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ABSTRACT 

 
Microarray gene expression data poses a significant challenge in classification due to its small 

sample size and high dimensionality. In this thesis, we propose novel approaches for the 

classification of lung cancer subtypes using advanced techniques and algorithms. The first 

approach introduces the Fuzzy Min-Max (FMM) classifier, a neuro-fuzzy neural network 

rarely used for high-dimensional datasets. To enhance the accuracy and speed of FMM, we 

incorporate the Least Absolute Shrinkage and Selection Operator (LASSO) for optimal gene 

subset selection. Comparative analysis with other classifiers, including SVM, Random Forest, 

KNN, Naïve Bayes, and Logistic Regression, validates the superior performance of FMM-

LASSO in lung cancer classification. The second approach addresses the challenges of small 

sample sizes, high dimensionality, and class imbalance in cancer subtyping. Our proposed 

SMOTE-LASSO-DeepNet framework employs SMOTE for data balancing and LASSO for 

informative gene selection. The pruned and balanced training set is then fed into a DeepNet 

model with multiple hidden layers. Extensive testing on four different cancer gene expression 

datasets demonstrates the consistent superiority of our framework over existing methods. In 

the third approach, we tackle lung cancer diagnosis using gene expression data. Leveraging the 

Fuzzy Min-Max (FMM) classifier, specifically the general Fuzzy min-max (GFMM) and 

enhanced Fuzzy min-max (EFMM) models, we exploit fuzzy class definitions and hyperbox 

manipulation. LASSO is utilized for informative gene selection, and the performance is 

evaluated through hyperbox visualization and comparison with state-of-the-art methods. 

Empirical results showcase the exceptional performance of GFMM with LASSO, achieving 

validation accuracy of 98.04% and cross-validation accuracy of 94.06%. Collectively, these 

approaches contribute to the field of cancer diagnosis from gene expression data, offering novel 

solutions for small sample sizes, high dimensionality, and class imbalance issues. The proposed 

methodologies demonstrate superior performance compared to existing methods and highlight 

the potential of neuro-fuzzy systems, deep learning frameworks, and feature selection 

techniques in improving cancer classification accuracy. 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENT 

 

I would like to express my heartfelt gratitude to Professor Seba Susan for her invaluable 

guidance, support, and mentorship throughout the journey of this thesis. Her expertise, 

encouragement, and insightful feedback have been instrumental in shaping my research and 

academic growth. I am truly grateful for her unwavering dedication, patience, and belief in my 

abilities. 

 

I would also like to extend my deepest appreciation to my parents for their endless love, 

encouragement, and unwavering support throughout my academic pursuits. Their belief in me 

and their sacrifices have been a constant source of inspiration. I am grateful for their 

unwavering faith in my abilities and for always being there to provide guidance and 

encouragement. 

 

Furthermore, I would like to express my gratitude to the faculty members of the department for 

their knowledge sharing and for providing a conducive learning environment. Their passion 

for teaching and dedication to fostering academic excellence have had a profound impact on 

my education. 

 

This thesis would not have been possible without the support and contributions of these 

individuals, and I am deeply grateful for their involvement in my academic journey. 

 

 

 

 

 

 

 

 

 

 

 

YASHPAL SINGH



 

 

CONTENTS 

Candidate’s Declaration             ii 

Certificate              iii 

Abstract              iv 

Acknowledgement              v 

Contents              vi 

List of tables                        vii 

List of figures            viii 

 

CHAPTER 1    INTRODUCTION………………………………………………………….1 

CHAPTER 2   LITRATURE REVIEW…………………………………………………….3 

CHAPTER 3   CLASSIFICATION OF MICROARRAY DATA USING FUZZY 

CLASIFIER…………………………………………………………………………………..5 

3.1 LUNG CANCER DATASET……………………………………………………………  5 

3.2 FUZZY MIN-MAX CLASSIFIER………………………………………………………  5 

3.3 HYPER PARAMETERS………………………………………………………………… 7 

3.4 METHODOLOGY………………………………………………………………………...8 

CHAPTER 4 CLASSIFCATION OF CANCER GENE EXPRESSION DATA USING 

SMOTE AND DEEP LEARNING…………………………………………………………..9 

4.1 DATASET…………………………………………………………………………………9 

4.2 OVERALL PROCESS FLOW…………………………………………………………...10 

4.3 FEATURE SELECTION USING LASSO………………………………………………11 

4.4 HYPER PARAMETERS………………………………………………………………...12 

4.5 SMOTE-LASSO-DeepNet FRAMEWORK……………………………………………..13 

 



 

 

CHAPTER 5   CLASSIFICATION OF MICROARRAY DATA USING  

GFMM AND EFMM CLASIFIER………………………………………………………   15 

5.1 DATASET……………………………………………………………………………...   15 

5.2 GFMM………………………………………………………………………………….   15 

5.3 EFMM…………………………………………………………………………………..  18 

5.4 METHODOLOGY……………………………………………………………………..   21 

CHAPTER 6 EXPERIMENTAL RESULTS……………………………………………. 22 

6.1 FMM-LASSO RESULTS………………………………………………………………  22 

6.2 SMOTE-LASSO-DeepNet FRAMEWORK REUSLTS……………………………….. 25 

6.3 GFMM & EFMM RESULTS…………………………………………………………... 27 

 

CONCLUSTION…………………………………………………………………………..  31 

REFERENCES…………………………………………………………………………….  32 

LIST OF PUBLICATIONS ……...……………………………………………………….. 41 

 

 

                                                                                                                                                                                                                                       



 

 

LIST OF TABLES 
 

 

 

Table 3.1. Hyper parameter of algorithm                                                                           8 

 

Table 4.1 Cancer gene expression dataset                                                                        10 

 

Table 4.2 Hyper parameter settings                                                                                  13 

 

Table 6.1 Execution time of classifiers                                                                            24 

 

Table 6.2 Results for Leukemia                                                                                        25 

 

Table 6.3 Results for Lung Cancer                                                                                   25 

 

Table 6.4 Results for Brain Cancer                                                                                  26 

 

Table 6.5 Results for Breast Cancer                                                                                 26 

 

Table 6.6 Test accuracies of different models for lung cancer classification  

with LASSO as feature selector                                                                                       29                                                                                                   

 

Table 6.7 Average execution time of classification algorithms                                       30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF FIGURES 
 

 

 

Fig 4.1 Overall Process Flow                                                                                           11 

 

Fig 4.2 Architecture of proposed SMOTE-LASSO-DeepNet framework for cancer 

subtype classification                                                                                                        14 

 

Fig 5.1 The Network of GFMM                                                                                       18 

 

Fig 5.2 Flow chart of training and testing process                                                           21   

 

Fig 6.1 Test accuracies of Lung cancer classification                                                      23 

 

Fig 6.2 F1-Score of lung cancer classification                                                                 24 

 

Fig 6.3 GFMM hyperbox constructed after training is complete                                     28 

 

Fig 6.4 EFMM hyperbox constructed after training is complete                                     29 

 

Fig 6.5 Performance of GFMM and EFMM models with and without LASSO              30 

 

 

 



 

1 
 

 

 

CHAPTER-1 

INTRODUCTION 

 

 

DNA microarrays are gene chips printed with microscopic spots in defined positions. 

These spots contain a known DNA sequence that can be It is utilized to analyze gene 

expression. With the help of microarrays, we can analyze different types of genes 

simultaneously [1]. Recently, Numerous microarray gene expression datasets are now 

accessible to the public on the internet. There are many challenges we have to face when 

we are using microarray datasets, like having thousands of genes in each sample, and 

relatively smaller number of samples in the dataset. We also have to handle the noisiness 

of gene expression data [2].   

Cancer stands as a widely recognized leading cause of mortality worldwide. It is caused 

by the abnormal rapid production of cells, producing tumors with different behaviors [3]. 

On an average, worldwide, one out of six deaths are because of cancer [4]. These facts 

give rise to the need for an early and accurate diagnosis, which also reduces the side effects 

of treatment.   

Mining of gene expression data has also attracted datamining researchers due to the 

numerous challenges involved that makes it distinct from patterns found in normal data. 

A cancer diagnosis is difficult to achieve for various reasons, but recent studies have 

shown that the diagnosis becomes easy when it is achieved by classifying microarray gene 

expression data. Gene expression profiling provides valuable and early information about 

differentially expressed genes associated with different cancer types [5]. The raw 

microarray gene expression data is in the form of two-dimensional data where the columns 

represent the genes or features and the rows represent the samples. One problem 

associated with cancer gene expression datasets is the class imbalance issue in which the 

population of one class (majority class) far exceeds the population of the other classes 

(minority classes) [6]. Mining the gene expression data is a challenging task because of 

the thousands of genes involved with very few samples available. And not all the genes in 

the dataset make an impact on the final classification results; only a few among the 

thousands are significant for the model training [7].  

This report explains three methods for the classification of cancer gene expression data. 

The initial approach tackles the challenge of gene expression data handling by 

incorporating normalization and feature selection techniques to enhance result accuracy.. 

Specifically, we use Least Absolute Shrinkage and Selection Operator (LASSO) as the 

feature selection technique. We propose the application of the Fuzzy Min-Max (FMM) 
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neural network classifier to classify the lung cancer dataset using an optimal gene subset 

constructed using LASSO.  

Moreover, the second method is an end-to-end classification framework for identifying 

cancer subtypes. We use SMOTE and LASSO along with a deep neural network 

(DeepNet) to simultaneously address the class imbalance issue and high-dimensionality 

problem associated with cancer gene expression datasets. The DeepNet is one of the best 

classifiers available today and is known to achieve high accuracies [8]. The small number 

of samples found in cancer gene expression datasets may suffer from the overfitting 

problem, which we overcome by using SMOTE for minority class data augmentation. 

DeepNets achieve good results because of the many hidden layers that facilitate feature 

transformation and extraction, which train the model much better than other machine 

learning algorithms [9]. In this study, we use gene expression data belonging to four types 

of cancers (Lung, Breast cancer, brain, and Leukemia). 

In our third method, we investigate the application of GFMM and EFMM neuro-fuzzy 

classifiers for the classification of lung cancer gene expression data. The application of 

GFMM and EFMM to gene expression data has not yet been explored. In this work 

advances on by exploring two advanced architectures of the FMM classifier for 

application to microarray data. The aim is to exploit the improved functionalities of 

hyperboxes and the expansion-contraction learning process for determining the decision 

boundaries between cancer subtypes. The two popular improved versions of the FMM 

classifier which applied in this method are GFMM and EFMM[47,48]. The GFMM 

improves the effectiveness of the original fuzzy min–max algorithm by suggesting a few 

modifications to the general FMM architecture and functioning, some of which are listed 

below: 

1. In the realm of pattern space, the input patterns may manifest as either fuzzy 

hyperboxes or precise points. 

2. The membership function and the hyperbox expansion constraints are modified. 

3. GFMM can be used for both clustering and classification because it can process 

labeled and unlabeled inputs at the same time. 

4. In the original algorithm, the number of hyperboxes created depends on the 

maximum hyperbox size hyperparameter. The smaller the value, the more the 

number of hyperboxes created, and this leads to overfitting; a larger value creates 

lesser number of hyperboxes which increases the generalization ability, but then 

the ability to capture the boundaries between the classes is decreased. So the 

settlement between these two cases is implemented in GFMM. 

 

In the original FMM, [35] Simpson proposed two different algorithms for classification 

and clustering problems, but the GFMM combines them in one algorithm. The training of 
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GFMM is extremely efficient for almost every case because it uses very simple compare, 

add and subtract operations for hyperbox manipulation. The other very popular version of 

FMM is the enhanced fuzzy min–max (EFMM) [48] which is known to give high 

classification performance in case of adequate training. There are three heuristic rules 

introduced in EFMM which enhances the learning process. Firstly, reducing the 

overlapping regions of hyperbox during the expansion phase that reduces classification 

errors. Secondly, the already existing overlap testing phase is extended so that all the over-

lapping corners can be identified. Thirdly, the existing hyperbox contraction rule in FMM 

is not able to cover all the overlapping cases, so in EFMM they introduced a new rule for 

contraction for solving the different overlapping cases. 

We analyzed the performance of GFMM and EFMM, and compare the results with that 

of several other machine learning algorithms. We perform cross-validation for all the 

classification algorithms, and all the comparisons are made based on accuracy and 

execution time of the algorithm. 
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CHAPTER-2 

LITERATURE REVIEW 

 

In the field of bioinformatics, numerous researchers have explored microarray data 

employing various approaches and methodologies, including the utilization of diverse soft 

computing techniques. [10].  

 

Chen et al. [11] presented a deep learning method called D-GEX using an omnibus dataset 

with 111K gene expression profiles. D-GEX revealed complex patterns of gene 

expression. It was proved that deep learning-based D-GEX outperformed Linear 

Regression for gene expression inference on GEO microarray data.  

 

Tabares-Soto et al. [12] compared different machine learning algorithms on the 

11_tumors dataset, which has eleven types of tumors and achieved high accuracies using 

the Convolution Neural Network (CNN).  

 

Lyu et al. [13], Gullien et al. [14], and Mohammed et al. [15] also implemented 

classification models based on deep learning architectures for cancer gene expression data 

classification.  

 

Mostavi et al. [16] tested different Convolutional Neural Network (CNN) models on 33 

cancer types; they implemented 1D-CNN, 2D-CNN, and 2D-Hybrid-CNN. The authors 

achieved the highest accuracies (> 95%) for ID-CNN and 2D-Hybrid-CNN.  

 

A host of classifiers such as the support vector machine [49] random forest of decision 

trees [50] logistic regression [51] and naïve Bayes classifier [52] have been successfully 

used for the classification of gene expression data. All these classifiers work on crisp data 

without transiting to the fuzzy domain. Khan et al. [53] used artificial neural networks 

(ANN)for the categorization of cancer using gene expression profiles; the main advantage 

found was that it could work with nonlinear features and has high sensitivity. For the 

classification of gene expression profiles, Ahmed et al. [54] Among the various neural 

network models such as the deep neural network (DNN), improved DNN, convolutional 

neural network (CNN), and recurrent neural network (RNN), coupled with effective 

preprocessing techniques, it was observed that the improved DNN yielded the most 

favorable outcome among them all. 

Microarray gene expression data facilitates highly efficient cancer diagnosis [17]. Most of 

the related research involves feature selection for selecting the most informative genes for 

cancer diagnosis, such as [18], that uses the Particle Swarm Optimization algorithm in a 

fuzzy multi-objective framework. Hu et al. [19] compared five classification approaches 
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on seven different microarray cancer datasets with and without gene selection; they proved 

that data preprocessing improves classification accuracy. Lee et al. [20] compared 

different feature selection methods for microarray datasets. A fuzzy rough quick, reduced 

method was proposed in [21] to find the most informative genes using a similarity measure 

for the classification of lung cancer.  

 

Fuzzy classifiers have proved to perform well in the past due to the computation of fuzzy 

decision boundaries for classifying the difficult-to-classify samples [22, 23]. A simple 

fuzzy system was devised in [24] for classifying tumors. Several researchers have tested 

feature selection and classifier combinations for gene expression data classification, such 

as Principal Component Analysis (PCA) with Support Vector Machine (SVM) [25] and 

T-Test with Fuzzy Neural Network and SVM [26] . So in our first method, we used Fuzzy 

Min-Max (FMM) neural network to classify the microarray gene expression data for lung 

cancer diagnosis. Before classification, we used the LASSO feature selection technique 

for extracting the essential features (i.e., genes) [27]. LASSO automatically selects those 

genes useful for lung cancer classification and discards the redundant genes. LASSO has 

proved very effective for high-dimensional datasets [28, 29, 30]. It hence is deemed 

suitable for the microarray gene expression dataset where thousands of genes represent 

each sample.  

 

Our SMOTE-LASSO-DeepNet is most related to Urda et al. [31], who proposed a deep 

neural network with 2 to 4 hidden layers, each having neurons in the range 10 to 200, in 

combination with LASSO feature selection, for effective gene expression classification. 

This method, however, restricts the maximum number of hidden units to 200; it does not 

recommend any optimal customized architecture suitable for the classification of cancer 

gene expression data. Also, no solution for class imbalance is provided.  

 

Some works available in the literature have implemented SMOTE for balancing the gene 

expression datasets [32]. A few have also combined SMOTE or variants of SMOTE with 

feature selection techniques such as LASSO and Information Gain [33, 34]. However, no 

prior work has combined SMOTE and LASSO with DeepNets for Cancer subtyping from 

gene expression data.   

 

In the GFMM and EFMM method, we implemented these two algorithm for the 

classification of lung cancer subtypes from gene expression data. 
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CHAPTER-3 

CLASSIFCATION OF MICROARRAY DATA USING 

FUZZY CLASSIFIER WITH LASSO 

 

 

3.1. LUNG CANCER DATASET 

In this method, all the classification experiments are performed on the microarray lung 

cancer dataset, containing 203 samples and 12600 genes [38]. In other words, there are 

203 rows and 12600 columns, and one target class column. In the lung cancer dataset, 

there are five types of classes which are: 

Class 1: adenocarcinomas (139 samples) 

Class 2: normal lung tissue sample (17 samples)  

Class 3: small cell lung cancer (6 samples)  

Class 4: squamous cell carcinomas (21 samples)  

Class 5: pulmonary carcinoids (20 samples) 

As we see, there are 12600 genes among these, and only a few of them impact the 

classification. So LASSO extracted 176 genes out of 12600, which are important for the 

classification task. If we use these extracted genes for the classification, the whole process 

becomes faster, and accuracy is improved. 

 

3.2. FUZZY MIN-MAX CLASSIFIER 

Fuzzy min max classifier outstands among all the classifier we have used for the 

microarray lung cancer data set because this classifier has ability to learn from a single 

pass through the data. Simpson et al. [36] proves that the fuzzy min max classifier 

performs better in case of overlapping classes by finding rational decision boundaries. 

In general, fuzzy min max classification training set 𝐹 contains 𝑁 ordered pairs 

{𝐼ℎ , 𝑐ℎ} , where 𝐼ℎ = (𝑖ℎ1 , 𝑖ℎ2 , … . , 𝑖ℎ𝑛) ∈ 𝐼𝑛 is the input string and 𝑐ℎ ∈ 
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{1 , 2 , … , 𝑚} is the index on one of the 𝑚 classes. The learning process starts with 

selecting a ordered pair from set 𝐹 and find a hyperbox for the same class (if present). If 

no hyper box found for an ordered pair, then create one and add it to the neural network. 

Fuzzy min max classification learning process have three phases: 

I. Hyperbox Expansion: 

For a given ordered pair {I_ (h), c_h} ∈F, find a hyperbox B_j which provides 

highest degree of membership and expand the hyperbox if the other hyperbox 

have the same class as c_h. There is a hyper parameter 0 ≤ ϑ ≤1 which bounds 

the size of hyperbox. For expanding the hyperbox B_j to include I_h, these are 

the conditions which have to meet: 

nϑ ≥  ∑ (max(𝑤𝑗𝑘 , 𝑖ℎ𝑘 ) −  min(𝑣𝑗𝑘 , 𝑖ℎ𝑘))
𝑛

𝑘=1
  (3.1) 

If this condition got satisfied , we expand hyperbox 𝐵𝑗 and the min point of 

the hyperbox is calculated by : 

𝑣𝑗𝑘
𝑛𝑒𝑤 = min(𝑣𝑗𝑘

𝑜𝑙𝑑 , 𝑖ℎ𝑘) ∀ k =  1,2, . . . , n                    (3.2) 

𝑤𝑗𝑘
𝑛𝑒𝑤  =  max(𝑤𝑗𝑘

𝑜𝑙𝑑 , 𝑖ℎ𝑘 ) ∀ k =  1,2, . . . , n               (3.3) 

After successful hyper box expansion, we move to the next step which is 

hyperbox overlap test. 

II. Hyperbox Overlap Test 

Expansion of hyperbox may create an overlap with other hyperbox, 

overlapping of two hyperbox creates a problem only if the other hyperbox is 

from a different class. A dimension by dimension comparison between 

hyperboxes is performed for determining whether an expansion creates an 

overlap or not. 

Now assume that B_j is expanded in the last step and the B_l is from another 

class and we have to test for the possible overlap. While testing, for each 

dimension at least one of the four cases is satisfied. Initially, δ^old=1 and the 

test cases are as follows: 
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𝒄𝒂𝒔𝒆 𝟏: 𝒗𝒋𝒌 < 𝒗𝒍𝒌 < 𝒘𝒋𝒌 < 𝒘𝒍𝒌 , 

𝜹𝒏𝒆𝒘 = 𝒎𝒊𝒏(𝒘𝒋𝒌 − 𝒗𝒍𝒌 , 𝜹𝒐𝒍𝒅) 
           𝒄𝒂𝒔𝒆 𝟐: 𝒗𝒍𝒌 < 𝒗𝒋𝒌 < 𝒘𝒍𝒌 < 𝒘𝒋𝒌 , 

                       𝜹𝒏𝒆𝒘 = 𝒎𝒊𝒏(𝒘𝒍𝒌 − 𝒗𝒋𝒌 , 𝜹𝒐𝒍𝒅) 
           𝒄𝒂𝒔𝒆 𝟑: 𝒗𝒋𝒌 < 𝒗𝒍𝒌 < 𝒘𝒍𝒌 < 𝒘𝒋𝒌 , 

                      𝜹𝒏𝒆𝒘 = 𝒎𝒊𝒏(𝒎𝒊𝒏(𝒘𝒍𝒌 − 𝒗𝒋𝒌 , 𝒘𝒋𝒌 − 𝒗𝒍𝒌) , 𝜹𝒐𝒍𝒅) 
           𝒄𝒂𝒔𝒆 𝟒: 𝒗𝒍𝒌 < 𝒗𝒋𝒌 < 𝒘𝒋𝒌 < 𝒘𝒍𝒌 , 

                      𝜹𝒏𝒆𝒘 = 𝒎𝒊𝒏(𝒎𝒊𝒏(𝒘𝒋𝒌 − 𝒗𝒍𝒌 , 𝒘𝒍𝒌 − 𝒗𝒋𝒌) , 𝜹𝒐𝒍𝒅) 

 
  Now , if 𝛿𝑜𝑙𝑑 − 𝛿𝑛𝑒𝑤 > 0 , then 𝑋 = 𝑘 and 𝛿𝑜𝑙𝑑 = 𝛿𝑛𝑒𝑤 , indicates that there was an overlap 

for the 𝑋𝑡ℎ dimension and we choose only where the overlap is minimal. If this not the 

case, then testing stops and the next step for contraction is not necessary. Otherwise, after 

testing we have to perform the contraction step to remove the overlap between the 

hyperboxes. 

III. Hyperbox Contraction 

After the testing, we got the dimension where the overlap is minimal between two 

hyperboxes. Now we want to contract the expanded box in such a way that the 

contraction size is as small as possible and removes the overlap. For determining the 

proper adjustment of hyperboxes there are four cases. 

In fuzzy min max these three phases are repeat until all the ordered pairs of 𝐹 are 

processed. 

 

3.3.  HYPER PARAMETERS 

Table 3.1 shows the hyper parameter values for all the algorithms that are used in this 

method. 

Classifier Hyper parameter Values 

Fuzzy Min Max Classifier 

(FMMC) 

Hyper box coefficient (𝖯) 0.7 

Sensitivity (𝜔) 1 

Support vector Machine 

(SVM)[41] 

Regularization parameter (c) 1 

Gamma 0.0018 , 0.126(WITH 

SELECTED FEATURES) 
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K- Nearest Neighbor[44] No. of neighbors 7 

Logistic Regression[43] C 1 

Penalty l2 

Solver lbfgs 

Naïve Bayes [45] Var_smoothing 1𝑒−9 

Random Forest [42] N_estimators 100 

Max_depth 2 

Table 3.1 Hyper parameter of algorithms. 

 

3.4.  METHODOLOGY 

Step 1: Load the Microarray lung cancer dataset. 

Step 2: Normalize the dataset using min max normalization and the range of the 

normalization is [ 0, 1]. In min-max normalization all the minimum values set to 0 and all 

the maximum values are set to 1. And the values which lies between maximum and 

minimum values are set with a decimal value within a range of [ 0, 1]. 

Step 3: In this step we have two choices first is to go for classification without any feature 

selection and the second one is before going for the classification process extract features 

with LASSO and then perform classification. 

1. Directly perform classification by using these six classifiers (FMMC, 

SVM, RF, KNN, Logistic R, NB) 

2. Extract the important features from the lung cancer dataset. There is the 

requirement for this step because our dataset have 12603 genes (i.e. 

features) and not all the genes make impact on the final result. I used 

LASSO feature extraction technique for extracting the features. After 

the extraction process there are 72 features got extracted and now these 

extracted features are used for the training the model. This step makes 

whole this classification faster and more efficient. 

 

Step 4: Divide the dataset into training and testing set. The ratio of training testing split is 

70:30. 
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Step 5: Now fit the model with training set. Calculate the accuracy & F1-score and store 

it into their respective array. Repeat step 4&5 for the five times because we are performing 

fivefold cross validation. 

Step 6: Average out the accuracies of the all five iterations of the validation. Same for the 

F1-score. 
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CHAPTER-4 

CLASSIFICATION OF CANCER GENE EXPRESSION 

DATA USING SMOTE AND DEEP LEARNING 

 

4.1. DATASET 

We used four benchmark gene expression datasets for cancer subtype identification: - 

Lung cancer, Brain cancer, Breast cancer, and Leukemia (Blood cancer) [37, 38, 39]. In 

Table 4.1, we show the description of these datasets. 

The datasets have good sample quality and they are manually curated for research 

purposes. All four datasets have large numbers of genes with limited samples, and an 

imbalanced class distribution. In the Brain and Breast cancer dataset, there are 54,676 

genes which is the highest among all datasets.  

 

Cancer type Samples Genes Classes 

Leukemia  64 22,284 5 

Lung Cancer  203 12,600 5 

Brain Cancer  130 54,676 5 

Breast Cancer  151 54,676 6 

                                        Table 4.1. Cancer gene expression datasets 

 

4.2. OVERALL PROCESS FLOW 

We start by loading the cancer gene expression data. The first step is preprocessing the 

dataset in which the values of the features are scaled in the range of 0 to 1 using 

the MinMaxScaler function. Then we divide the dataset into two equal sets: - validation 

(V) and cross-validation (CV), by selecting alternate samples for training and testing. For 

the V part, we use the original training and test sets for training and testing, respectively. 

For the CV part, the original testing set is the new training set, and the initial training set 

is used for testing. Before training the model, we extract the essential genes from the 

training set using the LASSO feature selector. We use six different classifier models for 
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performance evaluation apart from the proposed DeepNet model. For all the models, the 

process flow is the same. However, our proposed method uses SMOTE for minority class 

data augmentation before the feature selection stage. The last step is predicting the test set 

and analyzing the performance of different models. We compare all classifiers' validation 

(V) and cross-validation (CV) accuracies and calculate the F1-Scores. 

Fig 4.1. Overall process flow 

 

4.3. FEATURE SELECTION USING LASSO 

While analyzing the complexities of handling the gene expression data, the main problem 

found is that these datasets are high-dimensional, containing thousands of genes, and the 

majority of the features are irrelevant for cancer subtyping, and have minimal impact on 

the final classification results. These unwanted genes make the whole process slow and 

also lower the performance of the model. To overcome this problem, we used LASSO 

feature selection [6] whose main purpose is to select only those genes that are important 

for the learning process, and remove those that are unwanted. LASSO uses the following 

cost function to minimize the differences between the real and predicted values.  
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𝑙1 = 
1

2𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
 ∑ (𝑌𝑟𝑒𝑎𝑙

(𝑖)
− 𝑌𝑝𝑟𝑒𝑑

(𝑖)
)
2

𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1

+  𝛼∑|𝜗𝑗|  

𝑛

𝑗=1

 (4.1) 

 

In (1), 𝜗𝑗  is the coefficient of the jth feature and 𝛼 is the hyper parameter that sets the 

penalty term; we set it to 0.001. 

The aim is to optimize the cost function by reducing the absolute values of the coefficient. 

It selects those features which are useful and discards those which are unwanted by 

making their coefficient value zero. 

4.4. HYPER PARAMETERS 

The methods along with their hyper parameters are listed in Table 4.2. 

 

Methods Hyper 

parameters 

values 

SMOTE-

LASSO-DeepNet 

(proposed) 

Activation 

Function 

ReLU (for i/p and hidden layer), 

softmax (o/p layer) 

Hidden Layers 4 

Number of units 

per layer 

 

[512, 256, 128, 64] 

Optimizer 

 

adam 

Loss Function sparse_categorical_crossentropy 

 

LASSO-

SMOTE-

DeepNet 

Activation 

Function 

ReLU (for i/p and hidden layer), 

softmax (o/p layer) 

Hidden Layer 4 

Number of Units 

per layer 

[512, 256, 128, 64] 

Optimizer 

 

adam 

Loss Function sparse_categorical_crossentropy 

 

LASSO-DeepNet Activation 

Function 

 

ReLU (for i/p and hidden layer), 

softmax (o/p layer) 

Hidden Layers 

 

4 

Number of units 

per layer 

[512, 256, 128, 64] 

Optimizer 

 

adam 

Loss Function sparse_categorical_crossentropy 

 

FMM-LASSO 

[40] 

Hyperbox 

Coefficient   

0.7 
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Sensitivity 

1 

Support Vector 

Machine [41] 

(with LASSO) 

Regularization 

parameter c 

0.0018 

gamma 0.126 

Random Forest 

[42] (with 

LASSO) 

N_estimators 

 

100 

Max_depth 3 

Logistic 

Regression [43] 

(with LASSO) 

 

C 

1 

Penalty 

 

12 

Solver lbfgs 

K-Nearest 

Neighbor [44] 

(with LASSO) 

No. of neighbors  5 

Naïve Bayes [45] 

(with LASSO) 

Var_Smoothing 1𝑒−9 

Table 4.2 Hyper Parameter settings  

 

 

4.5. SMOTE-LASSO-DeepNet FRAMEWORK 

The proposed framework uses DeepNet to identify the cancer subtypes from gene 

expression datasets. A deep neural network has an architecture resembling a multi-layer 

perceptron [46] but with deeper layers. The proposed DeepNet architecture has four 

hidden layers with [512, 256, 128, 64] units, respectively, as shown in Fig. 4.2. The 

SMOTE-LASSO-DeepNet framework proposed for the classification of cancer gene 

expression data offers an end-to-end solution consisting of three distinct phases, each 

designed to address specific challenges associated with the gene expression data. In the 

first phase, SMOTE is employed on the minority classes of the training set to achieve class 

distribution balance. SMOTE is particularly favored for handling imbalanced data in 

multi-class classification tasks due to its straightforward application, as it generates 

synthetic data points that closely resemble the original data points through an interpolation 

process. 
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Fig 4.2. Architecture of proposed SMOTE-LASSO-DeepNet framework for cancer subtype classification 

 

In Phase 2, we apply LASSO feature selection on the balanced training data; it selects the 

important features and also speeds up the whole process of classification. We use the final 

selected features for the model training; the scores are computed separately for the V and 

CV cross-validation process as illustrated in the process flow in Fig. 4.1. In Phase 3, we 

use a DeepNet of architecture 𝑋 − 512 − 256 − 128 − 64 − 𝑌, where, X is the number 

of input features selected by LASSO, and Y is the number of target classes or cancer 

subtypes. For the hidden layers, we used ‘ReLU’ as an activation function, and for the 

output layer ‘softmax’ function is used because this model is used for multi-class 

classification. For all the datasets, we used a batch size of 30, with 100 epochs. We have 

compared the performance of the proposed deep learning framework with popular 

machine learning algorithms using the performance metrics of accuracy and F1-score. The 

performance of the proposed framework is compared both with and without SMOTE.  
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CHAPTER-5 

CLASSIFCATION OF MICROARRAY DATA USING 

GFMM & EFMM CLASSIFIER WITH LASSO 

 

 

5.1. DATASET 

The dataset used in this method is same as section 3.1. For more info about the dataset 

please refer section 3.1. 

 

5.2. GENERAL FUZZY MIN-MAX NEURAL NETWORK  

In this section, we discuss about the input patterns of GFMM, learning algorithm phases, 

and the neural network at the core of GFMM for the current task of classification of 

microarray gene expression data. 

5.2.1. Input Pattern 

The input that is processed by GFMM is the ordered pair of the ℎ𝑡ℎ input pattern and the 

class index of one of the classes. The ordered pair is given by 

{𝑰𝒉  , 𝒄𝒉 }                   (5.1) 

Where 𝐼ℎ is the ℎ𝑡ℎ input pattern in form of 𝐼ℎ
𝑙  (lower) and 𝐼ℎ

𝑢 (upper) i.e. [ 𝐼ℎ
𝑙  , 𝐼ℎ

𝑢 ] these 

are the vector inputs. 𝑐ℎ 𝜖 { 0, 1 , 2 , 3, … . , 𝑝 } is the class index of any one of the p+1 

classes. If  𝑐ℎ = 0 , it means the input is unlabeled. 

5.2.2. Membership function 

The fuzzy hyperbox membership function plays an important role in deciding whether a 

particular input belongs to a particular class or not. In GFMM, a new membership function 

is defined which fulfills the limitations of original fuzzy min-max. In the original function, 

it was observed that by increasing the distance from the hyperbox, the membership does 

not decrease steadily, which is a major drawback of this membership function. The degree 

of membership of 𝐼ℎ  for the hyperbox 𝑏𝑞  is 1 if 𝐼ℎ  is inside the hyperbox 𝑏𝑞  , and the 

membership decreases as the distance from the hyperbox is increases. In the membership 

equation the 𝛾 =  [𝛾1 , 𝛾2 , … . . , 𝛾𝑛  ] is the sensitivity parameter this regulates how fast the 

membership values decreases. 
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𝒃𝒒(𝑰𝒉) = 𝒎𝒊𝒏𝒑=𝟏 𝒕𝒐 𝒏(𝒎𝒊𝒏(
[𝟏 − 𝒇(𝑰𝒉𝒑

𝒖 − 𝒘𝒒𝒑 , 𝜸𝒑)] ,

[𝟏 − 𝒇(𝒗𝒒𝒑 − 𝑰𝒉𝒑
𝒍  , 𝜸𝒑)]

))          (5.2) 

 

𝒘𝒉𝒆𝒓𝒆 , 𝒇(𝒓, 𝜸) =  {

𝟏   𝒊𝒇 𝒓𝜸 > 𝟏
𝒓𝜸  𝒊𝒇 𝟎 ≤ 𝒓𝜸 ≤ 𝟏
𝟎  𝒊𝒇 𝒓𝜸 < 𝟎

} 

 

5.2.3. GFMM Learning Algorithm 

The steps of the GFMM learning algorithm are given below. 

1. Min and Max point initialization 

For the new hyperbox the algorithm initializes its min point 𝑉𝑞 = 0  and the max 

point 𝑊𝑞 = 0, this can be automatically used in the expansion phase of the 

algorithm. The values of min and max point when the 𝑞𝑡ℎ hyperbox is adjusted 

for the first time by using the 𝐼ℎ = [𝐼ℎ
𝑙  , 𝐼ℎ

𝑢] is  

𝑽𝒒 = 𝑰𝒉
𝒍     ,    𝑾𝒒 = 𝑰𝒉

𝒖                 (5.3) 

 

This values are similar to the input pattern. 

 

2. Hyperbox expansion 

 

Suppose the ℎ𝑡ℎ input pattern has to be expanded with the hyperbox 𝐵𝑞 which 

have the highest degree of membership;before expansion the following condition 

has to be satisfied 

∀𝒑=𝟏..𝒏  (𝒎𝒂𝒙 ((𝒘𝒒𝒑 , 𝑰𝒉𝒑
𝒖 )  −   𝒎𝒊𝒏(𝒗𝒒𝒑 , 𝑰𝒉𝒑

𝒍 )))   ≤   𝝑       (5.4) 

 

In (5.4), 𝜗is a user-defined value which sets an upper bound on the maximum size 

of a hyperbox. If the condition in (5.4) got satisfied, then the new min and max 

points of the hyperbox 𝐵𝑞 are given by (5.5) and (5.6), respectively. 

 

𝒗𝒒𝒑
𝒏𝒆𝒘 = 𝒎𝒊𝒏(𝒗𝒒𝒑

𝒐𝒍𝒅 , 𝑰𝒉𝒑
𝒍 )(5.5)                                    

 

𝒘𝒒𝒑
𝒏𝒆𝒘 = 𝒎𝒂𝒙(𝒘𝒒𝒑

𝒐𝒍𝒅 , 𝑰𝒉𝒑
𝒖 ) (5.6)      
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3. Hyperbox overlap test 

 

After the successful expansion, there are chances of overlap between the two 

hyperboxes and if both these hyperboxes belongs to the different classes, then the 

classifier will give wrong results. The algorithm conducts the hyperbox overlap 

test to check for the overlap 

Let the hyperbox 𝐵𝑞 is expanded and test for the overlap with 𝐵𝑝 if 

 

𝑐𝒍𝒂𝒔𝒔(𝑩𝒒) =  

{
 
 

 
 

𝟎 ,              𝒕𝒆𝒔𝒕 𝒘𝒊𝒕𝒉 𝒂𝒍𝒍 𝒕𝒉𝒆 
                𝒐𝒕𝒉𝒆𝒓 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒙𝒆𝒔.

𝒐𝒕𝒉𝒆𝒓 , 𝒈𝒐 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒐𝒗𝒆𝒓𝒍𝒂𝒑𝒑𝒊𝒏𝒈
 𝒕𝒆𝒔𝒕 𝒐𝒏𝒍𝒚 𝒊𝒇

                   𝒄𝒍𝒂𝒔𝒔(𝑩𝒒) ≠ 𝒄𝒍𝒂𝒔𝒔(𝑩𝒑) }
 
 

 
 

   (5.7) 

 

4. Hyperbox contraction 

∆𝑡ℎ dimension of the two hyperboxes is adjusted only if ∆ > 0. To make minimal 

effect on the size and shape of the hyperbox, the only one dimension is adjusted in 

each hyperbox. The contraction phase of GFMM is very similar to the original 

Fuzzy min–max. 

 

 

5.2.4. GFMM Learning Algorithm 

There are only two changes between the GFMM network architecture shown in  Figure 

5.1 and Simpson’s original FMM network architecture. Firstly, the input node gets 

doubled to 2×n. Secondly, in the output layer, an additional node is introduced which 

handles the unlabeled hyperbox from the second layer of the network. 
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Fig 5.1 The network of GFMM. 

 

5.3. ENHANCED FUZZY MIN-MAX NEURAL NETWORK  

The enhanced Fuzzy min–max neural network (EFMM) overcomes the limitation of the 

original FMM learning algorithm and enhances its performance. There are three heuristic 

rules for the learning algorithm, as will be discussed in this section 

5.3.1. Shortcomings of FMM 

The three shortcomings of FMM that are overcome by EFMM are summarized below 

1. Hyperbox expansion: In this phase it is shown that when the overlapping regions 

are increasing between two classes it makes an impact on the performance of the 

FMM. In FMM they first calculate the sum of all the differences between min and 

max points of the dimensions, and then they compare this sum with n𝜗. There are 

very high chances of wrong prediction even if one dimension can exceed then 

𝜗(expansion coefficient) and the sum of all dimensions is under the expansion 

coefficient. This can lead to overlapping regions between different hyperboxes. 

2. Hyperbox overlap test: The four existing cases for detecting the overlap between 

two different class hyperboxes are not sufficient. There are some inputs in which 
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overlapping regions are detected and the test assumes it is a nonoverlapping region 

and it stops the overlap test. So more conditions are added in the overlap test of 

EFMM. 

3. Hyperbox contraction: In FMM the contraction is based on the hyperbox overlap 

test, but the overlap test phase can pass some undetected overlapping regions 

which creates problems in the contraction phase. 

In EFMM they modified all these three phases to overcome these problems. The modified 

version improves the classification results. 

 

5.3.2. EFMM Learning algorithm 

The three heuristic rules which can overcome all the limitations of EFMM are: 

1. Hyperbox expansion rule: To solve all expansion problems in FMM, a new 

equation is formulated. The 𝑞𝑡ℎ  hyperbox is checked from all dimensions 

separately to see if it exceeds 𝜗 or not. This rule is only applicable if no dimension 

exceeds 𝜗. 

𝑴𝒂𝒙𝒏(𝑾𝒒𝒑, 𝑰𝒉𝒑)  −  𝑴𝒊𝒏𝒏(𝑽𝒒𝒑, 𝑰𝒉𝒑)   ≤   𝝑            (5.8) 

 

2. Hyperbox overlap test rule: In the original FMM, the four cases are insufficient 

for the hyperbox overlap test. In GFMM, they modified the test phase and included 

additional overlap testing cases, as observed from (5.7). Now there are total nine 

cases to detect possible overlap regions. And (5.9) and (5.10) are already there in 

FMM. 

       Initially,𝛿𝑜𝑙𝑑 = 1 

 

𝑐𝑎𝑠𝑒 1: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 < 𝑊𝑞𝑝 < 𝑊𝑟𝑝  , 𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 , 𝛿
𝑜𝑙𝑑)   (5.9) 

 

𝑐𝑎𝑠𝑒 2: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 < 𝑊𝑟𝑝 < 𝑊𝑞𝑝  , 𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑊𝑟𝑝 − 𝑉𝑞𝑝 , 𝛿
𝑜𝑙𝑑) (5.10) 

 

𝑐𝑎𝑠𝑒 3: 𝑉𝑞𝑝 = 𝑉𝑟𝑝 < 𝑊𝑞𝑝 < 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤   

= 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)        (5.11)        

 

𝑐𝑎𝑠𝑒 4: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 < 𝑊𝑞𝑝 = 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (5.12) 



 

21 
 

 

 

 

𝑐𝑎𝑠𝑒 5: 𝑉𝑟𝑝 = 𝑉𝑞𝑝 < 𝑊𝑟𝑝 < 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (5.13) 

 

𝑐𝑎𝑠𝑒 6: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 < 𝑊𝑟𝑝 = 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (5.14) 

 

𝑐𝑎𝑠𝑒 7: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 ≤ 𝑊𝑟𝑝 < 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (5.15) 

 

𝑐𝑎𝑠𝑒 8: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 ≤ 𝑊𝑞𝑝 < 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (5.16) 

 

𝑐𝑎𝑠𝑒 9: 𝑉𝑟𝑝 = 𝑉𝑞𝑝 < 𝑊𝑟𝑝 = 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛 ((𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)                                (5.17) 

When 𝛿𝑜𝑙𝑑 − 𝛿𝑛𝑒𝑤 < 1 , then only overlapping region is detected. To check for 

the next dimension we have to initialize ∆ = 𝑝 𝑎𝑛𝑑 𝛿𝑜𝑙𝑑 = 𝛿𝑛𝑒𝑤. And this loop 

ends when no more regions are detected.   

3. Hyperbox contraction rule: For the contraction of the overlapping hyperboxes, 

EFMM introduces nine cases and, all these cases are totally based on the overlap 

test rules. 

𝐶𝑎𝑠𝑒 1: 𝑉𝑞∆ < 𝑉𝑟∆ < 𝑊𝑞∆ < 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤 =
𝑊𝑞∆

𝑜𝑙𝑑 + 𝑉𝑟∆
𝑜𝑙𝑑

2
   (5.18) 

 

𝐶𝑎𝑠𝑒 2: 𝑉𝑟∆ < 𝑉𝑞∆ < 𝑊𝑟∆ < 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤 =
𝑊𝑟∆

𝑜𝑙𝑑 + 𝑉𝑞∆
𝑜𝑙𝑑

2
   (5.19) 

 

𝐶𝑎𝑠𝑒 3: 𝑉𝑞∆ = 𝑉𝑟∆ < 𝑊𝑞∆ < 𝑊𝑟∆ , 𝑉𝑟∆
𝑛𝑒𝑤 = 𝑊𝑞∆

𝑛𝑒𝑤                                   (5.20) 

 

𝐶𝑎𝑠𝑒 4: 𝑉𝑞∆ < 𝑉𝑟∆ < 𝑊𝑞∆ = 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤                                  (5.21) 

 

𝐶𝑎𝑠𝑒 5: 𝑉𝑟∆ = 𝑉𝑞∆ < 𝑊𝑟∆ < 𝑊𝑞∆ , 𝑉𝑞∆
𝑛𝑒𝑤 = 𝑊𝑟∆

𝑛𝑒𝑤                                   (5.22) 

 

𝐶𝑎𝑠𝑒 6: 𝑉𝑟∆ < 𝑉𝑞∆ < 𝑊𝑟∆ = 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤                                    (5.23) 

 

𝐶𝑎𝑠𝑒 7(𝑎): 𝑉𝑞∆ < 𝑉𝑟∆ ≤ 𝑊𝑟∆ < 𝑊𝑞∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

<  (𝑊𝑞∆ − 𝑉𝑟∆) , 𝑉𝑞∆
𝑛𝑒𝑤 = 𝑊𝑟∆

𝑛𝑒𝑤                                      (5.24) 
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𝐶𝑎𝑠𝑒 7(𝑏): 𝑉𝑞∆ < 𝑉𝑟∆ ≤ 𝑊𝑟∆ < 𝑊𝑞∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

>  (𝑊𝑞∆ − 𝑉𝑟∆) ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤                                      (5.25) 

 

𝐶𝑎𝑠𝑒 8(𝑎): 𝑉𝑟∆ < 𝑉𝑞∆ ≤ 𝑊𝑞∆ < 𝑊𝑟∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

<  (𝑊𝑞∆ − 𝑉𝑟∆) ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤                                      (5.26) 

 

𝐶𝑎𝑠𝑒 8(𝑏): 𝑉𝑟∆ < 𝑉𝑞∆ ≤ 𝑊𝑞∆ < 𝑊𝑟∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

>  (𝑊𝑞∆ − 𝑉𝑟∆) , 𝑉𝑟∆
𝑛𝑒𝑤 = 𝑊𝑞∆

𝑛𝑒𝑤                                      (5.27) 

 

𝐶𝑎𝑠𝑒 9(𝑎): 𝑉𝑞∆ = 𝑉𝑟∆ < 𝑊𝑞∆ = 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤 =
𝑊𝑞∆

𝑜𝑙𝑑 + 𝑉𝑟∆
𝑜𝑙𝑑

2
 (5.28) 

 

𝐶𝑎𝑠𝑒 9(𝑏): 𝑉𝑟∆ = 𝑉𝑞∆ < 𝑊𝑟∆ = 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤 =
𝑊𝑟∆

𝑜𝑙𝑑 + 𝑉𝑞∆
𝑜𝑙𝑑

2
(5.29) 

 

These are the nine cases for hyperbox contraction in EFMM. These three heuristic 

rules are the main reason for the enhancement of the learning algorithm of EFMM 

over FMM. 

 

 

5.4. METHODOLOGY 

The task at hand in our current work is to identify lung cancer subtypes from the gene 

expression profiles pertaining to lung cancer data. The details of the dataset are given in 

Section 5.1. The process flow of the training and testing procedures for GFMM / EFMM 

is shown in Figure 5.2. The dataset is split into two equivalent halves using alternate 

samples for training and testing (50:50 train:test split ratio). For each classifier, we 

perform the validation (V) and cross-validation (CV) steps. In V step, the classifier is 

trained using the train set, and the trained model is used to classify the test set. The CV 

results are obtained by swapping the training and test sets. We followed the train : test 

split and validation procedure as in [30] LASSO feature selection is used to select 

significant and informative genes prior to the classification phase. With a reduced gene 

subset, the whole classification process becomes faster and the results are also impressive. 

 

Fig 5.2 Flow chart of the training and testing process. 
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The steps of the methodology are detailed below: 

 

1. Load the Microarray gene expression dataset. 

 

2. Normalize the dataset using min–max normalization and the range of the 

normalization is [0, 1]. In min–max normalization, all the minimum values are set 

to 0 and all the maximum values are set to 1. The values which lie between 

maximum and minimum values are set with a decimal value within a range of [0, 

1]. 

 

3. In this step, we select the important features with LASSO and then perform the 

classification task. 

 

i. Directly go for 50:50 train: test split and then perform classification by 

GFMM, EFMM and other classifiers and models that are used for 

comparison. 

ii. Extract the important features from the training set of the lung cancer 

dataset. There is a requirement for this step because the lung cancer dataset 

has 12,600 genes (i.e. features) and not all the genes make an impact on 

the final result. We used the LASSO feature extraction technique for 

extracting the features from both the training and test sets. This step makes 

the whole classification process faster and more efficient. After the feature 

selection stage, the selected gene pool is used for training of the model. 

The trained model is applied obtain the test accuracies also known as 

Validation (V) accuracies.  

iii. Now swap the training and test sets and repeat step (ii) by performing 

feature selection using LASSO on the new training set. The test accuracies 

are compiled which are known as the cross-validation (CV) accuracy.
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CHAPTER-6 

EXPERIMENTAL RESULTS 

 

6.1. FMM-LASSO RESULTS: 

In fig 6.1, the bar graph compares the accuracy of all the classifiers used in the experiment. 

The fuzzy min-max classifier with LASSO feature extraction performs the best among all 

other methods with 95.08% accuracy on the microarray lung cancer dataset. The classes 

in the dataset are unbalanced, so we also conducted the f1-score test for all the classifiers 

[47]. As we see in fig 6.2, the fuzzy min-max classifier with LASSO gets the highest F1- 

score of 0.92 compared to other classifiers. 

 

Fig 6.1. Test accuracies of Lung cancer classification 

 

The final f1-score of every classifier is the average of the f1-scores that we got in all five 

iterations of classification. After analyzing the f1-score and accuracies we can say 9 that 

the Fuzzy min-max classifier performs best in the case of LASSO feature extraction and 

SVM performs better in the case of without feature extraction. 
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Fig 6.2. F1-Score of lung cancer classification 

 

In table 6.1 we have shown the execution time comparison of all the six classifiers, and 

we have analyzed that fuzzy min-max takes more time to compare to SVM and other 

classifiers. LASSO make a major impact on everything like we can see in the bar graphs 

the accuracies are comparatively very less in without LASSO case, and the same 

observation for f1-score and the execution time. 

 

Classifiers Time (in secs) 

LASSO Without LASSO 

Fuzzy Min Max Classifier 13.77 963.31 

Support Vector Machine (SVM) 0.40 17.74 

K- Nearest Neighbor 0.37 0.37 

Random Forest 1.98 2.90 

Logistic Regression 0.66 8.51 

Naïve Bayes 0.32 1.39 

Table 6.1. Execution Time of Classifiers 
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6.2. SMOTE-LASSO-DeepNet FRAMEWORK RESULTS: 

All the results were calculated in a setting where the dataset is divided into two sets, one 

for odd-numbered points and the other for even-numbered points, as illustrated in the 

process flow in Fig. 4.1. In the validation (V) stage, the training and test sets were used as 

it is, while in the cross-validation (CV) stage, the training and test sets were interchanged. 

For both parts, LASSO was used for feature selection. For the performance analysis, we 

calculated the accuracy and F1-score of all methods. The classification results of all four 

datasets are given in Tables 6.2 to 6.5 for the Leukemia, Lung cancer, Brain cancer and 

Breast cancer datasets, respectively. 

 

Methods Accuracy (in%) F1-Score 

Validation Cross-validation Validation Cross- Validation  

SMOTE-

LASSO-

DeepNet 

98.13 100 0.98 1.0 

LASSO-

SMOTE-

DeepNet 

96.25 100 0.95 1.0 

LASSO-

DeepNet 

96.25 98.125 0.94 0.98 

FMM-LASSO 90.62 93.75 0.92 0.94 

SVM-LASSO 96.87 96.87 0.95 0.96 

RF-LASSO 96.25 96.25 0.96 0.95 

KNN-LASSO 96.87 100 0.95 1.0 

NB-LASSO 81.25 84.37 0.75 0.82 

LR-LASSO 96.87 100 0.95 1.0 

Table 6.2. Results for Leukemia 

 

Methods Accuracy (in %) F1-Score 

Validation Cross-validation Validation Cross- Validation  

SMOTE-

LASSO-

DeepNet 

95.68 94.06 0.91 0.85 

LASSO-

SMOTE-

DeepNet 

95.49 91.28 0.91 0.78 

LASSO-

DeepNet 

94.31 89.9 0.87 0.76 

FMM-LASSO 90.19 93 0.86 0.85 

SVM-LASSO 93.13 92.07 0.74 0.72 

RF-LASSO 91.76 85.34 0.7 0.59 

KNN-LASSO 94.11 89.1 0.83 0.68 

NB-LASSO 94.11 84.15 0.75 0.6 

LR-LASSO 95 89.1 0.85 0.74 

Table 6.3. Results for Lung Cancer 
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In Table 6.2, as we observe in the case of the Leukemia dataset, SMOTE-LASSO-

DeepNet performs best among all the classifiers. KNN-LASSO, LR-LASSO, and 

LASSO-SMOTE-DeepNet also achieve 100% accuracy in cross-validation, but in the 

validation case, the highest accuracy is 98.13% with an F1-score of 0.98 for the proposed 

method. In the Lung cancer results shown in Table 5, SMOTE-LASSO-DeepNet achieves 

the highest accuracies of 95.68% and 94.06% (for V and CV respectively). However, in 

case of the Brain cancer results shown in Table 6.4, the SVM-LASSO and LR-LASSO 

perform slightly better in the V and CV cases, respectively. 

 

Methods Accuracy (in %) F1-Score 

Validation Cross-validation Validation Cross- Validation  

SMOTE-

LASSO-

DeepNet 

91.3 83.3 0.89 0.83 

LASSO-

SMOTE-

DeepNet 

90.7 84 0.89 0.83 

LASSO-

DeepNet 

90.7 83.6 0.89 0.82 

FMM-LASSO 89.23 84.6 0.86 0.82 

SVM-LASSO 92.3 84.6 0.9 0.82 

RF-LASSO 90.15 86.15 0.87 0.84 

KNN-LASSO 89.23 78.46 0.86 0.79 

NB-LASSO 87.69 80 0.85 0.77 

LR-LASSO 90.76 87.69 0.88 0.88 

Table 6.4. Brain Cancer Results 

 

Methods Accuracy (in %) F1-Score 

Validation Cross-validation Validation Cross- Validation  

SMOTE-

LASSO-

DeepNet 

84.47 91.46 0.84 0.92 

LASSO-

SMOTE-

DeepNet 

81.31 91.46 0.83 0.91 

LASSO-

DeepNet 

81.31 90.93 0.82 0.91 

FMM-

LASSO 

72.36 81.33 0.76 0.81 

SVM-

LASSO 

85.52 84 0.83 0.77 

RF-LASSO 78.15 91.46 0.77 0.79 

KNN-

LASSO 

80.26 81.33 0.81 0.77 

NB-LASSO 84.21 89.33 0.84 0.77 

LR-LASSO 86.84 88 0.86 0.87 

Table 6.5. Breast Cancer Results 
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SMOTE-LASSO-DeepNet achieves a consistently good performance for both V and CV 

cases, unlike some other classifiers in Table 6.5 for which a dip in performance was noted 

when cross-validating the results. In case of the Breast cancer results shown in Table 7, 

LR-LASSO achieves the highest accuracy of 86.84% (F1-score=0.86) for the validation 

case, but in cross-validation, SMOTE-LASSO-DeepNet achieves the highest accuracy of 

91.46% (F1-score=0.92). 

As an overall observation, we can say that classifiers other than the proposed method, 

especially SVM-LASSO and LR-LASSO have also performed well, but their performance 

was not consistent across all four datasets. Our proposed method SMOTE-LASSO-

DeepNet performs consistently best in case of all four datasets for both V and CV cases. 

Apart from the proposed method, we also study two DeepNet variations of our framework 

(same architecture of DeepNet is maintained): LASSO-SMOTE-DeepNet and LASSO-

DeepNet; we find from Tables 6.2 to 6.5 that their performances were not at par with that 

of the proposed SMOTE-LASSO-DeepNet framework. 

 

6.3. GFMM & EFMM RESULTS: 

This dataset has 203 samples and 12,600 features (genes). There are five classes indicating 

five subtypes of lung cancer[38].The class distribution is highly imbalanced. The different 

cancer subtypes and their class populations are: lung adenocarcinomas (139), squamous 

cell lung carcinomas (21), lung carcinoids (20), small cell lung carcinomas (6), and normal 

samples (17). Under such a scenario, defining accurate class boundaries is an obvious 

challenge. We propose to counter this challenge using the FMM classifiers: GFMM and 

EFMM. We first normalize the dataset using min–max normalization and the range of the 

normalization is set to [0, 1]. After obtaining the train and test sets, we extract the selected 

features by implementing LASSO on the train set. The reduced feature set is used to train 

the model and compute the test accuracy. 

6.3.1. GFMM Results 

The General Fuzzy min–max model hyperbox visualization after training is complete is 

shown in fig 6.3. The five colors indicate the five classes. As observed from the hyperbox 

visualization in fig 6.3, the majority class namely, lung adenocarcinoma, is segregated 

well from the other classes which indicate a good classification performance. The minority 

classes are also distinctly separated from each other. For the GFMM learning algorithm, 

the value we choose for the hyper-box expansion coefficient is 0.5 and the sensitivity 

value is 1. The classification results are shown in Table 6.6 (accuracy) and 6.7 (execution 

time) for all methods. General Fuzzy min–max classifier gives the best result among all 

the classifiers, as observed from Table 6.6. The accuracy achieved with LASSO is 98.04% 

and 94.06% for validation and cross-validation, respectively, and this is the best among 
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all the classifiers that we have used for this microarray dataset. For GFMM, we observe 

that the execution time of the classification process in case of selected features is 4.57s 

(with hyperbox visualization) which is faster as compared to all the other fuzzy models. 

The reason for the accurately defined class boundaries of GFMM is the simple operations 

involved for which even the few samples in the training set is sufficient, thereby reducing 

the overlap between classes to a great extent. 

 

Fig 6.3. GFMM hyperbox constructed after training is complete. 

 

6.3.2. EFMM Results 

The enhanced Fuzzy min–max classifier does not give good results for the small sample 

dataset in our experiments. The accuracy we achieved with LASSO is 90.2% and 93.07% 

for Validation and cross-validation, respectively, as observed from Table 6.6. 

The EFMM hyperbox visualization is shown in Figure 6.4, that is, obtained after the 

training process is complete. Comparing the hyperbox visualizations of GFMM in Figure 

6.3 with that of EFMM in Figure 6.4, we observe a better segregation of classes in case of 

GFMM in Figure 6.3, indicating that the fuzzy membership functions for the five classes 

are more well-defined in case of GFMM. The hyperbox visualization shows some degree 

of overlap between the majority class and few minority classes, and also among the 

minority classes. This implies that EFMM is incapable of learning from small sample 

datasets such as gene expression datasets due to the intricate learning procedures involved 

that require sufficient samples to learn from. 
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Fig 6.4. EFMM hyperbox constructed after training is complete. 

 

6.3.3. Results comparison 

In Table 6.6 we can see the test accuracy comparison of all the classification algorithms. 

Other than GFMM and EFMM, we have compared the results to the machine learning 

models Support Vector Machine (SVM), K-Nearest Neighbor, Logistic Regression, Naïve 

Bayes and Random Forest and to some of the existing works on cancer gene expression 

classification: 

Algorithms Accuracy (in %) 

 

Validation(V) Cross-Validation 

General Fuzzy Min-Max (Ours) 98.04 94.06 

Enhanced Fuzzy Min-Max (Ours) 90.2 93.07 

Fuzzy Min-Max 90.19 93 

SMOTE and DNN  95.68 94.06 

K-Nearest Neighbor  94.11 89.1 

Logistic Regression 95 89.1 

Naive Bayes 94.11 84.15 

Random Forest 91.76 85.34 

Support Vector Machine (SVM) 93.13 92.07 

1D-CNN [55] 94.11 90.09 

DNN[56] 94.31 89.9 

Table 6.6 Test accuracies of different models for lung cancer classification with LASSO as feature 

selector. 
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Algorithms Execution Time (in seconds) 

 

With LASSO Without      

LASSO 

General Fuzzy Min-Max 4.57 87.52 

Enhanced Fuzzy Min-Max 40.21 41.54 

Fuzzy Min-Max 13.77 963.31 

SMOTE, LASSO, and DNN 7.03 - 

K-Nearest Neighbor  0.37 0.37 

Logistic Regression 0.66 8.51 

Naive Bayes 0.32 1.39 

Random Forest 1.98 2.90 

Support Vector Machine (SVM) 0.40 17.74 

1D-CNN 5.93 325 

DNN 6.12 - 

Table 6.7 Average execution time of classification algorithms 

FMM, 1D-CNN, DNN, SMOTE and DNN. For the hyperparameter settings of 

11,12,14,30 we have referred to the original articles. LASSO is applied for feature 

selection in all cases. Out of the 12,600 features, 98 features are extracted during 

validation, and 95 features are extracted during cross-validation, LASSO being applied 

only on the training set in each case. LASSO thus results in a reduced gene pool which is 

applied for training purpose. From these results, we analyze that GFMM stands out among 

all the algorithms in terms of the accuracy obtained (Validation accuracy=98.04%, Cross-

validation accuracy=94.06%). The second-best performance is that of SMOTE, LASSO, 

and DNN [57] (Validation accuracy=95.68%, Cross-validation accuracy = 94.06%). 

Figure 5.5 shows the comparison of the performance of GFMM and EFMM with and 

without LASSO. The application of LASSO creates a reduced and optimized gene pool, 

hence the system is faster and performance is boosted, as observed from Figure5.5 which 

compares the test accuracy scores. We note the following observations from Figure5.5 A, 

B showing the validation and cross-validation accuracies, respectively. 
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Fig 6.5 Performance of GFMM and EFMM models with and without LASSO 

 

i. Feature selection by LASSO significantly boosts the performance of the FMM 

models, especially GFMM, due to the inclusion of the most informative features 

in the selected gene pool. 

ii. In the absence of feature selection, EFMM marginally outperforms GFMM, 

signifying that for efficient operation of GFMM, informative features are required. 

From the execution times of all models summarized in Table 6.7, we make a general 

observation that FMM-based methods take more time to execute as compared to other 

machine learning algorithms. GFMM is the fastest with feature selection as compared to 

other fuzzy algorithms, and EFMM takes approximately same time for both with and 

without feature selection. The execution time of GFMM is 4.57s with online or 

progressive hyperbox visualization and around0.32s without online or progressive 

hyperbox visualization [58]. 

After analyzing all the comparison methods, we can say that the General Fuzzy min–max 

classifier is a very suitable option for the classification of microarray data, and it performs 

the best when used with feature selection for selecting the most optimal gene set that 

identifies the cancer subtype accurately. 
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CONCLUSION 

 

In this thesis, we have presented three distinct approaches for the classification of 

microarray gene expression data. Each approach employs different techniques and 

algorithms to address the challenges of small sample sizes and high-dimensional datasets. 

The initial approach synergizes the Fuzzy Min-Max (FMM) classifier with the LASSO 

feature selection technique to effectively decrease dataset dimensions while preserving 

relevant gene information. This method outperforms alternative classifiers, showcasing its 

effectiveness in accuracy and F1-score. Future research will prioritize investigating more 

efficient computational architectures for FMM to improve the efficiency of the automated 

cancer diagnosis system. 

In the second approach, we introduce a deep learning framework called SMOTE-LASSO-

DeepNet. This framework utilizes SMOTE for minority class augmentation and LASSO 

for feature selection, followed by training a DeepNet model. The results show that our 

method consistently outperforms other approaches across multiple benchmark cancer 

datasets. As a future extension, we plan to investigate deep ensemble frameworks for 

further improving the classification of gene expression data. 

Finally, we explore the application of neuro-fuzzy systems, specifically the GFMM and 

EFMM models, for cancer diagnosis from gene expression data. Our experiments reveal 

that GFMM is well-suited for classifying small sample datasets due to its efficient 

computation of fuzzy memberships. GFMM, in conjunction with LASSO, achieves 

outstanding accuracy and execution time compared to other machine learning algorithms. 

Additionally, GFMM outperforms existing works on cancer gene expression 

classification. The hyperbox visualizations and decision boundaries of GFMM 

demonstrate its superior performance in accurately representing the different classes. 

Collectively, these approaches contribute to the advancement of cancer diagnosis using 

gene expression data. The findings highlight the potential of neuro-fuzzy systems, deep 

learning frameworks, and their combinations with feature selection techniques for 

classifying small sample, high-dimensional gene expression datasets. Future research 

directions include further customization of neuro-fuzzy models to incorporate feature 

selection and imbalance treatment, aiming to develop more efficient and accurate cancer 

classification systems. 
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