
VOTEROID SECURE API GATEWAY USING MICROSERVICES
ARCHITECTURE

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by:

Kulanshu Sharma
(2k21/SWE/12)

Under the supervision of

Mr RAHUL

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

MAY, 2023

i

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CANDIDATE’S DECLARATION

I, Kulanshu Sharma, Roll No 2k21/SWE/12 student of M.Tech. Software Engineering, hereby

declare that the project Dissertation titled “Voteroid Secure API Gateway Using Microservices

Architecture” which is submitted by me to the Department of Software Engineering, Delhi

Technological University , Delhi in partial fulfillment of the requirement for the award of the

degree of the Master in Technology, is original and not copied from any source without citation.

This work has not previously formed the basis for the award of any Degree , Fellowship or any

other similar recognition and title.

Place : New Delhi

Date : 22/May/2023 KULANSHU SHARMA

ii

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “ Voteroid Secure API Gateway using

Microservices Architecture ” which is submitted by Kulanshu Sharma, Roll no 2K21/SWE/12,

Software Engineering, Delhi Technological University , Delhi in partial fulfillment of

the requirement for the award of the degree of Master of Technology, is a record of the project

work carried out by the student under my supervision. To the best of my knowledge this

work has not been submitted in part or full for any Degree or Diploma to this University or

elsewhere.

Place : New Delhi Mr. RAHUL

Date : 22-May-2023 SUPERVISOR

ASSISTANT PROFESSOR

SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

iii

ABSTRACT

In the current era of increasing web and software development based on Microservices

Architecture , security concerns are also increasing to protect applications from malicious

activities, attacks, unauthorized and unauthenticated accesses. An API Gateway resolves that

problem to some extent. Various API Gateways are currently available to support various

security challenges. This Paper Proposed a System named VSAG (Voteroid Secure API

Gateway) which not just works on the cross cutting concerns but also provide advanced facilities

like Secured Access key generation, Users subscription model, low degree of coupling, Tracking

model of users, blocking/unblocking API’s or users. Developers are free to invest time in

designing business logics after mapped with VSAG System. At last, various API Gateways are

compared on various parameters and functionalities with VSAG.

The gateways which are compared with VSAG are Spring Cloud gateway, Zuul & NGNIX on

the parameters includes technology, routing, support of eureka naming server, support to web

sockets, degree of loose couplings, user subscription model, user authentication with JWT

Tokens, inbuilt API endpoint for license key generation for authorization purpose, inbuilt

tracking model of API users.

iv

ACKNOWLEDGEMENT

I would like to express my deep gratitude to my project guide Mr. Rahul, Assistant Professor,

Department of Software Engineering, Delhi Technological University, for his/her guidance with

unsurpassed knowledge and immense encouragement. We are grateful to Prof. Ruchika

Malhotra, Head of the Department, Software Engineering, for providing us with the required

facilities for the completion of the Dissertation.

We thank all the teaching faculty of the Department of Software Engineering, whose suggestions

and reviews helped us in accomplishment of our project. We would like to thank our parents,

friends, and classmates for their encouragement throughout our project period. At last, but not

the least, we thank everyone for supporting us directly or indirectly in completing this project

successfully.

KULANSHU SHARMA

v

CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

CHAPTER 1 INTRODUCTION 1

1.1 Microservices Architecture 2

1.2 API Gateway 3

1.2 Content Organization 4

CHAPTER 2 VSAG ARCHITECTURE 5

2.1 VSAG Components 6

2.1.1 Redis 6

2.1.2 Spring Cloud Config Server 6

2.1.3 Netflix Eureka Naming Server 7

2.2 Proposed Architecture 7

2.3 JSON web token as VSAG License key 8

2.3.1 Header Structure 8

2.3.2 Payload Structure 9

2.3.3 Signature Structure 9

CHAPTER 3 VSAG AUTHENTICATION TREE MODEL 13

3.1 Different paths of authentication tree model 14

3.1.1 Path B -> E -> H 14

3.1.1 Path A -> C -> F 15

3.1.1 Path A -> D -> C 15

3.2 Pros & Cons of paths of authentication tree model 16

3.3 Proposed Hybrid Approach 17

CHAPTER 4 VSAG IMPLEMENTATION MODEL 18

4.1 SAG Microservices 18

4.2 API Gateway Microservice 19

4.3 API Cluster Node Microservice 20

4.4 Client Microservice 20

4.5 User Microservice 21

4.6 Blockchain Technology 22

CHAPTER 5 SYSTEM NON FUNCTIONAL ANALYSIS 25

5.1 Traffic Estimate Calculation 25

5.2 Storage Estimate Calculation 25

5.3 Bandwidth Estimate Calculation 26

CHAPTER 6 CONCLUSION AND FUTUREWORK 27

Appendix-1 29

References 31

vii

LIST OF FIGURES

S.NO FIGURE DESCRIPTION PAGE NO.

1 Breaking of Monolithic to Microservice Architecture 3

2 VSAG High Level Design 5

3 VSAG License Key Structure 10

4 VSAG Authentication Tree 13

5 Path BEH Schema Attributes 14

6 SAG Functionalities Chart 19

7 VSAG Internal API Gateway Architecture 20

8 Client Microservice functionality chart 21

9 User Microservice functionality chart 22

10 Blockchain Implementation using hashmap 24

viii

LIST OF TABLES

S.NO TABLE DESCRIPTION PAGE
NO.

1 Estimated Calculated Values on Parameters 26

2 API Gateway Comparisons on Various Parameters 28

1

CHAPTER 1

INTRODUCTION

In the Microservice architecture design [2], different components are independently connected to

each other and also execute independently and communicated through message passing strategy

[3]. Scaling is quite easy in microservice architecture where any number of instances of services

can be increased according to the server load [4] and M. Song [11] also designed an auto scaling

system using kubernetes. Various big companies like Google, Amazon and Netflix are already

working on the microservice architecture. The design concept and strategy of microservice

architecture are proposed [5,6] in this study and background. K. Bakshi [9] in his article

compared the microservice architecture and monolithic architecture on categories like code and

understandability.

Esposito et al. (2017) discussed the impact of privacy, security and also discussed the current or

existing methods [7]. Securing microservices is a biggest challenge, Quy Nguyen [8] in his study

uses OAuth2 and Spring Security over the spring framework to secure the microservices.

An API Gateway is the entry point to enter into any application deployment which majorly

works on the throttling policies, authentication and authorizations [1]. Various types of API

Gateways are currently available and discussed [10]. API Gateway simplifies the communication

between end users and the application backend or application server. It also efficiently decreases

the quantity of remote calls between the backend server and the application [11]. API Gateway

acts as a shield to protect the application from unauthorized access, unauthenticated access,

various web attacks etc. In Microservices architecture, multiple services are developed which run

independently and API Gateway is the initial point for all these microservices to access.

2

This Paper proposes a system named Voteroid Secure API Gateway (VSAG) which is

responsible for securing the microservices and helps developers to work on the business logic

only. VSAG is a combination of various security mechanisms which make this system more

powerful and secure. JSON Web token authentication is used to authenticate the users. Spring

cloud config server is used for dynamic configuration of the system. Netflix Eureka Naming

Server is used as a load balancer and as a naming server. VSAG is implemented using spring

boot framework which uses hibernate for the database connectivity. Relational database Mysql is

used to store the API and users data.

The API hits or accesses can be controlled by introducing Rate Limiter in Voteroid secure API

Gateway system. Rate Limiter is responsible for stopping DDOS attacks on the applications. The

configuration of rate limiter includes multiple parameters like no. of users per second is allowed/

no. of requests per second allowed etc.

VSAG is an architecture inspired from the web server and application server participation to

separate application business logics from the client api’s and their handling for authorization and

authentication purposes. Load balancers must be placed in front of both the web server and the

application server to distribute the load according to the capacity of the instances of the

application. Application server layer will interact with different data servers or data centers

where the data is stored in multiple forms like in relational database management system

(RDMS) , Blob store (used to store large size files like videos and audio files), No SQL database

where scalability will not be an any issue.

1.1 MICROSERVICES ARCHITECTURE

Microservices refers to the concept where a very large application is divided into the small

services in logical fashion and these all services are connected to each other through standard

protocols or standard procedures. Various big IT Companies are shifting their monolithic

architecture to the microservices architecture. Microservices architecture will provide scalability

to the application, availability to the application. Fig. 1 shows the breaking of monolithic

3

architecture into the micro services architecture. A single monolithic service (node.js API

Service) is divided into the services like Users Service, Threads Service and Post Service. Users

service will handle all the responsibilities related to the users, threads service is responsible for

the management of all the application threads, posts service will be responsible for maintaining

the posts of users, the content present in the posts etc.

Fig 1.1.1 : Breaking of Monolithic to Microservice architecture

1.2 API GATEWAY

The API Gateway is the mechanism or system which provides the security, authentication,

authorization, cross cutting concerns and makes the application loosely coupled with all these

functionalities. There are various API Gateways which are present in the market which provide

various functionalities like spring cloud api gateway, zuul, NGNIX etc.

API Gateway is the intermediate point between the client requests and the application layer of

the system. All the client requests will pass through that gateway and based on certain protocols

the request will get accepted or rejected. Fig 1.2.1 shows the high level architecture of the api

gateway.

4

Fig 1.2.1 : High Level Architecture of API Gateways using JWT

1.3 CONTENT ORGANIZATION

The rest of the work is planned and organized as follows: Chapter II is VSAG Architecture

where the high level architecture of voteroid secure API gateway is discussed. Chapter III

focuses on the VSAG Authentication tree model where different authentication paths are

analyzed based on time and space complexities. Chapter IV focuses on VSAG Implementation

Model where different implementation models are discussed. Chapter V focuses on System Non

functional requirement analysis and Chapter VI marked the Conclusion with comparison of

multiple api’s like spring cloud gateway, NGNIX, Zuul.

5

CHAPTER 2

VSAG ARCHITECTURE

The High level design (HLD) of Voteroid secure API Gateway is shown in Fig. 2.1. The basic

components which are present in the design are Redis (A distributed cache), Eureka Naming

Server (Load balancer), Spring Cloud Config Server (Configuration service), database (Data

Storage) and a Git Repository.

Fig. 2.1 : VSAG High level design

6

2.1 VSAG COMPONENTS

Various Components are using and inter connected to each other for the implementation of

voteroid secure API gateway. These components are planned in spring boot microservices

architecture.

2.1.1 REDIS

Redis is a Remote Dictionary Server which acts like a cache in key-value format. Redis made

applications more scalable and reduced the user latency to a large extent. Redis is an open source

framework and used widely in various IT softwares to reduce the user latency. Redis will also

work very efficiently with distributed systems. Redis proved to be very efficient in accessing the

session data, user data, and caching data with minimum latency. As per stack overflow [21],

redis proved to be the most loveable and valuable database. Redis consists of a wide variety of

data sets and data structures to work with. These data structures include lists, sets, objects, array,

hashmap, hash table, json, strings etc. Redis plays major roles in various applications like

caching, chat, messaging, queues, gaming leaderboards, session storage, rich media streaming,

machine learning, geospatial, real-time analytics.

2.1.2 SPRING CLOUD CONFIG SERVER

Spring cloud config server plays a very vital role in the dynamic configuration of application

properties and settings of the application. All the microservices settings and properties can be

managed by spring cloud config server. All the properties are mapped with the properties files in

the github repository. The application will first hit the request to spring cloud config server to

fetch the application properties and then this server will hit the github repository for fetching the

application properties. It consists of various properties like server port, application service name,

expiry time of json web token, life of web sessions etc. It is an open source config server which

is currently widely used in various worldwide applications.

7

2.1.3 NETFLIX EUREKA NAMING SERVER

The Netflix Eureka Naming server was first discovered by Netflix to enhance their

application on increasing the size of data and requests. After a few years, Netflix made this open

source in the community. Netflix eureka naming server will act as a load balancer as well as

service discovery for the services present or deployed in the system. It monitors the information

regarding all the available instances of the running services of the application. It shows various

information like the instance UP/DOWN status, server IP address of all instances etc.

2.2 PROPOSED ARCHITECTURE

VSAG (Voteroid Secure API Gateway) is connected to four major components which helps

the gateway to work more dynamically, gives better response time, enhances security, allows

runtime configuration changes etc.

Karl Pauls in his paper [12] describes a project, called Eureka, that Works to simplify the

resource or instance management process by developing a resource discovery service to locate

required service resources when deploying a service. Eureka Naming Server is used as a load

balancer with multiple instances of VSAG in running states and it also provides the User

Interface for the number of instances running or in dead state. Eureka Naming Server also

provides the generalized configuration for the microservices without mentioning their instances

port number and IP addresses.

Spring Cloud Config Server is responsible for the runtime or dynamic changes in the VSAG

Configuration. Configuration includes user permissions, server configuration, JSON web token

authentication key and much more. It is then connected to the Git Repository where all

configurations can be defined or inserted without restarting the VSAG application.

Redis is used as an internal fast memory access tool and database is used to store the license key

details with the user permissions. Redis is a very famous In-memory key- value storage system.

8

Latest Releases of Redis stored data in the distributed nodes which helps to support large data

storage capacity but its performance is limited to the decentralized design as to serve a client

request, client usually requires two connections. Shanshan Chen in his study [13] proposes a

method which is based on client side key-to-node caching that can help to direct requests to the

right service node and makes the system more scalable.

2.3 JSONWEB TOKENS AS VSAG LICENSE KEY

VSAG License Key structure as shown in Fig 2.2 is created as a JSON Web token. JSON Web

token consists of three parts which are separated by a dot (.). First part is called a header, the

second part is called a payload and the third part is called a signature [17,18].

2.3.1 : HEADER STRUCTURE

The Structure of Header contains information related to the -

1) Type of token : ‘typ’

2) Signed algorithm : ‘alg’

Header = Base64Encoded({

“typ” : “jwt”,

“alg” : “HMAC”

})

9
2.3.2 : PAYLOAD STRUCTURE

The Structure of Payload contains claims related information -

1) Registered Claims : ‘exp’ , ‘auth’ etc.

2) Private Claims : used to identify the user

3) Public Claims

Payload = Base64Encoded({

“exp” : “11/03/2023 04:24:10 ”,

“sub” : “JWT payload subject”,

“userId” : “Specific Id”
….

})

2.3.1 : SIGNATURE STRUCTURE

The Signature Part of JSON Web token plays a very vital role in License Key user authentication

and verification -

Signature = Base64Encoded ((Base64Encoded(Header) +

Base64Encoded(payload)) + signed with secret key using algorithm ‘alg’)

The VSAG License Key Contains the basic information of the user to whom the license key

belongs. This information is stored in the payload part of a JSON web token. Subject is a

registered claim which signifies the unique id of an user. User Name is the License Key owner

name. Other information which is stored in the license key is shown in Fig 2.2.

Various fields present in the License key of the Voteroid secure API gateway are Subject which

is basically a User Id to whom that license key belongs, User name is the name of the owner of

that license key , Created On is the date when the license key is generated, Expiry date is the

10

validity of the license key, hits limit per day is basically the rate limiter on the user requests that

are allowed per day. API Provider is the owner party of the API whose access is given to the user

via license key, token id is the unique id of the license key which is generated by the system.

Web tokens play a very vital role in the security, authentication and authorization in web service

API. various types of web tokens are present like JSON (Javascript object Notation),

SAML (Security Assertion Markup Language). JSON web token will be used in the proposed

system as when SAML web token is encoded then it results in longer string length as compared

to the JSON. Moreover JSON web tokens can be sent through HTTP Header, in URL, in

POST request parameters because of the compact and small size..

Fig 2.2 : VSAG License Key Structure

11

Why is JSON Web token based authentication chosen over HTTP Session based

authentication ?

HTTP Sessions are stored on the server side and the session key is maintained on the client side.

Suppose 1 million users are logged in into the application but are not performing any activities

and sitting idle. Their data is still present on the session (meaning in server memory) until the

session has not expired,so it creates overhead on the server in respect of memory usage and will

result in scaling issues if users are increasing continuously. whereas JSON web tokens are stored

on client side only and if the user is not performing any activity after logged in then as data is

present in token (means on client's browser and not on server) so it removes the memory

overhead on server.

Why is Restful web service chosen over other web services ?

The Proposed system will use Restful Web Service rather than SOAP-based Web Service as

Abhijit Bohra [28] in his study concludes that Restful web service architecture shows faster

performance in respect of response time as compared to SOAP-based web service architecture.

He also concludes that the devices that contain relatively lower hardware resources(such as hand

held mobile devices) than server machines will perform better with Restful web services based

architecture.

Why are JSON web tokens chosen over other web tokens ?

Web tokens play a very vital role in the security, authentication and authorization in web service

API. various types of web tokens are present like JSON (Javascript object Notation), SAML

(Security Assertion Markup Language). JSON web token will be used in the proposed system as

when SAML web token is encoded then it results in longer string length as compared to the

JSON. Moreover JSON web tokens can be sent through HTTP Header, in URL, in POST request

parameters because of the compact and small size [30,31,39].

12

Web engineering in India is growing at a very fast pace because of the increasing number of web

users due to growing internet connectivity. It also results in increasing competition among the

software companies working on similar products with respect to the number of users accessing

their website. According to [26], the best way to increase the users accessibility or attract

customers on your website is through best user interface and user experience. UI/UX plays a

very important role in designing web applications and due to huge competition user interface

design is changing day by day on a large scale to meet the user friendly experience and to attract

more users. So, the UI/UX part of the web application needs to change frequently as compared to

the server (back-end) part of the application. The application must be loosely coupled with these

two parts and according to Cesare Pautasso [27] loose coupling in the application can be

achieved by introducing Web Service API’s. The User Authentication using JSON Web token is

secured and provides stateless web service [37,38].

13

CHAPTER 3

VSAG AUTHENTICATION TREE MODEL

In Fig 3.0 Different paths are possible for SAG Authentication for the Users to Grant or Reject Access to
any API. It plays a vital role as a subscription model.

Fig 3.0 : VSAG Authentication Tree Model

Multiple paths can be possible from root node to the leaf node in above voteroid secure API gateway
authentication tree model.

14

3.1 DIFFERENT PATHS OF AUTHENTICATION TREE MODEL

Different Authentication paths will be analyzed to find the most optimized path in terms of time
complexity, code complexity and space complexity.

3.1.1 : PATH B ->E -> H

In BEH Path, all the user’s License Key’s (JWT Token) are signed with different and unique

secret keys (one - to - one mapping) and mapping of license key and secret key is stored inside

the database. The common attributes of that particular schema are shown in fig 2.2.

Composite Indexing on License Key attribute and API attribute is made to optimize the search

query.

License Key API Secret Key

Fig 3.1.1 : Path BEH Schema Attributes

The License Key attribute will store only payload and signature part of JWT Token as Header

part is almost similar for all the JWT tokens as they are generated with the same signed and

encoded algorithm with ‘JWT’ as a type of token used. When a user wants the access of a

particular API, a specific license key is generated with a unique secret key and the mapping gets

stored in the database with attributes license key, API, Secret Key. Later, when the user

demands the access of that particular API, the user passes the generated license key in the

request header for Authentication and Authorization. Authorization is achieved by seeking the

available record of that particular license key and API ID from the database. If the record is

found then the user is successfully authorized and the derived secret key will be used for

authentication purposes. This approach looks like a brute - force approach for authentication

and authorization of a user via license key.

15

3.1.2 : PATH A -> C -> F

In ACF Path, all the user’s License Key’s (JWT Token) are signed with the same and only one

secret key for the entire VSAG Gateway application. The mapping relationship between the

secret key and license key is one - to - many mapping. A license key will be generated with the

a common secret key and a random UUID token id is created for each unique license key and

stored in the payload section of it (which is basically a JWT token).

This Common Secret key is used for the Authentication of all user’s license key’s and for

authorization purposes, a separate database table will be created to store the mapping information

of license key token ids with the API Id’s that users have access to. A Database Search query is

hit to know whether any particular record for given token id and api id is present in the database

or not. If it is present, access is granted otherwise authorization is rejected with 401 Http Status

Code.

3.1.3 : PATH A -> D -> G

In ADG Path, all the user’s License Key’s (JWT Token) are signed with the same and only one

secret key for the entire VSAG Gateway application. The mapping relationship between the

secret key and license key is the same as in ACF Path i.e. one - to - many mapping. A license

key will be generated with the common secret key and a random UUID token id is created for

each unique license key and stored in the payload section of it (which is basically a JWT token).

This Common Secret key is used for the Authentication of all user’s license keys, same as done

in ACF Path but for authorization purposes instead of creating and storing the token id and api

id mapping relationship into the database tables, all valid and allowed api id’s get stored inside

the license key only. Once the license key is authenticated, its allowed api id’s will be retrieved

from the license key payload section and grant access if a particular required api id is present in

it or not. If it is present, access is granted otherwise authorization is rejected with 401 Http

Status Code.

16

Now, pros and cons of following paths is discussed -

3.2 PROS & CONS OF THE PATHS OF AUTHENTICATION TREE MODEL

Various pros and cons of the above discussed path of authentication tree model are possible

based on their complexities, database calls etc.

B->E->H Path

Pros :

One License Key can store a large number of API's to access.

Cons :

1) Slower route then (ADG) path as Database Call is Required.

2) More Complex Handling then ACF path.

A->C->F Path

Pros :

One License Key can store a large number of API's to access.

Cons :

Slower route then (ADG) path as Database Call is Required.

A->D->G Path

Pros :

Fastest route as no database call is required.

Cons :

Very Limited API's can be accessed by one License key (as token size get

increased in increasing api's count)

17

Our Proposed system will follow the hybrid approach as discussed in the next section where the

basic algorithm is designed.

3.3 PROPOSED HYBRID APPROACH

Our Proposed System VSAG is using the hybrid approach of both ADG path and ACF path.

if(licenseKey contains <= 20 API's access)

Path ADG is Used

Else if(licenseKey contains > 20 API's access)

Path ACF is used

If the API’s list in license key contains more than 20 api accesses then Path ADG will be

followed where all the user’s License Key’s (JWT Token) are signed with the same and only one

secret key for the entire VSAG Gateway application. The mapping relationship between the

secret key and license key is the same as in ACF Path i.e. one - to - many mapping. A license key

will be generated with the common secret key and a random UUID token id is created for each

unique license key and stored in the payload section of it (which is basically a JWT token).

If the API’s list of license keys exceeds 20 api accesses then the Path ACF is followed where all

the user’s License Key’s (JWT Token) are signed with the same and only one secret key for the

entire VSAG Gateway application. The mapping relationship between the secret key and license

key is one - to - many mapping. A license key will be generated with them a common secret

key and a random UUID token id is created for each unique license key and stored in the payload

section of it (which is basically a JWT token).

18

CHAPTER 4

VSAG IMPLEMENTATION MODEL

Various systems were already designed which were based on micro services spring boot

architecture. Hatma Suryotrisongko [14] designed and developed a backend application for

public complaint systems by using spring boot microservice.Carlos M. Aderaldo [15] discussed

the benchmark requirements for micro-services research.Satish Reddy Modugu [16] implements

the Internet of things application based on REST Architecture and Spring Boot Microservices.

VSAG implementation is done through Seven java spring boot based micro services. These

Micro services are named as :

1) SAG Microservice

2) API Gateway Microservice

3) Client Microservice

4) User Microservice

5) API Cluster Node Microservice

6) SpringBoot Cloud Config Server Microservice

7) Netflix Eureka Naming Server Microservice

4.1 SAG MICROSERVICES

SAG (Secure API Gateway) is the heart of the VSAG Implementation. The

functionalities that this microservice provides includes VSAG License Key Generation, Standard

API Registration, Fetching Client’s Registered API’s, block/unblock new subscription on

particular api, fetching all license keys for particular clients with the permissions specific to

users. This microservice provides the main building blocks of the voteroid secure API gateway

19

architecture using microservices architecture. Multiple instances of this service need to be

created as this service will handle millions of requests.

Fig 4.1.1 : SAG Functionalities Chart

4.2 API GATEWAYMICROSERVICE

API Gateway Microservice is the gateway for authentication and authorization of VSAG

Users or Clients Only. It is also called the Internal Gateway of VSAG to authenticate all seven

microservices. Fig 4.2 shows the architecture of VSAG Internal API Gateway.

20

Fig 4.2.1 : VSAG Internal API Gateway

4.3 API CLUSTER NODE MICROSERVICES

API Cluster Node Microservice is responsible for storing the entire details of the registered

API’s by VSAG Clients. Details includes all Request/Response header details, path variables

details, query parameters details, Request/Response body details etc. All details get stored in the

database which can be retrieved back according to the query. Java Based Hibernate and JPA

library is used with Mysql relational database to perform these operations.

4.4 CLIENT MICROSERVICE

VSAG has multiple clients that want to secure their api’s via VSAG. Client Microservice

provides the platform and user interface for the client to register themselves, choose appropriate

VSAG security plans, register api’s and maintain their user access to these client API’s. They can

also monitor and control the user traffic on particular API’s registered by them through the Client

User interface Panel. They can block/unblock users as well.

21

Fig 4.3.1 : Client Microservice functionality chart

4.5 USER MICROSERVICE

VSAG can have multiple clients and multiple clients can have their own multiple users who

can access their registered api’s. These Users are managed by the User Microservice. It provides

various functionalities like user registration, visibility of clients available api’s, choose

subscription plan managed by clients for particular api’s, manage different license keys available

for that particular user etc.

22

Fig 4.4.1 : User Microservice functionality chart

SpringBoot Cloud Config Server Microservice and Eureka Netflix Naming server are used for

dynamic managing VSAG Configurations and load balancing of multiple instances of VSAG

respectively.

4.5 BLOCKCHAIN TECHNOLOGY

Blockchain nowadays is a leading technology which is based on the distributed ledger

mechanism . There are various applications of blockchain technology which enhance the security

system of the application, making the system immutable so that no one can change the content of

data after the data gets uploaded on blockchain. Many industries are currently using blockchain

for multiple purposes in the field of energy consumption, in the field of health care where

patients data and medical history get stored on the blockchain distributed ledger.

Blockchain is currently playing a major role in the field of energy sector as it uplifts the

applications based on sharing economy and also benefits small renewable generators and

potential consumers to play a vital role in the market of energy and renewable resources [20].

Blockchain also had a great impact on the field of Supply Chain Management where it

successfully reduced the role of middleman and brokers from the process [21]. The Healthcare

industry is also improved a lot by introducing blockchain technology for storing the patients

related medical data and managing electronic health records [22,24]. Blockchain also had a great

23

impact on Post Covid Management like contact tracing, vaccine management, disaster relief

management etc. and also proposes models to handle Covid pandemic. [23,25].

In cryptocurrency, blockchain proved to be a more secure and scalable technology and is gaining

huge importance in recent years because of its distributed ledger nature and immutability nature.

Blockchain is a chain of multiple blocks in which the calculated hash of one block is stored in

the previous hash section of the next block. In this way, if anyone wants to alter any block of

blockchain then the hash value verification will fail and all the succeeding blocks will get

invalid.

Blockchain consists of the blocks connected through each other by cryptographic hash functions.

Next block contains the hash of the previous block and goes on. In our proposed system the

major data structures used to develop the blockchain is Hash map and double linked list. The

values part of hashmap (also called as block) is connected through a double linked list with the

next block containing the hash of the previous block to develop the blockchain as shown in the

fig 4.5.1.

Hash map is a data structure based on key value pairs and the search operation normally takes

O(1) time complexity if the key is known to us. No specific order of data values are maintained

in the hash map. To make data values/nodes in specific order, a double linked list data structure

is used to connect values/nodes of the hashmap.

24

Fig 4.5.1 : Blockchain Implementation Using Hash Map

25

CHAPTER 5

SYSTEM NON-FUNCTIONAL REQUIREMENT ANALYSIS

In VSAG, New API Registration count will be much lesser as compared to the old API’s
access/usage and redirection request. This read-write ratio will be estimated as 1000:1 (Means in
a particular interval of time, 1 new API is registered and 1000 API access requests are received).

5.1 TRAFFIC ESTIMATE CALCULATION

The VSAG system is planned to control a maximum 10 thousand new API registrations per
day. So, total read operations (API accesses) will be 1 Million per day.

No. of read operations per day = 10K *1K => 1M

Traffic of API Registration per minute = 10K/24*60 => 7 API’s/Min

Traffic of API Access per minute = 1M/24*60 => 7000 API’s/Min

So, the traffic for New API Registration is 7 API’s/Min and for API’s Access is 7000 API’s/Min.

5.2 STORAGE ESTIMATE CALCULATION

VSAG system is using a relational database mysql which stores the details of API’s into a
relational table. 2048 bytes are consumed as storage for new entries of the API into the database
table. System is expected to store API’s for 10 years.

Total API’s created in 10 years = 10K * 30 days * 12 months * 10 years = 3,6000K API’s

Total Storage needed for 10 years = 3,6000K * 2048 bytes = 68.66 GB

26
Approximately, 68.66 GB Storage space is required to store API details inside the database.
Adding other storage requirements for user and client details, approx. 80 GB of storage is
required.

5.3 BANDWIDTH ESTIMATE CALCULATION

For the New API Registration (write request) system is expecting 7 New APIs per minute.

Total incoming data bandwidth required = (7/60 seconds)*2048 bytes => 0.23 KB/sec

Total outgoing data bandwidth required =(7000/60 seconds)*2048 bytes =>0.23 MB/sec

TABLE 1 Estimated Calculated Values on Parameters

Estimate Parameter Estimate Calculated

New API Registration Traffic 7 API’s/Min

API Access & Redirect Traffic 7000 API’s/Min

Storage needed for 10 years 80 GB

Incoming data bandwidth 0.23 KB/sec

Outgoing data bandwidth 0.23 MB/sec

27

CHAPTER 6

CONCLUSION AND FUTURE WORK

API Gateway is the initial point of contact between user and business layer(back-end layer) and

it is responsible for various security and cross cutting concerns. Various API Gateways are

Compared on different parameters that are shown in Table 2. Voteroid Secure API Gateway

provides advanced facilities which will help developers to work on their business logic rather

than caring for other security concerns. VSAG System design worked on Java Based Technology

which supports Eureka Naming Server, supports long lived connections, provides low degree of

coupling, provides user subscription model with effective user interface, provides user

authentication with JWT tokens and also provides inbuilt tracking model of API’s.

Various API gateways are compared based on different parameters like technology, routing,

support of eureka naming server, support to web sockets (long lived connections), degree of

loose coupling, user subscription model, User authentication with jwt tokens, inbuilt tracking

model of API Users etc.

In Future our aim is to integrate VSAG with Kubernetes which will manage service instances

more efficiently and effectively. Blockchain as a distributed ledger[19] can be introduced to

verify the user authentication data and enhance the security of the system to a larger extent.

28

TABLE 2 Estimated Calculated Values on Parameters

Operations Zuul NGNIX Spring Cloud
Gateway

VSAG

Technology Java Based C/C++ Based Java Based Java Based

Routing Yes Yes Yes Yes

Support Eureka
Naming Server

Yes Need Huge
Configurations

Yes Yes

Support to Web
Sockets (long
lived connections)

No No Yes Yes

Degree of loose
coupling

Low Relatively High Low Low

User Subscription
Model

No No No Yes

User
Authentication
with JWT Tokens

Need Developer
Support

Need Developer
Support

Need Developer
Support

In-built

Inbuilt API
Endpoint for
License Key
Generation for
authorization
Purpose

No No No Yes

Inbuilt Tracking
Model of API
Users

No No No Yes

29

APPENDICES - 1

1.1 ECLIPSE

Eclipse is a developing tool for java and all is framework. Eclipse is an open source

framework which is owned and managed by Oracle. Various functionalities are provided by

eclipse for the smooth development of java based applications. Various frameworks that are

supported by eclipse includes :

● Spring boot

● Hibernate

● Java Server Pages (jsp’s)

● Servlet’s

● EJB

● Swings

● GWT

Eclipse workspace also supports a variety of web servers and application servers. Web

server includes Apache Tomcat which is a very famous and mostly used web server.

Application server includes wildfly, jboss and glassfish.

1.2 APACHE TOMCAT

Apache tomcat is an open source web server which is currently widely used by various

corporations or organizations. Web applications can easily deploy in the web server apache

tomcat and can also deploy all dependencies. Various major directories apache tomcat folder

contains :

● lib

● conf

● bin

30

● logs

● temps

● webapps

● work

Webapps is the directory where applications can be deployed with all its dependencies.

1.3 JDK (JAVA DEVELOPMENT KIT)

JDK is the heart and brain of the JAVA Programming language which is responsible for both

java application development and java application deployment. Various versions of jdk are

currently available in the market from java 6 to java 17. JDK is maintained and owned by Oracle

and it is an open source tool for JAVA development. Java can support a wide range of

applications from small enterprises to large enterprises and can handle a large number of users.

JDK provides various libraries through which the application can integrate with other multiple

frameworks and tools. Java is very rich in the set of libraries which includes mailing libraries,

sending SMS libraries, database connectivity libraries through database drivers which includes

JDBC (JAVA Database connectivity).

31

REFERENCES

[1]. Siriwardena, P. (2020). Edge Security with an API Gateway. In: Advanced API Security.

Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-2050-4_5

[2]. M Fowler and J Lewis. Microservices. ThoughtWorks, 2014.

[3]. Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio

Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today, and tomorrow.

CoRR, abs/1606.04036, 2016.

[4]. Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro, and Fabrizio

Montesi. Self-reconfiguring microservices. In Theory and Practice of Formal Methods, pages

194–210. Springer, 2016.

[5]. Pan Xiaoyang, Huang Xiaofang. Design [J].] of security control mechanisms for

micro-service frameworks Journal of Southwest University of Science and Technology.

[6]. Han Daoqi. Design of Micro-Service Architecture and Security System [J].] and Electronic

Technology and Software Engineering ,2019,000(002):199-201.

[7]. Esposito C, Castiglione A, Tudorica C A, et al.Security and privacy for cloud-based data

management in the health network service chain: a microservice approach[J]. IEEE

Communications Magazine, 2017,55(9): 102-108.

[8]. Nguyen Q, Baker O F. Applying Spring Security Framework and OAuth2To Protect

Microservice Architecture API[J]. JSW,2019,14(6): 257-264

[9]. K. Bakshi, “Microservices-based software architecture and approaches,” IEEE Aerosp. Conf.

Proc., 2017

[10]. Zhao, J & Jing, S & Jiang, L. (2018). Management of API Gateway Based on

Micro-service Architecture. Journal of Physics: Conference Series. 1087. 032032.

10.1088/1742-6596/1087/3/032032.

[11]. M. Song, C. Zhang and E. Haihong, "An Auto Scaling System for API Gateway Based on

Kubernetes," 2018 IEEE 9th International Conference on Software Engineering and Service

Science (ICSESS), 2018, pp. 109-112, doi: 10.1109/ICSESS.2018.8663784.

[12]. Pauls, K., Hall, R.S. (2004). Eureka – A Resource Discovery Service for Component

Deployment. In: Emmerich, W., Wolf, A.L. (eds) Component Deployment. CD 2004. Lecture

Notes in Computer Science, vol 3083. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-24848-4_11

[13]. S. Chen, X. Tang, H. Wang, H. Zhao and M. Guo, "Towards Scalable and Reliable

In-Memory Storage System: A Case Study with Redis," 2016 IEEE Trustcom/BigDataSE/ISPA,

Tianjin, China, 2016, pp. 1660-1667, doi: 10.1109/TrustCom.2016.0255.

[14]. Hatma Suryotrisongko, Dedy Puji Jayanto, Aris Tjahyanto, “Design and Development of

Backend Application for Public Complaint Systems Using Microservice Spring Boot”,

Procedia Computer Science, Volume 124, 2017, Pages 736-743, ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2017.12.212.

[15]. C. M. Aderaldo, N. C. Mendonça, C. Pahl and P. Jamshidi, "Benchmark Requirements for

Microservices Architecture Research," 2017 IEEE/ACM 1st International Workshop on

Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering

(ECASE), Buenos Aires, Argentina, 2017, pp. 8-13, doi: 10.1109/ECASE.2017.4.

https://doi.org/10.1007/978-3-540-24848-4_11
https://doi.org/10.1016/j.procs.2017.12.212

[16]. Modugu, S.R., Farhat, H. (2020). Implementation of the Internet of Things Application

Based on Spring Boot Microservices and REST Architecture. In: Silhavy, R., Silhavy, P.,

Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020.

Advances in Intelligent Systems and Computing, vol 1294. Springer, Cham.

https://doi.org/10.1007/978-3-030-63322-6_3

[17]. Introduction to JSON web tokens. https://jwt.io/introduction/

[18]. JSON web token (JWT). https://tools.ietf.org/html/rfc7519.

[19]. Gomber, P. ”Hinz-O. Nofer M. Schiereck D.,‘Blockchain’.” Springer 59.3 (2017): 183-187.

[20] Andoni, Merlinda, et al. "Blockchain technology in the energy sector: A systematic review

of challenges and opportunities." Renewable and Sustainable Energy Reviews 100 (2019):

143-174.

[21] Saberi, Sara, et al. "Blockchain technology and its relationships to sustainable supply chain

management." International Journal of Production Research 57.7 (2019): 2117-2135.

[22] Tandon, Anushree, et al. "Blockchain in healthcare: A systematic literature review,

synthesizing framework and future research agenda." Computers in Industry 122 (2020): 103290.

[23] Kalla, Anshuman, et al. "The role of blockchain to fight against COVID-19." IEEE

Engineering Management Review 48.3 (2020): 85-96.

[24] Al Mamun, Abdullah, Sami Azam, and Clementine Gritti. "Blockchain-based Electronic

Health Records Management: A Comprehensive Review and Future Research Direction." IEEE

Access (2022).

[25] Sharma, Abhishek, et al. "Blockchain technology and its applications to combat COVID-19

pandemic." Research on Biomedical Engineering (2020): 1-8.

https://jwt.io/introduction/
https://tools.ietf.org/html/rfc7519

[26] Eugeniu Cozac, ”The importance of UI/UX in attracting customers” April 1 2021,

URL:https://eugeniucozac.medium.com/the-importance-of-ui-ux-in-attracting-customers-f6db05

2243ba

[27] Pautasso, Cesare & Wilde, Erik. (2009). Why is the Web Loosely Coupled? A

Multi-Faceted Metric for Service Design. 18th International World Wide Web Conference.

911-920. 10.1145/1526709.1526832.

[28] Bora, Abhijit, and Tulshi Bezboruah. "A comparative investigation on implementation of

RESTful versus SOAP based web services." International Journal of Database Theory and

Application 8.3 (2015): 297-312.

[29] Giessler, Pascal, et al. "Best practices for the design of restful web services." International

Conferences of Software Advances (ICSEA). 2015.

[30] Calles M.A. (2020) Authentication and Authorization. In: Serverless Security. Apress,

Berkeley, CA. https://doi.org/10.1007/978-1-4842-6100-2_9

[31] JSON web tokens, URL: https://auth0.com/docs/secure/tokens/json-web-tokens

[32] Cosmina I. (2020) Aspect-Oriented Programming with Spring. In: Pivotal Certified

Professional Core Spring 5 Developer Exam. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-5136-2_4

[33] Prasad Reddy K.S. (2017) Web Applications with Spring Boot. In: Beginning Spring Boot

2. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-2931-6_10

[34] M. P. Hossain, M. Khaled, S. A. Saju, S. Roy, M. Biswas and M. A. Rahaman, "Vehicle

Registration and Information Management using Blockchain based Distributed Ledger from

Bangladesh Perspective," 2020 IEEE Region 10 Symposium (TENSYMP), 2020, pp. 900-903,

doi: 10.1109/TENSYMP50017.2020.9230781.

https://eugeniucozac.medium.com/the-importance-of-ui-ux-in-attracting-customers-f6db052243ba
https://eugeniucozac.medium.com/the-importance-of-ui-ux-in-attracting-customers-f6db052243ba
https://doi.org/10.1007/978-1-4842-6100-2_9
https://auth0.com/docs/secure/tokens/json-web-tokens
https://doi.org/10.1007/978-1-4842-5136-2_4
https://doi.org/10.1007/978-1-4842-2931-6_10

[35] Benarous, Leila, et al. "Blockchain‐based forgery resilient vehicle registration system."

Transactions on Emerging Telecommunications Technologies (2021): e4237.

[36] Nofer, M., Gomber, P., Hinz, O. et al. Blockchain. Bus Inf Syst Eng 59, 183–187 (2017).

https://doi.org/10.1007/s12599-017-0467-3

[37] M. Haekal and Eliyani, "Token-based authentication using JSON Web Token on SIKASIR

RESTful Web Service," 2016 International Conference on Informatics and Computing (ICIC),

2016, pp. 175-179, doi: 10.1109/IAC.2016.7905711.

[38] S. I. Adam, J. H. Moedjahedy and J. Maramis, "RESTful Web Service Implementation on

Unklab Information System Using JSON Web Token (JWT)," 2020 2nd International Conference

on Cybernetics and Intelligent System (ICORIS), 2020, pp. 1-6, doi:

10.1109/ICORIS50180.2020.9320801.

[39] Lakshmiraghavan, B. (2013). Web Tokens. In: Pro ASP.NET Web API Security. Apress,

Berkeley, CA. https://doi.org/10.1007/978-1-4302-5783-7_10

[40] A Rahmatulloh et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 550 012023

https://doi.org/10.1007/978-1-4302-5783-7_10

		2023-05-26T12:43:16+0530
	Rahul

		2023-06-01T12:41:45+0530
	Kulanshu Sharma

