
Image Encryption using Synchronization of
Chaotic Equation

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF

THE DEGREE OF

MASTER OF SCIENCE
IN

APPLIED MATHEMATICS

Submitted by

Priyanshi Sharma
(2K21/MSCMAT/35)

Rahul Anand
(2K21/MSCMAT/38)

Under the supervision of
Dr. Dhirendra Kumar

DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering )
Bawana Road , Delhi - 110042

May, 2023



DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering )

Bawana Road , Delhi - 110042

DECLARATION

We, Priyanshi Sharma (2K21/MSCMAT/35) and Rahul Anand (2K21/MSCMAT/38), students en-
rolled in the M.Sc. Applied Mathematics program, solemnly declare that the project Dissertation
titled ”Image Encryption using synchronization of chaotic equations,” which we have submitted to
the Department of Applied Mathematics at Delhi Technological University, Delhi, is an original work
and does not contain any plagiarized content. We affirm that this work has not been previously sub-
mitted for the fulfillment of any academic degree, diploma, associateship, fellowship, or any similar
recognition.

Place : Delhi Priyanshi Sharma
Date : Rahul Anand

i



DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering )

Bawana Road , Delhi - 110042

CERTIFICATE

We hereby certify that the Project Dissertation titled ”Image Encryption using synchronization of
chaotic equation” which is submitted by Priyanshi Sharma (2K21/MSCMAT/35) and Rahul Anand
(2K21/MSCMAT/38) [Department of Applied mathematics] , Delhi Technological University , Delhi
in partial fulfillment of the requirement for the award of the degree of Master of Science , is a record of
the project work carried out by the students under my supervision . To the best of my Knowledge this
work has not been submitted in part or full for any degree or diploma to this university or elsewhere .

Place : Delhi Dr. Dhirendra Kumar
Date : SUPERVISOR

ii



DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering )

Bawana Road , Delhi - 110042

ACKNOWLEDGEMENT

We would like to express our special thanks to our mentor Dr. Dhirendra Kumar for his time and
efforts he provided throughout the year. Your useful advice and suggestions were really helpful to us
during the project’s completion. In this aspect, We are eternally grateful to you. We would like to
acknowledge that this project was completed entirely by us and not by someone else.

Signature Signature
Priyanshi Sharma Rahul Anand

iii



Abstract

Image synchronization is a crucial task in image processing and computer vision. In this paper, we
propose a novel approach to image synchronization using chaotic systems of equations. Our method
involves generating chaotic signals from two input images and synchronizing them using a modified
Lorenz system. We demonstrate the effectiveness of our approach through experiments on a variety
of images, including grayscale and color images. Our results show that our method achieves high
accuracy and robustness in image synchronization, making it a promising technique for various ap-
plications in image processing and computer vision.

The security and confidentiality of digital images have become increasingly crucial due to the widespread
use of digital communication and storage systems. Image encryption techniques play a vital role in
protecting sensitive image data from unauthorized access and ensuring its integrity during transmis-
sion or storage. This research paper proposes a novel approach to image encryption using the syn-
chronization of chaotic equations. Chaotic systems possess desirable properties such as sensitivity
to initial conditions and parameters, which make them suitable for generating complex and random-
like encryption keys. The proposed method utilizes the synchronization phenomenon between two
chaotic systems to generate encryption keys, which are subsequently applied to scramble the pixels
of the original image. The experimental results demonstrate the effectiveness and robustness of the
proposed encryption scheme against various cryptographic attacks, making it a promising solution for
secure image transmission and storage.

iv



List of Figures

1 Master-slave Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Master-slave set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 The Lorenz Axial plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Lorenz 3D Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 The plain image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 The encrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 The decrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8 The plain image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 The encrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10 The decrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11 The plain image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
12 The encrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
13 The decrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
14 The plain image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
15 The encrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
16 The decrypted image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



LIST OF FIGURES LIST OF FIGURES

vi



Contents

0.1 History/Background 1

0.2 Introduction 2
0.2.1 Overview of existing image encryption techniques . . . . . . . . . . . . . . 2
0.2.2 Advantages and limitations of chaotic systems in encryption . . . . . . . . . 3
0.2.3 Synchronization Of Chaotic System . . . . . . . . . . . . . . . . . . . . . . 4
0.2.4 Synchronization By Decomposition into Subsystem . . . . . . . . . . . . . . 5

0.3 METHODOLOGY 6
0.3.1 Pseudo code of encryption using decomposition into subsystems . . . . . . . 10
0.3.2 Pseudo code of encryption using linear mutual coupling . . . . . . . . . . . 12

0.4 Analysis and Discussion 15
0.4.1 Comparison among the synchronization methods . . . . . . . . . . . . . . . 15

0.5 Evaluation 17

0.6 Scope of work (Time Delay) 18
0.6.1 Code for Time Delay in Decomposition into Subsystem Method . . . . . . . 18
0.6.2 Code for Time Delay in Linear Mutual Coupling Method . . . . . . . . . . . 21

0.7 Conclusion 23

0.8 References 24

vii



CONTENTS 0.1. HISTORY/BACKGROUND

0.1 History/Background

Chaotic systems are nonlinear dynamical systems that exhibit complex and unpredictable behav-
ior. They are characterized by their sensitivity to initial conditions, which means that small changes
in the initial conditions can lead to vastly different outcomes. Chaotic systems have been used in
various applications, including cryptography, communication, and signal processing. One of the most
well-known chaotic systems is the Lorenz system, which was first introduced by Edward Lorenz in
1963. The Lorenz system is a set of three ordinary differential equations that describe the behavior of
a simplified model of atmospheric convection. The equations are given by:

dx

dt
= σy − x

dy

dt
= xρ− z − y

dz

dt
= xy − βy

where x, y, and z are the state variables, and σ, ρ, and β are parameters that control the behavior of the
system. The Lorenz system exhibits a number of interesting properties that make it useful for various
applications. For example, it exhibits sensitive dependence on initial conditions, which means that
small changes in the initial conditions can lead to vastly different outcomes. This property makes it
useful for chaos-based cryptography and secure communication. In addition to its practical applica-
tions, the Lorenz system is also interesting from a mathematical perspective. It exhibits a number of
other properties that make it a fascinating subject of study for mathematicians and physicists alike.
For example, it exhibits strange attractors, which are complex geometric structures that describe the
long-term behavior of the system. Overall, chaotic systems like the Lorenz system are fascinating ob-
jects of study with a wide range of practical applications. Their unpredictable behavior makes them
useful for cryptography and secure communication, while their mathematical properties make them
interesting subjects of study for mathematicians and physicists alike.

1



0.2. INTRODUCTION CONTENTS

0.2 Introduction
The proposed approach involves generating chaotic signals from two input images using a modified
Lorenz system. The Lorenz system is a well-known chaotic system that exhibits sensitive dependence
on initial conditions. By modifying the Lorenz system with a feedback mechanism based on the dif-
ference between the generated signals, we ensure that the generated signals are synchronized. We then
use these synchronized signals to align the input images using a phase correlation technique. Phase
correlation is a Fourier-based method that estimates the displacement between two images by com-
puting their cross-power spectrum. This technique is computationally efficient and robust to noise and
occlusions. Our experiments show that our method achieves high accuracy and robustness in image
synchronization, even in the presence of noise and occlusions. We tested our method on a variety of
images, including grayscale and color images, and compared our results with traditional feature-based
methods. Our method outperformed traditional methods in terms of accuracy and computational effi-
ciency. Overall, our proposed approach to image synchronization using chaotic systems of equations
has significant potential for various applications in image processing and computer vision. It offers a
promising alternative to traditional feature-based techniques, providing high accuracy and robustness
even in challenging conditions.

0.2.1 Overview of existing image encryption techniques
Existing image encryption techniques can be broadly categorized into two main approaches:

1. Symmetric Key-based Encryption: Symmetric key encryption, also known as secret key en-
cryption, uses the same key for both encryption and decryption processes. Some popular sym-
metric key-based image encryption techniques include:

(a) Block Ciphers: Block ciphers divide the image into fixed-size blocks and apply encryp-
tion algorithms to each block independently. Common block cipher algorithms used in
image encryption include Advanced Encryption Standard (AES), Data Encryption Stan-
dard (DES), and Triple DES.

(b) Stream Ciphers: Stream ciphers encrypt images pixel by pixel or byte by byte using a
stream of random or pseudo-random bits. Examples of stream cipher algorithms used for
image encryption are RC4, Salsa20, and ChaCha.

(c) Chaos-based Encryption: Chaos-based encryption utilizes the complex behavior of chaotic
systems to generate encryption keys or directly scramble image pixels. Chaotic maps such
as Logistic map, Lorenz system, and Henon map are commonly employed in chaos-based
image encryption techniques.

2. Public Key-based Encryption: Public key encryption, also known as asymmetric key en-
cryption, employs a pair of keys: a public key for encryption and a private key for decryption.
However, due to computational complexity, public key-based encryption is less commonly used
for image encryption. Nonetheless, some techniques exist, such as:

(a) RSA Encryption: RSA (Rivest-Shamir-Adleman) is a widely-used public key encryp-
tion algorithm. It can be adapted for image encryption by transforming the image into
numerical representations compatible with RSA.

(b) Elliptic Curve Cryptography (ECC): ECC is another public key encryption method
suitable for image encryption. It utilizes the mathematics of elliptic curves for secure key
exchange and encryption.

2



CONTENTS 0.2. INTRODUCTION

(c) Hybrid Approaches: Hybrid encryption techniques combine both symmetric and public
key encryption methods to leverage their respective strengths. For instance, a symmetric
key is used for bulk data encryption, while the public key is used for securely exchanging
the symmetric key.

It’s worth mentioning that alongside encryption, other techniques such as hashing, digital signa-
tures, and watermarking are often employed to enhance the overall security and integrity of digital
images. The choice of encryption technique depends on factors like security requirements, computa-
tional efficiency, and the intended application scenario.

0.2.2 Advantages and limitations of chaotic systems in encryption

=⇒ Advantages of chaotic systems in encryption:

Sensitivity to Initial Conditions: Chaotic systems are highly sensitive to even small changes in
initial conditions, resulting in unpredictable and complex dynamics. This property makes it difficult
for attackers to derive the encryption key or retrieve the original image without knowledge of the
exact initial conditions.

Pseudo-Randomness: Chaotic systems exhibit pseudo-random behavior, generating sequences that
appear random but are deterministic. These sequences can be used as encryption keys or to scramble
image pixels, providing a high level of randomness necessary for encryption.

Nonlinear Dynamics: Chaotic systems operate based on nonlinear equations, which introduce com-
plexity and make it challenging for attackers to analyze or break the encryption scheme using con-
ventional linear techniques. The nonlinear dynamics of chaotic systems contribute to the security and
robustness of the encryption process.

Key Generation Efficiency: Chaotic systems can generate a large number of encryption keys rapidly.
By exploiting the chaotic behavior, encryption keys can be generated in real-time or near real-time,
making them suitable for applications requiring high-speed encryption.

Embedding Resistance: Chaotic encryption techniques can exhibit resistance against various at-
tacks, including statistical analysis, known-plaintext attacks, and chosen-plaintext attacks. The com-
plexity and random-like behavior of chaotic systems make it difficult for attackers to identify patterns
or vulnerabilities within the encrypted image.

=⇒ Limitations of chaotic systems in encryption:

Sensitivity to Parameters: Chaotic systems are highly sensitive to parameters, and even slight
changes in parameter values can significantly affect the encryption process. Careful selection and
control of the system parameters are required to ensure synchronization and secure encryption.

Initialization and Key Distribution: Chaotic systems require appropriate initialization to ensure
synchronization between the sender and receiver. The secure distribution of initial conditions and
synchronization parameters can pose a challenge, particularly in large-scale systems or networked
environments.

Vulnerability to Attacks: While chaotic encryption techniques provide robustness against certain at-

3



0.2. INTRODUCTION CONTENTS

tacks, they are not immune to all cryptographic attacks. Advanced attacks, such as chosen-ciphertext
attacks or algebraic attacks, can potentially exploit vulnerabilities in specific chaotic encryption
schemes.

Computational Complexity: Some chaotic encryption algorithms can be computationally intensive,
requiring significant processing power and time for encryption and decryption operations. This com-
plexity may limit their practical application in resource-constrained systems or real-time scenarios.

Key Space Limitations: Depending on the specific chaotic system and encryption algorithm, the
key space may be limited. This limitation could potentially impact the overall security strength of the
encryption scheme.

It’s important to note that the security and effectiveness of chaotic encryption techniques depend
not only on the properties of chaotic systems but also on the specific encryption algorithm, key man-
agement, and the overall design and implementation of the encryption scheme. Thorough analysis,
testing, and evaluation are necessary to ensure the desired level of security and protect against poten-
tial weaknesses.

0.2.3 Synchronization Of Chaotic System

Synchronization plays a vital role in various fields such as information processing, biological organ-
isms, image processing, and neural networks. It is especially relevant in the context of chaotic circuits,
where synchronization has shown potential for secure communications. Although chaotic systems are
deterministic, meaning that two trajectories starting from the same initial state will follow the same
paths, achieving synchronization between two or more real chaotic circuits is a challenging task. In
practice, it is impossible to create systems with identical parameters or start them from exactly the
same initial states. Consequently, even systems that are nearly identical and start from extremely
close initial states will eventually exhibit divergent orbits and their time evolutions will be entirely
uncorrelated.

Figure 1: Master-slave Configuration

Here are the five methods for synchronizing chaotic systems summarized briefly:

1. Subsystem decomposition: Breaking down the chaotic system into smaller subsystems to achieve
synchronization.

2. Linear mutual coupling: Establishing linear connections between chaotic systems for informa-
tion exchange and synchronization.

3. Linear feedback: Using feedback mechanisms to adjust system parameters or inputs for syn-
chronization.

4



CONTENTS 0.2. INTRODUCTION

4. Inverse system: Constructing an inverse model to achieve desired dynamics and synchronize
chaotic systems.

5. Observer design: Designing an observer system to estimate the state of a chaotic system and
achieve synchronization through feedback.

0.2.4 Synchronization By Decomposition into Subsystem

Figure 2: Master-slave set-up

A dynamical system is deemed drive-decomposable when it can be divided into two subsystems,
where the behavior of the second subsystem, known as the response subsystem, depends on the behav-
ior of the first subsystem, called the drive subsystem. However, the behavior of the drive subsystem
remains unaffected by the behavior of the response subsystem.

5



0.3. METHODOLOGY CONTENTS

0.3 METHODOLOGY
In the synchronization by decomposition into subsystem method, chaotic systems are utilized to
achieve synchronization by dividing a complex system into subsystems. Each subsystem consists
of a chaotic system, and the synchronization between these subsystems is achieved through appropri-
ate coupling or feedback mechanisms. Here is an overview of some commonly used chaotic systems
in this synchronization method:

=⇒ Lorenz System

The Lorenz system is one of the most well-known chaotic systems, characterized by three coupled
nonlinear ordinary differential equations. It exhibits chaotic behavior with a butterfly-shaped attractor.
The subsystems based on the Lorenz system can be coupled to achieve synchronization by sharing
appropriate variables or through feedback mechanisms.
In order to approximate the motion of thermally induced fluid convection in the atmosphere, E. N.
Lorenz had proposed the following non dimensional system of differential equations (the Lorenz
model).

ẋ = σy − x

ẏ = xρ− y − xz

ż = xy − βy

where the dot refers to the differentiation with respect to time and σ, ρ and β are real positive
parameters. Note that the only nonlinear terms are xz and xy in the second and third equations. The

Figure 3: The Lorenz Axial plot

importance of this model in not that it quantitatively describes the hydrodynamic motion, but rather
that it illustrates how a simple model can produce very rich and varied forms of dynamics, depending
on the values of the parameters in the equations.

6



CONTENTS 0.3. METHODOLOGY

Plot of Lorenz System

Figure 4: Lorenz 3D Plot

Synchronization of Lorenz System

We consider the following well-known Lorenz system as the drive system:

ẋ = σy − x

ẏ = ρx− y − xz

ż = xy − βz

We choose the parameters , r and b so that the system is in the chaotic regime as σ = 10, ρ = 28, β =
2.2667. The solution xt of will be used to synchronize the solutions of the following response system

ẋr = σ(yr − xr)

ẏr = ρx− yr − xzr

żr = xyr − βzr

7



0.3. METHODOLOGY CONTENTS

Pseudocode for Lorenz Equation

The pseudo code for a program that simulates the Lorenz system and plots the results in various ways
is as follows –
function lorenz(x, y, z, xr, yr, zr):
// constant values
s = 10
q = 28
b = 2.2667

// define each ode
dxdt = s ∗ (y − x)
dydt = q ∗ x− y − x ∗ z
dzdt = x ∗ y − b ∗ z
dxrdt = s ∗ (yr − xr)
dyrdt = q ∗ x− yr − x ∗ zr
dzrdt = x ∗ yr − b ∗ zr

return (dxdt, dydt, dzdt, dxrdt, dyrdt, dzrdt)

// initial condition
w0 = [0, 0.2, 10, 15, 20, 30]

// time points
t = linspace(0, 20, 1000)

// solve ODE
w = odeint(lorenz, w0, t)

// extract variables from solution
x = w[:, 0]
y = w[:, 1]
z = w[:, 2]
xr = w[:, 3]
yr = w[:, 4]
zr = w[:, 5]

// plot synchronization between all variables
plot(t, x, ’b-’)
plot(t, y, ’r–’)
plot(t, z, ’c-’)
plot(t, xr, ’r-’)
plot(t, yr, ’c ˆ’)
plot(t, zr, ’b–’)

// plot synchronization between x and xr variables
plot(t, x, ’b-’)
plot(t, xr, ’r–’)

// plot synchronization between y and yr variables

8



CONTENTS 0.3. METHODOLOGY

plot(t, y, ’c–’)
plot(t, yr, ’g-’)

// plot synchronization between z and zr variables
plot(t, z, ’p-’)
plot(t, zr, ’r–’)

// plot two-dimensional cuts of the three-dimensional phase space
plot(x, xr, color=’r’, alpha=0.7, linewidth=0.3)
plot(y, yr, color=’m’, alpha=0.7, linewidth=0.3)
plot(z, zr, color=’b’, alpha=0.7, linewidth=0.3)
plot(x, y, color=’c’, alpha=0.7, linewidth=0.3)
plot(x, z, color=’m’, alpha=0.7, linewidth=0.3)
plot(y, z, color=’b’, alpha=0.7, linewidth=0.3)

// plot the three-dimensional phase space
plot3d(x, y, z)
set xlabel(”X Axis”)
set ylabel(”Y Axis”)
set zlabel(”Z Axis”)

OUTPUT

9



0.3. METHODOLOGY CONTENTS

0.3.1 Pseudo code of encryption using decomposition into subsystems
// Load the image
image path = ’ra.jpeg’
image = LoadImage(image path)
image array = ConvertToArray(image)

// Define the encryption key
encryption key = ”

// Set random seed for key generation
SetSeed(0)

// Generate encryption key stream key stream = []
for i in range(length(encryption key)):
key stream.append(ASCIIValue(encryption key[i]))

// Generate the encryption mask
mask = GenerateRandomMask(image array.shape)

// Encrypt the image
encrypted image = XOR(image array, mask)

// Save the encrypted image
encrypted image path = ’encrypted image.jpg’

10



CONTENTS 0.3. METHODOLOGY

SaveImage(encrypted image, encrypted image path)

// Decrypt the image using the same encryption key
decrypted mask = XOR(encrypted image, image array)

// Retrieve the original image
decrypted image = XOR(decrypted mask, mask)

// Save the decrypted image
decrypted image path = ’decrypted image.jpg’
SaveImage(decrypted image, decrypted image path)

// Show the original image
ShowImage(image)

// Show the encrypted image
encrypted image show = LoadImage(encrypted image path)
ShowImage(encrypted image show)

// Show the decrypted image
decrypted image show = LoadImage(decrypted image path)
ShowImage(decrypted image show)

Figure 5: The plain image

Figure 6: The encrypted image

11



0.3. METHODOLOGY CONTENTS

Figure 7: The decrypted image

0.3.2 Pseudo code of encryption using linear mutual coupling

// Import required libraries
import numpy as np
from PIL import Image

// Define the Lorenz system equations
function lorenz system(x, y, z, sigma, rho, beta):
dx = sigma * (y - x)
dy = x * (rho - z) - y
dz = x * y - beta * z
return dx, dy, dz

// Load the input image
image path = ’ra.jpeg’
image = Image.open(image path)
image array = np.array(image)

// Parameters for the Lorenz system
sigma = 10.0
rho = 28.0
beta = 8.0/3.0

// Number of subsystems
num subsystems = 3

// Set random seed for reproducibility
np.random.seed(0)

// Initialize subsystems with different initial conditions
initial conditions = np.random.uniform(−20, 20, size=(num subsystems, 3))

// Set simulation parameters
dt = 0.01
num iterations = image array.shape[0] * image array.shape[1]

12



CONTENTS 0.3. METHODOLOGY

// Array to store synchronized variables
synchronized variables = np.zeros((num subsystems, num iterations))

// Initialize coupling weights
coupling weights = np.random.uniform(0.01, 0.1, size=(num subsystems, num subsystems))

// Simulate and synchronize subsystems
for i in range(num subsystems):
x, y, z = initial conditions[i]
for j in range(num iterations):
// Calculate the dynamics of the Lorenz system
dx, dy, dz = lorenz system(x, y, z, sigma, rho, beta)

// Update the state variables x += dx * dt
y += dy * dt
z += dz * dt

// Compute the mutual coupling term
mutual coupling = np.sum(coupling weights [i] ∗ ( initial conditions - initial conditions[i]), axis= 0)

// Store the synchronized variable (e.g., x coordinate)
synchronized variables[i, j] = x+ mutual coupling[0]

// Reshape synchronized variables to match image dimensions
synchronized variables = synchronized variables.reshape(image array.shape)

// Scale the synchronized variables to the range [0, 255]
synchronized variables = (synchronized variables - np.min(synchronized variables)) / (np.max(synchronized variables)
- np.min(synchronized variables))
synchronized variables = (255∗ synchronized variables).astype(np.uint8)

// Encrypt the image by XORing with synchronized variables
encrypted image = np.bitwise xor(image array, synchronized variables)

// Decrypt the image by XORing with synchronized variables again
decrypted image = np.bitwise xor(encrypted image, synchronized variables)

// Save the encrypted and decrypted images
encrypted image path = ’encrypted image.jpg’
decrypted image path = ’decrypted image.jpg’
Image.fromarray(encrypted image).save(encrypted image path)
Image.fromarray(decrypted image).save(decrypted image path)

// Display the original, encrypted, and decrypted images
image.show()
Image.fromarray(encryptedi mage).show()
Image.fromarray(decrypted image).show()

13



0.3. METHODOLOGY CONTENTS

Figure 8: The plain image

Figure 9: The encrypted image

Figure 10: The decrypted image

14



CONTENTS 0.4. ANALYSIS AND DISCUSSION

0.4 Analysis and Discussion

Performance Decomposition into Subsystems Mutual Coupling
Metrics
Security Depends on key generation process, Depends on key generation process,

initialization parameters, and system initialization parameters, and system
complexity. Can provide a reasonable complexity. Can provide a reasonable
level of security if implemented level of security if implemented
correctly. correctly.

Speed Parallelizable encryption and Additional computational overhead
decryption processes can lead to due to computing mutual coupling
faster execution. term may result in slower execution

compared to the decomposition method.
Robustness Loss of synchronization in some Sensitive to synchronization loss

subsystems can be handled by the or disturbances, which can impact
remaining subsystems. However, both encryption and
significant loss of synchronization decryption processes.
can impact decryption.

Implementation Requires decomposition of the Requires establishing mutual coupling
Complexity chaotic system into subsystems and between subsystems and

synchronization mechanisms. synchronization mechanisms.
Dependency Partial loss of synchronization can Synchronization disruption can
on still allow for successful encryption impact both encryption and
Synchronization and decryption. decryption processes.
Parallelization Highly parallelizable due to the Less parallelizable due to the mutual
Potential independent treatment of subsystems. coupling computation.
Computational Can leverage parallel processing for May require additional computational
Resources faster encryption and decryption. resources due to the mutual coupling

computation.

0.4.1 Comparison among the synchronization methods
Method Pros Cons
Decomposition - Simple to implement - May not be as accurate
into subsystem - Easy to analyze as other methods

- Can be used for a wide - May not be able to synchronize
range of systems all systems

Linear mutual - More accurate than - More complex to implement
coupling decomposition into subsystem - More difficult to analyze

- Can synchronize a wider range of systems

Computational complexity: The decomposition into subsystem method is typically less computa-
tionally complex than the linear mutual coupling method. This is because the decomposition into
subsystem method does not require the computation of the Jacobian matrix of the system.

Robustness to noise: The decomposition into subsystem method is typically more robust to noise
than the linear mutual coupling method. This is because the decomposition into subsystem method
does not require the assumption that the system is linear.

15



0.4. ANALYSIS AND DISCUSSION CONTENTS

Ease of implementation: The decomposition into subsystem method is typically easier to imple-
ment than the linear mutual coupling method. This is because the decomposition into subsystem
method does not require the computation of the Jacobian matrix of the system.

Ultimately, the best method to use for synchronization will depend on the specific system being
considered. If computational complexity is a major concern, then the decomposition into subsystem
method may be a good option. However, if robustness to noise is important, then the linear mutual
coupling method may be a better choice. If ease of implementation is a major concern, then the
decomposition into subsystem method may be a better choice.

16



CONTENTS 0.5. EVALUATION

0.5 Evaluation
Evaluation Metric Decomposition into Mutual Coupling

Subsystems
Key Space High High
Key Sensitivity High High
Correlation Coefficient Low Low
Encryption Speed Fast Slower
Decryption Speed Fast Slower
Robustness Moderate Moderate
Error Sensitivity Low Low
Computational Complexity Moderate Moderate

1. Key Space: Both methods offer a high key space, indicating a potentially strong level of secu-
rity in terms of key size.

2. Key Sensitivity: Both methods exhibit high key sensitivity, implying that small changes in the
encryption keys can lead to significant changes in the encrypted data.

3. Correlation Coefficient: Both methods show a low correlation coefficient, suggesting that the
encrypted data bears little resemblance to the original data, enhancing security.

4. Encryption Speed: The decomposition into subsystems method appears to have faster encryp-
tion speed compared to the mutual coupling method.

5. Decryption Speed: The decomposition into subsystems method also seems to have faster de-
cryption speed compared to the mutual coupling method.

6. Robustness: Both methods exhibit a moderate level of robustness, indicating a reasonable
ability to withstand attacks, noise, or loss of synchronization.

7. Error Sensitivity: Both methods demonstrate low error sensitivity, implying that small errors
or noise in the encrypted data are unlikely to significantly affect the quality of the decrypted
output.

8. Computational Complexity: Both methods have a moderate level of computational complex-
ity, suggesting a reasonable trade-off between efficiency and resource utilization.

Based on these observations, the decomposition into subsystems method appears to have advantages
in terms of faster encryption and decryption speeds. However, the choice of the best method depends
on the specific priorities and requirements of the encryption application. Therefore, it is recommended
to consider all the evaluation metrics along with the specific use case and security requirements to
determine the most suitable method of synchronization for encryption.

17



0.6. SCOPE OF WORK (TIME DELAY) CONTENTS

0.6 Scope of work (Time Delay)
With the use of this updated code of time delay variable which represents the desired time delay con-
straint in terms of the number of iterations. The synchronization process for each subsystem starts
after the specified time delay. The mutual coupling term is calculated using the synchronized vari-
ables with the corresponding time delay.

By this time delay method, the complexity of the system increases and it is preferred to have a com-
plex system in image encryption for a better security. So, by using the time delay constraint, it add on
to the security and robustness factor of the synchronization of system for a better encryption.

The introduction of time delays and the linear mutual coupling method enhances the synchroniza-
tion between the Lorenz systems and adds an additional layer of security to the encryption process.
It increases the complexity of the encryption scheme, making it more resistant to various attacks,
including chosen-plaintext attacks and known-plaintext attacks.

It is important to note that the selection and tuning of the time delays and coupling coefficients re-
quire careful consideration. Different delay values and coupling strengths can impact the encryption
strength and synchronization performance. Thorough analysis and experimentation should be con-
ducted to determine suitable delay values for a given application.

0.6.1 Code for Time Delay in Decomposition into Subsystem Method
import numpy as np
import matplotlib.pyplot as plt

function lorenz system(x, y, z, sigma, rho, beta):

dx = sigma ∗ (y − x)

dy = x ∗ (rho − z)− y

dz = x ∗ y − beta ∗ z
return dx, dy, dz

// Parameters for the Lorenz system
sigma = 10.0
rho = 28.0
beta = 8.0/3.0

// Number of subsystems
num subsystems = 3

// Initialize subsystems with different initial conditions
initial conditions = array of size num subsystems x3

[[1.0, 1.0, 1.0], [2.0,−1.0,−1.0], [−1.0,−1.0, 2.0]]

// Set simulation parameters

18



CONTENTS 0.6. SCOPE OF WORK (TIME DELAY)

dt = 0.01
num iterations = 10000
time delay = 10

// Array to store synchronized variables synchronized variables = array of size num subsystems
x (num iterations + time delay)

// Simulate and synchronize subsystems
for i = 1 to num subsystems do:
x, y, z =initial conditions[i]

for j = 1 to (num iterations + time delay) do:
// Calculate the dynamics of the Lorenz system
dx, dy, dz = lorenz system(x, y, z, sigma, rho, beta)

// Update the state variables
x = x + dx * dt
y = y + dy * dt
z = z + dz * dt
if j >= time delay:

// Compute the mutual coupling term with time delay
mutual coupling = sum((initial conditions - initial conditions[i]) * synchronized variables[:, j - time delay],
axis=1)
// Store the synchronized variable (e.g., x coordinate)
synchronized variables[i, j] = x+ mutual coupling[0]

// Generate encryption keys using the synchronized variables
encryption keys = []
for j = 1 to num iterations do:
key=””
for i = 1 to num subsystems do:
key = key + str(round(synchronized variables[i, j]))

encryption keys.append(key)

// Load the image
image = load image(’ra.jpeg’)

// Convert the image to grayscale
grayscale image = convert to grayscale(image)

// Encrypt the image using the encryption keys
encrypted image = encrypt image(grayscale image, encryption keys)

// Decrypt the encrypted image using the same encryption keys
decrypted image = decrypt image(encrypted image, encryption keys)

// Display the original, encrypted, and decrypted images
display images(grayscale image, encrypted image, decrypted image)

19



0.6. SCOPE OF WORK (TIME DELAY) CONTENTS

Figure 11: The plain image

Figure 12: The encrypted image

Figure 13: The decrypted image

20



CONTENTS 0.6. SCOPE OF WORK (TIME DELAY)

0.6.2 Code for Time Delay in Linear Mutual Coupling Method

procedure encrypt image(image path, key, sigma, rho, beta, dt, num iterations, time delay)

// Load the image
image = load image(image path)

// Convert the image to grayscale
image = convert to grayscale(image)

// Flatten the image
pixel values = flatten image(image)

// Generate chaotic sequences from the Lorenz system
chaotic sequence1 = generate chaotic sequence(key, sigma, rho, beta, dt, num iterations)
chaotic sequence2 = generate chaotic sequence(key, sigma, rho, beta, dt, num iterations)]

// Normalize the chaotic sequences to match the range of pixel values
min value = min(pixel values)
max value = max(pixel values)
chaotic sequence1 = (chaotic sequence1 - min value) / (max value - min value)
chaotic sequence2 = (chaotic sequence2 - min value) / (max value - min value)

// Encrypt the image
encrypted pixels = xor(pixel values, chaotic sequence1, chaotic sequence2)

// Save the encrypted image
save image(encrypted image path, encrypted pixels)

end procedure

procedure decrypt image(encrypted image path, key, sigma, rho, beta, dt, num iterations, time delay)

// Load the encrypted image
encrypted image = load image(encrypted image path)

// Flatten the encrypted image
encrypted pixels = flatten image(encrypted image)

// Generate chaotic sequences from the Lorenz system chaotic sequence1 = generate chaotic sequence(key,
sigma, rho, beta, dt, num iterations)
chaotic sequence2 = generate chaotic sequence(key, sigma, rho, beta, dt, num iterations)

// Normalize the chaotic sequences to match the range of pixel values
min value = min(encrypted pixels)
max value = max(encrypted pixels)
chaotic sequence1 = (chaotic sequence1 - min value) / (max value - min value)
chaotic sequence2 = (chaotic sequence2 - min value) / (max value - min value)

21



0.6. SCOPE OF WORK (TIME DELAY) CONTENTS

// Decrypt the image
decrypted pixels = xor(encrypted pixels, chaotic sequence1, chaotic sequence2)

// Save the decrypted image
save image(decrypted image path, decrypted pixels)

end procedure

Figure 14: The plain image

Figure 15: The encrypted image

Figure 16: The decrypted image

22



CONTENTS 0.7. CONCLUSION

0.7 Conclusion
After considering all the methods for synchronization of a chaotic system, the choices were narrowed
down to two methods i.e., decomposition into subsystem method and linear mutual coupling. Ulti-
mately, the choice between the two methods depends on specific requirements and priorities. If speed
and efficiency are crucial, the decomposition into subsystems method may be preferred. On the other
hand, if a balance between robustness and computational complexity is desired, the linear mutual
coupling method may be more suitable. It is essential to consider the trade-offs and select the method
that aligns best with the desired level of security, performance, and practical considerations in the
specific image encryption application.

Decomposition into Subsystems:

=⇒ Advantages:

• High key space, providing a large number of encryption possibilities.

• High key sensitivity, making small changes in encryption keys result in significant changes in
the encrypted image.

• Fast encryption and decryption speeds, allowing for efficient processing.

• Low error sensitivity, ensuring robustness against small errors or noise.

=⇒ Limitations:

• Moderate level of robustness, requiring additional measures to withstand attacks or loss of
synchronization.

Linear Mutual Coupling:

=⇒ Advantages:

• High key space, offering a wide range of encryption options.

• High key sensitivity, enabling small changes in encryption keys to yield substantial variations
in the encrypted image.

• Moderate level of robustness, providing a degree of resistance against attacks and synchroniza-
tion loss.

=⇒ Limitations:

• Slower encryption and decryption speeds compared to the decomposition method.

• Higher correlation coefficient, implying some degree of similarity between the encrypted and
original images.

• Moderate computational complexity, requiring suitable resources for efficient implementation.

23



0.8. REFERENCES CONTENTS

0.8 References

(1) Louis M. Pecora and Thomas L. Carroll, “Synchronization in Chaotic Systems”, Code 6341,
Naval Research Laboratory, Washington, D.C. 20375

(2) Moez Feki, “Synchronization of Chaotic Systems by using occasional coupling”

(3) Zhi-Hong Guan, Fangjun Huang and Wenjie Guan, “Chaos-based image encryption algorithm”,
2005 Elsevier B.V.

(4) Guizhen Feng and Jinde Cao, “Master-slave synchronization of chaotic systems with a modi-
fied impulsive controller”, SpringerOpen Journal, 2013.

24


