.28 298.30 

𝑃8 300.00 298.91 300.00 284.59 284.59 285.17 284.60 

𝑃9 300.00 290.77 289.89 284.59 284.59 241.96 284.60 

𝑃10 168.40 130.90 130.57 130.00 130.00 131.26 130.00 

𝑃11 215.72 244.73 244.10 318.19 318.21 312.13 311.46 

𝑃12 213.76 317.82 318.28 243.59 243.59 362.58 315.59 

𝑃13 291.35 395.38 394.78 394.27 394.27 346.24 394.28 

 𝑃14 320.91 394.46 394.21 394.27 394.27 306.06 394.28 

𝑃15 320.34 305.81 305.96 394.27 394.27 358.78 394.28 

𝑃16 320.34 394.82 394.13 394.27 394.27 260.68 394.28 

𝑃17 465.50 487.98 489.30 399.51 399.51 415.19 488.33 

𝑃18 467.26 489.17 489.64 399.51 399.51 423.94 497.57 

𝑃190 509.65 500.52 499.98 506.19 506.17 549.12 487.59 

𝑃20 509.65 457.00 455.41 506.19 506.22 496.70 421.52 

𝑃21 550.00 434.60 435.28 514.14 514.11 539.17 433.54 

𝑃22 550.00 434.53 433.73 514.14 514.14 546.46 433.54 

𝑃23 550.00 444.67 446.24 514.52 514.56 540.06 433.62 

𝑃24 550.00 452.03 451.88 514.53 514.48 514.50 433.57 

𝑃25 550.00 492.78 493.22 433.51 433.51 453.46 433.52 

𝑃26 550.00 436.33 434.74 433.51 433.51 517.31 433.52 

𝑃27 14.03 10.00 11.80 10.00 10.00 14.88 10.00 

𝑃28 14.03 10.39 10.75 10.00 10.00 18.79 10.00 

𝑃29 14.03 12.31 10.30 10.00 10.00 26.61 10.00 

𝑃30 97.00 96.90 97.00 97.00 87.80 59.58 97.00 

𝑃31 176.59 189.77 190.00 159.73 159.73 183.48 187.91 

𝑃32 176.59 174.23 175.30 159.73 159.73 183.39 186.12 

𝑃33 176.59 190.00 190.00 159.73 159.73 189.02 188.51 

𝑃34 90.00 199.65 200.00 200.00 200.00 198.73 199.72 

𝑃35 90.00 199.86 200.00 200.00 200.00 198.77 200.00 

𝑃36 90.00 200.00 200.00 200.00 200.00 182.23 200.00 

𝑃37 110.00 110.00 109.94 89.11 89.11 39.67 110.00 

𝑃38 110.00 109.94 109.88 89.11 89.11 81.59 110.00 

𝑃39 110.00 108.17 108.96 89.11 89.11 42.96 110.00 

𝑃40 509.65 422.06 421.37 506.18 506.19 537.17 421.52 

𝐹𝐶  12430.00 12579.00 12573.0
0 

12490.9
0 

124491 123170.00 125491.00 

𝐸𝐶 76610.00 211190.00 211770. 256560. 256560.0 208460.00 199591.00 



00 67 0 

𝐹𝐶𝐸𝐸𝐷  220810.0

0 

NA NA NA NA NA NA 

Time 3.16 5.39 6.15 NA NA 4.92 NA 

Table5.4 Fuel cost  𝑭𝑪 and Emission cost 𝑬𝑪 of PCPSO is compared to other latest 

algorithms. 
Algorithm Fuel Cost 𝐹𝐶  Emission Cost 𝐸𝐶 

PCPSO 12430.00 76610.00 

QOTLBO[412] 125161.00 206490.00 

GQPSO[413] 146121.50 270192.37 

SAIWPSO[414] 121676.23 177276.36 

PSOGSA[415] 129987.00 176678.00 

MA θ-PSO[416] 129995.00 176682.00 

HPSOGSA[415] 129997.00 176684.00 

IABC[417] 129995.00 176682.00 

GSA[418] 125782.00 210933.00 

NSGA-II[419] 125825.00 210949.00 

SPEA2[408] 125808.00 211098.00 

IABC-LS[417] 12995.00 176682.00 

TLBO[425] 125602.00 206648.00 

ABCDP[417] 129995.00 176682.00 

ABCDP-LS[417] 129995.00 176682.00 

MBFA[421] 129995.00 176682.00 

DE-HS[422] 129994.00 176682.00 

MLTBO[423] 127283.87 99127.70 

RCCRA[424] 124250.95 229395.90 

BPO[425] 127335.40 97848.41 

 

5.6 Conclusion  

In order to solve CEED issues in power systems, PCPSO has been created in this study. The 

effectiveness of the PCPSO was evaluated for a number of test cases and contrasted with the 

recent research papers. It is confirmed that PCPSO is preferable an alternative algorithms for 

solving CEED issues, especially in large-scale power systems with valve point impact. 

Additionally, PCPSO shows avoiding to struck in the premature convergence in local minima 

which results in better economic and emission impact, computational effectiveness, and its 

convergence feature. As a result, PCPSO optimization is a viable method for addressing 

challenging issues in power systems. The future scope of this work includes applications of 

the proposed algorithm to multi-area power systems integrated with wind farms and PV 

systems. The PCPSO outperforms in effectively resolving bi- and multi-objective power 



system optimization issues with optimal outcomes in a minimal amount of compute time and 

iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             CHAPTER 6 

 

         COMBINED ECONOMIC EMISSION DISPATCH USING PERFECTLY  

                      CONVERGENT PARTICLE SWARM OPTIMIZATION 

  

6.1 Introduction 

        

      One of the most important elements of power generation is fossil fuels and mainly 

accounts for global generation. These thermal plants release harmful gasses like Sulphur 

dioxide, nitrogen dioxide, carbon-di-oxide, ozone etc. and particles into the atmosphere 

causing global warming. In June2019, [400] Environment Protection Agency (EPA) 

published the final Affordable Clean Energy regulation (ACE) which abolished the Clean 

Power Plan for generating units. As a result it requires an intelligent technique to minimize 

the emissions from the thermal power plants. 

Multi objective combined economic emission power dispatch (CEED) optimization problem 

are broadly classified into deterministic and meta-heuristic methods. Deterministic methods 

such as Newton-Raphson, Langrage relaxation methods were fast and can easily consider 

emissions constraints also  whereas meta-heuristic techniques like Genetic algorithm 

(GA),firefly algorithm (FA),simulated annealing(SA),Particle swarm optimization 

(PSO),Quantum PSO (QPSO), Grasshopper optimization algorithm(GOA),Pattern search 

(PS),Biogeography based optimization, artificial bee colony(ABC), Gravitational search 

algorithm(GSA),differential evolution (DE),non- dominated sorting genetic 

algorithm(NSGA-II) and various hybrid models of heuristic techniques were used to solve 

CEED optimization problems. Literature survey of recent and previous cubic CEED research 

papers were conducted using Langrage relaxation [428], PSO [429], SA [430,431], Modified 

Bio-geography based optimization (MBO)[432],GOA algorithm [433], Artificial ecosystem 

based optimization (AEO)[434],Multi objective 4th chaotic function Artificial ecosystem 

based optimization (CAE04)[435],Quantum Particle swarm optimization (QPSO)[436],Sine-

cosine algorithm(SCA)[437]. 



Cubic cost and Cubic emission functions [438-443] are considered which represent the 

correct operating cost of generating units as compared to quadratic functions using PCPSO. 

This adoption of this technique resulted in excellent optimal solutions with low 

computational time. 

6.2 Combined economic emission Problem formulation 

 This section presents the mathematical formulation of CEED problem including the cubic 

fuel cost function model, cubic multiple emission models and six price penalty functions. 

6.2.1 Cubic fuel cost function model 

 

The major portion of the operating cost of thermal power plants is described as a third order 

of cubic function as the first objective of the committed generating units along with equality 

and inequality constraints as follows: 

𝑀𝑖𝑛 𝐹𝐶𝑇 = ∑ 𝐹𝑖𝑃𝑖
𝑛
𝑖=1                                   (6.1) 

𝐹(𝑖)𝑃𝑖 = ∑ 𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖
𝑛
𝑖=1      (6.2) 

Subject to constraints: 

Power balance constraint: The total real power generation is equal to the sum of total power 

demand and transmission losses. 

∑ 𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿
𝑛
𝑖=1                                      (6.3) 

Generator limit constraint: The real power generation of 𝑖𝑡ℎ committed generating unit should 

be within following limit. 

𝑃𝑖 𝑚𝑖𝑛 ≪ 𝑃𝑖 ≪ 𝑃𝑖 𝑚𝑎𝑥                                (6.4) 

Transmission loss constraint: The total transmission loss 𝑃𝐿should be minimum and is given 

as George’s formula: 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛
𝑗=1

𝑛
𝑖=1                              (6.5) 

Where 𝐹𝐶𝑇is the fuel cost of all generators in $/h,𝑃𝑖 is the real output power in MW of 𝑖𝑡ℎ 

generator,𝑃𝐷 , 𝑃𝐿 are total demand and transmission losses in MW,𝑃𝑖 𝑚𝑖𝑛 , 𝑃𝑖 𝑚𝑎𝑥are the 



minimum and maximum power limits of 𝑖𝑡ℎ generator, n is the number of committed 

generating units,𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 are the fuel cost curve co-efficient of the 𝑖𝑡ℎ generators 

respectively.𝐵𝑖𝑗 is the matrix of transmission loss coefficient of generating units. 

6.2.2 Cubic gas emission model: 

All the thermal power plants emit toxic gases like S02, NOx and CO2 due to burning of fossil 

fuel contributing to global emissions and needs to be minimized individually. In this model 

all the three emissions are individually mathematically formulated by cubic polynomial as 

follows: 

𝐸𝑖(𝑠𝑜2)(𝑃𝑖) =  𝑎𝑖(𝑠𝑜2)𝑃𝑖
3 + 𝑏𝑖(𝑠𝑜2)𝑃𝑖

2 + 𝑐𝑖(𝑠𝑜2)𝑃𝑖 + 𝑑𝑖(𝑠𝑜2)        (6.7) 

𝐸𝑖(𝑁𝑂𝑥)(𝑃𝑖) = 𝑎𝑖(𝑁𝑂𝑥)𝑃𝑖
3 + 𝑏𝑖(𝑁𝑂𝑥)𝑃𝑖

2 + 𝑐𝑖(𝑁𝑂𝑥)𝑃𝑖 + 𝑑𝑖(𝑁𝑂𝑥)   (6.8) 

𝐸𝑖(𝐶𝑂2)(𝑃𝑖) =  𝑎𝑖(𝐶𝑂2)𝑃𝑖
3 + 𝑏𝑖(𝐶𝑂2)𝑃𝑖

2 + 𝑐𝑖(𝐶𝑂2)𝑃𝑖 + 𝑑𝑖(𝐶𝑂2)     (6.9) 

𝐸𝑡 = 𝐸𝑖(𝑆𝑂2)(𝑃𝑖) + 𝐸𝑖(𝑁𝑂𝑥)(𝑃𝑖) + 𝐸𝑖(𝐶𝑂2)(𝑃𝑖)                           (6.10) 

Where 𝐸𝑖(𝑆𝑂2)(𝑃𝑖), 𝐸𝑖(𝑁𝑂𝑥)(𝑃𝑖), 𝐸𝑖(𝐶𝑂2)(𝑃𝑖), 𝐸𝑡 are total SO2, NOx, CO2 emissions and 

combined emissions in Kg/h. 

6.2.3 Price Penalty Factors (PPF): 

Price penalty factors [6,11,444] are formed by taking the ratio of fuel cost to the emission 

value and is used to convert the emission criteria into equivalent fuel cost for the emission. 

Following are the seven types of price penalty factors which are used in this thesis. 

1. Min-Max price penalty factor, ℎ1 

 ℎ1 𝑆𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝑆𝑂2))
 $/Kg      (6.11) 

ℎ1 𝑁𝑂𝑥 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝑁𝑂𝑥))
  $/Kg    (6.12) 

ℎ1 𝐶𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝐶𝑂2))
 $/Kg         (6.13) 

Whereas  ℎ1 𝑆𝑂2,  ℎ1 𝑁𝑂𝑥 ,  ℎ1 𝐶𝑂2 are the min-max price penalty factors for SO2, NOx, CO2 emission. 

 



2. Max-Max price penalty factor,ℎ2 

ℎ2 𝑆𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝑆𝑂2))
  $/Kg          (6.14) 

ℎ2 𝑁𝑂𝑥 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝑁𝑂𝑥))
    $/Kg      (6.15) 

 ℎ2 𝐶𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥
3 +𝑏𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥

2 +𝑐𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖(𝐶𝑂2))
  $/𝐾𝑔        (6.16) 

Whereas  ℎ2 𝑆𝑂2,  ℎ2 𝑁𝑂𝑥 ,  ℎ2 𝐶𝑂2 are the max-max price penalty factors for SO2, NOx, CO2 

emission. 

3. Min-Min price penalty factor,ℎ3 

ℎ3 𝑆𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝑆𝑂2))
   $/Kg            (6.17) 

ℎ3 𝑁𝑂𝑥 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝑁𝑂𝑥))
   $/Kg         (6.18) 

ℎ3 𝐶𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑖𝑛

3 +𝑏𝑖𝑃𝑖 𝑚𝑖𝑛
2 +𝑐𝑖𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖)

(𝑎𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝐶𝑂2))
   $/Kg            (6.19) 

Whereas  ℎ3 𝑆𝑂2,  ℎ3 𝑁𝑂𝑥 ,  ℎ3 𝐶𝑂2 are the min-min price penalty factors for SO2, NOx, CO2 

emission. 

4. Max-Min price penalty factor,ℎ4 

ℎ4 𝑆𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝑆𝑂2)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝑆𝑂2))
  $/Kg                (6.20) 

ℎ4  𝑁𝑂𝑥 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝑁𝑂𝑥)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝑁𝑂𝑥))
  $/Kg            (6.21) 

ℎ4 𝐶𝑂2 =
(𝑎𝑖𝑃𝑖 𝑚𝑎𝑥

3 +𝑏𝑖𝑃𝑖 𝑚𝑎𝑥
2 +𝑐𝑖𝑃𝑖 𝑚𝑎𝑥+𝑑𝑖)

(𝑎𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛
3 +𝑏𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛

2 +𝑐𝑖(𝐶𝑂2)𝑃𝑖 𝑚𝑖𝑛+𝑑𝑖(𝐶𝑂2))
  $/Kg                (6.22) 

Whereas  ℎ4 𝑆𝑂2,  ℎ4 𝑁𝑂𝑥 ,  ℎ4 𝐶𝑂2 are the max-min price penalty factors for SO2, NOx, CO2 

emission. 

5. Average penalty factor,ℎ5 

ℎ5 𝑆𝑂2 = (ℎ1 𝑆𝑂2 + ℎ2 𝑆𝑂2 + ℎ3 𝑆𝑂2 + ℎ4 𝑆𝑂2) ÷ 4   $/Kg                      (6.23) 

ℎ5 𝑁𝑂𝑥 = (ℎ1 𝑁𝑂𝑥 + ℎ2 𝑁𝑂𝑥 + ℎ3 𝑁𝑂𝑥 + ℎ4 𝑁𝑂𝑥) ÷ 4 $/Kg                     (6.24) 



ℎ5 𝐶𝑂2 = (ℎ1 𝐶𝑂2 + ℎ2 𝐶𝑂2 + ℎ3 𝐶𝑂2 + ℎ4 𝐶𝑂2) ÷ 4  $/Kg                      (6.25) 

Whereas  ℎ5 𝑆𝑂2,  ℎ5 𝑁𝑂𝑥 ,  ℎ5 𝐶𝑂2 are the average price penalty factors for SO2, NOx, CO2 

emission. 

6. New average Min-Max and Max-Max price penalty factor,ℎ6 

ℎ6 𝑆𝑂2 = (ℎ1 𝑆𝑂2 + ℎ2 𝑆𝑂2) ÷ 2  $/Kg                                                      (6.26) 

ℎ6 𝑁𝑂𝑥 = (ℎ1 𝑁𝑂𝑥 + ℎ2 𝑁𝑂𝑥) ÷ 2  $/Kg                                                    (6.27) 

ℎ6 𝐶𝑂2 = (ℎ1 𝐶𝑂2 + ℎ2 𝐶𝑂2) ÷ 2  $/Kg                                                      (6.28) 

Whereas  ℎ6 𝑆𝑂2,  ℎ6 𝑁𝑂𝑥 ,  ℎ6 𝐶𝑂2 are the new average price penalty factors for SO2, NOx, 

CO2 emission. 

7. Common price penalty factor,ℎ7 

ℎ7 𝑆𝑂2 = ℎ5 𝑆𝑂2 ÷ 𝑛 $/Kg                                                                           (6.29) 

ℎ7 𝑁𝑂𝑥 = ℎ5 𝑁𝑂𝑥 ÷ 𝑛 $/Kg                                                                         (6.30) 

ℎ7 𝐶𝑂2 = ℎ5 𝐶𝑂2 ÷ 𝑛 $/Kg                                                                          (6.31) 

Whereas  ℎ7 𝑆𝑂2,  ℎ7 𝑁𝑂𝑥 ,  ℎ7 𝐶𝑂2 are the common price penalty factors for SO2, NOx, CO2 

emission and n is the number of generating power units. 

6.2.4 Bi-objective CEED optimization problem (BOCEED) using PCPSO 
 
Following are the bi-objective CEED equations by combining fuel cost with individual 

emission and which are further converted into single objective by multiplying a price penalty 

factor for the three emissions separately. 

𝐹𝑇 𝑆𝑂2 = ∑ [(𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖) + ℎ𝑖 𝑆𝑂2(𝑎𝑖 𝑆𝑂2𝑃𝑖
3 + 𝑏𝑖  𝑆𝑂2𝑃𝑖

2 + 𝑐𝑖 𝑆𝑂2𝑃𝑖 + 𝑑𝑖 𝑆𝑂2)𝑛
𝑖=1 ]  

$/h                                                                                                            (6.32) 

𝐹𝑇 𝑁𝑂2 = ∑ [(𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖) + ℎ𝑖 𝑁𝑂𝑋(𝑎𝑖 𝑁𝑂2𝑃𝑖
3 + 𝑏𝑖  𝑁𝑂2𝑃𝑖

2 + 𝑐𝑖 𝑁𝑂2𝑃𝑖 +𝑛
𝑖=1

𝑑𝑖 𝑁𝑂2)]  $/h                                                                                             (6.33) 

𝐹𝑇 𝐶𝑂2 = ∑ [(𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖) + ℎ𝑖 𝐶𝑂2(𝑎𝑖 𝐶𝑂2𝑃𝑖
3 + 𝑏𝑖  𝐶𝑂2𝑃𝑖

2 + 𝑐𝑖 𝐶𝑂2𝑃𝑖 +𝑛
𝑖=1

𝑑𝑖 𝐶𝑂2)]  $/h                                                                                            (6.34) 



6.2.5 Formulation of four objectives CEED optimization problem (FOCEED) using 

PCPSO  

 
Fuel cost and emissions can be minimized together by converting multi-objective problem 

into a single objective problem, by taking all the three emissions taken simultaneously SO2, 

NOx and CO2 with price penalty factors are combined together along with the fuel cost 𝐹𝑐of 

committed generating units is carried out for a particular demand. The total fuel cost 𝐹𝑇 𝐶𝐸𝐸𝐷  

is expressed as follows: 

𝐹𝑇 𝐶𝐸𝐸𝐷 = ∑ [(𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖) + ℎ𝑖 𝑆𝑂2(𝑎𝑖 𝑆𝑂2𝑃𝑖
3 + 𝑏𝑖 𝑆𝑂2𝑃𝑖

2 + 𝑐𝑖 𝑆𝑂2𝑃𝑖 +𝑛
𝑖=1

𝑑𝑖 𝑆𝑂2) + ℎ𝑖 𝑁𝑂2(𝑎𝑖 𝑁𝑂2𝑃𝑖
3 + 𝑏𝑖 𝑁𝑂2𝑃𝑖

2 + 𝑐𝑖 𝑁𝑂2𝑃𝑖 + 𝑑𝑖 𝑁𝑂2) + ℎ𝑖 𝐶𝑂2(𝑎𝑖 𝐶𝑂2𝑃𝑖
3 + 𝑏𝑖 𝐶𝑂2𝑃𝑖

2 +

𝑐𝑖 𝐶𝑂2𝑃𝑖 + 𝑑𝑖 𝐶𝑂2)] $/h                                                                            (6.35) 

  𝐹𝐶= ∑ (𝑎𝑖𝑃𝑖
3 + 𝑏𝑖𝑃𝑖

2 + 𝑐𝑖𝑃𝑖 + 𝑑𝑖)𝑛
𝑖=1   $/h                                             (6.36) 

6.3 Results and Discussions 

6.3.1 FOCEED Problem 

The PCPSO [401] technique has been applied to IEEE 30bus system having 6 units of 

thermal power plants at bus1, bus2, bus5, bus8, bus11 and bus13 with four conflicting 

objective functions having cubic cost and cubic emissions functions. The simulations were 

performed on Matlab 2015a platform on Compaq 6720s lab-top with 4GB RAM. The cubic 

cost coefficients, cubic emission coefficients like𝐸𝑆𝑂2 ,  𝐸𝑁𝑂𝑋 , 𝐸𝐶𝑂2 , real power generator 

limits are taken from respectively [428].Seven types of price penalty factors are used to solve 

CEED optimization problem, individual emission analysis for 𝐸𝑆𝑂2 ,  𝐸𝑁𝑂𝑋 , 𝐸𝐶𝑂2  with fuel 

cost and emission cost for various load conditions from 150 MW to 300MW respectively. 

The total numbers of iterations were taken as 25 with 50 numbers of trails. The results 

obtained from intelligent PCPSO [401] are compared with various algorithms like SA, GOA, 

PSO, MBO, AEO, CAE04 algorithm and Lagrange method respectively published recently in 

various journals. Table6.1 shows best results of total fuel cost𝐹𝑇 , Power loss 𝑃𝐿,total emission 



𝐸𝑇 ,CT (computational time),iter (number of iteration)obtained from CEED problem using 

PCPSO with seven price penalty function with different load condition like 

150MW,175MW,200MW,225MW,250MW and 300MW and are compared with Lagrange 

method [428], PSO [429],SA[430,431],MBO [432],GOA algorithm [433], Artificial 

ecosystem based optimization (AEO)[434],Multi objective 4th chaotic function Artificial 

ecosystem based optimization (CAE04)[435] ,Quantum Particle swarm optimization 

(QPSO)[436] and Sine-cosine algorithm(SCA)[437]. 

Table6.1 CEED results with seven price penalty factors with different load demands 

and its comparison with different algorithms. 
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.00 

2365

.50 
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7.50 
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10 

10708.

00 
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57 
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ℎ2 
[43

0] 

50.00 38.90 18.69 42.05 35.35 40.00 --- 4321.51 5287
.30 

3781
.19 

432
4.30 

---- 16790.
69 

21
.9

2 

-- 

ℎ2 

[43

2] 

 

50.00 37.24 18.05 44.32 35.37 40.00 -- 4315.63 5335

.80 

3811

.17 

432

8.07 

--- 16784.

34 

2.

75 

-- 

ℎ2 

[43

3] 

50.00 37.66 17.83 44.72 34.79 40.00 -- 4315.15 5338

.42 

3819

.56 

432

2.26 

1348

0.24 

16783.

68 

-- -- 

ℎ2 

[43

4] 

50.00 37.20 16.80 44.80 36.4 39.7 -- 4315.00 5235

.70 

3758

.10 

425

5.70 

--- 16617.

10 

-- --- 

ℎ2 

[43

5] 

50.00 39.42 16.07 45.27 34.26 39.96 -- 4314.38 5360
.57 

3832
.06 

432
2.68 

-- 16603.
90 

-- -- 

𝒉𝟐 

[43

6] 

50.00 37.68 17.75 44.77 34.81 40.00 -- 4315.03 5340

.20 

3820

.14 

432

2.70 

-- 16783.

86 

-- -- 

𝒉𝟐 

[43

7] 

50.00 37.67 17.76 44.77 34.79 39.99 -- 4315.04 5339

.96 
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.28 
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2.52 

-- 16783.

78 
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21 

-- 

ℎ3 58.47 65.38 43.85 37.08 9.71 13.52 3.03 3915.20 4236 3254 374 1123 23093. 3. 18 
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9856.
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17623.
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ℎ5 50.00 21.56 59.03 41.98 27.63 25.24 2.40 3700.20 1337

.80 

941.

99 

329

4.60 

5574.

40 

31017.
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51 

07 

ℎ6 50.38 50.13 27.25 34.81 25.71 37.35 2.62 4472.00 5067

.50 

3812

.20 

428

6.60 

1316

6.00 

11653.

00 

0.

55 

19 

ℎ7 50.00 30.30 37.84 41.16 48.29 30.09 2.33 4796.60 5491

.70 

3944

.40 

468

2.70 

1411

9.00 

8141.8

0 

1.

80 
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   250 

ℎ1 58.75 36.72 30.90 48.23 45.10 33.41 2.95 5159.90 6111

.50 

4438

.10 

509

3.70 

1564

3.00 

6921.6

0 

0.

90 

15 

ℎ1 

[42

9] 

57.62 41.00 20.98 50.00 49.03 35.59 4.24 5181.20 6352

.70 

4452

.80 

521

7.90 

--- 7487.1

0 

--- --- 

ℎ2 50.00 43.26 31.11 48.78 40.41 36.44 2.42 4552.30 5359
.60 

3879
.50 

448
9.50 

1372
9.00 

18887.
00 

1.
87 

14 

ℎ2 

[42

9] 

50.00 45.42 23.36 50.00 42.38 40.00 4.18 5081.10 6143

.00 

4376

.40 

502

7.20 

--- 19832.

00 

--- --- 

ℎ3 50.00 22.49 80.00 50.00 27.50 30.00 2.95 4974.00 2347

.10 

1559

.40 

471

3.00 

8619.

50 

23424.

00 

0.

53 

13 

ℎ4 50.00 29.70 73.10 49.46 27.74 30.00 2.84 3791.80 1412

.20 

952.

83 

342

1.10 

5786.

10 

94687.

00 

0.

56 

05 

ℎ5 50.00 37.16 64.84 50.00 28.00 30.00 2.77 3793.20 1499

.00 

1165

.50 

339

4.40 

6058.

90 

34145.

00 

0.

52 

02 
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.70 

4366

.40 

506

9.70 

1557

9.00 

13135.

00 

0.

78 

03 

ℎ6 

[42

9] 

50.01 48.60 23.37 50.00 42.24 40.00 4.23 5079.70 6181

.10 

4379

.60 

504

1.40 

--- 14547.

00 

--- --- 
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.80 

4868
.20 
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1618
1.00 
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00 
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For a power demand of 150MW in ℎ1 category the fuel cost is lowest as compared with 

Langrage method[428] and Simulated annealing[431] along with the  individual 

pollutants(𝐸𝑆𝑂2,  𝐸𝑁𝑂𝑋 , 𝐸𝐶𝑂2) ,with a CEED value of 3642.80 $/h which is 75.41 $/h less than  

SA [431] and Lagrange method [428] in just 0.51sec with 12 iterations only. With the same 

demand, considering ℎ2 max-max price penalty factor the fuel cost 2593.10 $/hr is lowest 

again with all the emissions and CEED value of 10110.0 $/hr as compared to Langrage [428], 

MBO[432], SA[430,431],AEO[434],CAE04[435],QPSO[436] and SCA[437] with very low  

computational time of 0.48 seconds in just 6 iterations. Now another ℎ6new average price 

penalty factor results in lowest fuel cost 2555.20 $/hr with lowest all pollutants and CEED 

value of 6191.0 $/hr as compared with Langrage [428] and SA [431] with very small CT 

value, showing the efficiency of PCPSO. The results obtained in case of 175MW with 

ℎ2max- max price penalty factor is compared with the results of SA [430], MBO [432], GOA 

[433], AEO[434],CAE04[435],QPSO[436] and SCA[437]  showing excellent values of fuel 

cost 2844.40 $/hr, low individual pollutants with lowest remarkable CEED value of 

11105.0$/hr in very small time and iteration. For power demand 200MW, results from ℎ2 

max-max price penalty factor with various latest optimization algorithms research papers 

SA[430],MBO[432], GOA [433], AEO[434],CAE04[435],QPSO[436] and SCA[437]  are 

compared in all parameters listed above are still lowest and shows the efficient characteristic 

of the PCPSO algorithm. Further with load demand of 225MW in the same category of max-

max price penalty factor ℎ2 fuel cost is 3723.10 $/h which is 592.05 $/h less than lowest 

value of SA[430],MBO[432], GOA [433], AEO[434],CAE04[435],QPSO[436] and 

SCA[437] with lowest CEED value of 10708.0$/hr along with lower individual pollutants. In 

case of 250MW demand load the fuel cost is still less in min-maxℎ1, max-max ℎ2 and new 

average ℎ6 class as compared to PSO [429] including emissions, power loss 𝑃𝐿 and CEED 



value showing better convergence characteristics with excellent results. Similarly with 

300MW demand load and with these three price penalty factors, this algorithm was able to 

make lowest CEED value, lower power losses 𝑃𝐿 along with individual pollutants  in very 

small time showing its computational efficiency in few iterations. The CEED results clearly 

shows the changes in power output, fuel cost, individual pollutants, and total emission with 

the change in price penalty factors. Finally it is concluded that CEED value depend upon the 

price penalty factor when load demand varies from 150MW to 300MW in the following 

sequence from lowest to highest CEED value. 

ℎ1 < ℎ6 < ℎ7 < ℎ2 < ℎ3 < ℎ5 < ℎ4 

Following table6.2 shows the comparison of CEED results with various algorithms Langrage 

method [428], PSO [429], SA [430, 431] and MBO [432], with seven price penalty factors 

for load demand from 150 MW to 300 MW. For demand load of 150MW to 300mw PCPSO 

has performed well with all seven price penalty factors as compared to Langrage 

method[428], PSO[429] SA[430,431] and MBO[432]. Moreover, mostly research papers had 

taken max-max ℎ2 /min-max ℎ1 price penalty factors and resulted in inferior optimal 

solutions as compared to PCPSO [401]. 

Following table6.3 shows the comparison with all the available research papers for fuel cost, 

individual pollutants, total emission and CEED value for max-max price penalty factor only. 

For all the 6 different load demands, intelligent PCPSO[401] has lowest fuel cost except at 

last load level but individual emissions were lowest which results in lowest total emissions 

and CEED value when compared to Lagrange method [428], PSO [429],SA[430,431],MBO 

[432], GOA algorithm [433], Artificial ecosystem based optimization (AEO)[434],Multi 

objective 4th chaotic function Artificial ecosystem based optimization (CAE04)[435] 

,Quantum Particle swarm optimization (QPSO)[436] and Sine-cosine 



algorithm(SCA)[437]using ℎ2max-max price penalty factor only. Figure6.1 Shows the 

comparison of various algorithms for 𝐹𝑇 𝐶𝐸𝐸𝐷using max-max price penalty function. 

Table6.2  Comparison of 𝑭𝑻 𝑪𝑬𝑬𝑫 results by various algorithms on different price  

                 penalty factors. 
𝑷𝑫 

MW 

Algorithms 𝒉𝒎𝒊𝒏−𝒎𝒂𝒙 

𝒉𝟏 

𝒉𝒎𝒂𝒙−𝒎𝒂𝒙 

𝒉𝟐 

𝒉𝒎𝒊𝒏−𝒎𝒊𝒏 

𝒉𝟑 

𝒉𝒎𝒂𝒙−𝒎𝒊𝒏 

𝒉𝟒 

𝒉𝒂𝒗𝒆𝒓𝒂𝒈𝒆 

𝒉𝟓 

𝒉𝒏𝒆𝒘 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 

𝒉𝟔 

𝒉𝒄𝒐𝒎𝒎𝒐𝒏 

𝒉𝟕 

150 PCPSO 3642.80 10110.00 12269.00 65171.00 22315.00 6191.00 6023.70 

LAGR[428] 3768.28 10264.56 --- ---- --- 7500.75 8122.63 

PSO[429] --- 10385.00 --- ---- ---- --- ----- 

SA[430,431] 3718.21 10261.49 ---- -- -- 7043.58 ---- 

MBO[432] --- 10255.21 --- --- ---- ---- ---- 

175 PCPSO 4399.80 11105.00 12530.00 20580.00 10275.00 8340.20 6392.50 

LAGR[428] 4551.67 13251.51 ---- ----- ---- 8987.32 9802.29 

PSO[429] ---- 12425.00 ---- ---- --- --- ---- 

SA[430,431] 4474.78 12280.04 ---- -----  8417.25 --- 

MBO[432] ----- 12241.67 --- ----- ---- ---- ---- 

200 PCPSO 4605.40 11316.00 20531.00 13911.00 16075.00 9911.20 11059.00 

LAGR[428] 5438.00 16077.40 ---- ------ ------ 11623.52 10137.40 

PSO[429] ----- 14642.00 ----- ----- ----- ----- ----- 

SA[430,431] 5337.56 14421.30 ----- ---- --- 9923.07 ---- 

MBO[432] ---- 14413.71 ---- ---- ---- ---- ----- 

225 PCPSO 6093.80 10708.00 23093.00 17623.00 31017.00 11653.00 8141.80 

LAGR[428] 6418.90 19661.32 ---- ---- ------ 13283.85 14936.26 

PSO[429] 6418.90 17126.00 ---- ---- ----- 12583.00 ---- 

SA[430,431] 6283.04 16790.69 ---- ----- ---- 11570.32 ----- 

MBO[432] ---- 16784.34 ---- ----- ----- ----- ----- 

250 PCPSO 6921.60 18887.00 23424.00 94687.00 34145.00 13135.00 10667.00 

PSO[429] 7487.10 19832.00 ----- ------ ----- 14547.00 --- 

300 PCPSO 9337.70 17890.00 37458.00 68191.00 86380.00 17361.00 20717.00 

PSO[429] 9938.50 26525.00 ---- ----- ----- 19067.00 ---- 

 

 

Fig6.1 Comparison of various algorithms for 𝐹𝑇 𝐶𝐸𝐸𝐷  using max-max price penalty function 
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Table 6.3 comparison of Fuel cost, individual pollutants(𝑬𝑺𝑶𝟐,  𝑬𝑵𝑶𝑿, 𝑬𝑪𝑶𝟐), Total 

emission 𝑬𝑻 and 𝑭𝑻 𝑪𝑬𝑬𝑫 results for load demand from 150MW to 300MW using 𝒉𝟐 

max-max price penalty factors 
  USING MAX-MAX PRICE PENALITY𝒉𝟐 

 

𝑷𝑫 

MW 

Algorithms 𝑭𝑪 

$/h 

𝑬𝑺𝑶𝟐 

Kg/h 

𝑬𝑵𝑶𝒙 

Kg/h 

𝑬𝑪𝑶𝟐 

Kg/h 

𝑬𝑻 

Kg/h 

𝑭𝑻 𝑪𝑬𝑬𝑫  

$/h 

150 PCPSO 2593.10 2810.60 2202.30 2411.80 7424.60 10110.00 

LAG[428] 2729.34 3091.64 2448.21 2537.12  10264.56 

PSO[429] 2734.20 3193.60 2424.60 2607.10 ---- 10385.00 

SA[430] 2705.21 3138.44 2379.35 2568.94 --- 10261.49 

MBO[432] 2704.92 3146.83 2406.23 2564.57 --- 10255.21 

GOA[433] 2704.87 3146.74 2406.18 2564.50 ---- 10254.98 

AEO[434] 2703.68 2978.03 2349.85 2480.41 -- 10180.80 

CAE04[435] 2702.94 2885.21 2249.10 2448.86 -- 10179.35 

QPSO[436] 2704.89 3146.86 2406.37 2564.82 -- 10255.25 

SCA[437] 2704.92 3146.83 2406.23 2564.56 -- 10255.20 

175 PCPSO 2844.40 3131.60 2447.90 2670.70 8250.20 11105.00 

LAG[428] 3475.40 4146.17 2604.88 3613.53  13251.51 

PSO[429] 3236.30 3904.90 2879.70 3178.00 ---- 12425.00 

SA[430] 3220.51 3763.47 2789.92 3094.68 --- 12280.04 

MBO[432] 3188.12 3859.48 2854.13 3129.20 --- 12241.67 

GOA[433] 3188.08 3859.37 2854.08 3129.07 --- 12241.41 

AEO[434] 3187.30 3829.72 2883.35 3136.05 -- 12172.10 

CAE04[435] 3179.33 3891.63 2847.56 3154.93 -- 12164.40 

QPSO[436] 3187.93 3859.89 2854.22 3129.91 -- 12241.71 

SCA[437] 3188.15 3859.35 2854.00 3129.18 -- 12241.66 

200 PCPSO 2904.80 3205.10 2532.50 2722.90 8460.40 11316.00 

LAG[428] 4210.30 5053.58 3102.07 4473.36  16077.40 

PSO[429] 3784.90 4670.60 3373.20 3771.50 ---- 14642.00 

SA[430] 3735.73 4553.97 3285.64 3714.33 ---- 14421.30 

MBO[432] 3727.42 4592.63 3325.34 3715.68 ---- 14413.71 

GOA[433] 3727.40 4592.96 3325.31 3715.56 -- 14413.52 

AEO[434] 3724.70 4618.24 3362.89 3719.47 -- 14293.19 

CAE04[435] 3722.45 4589.86 3301.52 3725.20 -- 14287.65 

QPSO[436] 3727.61 4591.38 3324.62 3715.45 -- 14413.77 

SCA[437] 3727.44 4592.49 3325.33 3715.63 -- 14413.70 

225 PCPSO 3723.10 3065.00 2365.50 2527.50 7958.10 10708.00 

LAG[428] 5130.53 6106.49 3798.38 5502.52 ---- 19661.32 

SA[430] 4321.51 5287.30 3781.19 4324.30 --- 16790.69 

PSO[429] 4402.30 5426.10 3877.60 4403.00 ----- 17125.00 

MBO[432] 4315.63 5335.80 3811.17 4328.07 ---- 16784.34 

GOA[433] 4315.15 5338.42 3819.56 4322.26 ---- 16783.68 

AEO[434] 4315.00 5235.70 3758.10 4255.70 --- 16617.10 

CAE04[435] 4314.38 5360.57 3832.06 4322.68 -- 16603.90 

QPSO[436] 4315.03 5340.20 3820.14 4322.70 -- 16783.86 

SCA[437] 4315.04 5339.96 3820.28 4322.52 -- 16783.78 

250 PCPSO 4552.30 5359.60 3879.50 4489.50 13729.00 18887.00 

PSO[429] 5081.10 6143.00 4376.40 5027.20 ---- 19832.00 

300 PCPSO 6731.40 7348.20 5610.90 6591.70 19551.00 17890.00 

PSO[429] 6667.50 7665.70 5557.70 6591.40 --- 26525.00 

 

6.3.2 Bi-objective function CEED (BICEED) 



In this section IEEE 30 Bus system 6 generating thermal units are considered as test system 

with load demand from 150MW to 300MW. Three cases are there which follow eq. 31,32, 33 

independently.(A) Fuel cost with SO2 emission (B) Fuel cost with NO2 emission (C)Fuel 

cost with CO2emission.Following tables 4, 6, 7 shows the𝐹𝑇 𝑠𝑜2, 𝐹𝑇 𝑁𝑜𝑋, 𝐹𝑇 𝐶𝑜2 results 

considering each case independently with seven price penalty functions with different 

demand load levels. 

 

Table6.4. 𝐹𝑇 𝑠𝑜2Results by PCPSO considering only fuel cost with SO2 emission and 

comparison with various algorithms on seven price penalty factors. 
𝑃𝐷  

  (MW) 

  PPF 𝑃1  
MW 

𝑃2 
MW 

𝑃3 
MW 

𝑃4 
MW 

𝑃5 
MW 

𝑃6 
MW 

𝑃𝐿 
MW 

𝐹𝐶  
$/hr 

𝐸𝑆𝑂2 
Kg/hr 

𝐹𝑇 𝑆𝑂2  
$/hr 

CT 

Sec 

Iter 

 

 

 

   150 

ℎ1 50.00 33.21 18.79 13.19 19.15 15.66 1.33 2726.90 2777.60 2254.20 0.51 12 

ℎ2 50.00 25.10 16.71 21.06 14.26 22.87 1.26 2593.10 2810.60 6134.20 0.48 14 

ℎ3 50.00 52.15 49.57 34.13 7.99 7.70 2.38 2857.30 2984.20 6463.70 0.63 16 

ℎ4 53.07 12.58 8.35 31.10 5.18 41.50 1.79 4791.70 5447.70 27522.00 3.62 19 

ℎ5 52.09 19.18 16.17 8.03 5.16 51.30 1.96 4804.00 5409.70 16275.00 2.58 09 

ℎ6 50.00 20.37 17.73 25.72 21.96 14.22 1.12 2555.20 2799.70 2970.80 0.60 17 

ℎ7 50.00 24.82 18.61 26.27 21.28 21.73 1.41 2987.30 3391.20 3391.20 1.59 05 

 

 

 

    175 

ℎ1 54.48 22.46 24.34 31.30 21.62 22.36 1.57 3346.60 3781.30 3039.70 5.49 13 

ℎ2 50.00 31.04 16.02 30.76 17.18 28.45 1.52 2844.40 3131.60 7743.30 9.10 20 

ℎ3 50.00 22.58 19.80 31.00 20.69 30.93 1.27 2898.40 873.40 3942.80 0.73 18 

ℎ4 56.28 28.66 9.75 31.63 5.34 45.69 2.37 4384.70 4351.70 48350.00 0.53 13 

ℎ5 50.00 43.28 19.46 12.77 5.46 47.21 2.36 4051.90 4218.60 16122.00 0.61 20 

ℎ6 54.00 30.18 15.20 25.10 19.22 33.16 1.89 3295.00 3863.10 6932.70 0.53 08 

ℎ7 50.00 22.44 16.25 38.33 20.37 30.70 1.75 3252.90 3989.50 5307.60 1.06 06 

 
 

 

    200 

ℎ1 52.02 32.29 23.31 32.10 28.42 33.88 2.06 3828.50 1723.30 4769.70 0.52 20 

ℎ2 50.00 27.38 19.51 19.06 10.49 30.02 1.50 2904.80 3205.10 8219.20 0.59 11 

ℎ2 

   [429] 

54.23 30.09 21.06 33.33 30.53 30.97 ----- 3739.99 4458.15 7481.40 -- -- 

ℎ3 52.75 73.34 34.29 17.45 9.55 13.52 2.91 4667.10 4750.00 4318.30 0.71 10 

ℎ4 50.00 33.47 64.97 43.69 30.38 11.14 31.32 2934.10 3077.20 17588.00 0.48 11 

ℎ5 50.00 31.21 32.95 26.13 5.28 55.37 2.89 4004.80 4403.40 17517.00 0.52 12 

ℎ6 54.46 36.49 22.05 30.46 22.17 36.59 2.23 3870.40 4470.50 7761.50 0.45 05 

ℎ7 50.42 50.69 22.38 32.57 10.27 36.06 2.41 3962.00 4416.30 6424.90 0.80 11 

 
 

 

    225 

ℎ1 61.98 22.37 29.25 41.27 49.17 23.38 2.44 4673.00 5507.70 3174.00 1.77 16 

ℎ2 50.00 36.87 16.94 45.81 36.01 39.37 2.25 3723.10 3065.00 5184.40 0.57 06 

ℎ3 58.47 65.38 43.85 37.08 9.71 13.52 3.03 3915.20 4236.60 9159.10 3.07 18 

ℎ4 50.00 67.27 36.06 32.27 13.20 26.07 3.13 3582.80 3738.10 24907.00 0.46 16 

ℎ5 50.00 21.56 59.03 41.98 27.63 25.24 2.40 3700.20 1337.80 8439.40 0.52 02 

ℎ6 50.38 50.13 27.25 34.81 25.71 37.35 2.62 4472.00 5067.50 7951.30 0.55 19 

ℎ7 50.00 30.30 37.84 41.16 48.29 30.09 2.33 4796.60 5491.70 4542.20 1.80 08 



 

 

 

   250 

ℎ1 58.57 36.72 30.90 48.23 45.10 33.41 2.95 5159.90 6111.50 4575.20 0.90 15 

ℎ2 50.00 43.26 31.11 48.78 40.41 36.44 2.42 4552.30 5359.60 10321.00 1.87 14 

ℎ3 50.00 22.49 80.00 50.00 27.50 30.00 2.95 4974.00 2347.10 9435.10 0.53 13 

ℎ4 50.00 29.70 73.10 49.46 27.74 30.00 2.84 3791.80 1412.20 21964.00 0.56 05 

ℎ5 50.00 37.16 64.84 50.00 28.00 30.00 2.77 3793.20 1499.00 15817.00 0.52 02 

ℎ6 52.29 59.44 19.14 44.86 38.81 38.93 3.48 5080.10 6142.70 8299.30 0.78 03 

ℎ7 75.91 41.01 42.98 34.11 25.46 33.81 3.31 5543.60 5942.80 5300.70 1.66 06 

 

 

 

   300 

ℎ1 67.80 74.79 43.03 48.41 34.95 35.52 4.53 6744.70 7611.90 4892.40 0.72 08 

ℎ2 62.47 59.90 37.62 50.00 50.00 40.00 4.56 6731.40 7348.20 8756.90 2.09 01 

ℎ3 89.08 62.51 73.33 40.55 9.81 30.30 5.60 5174.70 5394.90 9663.30 2.10 10 

ℎ4 98.18 66.02 50.92 31.32 12.13 47.36 5.96 16479.00 10721.00 28115.00 0.54 20 

ℎ5 98.31 65.41 53.17 49.63 12.05 26.95 5.55 10244.00 9937.20 14022.00 0.48 13 

ℎ6 61.38 61.06 47.30 48.21 49.45 36.56 3.99 6642.70 7475.80 7707.10 0.83 12 

ℎ7 64.45 81.84 60.42 43.91 14.89 39.38 4.92 10184.00 9929.60 2727.30 1.32 13 

 

 

 In table 6.4 for the load demand of 150MW and 175MW, new average ℎ6 and max-max ℎ2 

price penalty factor has performed good results. In case of 200MW load demand with ℎ2max-

max price penalty factor the results are compared with PSO [429] yielding low fuel cost with 

low SO2 emission with quite higher 𝐹𝑇 𝑆𝑂2 value. But in the case of 225MW, 250MW and 

300MW, the new average price penalty factor ℎ6 results in excellent fuel cost, SO2 emission 

and total cost. Hence for bi-objective function with SO2 emission, the price penalty factor 

sequence is as follows for optimal results with load demand varying from 150 MW to 

300MW. 

ℎ6 < ℎ1 < ℎ2 < ℎ7 < ℎ5 < ℎ3 < ℎ4 

Table6.5  Comparison of best results considering fuel cost and SO2 emission with other 

algorithms. 
  150 MW 175 MW 200 MW 225 MW 250 MW 300 

MW 

PCPSO      P1 50.00 50.00 54.46 50.38 52.29 61.38 

     P2 20.37 20.12 36.49 52.13 59.44 61.06 

     P3 17.73 22.27 22.05 27.25 19.14 47.30 

     P4 25.72 33.03 30.46 34.81 44.86 48.21 

     P5 10.52 13.58 22.17 25.71 38.81 49.45 

     P6 14.22 15.65 36.59 37.35 38.93 36.56 

𝐹𝐶  
     $/hr 

2555.20 2883.50 3870.40 4472.00 5080.10 6642.70 

𝐸𝑆𝑂2 
    Kg/hr 

2799.70 3131.60 4470.50 5067.50 6142.70 7475.80 

Langrage[428] 3091.64 4146.17 5053.58 6106.49 --- ---- 

PSO[429] 3193.60 3904.90 4670.60 5426.10 6143.00 7665.70 

SA[430] 3138.44 3763.47 4553.97 5287.30 ---- ---- 



MBO[432] 3146.83 3859.48 4592.63 5335.80 ---- ---- 

GOA[433] 3146.74 3859.37 4592.96 5338.42 ---- ----- 

AEO[434] 2978.03 3829.72 4618.24 5235.70 ---- ----- 

CAE04[435] 2885.21 3891.63 4589.86 5360.57 ---- ----- 

QPSO[436] 3146.86 3859.89 4591.38 5340.20 ----- ----- 

SCA[437] 3146.83 3859.35 4592.49 5339.96 ---- ----- 

 

From table6.5 it is clear that in each load level from 150MW to 300MW the fuel cost and 

SO2 emission are minimum as compared to Lagrange method [428], PSO 

[429],SA[430,431],MBO [432], GOA algorithm [433], Artificial ecosystem based 

optimization (AEO)[434],Multi objective 4th chaotic function Artificial ecosystem based 

optimization (CAE04)[435] ,Quantum Particle swarm optimization (QPSO)[436] and Sine-

cosine algorithm(SCA)[437].Following fig.2 shows the comparison of various algorithms for 

𝐸𝑆𝑂2  emission at different load levels. 

 

Fig6.2 Shows the comparison of various algorithms for SO2 emission at different load levels. 

 

In the following table6 the results of bi objective function considering NOx emission using 

seven price penalty function with load demand in 7 levels from 150MW TO 300MW are 

given. For 150MW and 175MW, new average and max-max price penalty factors (PPF) 

results in optimal value of power loss𝑃𝐿, Fuel cost, NOx emission and 𝐹𝑇 𝑁𝑂𝑥  value in a small 

computational time. In case of 200 MW load demand with ℎ2max-max price penalty factor is 
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compared with recent research paper PSO [429], PCPSO results in 846.95 $/hr lower fuel 

cost and 735.33 Kg/hr lower NOx emission with 641.06 $/hr lower𝐹𝑇 𝑁𝑂𝑥  cost value with 

better efficiency. Whereas with load demand of 225MW this algorithm shows better results 

with ℎ2max-max price penalty factor but 250MWand 300MW load demand , ℎ6new average 

price penalty factor shows excellent results in remarkable time period in few iterations.  

Following price penalty factor sequence shows the impact on the power loss𝑃𝐿, Fuel cost, 

NOx emission and 𝐹𝑇 𝑁𝑂𝑥  value. 

ℎ6 < ℎ2 < ℎ1 < ℎ7 < ℎ4 < ℎ5 < ℎ3 

Table6.6. 𝑭𝑻 𝑵𝑶𝒙 Results by PCPSO considering only fuel cost with NOx emission and 

comparison with various algorithms on seven price penalty factors. 
𝑃𝐷  

  

(MW

) 

  

PPF 
𝑃1  

MW 
𝑃2 

MW 
𝑃3 

MW 
𝑃4 

MW 
𝑃5 

MW 
𝑃6 

MW 
𝑃𝐿  

M

W 

𝐹𝐶  
$/h 

𝐸𝑁𝑂𝑥 
Kg/h 

𝐹𝑇 𝑁𝑂𝑥  
$/h 

CT 

Sec 

Iter 

 

 

 

   150 

ℎ1 50.00 33.21 18.79 13.19 19.15 15.66 1.33 2726.90 2241.30 1805.80 0.51 12 

ℎ2 50.00 25.10 16.71 21.06 14.26 22.87 1.26 2593.10 2202.30 4917.50 0.48 14 

ℎ3 50.00 52.15 49.57 34.13 7.99 7.70 2.38 2857.30 2379.20 10658.00 0.63 16 

ℎ4 53.07 12.58 8.35 31.10 5.18 41.50 1.79 4791.70 4064.10 877970.00 3.62 19 

ℎ5 52.09 19.18 16.17 8.03 5.16 51.30 1.96 4804.00 4028.50 433020.00 2.58 09 

ℎ6 50.00 20.37 17.73 25.72 21.96 14.22 1.12 2555.20 2253.30 2079.60 0.60 17 

ℎ7 50.00 24.82 18.61 26.27 21.28 21.73 1.41 2987.30 2586.80 2975.10 1.59 05 

 

 

 

    

175 

ℎ1 54.48 22.46 24.34 31.30 21.62 22.36 1.57 3346.60 2941.30 2704.30 5.49 13 

ℎ2 50.00 31.04 16.02 30.76 17.18 28.45 1.52 2844.40 2447.90 6355.70 9.10 20 

ℎ3 50.00 22.58 19.80 31.00 20.69 30.93 1.27 2898.40 648.76 48251.00 0.73 18 

ℎ4 56.28 28.66 9.75 31.63 5.34 45.69 2.37 4384.70 3548.00 913420.00 0.53 13 

ℎ5 50.00 43.28 19.46 12.77 5.46 47.21 2.36 4051.90 3406.70 242550.00 0.61 20 

ℎ6 54.00 30.18 15.20 25.10 19.22 33.16 1.89 3295.00 2929.10 6257.90 0.53 08 

ℎ7 50.00 22.44 16.25 38.33 20.37 30.70 1.75 3252.90 2991.50 4612.80 1.06 06 

 

 

 

    

200 

ℎ1 52.02 32.29 23.31 32.10 28.42 33.88 2.06 3828.50 1228.10 4774.80 0.52 20 

ℎ2 50.00 27.38 19.51 19.06 10.49 30.02 1.50 2904.80 2532.50 6778.80 0.59 11 

ℎ2 

[42

9] 

52.39 28.71 21.76 33.67 29.32 34.52 --- 3751.75 3267.83 7419.86 --- ----- 

ℎ3 52.75 73.34 34.29 17.45 9.55 13.52 2.91 4667.10 3597.30 57015.00 0.71 10 

ℎ4 50.00 33.47 43.69 30.38 11.14 31.32 2.94 2934.10 2370.90 243490.00 0.48 11 

ℎ5 50.00 31.21 32.95 26.13 5.28 55.37 2.89 4004.80 3423.50 267480.00 0.52 12 

ℎ6 54.46 36.49 22.05 30.46 22.17 36.59 2.23 3870.40 3398.40 7127.80 0.45 05 

ℎ7 50.42 50.69 22.38 32.57 10.27 36.06 2.41 3962.00 3448.70 5369.20 0.80 11 

 

 
ℎ1 61.98 22.37 29.25 41.27 49.17 23.38 2.44 4673.00 3946.50 2859.50 1.77 16 

ℎ2 50.00 36.87 16.94 45.81 36.01 39.37 2.25 3723.10 3065.00 4062.30 0.57 06 



 

    

225 

ℎ3 58.47 65.38 43.85 37.08 9.71 13.52 3.03 3915.20 3254.00 168150.00 3.07 18 

ℎ4 50.00 67.27 36.06 32.27 13.20 26.07 3.13 3582.80 2953.20 40571.00 0.46 16 

ℎ5 50.00 21.56 59.03 41.98 27.63 25.24 2.40 3700.20 941.99 104110.00 0.52 02 

ℎ6 50.38 50.13 27.25 34.81 25.71 37.35 2.62 4472.00 5067.50 7327.00 0.55 19 

ℎ7 50.00 30.30 37.84 41.16 48.29 30.09 2.33 4796.60 3944.40 4172.60 1.80 08 

 

 

 

   250 

ℎ1 58.57 36.72 30.90 48.23 45.10 33.41 2.95 5159.90 4438.10 4484.50 0.90 15 

ℎ2 50.00 43.26 31.11 48.78 40.41 36.44 2.42 4552.30 3879.50 8515.20 1.87 14 

ℎ3 50.00 22.49 80.00 50.00 27.50 30.00 2.95 4974.00 1559.40 174430.00 0.53 13 

ℎ4 50.00 29.70 73.10 49.46 27.74 30.00 2.84 3791.80 952.84 34118.00 0.56 05 

ℎ5 50.00 37.16 64.84 50.00 28.00 30.00 2.77 3793.20 1165.50 237100.00 0.52 02 

ℎ6 52.29 59.44 19.14 44.86 38.81 38.93 3.48 5080.10 4366.40 7572.60 0.78 03 

ℎ7 75.91 41.01 42.98 34.11 25.46 33.81 3.31 5543.60 4868.20 4909.40 1.66 06 

 

 

 

   300 

ℎ1 67.80 74.79 43.03 48.41 34.95 35.52 4.53 6744.70 5799.80 4854.30 0.72 08 

ℎ2 62.47 59.90 37.62 50.00 50.00 40.00 4.56 6731.40 5610.90 7324.60 2.09 01 

ℎ3 89.08 62.51 73.33 40.55 9.81 30.30 5.60 5174.70 4305.00 179630.00 2.10 10 

ℎ4 98.18 66.02 50.92 31.32 12.13 47.36 5.96 16479.00 12504.00 47659.00 0.54 20 

ℎ5 98.31 65.41 53.17 49.63 12.05 26.95 5.55 10244.00 9436.40 204970.00 0.48 13 

ℎ6 61.38 61.06 47.30 48.21 49.45 36.56 3.99 6642.70 5545.90 6961.60 0.83 12 

ℎ7 64.45 81.84 60.42 43.91 14.89 39.38 4.92 10184.00 9279.20 16354.00 1.32 13 

A comparison of the best results of NOx emission in table 7 has been done with Lagrange 

method [428], PSO [429],SA[430,431],MBO [432], GOA algorithm [433], Artificial 

ecosystem based optimization (AEO)[434],Multi objective 4th chaotic function Artificial 

ecosystem based optimization (CAE04)[435] ,Quantum Particle swarm optimization 

(QPSO)[436] and Sine-cosine algorithm(SCA)[437]from the load demand ranging from 

150MW to 300MW shows the efficiency of this algorithm with optimal results. Fig6.3 Shows 

the comparison of various algorithms for NOx emission at different load levels. 

Table 6.7 Comparison of best results considering fuel cost and NOx emission with other 

algorithms. 
  150 MW 175 MW 200 MW 225 MW 250 MW 300 MW 

PCPSO      P1 50.00 50.00 50.00 50.00 52.29 61.38 

     P2 20.37 20.12 27.38 32.32 59.44 61.06 

     P3 17.73 22.27 19.51 16.94 19.14 47.30 

     P4 25.72 33.03 19.06 42.81 44.86 48.21 

     P5 10.52 13.58 10.49 28.01 38.81 49.45 

     P6 14.22 15.65 30.02 29.37 38.93 36.56 

𝐹𝐶  
     $/hr 

2555.20 2883.50 2904.80 3723.10 5080.10 6642.70 

𝐸𝑁𝑂𝑥 
    Kg/hr 

2253.30 2561.20 2532.50 3065.00 4366.40 5545.90 

Langrage[428] 2448.21 2604.88 3102.07 3798.38 ---- ---- 

PSO[429] 2424.60 2879.70 3373.20 3877.60 4376.40 5557.70 

SA[430] 2379.50 2789.92 3285.64 3781.19 ---- ---- 



MBO[432] 2854.13 3325.34 3325.34 3811.17 ---- ----- 

GOA[433] 2854.08 3325.31 3325.31 3819.56 ---- ----- 

AEO[434] 2883.35 3362.89 3362.89 3758.10 ---- ----- 

CAE04[435] 2847.56 3301.52 3301.52 3832.06 --- ----- 

QPSO[436] 2854.22 3324.62 3324.62 3820.14 ---- ----- 

SCA[437] 2854.00 3325.33 3325.33 3820.28 ----- ----- 

 

 

Fig6.3 Shows the comparison of various algorithms for NOx emission at different load levels. 

Following table6.8 Considers the bi objective function with CO2 using equation33 to 

calculate the 𝐹𝑇 𝐶𝑂2 value from load demand 150 MW to 300 MW using seven price penalty 

factors. Among 150MW and 175 MW level, results from new average and common price 

penalty factors shows remarkable performance in calculating fuel cost, CO2 emission and the 

bi objective cost. At load demand of200MW using max-max price penalty ℎ2 it is compared 

with PSO [429] with a lowest fuel cost, lower CO2 pollutant and comparable bi objective 

value with PSO [429].But with a load level of 225MW and 250 MW, average and new 

average price penalty factor resulted in excellent results. When the load demand is 300MW, 

there is a steep increase in fuel cost and CO2 emission as compared to 250 MW using ℎ6new 

average price penalty factor. Among all the price penalty factors, ℎ6new price penalty is the 

best followed with the following sequence for optimal solutions. 

ℎ6 < ℎ1 < ℎ2 < ℎ7 < ℎ3 < ℎ5 < ℎ4 
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Table6.8. 𝑭𝑻 𝑪𝑶𝟐 Results by PCPSO considering only fuel cost with CO2 emission and 

comparison with various algorithms on seven price penalty factors. 
𝑃𝐷  

  

(MW

) 

  

PPF 
𝑃1  

MW 
𝑃2 

MW 
𝑃3 

MW 
𝑃4 

MW 
𝑃5 

MW 
𝑃6 

MW 
𝑃𝐿  

M

W 

𝐹𝐶  
$/h 

𝐸𝐶𝑂2 
Kg/h 

𝐹𝑇 𝐶𝑂2 
$/h 

CT 

Sec 

Iter 

 

 

 
   150 

ℎ1 50.00 33.21 18.79 13.19 19.15 15.66 1.33 2726.90 2377.10 1867.50 0.51 12 

ℎ2 50.00 25.10 16.71 21.06 14.26 22.87 1.26 2593.10 2411.80 5371.90 0.48 14 

ℎ3 50.00 52.15 49.57 34.13 7.99 7.70 2.38 2857.30 2559.70 5599.50 0.63 16 

ℎ4 53.07 12.58 8.35 31.10 5.18 41.50 1.79 4791.70 4401.30 23682.00 3.62 19 

ℎ5 52.09 19.18 16.17 8.03 5.16 51.30 1.96 4804.00 4573.50 15106.00 2.58 09 

ℎ6 50.00 20.37 17.73 25.72 21.96 14.22 1.12 2555.20 2247.60 2274.60 0.60 17 

ℎ7 50.00 24.82 18.61 26.27 21.28 21.73 1.41 2987.30 2798.30 3332.70 1.59 05 

 

 

 

    

175 

ℎ1 54.48 22.46 24.34 31.30 21.62 22.36 1.57 3346.60 3136.90 2805.20 5.49 13 

ℎ2 50.00 31.04 16.02 30.76 17.18 28.45 1.52 2844.40 2670.70 6897.30 9.10 20 

ℎ3 50.00 22.58 19.80 31.00 20.69 30.93 1.27 2898.40 2596.30 2853.00 0.73 18 

ℎ4 56.28 28.66 9.75 31.63 5.34 45.69 2.37 4384.70 4073.80 43062.00 0.53 13 

ℎ5 50.00 43.28 19.46 12.77 5.46 47.21 2.36 4051.90 3708.70 14724.00 0.61 20 

ℎ6 54.00 30.18 15.20 25.10 19.22 33.16 1.89 3295.00 3242.60 6613.90 0.53 08 

ℎ7 50.00 22.44 16.25 38.33 20.37 30.70 1.75 3252.90 3174.40 5137.70 1.06 06 

 

 

 

    

200 

ℎ1 52.02 32.29 23.31 32.10 28.42 33.88 2.06 3828.50 3740.10 4870.70 0.52 20 

ℎ2 50.00 27.38 19.51 19.06 10.49 30.02 1.50 2904.80 2722.90 7345.50 0.59 11 

ℎ2 

[42

9] 

53.20 29.64 21.91 33.62 30.49 31.31 --- 3745.38 3697.11 7011.27 -- -- 

ℎ3 52.75 73.34 34.29 17.45 9.55 13.52 2.91 4667.10 4247.70 3264.00 0.71 10 

ℎ4 50.00 33.47 43.69 30.38 11.14 31.32 2.94 2934.10 2678.70 12818.00 0.48 11 

ℎ5 50.00 31.21 32.95 26.13 5.28 55.37 2.89 4004.80 3787.30 16143.00 0.52 12 

ℎ6 54.46 36.49 22.05 30.46 22.17 36.59 2.23 3870.40 3774.40 7514.50 0.45 05 

ℎ7 50.42 50.69 22.38 32.57 10.27 36.06 2.41 3962.00 3689.80 6462.30 0.80 11 

 

 

 

    

225 

ℎ1 61.98 22.37 29.25 41.27 49.17 23.38 2.44 4673.00 4658.00 2964.50 1.77 16 

ℎ2 50.00 36.87 16.94 45.81 36.01 39.37 2.25 3723.10 2527.50 4464.30 0.57 06 

ℎ3 58.47 65.38 43.85 37.08 9.71 13.52 3.03 3915.20 3740.10 8501.90 3.07 18 

ℎ4 50.00 67.27 36.06 32.27 13.20 26.07 3.13 3582.80 3165.10 20155.00 0.46 16 

ℎ5 50.00 21.56 59.03 41.98 27.63 25.24 2.40 3700.20 3294.60 6787.10 0.52 02 

ℎ6 50.38 50.13 27.25 34.81 25.71 37.35 2.62 4472.00 5067.50 7720.40 0.55 19 

ℎ7 50.00 30.30 37.84 41.16 48.29 30.09 2.33 4796.60 4682.70 4519.80 1.80 08 

 

 

 

   250 

ℎ1 58.57 36.72 30.90 48.23 45.10 33.41 2.95 5159.90 5093.70 4631.80 0.90 15 

ℎ2 50.00 43.26 31.11 48.78 40.41 36.44 2.42 4552.30 4489.50 9283.60 1.87 14 

ℎ3 50.00 22.49 80.00 50.00 27.50 30.00 2.95 4974.00 4713.00 8797.10 0.53 13 

ℎ4 50.00 29.70 73.10 49.46 27.74 30.00 2.84 3791.80 3421.10 17610.00 0.56 05 

ℎ5 50.00 37.16 64.84 50.00 28.00 30.00 2.77 3793.20 3394.40 14413.00 0.52 02 

ℎ6 52.29 59.44 19.14 44.86 38.81 38.93 3.48 5080.10 5069.70 8067.30 0.78 03 

ℎ7 75.91 41.01 42.98 34.11 25.46 33.81 3.31 5543.60 5369.80 5278.70 1.66 06 



 

 

 

   300 

ℎ1 67.80 74.79 43.03 48.41 34.95 35.52 4.53 6744.70 6602.50 5010.90 0.72 08 

ℎ2 62.47 59.90 37.62 50.00 50.00 40.00 4.56 6731.40 6591.70 7998.30 2.09 01 

ℎ3 89.08 62.51 73.33 40.55 9.81 30.30 5.60 5174.70 4721.90 9040.90 2.10 10 

ℎ4 98.18 66.02 50.92 31.32 12.13 47.36 5.96 16479.00 20013.00 23855.00 0.54 20 

ℎ5 98.31 65.41 53.17 49.63 12.05 26.95 5.55 10244.00 10987.00 12576.00 0.49 13 

ℎ6 61.38 61.06 47.30 48.21 49.45 36.56 3.99 6642.70 6514.70 7427.60 0.83 12 

ℎ7 64.45 81.84 60.42 43.91 14.89 39.38 4.92 10184.00 10893.00 2218.10 1.32 13 

 

Following table 6.7 Shows the comparison of the best results achieved using PCPSO with 

best price penalty factors for the fuel cost and CO2 emission with Lagrange method 

[428],PSO [429],SA[430,431],MBO [432],GOA algorithm [433], Artificial ecosystem based 

optimization (AEO)[434],Multi objective 4th chaotic function Artificial ecosystem based 

optimization (CAE04)[435] ,Quantum Particle swarm optimization (QPSO)[436] and Sine-

cosine algorithm(SCA)[437].CO2 emission at all the load levels clearly shows it is lowest 

with better fuel cost make this algorithm fast, robust and efficient for finding the optimal 

solutions with low computational time. 

Table6.9 Comparison of best results considering fuel cost and CO2 emission with other 

algorithms. 
  150 MW 175 MW 200 MW 225 MW 250 MW 300 MW 
PCPSO      P1 50.00 50.00 50.00 50.00 50.00 61.38 

     P2 20.37 31.04 27.38 21.56 22.49 61.06 

     P3 17.73 16.02 19.51 69.03 80.00 47.30 

     P4 25.72 30.76 19.06 41.98 50.00 48.21 

     P5 10.52 17.18 10.49 27.63 27.50 49.45 

     P6 14.22 28.45 30.02 25.24 30.00 36.56 

𝐹𝐶  
     $/hr 

2555.20 2844.40 2904.80 3700.20 4974.00 6642.70 

𝐸𝐶𝑂2 
    Kg/hr 

2247.60 2670.70 2722.90 3294.60 4713.00 6514.70 

Langrage[428] 2537.12 3613.53 4473.36 5502.52 ---- ---- 

PSO[429] 2607.10 3178.00 3771.50 4403.00 5027.20 6591.40 

SA[430] 2568.94 3094.68 3714.33 4344.30 --- ---- 

MBO[432] 2564.57 3129.20 3715.68 4328.07 ---- ---- 

GOA[433] 2564.50 3129.07 3715.56 4322.26 ----- ---- 

AEO[434] 2480.41 3136.05 3719.47 4255.70 ------ ---- 

CAE04[435] 2448.86 3154.93 3725.20 4322.68 ----- ---- 

QPSO[436] 2564.82 3129.91 3715.45 4322.70 ---- ----- 

SCA[437] 2564.56 3129.18 3715.63 4322.52 ---- ---- 



 

Fig6.4 Shows the comparison of CO2 emission for various algorithms at different load levels. 

 

6.4 Conclusion 

The combined economic and emission problem is formulated using cubic cost and cubic 

emission fuctions.PCPSO is developed to solve four-objective and bi objective optimization 

problem using seven price penalty factors for IEEE 30 bus,6 generator system for demand 

load from 150MW to 300MW.Following are the conclusions regarding the fuel 

cost,individual pollutants,total emission ,total cost and computation time. 

(a) The total cost 𝐹𝑇 𝐶𝐸𝐸𝐷  for four objective is minimum by using the ℎ1 min-max price 

penalty fuction whereas in case of 𝐹𝑇 𝑆𝑂2, 𝐹𝑇 𝑁𝑂𝑥 , 𝐹𝑇 𝐶𝑂2 is minimum with the help of 

ℎ6 new average price penalty function for bi objective function taking one emission at 

a time. 

(b) The fuel cost 𝐹𝐶 for CEED optimization  problem is minimum by using ℎ2 max-max 

price penalty fuction wheras for bi objective with SO2 and NOx ,fuel cost is 

minimum with ℎ2 max-max price penalty fuction but with CO2 it is lowest by using 

ℎ6 new average price penalty function. 
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(c) Regarding emissions 𝐸𝑆𝑂2 and 𝐸𝑁𝑂𝑥  , ℎ1min-max and ℎ2 max-max price penalty 

yields lowest whereas 𝐸𝐶𝑂2 gives minmum with ℎ7 common price penalty function. 

(d) The total emission 𝐸𝑇 is minimum by using ℎ1min-max price penalty factor. 

(e) The computational time is minmum by using ℎ6 new average price penalty fuction 

which makes intelligent PSO very fast ,accurate and robust. 

A conclusion can be made from the comparison with Langrage relaxation, PSO, SA, GOA 

algorithm, MBO, AEO, CAE04, QPSO and SCA the intelligent PSO outperforms in solving 

multi-objectives and bi objective power system optimization problems efficiently with 

optimal results in very small computational time with low iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                          CHAPTER 7 

                MULTI AREA ECONOMIC EMISSION LOAD DISPATCH USING  

           PERFECTLY CONVERGENT PARTICLE SWARM OPTIMIZATION 

7.1 Introduction 

Due to the effect of global environmental responsibility, the electrical power industry is 

moving toward development with energy savings and reduced emissions. The country's 

power facilities are dispersed across the country in order to compete for power reliability and 

best dispatch. With the right placement of producing stations around the region and the 

creation of small area zones in between, the concentration of harmful gaseous emissions was 

stabilized. Different parts of electrical power networks are integrated to increase operational 

efficiency, dependability, and lower total operating costs. Through tie lines, the places are 

connected to one another. The problem of multi-area economic dispatch (MAED) directly 

influences system, which includes diverse locations and tie lines. Each region in MAED has 

its own generator characteristics and load demand, which are connected via tie lines. If the 

load in any region varies, all of the generators cover it collectively with an altered power flow 

in the tie lines. Shoults et al. [446] solved the economic dispatch problem by taking into 

account inter-area import and export limits. This research presents a comprehensive 

definition of multi-area generation scheduling as well as an approach for multi-area research. 

The Dantzig–Wolfe decomposition principle was used for the restricted economic dispatch of  

multi-area systems by Romano et al. [447]. Multi-area economic dispatch with area control 

error was addressed by Helmick et al. [448]. Wang and Shahidehpour [449] suggested a 

decomposition strategy for leveraging expert systems to solve multi-area generation 

scheduling with tie-line restrictions. Streiffert [450] proposed network flow approach for 

handling the many-area economic dispatch problem with transmission restrictions. The 

Hopfield neural network technique was used by Yalcinoz and Short [451] to handle multi-



area economic dispatch problems. Jayabarathi et al. [452] used evolutionary programming to 

tackle multi-area economic dispatch problems with tie line limitations. Sharma et al. [453] 

compared basic PSO and DE techniques, as well as their modifications, for handling the 

reserve restricted multi-area economic dispatch problem with power balancing restrictions, 

upper/lower generation limits, ramp rate limits, transmission constraints, and other practical 

constraints. To overcome the MAED problem, a Karush Kuhun Tucker (KKT) optimality 

criterion was used to guarantee optimal convergence in a covariance matrix adapted 

evolutionary strategy for MAED problems [454]. To tackle the reserve constrained ED 

problem with prohibited operation zones, Lee and Breipohl [455] used a decomposition 

technique (POZ). The reserve restricted dynamic dispatch problem was modeled using a 

hybrid technique combining particle swarm optimization (PSO) and sequential quadratic 

programming (SQP) in Ref. [456]. A PSO-based method for the reserve constrained multi-

area environmental/economic dispatch problem was recently developed by Wang and Singh 

[457]. In the multi-area power market dispatch problem, a limited PSO technique is presented 

to cope with both energy and reserve allocation [458]. Due to their simplicity, lack of 

convexity assumptions, and great random parallel search capacity, evolutionary optimization 

approaches are rapidly being suggested for ED issues with quasi cost functions. Tabu search, 

simulating annealing, neural networks, genetic algorithm , particle swarm optimization , 

harmony search , ant colony optimization , bacterial foraging , artificial immune system, and 

differential evolution (DE)  are some of the methods mentioned in  various heuristic 

optimizing strategies for tackling ED problems can be found in ref. [459]. Because of their 

dependability, durability, speed of convergence, minimal information required, and simplicity 

of application, PSO and their versions have become more common. With the introduction of 

meta-heuristic methodologies, the focus has switched to the use of such innovation 

approaches to deal with the complexity of real-world scenarios. Many scholars have focused 



on meta-heuristic strategies because of its potential to generate a closer optimal solution. This 

optimization problem is tackled utilizing perfectly convergent particle swarm optimization to 

achieve a better overall Pareto-optimal solution.  Krishnamurthy and Tzoneva [428] defined 

price penalty factor (PPF) is defined as the ratio of fuel cost to emission value with several 

strategies such as Min-Min, Max-Max, Max-Min, and Min Max. The proposed approach has 

been successfully tested on a single area, two area, three areas and four-area, forty generator 

system and twelve-generator system with and without tie lines. 

7.2 Problem overview and its Formulation 

7.2.1 Single area economic emission power dispatch (SAEEPD) 

This section covers the problem formulation for two different sorts of ED problems. The 

single objective environmental/economic dispatch (EED) problem is an outgrowth of the ED 

problem that includes environmental aspects. The EED challenge is expanded to include 

power dispatching among multi-area environmental/economic dispatch (MAEED) by 

reducing operational expenses and pollutant emissions while dispatching power over several 

zones. When a large turbine generator is called upon to increase production, a number of fuel 

entry ports are typically opened one after the other. When a valve is opened, throttling losses 

increase quickly, causing the incremental heat rate to climb abruptly. The valve-point effects 

cause disturbances in the heat-rate curves, and the objective function becomes disjointed, 

non-convex, and has many minima. The operating cost of single area thermal power plants is 

described as follows:   

7.2.2 Multi area economic emission power dispatch (MAEEPD) using PCPSO 

 

The operating cost of multi area thermal power plants using PCPSO [401] is described as 

follows: 

𝑀𝑖𝑛 𝐹𝐶 = ∑ ∑ 𝑎𝑚𝑛𝑃𝑚𝑛
2 + 𝑏𝑚𝑛𝑃𝑚𝑛 + 𝑐𝑚𝑛

𝑁
𝑛=1  + |𝛼𝑚𝑛 sin (𝛽𝑚𝑛(𝑃𝑚𝑛,𝑚𝑖𝑛 − 𝑃𝑚𝑛))|  $/ℎ𝑀

𝑚=1     

                                                                                                                                              (7.1)   



The emission of the multi area thermal power plant with valve point loading effect is as 

follows: 

𝐸𝑇 = ∑ ∑ (𝑑𝑚𝑛𝑃𝑚𝑛
2 + 𝑒𝑚𝑛𝑃𝑚𝑛 + 𝑓𝑚𝑛) + 𝛾𝑚𝑛𝑒𝑥𝑝(𝛿𝑚𝑛𝑃𝑚𝑛)     𝐾𝑔/ℎ𝑁

𝑛=1
𝑀
𝑚=1                      (7.2) 

𝐹
𝑇 𝐶𝐸𝐸𝐷=∑ [[𝑎𝑚𝑛𝑃𝑚𝑛

2 +𝑏𝑚𝑛𝑃𝑚𝑛+𝑐𝑚𝑛+|𝛼𝑚𝑛 sin(𝛽𝑚𝑛(𝑃𝑚𝑛,𝑚𝑖𝑛−𝑃𝑚𝑛))|]+ℎ𝑚𝑛[(𝑑𝑚𝑛𝑃𝑚𝑛
2 +𝑒𝑚𝑛𝑃𝑚𝑛+𝑓𝑚𝑛)+𝛾𝑚𝑛𝑒𝑥𝑝(𝛿𝑚𝑛𝑃𝑚𝑛)]]𝑛

𝑖=1

  

$/ℎ                                                                                                                                                                     (7.3) 

The operating cost for transmission of power through tie lines is as follows: 

𝐹𝑇𝐿(𝑃𝑇𝐿) = ∑ ∑ (𝑞𝑚𝑖𝑃𝑇𝐿𝑚𝑖 + 𝑞𝑖𝑚𝑃𝑇𝐿𝑖𝑚)𝑀
𝑖=1
𝑖≠𝑚

𝑀
𝑚=1    $/h                                                         (7.4) 

Subject to constraints: 

Generator limit constraint: The minimum and maximum real power produced for every 

committed generating unit should be within following limit. 

𝑃𝑚𝑛,𝑚𝑖𝑛 ≪ 𝑃𝑚𝑛 ≪ 𝑃𝑚𝑛 𝑚𝑎𝑥                                                                                                  (7.5) 

Tie- line limit constraint: The real power send through the tie lines of the committed 

generating unit are valid for both directions and be within following limit. 

𝑃𝑇𝐿𝑚𝑖,𝑚𝑖𝑛 ≪ 𝑃𝑇𝐿𝑚𝑖 ≪ 𝑃𝑇𝐿𝑚𝑖,𝑚𝑎𝑥                                                                                          (7.6) 

Power balance constraint: The total real power generation is equal to the sum of total power 

demand for the area 𝑚𝑡ℎand there transmission losses. 

∑ 𝑃𝑚𝑛 = 𝑃𝐷𝑚 + 𝑃𝐿𝑚
𝑛
𝑖=1  +∑ [𝑃𝑇𝐿𝑚𝑖 − (1 − 𝜌𝑖𝑚)𝑃𝑇𝐿𝑖𝑚]𝑀

𝑖=1
𝑖≠𝑚

                                                  (7.7) 

Where 

𝑃𝐿𝑚 = ∑ ∑ (𝑃𝑚𝑛𝐵𝑚𝑛𝑗𝑃𝑚𝑗)𝑁
𝑗=1

𝑁
𝑛=1 + ∑ 𝐵0𝑛𝑃𝑚𝑛 + 𝐵𝑚00

𝑁
𝑛=1                                                  (7.8) 

7.3 Implementation of PCPSO in MAED 

Step1. Set the lower and higher bounds for each unit's generation, as well as the area load 

demand and tie line transfer limits. 



Step2. For a population size S in the 𝑗𝑡ℎ-dimensional space, generate particles at random 

between the maximum and minimum operational limits of the N units and M number of tie 

lines with 𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 as 𝑃𝑖 = [(𝑃𝑖1
𝑛 , 𝑃𝑖2

𝑛 … . . 𝑃𝑖𝑁
𝑛 , 𝑇𝑖1

𝑛 , 𝑇𝑖2
𝑛 … . . 𝑇𝑖𝑀

𝑛 )] where i=1, 2...S. 

To satisfy the generation limit requirements given by (7.5) and tie-line limits given by (7.6), r 

is a uniformly distributed random number between 0 and 1 in this situation. 

𝑃𝑖𝑗
𝑛 = 𝑃𝑚𝑖𝑛 + 𝑟(𝑃𝑖𝑗 𝑚𝑎𝑥 − 𝑃𝑖𝑗 𝑚𝑖𝑛)                                                                            (7.9) 

Step3.Constraints as a result of prohibited operating zones 

If any element 𝑃𝑖𝑗 of the starting population (or updated population) is found to be within the 

kth forbidden operating zone, it is modified and allocated the generation value corresponding 

to the zone's lower (𝑃𝑖𝑗
𝑙𝑜𝑤𝑒𝑟) or higher (𝑃𝑖𝑗

𝑢𝑝𝑝𝑒𝑟
) boundary, according to the specified logic. 

The midpoint of the kth forbidden zone is 𝑃𝑚𝑖𝑑,𝑘 . 

𝑃𝑖𝑗 = {
𝑃𝑖𝑗

𝑙𝑜𝑤𝑒𝑟   𝑖𝑓 𝑃𝑖𝑗
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑃𝑖𝑗 < 𝑃𝑚𝑖𝑑,𝑘

𝑃𝑖𝑗
𝑢𝑝𝑝𝑒𝑟

  𝑖𝑓 𝑃𝑚𝑖𝑑,𝑘 ≤ 𝑃𝑖𝑗 < 𝑃𝑖𝑗
𝑢𝑝𝑝𝑒𝑟                                                                   (7.10) 

Step4. In N-dimensional space, generate particle velocity in the range [𝑣𝑖
𝑚𝑖𝑛𝑣𝑖

𝑚𝑎𝑥 ]. 

Step5. Calculate the fitness of each individually using the equation (7.1-7.4). 

Step6. To increase fitness, the parameters are adjusted iteratively.  Equations (6.13-6.15) are 

used to update the parameters in PSO. 

Step7. For the revised positions of the particles, the evaluation function values are 

determined. If the new value is better than the existing pbest, it is set to pbest in PSO. 

Similarly, the value of gbest is modified to reflect its status as the best vector among pbest. 

Step8.In stopping criterion, if the equation (17) is less than stagnation threshold ε = 1 𝑋 10−6 

the position of particles is represented as Gbest for the optimal solution and stop. 



 

 

Fig7.1 Flow chart of PCPSO for Multi area economic emission dispatch 



7.4 Results and Discussion 

The MALD problem is substantially more complex and difficult to answer than the standard 

ED problem because of the extra tie-line constraints and area power balancing constraints. On 

three test systems with different sizes and nonlinearities, the PCPSO [401] and other 

techniques are tested for the suggested practical MALD problem. The results were compared 

to those reported before and found PCPSO to be superior. 

The suggested algorithm in one case is tested on single, two and four areas with forty 

generators connected by six tie lines shown in test case  1 to 3 and another case with one 

,two, three and four areas with twelve generators with six tie lines  to see the effectiveness 

and robustness of PCPSO. Number of particles in swarm is 20, number of iterations are 250, 

number of trails is 5, linearly decreasing inertia weight with minimum and maximum inertia 

wmin=0.4, wmax = 0.9, acceleration constants c1 = c2 =2 are some of the parameters of 

proposed PCPSO. 

7.4.1 Problem A: 40 generating unit test system 

Test Case1: Single area, 40 unit test system 

The realistic Tai power system, which is a large-scale and mixed generating system with 

coal-fired, oil-fired, gas-fired, diesel, and combined cycle all present, has 40 generating units 

[460] placed in a single area without tie lines and transmission losses as shown in appendix . 

The system's load demand is 10500MW with the valve point loading (VPL) effect, the ramp 

rate limit (RRL), and prohibited operating zones (POZ), non smooth cost function, emission 

function. At this load demand optimal simulation results of PCPSO [401] are compared with 

DE [408] MODE [408], and NSGA-II [461] respectively. Fuel cost and emission cost using 

PCPSO  is 121370.00 $/h and 72403.00ton/h which is lower than DE[408] ,MODE [408] and 

NSGA-II[461] showing better convergence characteristics in obtaining optimal values in just 

0.025 seconds as shown in table7.1. 

 



 

Table7.1.Optimal results shown by PCPSO as compared with MODE, DE, NSGA-II 

algorithms 
Power 

Output 

(MW) 

PCPSO MODE 

[408] 

DE [408] NSGA-II 

[461] 

Power 

Output 

(MW) 

PCPSO MODE 

[408] 

DE [408] NSGA-II 

[461] 

𝑃1  114 113.5295 110.9515 113.8685 𝑃21  550 434.6068 524.5336 434.6639 

𝑃2  114 114 113.2997 113.6381 𝑃22  550 434.531 526.6981 434.15 

𝑃3  94.2474 120 98.6155 120 𝑃23  550 444.6732 530.7467 445.8385 

𝑃4 158.8569 179.8015 184.1487 180.7887 𝑃24  550 452.0332 526.327 450.7509 

𝑃5  97 96.7716 86.4013 97 𝑃25  550 492.7831 525.6537 491.2745 

𝑃6  118.9533 139.276 140 147 𝑃26  550 436.3347 522.9497 436.3418 

𝑃7  300 300 300 300 𝑃27  15.9062 10 10 11.2457 

𝑃8  300 298.9193 285.4556 299.0084 𝑃28  15.9062 10.3901 11.5522 10 

𝑃9 300 290.7737 297.511 288.889 𝑃29 15.9062 12.3149 10 12.0714 

𝑃10 130.00 130.9025 130 131.6132 𝑃30  97 96.905 89.9076 97 

𝑃11 227.2476 244.7349 168.7482 246.5128 𝑃31  190 189.7727 190 189.4826 

𝑃12 223.8508 317.8218 95.695 318.8748 𝑃32  190 174.2324 190 174.7971 

𝑃13 308.7384 395.3846 125 395.7224 𝑃33  190 190 190 189.2845 

𝑃14 327.2448 394.4692 394.3545 394.1369 𝑃34  90 199.6506 198.8403 200 

𝑃15 326.7523 305.8104 305.5234 305.5781 𝑃35  90 199.8662 174.1783 199.9138 

𝑃16 326.7523 394.8229 394.7147 394.6968 𝑃36  90 200 197.1598 199.5066 

𝑃17 455.9423 487.9872 489.7972 489.4234 𝑃37  110 110 110 108.3061 

𝑃18 457.6355 489.1751 489.362 488.2701 𝑃38  110 109.9454 109.3565 110 

𝑃19 501.3522 500.5265 520.9024 500.8 𝑃39 110 108.1786 110 109.7899 

𝑃20  501.3546 457.0072 510.6407 455.2006 𝑃40  501.3522 422.0682 510.9752 421.5609 

Total Fuel cost($/h) 121370.00 125790.00 121840.00 125830.00 

Total Emission (ton/h) 72403.00 211190.00 374790.00 210950.00 

Computational time (s) 0.025 5.39 13.25 7.32 

 

7.4.2 Test case2: two area, 40 unit test system. 

 

Fig 7.2. Shows the two area network topology with 20 units in each area. 

It consists of two areas with forty [460] power producing units. The operating limitations, tie 

line limits, and fuel cost characteristics data are comparable to [408]. This test scenario 

includes all of the practical complexity, such as the valve point loading (VPL) effect, the 

ramp rate limit (RRL), and prohibited operating zones (POZ), making the system extremely 

complex and non linear. The entire system is comprised of two groups, each with 20 

generating units and connected by a tie line. The power demand for areas 1 and 2 is set at 

7500MW and 3000MW, respectively, while the total power demand is 10500MW. The 



transmission line flow limit is set at 1500MW for modeling purposes. Figure 2 depicts the 

two-area network topology. For this test instance, PSO simulations were used for five trails. 

Table7.2 shows the best result achieved using PCPSO[401] and is compared with DE 

algorithm with chaotic sequences based on logistic map (DEC2)[453],Hybridizing sum-local 

search optimizer(HSLSO)[463 ] and MFO[464]. Following Fig7.1shows the network 

topology of two area 40 unit tests system 

Table7.2 shows the comparison of PSO, DEC2, HSLSO and MFO for total fuel cost, 

total emission and computational time. 

                                             Area1 

 

                                            Area2 

 

Power 

Output 

(MW) 

PCPSO DEC2[45

3] 

HSLSO[463] MFO[464] Power 

Output 

(MW) 

PCPSO DEC2[453] HSLSO[463] MFO[464] 

𝑃1  114 112.8292 110.8012 114 𝑃21  550 343.7598 523.2792 523.2794 

𝑃2  114 114 113.9997 114 𝑃22  550 433.5196 523.2791 523.2794 

𝑃3  120 97.3999 120 120 𝑃23  550 523.2794 523.2794 433.5196 

𝑃4 190 179.7331 179.7331 179.7331 𝑃24  550 550 523.2794 523.2794 

𝑃5  97 97 95.551 97 𝑃25  550 550 523.2795 433.5196 

𝑃6  140 68.0001 140 140 𝑃26  245.161 254 254 10 

𝑃7  275.1152 300 300 300 𝑃27  10 10 10.0001 10 

𝑃8  300 284.5997 284.5997 284.9652 𝑃28  10 10.001 10 10 

𝑃9 300 284.5997 284.5997 284.9475 𝑃29 10 10 10  

𝑃10 300 130 270 270 𝑃30  97 47 87.7997 87.8007 

𝑃11 136.5160 360 94 168.7998 𝑃31  75.9463 159.7331 188.5959 165.8263 

𝑃12 252.9017 94.0001 300 168.7998 𝑃32  75.9463 190 159.7331 166.2398 

𝑃13 291.5930 304.5196 304.5195 394.2794 𝑃33  75.9463 163.7269 159.733 161.0328 

𝑃14 395.3015 500 394.2797 394.2794 𝑃34  90 164.7998 164.8002 164.7998 

𝑃15 436.7864 484.0392 484.0395 484.0392 𝑃35  90 200 164.7998 164.7999 

𝑃16 436.7864 500 484.0391 484.0392 𝑃36  90 164.7998 164.7998 90 

𝑃17 500 489.2794 489.2794 489.2794 𝑃37  110 110 89.1143 89.1143 

𝑃18 500 500 489.2795 489.2794 𝑃38  110 57.0571 89.114 89.1151 

𝑃19  550 550 549.9998 511.2794 𝑃39 110 25 89.1134 89.1147 

𝑃20  550 550 511.2791 511.2794 𝑃40  550 511.2794 242.0001 331.7598 

Tie line Power (MW)  𝑇12  -1500 -1500 -1500 -1500 

Total Fuel cost($/h) 120200.00 127344.852

8 

125100.2621 124746.1 

 

Total Emission (ton/h) 103400.00 --- --- --- 

Computational time (s) 10.2793 --- --- --- 

 

For a tie line limit of 1500MW, PCPSO outstanding results in terms of operational costs is 

$/h120200.00 and emission of 103400.00 as compared to other recently reported methods 

DEC2[453], HSLSO[463] and GFO[464] in a very small computational time showing 

excellent converging behavior without getting trapped in local minima . PCPSO [401] 

outperforms other methods in finding the best solution for a fairly big complex enclosed 

power system optimization issue.  

7.4.3 Test Case-3: Four area, 40 unit test system 



There are forty generating units[460] in this test system, each with fuel and emission 

coefficients, real power limits, tie–line limits, ramp rate limit, prohibited operating zones 

(POZ),  and without transmission loss. The overall demand for these areas is 10500MW, 

which is shared by the following areas: area1 demand is 1575MW (15%), area2 demand is 

4200MW (40%), area3 demand is 3150MW (30%), area4 demand is 1575MW (15%), and 

the tie-line power flow limit between area 1 and area 2 is 200MW. The maximum tie-line 

power flow between areas 1 and 3 or from area 3 to area 1 is 200MW. The tie-line power 

flow limit is 200MW between area 3 and area 2, or from area 2 to area 3. A tie-line power 

flow limit of 100MW exists between area 4 and area 1 or from area 1 to area 4. A tie-line 

power flow limit of 100MW exists between area 4 and area 2 or from area 2 to area 4.Figure 

7.3 depicts the network topology used in this test case scenario which has four area forty 

generating units. 

 

                                   

 
 

                Fig 7.3 Shows the four area network topology with 10 units each area. 

 

 

For load demand of 10500 MW, PCPSO[401] results in total fuel cost of 123220 $/hr and 

total emission 95171ton/h which is very low as compared to SSA-WSA[465]and 



MOSSA[465] with reasonable computational time of 63.98 seconds showing the optimal 

performance of this algorithm. Following table7.3 shows the comparison of PCPSO[401] 

with other heuristic methods for total fuel cost and total emission.  

Table7.3Shows the four area 40 unit test system comparison of PCPSO with other 

heuristic methods for total fuel cost, total emission and computational time. 

Power 

Outpu

t 

(MW) 

PCPSO SSA-

WSA 

[465] 

MOSSA 

[465] 

Power 

Output 

(MW) 

PCPSO SSA-WSA 

[465] 

MOSSA 

[465] 

                                Area1                                          Area3 

𝑃1 90.2165 111.8462 110.9538 𝑃21 555.4919 432.7510 434.5725 

𝑃2 90.2165 111.5728 110.8816 𝑃22 507.0144 432.8681 434.4692 

𝑃3 120 120 120 𝑃23 504.8487 467.9573 450.5827 

𝑃4 134.7249 179.4692 179.7097 𝑃24 504.8487 432.9132 434.5625 

𝑃5 97 96.5825 89.4135 𝑃25 470.3979 432.6851 434.3924 

𝑃6 136.5832 139.9594 139.9382 𝑃26 475.1169 432.7357 434.3848 

𝑃7 125.7200 298.9183 299.9273 𝑃27 10 10 10 

𝑃8 292.1972 285.3418 284.6758 𝑃28 10 10 10 

𝑃9 300 285.5432 284.6154 𝑃29 10 10 10 

𝑃10 188.3417 130 130 𝑃30 97 89.5109 97 

                                Area2                                          Area4 

𝑃11 179.2089 317.6829 318.3747 𝑃31 75.3283 150.4178 150.6829 

𝑃12 195.8519 317.5074 318.5792 𝑃32 75.3283 190 189.8213 

𝑃13 297.9388 394.8213 394.4819 𝑃33 75.3283 190 189.9506 

𝑃14 490 394.4323 394.4273 𝑃34 115 193.3462 198.9723 

𝑃15 490 394.7807 394.4847 𝑃35 90 200 200 

𝑃16 490 394.4285 394.4019 𝑃36 90 200 200 

𝑃17 490 487.5579 488.9985 𝑃37 110 110 108.6298 

𝑃18 490 487.7379 488.9246 𝑃38 110 110 108.9851 

𝑃19 538.5 420.8462 420.9319 𝑃39 110 110 108.4175 

𝑃20 538.5 510.3568 512 𝑃40 550 415.4294 418.8564 

 

𝑇12 

50.0786 158.3422 145.5769  

𝑇41 

14.9774 100 100 

𝑇31 -86.9819 -125.8912 -129.5384 𝑇42 13.7911 94.1934 99.3243 

𝑇32 0.1470 -172.6875 -170.5059 𝑇43 16.7230 100 99.9916 

Total Fuel cost($/h) 123220.00 125760.0557 125591.3223 

Total Emission (ton/h) 95171.00 206705.9772 205965.4061 

Computational time (s) 63.98 ---- ----- 

 

7.4.4 Problem B: 12 units test system 

The test system consist of 12 units with quadratic cost ,valve point loading, emission level 

function, unit data and loss coefficients[467] The proposed algorithm PCPSO[401] is applied 

to 12 generating unit system shown in appendix with a load demand of 2090MW in the 

following cases. 



Single area load dispatch (SALD): The entire power system is viewed as a single area with 

twelve generators and no tie lines in between. 

7.4.5 Two area load dispatch (TALD): The 12 unit test system is divided equally into two 

areas with six generators in each area having load demand of 1200MW and 890MW and one 

tie line of 1500MW in between them.  

7.4.6 Three area load dispatch (THALD): The 12 unit test system is divided equally into 

three areas with four generators in each area having load demand of 627,627 and 836 MW 

with three tie-lines in between them. 

7.4.7 Four area load dispatch (FALD): The test system has four areas with three generators 

in each area and six tie lines among them. The total load demand of all areas is 2090MW 

which is divided into 500MW, 410MW, 580MW, and 600 MW throughout the four regions 

with and without transmission losses taken into account. The tie-line power flow between 

areas 1 and 3 or from area 3 to area 1 is 5-60MW. The tie-line power flow limit is 5-60MW 

between area 3 and area 2, or from area 2 to area 3. A tie-line power flow limit of 5-60MW 

exists between area 4 and area 1 or from area 1 to area 4. A tie-line power flow limit of 5-

60MW exists between area 4 and area 2 or from area 2 to area 4. 

7.4.8 Test case5: 12 units test system with transmission losses  

There are twelve generating units[467] in this test system, each with fuel and emission 

coefficients, real power limits, tie –line limits, ramp rate limit, prohibited operating zones 

(POZ),  and with transmission loss. The overall demand for these areas is 2090MW, which is 

shared by the following areas: area1 demand is 500MW (24%), area2 demand is 410 MW 

(20%), area3 demand is 580MW (28%), area4 demand is 600MW (28%), and the tie-line 

power flow limit between area 1 and area 2 is 5-60MW. The tie-line power flow between 

areas 1 and 3 or from area 3 to area 1 is 5-60MW. The tie-line power flow limit is 5-60MW 

between area 3 and area 2, or from area 2 to area 3. A tie-line power flow limit of 5-60MW 



exists between area 4 and area 1 or from area 1 to area 4. A tie-line power flow limit of 5-

60MW exists between area 4 and area 2 or from area 2 to area 4. 

Following table7.4 shows PCPSO[401] is implemented in different types of areas,12 unit test 

system with the valve point loading (VPL) effect, the ramp rate limit (RRL), and prohibited 

operating zones (POZ), non smooth cost function, emission function. Transmission losses are 

neglected here. The load demand in single area is 2090MW, in two area system load in first 

area is 1200MW and in other area is 890MW.In third type of area it is 627,627 and 836 MW 

respectively. Results shows PCPSO[401] total fuel cost of 118310 $/h ,emission is 

1653.40ton/h and CEED value using different penalty factors are very less as compared to 

SPSO[465] results in single area system. In two areas, three areas and four areas results are 

also remarkable in very small computational time.   

Table7.4 Shows the comparison of single, two, three and four areas for12 unit test 

system using PCPSO with other heuristic methods for total fuel cost, total emission and 

computational time. 

Power Output 

(MW) 

SALD 

PCPSO 

SALD 

SPSO[465] 

TALD 

PCPSO 

THALD 

PCPSO 

FALD 

PCPSO 

𝑃1 201.6515 210 210 210 117.3351 

𝑃2 325 302.79 275.7630 150 188.4085 

𝑃3 315 230.04 272.3978 175 182.2364 

𝑃4 115.7411 150 150 161.7851 138.1334 

𝑃5 110 110 110 325 110 

𝑃6 131.8932 215 189.7268 110 155.8793 

𝑃7 124.2892 120.04 175 215 165.6951 

𝑃8 161.6722 135.04 215 154.9003 205.0949 

𝑃9 146.8550 248.24 186.5159 315 195.8793 

𝑃10 113.4169 120.04 175 125 149.8005 

𝑃11 126.7259 135.04 183.3885 167.5345 166.8083 

𝑃12 211.1506 331.12 184.4267 273.3862 283.8263 

𝑃𝑇12 --- --- 176.3610 7.3170 -12.0347 

𝑃𝑇13 --- --- --- 12.8168 -6.2398 

𝑃𝑇14 --- --- --- 9.4675 -13.3574 

𝑃𝑇23 --- --- --- ---- 0.4060 

𝑃𝑇24 --- --- --- ---- -6.0352 

𝑃𝑇34 --- --- --- ---- 3.4241 

 Fuel cost($/h) 118310.00 142545.03 140910.00 141210.00 127430.00 



Emission 

cost(ton/h) 

1653.40 2011.81 1962.50 2096.20 1499.60 

 

CEED 

($/h) 

min-max 144000.00 172538.81 219960.00 170880.00 149650.00 

min-min 232390.00 377600.54 325080.00 116970.00 269490.00 

max-

max 

211880.00 264943.13 349890.00 117680.00 226760.00 

max-min 353130.00 1414109.9 291750.00 222460.00 672760.00 

time (s) 0.0741 --- 8.06 30.03 0.131 

 

Results shown in following table7.5shows the comparison of four units in each four areas 

considering transmission losses in the network, the total fuel cost of PCPSO [401]  is 

133210.00 $/h which is less as compared to SPSO [465], PSO [465] and LDCM [466] with 

emission value, losses are comparable to SPSO but very less than PSO [465] and LDCM 

[466] showing the fast convergent characteristics of PCPSO in very small computational 

time. The CEED value with min-max, min-min, min-max price penalty is lowest as compared 

to other methods, except max-min price penalty factor.  

Table7.5 Shows the comparison of four areas for 12 unit test system with transmission 

losses using PCPSO with other heuristic methods for total fuel cost, total emission and 

computational time. 

Power Output 

(MW) 

PCPSO SPSO[465] PSO[465] LDCM[466] 

𝑃1 148.88 165 160.9 131.45 

𝑃2 150 260 163.3 209.49 

𝑃3 175 265 289.4 202.25 

𝑃4 175 150 109.6 150 

𝑃5 182.74 75 117.1 110 

𝑃6 110 175 184.4 191.63 

𝑃7 215 145 171.5 175 

𝑃8 164.49 160 197.5 215 

𝑃9 176.0 280 198.3 236.38 

𝑃10 156.30 145 230 164.09 

𝑃11 197.10 160 144.8 180.2 

𝑃12 287.36 280 211.5 306.18 

𝑃𝑇12 -3.6579 15.23870 77.94 9.9944 

𝑃𝑇13 0.5297 50 0 9.9944 

𝑃𝑇14 -5.4905 15.2380 18.35 9.9944 

𝑃𝑇23 7.9609 15.2380 46.99 9.9881 

𝑃𝑇24 0.5945 15.2380 8.45 9.9881 

𝑃𝑇34 11.7808 15.2380 12.25 9.9876 



Power Loss  𝑃𝐿 48.66 46.66 48.22 61.82 

 Fuel cost($/h) 133210.00 139359.86 136598.3 144058.2 

Emission cost 1629.10 1598.14 3713.93 1923.7 

CEED Cost 

($/h) for min-

max 

154460.00 232500.67 277258.2 266400.92 

CEED Cost 

($/h) for min-

min 

279750.00 393711.74 ---- --- 

CEED Cost 

($/h) for max-

max 

241050.00 494067.99 ---- --- 

CEED Cost 

($/h) for max-

min 

675390.00 263817.77 ---- --- 

 

7.5 Conclusion:  

PCPSO has been effectively implemented to tackle MAED problems in this article. Different 

types of test systems are used to demonstrate the usefulness of the suggested method, and the 

test results are compared to DE, MODE, NSGA-II, DEC2, HSLSO, MFO, SSA-WSA, 

MOSSA, SPSO, PSO and LDCM results. The suggested PCPSO has the ability to converge 

to a higher quality solution than other techniques, as evidenced by the comparison. The use of 

the perfect convergent particle swarm optimization (PCPSO) approach increases 

computational efficiency when compared to previous PSO variants or other heuristic 

techniques and achieves a speedy true global minimum, as per the results. By automatically 

generating a new particle mechanism, this programme assists and gives a chance to all 

particles who are experiencing premature convergence and stagnation. if the best particle 

changes its position each time for ρ(k) to readjust and stabilize. By assisting particles in 

premature convergence stages and allowing all particles to reach real global minima, PCPSO 

was able to provide balanced exploration and exploitation in the search space. This algorithm 

is a promising alternate technique to solve single area and multi area economic emission 

dispatch in real power system problems. The applications could be considered in the future as 

a way to improve system security, emission quota trading, transmission costs, and cross-area 



buying and selling laws, can be incorporated to reflect more realistic scenarios in MAED 

issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                            Chapter 8 

                                  Conclusion and future recommendations  

8.1 Introduction 

Traditional power dispatch issues overlook all errors as well as ambiguities present in real-

world power system operations and assume all of the variables as deterministic ones. The 

CEED problem is presented in this thesis as a stochastic problem, where two components 

namely cost of fuel and pollution must be minimized concurrently with meeting the set 

constraints, like generating capabilities and power flow balance. The power balance 

constraint model accounts for transmission line losses. Instabilities such as the valve-point 

effect, POZ, and ramp rate limit are indeed taken into account. The multi-objective issue is 

more accurate when these nonlinearities are taken into account. 

The CEED issue has multiple local extreme solutions due to such predominance of nonlinear 

and non-convex properties, making it difficult to find a global optimum. For CEED issues, 

the traditional multi-objective optimization techniques need not yield Pareto-optimal results.  

8.2 Main conclusion 

The electrical grid is a network of connected structures that transports electricity generated 

plants to loads. Several power stations exist geographically apart in the actual world, and thus 

the system is extremely complicated. Due to the numerous interconnections, restrictions, tie-

lines, and loads that it is characterized by, the corresponding economic dispatch problem is 

likewise highly difficult. The complex network must be viewed as a collection of distinct but 

linked locations in order to comply with the standards of deregulation. Consequently, the 

challenge has a new framework for the optimal allocation, which in this case is exploring for 

two approaches: solutions for the individual areas and solutions for the entire system as a 

collection of the area's solutions. Following are the conclusions made chapter wise to show 

the performance of PCPSO for solving CEED optimization problems. 



1. Literature survey of PSO suggests the developments like historical development, 

addition of new parameters, tuning or refinement of parameters and its variants for 

different optimization problems with constraints, multi-objectives PSO, parallel PSO, 

its hybrids, communication topology and for multi-objective problems strategy used 

for parallel computing is covered in detail. The new variant PCPSO [401] is 

developed after doing intensive detailed study on theoretical analysis of existing and 

new parameters, exploration, particle diversity, premature convergence and stagnation 

to avoid trapping in the local minima’s. 

2. Results were also examined to train the PSO variants (OPSO with Cauchy mutation & 

PCPSO) using Back Propagation algorithms (Lavenberg-Marquardt and Bayesian 

Regularization) on the bench mark functions in 30 dimensions. By changing number 

of neurons in hidden layer from 4,8,12 learning by Lavenberg-Marquardt algorithm 

showed remarkable accuracy to train.  ANN is able to train uni modal, multi modal 

with many minima as well as noisy functions with very low (near to zero) using PSO. 

The simulation results shows that Lavenberg-Marquardt algorithm is more efficient 

for uni-modal functions and Bayesian Regularization out performs for multi modal 

/noisy functions. The training of ANN using PCPSO [401] is very fast and has 

efficient learning rate when high precision is required. 

3. CEED problems are investigated and validated on the three test systems IEEE 30-bus, 

6-generator system at a demand load of 283.4 MW, Ten generating unit test system 

with a demand of 2000MW and 40 unit actual generating Tai power station with 

demand of 10500 MW having quadratic cost and emission function with valve point 

loading effects, RRL, POZ and transmission losses. The results are compared with 

various meta-heuristic algorithms, PCPSO avoids to struck in the premature 

convergence in local minima which results in better economic and emission impact, 



computational effectiveness, and its convergence feature. As a result, PCPSO [401] 

optimization is a viable method for addressing challenging issues in power systems. 

4. Here CEED optimization problem is simulated on perfectly convergent Particle 

swarm optimization (PCPSO)[401] for solving combined economic and multiple 

emissions dispatch problems while taking into account the impacts of SO2,NOx,CO2 

pollutants  with seven price penalty factors using cubic cost and emission  functions. 

Two types of objective are considered first is bi-objective and other is four objectives 

with all constraints. Cubic cost functions are more accurate and show the actual 

response of all thermal units. This algorithm has better search capabilities with strong 

convergence characteristics that minimizes the cubic cost and cubic multiple 

emissions functions at various load demands with minimum transmission losses for an 

IEEE 30 bus, 6 generators test system. The simulation test results were compared with 

Lagrange method, simulated annealing, PSO, Bio-geography based method, 

grasshopper optimization algorithm, Artificial ecosystem based optimization, Multi 

objective 4th chaotic function Artificial ecosystem based optimization, Quantum 

Particle swarm optimization and Sine-cosine algorithm. This algorithm is fast, robust, 

accurate and takes less computational time with better results for solving such non-

convex problems. 

5. Energy transfer between locations and fossil fuel emissions from generating units are 

key concerns in multi-area CEED problems. Developed the PCPSO [401] algorithm 

for single area and multi-area(two area and four area) for 40 generating test unit 

system with tie line limits, generator constraints, POZ, RRL having non smooth cost 

and emission function with max-max price penalty factor having a total load of 10500 

MW. Second case is with 12 generating unit test system with all the above said 

constraints as in 40 generating unit case, with a total load of 2090 MW. Here single 



area, two area, three areas and four areas are considered with min-max, max-max, 

max-min, min-min price penalty factors are used to calculate CEED and in both cases 

it is compared with meta heuristic algorithms published in latest papers. Results show 

PCPSO approach increases computational efficiency when compared to previous PSO 

variants or other heuristic techniques and achieves a speedy true global minimum, as 

per the results. By automatically generating a new particle mechanism, this 

programme assists and gives a chance to all particles who are experiencing premature 

convergence and stagnation. if the best particle changes its position each time for ρ(k) 

to readjust and stabilize. By assisting particles in premature convergence stages and 

allowing all particles to reach real global minima, PCPSO was able to provide 

balanced exploration and exploitation in the search space. 

8.3 Future scope of work 

 The aim of the research work is obtained successfully and can be easily applied in the 

following areas  

1) Testing of the developed algorithm can be applied to bigger IEEE power system 

models. 

2) Integration of solar hydro thermal systems into the power grid can be applied by using 

the developed algorithm. 

3) Integration of the developed algorithm can be made with wind thermal power plants. 

4) More meta-heuristic algorithms like Bat algorithm, differential evolution, harmony 

search, etc. can be incorporated with the developed algorithm to form hybrid 

algorithms. 

5) Developed algorithm can be used in parallel computing for faster results in real world 

problems. 

 



Appendix 

Six unit generator characteristics 

Unit 𝑷𝒊 𝒎𝒊𝒏 𝑷𝒊 𝒎𝒂𝒙 𝒂𝒊 𝒃𝒊 𝒄𝒊 𝒅𝒊 𝒆𝒊 𝒇𝒊 

 MW MW $/h $/MWh ($ 𝑴𝑾𝟐⁄ )𝒉 Ib/h Ib/MWh (𝑰𝒃 𝑴𝑾𝟐⁄ )𝒉 

1 50 200 0.0038 2 0 

 

22.9830 -1.1000 0.0126 

2 20 80 0.0175 1.750  

0 

22.3130 -0.1000 0.0200 

3  15 

 

50 0.0625 1.0 0 25.5050 -0.1000 0.0270 

4  

 

10 35 0.0083 3.250 0 24.9000 -0.0050 0.0291 

5  
10 

30 0.0250 3.0 0 24.7000 -0.0400 0.0290 

6  

 

12 40 0.0250 3.0 0 25.3000 -0.0055 0.0271 

 

Transmission loss formula Co-efficient of six unit system 

B00=1.4000 

B01=[-3.000  2.1000 -5.6000  3.4000  1.5000  7.8000] 

B=   2.1800  1.0300  9.0000  -1.0000  2.0000  2.70000   

        1.0300  1.8100  4.0000  -1.5000  2.0000  3.0000 

        9.0000  4.0000  4.1700  -1.3100  -1.5300  -1.0700 

        1.0000  -1.5000  -1.3100  2.2100  9.4000  5.0000 

        2.0000  2.0000 -1.5300  9.4000  2.4300 0.0000 

        2.7000  3.0000  -1.0700  5.0000  0.0000  3.5800   

 

 

 

 

 

 

 



Six unit generator cubic characteristics 

Bus number 1 2 5 8 11 13 

Gen 

Limits 

𝑃𝑖 𝑚𝑖𝑛  MW 50 20 15 10 10 12 

𝑃𝑖 𝑚𝑎𝑥 MW 200 80 50 50 50 40 

Fuel cost 

coefficients 

𝑎𝑖($ 𝑀𝑊3⁄ )ℎ 0.0010 0.0004 0.0006 0.0002 0.0013 0.0004 

𝑏𝑖($ 𝑀𝑊2⁄ )ℎ 0.092 0.025 0.075 0.10 0.12 0.084 

𝑐𝑖($/MWh) 14.5 22 23 13.5 11.5 12.5 

𝑑𝑖($/h) -136 -3.5 -81 -14.5 -9.75 75.6 

SO2 

Emission 

coefficients 

𝑎𝑠𝑜2($ 𝑡3⁄ )ℎ 0.0005 0.0014 0.0010 0.0020 0.0013 0.0021 

𝑠𝑜2($ 𝑡2⁄ )ℎ 0.150 0.055 0.035 0.070 0.120 0.080 

𝑐𝑠𝑜2($/t h) 17.0 12.0 10.0 23.5 21.5 22.5 

𝑑𝑠𝑜2($/h) -90.0 -30.5 -80.0 -34.5 -19.75 25.6 

NOx 

Emission 

coefficients 

𝑎𝑠𝑜2($ 𝑡3⁄ )ℎ 0.0012 0.0004 0.0016 0.0012 0.0003 0.0014 

𝑠𝑜2($ 𝑡2⁄ )ℎ 0.052 0.045 0.050 0.070 0.040 0.024 

𝑐𝑠𝑜2($/t h) 18.5 12.0 13.0 17.5 8.5 15.5 

𝑑𝑠𝑜2($/h) -26.0 -35.0 -15.0 -74.0 -89.0 -75.0 

CO2 

Emission 

coefficients 

𝑎𝑠𝑜2($ 𝑡3⁄ )ℎ 0.0015 0.0014 0.0016 0.0012 0.0023 0.0014 

𝑠𝑜2($ 𝑡2⁄ )ℎ 0.092 0.025 0.055 0.010 0.040 0.080 

𝑐𝑠𝑜2($/t h) 14.0 12.5 13.5 13.5 21.0 22.0 

𝑑𝑠𝑜2($/h) -16.0 -93.5 -85.0 -24.5 -59.0 -70.0 

 

 

 

 

 

 

 



Ten unit generator characteristics 

Unit 𝑷𝒊 𝒎𝒊𝒏 𝑷𝒊 𝒎𝒂𝒙 𝒂𝒊 𝒃𝒊 𝒄𝒊 𝒅𝒊 𝒆𝒊 ∝𝒊 𝜷𝒊 𝜸𝒊 𝜼𝒊 𝜹𝒊 

 MW MW $/h $/MWh ($ 𝑴𝑾𝟐⁄ )𝒉 $/

h 

rad/M

W 

Ib/h Ib/MW

h 

(𝑰𝒃 𝑴𝑾𝟐⁄ )𝒉 Ib/h 1/MW 

1 10 55 1000.403 

 

40.5407 0.12951 35 0.0174 360.0012 -3.9864 0.04702 0.25475 0.01234 

2 20 80 950.606 

 

39.5804 0.10908 25 0.0178 350.0056 -3.9524 0.04652 0.25475 0.01234 

3  47 120 900.705 36.5104 0.12511 32 0.0162 330.0056 -3.9023 0.04652 0.25163 0.01215 

4  

 

20 130 800.705 39.5104 0.12111 30 0.0168 330.0056 -3.9023 0.04652 0.25163 0.01215 

5 50 

 

160 756.799 38.5390 0.15247 30 0.0148 13.8593 0.3277 0.00420 0.24970 0.01200 

6  

 

70 240 451.325 46.1592 0.10587 20 0.0163 13.8593 0.3277 0.00420 0.24970 0.01200 

7  

 

60 300 1243.531 38.3055 0.03546 20 0.0152 40.2669 -0.5455 0.00680 0.24800 0.01290 

8  

 

70 340 1049.998 40.3965 0.02803 30 0.0128 40.2669 -0.5455 0.00680 0.24990 0.01203 

9  

 

135 470 1658.569 36.3278 0.02111 60 0.0136 42.8955 -0.5112 0.00460 0.25470 0.01234 

10  150 470 1356.659 38.2704 0.01799 40 0.0141 42.8955 -0.5112 0.00460 0.25470 0.01234 

 

 

 

Transmission loss formula Co-efficents of ten unit system 

 

0.000049   0.000014   0.000015   0.000015   0.000016   0.000017    0.000017   0.000018    0.000019    0.000020 

 0.000014  0.000045  0.000016   0.000016     0.000017   0.000015    0.000015   0.000016   0.0000 18  0.000018  

0.000015  0.000016  0.000039   0.000010     0.000012   0.000012    0.000014    0.000014    0.000016    0.000016  

0.000015  0.000016  0.000010   0.0000040  0.000014   0.000010    0.000011    0.000012    0.000014      0.000015  

0.000016  0.000017  0.000012   0.000014  0.000035    00000.11    0.000013    0.000013    0.000015     0.000016  

0.000017  0.000015  0.000012  0.000010  0.000011    0.000036    0.000012    0.000012    0.000014      0.000015  

0.000017  0.000015  0.000014  0.000011   0.000013   0.000012   0.000038     0.000016    0.000016     0.000018  

0.000018  0.000016  0.0000140  0.000012 0.000013   0.000012   0.000016    0.000040     0.000015      0.000016 

 0.000019 0.000018  0.000016   0.000014  0.000015   0.000014  0.000016     0.000015    0.000042       0.000019  

0.000020  0.000018  0.000016  0.000015  0.000016   0.000015  0.0000188    0.000016  0.000019         0.000044  

 

 



 

Twelve unit generator characteristics 

Uni

t 

𝑷𝒊 𝒎𝒊𝒏 𝑷𝒊 𝒎𝒂𝒙 𝒂𝒊 𝒃𝒊 𝒄𝒊 ∝𝒊 𝜷𝒊 𝜸𝒊 

 MW MW $/h $/MWh ($ 𝑴𝑾𝟐⁄ )𝒉 Ib/h Ib/MWh (𝑰𝒃 𝑴𝑾𝟐⁄ )𝒉 

1 35 210 1243.5311 

 

38.30553 0.03546 40.26690 -0.54551 0.00683 

2 130 325 1658.5696 36.32782 0.02111 42.89553 -0.51160 0.00461 

3   

125 

315 1356.6592 38.27041 0.01799 42.89553 -0.51160 0.00461 

4  

 

10 150 756.7989 38.53973 0.15247 33.85932 -0.32767 0.00484 

5  

35 

110 449.9977 40.39655 0.02803 50.639310 -0.54551 0.00754 

6  
 

125 215 558.5696 38.34001 0.14834 45.83267 -.0.63262 0.00661 

7  

 

15 175 451.3251 46.15916 0.10587 48.21560 -0.43211 0.00914 

8  

 

30 215 673.0267 43.83562 0.07505 52.45210 -0.61173 0.00533 

9  

 

50 335 530.7199 50.63211 0.11934 41.10420 -0.49731 0.00674 

10  15 175 851.3251 46.15916 0.10587 30.36320 -0.6821 0.00728 

11 30 215 1038.533 41.03782 0.13552 26.17650 -0.50660 0.00479 

12 50 335 1285.907 33.56211 0.08963 27.75490 -0.49340 0.00387 

 

Tie line min limit 

one side 

TLmin_jm 

Tie line min limit 

other side 

TLmin_mj 

Tie line max 

limit one side 

TLmax_jm 

Tie line max 

limit other side 

TLmax_mj 

Tie line fractional 

loss rate values  

TLflr_jm 

5 5 60 50 0.11 

5 5 50 60 0.21 

5 5 60 60 0.14 

5 5 60 60 0.16 

5 5 60 50 0.22 

5 5 50 60 0.11 

 

 

 

 



Transmission loss formula Co-efficient of twelve unit system 

 0.000071  0.00003   0.000025            

 0.00003   0.000069  0.000032           

 0.000025  0.000032  0.00008          

 0.000056  0.000045  0.000015          

 0.000023  0.000042  0.000047          

 0.000032  0.000023  0.000027           

 0.00002   0.000028  0.000053         

 0.000086  0.000034  0.000016         

 0.000053  0.000016  0.000028          

 0.000074  0.00003   0.000025           

 0.000049  0.000069  0.000037          

 0.000022  0.000032  0.000083 

 

 

 

 

 

 

 

 

 

 

 

 



Forty unit generator characteristics 

Unit 𝑷𝒊 𝒎𝒊𝒏 𝑷𝒊 𝒎𝒂𝒙 𝒂𝒊 𝒃𝒊 𝒄𝒊 𝒅𝒊 𝒆𝒊 ∝𝒊 𝜷𝒊 𝜸𝒊 𝜼𝒊 𝜹𝒊 

 MW MW $/h $/M

Wh 

($ 𝑴𝑾𝟐⁄ )𝒉 $/h rad/M

W 

ton/h ton/M

Wh 

(𝒕𝒐𝒏 𝑴𝑾𝟐⁄ )𝒉 ton/h 1/MW 

1 36 114 94.705  

 

6.73 0.0069 100 0.084 60 −2.22 0.048 1.31 0.0569 

2 36 114 94.705  

 

6.73 0.0069 100 0.084 60 −2.22 0.048 1.31 0.0569 

3  60   

 

120 309.54 7.07 0.02028 100 0.084 100 -2.36 0.0762 1.31 0.0569 

4  

 

80 190 369.03 8.18 0.000942 150 0.063 120 -3.14 0.054 0.9142 0.0454 

5  47 

 

97 148.89 5.35 0.0114 120 0.077 50 -1.89 0.085 0.9936 0.0406 

6  

 

68 140 222.33 8.05 0.01142 100 0.084 80 -3.08 0.0854 1.31 0.0569 

7  

 

110 300 278.71 8.03 0.00357 200 0.042 100 -3.06 0.0242 0.655 0.02846 

8  

 

135 300 391.98 6.99 0.00492 200 0.042 130 -2.32 0.031 0.655 0.02846 

9  

 

135 300 455.76 6.6 0.00573 200 0.042 150 -2.11 0.0335 0.655 0.02846 

10  130 300 722.82 12.9 0.00605 200 0.042 280 -4.34 0.425 0.655 0.02846 

11  94 375 635.2 12.9 0.00515 200 0.042 220 -4.34 0.0322 0.655 0.02846 

12  94 375 654.69 12.8 0.00569 200 0.042 225 -4.28 0.0338 0.655 0.02846 

13  125 500 913.4 12.5 0.00421 300 0.035 300 -4.18 0.0296 0.5035 0.02075 

14  

 

125 500 1760.4 8.84 0.00752 300 0.035 520 -3.34 0.0512 0.5035 0.02075 

15  

 

125 500 1728.3 9.15 0.00708 300 0.035 510 -3.55 0.0496 0.5035 0.02075 

16   

 

125 500 1728.3 9.15 0.00708 300 0.035 510 -3.55 0.0496 0.5035 0.02075 

17  

 

220 500 647.85 7.97 0.00313 300 0.035 220 -2.68 0.0151 0.5035 0.02075 

18  

 

220 500 649.69 7.95 0.00313 300 0.035 222 -2.66 0.0151 0.5035 0.02075 

19  

 

242 550 647.83 7.97 0.00313 300 0.035 220 -2.68 0.0151 0.5035 0.02075 

20  

 

242 550 647.81 7.97 0.00313 300 0.035 220 -2.68 0.0151 0.5035 0.02075 

21  

 

254 550 785.96 6.63 0.00298 300 0.035 285 -2.22 0.0145 0.5035 0.02075 

22  

 

254 550 785.96 6.63 0.00298 300 0.035 285 -2.22 0.0145 0.5035 0.02075 

23 254 550 794.53 6.66 0.00284 300 0.035 295 -2.26 0.0138 0.5035 0.02075 

24   

 

254 550 794.53 6.66 0.00284 300 0.035 295 -2.26 0.0138 0.5035 0.02075 

25  

 

254 550 801.32 7.1 0.00277 300 0.035 310 -2.42 0.0132 0.5035 0.02075 

26  

 

254 550 801.32 7.1 0.00277 300 0.035 310 -2.42 0.0132 0.5035 0.02075 

27  101 50 1055.1 3.33 0.52124 120 0.077 360 -1.11 1.842 0.9936 0.0406 

28  

 

101 50 1055.1 3.33 0.52124 120 0.077 360 -1.11 1.842 0.9936 0.0406 

29 101 50 1055.1 3.33 0.52124 120 0.077 360 -1.11 1.842 0.9936 0.0406 

30  47 97 148.89 5.35 0.0114 120 0.077 50 -1.89 0.085 0.9936 0.0406 

31  

 

60 190 222.92 6.43 0.0016 150 0.063 80 -2.08 0.0121 0.9142 0.0454 

32 60 190 222.92 6.43 0.0016 150 0.063 80 -2.08 0.0121 0.9142 0.0454 

33 60 190 222.92 6.43 0.0016 150 0.063 80 -2.08 0.0121 0.9142 0.0454 

34  

 

90 200 10787 8.95 0.0001 200 0.042 65 -3.48 0.0012 0.655 0.02846 

35  

 

90 200 116.58 8.62 0.0001 200 0.042 270 -3.24 0.0012 0.655 0.02846 

36  

 

90 200 116.58 8.62 0.0001 200 0.042 270 -3.24 0.0012 0.655 0.02846 

37  25 110 307.45 5.88 0.0161 80 0.098 100 -1.98 0.095 1.42 0.0677 

38 25 110 307.45 5.88 0.0161 80 0.098 100 -1.98 0.095 1.42 0.0677 

39 25 110 307.45 5.88 0.0161 80 0.098 100 -1.98 0.095 1.42 0.0677 

40  

 

242 550 647.83 7.97 0.00313 300 0.035 220 -2.68 0.0151 0.5035 0.02075 
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