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ABSTRACT 

The classification of land cover and land use (LCLU) from remotely sensed imaging data has been 

a motivating area of study. LCLU data includes dynamic remote sensed images that exhibit 

inconsistencies due to limitations in sensor technology, seasonal changes, and spatial distance. The 

LCLU classification problem has recently been solved with the help of deep learning, an 

advancement in machine learning and artificial intelligence (AI). Recently, deep learning 

classification systems have been recognized as a powerful and popular modeling tool for extracting 

hidden information from remote sensing data for LCLU classification in the observed earth 

environment. Since the LCLU classification system is based on deep learning, it is important to 

look into these methods for environmental control, environmental management, agricultural 

decisions, and urban development. 

For the LCLU classification issue, we collected data from publicly available sources and 

developed deep learning strategies employing convolutional neural networks, transfer learning, 

and pretrained networks. Many recent studies have examined deep convolutional neural networks 

in remote sensing categorization, with the networks having been trained using pretrained networks. 

However, this has not been extensively explored because of the time and processing power 

required to train convolutional neural networks for remotely sensed images. In order to classify 

LCLUs in the University of California Merced (UCM) dataset, we used hyperparameters, 

regularization, and early stopping in a convolutional neural network feature extractor (CNN-FE) 

deep learning approach. In order to ensure cross-domain generalizability, we retrained the CNN-

FE model using the SIRI-WHU dataset and used the same hyperparameters to build the VGG19 

pretrained feature extractor model. However, the training period for CNN model is very long. Deep 

transfer learning (TL) modeling, which makes use of pretrained models to quickly build TL 

models, could be used to solve this issue. The use of DL and machine learning techniques for 

image classification has recently shifted its focus to transfer learning. And the pretrained networks 

are efficient. Using various remote sensed hyperspectral images, we developed convolutional 

neural network–based pre–trained models for LCLU classification, such as EfficientNetB7, 

InceptionV3, and MobileNet deep learning models. 
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We compared the results from the state-of-the-art studies and other built models with those from 

the UCM, SIRI-WHU, and RSSCN7 datasets after building and training the DL models on those 

datasets. The first experiment was designing CNN-FE. Results in this experiment showed 

performance improvements for the CNN-FE model when compared to state-of-the-art baseline 

studies and the VGG-19 pretrained model. Additionally, the CNN-FE model's performance was 

better when trained on the UCM dataset compared to when trained on the SIRI-WHU dataset. The 

second experiment was building the TL model. We used the InceptionV3, Resnet50V2, and 

VGG19 pretrained models for LCLU classification in the UCM dataset, with the TL model trained 

with bottleneck feature extraction. Based on these experiments, the TL model was developed, with 

improved results of 92.46, 94.38, and 99.64 in Resnet50V2, InceptionV3, and VGG19, 

respectively. The third experiment was the comparative evaluation of the CNN-FE and TL with 

fine-tuning. In this experiment, the fine-tuning model has outperformed the CNN-FE and TL in 

both the UCM and SIRI-WHU datasets. The fourth experiment was building the DL models, such 

as EfficientNetB7, InceptionV3, and MobileNet, for different datasets of UCM, SIRI-WHU, and 

RSSCN7 that have distinct parameters. In accuracy performance, the MobileNet outperformed the 

competition on the UCM and SIRI-WHU datasets, while EfficientNetB7 performed better on the 

RSSCN7 dataset. We also found that the dataset had an effect on the model's efficiency, with the 

UCM dataset outperforming the SIRI-WHU and RSSCN7 datasets across the board in terms of 

most measurement measures. The findings of this study indicated that it could provide significant 

benefits to remote sensing communities and decision-makers. The need for a powerful processing 

unit and the limited time frames caused by COVID-19 were the major challenges and limitations 

of this research. Based on these challenges, we have come up with some recommendations for the 

future, such as using a more powerful processor to improve the performance of DL models and 

applying DL hyperparameters to the domain area.   

 

Keywords: convolutional neural network, deep learning, end-to-end learning, land cover and use 

classification, performance evaluations, pretrained model, remote sensed image, transfer learning. 
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1. INTRODUCTION 

 

1.1 Land Cover and Land Use (LCLU) Classification 

 

The land itself is a natural resource because it is the medium of existence for all earthly things, 

both living and nonliving. Potential components are land cover and land use (LCLU). While land 

cover is a naturally occurring occurrence on Earth, land use is the result of human intervention in 

order to use the land cover to the best possible advantage. The classification of LCLU is a difficult 

phenomenon in RS that hinders effective management of the Earth's ecosystems. Features on Earth 

are described and extracted from satellite data using LCLU. Land cover characterizes the earth's 

surface in terms of its physical features, while land use describes the socio-economic function of 

a certain area of land [1]. 

Satellite data is earth geospatial data with metadata. The metadata of satellite images describes the 

location of objects on Earth. Spatial data, often known as geospatial data, is information about 

locations and their features. It keeps tabs on data pertaining to the natural world. Because land 

cover is a continuous representation of spatial data, it is useful for making decisions based on the 

LCLU classification system when it is well organized and interpreted. Objects inside a geographic 

system include the earth and everything on it, including trees, buildings, rivers, grasslands, and 

people, which are all examples of objects for RS data collected from the earth’s environment. 

LCLU is the extraction of features in the land from RS data, such as residential areas, rivers, 

grasslands, forests, and the like. The extraction of land features from RS data is a crucial part of 

urban and agricultural planning and decision-making. 

In general, RS is the acquisition of information about any phenomenon without making physical 

contact with the object; simply put, it is an onsite observation on the earth. It's the practice of 

identifying and categorizing terrestrial features using data collected by sensors deployed from 

spacecraft or airplanes. Geography, geoinformatics, AI, planning, and humanitarians are some of 

its subject areas, while agriculture, healthcare, LCLU categorization, environmental monitoring, 

climate change, geographic information systems (GIS), and urban planning are just a few of the 

domain areas that can benefit from this field of study. It is possible to apply DL techniques to 

create LCLU classification intelligent systems. There are publicly available RS datasets used to 

design this LCLU classification system. 
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Agricultural spots, healthcare, language analysis, and image processing are all possible application 

areas for DL techniques. Based on our examination of the existing literature, we have identified 

three research gaps where more investigation is needed. Therefore, we plan to use DL techniques 

for LCLU classification in RS image datasets.  

1.2 Deep Learning Techniques 

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have emerged as major 

fields of study applied in many domain areas in recent years. AI is a broad area of research into 

the development of intelligent software. The term "ML" is commonly used to describe the 

evolution of AI-related system capabilities. Thus, ML approaches, where a computer learns from 

incoming data and increases its efficiency and effectiveness, have made AI a prominent research 

subject. AI has the potential to significantly alter many industries, including agriculture, the earth’s 

environment, transportation, healthcare, language analysis, and the media. 

Therefore, "ML" refers to the theory, practice, and method of modeling and analyzing the data-

driven computer learning process. When it comes to data management, ML approaches can be 

broken down into two distinct camps: the classical or traditional ones and the recent or DL data-

driven solutions. Supervised learning, unsupervised learning, and reinforcement learning are three 

areas that have recently attracted a lot of attention in ML research. Most research in both traditional 

and DL methods is done in the supervised ML area, which can be used in a wide range of situations. 

Multiple neural networks, some of which might more accurately be described as "artificial neural 

networks" (ANNs), make up AI (ANNs). One AI method that has been applied to the task of 

modeling and evaluating satellite imagery and data is the usage of ANNs. The more ANNs there 

are, the more DL is created, and DL is the newest approach of advancing ML. Recently, DL has 

risen to prominence as a key research area in the field of ML. 

Different researchers have described DL as a subset of a new ML technique used for 

interdisciplinary data analysis. The study of remote sensing (RS) image data might have benefited 

from the deployment of DL algorithms, a promising field of ML. In circumstances where the agent 

has no prior information, as may be the case, DL becomes crucial for unknown environments. The 

geoinformatics and RS communities lack access to RS data. Therefore, DL allows for the 

structuring of newly acquired information into generic, efficient representations for the purposes 

of decision-making. 
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A variety of DL methods can be used to analyze and model RS data. Deep ANNs are ideal for 

processing large amounts of data quickly in a specific real-world domain. Among these ANNs are 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative 

adversarial networks (GANs). The most widely used supervised classification algorithms for 

extracting image features are CNNs [2]. Thus, CNNs are the most prominent modeling technique 

used by researchers in LCLU classifications. CNNs are available with dependable modeling 

architectures, including AlexNet, GoogleNet (InceptionNet), VGGNet, ResNet, EfficientNet, and 

MobileNet.   

1.3 Motivations of the Study 

With its performance improvements in large dataset processing skills, particularly in RS data, DL 

has become a flourishing field of study and a recent active research area in many challenging 

practical applications, which motivated us to begin this investigation. We were also inspired to 

begin this research in part because of the suggestions or recommendations made in past 

investigations. 

The forwarded recommendations by the earlier researchers, such as using pretrained networks and 

fine-tuning for satellite data classifications [3], [4], utilizing appropriate DL methods to better 

scene classification tasks [5], analyzing the relation between the number of classes in the dataset 

and the number of parameters in the ConvNet and their impact on the discrepancy between fine 

tuning and full training processes [6], and evaluating the efficiency of CNN with very large scale 

images [7], are also our motivations to do this study. Such prior research experience influenced 

and motivated us to pursue this research problem that allows us to understand the challenges, 

opportunities and significances and to identify the gaps of the domain area. 
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1.4 Research Objectives  

The main goal of this study is to come up with DL methods for LCLU classification in Earth 

Observation RS imagery data. To achieve this aim, the following specific objectives are proposed. 

 

➢ To analyze state-of-the-art of deep learning methods for LCLU classification in RS data. 

➢ To design a deep learning convolutional neural network model for LCLU classification.  

➢ To design transfer learning for LCLU classification. 

➢ To compare the performance of convolutional neural network and transfer learning for 

LCLU classification.  

➢ To evaluate deep learning methods for LCLU classification using different data sets.  

 

After the aforementioned research objectives (ROs) have been set, we have performed each 

objective using different DL methods and RS datasets. Therefore, the findings and achievements 

for the ROs have been summarized in the following ways.  

 

RO 1: In this objective, we have reviewed and analyzed the existing studies by retrieving them 

from different databases to dig out the DL methods applied to the domain area. Reviewing and 

surveying the earlier works is not an easy task. We have performed it from the start to the end of 

our study. This RO enabled us to identify the research gaps that existed at the start of the study. 

Therefore, we set it as the first RO, and we have achieved it by surveying the papers and identifying 

the gaps. 

 

RO 2: For this objective, we designed the deep CNN model for LCLU classification in RS images. 

The model's ability to work in the domain was checked by comparing it to the VGG19 network 

that had already been trained and retraining it on the other publicly available RS dataset. 

 

RO 3: In this RO, the TL DL method has been designed for the classification problem. The TL 

model was designed using different pretrained models for LCLU classification in RS images. This 

model has been effective in terms of time and resource consumption. 
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RO 4: We designed and compared the CNN and TL for LCLU classification in the RS image. In 

addition to these two DL models, we applied the fine-tuning technique. Each of the three models 

has distinct advantages. In terms of efficient time consumption and resource requirements, the TL 

and fine-tuning models are more significant than the developed CNN model. Whereas, in the case 

of individual class feature analysis, the CNN model is more significant than the TL and the fine-

tuning models. Finally, the fine-tuning model outperformed the performances in a short period of 

time. 

 

RO 5: This RO described the performance evaluation of various DL models using various datasets. 

This objective enabled us to identify that the properties of the dataset have significant influences 

on the classification system's performance.  

 

In general, we have achieved each research objective positively. The achievements of each 

objective lined up with publications are summarized in Table 1.1.  
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Table 1.1. Achievements of ROs aligned with publications 

ROs Publication per Ros 

RO 1 A. Alem and S. Kumar, "Deep Learning Methods for Land Cover and Land Use 

Classification in Remote Sensing: A Review," 2020 8th International Conference on 

Reliability, Infocom Technologies and Optimization (Trends and Future Directions) 

(ICRITO), Noida, India, June 4-5, 2020, pp. 903-908, doi: 

10.1109/ICRITO48877.2020.9197824. (In IEEE Explore Scopus Indexed) 

RO 2 A. Alem and S. Kumar (2022), End-to-end Convolutional Neural Network Feature 

Extraction for Remote Sensed Images Classification, Applied Artificial 

Intelligence, vol. 36 (1), art. no. 2137650, DOI: 10.1080/08839514.2022.2137650 

(SCIE, IF: 2.777, best quartile- Q2)  

RO 3 1. A. Alem and S. Kumar (2021), Transfer Learning Models for Land Cover and 

Land Use Classification in Remote Sensing Image, Applied Artificial 

Intelligence, vol. 36 (1), art. no. 2014192, 

DOI: 10.1080/08839514.2021.2014192 (SCIE, IF: 2.777, best quartile- Q2) 

2. Abebaw Alem, Shailender Kumar, Transfer Learning for Land Use Classification 

in Remote Sensing. In Jamia Teachers’ Association Multidisciplinary 

International Conference (JTACON-2020), New Delhi, India, February 16-18, 

2020. (Presented) 

RO 4 A. Alem and S. Kumar (2022) Deep Learning Models Performance Evaluations for 

Remote Sensed Image Classification, IEEE Access, vol. 10, pp. 111784-111793, 

DOI: 10.1109/ACCESS.2022.3215264 (SCIE, IF: 3.476, best quartile- Q1) 

RO 5 A. Alem and S. Kumar (2022), “Deep Learning Models for Remote Sensed 

Hyperspectral Image Classification,” 2022 13th International Conference on 

Computing, Communication and network Technologies (ICCCNT), Kharagpur, 

India, Oct 3-5, 2022, pp. 1-7, doi: 10.1109/ICCCNT54827.2022.9984282. (In IEEE 

Explore Scopus Indexed). 

 

 

1.5 Limitations of the Study   

During working on this study, we faced limitations or constraints that could affect the models’ 

performances. These limitations include the lack of powerful computational resources, i.e., robust 

processor needs and time constraints resulting from the COVID-19 epidemic. Since we were 

working with a CPU processor and Google Colab instead of a GPU processor, we had to work 

with relatively small RS datasets. In addition, both the TL and fine-tuning modes work with small 

data sets. Developing DL models from scratch is time-consuming and difficult, so the size of the 

dataset may have an effect on the DL performance. We didn't have enough time to compare typical 

ML methods with DL methods or test the effects of important DL hyperparameters that can't be 

learned, like the deeper number of layers, iteration, and batch normalization (mean and variance). 

https://doi.org/10.1080/08839514.2021.2014192
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1.6 Significance of the Study   

The use of DL algorithms for LCLU classification employing RS imaging data has the potential 

to bring about a variety of advantages for the communities located within the determined scope of 

application. The findings of this research may have direct and indirect significances for the 

community. The researchers are the primary direct beneficiaries of getting the academic promotion 

awards by fulfilling requirements in the academic program and publishing the findings in peer-

reviewed reputable journals. Moreover, this study has the following direct or indirect significances 

for its beneficiaries:  

➢ To address the needs of the RS communities, an intelligent LCLU classification system 

based on DL might be used to address the issue of scene classification. So, this research 

could be the first step toward making a fully autonomous LCLU classification system that 

could be used to classify, control, and manage Earth's natural resources more effectively.  

➢ The study may also be useful for the decision-makers. Using the LCLU classification 

system will considerably improve the likelihood of making decisions that contribute to 

sustainable development in the areas of agricultural and urban planning, environmental 

protection, and natural resource management. 

➢ We also looked at how the DL models worked and improved their performance, showing 

that they could be used to classify LCLUs in RS images. However, as mentioned earlier, 

there are limitations to the study, and we suggest future research directions based on these 

limitations. Therefore, future researchers will indirectly benefit from this work because 

they can use its limitations as a starting point for their own investigations.   

1.7 Organization of the Thesis  

The thesis is organized into eight consecutive chapters to describe the thesis from the beginning to 

the end. Each chapter has been described in the following manner: 

Chapter 1: This chapter deals with the introduction of the thesis, which includes the general 

concepts of the terms, the methods, the motivations, the objectives, the limitations, and the 

significance of the thesis.  
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Chapter 2: This chapter states the literature review and the literature survey analysis that enable 

us to retrieve related ideas and methods to identify the gaps. We have retrieved and analyzed the 

related background details of the DL methods used for the LCLU classification domain. The 

chapter includes the theoretical understanding, the survey analysis, the related works, and the 

research gaps.  

Chapter 3: The chapter deals with the research materials and the DL methods used in this study. 

The chapter states the publicly available RS datasets, the reliable DL methods for the LCLU 

classification problem, and the tools and DL frameworks used for implementing the identified 

classification problem. 

Chapter 4: The chapter describes the design of the CNN DL method for LCLU classification in 

RS images. The model has been checked its applicability on the domain by comparing with the 

pretrained VGG19 network and retraining it on the other publicly available RS dataset. We 

checked that the CNN model was applicable in the domain area. 

Chapter 5: In this chapter, the TL DL method has been designed for the classification problem. 

The TL model was designed using different pretrained models for LCLU classification in RS 

images. This model has been effective in terms of time and resource consumption. 

Chapter 6: The sixth chapter deals with the comparisons of the CNN, TL, and fine-tuning for 

LCLU classification in the RS image. Each of the three algorithms has distinct advantages. In the 

case of less time consumption and resource requirement, the TL and fine-tuning models are more 

significant than the CNN-FE model. Whereas, in the case of individual class feature analysis, the 

CNN model is more significant than the TL and the fine-tuning models. 

Chapter 7: The seventh chapter describes the performance evaluation of DL using various 

datasets. In this chapter, we identified that the properties of the dataset have significant influences 

on the classification system's performance. 

Chapter 8: Finally, the last chapter deals with the conclusions and recommendations of the thesis. 

This chapter describes the problem, objectives, methods, findings, contributions, significance, 

limitations, and future suggestions based on the identified limitations.  
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2.  LITERATURE REVIEW AND RESEARCH GAPS 

IDENTIFICATION 

 

2.1 Land Cover and Land Use (LCLU) Classification 

Land is an important natural resource that supports all living and nonliving things on the earth. 

Humans are in charge of managing this pillar resource, which allows for the existence of other 

things. Fully automated land cover classification is a hard problem that requires ML and computer 

vision tasks. Classifying land use from RS imagery is also important for monitoring and managing 

human development [8]. 

Land cover expresses physical features of the earth's surface, whereas land use describes a piece 

of land's socioeconomic function [1]. Land cover classification is a popular and thriving research 

area in RS applications [9], and we would look into using deep CNNs to handle and challenge ML 

tasks to improve performance when using trained augmentation data [3], [10]. 

Land cover and land use are two different terms, but we used them as one in our study. Because 

the land use class (e.g., residential or commercial area) often consists of multiple classes of land 

cover (e.g., buildings, trees, and roads) with great variance [11]. In this study, land cover and land 

use are phrased as one and used interchangeably. LCLU is a description of the earth’s features and 

an extraction of these features from satellite data. These include the extraction of various land 

features such as roads, urban areas, buildings, agricultural lands, waterways, sports fields, 

grassland, forests, and the like. LCLU is a description of the earth's features as well as human 

interaction with it. This LCLU classification is an important task [12], and it contributes to 

decision-making and planning in the earth observation environment, which is a domain of satellite 

imagery classification. 

Thus, in the earth observation environment, such as the rural and urban sectors, the LCLU 

classification enables humans to make decisions and plan [13]–[15]. LCLU is an important source 

of earth information and a research problem for DL systems that use automatic classification. To 

utilize the classification system, many scholars have been investigating the classification of land 

features with DL methods using satellite data. Therefore, LCLU classification is a recent popular 

and important research field to utilize RS applications in various challenging tasks such as urban 
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planning, land resources management, environmental monitoring and detection, and governmental 

management in RS technology [14], [16]–[18]. RS is becoming a dominant source for acquiring 

images and performing LCLU classification tasks  [17], and it plays a significant role in the field 

of earth observation [19]. 

2.2 Machine Learning Techniques 

AI is one of the newest multidisciplinary sciences and research areas in the recent "big data era." 

It is a general field that encompasses ML and DL. It also includes many more approaches that 

don’t involve any other learning tasks other than ML, as observed in Figure 2.2. Now days, 

researchers have been investigating findings on AI domain areas such as image classification, 

object detection, speech recognition, and language analysis by using recent ML approaches.  

ML is the 21st century's hot research area in AI; it is an approach, a method, and a science of 

modeling and analyzing computer learning processes using data, observations, examples, and 

autonomously experiences. ML is an iterative process of training models and usually refers to the 

changes in systems that perform tasks associated with AI. These changes in iterations of ML 

systems could occur due to data preprocessing and feature selection, the algorithm selection and 

parameters used, and the training data. The ML tasks in LCLU using RS imagery data involve 

environmental classifications, monitoring, and detection (change and object); agricultural and 

urbanization planning; land resource management; and government management (decision 

making). ML systems use generic algorithms that can extract hidden information from a set of 

data.  

It is stated by [20] that the field of ML usually distinguishes three learning capability areas: 

supervised, unsupervised, and reinforcement learning. Supervised learning is the ability of the 

model to learn from the input and output data. It focuses on the classifications or predictions and 

regression problems according to their categories. Unsupervised learning is the capability of the 

model that is expected to learn features on its own without guidance. It aims to group or cluster 

objects according to their similarities. Reinforcement learning focuses on the motivational 

adaptation for successful performance by learning from its mistakes, as seen in Figure 2.1. The 

reinforcement learning model could provide positive or negative feedback, which enabled a better 

decision.  



  

11 
 

Supervised classification is the most active research area in satellite data analysis using both 

conventional/classical and recent ML models. Very high spatial resolution (VHSR) images used 

for supervised classification are still an open area of research in the RS [5].  

Supervised learning is used to analyze structured (such as databases) and unstructured data (such 

as images and audio). In this study, we are focusing on supervised classification using recent ML 

methods called DL methods to analyze RS imagery data. Training data in DL models is a key 

component of supervised learning, and most ML algorithms require a large number of training 

data samples [21].  

Data is the engine, coal, and input process for ML algorithms. For this reason, ML is considered a 

data governance method. There are various datasets in various application areas. RS satellite data 

is focused forward for LCLU classification. In this "big data era," there will be a paradigm shift 

towards data-intensive science  [22], and ML techniques are keys for analyzing big data in this era.   

There are different approaches of ML in AI that could analyze and model satellite image data. 

These ML algorithms could be categorized into two groups based on their depth. The first approach 

is the classical/traditional algorithm that includes support vector machines (SVM), classical ANNs 

(ANNs with one layer only), and maximum likelihood estimators [23]. The second approach is the 

recent one (DL), which is the advancement of classical neural networks. DL methods, such as 

CNNs [4], [24]–[26], RNNs [27], and DNNs classifiers [28], outperform traditional ML methods 

in terms of performance and power for RS imagery classification. Therefore, we are motivated to 

focus on DL methods to extract RS features. 

 

Figure 2.1. Machine Learning Techniques 
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2.3 Deep Learning Methods 

DL is a subdivision of the ML method that uses deep architectures to learn high-level image feature 

representations. It is a recent technology that various researchers have focused on for its reliable 

performance. More ANNs create DL, which is the capability to train more neural networks on a 

given dataset. ML techniques are becoming increasingly important, and DL has proven to be an 

extremely powerful method in many fields and one of the fastest-growing trends in big data 

analysis [29]. Satellite image data sets have the characteristics of a large data volume and complex 

image classification [30]. This complex image would be analyzed in DL. DL is a subset of ML 

that focuses on learning successive layers of increasingly in depth and meaningful representations 

of neurons. DL is an extension of classical ML methods, i.e., the depth of more ANNs, and has 

become powerful in recent research focus areas. DL is an end-to-end learning (feature learning 

and abstraction, model learning) method that consists of more than five processing layers, mostly 

in supervised classification [31], [32]. Supervised DL, especially CNN, is the most fitting 

modeling method for RS image classification [33]. The interconnection between AI, ML, and DL 

is summarized in Figure 2.2.   

Therefore, DL is a hotspot in the deep ML area and would have been used in RS image data 

analysis. DL is essential for unknown environments, i.e., when the agent lacks knowledge. RS data 

are not known by the geoinformatics and RS communities as they are hunted by RS technologies. 

Therefore, DL enables the organization of new knowledge into general, effective representations 

for decisions and planning. 

Research results have found more accurate performance when performed with DL methods. The 

deeper the network is the better the performance of the model. The performance of the LCLU 

classification could be increased by adding more neural networks  [15] and [34]. 

Recent studies used DL methods for LCLU classification in RS datasets with Deep Neural 

Networks (DNNs) [28]. DL methods with DNNs include various modeling methods, such as CNNs 

[4]–[8], [15], [24], [35]–[37], RNNs [38], GANs [39], [40], and deep belief networks (DBN) [41], 

[42].  

CNN is superior to other deep network algorithms due to its abilities [33], [43]. CNN has achieved 

remarkable results in image classification, recognition, and other computer vision tasks [44].   
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Figure 2.2. Relation between AI, ML and DL and frameworks and methods of ML 

 

2.3.1 Convolutional Neural Networks (CNNs) for Classification 

In recent times, the most researched areas of AI could be categorized as symbolic and connectionist 

AI. The symbolic research focuses on the symbolic AI that includes predicates and fuzzy logic 

(rule-based systems), while the connectionist AI focuses on interconnected entities like nodes. The 

connectionist AI is investigated in our research that dealt with the interconnected neurons, which 

could be named neural networks. This focused research domain could be implemented in 

traditional and advanced (DL) ML AI approaches. We focused on the advanced ML approaches 

that included CNN in our study. 

The CNNs are multi-layer neural networks that are used to extract image features, or pixels. CNNs 

are one of the DL methods that are particularly designed for RS image classification based on 

multi-layer ANNs, and they have been mostly used in recent research. DL CNN is a popular and 

widely used method for LCLU classification using RS data [45]. CNNs are the most well-known 

DL algorithms and have gained interest from researchers for RS image processing in recent years 

[29]. According to many researchers, the interest in CNNs is growing rapidly due to their 

impressive results. DCNNs have recently emerged as a dominant paradigm for ML in a variety of 

domains, such as the RS domain for land cover classifications [8]. 

The exploration of the potentials of deep CNNs can be a complex task because of several 

challenges, which are over-parameterized [6]. Application cases of CNN-based RS image 
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classification are classified into scene classification (based on RS contents), object detection 

(labeling locations and types of the targets with bounding boxes), and object extraction (accurate 

boundaries of the objects to be extracted in RS) [46], [47]. CNNs have shown powerful feature 

representation capability to improve scene classification of RS imagery [48]. 

CNNs are built with a series of layers, including convolutional layers, pooling layers, fully 

connected layers, and an output layer [32], [46], [47], [49], [50], as shown in Figure 2.3. 

There are various architectures of CNNs that are used by researchers to build CNN models for 

RS image classification. The most commonly used architectures are AlexNet, VGGNet, ResNet, 

and GoogleNet [7], [50]–[53]. These architectures of CNNs have their own characteristics for RS 

image classifications. 

CNNs could be shallow in recurrent and feedback connections [54], or have a forward and 

backward stream in a recurrent network in a fully convolutional network architecture [55].   

 

  

Figure 2.3. Structure of CNNs adopted from [45]  
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2.3.2 Transfer Learning 

 

Transfer learning (TL), gets more attention for reducing the training time and the dependence on 

large amounts of training datasets [8], [56], [57]. The TL algorithm reuses the pretrained models 

such as AlexNets, ResNets, InceptionNets, and VGGNets to build new models. We have been 

trying to investigate the recommended work suggested by [3]. The TL is widely used for RS image 

classification [5], [11], [58], [59] because RS images are essential for LCLU classification in DL 

approaches [60].  

 

2.4 RS Dataset Descriptions 

Data are fuels and new oils for ML as well as DL. The LCLU classification problem could be 

investigated using earth observation data called satellite data. Satellite data are earth observation 

data, records of environmental information, and are used to make LCLU decisions when organized 

because land cover is a continuous spatial data representative. A satellite image is an image of the 

whole or part of the earth taken using artificial satellites [7]. 

RS is used to obtain the information from the earth's surface by using a satellite imaging system 

[23]. The term "remote" means an agent without physical contact, and the term "sensing" means a 

sense of observing the environment for measurement of information or data. Thus, RS is the 

acquisition of information about any phenomenon without making physical contact with the 

object; simply, it is an onsite observation on the earth. It is the use of satellite- or aircraft-based 

sensor technologies to detect and classify objects on the earth. 

RS image classification is still facing unprecedented and significant challenges and has been an 

active research topic [36], [61]–[67] for DL applications in LCLU classification. Because RS 

image data has high resolutions and is frequently multimodal, geolocated, and time-variable, it is 

frequently used for object detection or classification [22].  

Satellite RS data could be applied in both subject and domain areas to conduct research. RS has 

applications in different disciplines such as geography, geoinformatics, AI, planning, and 

humanitarian aid. Environmental management, agricultural planning, health studies, climate and 

biodiversity monitoring, LCLU mapping, land change detection, spatial data analysis, water 

resources, forestry, and GIS are some of the application domains for RS. Therefore, land use (LU) 
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planning based on the land cover is vital for development. For instance, urban planning benefits 

from keeping track of the evolution of city centers or knowing how the land is used, such as for 

public facilities, residential areas, or commercial areas [13]. 

RS data for those domain areas is open for any investigation and can be found mostly on USGS, 

Earth Explorer, and other sites. Considering future research with big RS data to validate RS 

systems in more urban areas of the world is important [68]. Satellite data with greater spectra 

resolution and geographical variations could also be considered [5]. 

The role of RS image-based scene classification in LCLU classifications is significant [24], [69]. 

To design and evaluate DL methods for LCLU classifications, various RS datasets could be 

collected from their sources. The United States Geological Survey (USGS), European Space 

Agency (ESA), and Google Earth are the major sources of RS datasets. From our extensive 

analysis of the literature review, we collected, described, and summarized the data in Table 2.1. 

UCM (University of California Merced) data set: To address the problems of LCLU 

classification, a number of researchers have been using the UCM Land Use data set. This dataset 

was manually collected and introduced by [70] from the USGS National Map Urban Area Imagery. 

This dataset consists of 21 land use and land cover classes that contain 100 images each with RGB 

color bands, measuring 256 × 256 pixels with a spatial resolution of about 30 cm/pixel. This data 

has been using by most researchers for LCLU classification. This data set has been used mostly 

by many researchers and it is/was publicly available at: 

http:// vision.ucmerced.edu/datasets/landuse.html. 

AID (Aerial Image Dataset): this data set consists of 30 classes with 10000 images each in a size 

of 600 × 600 pixels with 0.5-m to 8-m /pixel spatial resolutions. It was introduced by [71]. 

NWPU-RESISC45 (Northwestern Poly technical University-Remote Sensing Image Scene 

Classification) dataset: this is a larger dataset that consists of 45 scene classes with 700 images 

each and contains a total of 31,500 images with a size of 256 × 256 pixels in the RGB color space. 

This large-scale data set was created by [69] at NWPU. The UC Merced, AID, and NWPU-

RESISC45 datasets were used by [72] to classify RS images using descriptive CNNs (D-CNNs) 

and compare the results of each dataset with ML methods. 
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RSI-CB (RS Image Classification Benchmark) data set: is a worldwide large-scale benchmark 

dataset with 0.22 to 3 m/pixel spatial resolution for RS image classification via crowdsourced data. 

It was built with two versions of pixels: RSI-CB128 (128 × 128 pixels) and RSI-CB256 (256 × 

256 pixels), and constructed by collecting sample images from Google Earth imagery and being 

mapped by [73]. The UCM, AID, and RSI-CB256 RS image datasets were used by [74] for cross-

domain semi-supervised learning classification using Classifier-Constrained Deep Adversarial 

Domain Adaptation method. 

EuroSAT- Sentile-2A: Sentile data sets have different versions and levels: Sentile 1, Sentile 2, 

and Sentile 3 and above. However, Sentile 1 and 2 are mostly used, while Sentile 3 and above have 

not been used yet for research, even if they are released by ESA. As stated and used by [35], the 

satellite Sentinels data have been operated by ESA within its Copernicus program to improve earth 

observation, and two satellite Sentinel datasets were successfully launched in June 2015 (Sentinel-

2A) and March 2017 (Sentinel-2B). The Sentile-2A EuroSAT is made up of ten classes with a total 

of 27000 images in 64×64 pixels and a resolution of 10 meters per pixel that cover 34 European 

urban atlases. [35] first mentioned this dataset.  

RSSCN7 dataset: It was collected from Google Earth by [41]. It includes 2800 RS scene images 

with 400 x 400 pixels resolution in each image and seven classes. The dataset is or was available 

at https://sites.google.com/site/qinzoucn/documents. 

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China [75]. 

The dataset contains twelve categories with 200 images per category with 200 x 200 pixels. The 

dataset is available at: https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980. 

LandSat is also one of the major data sets used in LCLU classifications. LandSat data has been 

used by researchers. Landsat 1 through Landsat 9 data sets are available on the USGS website: 

https://earthexplorer.usgs.gov. SAT4 and SAT6 data sets were used for LC classification in DL 

architecture [30], [51], [52], [76]. This dataset was available at http://csc.lsu.edu/*saikat/deepsat. 

Some RS datasets are summarized in Table 2.1. In general, we extracted the data from the selected 

primary studies and summarized it in Table 2.2.  

 

http://csc.lsu.edu/*saikat/deepsat
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Table 2.1.  Most commonly used publicly available RS datasets 

Dataset  Total 

Images 

No. of 

classes 

Av. Images/ 

classes  

Resolutions 

(m/pixel) 

Size (in 

pixels)  

Introduced 

year 

Contributed 

by   

UCM 2100 21 100 0.3 256×256 2010 [70] 

RSSCN7 2800 7 400 - 400×400 2015 [41] 

SAT4 500000 4 83333 1 28×28 2015 - 

SAT6 405000 6 67500 1 28×28 2015 - 

SIRI-WHU 2400 12 200 2 200*200 2016 [75] 

AID 10000 30 333 0.5-8 600×600 2017 [71] 

RSI-CB256 24747 35 690 0.22-3 256×256 2017 [73] 

RSI-CB128 36707 45 800 0.22-3 128×128 2017 [73] 

NWPU-

RESISC45 

31500 45 700 0.2-30 256×256 2017 [69] 

EuroSAT 27000 10 2700 10-60 64×64 2019 [35] 
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Table 2.2. Some recent primary studies in LCLU with DL in which most of our data were extracted 

No

.  

Author(s)  Application 

Domains 

RS Data Type  ML Methods used Overall Result 

(in %) 

Future work Recommendations  

1 [31] LU classification MCM  Multiview DL 93.48 Performance improvement with combination of DNN cascading with other 

neural networks and use one view scale per network 

2 [15] Urban LCC  ISPRS (Vaihingen 

+Potsdam) 

CNN -  Performance with more networks  

3 [35] LCLU Sentile 2A-

EuroSAT 

CNNs 98.57 LCLU change detection and improvement of geographical maps 

4 [72] RS image Scene UCM, AID, NWPU-

RESISC45 

Descriptive CNNs 96.67,97.07,98.93 

for each dataset  

not clearly mentioned but pointed to more investigations on the AID and 

NWPU-RESISC45 datasets  

5 [3] Multi-label LC  UCM CNNS with dynamic 

data augmentation 

82.29 using pretrained models and fine-tuning the architectures for multilabel 

classification 

6 [61] LU UCM and RSSCN7 Deep filter banks + 

Fisher vector  

92.7 and 90.4 for 

both data 

- 

7 [5] Earth observation:  

LU classifications  

UCM CNN: feature fusion  92.4 Pretrained networks on a larger scale experiment in satellite data  

8 [36] LU UCM Extream learning 

machine (ELM) in 

CNN 

95.62 Accuracy improvement with integration operations such as overlapping 

maxpooling and cross-channel and reduce training time using GPU 

9 [9] LC ISPRS, GID Feature ensemble-FE-

Net  

68.08,65.16 -  

10 [7] Satellite image UCM AlexNet CNN 94 Utilizing appropriate DL methods to better features for target detection and 

scene classification tasks  

11 [6] Scene 

Classifications  

UCM, RS19, and 

Brazilian Coffee 

Scenes 

ConvNets 97.78, 91.0 and 

94.45 respectively  

Analyzing the relation between the number of classes in the dataset, the 

number of parameters in the ConvNet, and their impact in the discrepancy 

between fine tuning and full training processes. 

12 [63] Scene 

Classifications 

UCM, Sydney  Gradient Boosting 

Random ConvNet 

Varying for d/t 

learners  

application of GBRCN on hyperspectral 

applications 

13 [8] Land cover  UCM DNNS: CaffeNet, 

GoogLeNet, ResNet 

97.6,97.1, 

98.5  

- 

14 [4] LULC Indian Pines,  

San Francisco, 

Pavia, Flevoland  

CNN 94.64, 98.70, 

83.43, 98.51 

respectively  

Deeper architecture and parameters of the network, evaluating the efficiency 

of CNN with very large-scale images 

15 [24] RS Scene AID, UCM, 

PatternNet 

CNN: TL 

(InceptionV3 and 

VGG19 models) 

Varying per 

model and 

datasets  

Begin from deep models and then try to reduce model’s size 

 Proposed  LCLU UCM, SIRI-WHU, 

RSCNN7  

CNN-FE, TL, Fine-

tuning  

Various in 

hyperparameters  

Training DL models with GPU by considering hyperparameters on other 

larger datasets for performance improvements. 
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2.5 Research Survey Analysis 

We conducted our literature review using a systematic approach, which involves three stages: pre-

review (planning), review (conducting), and reporting [77]. The first phase of planning includes 

identifying the needs of the review, formulating research questions, and developing and evaluating 

a review protocol. The second phase of the review is concerned with analyzing the state of the art. 

It could be used to search and identify the existing state-of-the-art research from online digital 

libraries and journals relevant to the area. Then we selected primary studies related to our area and 

extracted and synthesized the relevant data and parameters. The online digital archives used for 

searching primary studies are IEEE Xplore, Web of Science, MDPI, SpringerLink, Google 

Scholar, Taylor & Francis, and Wiley InterScience, with their corresponding journals. We also 

analyzed the number of publications in line with the study area and year. 

According to the literature survey, LCLU in the RS imagery domain has been identified as the 

most recent study area, but AI has been identified with lower primary studies even though it is the 

most recent attention area, as observed in Figure 2.4 and Figure 2.5. Different scholars have been 

investigating DL algorithms using RS data for LCLU classification. Some of these are described 

in Table 2.2. Thus, this research problem has been proposed for investigating DL methods for 

LCLU classifications using RS data based on the literature survey. 

 

 

Figure 2.4. Number of articles published in Web of Science Database since 2015 in Year wise 
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Figure 2.5. Number of articles published in the web of science database in our study area for a 

general search on [“deep learning” AND “land cover” AND “land use” AND “remote sensing”]. 

 

2.6 Research Gaps 

In this digital age, a large amount of RS satellite imagery data is recorded on the earth by remotely 

sensed technology. Satellite images are significant information sources for the earth's environment, 

and the automatic classification of these images has always been an important research topic [78]. 

The LCLU classification problem takes into account RS satellite data with a higher level of spectral 

resolution and differences in location [5]. 

Classification is a fundamental task for RS imagery analysis [44]. Because of its high cost and 

labor-intensive nature, LCLU classification is a recent challenging task [3], [10]. 
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DL is a hot research area in various domains. Validation of RS systems in DL by considering more 

urban areas in the world is important [68]. However, DL models are still facing several challenges 

for wide application, such as the fact that training samples and hyperparameter selection have large 

influences on classification performances. Lack of sufficient training samples or a small number 

of training samples, for instance, could be identified as the major limiting factor [1], [79][65], [66], 

[78], [1], [79], whereas training a network with a large number of samples could improve DL 

performance [67], [79]. Parameters selection such as depth of the features, number of hidden 

layer, size of learning rate, selection of activation and lose functions are also challenges for DL 

methods [42]. To increase the performance of DL models for LCLU classification, training deep 

network models to fit different image data sources would be considered [1], [34].  

Therefore, from the primary study analysis, we identified the following research gaps.  

1. Designing DL models using deeper architecture and hyperparameter optimizations of the 

network needs more investigation.  

2. There aren't enough studies that compare the performance of DL models on different RS 

datasets. 

3. The performance evaluation of DL methods for LCLU classification with different scale 

data sets in deep AI is still needed.  

2.7 Chapter Summarization  

In this chapter, we analyze the current primary studies using DL methods for LCLU classification 

in RS. From the analysis, we identified that DL methods for LCLU classification using RS are 

recent hot research areas in the field of ML and AI. RS data also have their own new challenges 

for DL due to the nature of multi-modal, geo-located, geodetic measurements with controlled 

quality that are time-dependent and face the big data challenge [29], [45]. RS imagery data 

classification [46] is facing exceptional and significant challenges. LCLU monitoring and 

management is also another challenge for making decisions. LCLU classification is a major 

challenge for RS analysis, with tremendous needs for working solutions and many potential 

applications [19], [23], [42], [44], [47]–[49]. 

To handle these challenges, DL models should be applied to satellite data analysis. The appearance 

of DL has provided a chance for analyzing big RS data [30]. DL methods are preferred over 
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traditional ML methods as recent models for improving DL scene classification systems. Thus, 

DL methods get significant attention in LCLU classification in the RS field and obtain better 

improvements [50]. Improvements in DL for LCLU classification in RS data have been observed 

[18]. 

From our point of view, some of the challenges of DL in satellite imagery data classification 

research papers are listed in Table 2.2 with their corresponding suggestions. This literature review 

would help us gain insights into the advancement of DL methods for LCLU classification in RS 

and enable us to identify further investigations on more DL methods in RS image classification. 

Thus, we identified the research gaps accordingly, as we stated in Section 2.6.  

RS meets DL [11]. DL methods are recommended by many researchers for solving RS challenges. 

Among DL methods, CNNs are the most convenient approaches for solving classification 

problems. To make CNN effective, further research will be necessary to help the public's approval 

and diffusion of CNNs [23] for RS classification. As a result, designing DL methods with CNN 

models for LCLU classification in RS imagery is our next research topic, with a variety of 

hyperparameters. 
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3. RESEARCH METHODS AND MATERIALS  

 

In this section, we will describe the methods and materials, such as the datasets, development tools, 

and software packages, that are used to accomplish the research objectives. 

3.1 Deep Learning Methods and their Parameters 

DL is a ML algorithm used to address AI challenges in areas such as natural language processing 

(NLP), computer vision (CV), and expert systems (ES). The DL algorithms are implemented using 

Python and its frameworks. Python is a high-level object-oriented programming language that is 

used in DL frameworks like Keras, TensorFlow, PyTorch, and Caffe. 

Why is DL used for LCLU classification in RS imagery? Or, why does RS imagery data use DL 

for LCLU classification? There are probably numerous reasons and answers, but two of the most 

crucial are its powerful ability to improve training performance and automatically extract features 

from large datasets. The research methods will show how to use tools and techniques for 

accomplishing the study. DL methods for LCLU classification in RS data have been successfully 

proven by researchers, as observed in the state-of-the-art, and the improvement of their 

performance has been profound [80]. DL approaches include CNN, RNN, and GANs. We would 

use CNN, CNN-based transfer learning and its fine tuning, and CNN-based pretrained networks 

in this study due to their capabilities for RS image classification. 

 

3.1.1 Convolution Neural Networks (CNNs) 

CNNs are feed-forward ANNs composed of interconnected neurons or nodes with learnable 

weights and biases for image classification. CNNs with deep layers have achieved unprecedented 

improvements in patch-based medium-resolution RS image classification [81]. The CNN method 

is used for classifying the hyper-spectral RS imagery data based on pixels based on dimensional 

windows. Image dimension could be h×w×d where h is the height, w is the width, and d is the 

depth (number of filters) of the RS image. CNNs consist of sequential layers in which the output 

of one layer is the input for other layers with various dimensions of computation. The CNN's 

sequence consists of input, convolution, pooling, normalization, and fully connected layers 
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integrated with other DL hyperparameters. In this sequence, CNNs are convolved with filters 

(kernels) and pooled with a pooling (downsampling) layer. 

1. The input layer: it is the entire input image layer with h×w pixels shape.  

2. The convolution (Conv2D) layer 

CNNs are a specialized kind of neural network with a linear operation for processing grid-like 

(2D) topology or pixel data. The CNN is built by the convolution layer using the basic units of the 

series learnable filter, or "kernel," and the input volume, or "matrix." The convolution layer 

receives the h×w image pixels and computes the perceptron with given f×f filters or kernels. The 

input volume is then convolved with the filter provided to produce a feature map or output volume. 

The size of the feature map is determined by the depth (number of filters or kernels), stride (number 

of pixels shifted over the input weight matrix), and zero-padding, as equated in (3.1). 

The CNNs use the filter or kernel to extract the feature maps from the input image by using the 

convolution operation. Kernels are weights of the input images that are used to reduce the shape 

of the input images for hidden layer processing. Then the CNNs learn from the filters automatically 

and capture the spatial features (the arrangement of pixels) from an image. The spatial features 

enable us to identify the object by looking at the specific feature of the image, such as a forest with 

its specific feature of trees. 

Convolution could be performed with valid convolution (no padding), same convolution (with zero 

padding at the edges), and stride (slide or shift) convolution. The mathematical computation of the 

output volume of the image in each layer could be calculated using the input volume (h×w), stride 

(S), padding (p) parameters, and filter size (f×f). The stride (S) of the filter (f×f) is the interval at 

which the filter jumps or shifts S number of shifts from the first elements in a pixel or in each 

spatial dimension, while padding (P) is the number of pixels added at the outer edges of the input 

image volumes (h×w). Filter is usually odd and smaller in size, that is 3×3, 5×5 and 7×7 with 1, 2, 

and 3 padding, respectively. However, using a very large filter size, such 11×11 and 13×13 is 

costly in terms of the learnable weights of the networks, and it is not recommended to use it in 

more modern DL architectures. Therefore, the cheaper filter sizes, such as 3×3 and 5×5 are best 

suited for learning weights or parameters, and we used 3×3 filters applied in sequence of the layers 

in this study. 
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In Keras DL tool, no padding for image border to valid convolution but P number of zeros padding 

for image border to same convolution. Thus, the mathematical computation of the output volume 

of the image, which is the input for the next layer with computational results, in each layer could 

be calculated using the input volume, stride, and padding parameters. Thus, the output volume 

(nnew×wnew) of a layer could be computed with the mathematical computation in equation (3.1), 

and the number of zeros padding or same convolution could be computed using equation (3.2) 

when S = 1. When S>1, we could calculate the number of zeros padding using (3.3) to keep the 

input image size same as of the output image size. However, the value of p could not be in fraction 

and rounded it to the next higher integer when calculated in same padding. Moreover, if f >= S, 

take the maximum value of max(f, S) instead of f to calculate the output feature. The default values 

of the padding and stride is 0 or valid (no padding) and 1(the weight/filter matrix moves/shifts 1 

pixel at a time only in horizontal and vertical edges), respectively. 

 

 
h_new = [

(h − f + 2p)

s
] + 1 

(3.1) 

 

 
𝑝 =  

𝑓 − 1

2
 

(3.2) 

      

 
𝑝 =  

((ℎ − 1)𝑠 − ℎ + 𝑓)

2
 

(3.3) 

 

Suppose we have an input image of 6*6 and an initial weight/filter matrix of 3*3 that is used to 

extract some features from the input image. As a result, as shown in Figure 3.1, we can calculate 

the output of the new feature map (output image size) by adding the values of the element-wise 

multiplication of the weight/filter matrix and the sample corresponding highlighted 3*3 shift of 

the input image. So, the weights or filter are learned to pull out features from the original image 

that help the model make a correct prediction. 

If we use a stride of 2 for the same input image and weights with same padding, we could get either 

more reduced output image size by reducing the input image dimensions (as shown in Figure 3.2) 

or same output image size as the input image size by adding much zeros padding on each edge of 

the input image (as shown in Figure 3.3). However, it is better to pad the input image with the 
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required layers of zero padding around each edge of the input image for a higher number of strides 

(S>1) so that the output image size is not reduced in same padding. Thus, we pad the input image 

with one layer of zeros padding (single zero padding) at each edge of the pixel to get the same 

input and output image size. The added layer(s) is/are included by the 3*3 weight shifts in all round 

and the weight shifts or jumps 1 pixel at a time, as we observed in Figure 3.3. When a single zero 

of padding is added, a single stride or shift of weights or filters is used to keep the size of the input 

image. So, we restored more information from the border and got the same input and output image 

sizes.  

 

 

Figure 3.1. Feature maps using weight/filter matrix 

 

 

Figure 3.2. Reduced output image (feature map) using weight/filter matrix with stride of 2 and 

valid padding 
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Figure 3.3. Feature maps using 3*3 weight/filter matrix with stride of 2 and same padding (1 

layer = 1 padding) 

 

Therefore, convolution is a dot product of a provided filter (or kernel). The symbol "*" indicates 

the convolution, and it can be represented in different ways in implementation languages, such as 

"conv-forward" in Python, "tf.nn.conv2d" in TensorFlow, and "Conv2D" in Keras. The output 

depth or layer of the image would be the same as the number of filters (or kernels) applied on the 

network. For instance, suppose we have an input image of size 256*256*3 and we apply 32 

convolutions (filters) of size 3*3*3 with stride of 2 in both valid and same paddings. Then 

according to  (3.1), the output volume of the image could 127.5*127.5*32 and 128.5*128.5*32 for 

valid and a single zero paddings. Nevertheless, the output dimensions could not be in fractions, 

and they must be converted into integers by truncating towards zero for valid and rounding the 

next integer for same padding since the image size is halved with a stride of 2. Therefore, the 

output dimensions of the image would be 128*128*32 for both valid and a single zero padding. 

In addition, the output of the convolution layer is a 2D matrix. After the convolution process has 

been completed, the fully connected layer will follow. However, the fully connected layer accepts 

a 1D image, i.e., in vector form. Therefore, the linear transformation function could be applied in 

terms of weights and bias to convert the 2D matrix from the output feature of the convolution layer 

or the input image (X) of the fully connected layer into the 1D vector form of the fully connected 

layer, as indicated in Figure 3.1 and Figure 3.4.   

The deep neural network models are the learnable algorithms that are able to find the DL parameter 

values of the weights and bias (W, b) after training them from the input images using optimization 
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techniques. Linear transformation is used to transform matrix form (m, n), where m = h*w is the 

number of features or inputs (X1,X2, … Xm) for this layer and n is the number of neurons (filters 

or depth) in the layer, with the provided weight and constant bias matrixes to vectorization form. 

The linear transformation process from 2D to 1D could be calculated using (3.4) in terms of the 

input image (X), transposed matrix weight (WT), and constant bias (b), and the feature map has 

been transformed into 1D, as shown in Figure 3.4. The number of weights depends on the 

corresponding inputs, while the number of biases depends on the number of neurons. For instance, 

if we have 3 neurons (aka perceptron or nodes) in the fully connected layer, the resulted feature 

map depicted in Figure 3.1 matrix shape becomes (16, 3) and the linear transformation equations 

could be used to compute the transformed result. This transformed result could be used later for 

any nonlinear activation function. Thus, we could compute a linear function using the 3 biases and 

16 weights since there are 3 neurons and 16 input pixels, or columns, respectively.  

 

 𝑍 = 𝑊𝑇X + b (3.4) 

 

 

Figure 3.4. Linear transformation from 2D to 1D i.e., from convolutional layer to fully connected 

layer 

 

Based on the CNN parameters of the input (X), the randomly initialized weight (W), and the bias, 

the linear transformation equation could be applied, and a 1D vector of the weighted output has 

resulted as shown in the following schema. With this result, the non-linear transformation function 

could also be applied to get the classifier. According to  Figure 3.4, we have sixteen input features 

X with their consecutive weights, and the assumed number of neurons is three, i.e., the number of 

biases becomes three as provided below. 
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Now, using the linear transformation equation (3.4), we can calculate the transformed Z result as 

follow. 

  

 

 

In the convolution process, the number of parameters (params) could be calculated using (3.5) and 

(3.6). Parameters are internal variables learned or updated automatically based on the data during 

the training process that determine the model’s behavior.  These parameters are used to represent 

the weights or coefficients that determine how the model maps input data to output prediction and 

they are adjusted through an optimization algorithm to minimize the difference between predicted 

and actual values with (3.8). There are convolution (Conv2D) layer and dense layer parameters, 

which are equated in (3.5) and (3.6), respectively. 

 

 Conv2Dparam# = #Outchannel ∗ (#Inchannel ∗ Fheight ∗ Fwidth + 1)  (3.5) 

   

 Denseparam# = #outputchannel ∗ (#inputchannel + 1)  (3.6) 

 

+ 
* 

+ 
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The total parameter numbers of the model are the summations of the calculated results from the 

Conv2D and dense layers. We designed CNN-FE model with four Conv2D layers that calculate the 

number of parameters for those layers in the same norm by (3.5) and two dense layers (3.6). 

However, the calculation formula for dense parameters differs from Conv2D, as equated in (3.6). 

The number 1 means the bias associated with each filter for learning. 

We could calculate the total parameter number using (3.5) and (3.6). The number of parameters 

for all MaxPooling2D and Flatten layers, on the other hand, is zero because these layers do not 

learn anything from weights or filters, in addition to the built model.  

3. Pooling (Downsampling) Layer: This layer is used to resize and down sample spatial 

representations, which are then followed by convolution operations. The pooling layer 

could be used for reducing the number of weights or the number of parameters and 

controlling overfitting. In DL, there are four pooling operations: maximum, minimum, 

average, and adaptive pooling. We used the common max pooling technique. Max pooling 

could pick the most activated feature and could be used to reduce overfitting and reduce 

the number of parameters. 

4. Normalization Layer: This layer normalizes over local input regions to aid in 

generalization. 

5. Fully-connected Layer (FCN): feature classifiers located at the network's final two layers. 

They include flatten layers, dense layers, and an output layer at the end. Perceptrons in an 

FCN are fully connected to all previous layer activations. Each layer could include various 

hyperparameters. 

3.1.2 Deep Transfer Learning and Fine-tuning  

 

DL, which is gaining popularity for solving classification problems, was used to extract earth 

features from remotely sensed imagery data in order to manage the earth's land for proper deep 

classification system utilization. DL algorithms have grown in popularity due to their ability to 

automatically learn from large datasets [56], [80], [82]–[86]. They are widely used for their higher 

performance and accuracy [5], [56], but they are more time-consuming to train and result in 

overfitting [11], [56]. 
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TL is a domain adaptation DL model that uses the previously developed model to create new DL 

tasks. The developed model (pretrained) transfers its capabilities from existing experiences to the 

new one to enhance learning capabilities. In this case, the source domain model (which has already 

been trained) shares its experiences with the new model, which can learn from and adapt the 

pretrained model's knowledge. So, the name "transfer learning" comes from this process of sharing 

knowledge or experience. In this case, we can call TL a domain adaptation model. 

TL gets more attentions for reducing the training time and the dependence on large amounts of 

training datasets [8], [56], [57]. We are impressed by TL's efficient training time, and we are also 

motivated to design TL based on the recommended work suggested by [3]. The TL algorithm is a 

pretrained CNN-based DL model with non-trainable weights of the pretrained model, i.e., setting 

the "pre_trained_model.trainableor tf.keras.applications.*.trainable = False" where * is any 

pretrained network, such as AlexNets, ResNet, InceptionNets, VGGNets, EfficientNet, and 

MobileNet. While applying TL, we simply allow the last dense layers to be trained for our new 

model. The tf.keras.applications.* enables the model to have the pixel values in a specific range 

like [0, 1] from the input images.  If we allow all the pretrained layers to be trained i.e. setting the 

"pre_trained_model.trainableor tf.keras.applications.*.trainable= True" the pretrained weights 

are able to be used for the neural network's initial weights. In this case, we are transforming the 

DL technique from TL to a new pretrained network called fine-tuning. Therefore, TL uses random 

initializations of the deeper layers or the weights from the pretrained ImageNet network. Whereas 

the fine-tuning technique initializes the deeper layers with values from the pretrained ImageNet. 

TL adapts the existing pretrained classifier and learns on the top of the fully connected layers of 

the entire network. TL is widely used for RS image classification [11], [58], [59] because RS 

images are essential for LCLU classification in DL approaches [60]. TL is used to create a DL 

model from the existing problem pretrained models. We have used ResNet50V2, VGG19, and 

InceptionV3 pretrained models. 

Fine tuning is a specific technique with in TL where the pretrained model’s weights are further 

adjusted or fine tuned on the new dataset (task), whereas TL is used to train the final layers of the 

pretrained model’s weights are usually kept fixed. Unlike TL, fine tuning is modifying not only 

the final layers but also some other earlier layers of the pretrained model as we described it earlier 

as the trainable layer’s weight is ‘True’. 
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3.1.3 Deep Pretrained Networks 
 

Pretrained networks are DL approaches that have already been trained on large datasets. The 

ImageNet large scale visual recognition challenge (ILSVRC) or simply "ImageNet" benchmark 

dataset is one of the large datasets on which most pretrained networks have been trained. Most of 

the pretrained networks have been trained on the large ImageNet dataset. The "ImageNet" dataset, 

which consists of over 14 million images and 1000 categories, was introduced and contributed by 

[87]. Pretrained networks consume less computational resources and training time (enabling faster 

training), improved performance and enhanced generalization capabilities  

Most pretrained networks are available in the Keras DL development tool, and they can be loaded 

using the tensorflow "tf" package as "tf.keras.applications.*,"  where "*" is any pretrained 

network. The pretrained networks serve as the foundation for TL and fine-tuning DL networks. 

Currently, various modern DL architectures are being developed for DL applications in various 

domains. Most of these pretrained DL architectures were introduced by the Google research team, 

as shown in Table 3.1. Each pretrained network releases different versions from time to time. For 

instance, for VGGNet, versions VGG16 and VGG19; for GoogleNet (InceptionV1), versions 

InceptionV2 to InceptionV4; and for MobileNet, versions MobileNetV1 to MobileNetV7, are the 

released versions by researchers. We used the latest version of each DL network in this study. To 

sum up, the DL methods used in this study are the deep CNN, CNN-based TL, and pretrained 

networks. 

Table 3.1. Pretrained Network DL architectures 

Pretrained network #Maximum 

parameter  

#Layers  Year  Introduced and contributed 

by  

AlexNet 60 million  8 2012 [88] 

VGGNet 20 million  19 2014 [89] 

GoogleNet 

(InceptionNet) 

22 million  22 2014 [90](Google team) 

ResNet 23 million  152 2015 [91] 

MobileNet 4 million  28 2017 [92] (Google team) 

EfficientNet 64 million  - 2019 [93] (Google team) 

 



  

34 
 

3.1.4 DL Hyperparameters and Optimization Techniques  

Most DL algorithms are implemented with numerous hyperparameters that affect the model's 

performance in terms of computational resources (the time and memory cost for running the 

training). The DL hyperparameters and optimization techniques are the DL strategies that are used 

to find the optimal performance or minimum error. Hyperparameters are the external configuration 

choices or settings that define how the learning algorithm operates and controls the learning 

algorithm’s behavior. The term hyperparameters are differ from parameters. Parameters internal 

variables learned (updated) automatically based on the data, while hyperparameters are external 

variables that are not learned (updated) from the data, simply they are set manually and often 

require setting or adjusting to optimize the model performance.  

The optimization technique includes the regularization technique, which limits the values of the 

hyperparameters for optimization, training, or learning the model. Many DL strategies are being 

considered in order to reduce test error. DL algorithms include optimization techniques in many 

settings. 

To build DL models, any DL algorithm would have different technical optimal hyperparameter 

requirements. The optimization techniques enable the model to become better by minimizing 

errors. The appropriate or optimal hyperparameters can be chosen either manually or automatically 

(the default). These optimization techniques include optimizer (Adam), learning rate, dropout, 

early stopping, number of epochs (iteration), back propagation, and the like. Some of the important 

requirements are going to be described in the following sections. 

3.1.4.1 Learning rate (LR) 

The learning rate is used to facilitate the ability of the model to learn from the given data. It controls 

the step size at each iteration or epoch during the optimization process and determines how quickly 

or slowly the model learns from the data. It has various values such as 0.01, 0.001, and 0.0001. 

However, if the larger LR is used, the fluctuation of training and learning could happen, and the 

pretrained weights could be lost. If the LR is smaller, the convergence of the training and validation 

losses to zero will be too slow. Therefore, the appropriate LR value is advisable to be used in 
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building DL models. So, we used the TR of 0.001 and 0.0001 to optimize our model with the 

Adam optimizer. 

Adam (Adaptive Momentum Estimation), which is the recent optimization technique in DL, is the 

combination of adaptive delta algorithm (AdaDelta), Root Mean Square Probability (RMSProp), 

and momentum. This optimization technique was introduced by [94] in 2015. 

3.1.4.2 Dropout 

Dropout is an optimization technique that is used to drop out randomly selected neurons or nodes 

with a given percentage probability. This hyperparameter is used to reduce overfitting during the 

training of the model but is not used in evaluating the model. The percentage values expressed in 

decimal form are usually expressed as 0.2, 0.3, 0.4, and 0.5. In this study, we used 0.5 (i.e., 50%) 

to reduce the overfitting of the training.  

3.1.4.3 Loss functions (Error function) 

The loss function is the difference between the actual and predicted output values in the DL model. 

The minimized error value makes the model better. To minimize the error function, we could use 

various DL optimization techniques, such as Adam, epochs, learning rate, dropout, and back 

propagation. In DL modeling techniques, there are two loss functions: regression losses and 

classification losses. Regression loss includes mean square error (MSE-L2) loss and mean absolute 

error (L1) loss, and classification loss includes binary classification loss or binary cross-entropy 

and multi-class classification loss or multi-class cross-entropy. 

Cross-entropy loss (aka log loss) is used to measure the performance of the model that has an error 

probability value between 0 and 1, which could be calculated using equation (3.7). We used a 

multi-class cross-entropy loss function since our class is multi-classes of the RS images. 

 

 

𝐸 = − ∑ Ok log(Yk)

𝑁

𝑘=1

 

(3.7) 
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where E is the cost, error, or loss function of the model, N is the number of total classes, k is the 

number of neurons from 1 to N output neurons, O is the actual output, and Y is the predicted 

output. However, the error function is a function of the weights and bias. Therefore, the 

backpropagation algorithm of the minimization of cost function or error function (E(W, b)) could 

be used to find the difference between the actual and predicted outputs, as equated in (3.8).   

 

E(W , b) =
1

2
∑(𝑂𝑘 − 𝑌𝑘)

2

𝑁

𝑘=1

 

(3.8) 

 

3.1.4.4 Activation functions  

In the convolution process, the output feature 2D array is converted into a 1D array in the fully 

connected layer, and each individual pixel value is considered a feature of the image. In the fully 

connected layer, the linear and non-linear transformation operations are applied. We described the 

linear transformation operation earlier. In addition to this transformation, the very vital non-linear 

transformation component known as the activation function is applied at each layer of the neural 

network depending on its availability. Therefore, we described the most important activation 

functions that are non-linear transformations or functions in this section to have some know-how 

idea about them. 

Activation functions are used to update the weight values for the learning capability of the model. 

There are various linear and non-linear activation functions used in DL. For all non-linear 

functions, we can easily backpropagate the forward propagation process. DL CNNs have various 

activation functions, which should be non-linear as linear functions have a constant derivative. The 

most commonly used activation functions are sigmoid or logistic functions, tangent hyperbolic 

(tanh), rectified linear unit (Relu), and softmax. 

We used the Relu at the entire convolutional layer to activate the weights in each convolution 

process and the Softmax at the output layer since it is reliable for our multiclass classification 

problem. Relu is used after each convolution layer as they are faster at training the network without 

considering accuracy. The softmax function is a feature classifier, and it introduces a probability 
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score for each class. The class with the highest probability score is predicted to be our predicted 

class. This probability score will be used for performance evaluations. 

3.1.4.5 Sigmoid  

This function precedes any ranged numbers as inputs and generates the output value in the range of 

0 to 1 with an "S" shaped curve. We represented the sigmoid function and its derivative (gradient) 

with the input x mathematically in equations (3.9) and (3.10), respectively, and graphically in 

Figure 3.5. 

 
𝑓(𝑥) =

1

1 + 𝑒𝑥𝑝(−𝑥)
= 

𝑒𝑥𝑝𝑥

1 + 𝑒𝑥𝑝𝑥
 

(3.9) 

And its derivative (gradient) is: 

 𝑓′(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥). (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) =  𝑓(𝑥). [1 − 𝑓(𝑥)] (3.10) 

 

 

Figure 3.5. Graphical representations of the sigmoid function and its derivative (gradient) 

  

 

The gradient function of the sigmoid values is approaching 0. Thus, the probability of the neural 

network's learning ability could be very low. The function has been used in the output layers of 
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DL architectures as well as the loss function in binary classification problems and logistic 

regression neural network applications.  

3.1.4.6 Tangent Hyperbolic (tanh) 

It is somewhat similar to that of the sigmoid function, but while the sigmoid function takes input 

values between 0 and 1, the tanh function takes input values between -1 and 1, as depicted in Figure 

3.6. The mathematical representation of the tanh function and its derivative is quantified in (3.11) 

and (3.12), respectively.  

 

 
𝑎 = tanh(𝑧) =  

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
= 

2

1 + 𝑒−2𝑧
− 1  

(3.11) 

 

In Python with numpy (np) library, this activation function formula can be coded as:  

a = (np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z)).  

And the derivative of tanh(z) could be: 

 
tanh′(z) =  

da

dz
= 1 − 𝑎2 

(3.12) 

 

In Python, this derivative activation function can also be coded as da = 1-a**2. The graphical 

representation of tanh and its derivative is plotted in Figure 3.6.  



  

39 
 

 

Figure 3.6. Tanh Function and its Derivative 

 

In Figure 3.6, the tanh function produces the zero-centered output, and it is usually applied in the 

hidden layers since its variety is between -1 to 1, i.e., -1 < variety < 1. Thus, the tanh is used to 

center the data by approaching the mean of the hidden layer close to 0. In this case, the next ability 

is much easier to learn and optimize than the sigmoid function. In the derivative function with a 

blue-colored graph, the output value approaching 0 for the real number range is less than -3 and 

greater than 3. The variety is between 0 and 1, i.e., 0 < variety < 1.  

3.1.4.7 Rectified linear unit (Relu)  

Relu has been used in almost all DL models nowadays, and its performance is better than the 

sigmoid function. As a result, we used this function to classify RS imagery data for our deep TL 

model. Relu returns x if x > 0 and 0 otherwise for any real number x. The mathematical and 

graphical representation of Relu is represented in equation (3.13) and Figure 3.7. 

 
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) =  {

𝑥𝑖 , 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 < 0

 
(3.13) 
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Figure 3.7. Relu function graphical representation 

From Figure 3.7, for the negative input value of x, the result becomes zero, which implies that the 

neurons with the negative values are not activated except the neurons with positive values. The 

algorithm for Relu could be:   

def relu_func(x)   

if x>0 

print(x) 

else: 

print(0) 

 

In this algorithm, if we call the function relu_func(4)  and relu_func(-4), the output is 4 and 0, 

respectively (also Figure 3.7).   

The derivative, i.e., the gradients of Relu function, is represented in equation (3.14) as: 

 
   𝑓′(𝑥) =  {

1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 
(3.14) 
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And the graph of the derivative (gradient) of the relu function has been plotted in Figure 3.8. The 

gradient’s slope is constant i.e. ether 1 ∀x, x >= 0 or 0 ∀x, x<0. 

 

 

Figure 3.8. Graph of the gradient of relu function 

 

According to Figure 3.8, as stated earlier, for the negative input value of x, the gradient value is 

always zero. This concept implies that the dead neurons with the negative values that never get 

activated are created because weights and biases were not updated for some neurons during the 

backpropagation process. Backpropagation is an algorithm in ML and AI that is used to fine-tune 

the computational weight functions and to update the accuracy of the model or output in a chain 

rule. It is used to calculate the gradient descents of the loss function with respect to the given 

weights in the ANNs. For the positive input value of x in the other cases, the gradient value is 

always one. In this case, some neurons are activated, and the capability of learning ability is taken 

place. 
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In relu, errors could propagate easily, and multiple layers of the neurons have been activated. The 

mathematical operation is simpler than that of the tanh and sigmoid functions because only a few 

neurons are activated at a time to make the network competent and stress-free for computation.  

3.1.4.8 Softmax (softargmax or normalized exponential function) 

It is used to predict the class having the highest probability in multi-class classification problems 

for the input labels. We used this function in this study since our RS imagery data is a multi-class 

classification problem.  

The softmax output is between 0 and 1, and the sum of each class probability is 1.0. If some N 

elements of the input vector are N<0 or N>1, they would be between (0, 1) after using the softmax 

function. Its equation 𝒇(𝐳𝒊,𝒋) over N classes is computed in the equation (3.15) given. 

 

 
𝑠 = 𝑓(z𝑖,𝑗) =

exp(z𝑖)

∑ 𝑒𝑥𝑝(z𝑗)
𝑁
𝑗=1

= 
ez𝑖

∑ ez𝑗𝑁
𝑗=1

 
(3.15) 

 

The softmax function can be written in vector forms as:  

 

               T(s):  

 

 

Per each element, the softmax function looks like this: t𝑗(s) =
ex p(s𝑗)

∑ 𝑒𝑥𝑝(s𝑗)
𝑁
𝑘=1

= 
e
s𝑗

∑ es𝑘𝑁
𝑘=1

 ,   

𝑤ℎ𝑒𝑟𝑒, ∀𝑘 = 1,2, … ,𝑁 

 

The derivatives of softmax can be calculated using matrix forms of equation (3.16). 

 

 

𝛛𝐓

𝛛𝐒
=

[
 
 
 
 
∂t1
∂s1

∂t1
∂s2

…
∂t1
∂s𝑛…

∂tn
∂s1

∂tn
∂s2

…
∂tn
∂s𝑛]

 
 
 
 

 

(3.16) 

 

 

s1 

s2 

… 

sn 
 

t1 

t2 

… 

tn 
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And the derivative of softmax could be used to compute the error for every i and j elements as: 

∂ti
∂sj

=
𝜕

𝑒si

∑ es𝑘 𝑁
𝑘=1

𝜕sj
 

Let us apply the quotient rule as:  

𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
and𝑓′(𝑥) =

𝑔′(𝑥)ℎ(𝑥)−𝑔(𝑥)ℎ′(𝑥)

(ℎ(𝑥))2
 

In this equation,  𝑔(𝑥) =  𝑒siand ℎ(𝑥) =  ∑ es𝑘 𝑁
𝑘=1 . Thus, the derivative of g(x) and h(x) is: 

𝑔′(𝑥) =  {
𝑒si , 𝑖𝑓 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, and  ℎ′(𝑥) =  𝑒sj  , ∀𝑘 = 1,2…𝑛,  respectively.  

Therefore, 𝑓′(𝑥) =
𝑔′(𝑥)ℎ(𝑥)−𝑔(𝑥)ℎ′(𝑥)

(ℎ(𝑥))
2  

                         =  
𝑒sI  . ∑ es𝑘 𝑁

𝑘=1 – 𝑒si . 𝑒sj

(∑ es𝑘 𝑁
𝑘=1 )2

 

                                 =  
𝑒sI

∑ es𝑘 𝑁
𝑘=1

. (
∑ es𝑘 𝑁

𝑘=1 – 𝑒sj

∑ es𝑘 𝑁
𝑘=1

) 

               =
𝑒si

∑ es𝑘 𝑁
𝑘=1

. (1 − 
𝑒sj

∑ es𝑘 𝑁
𝑘=1

) , ∀𝑖𝑗, 𝑖 = 𝑗 

                     𝑎𝑛𝑑 
𝑒si

∑ es𝑘 𝑁
𝑘=1

.
𝑒sj

∑ es𝑘 𝑁
𝑘=1

, ∀𝑖𝑗, i ≠  j 

 

 
∴   𝑓′(𝑥) = {

ti. (1 − 𝑡j) , 𝑖𝑓 𝑖 = 𝑗 

−ti. 𝑡𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

(3.17) 

By using the Kronecker delta function,  

δ𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 ,

𝜕ti

𝜕s𝑗
= ti(δ𝑖𝑗 − tj).  By applying this equation into equation (3.16), finally 

we got the derivative of softmax function can be calculated using equation (3.18). 

 

 

𝛛𝐓

𝛛𝐒
=

[
 
 
 
 
 
 
𝐭𝟏(𝛅𝟏𝟏 − 𝐭𝟏)𝐭𝟏(𝛅𝟏𝟐 − 𝐭𝟐)  …  𝐭𝟏(𝛅𝟏𝒋 − 𝐭𝒋)

𝐭𝟐(𝛅𝟐𝟏 − 𝐭𝟏)𝐭𝟐(𝛅𝟐𝟐 − 𝐭𝟐) …   𝐭𝟐(𝛅𝟐𝒋 − 𝐭𝒋)

…

𝐭𝐢(𝛅𝒊𝟏 − 𝐭𝟏) 𝐭𝐢(𝛅𝒊𝟐 − 𝐭𝟐) … 𝐭𝐢(𝛅𝒊𝒋 − 𝐭𝒋) ]
 
 
 
 
 
 

 

(3.18) 
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When we substitute δijby 1 or 0, the derivative of the softmax function in equation (3.18) can also 

be simplified as in equation (3.19). 

 

𝛛𝐓

𝛛𝐒
=

[
 
 
 
 
 
 
t1(1 − t1)  − t1. t2   …  − t1. t𝑗−1    − t1. t𝑗

−t2. t1t2(1 − t2) …  − t2. t𝑗−1    − t2. t𝑗

…

−tit1ti(1 − t𝑗) …− ti. t𝑗−1    − ti. t𝑗 ]
 
 
 
 
 
 

 

(3.19) 

 

The algorithm for simplified derivative matrix (equation (3.19)) could be represented as:  

matrix = np.diag(t = np.arry([xijOriginalValues])  

fori in range(len(matrix)): 

for j in range(len(matrix)): 

ifi == j: 

matrix[i][j] = t[i] * (1-t[i]) 

else:  

matrix [i][j] = -t[i]*t[j] 

  

3.1.5 Fittings in Deep Learning  
 

Fitting is a DL technique that is used to classify categorical features in different patterns. It has 

effects on the performance of the DL in terms of bias and variance. There are three categories of 

fittings observed in the ML and DL model performances, namely under-fitting, optimal fit, and 

overfitting. Underfitting and overfitting are the two DL challenges that affect the performance of 

the model. Underfitting occurs when high bias or low variance errors exist, the model does not fit 

the training set correctly, and the model is not able to generalize to a new sample image. It also 

occurs when the model generates high training errors on the training set. Overfitting occurs when 

there are high variance or low bias errors and the model perfectly fits the training set, and the 

model may be unable to classify a new unknown sample image. It also occurs when the gap 

between the training error and the validation or test error is too large. Therefore, overfitting occurs 

on the validation or test error with its high variance, while underfitting occurs on the training error 

with its high bias. 
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Bias and variance in any ML model are unavoidable, but it is possible to make them optimal. When 

a model has low bias and variance and performs well on new sample images, it is said to be 

“optimally fitting.” However, the model could be doing poorly on the training set because of high 

bias, and its performance on the validation or test set could be worse because of high variance. In 

this case, the model becomes overfitting and underfitting simultaneously, and it is hard to apply it 

to a specific task, such as classification, detection, or recognition. 

Bias and variance contribute to errors. Therefore, bias and variance are errors of the classification 

model, and high errors on the training data may result in under-fitting while nearly zero errors on 

the training data may result in overfitting. In this idea, a complex model (overfitting) could be built 

with high variance and low bias, while a simple model (under-fitting) could be built with low 

variance and high bias. To calculate the total error, we might use various mathematical formulas 

depending on the error metrics applied. For instance, we equated  (3.7) and (3.8) for cross-entropy 

error metrics and (3.20) for mean squared error metrics. 

To overcome such problems, minimizing the error by utilizing optimization techniques is the 

focus, but not the bias or variance specifically. Overfitting is the main unavoidable problem in DL 

that could influence the model's performance. Nevertheless, it is possible to reduce it by using 

optimization techniques such as dropout, early stopping, regularization, and data augmentation. It 

is also possible to reduce bias and variance by changing the model architecture, even though that 

is hard to identify and implement. 

 𝐸𝑟𝑟𝑜𝑟 =  𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (3.20) 

 

3.2 Remote Sensing Datasets 

The RS data are geospatial earth observation data and environmental records. These data are 

collected by using RS technologies or sensors. The use of ML, particularly DL, to analyze this 

imagery data is critical for solving the classification problem. In this imagery RS data, 

classification has been a prominent research problem. As a result, RS imagery data classification 

is a significant issue in a variety of domains [83], [84]. LCLU is an important domain area because 

land cover is continuous spatial data.  
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To design and evaluate DL methods for LCLU classifications, various RS datasets would be 

collected from their sources. The United States Geological Survey (USGS), European Space 

Agency (ESA), and Google Earth are the major sources of RS datasets. The DL algorithms mostly 

need large set of labeled data to train and classify the RS image, which might be available 

commercially or publicly. Among the publicly available RS datasets listed in Table 2.1, we used 

the UCM, SIRI-WHU, and RSSCN7 datasets to design and evaluate the DL algorithms. The 

sample images in each class of these datasets are depicted in Figure 3.9, Figure 3.10, and Figure 

3.11 for UCM, SIRI-WHU, and RSSCN7, respectively.  

 

 

Figure 3.9. Sample images in each class of the UCM dataset 
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Figure 3.10. Sample images in each class of the SIRI-WHU dataset used for CNN-FE model 

checking 

 

Figure 3.11. Sample images in each class of the RSSCN7 dataset used for evaluating DL methods 

of the InceptionV3, EfficientNetB7 and MobileNet models performance comparisons  
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3.3 Tools and Frameworks for Designing DL Models 

Tools make ML and/or DL swift and rapid for complex tasks. ML tools provide an interface to the 

ML developmental programming language; contain platforms that provide capabilities to run a 

module or project; and contain various libraries that provide all the capabilities to complete a 

project and provide different algorithms. These ML and DL tools have been used by programmers 

and researchers for RS image classifications. Python is the most popular interpreted, interactive, 

dynamically typed, garbage collected, and object-oriented general-purpose scripting high-level 

language and tool, as listed in Appendix II. 

There are various tools and frameworks used in designing DL methods. Such tools include the 

central processing unit (CPU), Google Colaboratory, TensorFlow, Keras on API (application 

programming interface), Caffe, Theano, and PyTorch. Google Colaboratory, or simply "Colab," is 

an online cloud-based Jupyter notebook environment that allows us to train DL and ML models 

on CPUs, graphics processing unit (GPU), and vision processing unit (VPU). Specifically, we used 

the Python tool, Keras, and TensorFlow packages with other fitting libraries to design DL models 

for experimental implementations. Moreover, to visualize and compute the statistical metrics, we 

use the Panda and Scikit-Learning packages. These packages are listed and described in Appendix 

II. By deploying the materials of the RS dataset, tools, and relevant packages, we applied the DL 

methods for LCLU classification. The model design process is sketched in Figure 3.12.  
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Figure 3.12. The overall DL Model for LCLU Classification processes 
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3.4 Chapter Summarization  

In this chapter, we describe the research methodologies that enabled us to accomplish the thesis. 

These research methodologies include materials and methods. The materials we used in this study 

include publicly available datasets, computer hardware, software, tools, and DL frameworks. The 

methods also include the DL approaches, such as CNNs, TL, fine-tuning, and the pretrained 

networks that are able to classify the LCLU classification in RS images. Moreover, we also 

described the DL hyperparameters. 

We used the UCM, RSSCN7, and SIRI-WHU RS imagery datasets. These datasets have different 

properties, such as different pixel sizes, resolutions, categories, and locations, as we described in 

Table 2.1. The CPU, Colab NVIDIA-SMI 460.32.03 Tesla T4 GPU hardware, and Python high-

level integrated language were used for implementing the objectives. Analytical tools such as 

panda (pd), matplotlib (plt), numpy (np), and sckit-learn were used for statistical analysis. 

Research methods are the algorithms that are used to design the DL models using materials, tools, 

and frameworks. The DL methods, such as the CNN, TL, and fine-tuning technique with the base 

line networks of pretrained neural networks, are applied in this research. The most recently applied 

pretrained neural networks are listed and described in Table 3.1. To design these models, we used 

the DL frameworks, such as TensorFlow and Keras, integrated with Python. Dropout, learning 

rate, and number of epochs or iterations are used to demonstrate the impact of DL hyperparameters 

on DL performance. Moreover, among the activation functions described in this chapter, Relu and 

Softmax are used for weight adjustment and learning capability purposes.   
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4. DESIGNING DL CONVOLUTIONAL NEURAL NETWORK 

MODEL FOR LCLU CLASSIFICATION USING REMOTE 

SENSED IMAGES: AN END-TO-END APPROACH 

 

4.1 Introduction 

A RS is the art and science of extracting information about an object or phenomenon without 

making physical contact using advanced sensing technologies. Sensing technologies [95] are 

remote sensors used to collect large amounts of RS images [96] from the observed earth. RS 

images are spatial data since they contain spatial information [97]. RS image classification is a hot 

research challenge in many domains [37], [98], such as environmental monitoring, agricultural and 

urban planning, and other related domains. Every day, RS technologies generate a large number 

of RS images. They could be collected from the earth's environment or from space. These images 

are difficult to analyze since they are varied due to weather, distance, and other determinants. The 

images could be RGB [97], multispectral [99], [100], or hyperspectral [101]. We aimed to classify 

LCLU using satellite RS multispectral images.  

The LCLU classification problem is the recent focal point of research in RS images [3], [58], 

[102]–[107]. LCLU in RS images has pixel-level classification and boundary mapping [9]. Thus, 

RS images are sensitive, according to recent studies [108]. Land is one of the four pillars of 

sustainable development (social, human, economic, and environmental). Therefore, managing, 

controlling, and planning the land could be critical for any nation's development. It could better 

support the tasks in machine-aided LCLU classification systems. The DL approaches, especially 

CNNs, could be applied to LCLU classification in RS images [109].  

The DL approach, CNN is proposed to solve the LCLU classification problem. DL is a robust 

recent ML approach that enables performance improvement for RS images [26], [102], [103], 

[110]–[112]. CNNs are prevalent DL techniques that consist of more than two layers [101], and 

they involve convolution filters [37]. Convolution is the weighted sum of the pixel values of the 

RS images. The purpose of using convolution is to reduce the size of the input image shape and 

the total number of parameter in the network [113]. Therefore, the convolutional feature extractor 

is our image extraction technique for our CNN-FE model. 
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In recent times, deep CNNs have become pillars and new trends in computer vision [114], and RS 

image classification is one of the application domains in computer vision [115]. The CNNs could 

be applied in various domains using RS imagery data, such as LCLU classifications [3], [98], 

[116]–[119], and object detection [111], [120]–[122]. LCLU classification in labeled RS images 

has been investigated in the recent era, and we selected this problem to solve with our proposed 

DL method by applying its hyperparameters. 

Nowadays, CNNs methods get more civility in RS image classification problems for their powerful 

performance improvements [8], [26], [111], [116], [123]–[126], [37], [86], [97], [98], [101], [105], 

[106], [110]. The CNNs DL approach consists of three main layers: convolutional, pooling, and 

fully connected [111]. We used various optimization techniques in each of these layers. As a result, 

CNNs perform various convolution processes from the input to fully trained CNNs. This process 

makes end-to-end predictions [102]. Deep CNN is an efficient end-to-end approach for outstanding 

results [5], [37], [104], [107], [127]. The end-to-end algorithms extract the image features from 

the input to the output processes without using other feature extractor algorithms. Thus, CNN-FE 

is end-to-end learning. 

The deep CNNs models could be built for any classification problem, specifically RS images, in 

three ways: from scratch development, using pretrained models, or retraining the pretrained 

models. Pretrained models are modeled earlier on other large datasets, such as "ImageNet" images. 

From the literature, we observed that most researchers used pretrained models, such as [58], [98], 

[104], [106], [114], [119], [128], [129], for modeling LCLU classification in RS images.  

However, training deep CNNs from scratch has not been widely investigated in RS images [97]. 

This could be the reason that building CNN models from scratch is difficult due to a lack of ample 

training data and the large amount of time needed for training [126], [130]. According to our 

review, very few researchers, such as [3], [35],  have attempted to create CNN models in RS image 

classification. Moreover, despite the prominent results of deep CNNs, there are some problems to 

be solved regarding to parameter variations. This was our initiation to build the CNN-FE model 

for LCLU classification in RS images in this study. 

In this section, we are motivated to apply the recent DL approaches, especially CNNs, by using 

various hyperparameters. Therefore, we applied the DL method, convolutional feature extractor 
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(CNN-FE), with various hyperparameters for LCLU classification using RS images to improve the 

performance. The recent studies showed that the DL hyperparameters affect the performance of 

the model [97], [111], [114]. For instance, varying values of the kernel size [117], [127], dropout 

[3], [131], [132], training data percentages or training data sampling size [111], [116], [126], [128], 

[133], learning rate [108], [111], [114], [131] could produce different performance results. This 

demonstrates how changing the hyperparameters affects the performance of the DL model. 

Therefore, we are also initiating the application of such hyperparameters with their valuable values 

in this study.  

The CNN-FE technique was designed with sixteen layers (three Conv2D, three pooling, three 

dropouts, three batch normalization, one flatten, and three dense, including the output (softmax) 

at the top), and evaluating the model with test dataset samples was performed. After training the 

model, its performance was evaluated and compared with the pretrained network VGG19 in the 

UCM dataset. The performance improvement has been achieved.  

4.2 Methods 

4.2.1 DL Method: Convolutional Neural Network 

 

CNN is one of the relevant DL approaches that consists of several sequentially connected layers. 

This study proposed CNN-based feature extraction (CNN-FE) for the LCLU classification 

problem using the inconsistent RS images. To get better performance in CNN-FE, we used various 

DL layers, as shown in Figure 4.1.     

In this study, we used the most prominent DL approach for CNNs in the form of Conv2D, which 

took the image shape (height, width, channel), i.e., (256, 256, 3). In recent studies, CNNs are 

popular application areas in RS images [127]. As we have described earlier in Chapter 3 of this 

study, the CNNs consist of the convolution, pooling, and fully connected layers with other DL 

hyperparameters, including the activation functions. These are vital sequential parameters for the 

end-to-end DL approach. The sequences of the CNN layers have been depicted in Figure 4.1. 

1) The input layer and convolutional (Conv2D) layers 

The input layer is the entire input image layer with height*width*channel pixels shapes. It is 

introduced into the convolutional layer to be processed. Convolutional layers receive the input 
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layers and image pixels and compute the perceptron with a given filter (f, f) or kernel, strides, and 

padding to the input image volume in a new output volume. The CNNs convolution could operate 

the mathematical operation of matrix multiplications in given layers. The CNNs are different from 

other conventional ML approaches in input data types and weight calculations [123] using the 

convolution method. The feature map of the model is created by the overall process of the 

convolutional layers.  

Using downsampling and upsampling techniques, the model's feature map can be transformed into 

other resolution feature maps. The downsample is a convolution operation with strides to reduce 

the input image size and double the number of filters. In contrast, upsampling is a bilinear 

interpolation operation to double the input image size and reduce the number of filter sizes [95].    

The convolutional layers consist of convolution filters or kernels with learnable parameters [118], 

[127]. Convolution could be performed with valid convolution (no padding), same convolution 

(with padding), and stride (slide or shift) convolution. The mathematical computation of the output 

volume of the image in each layer could be calculated using the input volume (height*width), 

stride(S), and padding (P) parameters. The stride (S) of the filter (f × f) is the intervals of the filter 

jumps or shifts S number of transitions from the first elements in a pixel or each spatial dimension, 

while padding (P) is the number of pixels added at the outer edges of the input image volumes 

(height × width). A filter is usually odd and small in size is 3×3, 5×5, and 7×7 with 1, 2, and 3 

paddings, respectively. In the Keras DL tool, there is no padding for image border (0) to valid 

convolution and padding for image border to same convolution. Thus, the output volume 

(heightnew* widthnew) of a layer could be computed using (3.1), and the number of paddings for 

same convolution could be calculated using (3.2). The default values of P and s are 0 and 1, 

respectively.  

In this study, we used same convolution with the filter size (3,3) and three paddings. The Conv2D 

layers are used to extract the input image features by sliding a convolution filter size of (3, 3) to 

produce a new output hierarchical feature map. There are three convolutional block layers in our 

sequential model training, including 64, 128, and 256 convolution kernels with a filter size of three 

each. Therefore, convolution is used as our feature extraction method for RS images.  

The total parameter numbers of the model are the summations of the calculated results from the 

Conv2D and dense layers. We design the model with four Conv2D layers that calculate the number 
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of parameters for those layers in the same norm by (3.5) and two dense layers by (3.6). However, 

the calculation formula for dense parameters differs from Conv2D, as equated in (3.6). The number 

1 means the bias associated with each filter for learning.  

According to (3.5) and (3.6), we found the total parameter number to be 800,981. However, the 

number of parameters for all MaxPooling2D and Flatten layers is zero because these layers do not 

learn anything from the built model.  

 

2) Pooling Layer 

The pooling layer is used to resize and downsample the spatial representations. We used the 

common pooling technique called max pooling. It was used for both avoiding overfitting and 

reducing the number of parameters.  

The pooling layers in CNNs are essential for the downsampling processes used to reduce the size 

of the input RS images. In addition, the block layers involve various max-pooling with 2, the stride 

with 2, and the padding with "same."  

3) Fully-connected Layers (FCNs) 

FCNs are feature classifiers in the last couple of layers of the network. They include flatten layers, 

dense layers, and an output layer at the end. Perceptrons in an FCN are fully connected to all 

previous layer activations. 

CNNs also have various activation functions, which should be non-linear as linear functions have 

a constant derivative, as described in earlier sections. These are softmax, Relu, tanh, and sigmoid 

or logistic functions. We used the Relu at the entire convolutional layer to activate the weights in 

each convolution process and the softmax at the output layer since it is common for our multi-

class classification. The softmax function is a feature classifier and introduces a probability score 

for each class. The class with the highest probability score is predicted to be our predicted class. 

This probability score will be used for performance evaluations later. 
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Figure 4.1. Structure of the CNN DL approach 

4.2.2 Dataset Descriptions 

 

The RS dataset was collected initially through advanced sensor technologies, and then it could be 

labeled manually for research or other commercial purposes. On the base of the channel, there are 

three types of RS images: RGB (that consists of three channels), multispectral (that consists of more 

than three and under hundreds of channels), and hyperspectral (that consists of hundreds of 

channels). Recently, various researchers have investigated these data types. We used the UCM RS 

dataset, which is multispectral.  

To test the built model's applicability to the target UCM, we used the rarely studied SIRI-WHU 

dataset. For training, validating, and testing samples, we used 60%, 20%, and 20% of each labeled 

dataset, respectively. 

The UCM dataset is an LCLU data set collected from the earth, labeled manually, and introduced 

by [70]. It has 21 classes, each with 100 images that measure 256 × 256 pixels and have a spatial 

resolution of about 30 cm per pixel. However, the UCM dataset is inconsistent, as about 44 images 

have different pixel shapes. The variety of properties of the dataset could affect the performance 

results. Sample images in each class are depicted in Figure 3.9. This dataset is available at 

http://weegee.vision.ucmerced.edu/datasets/landuse.html.  

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China; it was 

introduced by [75]. The dataset contains 12 categories and 200 images per category with 200*200 
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pixels in a spatial resolution of 200 cm per pixel. Sample images in each category are depicted in 

Figure 3.10. The dataset is publicly available for research purposes at  

https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980.  

4.3 Experimental Results and Discussions 

4.3.1 Experimental Setting 

 

The dataset and the DL hyperparameters could be considered for their appropriate settings to build 

our model. As we described in earlier sections, there are 2100 images in the UCM dataset and 

2400 images in the SIRI-WHU dataset. Therefore, to reduce the overfitting of the model, we split 

both the UCM and SIRI-WHU datasets into three sets: the training set, the validation set, and the 

test set, which compromise 60%, 20%, and 20% of the dataset, respectively. Then, after splitting, 

the total sample images in the training set, validation set, and test set become 1260, 420, and 420 

for UCM and 1440, 480, and 480 for SIRI-WHU, respectively. Each dataset is loaded into the 

experiment and preprocessed. First, we built the model on the UCM dataset as follows; then, we 

rebuilt the model on the SIRI-WHU dataset for its applicability approval in the same manner. 

Batch size is one of the hyperparameter that can influence on the model performance. It determines 

the number of samples processed in each iteration or epoch during training. It also affects the speed 

and stability of training, such as the larger batch sizes can speed up training but may require more 

memory, and the smaller batch sizes may provide more stable updates but can slow down training. 

The training set is a collection of 1260 images that have been used to fit and train our model with 

a batch size of 64 and hundreds of epochs, as shown in Table 4.1 (right column).  

Epoch or iteration is a complete pass of the entire dataset during training and it defines how many 

times the model iterates over the entire dataset. Too few epochs may result underfitting while too 

many epochs may lead to overfitting that effect on the model’s performance. Therefore, to avoid 

such problems, we set the appropriate number of epoch (100), validate with validation dataset and 

use early stopping technique. 

In each epoch, the same training images are fed to the CNN-FE architecture recurrently, and the 

model could learn and continue to learn from the hidden image features. In general, the model was 

trained in four CNNs sequential layers on a training set, and its performance was evaluated with 

the validation set during training and with a test set after training.  
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The validation set is a collection of 420 images separate from the training set that was used to 

validate our model's performance during the training. Splitting the dataset into a validation set is 

critical to reducing the overfitting of the training data and evaluating the model during its 

development.  

On the other hand, the test set is a set of 420 images used to evaluate the performance of our model 

after completing the training. The test set is the support, as shown in the last column of Table 4.3, 

Table 4.4, Table 4.5, and Table 4.6. It is used to analyze the performance evaluation metrics, 

including accuracy, loss, precision, recall, F1-score, and confusion matrix.  

In addition to setting the dataset splitting, we have chosen the DL hyperparameters to build, 

compile, and fit our model on the UCM dataset and evaluate the model's performance, as shown 

in Table 4.5. To reduce overfitting, dropout and early stopping hyperparameters are used. Early 

stopping is a technique that could automatically stop the train when either validation loss has 

stopped decreasing or validation accuracy has stopped increasing. In addition to these techniques, 

the convolutional techniques were applied to preprocess and extract feature maps by reducing the 

image shape (256, 256, 3) into other reduced feature maps.  

 

Table 4.1. Hyperparameters settings compared with earlier comparative studies 

 

DL 

Hyperparameters  

Chosen values for each DL hyperparameters in both earlier and our studies 

CNN [35] CNN [3] CNN-FE (Ours) 

Optimizers  Stochastic gradient 

descent (SGD)  

Adagrad Adam  

Batch size 16 10 64 

Learning rate le-3 - 0.0001 

Iteration Epochs  120 300 100 

Loss function  categorical_cross_en

tropy 

binary_cross_entropy categorical_cross

_entropy 

Activation 

functions 

Relu  Relu, sigmoid  Relu, softmax  

Dropout  - 0,0.25, 0.50, 0.75 0.5  

Early stopping - - Automatically 

stopping  
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4.3.2 Performance Evaluation Metrics and Experimental Results 

 

After building the model, we evaluated its performance using the evaluation measurement metrics 

of accuracy, precision, recall, F1-score, and confusion or error matrix (CM). In addition to these 

evaluation metrics, we used the loss function, i.e., the categorical cross-entropy, to evaluate the 

training and validation errors. The training losses are calculated during each epoch, whereas the 

validation losses are computed after each training epoch for the errors. At most, when the number 

of epochs increases, the losses are decreased, and the accuracy is increased.  

The model's accuracy was evaluated in two ways, i.e., with and without using the early stopping 

technique using equation (4.1). The early stopping has stopped at a random iteration epoch out of 

100 epochs when either the validation accuracy has been stopped increasing (as depicted in Figure 

4.2b, Figure 4.6b, Figure 4.8b,and Figure 4.11b) or the validation loss stopped decreasing (as 

depicted in Figure 4.3b, Figure 4.6b, Figure 4.9b, and Figure 4.12b) while evaluating the models 

with test set sample images. Therefore, from the experiments with and without early stopping, we 

observed that the accuracy results increased using the early stopping technique in each model of 

CNN-FE and VGG19 trained on both datasets, as shown in Table 4.8. In most circumstances, the 

higher the number of iterations or epochs at which the early stopping technique has been applied, 

the better the performance of the model could be achieved when comparing the iteration numbers, 

as shown in Table 4.8.  

In addition to evaluating the overall accuracy of both models, we assessed each class with 20 sample 

images per class using precision, recall, and F1-score performance measurement merits as stated in 

Table 4.3, Table 4.4, Table 4.5, and Table 4.6. The performance score for precision, recall, and F1-

scoremetrics could be computed using equations (4.2), (4.3) and (4.4), respectively, based on the 

CM summarization Table 4.2.  

Furthermore, the CM metric was also used to identify the predicted classes based on the higher 

normalized probability values at each class intersection. CM analyzes errors and confusion 

between the column with the occurrences in a predicted class and the row with the occurrences in 

an actual class [124]. Because it categorizes errors, CM could also be called an error matrix.  
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The errors could be type I errors (false negatives-FF) or type II errors (false positives-FT), as 

shown in Table 4.2. A type I error is an outcome where the model incorrectly predicts the positive 

class when it is the actual negative value. In contrast, a type II error is an outcome where the model 

incorrectly predicts the negative class when it is the actual positive value.  

The CM considers the normalized probability values for each class category in rows (True labeled 

class) and columns (predicted labeled class), as shown in Figure 4.4, Figure 4.7, Figure 4.10, and 

Figure 4.13. CM measures the performance of the DL model, whether each class is correctly 

classified or incorrectly classified. Therefore, according to Figure 4.4, Figure 4.7, Figure 4.10, and 

Figure 4.13, the score in the diagonal intersection showed the correct classified classes with a 

higher normalized probability. In contrast, the results in other rows-columns wise are predicted in 

misclassified classes with lower a normalized probability. CM in table form is summarized in 

Table 4.2. 

 

Table 4.2. CM table format for performance evaluations 

 Actual Values  

True False  

Predictive 

Values  

True  TT FT/ Type I Error True Prediction achieved 

by Precision 

False  FF/ Type II Error TF False Prediction   

 

Accuracy is the measure of predictions that the model classified correctly. 

 

 
Accuracy =  

# of correct predictions

Tot. #of predictions
=

TT + TF

TT + TF + FF + FT
 

(4.1) 

 

Precision computes a positive predictive value, i.e., a ratio of the positive classes identified correctly 

to all the expected positive classes. It determines how many positive identifications were actually 

correct.   
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Precision =  

# Positive Predictions

Tot. #of Positive Predicts
=

TT

TT + FT
 

(4.2) 

 

A recall is used to identify all actual correct relevant classes retrieved from the dataset.  

 

 
Recall =  

# Correct Actual Positives

Tot. #of Actual Positives 
=

TT

TT + FF
 

(4.3) 

The F1 score is the harmonic mean of precision and recall. Its score becomes 1 when both precision 

and recall are perfect and becomes 0 when either precision or recall results 0. The F1 score 

measures the preciseness and robustness of the classification model. 

 

F1 Score =  
2(Precision ∗ Recall)

Precision + Recall 
=

2 ((
TT

TT+FT
) ∗ (

TT

TT+FF
))

(
TT

TT+FT
) + (

TT

TT+FF
)

 

=
2TT

2TT + FT + FF
 

(4.4) 

After training and modeling our model using various hyperparameters, we retrained it by 

combining the training and validation datasets with an early stopping technique. Hereafter, the 

training dataset becomes 80% of the dataset. The training has been stopped at a random iteration 

out of 100 epochs. This is why the validation loss has stopped decreasing or the validation accuracy 

has stopped increasing at this epoch. After retraining the model, which was stopped at a random 

iteration number, we fit the model and evaluated it with 420 test sample images. While assessing 

the model, precision, recall, f1-score, accuracy, and CM performance measurement metrics were 

technically used according to Table 4.3. 

After designing our CNN-FE model, we compared its performances with the VGG19 pretrained 

feature extractor, which was trained in the same hyperparameters to check the applicability of 

CNN-FE on RS image classifications. The performances of CNN-FE in various metrics have been 

provided in Table 4.3, Figure 4.2, Figure 4.3, and Figure 4.4 on the UCM dataset and Table 4.5, 

Figure 4.8, Figure 4.9, and Figure 4.10 on the SIRI-WHU dataset, respectively. Similarly, the 

comparable performance of VGG19 has also been provided in Table 4.4, Figure 4.5, Figure 4.6, 

and Figure 4.7 on the UCM dataset and Table 4.6, Figure 4.11, Figure 4.12, and Figure 4.13 on 

the SIRI-WHU dataset, respectively. 
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Table 4.3. Summarizations of the classification performance of CNN-FE for each class with 

performance measurement metrics in the UCM dataset. 

Class name Precision Recall F1-score Support  

Agricultural 0.91 1.00 0.95 20 

Airplane 0.94 0.80 0.86 20 

Baseballdiamond 0.85 0.85 0.85 20 

Beach 0.95 1.00 0.98 20 

Buildings 0.79 0.75 0.77 20 

Chaparral 1.00 0.95 0.97 20 

Denseresidential 0.57 0.80 0.67 20 

Forest 0.86 0.95 0.90 20 

Freeway 0.95 0.90 0.92 20 

Golfcourse 0.80 0.60 0.69 20 

Harbor 0.91 1.00 0.95 20 

Intersection 0.88 0.75 0.81 20 

Mediumresidential 0.58 0.90 0.71 20 

Mobilehomepark 0.92 0.55 0.69 20 

Overpass 0.81 0.85 0.83 20 

Parkinglot 1.00 0.85 0.92 20 

River 0.78 0.90 0.84 20 

Runway 0.95 0.90 0.92 20 

Sparseresidential 0.75 0.90 0.82 20 

Storagetanks 1.00 0.90 0.95 20 

Tenniscourt 1.00 0.70 0.82 20 

 

 

 

a) Before applying early stopping                             b) After applying early stopping         

Figure 4.2. Training and validation accuracies with and without applying early stopping 

technique 
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a) Losses before applying early stopping                    b) Losses after applying early stopping   

Figure 4.3. Training accuracy and loss vs. Validation accuracy and loss 

 

Figure 4.4. CM performance results for each labeled class 
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4.3.3 Model Validations with VGG19 pretrained Network and SIRI-WHU 

Dataset 

After building and evaluating the CNN-FE model, we assured its possible applicability to the LCLU 

classification in RS images by comparing its performance with the VGG19 feature extractor 

network and retraining on another dataset called SIRI-WHU. 

The VGG19 pretrained feature extractor was trained on the pretrained network, which was trained 

on the large dataset “ImageNet” in the same hyperparameters to check the applicability of CNN-

FE for LCLU classification in RS images. The VGG19 was designed by [134] to analyze the neural 

network depth effect on the accuracy of image recognition. Therefore, we created the VGG19 

pretrained model to compare its performance with CNN-FE trained on UCM and SIRI-WHU. 

While comparing the accuracy performances of both DL models, CNN-FE outperformed VGG19, 

as shown in Table 4.8. Using the early stopping technique improved the accuracy performance of 

VGG19 in both datasets as well as CNN-FE, as shown in Table 4.8.    

We retrained the CNN-FE model on the SIRI-WHU dataset in addition to testing its applicability 

on the other DL-pretrained model. As we stated earlier, the properties of the dataset could influence 

the performance of DL models. To observe this effect, we used the SIRI-WHU dataset with 

properties different from the target dataset UCM. After training the CNN-FE model on the SIRI-

WHU dataset, the validation accuracy and loss fluctuated, especially between epochs 60 and 80 

than the validation accuracy and loss trained in UCM, as shown in Figure 4.8a, and Figure 4.9a.  
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Table 4.4. Summarizations of the classification performance of VGG19 for each class in 

performance measurement metrics in the UCM dataset 

Class name Precision Recall F-score Support 

Agricultural 1.00 1.00 1.00 20 

Airplane 0.95 0.90 0.92 20 

baseballdiamond 1.00 0.90 0.95 20 

Beach 1.00 0.95 0.97 20 

Buildings 0.82 0.70 0.76 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.50 0.55 0.52 20 

Forest 0.82 0.90 0.86 20 

Freeway 1.00 0.85 0.92 20 

Golfcourse 0.86 0.60 0.71 20 

Harbor 1.00 1.00 1.00 20 

Intersection 0.81 0.85 0.83 20 

mediumresidential 0.69 0.90 0.78 20 

mobilehomepark 0.61 0.55 0.58 20 

Overpass 0.84 0.80 0.82 20 

Parkinglot 0.95 0.95 0.95 20 

River 0.76 0.95 0.84 20 

Runway 0.87 1.00 0.93 20 

Sparseresidential 0.90 0.90 0.90 20 

Storagetanks 0.95 0.95 0.95 20 

Tenniscourt 0.85 0.85 0.85 20 

 

         

a) Before applying early stopping                                b) After applying early stopping         

Figure 4.5. Training and validation accuracies in VGG19 with and without applying early in 

stopping technique in UCM dataset 
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a) Before applying early stopping                             b) After applying early stopping         

Figure 4.6. Training and validation losses in VGG19 with and without applying the early 

stopping technique in the UCM dataset 

 

 

Figure 4.7. CM performance results of VGG19 pretrained for each labeled class 
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Table 4.5. Summarizations the classification performance of CNN-FE for each individual class 

with performance measurement metrics in SIRI-WHU dataset 

Class name Precision Recall F1-score Support 
Agriculture 0.81 0.65 0.72 40 

Commercial 0.94 0.82 0.88 40 

Harbor 0.88 0.75 0.81 40 

idle_land 0.62 0.78 0.69 40 

Industrial 0.90 0.90 0.90 40 

Meadow 0.55 0.60 0.57 40 

Overpass 0.92 0.90 0.91 40 

Park 0.79 0.68 0.73 40 

Pond 0.72 0.82 0.77 40 

Residential 0.83 0.95 0.88 40 

River 0.81 0.75 0.78 40 

Water 0.93 1.00 0.96 40 

 

      

a) Before applying early stopping                             b) After applying early stopping 

Figure 4.8. Training and validation accuracies of CNN-FE model in SIRI-WHU dataset with and 

without applying early stopping technique 

         

a) Before applying early stopping                             b) After applying early stopping         

Figure 4.9. Training and validation losses of CNN-FE model in SIRI-WHU dataset with and 

without applying early stopping technique 
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Figure 4.10. CM performance results of CNN-FE for each class classification in SIRI-WHU 

 

Table 4.6. Summarizations of the classification performance of VGG19 for each class with 

performance measurement metrics in the SIRI-WHU dataset 

Class name Precision Recall F1-score Support 
Agriculture 0.91 0.50 0.65 40 
Commercial 0.72 0.95 0.82 40 
Harbor 0.88 0.93 0.90 40 
idle_land 0.86 0.62 0.72 40 
Industrial 0.85 0.88 0.86 40 
Meadow 0.63 0.60 0.62 40 
Overpass 0.80 0.97 0.88 40 
Park 0.50 0.60 0.55 40 
Pond 0.67 0.75 0.71 40 
Residential 0.92 0.88 0.90 40 
River 0.85 0.72 0.78 40 
Water 0.98 1.00 0.99 40 
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a) Before applying early stopping                             b) After applying early stopping 

Figure 4.11. Training and validation accuracies of VGG19 in the SIRI-WHU dataset with and 

without applying the early stopping technique 

 

         
a) Before applying early stopping                             b) After applying early stopping         

Figure 4.12. Training and validation losses of VGG19 in SIRI-WHU dataset with and without 

applying early stopping technique 
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Figure 4.13. CM performance results of VGG19 for each class classification in SIRI-WHU 

 

4.3.4 Discussions 

This study investigated the application of an end-to-end DL approach called CNN-FE for LCLU 

classification using RS images. We showed the possibility of designing a CNN-FE model for 

LCLU classification in complex RS images using two different datasets. We also developed a 

comparative VGG19 pretrained network using the same hyperparameters. In addition to validating 

this DL pretrained model, we retrained the CNN-FE on the SIRI-WHU dataset and assured its 

applicability in the domain. Therefore, as far as our knowledge, CNN-FE is significant in this 

study.   

 

4.3.4.1 Discussions on Results  

The performance of the CNN-FE model shows that DL models could be built and applied for the 

LCLU classification domain. It is comparable to those trained from pretrained models in the UCM 

dataset. When compared to the VGG-19 pretrained architecture, the significant results were 

reported. In addition, the CNN-FE was retrained on the SIRI-WHU dataset, and a considerable 
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accuracy performance was achieved in the UCM, as shown in Table 4.8. To sum up, the 

performance of the CNN-FE model resulting from various measurement metrics showed that it is 

possible to prove its applicability to the classification problem in RS images.  

Each class classification performance was evaluated with precision, recall, and an F1-score. 

Therefore, according to Table 4.7, the classes such as chaparral, parkinglot, storagetanks and 

tennis-court have the best precision performed, which means that these classes were precisely 

predicted. However, the lower result precisions were reported for dense-residential (i.e., 0.57), 

which means that it has inflexible properties to predict precisely. The classes such as agricultural 

beach and harbor were classified in best recall performance, while mobile-home-park class scored 

the lower recall performance. Classes with perfect or lower performance in both precision and 

recall also have perfect or lower results in the F1-score. Thus, there were no classes with perfect 

or lower performance in both metrics, and there were no perfect classes in the F1-score. However, 

a lower F1-score was recorded in no in dense-residential (0.67) class. Perfect performance means 

100% accurately and precisely classified when measured in given metrics. 

To sum up, the individual class performance of the two models in the two datasets is summarized 

in Table 4.7. The dense-residential class has lower performance in both methods than other classes 

in the UCM dataset, while the meadow and park classes have lower performance in CNN-FE and 

VGG19, respectively, in the SIRI-WHU dataset. In the case of CM metrics, better result 

performance for each class has been observed in both methods in the UCM dataset than in the 

SIRI-WHU dataset, as compared and shown Figure 4.4, Figure 4.7, Figure 4.10, and Figure 4.13. 

The classes, such as agricultural, harbor, overpass, and river, are common in both datasets. 

However, most of these classes have different performance values, as shown in Table 4.3, Table 

4.4, Table 4.5, Table 4.6, and Table 4.7. This could be why the two datasets have inconsistent 

properties, which were collected from different locations with different resolutions and pixel 

values.  

In addition to evaluating the individual classes, we also evaluated the two methods within the two 

datasets. Thus, while comparing the CNN-FE from the pretrained VGG19 network, outperformed 

results in CNN-FE have been achieved in both datasets, as shown in Table 4.8.   
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4.3.4.2 Discussions on State-of-the-art Studies Comparisons  

In this objective, we aimed to improve the performance of the DL model from the existing state-

of-the-art studies studied by [3] and [35] by considering their limitations for the DL 

hyperparameters. The DL hyperparameters influence the DL model’s performance. Therefore, to 

see the effect, we used various hyperparameters, such as dropout, learning rate, batch size, epochs, 

and early stopping, with their respective values. The study [3], has analyzed the dropout 

hyperparameter effects on the CNN performance with different values (null, 0.25, 0.50, and 0.75), 

which generates the accuracy of 81.2, 81.3, 81.4, and 79.7 with augmentation and 68.0, 73.7, 75.7, 

and 77.7  without data augmentation technique, respectively. Among these provided accuracy and 

dropout values, we listed and compared the last two accuracy performances with unaugmented 

data, with corresponding dropout values of 0.5 and 0.75, respectively, shown in Table 4.9.  

The CNN-FE model has achieved 89.76% and 80% accuracy in the UCM and SIRI-WHU datasets, 

respectively. The VGG19 pretrained model has also achieved 85.95% and 78.33% accuracy, as 

shown in Table 4.8. Moreover, the CNN-FE model outperformed the state-of-the-art studies and 

the pretrained network, as shown in Table 4.9. 

 

Table 4.7. Class comparisons in precision, recall, and F1-score (%) on the two models and 

datasets 

Dataset Method   Precision performance Recall performance F1-score performance 

Perfect (1) 

classes 

Lower (-) 

classes 

Perfect (1) 

classes 

Lower (-) classes Perfect 

(1) 

classes 

Lower (-) 

classes 

UCM  CNN-FE Chaparral, 

parkinglot, 

storagetanks, and 

tenniscour 

Denseresid

ential 

(0.57) 

Agricultural, 

beach and 

harbor 

Mobilehomepark 

(0.55) and 

golfcourse (0.60) 

None  Denseresiden

tial 

(0.67) 

VGG19 Agricultural, 

baseballdiamond

, beach, 

charparral, 

freeway, and 

harbor 

Denseresid

ential 

(0.50) 

Agricultural, 

charparral, 

harbor and 

runway 

Denseresidential 

(0.55) 

Agricultu

ral, 

charparra

l, and 

harbor 

Denseresiden

tial 

(0.52) 

SIRI-

WHU 

CNN-FE None  Meadow 

(0.55) 

Water  Meadow (0.60) None  Meadow 

(0.57) 

VGG19 None  Park (0.50) Water  Agriculture  None  Park (0.55) 
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Table 4.8. Results of accuracy (%) performances at random early stopping technique 

Dataset  Methods Stopped at epoch 

# out of 100  

Accuracy performance results  

Before early stopping  After early stopping 

UCM  CNN-FE 26 85.95 89.76 

VGG19 42 85.00 85.95 

SIRI-WHU CNN-FE 22 78.67 80.00 

VGG19 41 76.88 78.33 

 

Table 4.9. Comparisons of the accuracy (%) with the state-of-the-arts in the UCM target dataset 

Method   Dropout  Precision  Recall  F1-score Accuracy  

CNNs [3] 0.50 85.4 83.3 84.3 75.7 

0.75 85.5 85.8 85.7 77.7 

CNN [35] - - - - 82.38 

CNN-FE (Ours) 0.50 90.00 88.00 88.99 89.76 

VGG19 (Ours) 0.50 88.00 86.00 86.99 85.95 

 

4.4 Chapter Summarization 

In this chapter, we have applied the CNN-FE model to address the challenge of LCLU 

classification in RS images. CNNs are powerful DL approaches to analyzing RS images for LCLU 

classification systems. CNNs are powerful DL approaches to analyzing RS images for LCLU 

classification systems. Therefore, designing CNNs models for LCLU classification in RS imagery 

data needs more investigation. Some researchers have expressed concerns about the high cost of 

training time and the scarcity of large datasets required to create CNN models from scratch. It is 

vital to create CNNs from scratch for RS images since these images are inconsistent, and modeling 

them from pretrained networks could affect their practical deployment. 

Therefore, we applied an end-to-end CNN-FE DL model to extract the inconsistent UCM RS 

image features for LCLU classification in RS images. We retrained this model on the other SIRI-

WHU dataset to analyze whether the dataset influences the model’s performance. We also built a 

VGG19 pretrained DL model on both datasets and evaluated their performances to validate the 

CNN-FE possible applicability in the domain. We compare its results to previous state-of-the-art 

studies and the VGG19 pretrained model, which was trained in the same hyperparameters. The 

CNN-FE outperformed the accuracy performance of state-of-the-art earlier studies and the VGG19 

pretrained model. Therefore, we proved that the developed CNN-FE model is possibly applicable 

to the domain area and improves performance.  
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5. DESIGNING TRANSFER LEARNING FOR LCLU 

CLASSIFICATION USING REMOTE SENSED IMAGES 

5.1 Introduction 

Land cover is variable and dynamic on the earth’s surface [135], whereas land use is the 

intervention of human activities on the earth. Land cover is the earth’s surface covered by physical 

features like a forest, river, vegetation, or others. In contrast, land use is the ability of a human to 

use natural resources for various purposes [136]. Thus, LCLU describe the earth’s features and 

human interaction. Classification is needed in land cover mapping [3], [137], [138], and land use 

resource management [47], [136], [139]. LCLU classification is an important and challenging task 

[12], and it contributes to agricultural decision-making and urban forecasting in the earth 

observation environment for sustainable development. This classification problem will be solved 

using TL models for RS images.  

RS images are geospatial earth observation data and environmental records. As they raise 

exceptional problems to new scientific questions, RS data face "big data" challenges as well as 

some new DL challenges [22]. RS imagery data classification is a significant problem in various 

domains [83], [84], [99], [115], [124], [135], [140]–[142]. Thus, our consideration of classification 

was one of the major research problems in RS imagery data. Nowadays, researchers are exploring 

the application of DL to confront these challenges.  

DL gets more attention for the LCLU classification problem in RS images [143]. The DL 

approaches could extract the earth’s features from remotely sensed imagery data to manage the 

earth’s environment by properly utilizing deep classification systems. DL algorithms are calling 

focuses on their automatically learning ability from large datasets  [22], [56], [144]–[147], [80], 

[82]–[86], [140], [141].  

In recent studies, the DL methods, especially CNNs, have been widely used in RS image 

classification for their outstanding performance and accuracy [5], [56], [124], [143], [146]. 

However, DL algorithms could take more time and complexity, creating overfitting [11], [56], 

[139], [148], [149] when training the DL models from scratch. TL, the innovative DL model in 

ML, could overtake this problem because TL is an optimization technique used to reduce 

processing time or improve performance or accuracy [150].  
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Thus, TL could apply formerly learned techniques to resolve new problems efficiently [151]. Now 

a day, TL has gotten increasing attention lately for reducing training time for large datasets [8], 

[56], [57], [60], [152], [153].  

The TL models could be applied in various RS domains. For instance, it has been applied for forest 

variable estimation [154], for object (airplane) detection [151], [155], for poverty mapping [85], 

for labeling the Synthetic Aperture Radar (SAR) [148], for change analysis [156], and for marsh 

vegetation classification [157].   

In the domain area, related work has been attempted to investigate the CNN-based TL model. Few 

researchers [5], [11], [24], [58], [59], [149], [153] have investigated CNN-based models using 

pretrained architectures for RS image classification. Using TL, the LCLU classification problem 

was investigated by [142], [158] using TL. However, TL in RS has not been widely explored yet 

(Astola et al., 2021), especially in the LCLU classification. Thus, we applied deep neural network-

based TL [80] in LCLU classification using RS images.  

Our motivation was to apply the deep TL model with pretrained models for the LCLU 

classification in RS images and improve the performance efficiently. We have listed the related 

studies with their recommendations in our previous work [159]. Therefore, we were also motivated 

to investigate the recommended pretrained networks suggested by [3], [5]. Our objective in this 

study was to apply the deep TL models and improve their performance efficiently for LCLU 

classification in RS images. To achieve this objective, we followed the following procedures: 

preprocessed the UCM imagery data, extracted the image features using the bottleneck feature 

extraction technique, modeled the TL with four sequential layers (flatten, dense, two activations 

(Relu and softmax), and dropout layers), and evaluated using a confusion matrix.  

5.2 Research Method: Deep Transfer Learning 

In this chapter, we proposed the Deep TL method, which is a deep CNN technique, for efficient 

time consumption. Building the model for better performance uses various parameters, such as 

pretrained models, learning rate, early stopping, dropout, optimizer, loss, and activation functions.  

Pretrained models have recently been used in RS image classification problems [3], [5], [142], 

[146], [160]. The pretrained CNN based [150] TL models used in this study included ResNet50V2 
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[115], [161], VGG19 [134], [162], [163], and InceptionV3 [90], [164]. These pretrained 

architectures are the deep CNN pretrained models used to design a new TL model from the existing 

problem.  

Learning rate (LR) was used to facilitate the TL model’s learning from the UCM dataset. It has 

various values such as 0.01, 0.001, and 0.0001. However, if the larger LR is used, training and 

learning may fluctuate [158]. Therefore, the smaller LR value is advisable to be used in building 

DL models. So, we used the LR of 0.0001 in this objective to optimize our model.  

Reducing overfitting in the DL method is dynamic. Dropout and early stopping are the major 

optimization techniques used for reducing overfitting when training data. The percentage values 

for dropout expressed in decimal forms are usually recommended to use 0.2, 0.3, 0.4, and 0.5. We 

used 0.5 (i.e.50%) to reduce the training overfitting since higher dropout could perform better than 

lower values [3]. Early stopping is a deep CNN regularization technique used to stop the training 

after random epochs when the model performance could not improve [158].   

In DL modeling techniques, classification loss functions are widely used. This classification loss 

could be binary cross-entropy or multi-class cross-entropy. We preferred the multi-class entropy 

loss function since our class is multi-classes of the RS images.    

Activation functions could be used afterward for each convolutional layer to raise the capability 

of neural network [140]. In this study, the activation functions Relu [165] and softmax [58] were 

used because they are better than other common nonlinear functions like tanh and sigmoid 

functions. Relu and softmax are better at easily propagating errors; multiple layers of the neurons 

have been activated, and their mathematical operation is simpler than that of tanh and sigmoid 

functions.  

Relu produces x if x>0 or 0 if x<0 as observed in (equation  (3.13) and Figure 3.7). This output 

implies that neurons with negative values are not activated, while neurons with positive values are. 

The slope of the derivative (gradient) value of Relu is constant, i.e., either 1 ∀x, x >= 0 or 0 ∀x, 

x<0 (equation (3.14) and Figure 3.8).  

Softmax (softargmax) is used to predict the class having the highest probability in multi-class 

classification problems for the input labels.  We also used this function since our RS imagery data 

is a multi-class classification problem. The forward weights of the softmax function could be 
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calculated using equation (12), and the backward or derivative function could be calculated using 

the simplified equation (3.19). The softmax output is between 0 and 1, and the sum of each class 

probability is 1.0.  If some N elements of the input vector are N<0 or N>1, they would be between 

(0, 1) after using the softmax function.   

In summary of the method, the hyperparameters such as networks and weights were trained in the 

pretrained InceptionV3, Resnet50V2, and VGG19 models. We used the bottleneck feature 

extraction method to extract image features from these pretrained models. Bottleneck is a layer 

with fewer neurons than the other layers in CNN. The bottleneck layers are used to reduce the 

number of feature maps (channels) in a given network and to reduce the error (cost) function by 

updating all the weights of the pretrained neural networks.   

A fully connected network for pretrained models was removed, and then a new model was built, 

and its weights were also removed. The bottleneck features, which become the inputs for FC, are 

trained for UCM images, as shown in Figure 5.1. For each pre-trained model, the bottleneck feature 

extracted the features of shape (1264, 6, 6, 2048) in training bottleneck prediction and the shape 

of the features (420, 6, 6, 2048) in validation and testing bottleneck predictions.    

 

Figure 5.1. Sample Input Images Feeding into Pre-processing 
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5.3 Experiments and Performance Evaluations 

 
5.3.1 Experimental datasets setting 

The University of California Merced (UCM) data set is used to solve the problem of LCLU 

classification. The UCM Land Use data set was manually collected and introduced by [70] from 

the USGS National Map Urban Area Imagery. This dataset is made up of 21 land use and land 

cover classes, each with 100 images that measure 256 256 pixels and have a spatial resolution of 

about 30 cm per pixel. The dataset was divided into a 60:20:20 ratio for training samples, validation 

samples, and tasting samples for each class, respectively, as shown in Table 5.1. 

Table 5.1. Parameter settings for UCM dataset 

Classes  Training Samples Validation Samples Test Samples Total 

Agricultural  60 20 20 100 

Airplane  60 20 20 100 

Baseball diamond  60 20 20 100 

Beach  60 20 20 100 

Buildings  60 20 20 100 

Chaparral  60 20 20 100 

Dense residential  60 20 20 100 

Forest  60 20 20 100 

Freeway  60 20 20 100 

Golf course  60 20 20 100 

Harbor  60 20 20 100 

Intersection  60 20 20 100 

Medium residential  60 20 20 100 

Mobile home park  60 20 20 100 

Overpass  60 20 20 100 

Parking lot  60 20 20 100 

River  60 20 20 100 

Runway  60 20 20 100 

Sparse residential  60 20 20 100 

Storage tanks  60 20 20 100 

Tennis court  60 20 20 100 

Total 1260 420 420 21000 
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5.3.2 Experimental Settings and Performance Results 

As we discussed earlier, various hyperparameters do have important implications for classification 

problems. So, we have used some of the important parameters in our experiment listed in Table 

5.2. In addition to using the dropout (0.5) layer, we used the early stopping technique to reduce 

the overfitting.  

Table 5.2. Hyperparameters Setting for Training Data 

Hyperparameters Parameter values used  

Optimizer  Adam  

Activation functions  Relu and Softmax 

Loss function  categorical cross entropy  

Batch-size  64 

Epochs  100 

Learning rate 0.0001 

 

We combined the training and validation data after validating the model during the process and 

then evaluating the model’s performance with 20% of the testing data. CM measures the 

performance of the TL model, whether it is classified correctly or incorrectly. We used the 

classification metrics to calculate the model’s performance: accuracy, precision, recall, and F1 

measures using equations (4.1) through (4.4), respectively.  

There are N (N = 21) classes with an integer labeled 0 to N-1. The generated records were 

transformed into a confusion matrix that generates the number of correctly classified classes out 

of 20 test sample images, as depicted in Figure 5.2. The three TL models generated the class label 

records for 21 classes ranging from 0 to 20 while testing each class with 20 samples. For instance, 

in the Inception_v3 model in Figure 3a, the first class is labeled with 0, and among 20 testing 

samples, 18 classes are correctly classified, but the other two classes, i.e., the actual class 3 and 

18, are predicted as class 1. 

Based on the confusion matrix depicted in Figure 5.2a, the performance of TL with the 

Inception_v3 model has been calculated and recorded in Table 5.3. Similarly, the performance of 

TL with the Resnet50v2 and VGG19 models has been measured in Table 5.4 and Table 5.5 based 

on the confusion matrix (Figure 5.2b and Figure 5.2c), respectively.  

 



  

80 
 

 

 

 

 

 

 

a) Inception_v3 model               b) Resnet50v2 model                       c) VGG19 model 

 

 

Table 5.3. Inception_v3 model for class performances in Precision, Recall and F1-Score 

Class Name Class Label  Precision Recall F1-score Support 

Agricultural             0 1.00 0.90 0.95 20 

Airplane             1 1.00 1.00 1.00 20 

Baseball diamond             2 0.86 0.90 0.88 20 

Beach             3 0.95 0.95 0.95 20 

Buildings             4 0.72 0.90 0.80 20 

Chaparral             5 1.00 1.00 1.00 20 

Dense residential             6 0.71 0.50 0.59 20 

Forest             7 0.86 0.95 0.90 20 

Freeway             8 1.00 0.95 0.97 20 

Golf course             9 0.75 0.45 0.56 20 

Harbor            10 0.95 1.00 0.98 20 

Intersection            11 0.95 0.90 0.92 20 

Medium residential            12 0.64 0.80 0.71 20 

Mobile home park            13 0.78 0.70 0.74 20 

Overpass            14 1.00 0.95 0.97 20 

Parking lot            15 1.00 1.00 1.00 20 

River            16 0.70 0.95 0.81 20 

Runway            17 0.87 1.00 0.93 20 

Sparse residential            18 0.85 0.85 0.85 20 

Storage tanks            19 1.00 0.95 0.97 20 

Tennis court            20 0.83 0.75 0.79 20 

  Average Accuracy in each Measures 0.88 0.87 0.87 420 

 

[[18  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0] 

[ 0 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0 18  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0 19  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0] 

[ 0  0  0  0 18  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0 10  0  0  0  1  0  4  4  0  0  0  0  0  0  1] 

[ 0  0  0  0  0  0  0 19  0  0  0  0  0  0  0  0  0  0  1  0  0] 

[ 0  0  0  0  0  0  0  0 19  0  0  1  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  0  3  0  9  0  0  0  0  0  0  8  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  1  0  1  0  0  0  0 18  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  1  0  0  0  0  0 16  0  0  0  0  0  1  0  2] 

[ 0  0  0  0  2  0  0  0  0  0  0  0  4 14  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0 19  0  0  1  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0] 

[ 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0 19  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0] 

[ 0  0  1  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0 17  0  0] 

[ 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0 19  0] 

[ 0  0  1  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0 15]] 

 

[[20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0 19  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0] 

 [ 0  0  0 19  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0 15  0  4  0  0  0  0  0  1  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0 14  0  0  0  0  0  3  3  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0 18  0  0  0  0  0  0  0  0  1  0  1  0  0] 

 [ 0  0  0  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  1  0  0  0  3  0 11  0  0  0  0  0  0  5  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  1  0  1  0  0  0  0 16  1  1  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  1  0  0  0  0  0 17  0  0  0  0  0  2  0  0] 

 [ 0  0  0  0  1  0  5  0  0  0  0  0  2 12  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  3  0  0  1  0  0 16  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0 19  0  0  0  0  0] 

 [ 0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0 17  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  2  0  0  1  0  0  0  0  0 17  0  0] 

 [ 0  0  0  0  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0 18  0] 

 [ 0  0  0  0  2  0  0  0  0  0  0  2  0  0  0  0  0  0  1  0 15]] 

[[20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0 18  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0] 

[ 0  0 17  0  0  0  0  0  0  2  0  0  0  0  0  0  1  0  0  0  0] 

[ 0  0  0 19  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0] 

[ 0  0  0  0 17  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0 17  0  0  0  0  0  1  2  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  0 18  0  0  0  0  0  0  0  0  2  0  0  0  0] 

[ 0  0  0  0  0  0  0  0 18  0  0  0  0  0  2  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  0  3  0 10  0  0  0  0  0  0  7  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  1  0  1  0  0  0  0 18  0  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  2  0  0  0  0  1 17  0  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  9  0  0  0  0  0  2  9  0  0  0  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  2  0  0 17  0  0  1  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0] 

[ 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0 19  0  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0 19  0  0] 

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0] 

[ 0  0  0  0  0  0  1  0  0  0  0  1  0  0  1  0  0  0  0  0 17]] 

Figure 5.2. Confusion Matrix of each Model on UC Merced dataset 
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Table 5.4. Resnet50v2 model for class performances in Precision, Recall, and F1-Score 

Class Name Class Label Precision Recall F1-score Support 

Agricultural  0 1.00 1.00 1.00 20 

Airplane  1 1.00 1.00 1.00 20 

Baseball diamond  2 1.00 0.95 0.97 20 

Beach  3 0.83 0.95 0.88 20 

Buildings  4 0.75 0.75 0.75 20 

Chaparral  5 1.00 1.00 1.00 20 

Dense residential  6 0.56 0.70 0.62 20 

Forest  7 0.86 0.90 0.88 20 

Freeway  8 0.83 1.00 0.91 20 

Golf course  9 0.85 0.55 0.67 20 

Harbor  10 1.00 1.00 1.00 20 

Intersection  11 0.84 0.80 0.82 20 

Medium residential  12 0.65 0.85 0.74 20 

Mobile home park  13 0.71 0.60 0.65 20 

Overpass  14 1.00 0.80 0.89 20 

Parking lot  15 1.00 0.95 0.97 20 

River  16 0.71 0.85 0.77 20 

Runway  17 1.00 1.00 1.00 20 

Sparse residential  18 0.81 0.85 0.83 20 

Storage tanks  19 1.00 0.90 0.95 20 

Tennis court  20 1.00 0.75 0.86 20 

Average Accuracy in each Measures       0.88           0.86  0.86 420 

 

Table 5.5. VGG19 model for class performances in Precision, Recall, and F1-Score 

Class Name Class label Precision Recall F1-score Support 
Agricultural  0 1.00 1.00 1.00 20 

Airplane  1 1.00 0.90 0.95 20 

Baseball diamond  2 1.00 0.85 0.92 20 

Beach  3 0.95 0.95 0.95 20 

Buildings  4 0.94 0.85 0.89 20 

Chaparral  5 1.00 1.00 1.00 20 

Dense residential  6 0.52 0.85 0.64 20 

Forest  7 0.86 0.90 0.88 20 

Freeway  8 1.00 0.90 0.95 20 

Golf course  9 0.83 0.50 0.62 20 

Harbor  10 1.00 1.00 1.00 20 

Intersection  11 0.82 0.90 0.86 20 

Medium residential  12 0.85 0.85 0.85 20 

Mobile home park  13 0.82 0.45 0.58 20 

Overpass  14 0.85 0.85 0.85 20 

Parking lot  15 1.00 1.00 1.00 20 

River  16 0.61 0.95 0.75 20 

Runway  17 0.87 1.00 0.93 20 

Sparse residential  18 1.00 0.95 0.97 20 

Storage tanks  19 1.00 1.00 1.00 20 

Tennis court  20 1.00 0.85 0.92 20 

Average Accuracy in each Measures 0.90 0.88 0.88 420 
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The accuracies of the three TL models for training and validation data are shown in Figure 5.3, 

and the overall accuracies are recorded in Table 5.6. Since F1-Score finds the harmonic mean of 

precision and recall, it shows how precise and reliable the classification model is.  

The categorical-cross-entropy loss function was used while compiling the model. For the correct 

class, the value of the loss function becomes closer to 0, as we observed in Figure 5.4. 

Table 5.6. Number of early stoppings at epoch #, time is taken for training and overall accuracy 

in the three models 

Architecture  Total #of 

layers 

Weight 

layers used 

Early stopping 

at epoch# 

Time (s) OA 

Resnet50V2 152 3*3 19 6 92.46 

InceptionV3 22 5*5 18 9 94.36 

VGG19 16 3*3 95 5 99.64 

 

 

 

a) Accuracy of resnet50V2            b) Accuracy of InceptionV3      c) Accuracy in VGG19 

Figure 5.3. Accuracies in Training vs. Validation for TL Classification Models 
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a) Loss in resnet50V2               b) Loss in InceptionV3                    c) Loss in VGG19 

Figure 5.4. Losses in Training vs. Validation for TL Classification Models 

 

5.4 Discussions 

5.4.1 Discussions on results, methods, and TL performances 

 

The experiments described in Section 5.3.2 prove that the pretrained models are applicable to 

LCLU classification in RS images. Accuracy is also our aim, and we got better results in each 

model and most individual classes. We evaluated each class’s accuracy using precision, recall, and 

F1-score measurements for each model. Precision is outperformed, i.e., 88%, 88%, and 90% for 

all three models, as shown in  

Table 5.3, Table 5.4 and  

Table 5.5, respectively. That means the relevant classes were retrieved and predicted correctly. If 

the F1-score is perfect (1), i.e., 100% accurate for certain classes, precision and recall are also 

perfect for all classes.  

Precision was perfect in the agricultural, airplane, chaparral, freeway, overpass, and parking 

classes, as shown in  

Table 5.3 and Table 5.7 for the Inception_v3 model. On the other hand, the medium-residential 

class had the worst result, with a precision of only 64%. The best recall results were in the airplane, 
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chaparral, harbor, parking lot, and runway classes, while the worst were in the golf course and 

dense residential classes, with 45% and 50% recall results, respectively. Also, the f1-score is most 

accurate for classes like airplane, chaparral, and parking lot, while it is least accurate for dense 

golf course (56%) and residential (59%). For similar situations, we grouped classes according to 

their best, worst, or poorest value under each Resenet50v2 and VGG19 model measurement in 

Table 5.7. 

In all three models, the medium and dense residential classes have the lowest precision, and the 

golf course has the lowest recall. The poorest accuracy results could be the cause of image variant 

similarity and resolution differences.  

Table 5.7. The best and worst class accuracies in precision, recall, and F1-score measurements 

Model  Precision Recall F1-score 

Perfect (1) class Worst 

class/value  

Perfect (1) 

class 

Worst 

class/value 

Perfect (1) 

class 

Worst 

class/value 

Inception_v3 

( 
Table 5.3) 

Agricultural, 

Airplane, Chaparral, 

Freeway, Overpass, 

Parking 

Medium 

residential/ 

0.64 

 

Airplane, 

Chaparral, 

Harbor, 

Parking lot, 

Runway 

Golf 

course/0.45 

and Dense 

residential/

0.50 

Airplane, 

Chaparral, 

Parking lot  

Golf course 

/0.56 and 

Dense 

residential 

/0.59  

Resnet50v2 

(Table 5.4) 

Agricultural, 

Airplane, Baseball 

diamond, Chaparral, 

Harbor, Overpass, 

Parking lot, 

Runway, Storage 

tanks, and Tennis 

court  

Dense 

residential 

/0.56 and 

Medium 

residential 

/0.65 

Agricultural, 

Airplane, 

Chaparral, 

Freeway, 

Harbor, and 

Runway   

Golf course 

/0.55 

Agricultural, 

Airplane, 

Chaparral, 

Harbor, and 

Runway  

Dense 

residential 

/0.62 and 

Golf course 

/0.67 

VGG19 ( 

Table 5.5) 

Agricultural, 

Baseball diamond, 

Chaparral, Freeway, 

Harbor, Parking lot, 

Sparse residential, 

Storage tanks, and 

Tennis court  

Dense 

residential 

/0.52  

Agricultural, 

Chaparral, 

Harbor, 

Parking lot, 

Runway and 

Storage 

tanks  

Mobile 

home park 

/0.45 and 

Golf course 

/0.50 

Agricultural, 

Chaparral, 

Harbor, 

Parking lot, 

and Storage 

tanks  

Mobile 

home park 

/0.58 

 

 

By applying the hyperparameters listed in Table 5.2, the TL model has been modeled using the 

Adam optimizer with a LR of 0.0001 and compiled with the categorical-cross-entropy loss 
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function.  The loss function predicts an integer value for each class N assigned from 0 to N-1 in 

the UCM dataset, where N = 21 classes. The cross-entropy loss has become lower and lower for 

the deeper network training process to identify the correct class. A correct cross-entropy value is 

0 for a correct class. The value of the cross-entropy loss function increases for misclassified 

classes, and the trained network fails to find the correct class [86]. In Figure 5.4, the training loss 

graph with a blue color is closer to 0. So, the trained network is good for predicting the correct 

class in TL.  

In addition to dropout, we used the early stopping technique to reduce overfitting and improve 

performance. The training was stopped early when either the performance of the validation loss 

stopped decreasing even though the performance of the training loss decreased or the performance 

of the validation accuracy stopped increasing even though the performance of the training accuracy 

increased. We assigned the epoch value 100, and the early stopping stopped at epochs 19, 18, and 

95 randomly when validation loss stopped decreasing for Resnet50v2, InceptionV3, and VGG19, 

respectively. In this study, we observed that the larger number of epochs of early stopping 

produced greater accuracy.  

Therefore, VGG19 has superior TL model performance. As shown in Table 5.6, the VGG19 model 

outperformed all other method with a superior accuracy of 99.64% for an 80% training ratio.  

 

5.4.2 Discussions on similar studies 
 

In this study, we utilize the Resnet50V2, InceptionV3, and VGG19 as our baselines. We compared 

the classification performance accuracy of this study with the UCM dataset’s state-of-the-art 

classification studies, as stated in Table 5.8. According to Table 5.8, all of the proposed TL models 

outperformed the most state-of-the-art studies in terms of accuracy. We used the adaptive 

optimizer with the smallest LR value, i.e., 0.0001, while the others used SGD with various 

parameters. Most of the researchers listed in Table 5.8 have used the epoch number 50, but we 

have used 100 epochs and early stopping while validating the model.  

Therefore, the proposed VGG19 achieved the superior accuracy of 99.64% for a 70% training ratio 

among all methods we used. The Resnet50v2 model results in lower performance than the other 
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two methods. The results in the three pretrained models demonstrate that the TL model can prove 

its availability on RS images.  

Table 5.8. Comparative state-of-the-art classification methods and OA (in %) on the UCM 

dataset 

Authors Methods  Dataset  Accuracy on UCM Optimizer    

[158] Resnet50, VGG‐16  EuroSAT 99.04, 98.14 - 

[142] ResNet50, VGG16, 

Inception-v4 

UCM, AID, NWPU 95.95, 92.50, 91.73 SGD 

[139] RSSCNet UCM, RSSCN7, 

WHU-RS19 

99.81, 97.41, 99.46 SGD  

[60]  Inception‐V3, 

VGG‐19 

UCM, AID, 

PatternNet 

91.00, 94.3 SGD, Adam 

and Adamax 

[140] VGG-16: with 

multiple pyramid 

pooling 

UCM, NWPU 93.24, 88.62 SGD  

[124] VGG‐16- CapsNet 

and Inception‐V3- 

CapsNet 

AID, UCM, NWPU 98.81 

99.02 

SGD 

[70] bag-of-visual-words 

(BOVW) 

UCM 81.19 -  

Proposed  Resnet50V2, 

Inception‐V3 and 

VGG‐19 

UCM 92.46, 94.36 

99.64 

 Adam 

(Adaptive)   

 

5.5 Chapter Summarization 

In this chapter, we addressed the problem of LCLU classification in RS images using deep TL 

models with bottleneck feature extraction. Our objective was to apply the TL model and improve 

the classification performance for LCLU classification in RS images. The training time of TL is 

more efficient (trained in seconds) than the other deep CNN models (trained in days when they 

were trained from scratch), as observed in the state-of-the-art studies by [58], [146]. We used the 

bottleneck feature extraction method to make the training of the model go faster and be more 

accurate.  

The model’s performance is also prominent in all models, i.e., 92.46%, 94.36%, and 99.64% 

accuracy results for Resnet50V2, InceptionV3, and VGG19, respectively. However, the superior 

accuracy is profound in the VGG19 model with efficient time. Most of the classes’ performances 
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are characterized by prominent accuracy except for some classes, such as the medium residential, 

dense residential classes and the golf course, which have the poorest accuracy when evaluated by 

precision, recall, and F1-score.  

The LCLU classification in RS image contributes significant values [60], [166] to rural and urban 

decision-making and planning. Our contribution is to use deep TL with bottleneck feature 

extraction to solve the LCLU classification problem using RS images. This contribution directs 

environmental resource management and sustainable development for agricultural and urban 

planning. In addition to this contribution, we evaluated and improved the performance of the TL 

models and proved their availability for the LCLU classification in RS images. 
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6. COMPARING THE PERFORMANCE OF CNN, TL AND FINE-

TUNING MODELS FOR LCLU CLASSIFICATION 

6.1 Introduction 

The LCLU classification learning system is essential for environmental monitoring, agricultural 

decision-making, and urban planning in the contemporary dynamic world. The LCLU 

classification using RS images is a critical issue in managing natural resources and human-made 

activities that affect natural phenomena in the earth's environment. RS image classification is the 

most recently focused area for the RS societies in the computer vision trends and image processing 

research areas. From time to time, the world's population is increasing dramatically, and the 

demand for land use is increasing. A learning system could be applied to the domain to utilize this 

land properly.   

Thus, the LCLU classification is the most recent hot and challenging task in RS [58], [66], [80], 

[167]. RS images are satellite data collected from the earth's environment using advanced sensor 

technologies. The DL method could be applied to solve the challenge. 

The DL approach is a recent specialized ML approach that could automatically extract features of 

the image for large datasets with admirable performance improvements. Thus, DL is a recently 

focused research area applied in various domains, including classification [7], [8], [16], [80], [84], 

recognition [53], and object detection [168]. It is also potentially challenging in many other 

domains [169].  

The DL techniques proposed in this objective are CNNs, TL, and fine-tuning, which make the 

classification task more attractive. CNN is one of computer vision's most common DL methods 

[18] for feature extraction and LCLU modeling using RS images. The CNN is a feedforward and 

backward neural network consisting of convolutional calculations and deep structures. Therefore, 

CNN models have powerful feature extraction capability for classification performance 

improvement in RS images [48].  

Nevertheless, the DL algorithms such as CNN require a large amount of data and very high 

computational power to train the classification models [170] from scratch. Whereas TL  [171]  and 

fine-tuning [37], [58] can solve the classification problem in smaller dataset training samples and 

less training time. Thus, the main issue with deep CNN models is that training them from scratch 
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requires a large dataset and takes longer. To solve such DL problems, we proposed the TL and 

fine-tuning approaches and compared their performances with the convolutional neural network 

feature extractor (CNN-FE) model.  

TL is another recent DL technique used to train the DL model by reusing pretrained networks. TL 

and fine-tuning are used for smaller datasets and can be made from the top fully connected layer 

of a network that has already been trained, so that the features can be used again. The training time 

in TL and fine-tuning could be much less than that of deep CNN model. So, TL could solve the 

problems of building DL models from scratch by training the models in less time with smaller 

datasets by freezing the network that has already been trained.  

TL adopts the features from the pretrained network to train the new models. Moreover, fine-tuning 

is a DL technique used to train the model by unfreezing the pretrained networks. This technique is 

vital to increasing the performance of the model. The TL adopts the properties of the pretrained 

layers, excluding the last fully connected layer, i.e., the dense layer, which is replaced by our 

classifier with a number of neurons of 21 and an activation function of softmax.    

This objective of the study designed and evaluated the DL models CNN, TL, and fine-tuning. The 

CNN has been developed with four CNN blocks. Using Keras applications, the deep CNN-based 

TL and fine-tuning models have been developed on the pretrained model EffificientNetB7 [93].  

Few studies have been conducted in recent years to compare the capabilities of DL models 

developed from scratch with those developed using the pretrained network. For instance, [115] has 

applied the TL and fine-tuning methods to the ResNet50 pretrained network and compared their 

performances with other pretrained based networks in scene image classification. However, the 

scratch development models' evaluation and comparison with pretrained development models have 

not been widely researched. We chose the recently pretrained network, EffificientNetB7, which 

was trained on the "ImageNet" large dataset, for designing the TL and fine-tuning the model. 

Recently, [93] achieved 84.4% top-1 accuracy of the state-of-the-art EffificientNetB7 on the 

“ImageNet.” According to  [93], eight scaling-up series of EffificientNet pretrained models from 

EffificientNetB0 through EffificientNetB7 were designed on the larger dataset called "ImageNet." 

The performance of each successive version has improved.  
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According to [172], who have applied EfficientNetB3, larger versions of EfficientNet models 

perform better than smaller ones. Thus, we proposed the EffificientNetB7 pretrained network to 

design TL and fine-tuning models in the domain of LCLU classification using RS images to 

evaluate their performances and compare them with the CNN-FE model. We selected the UCM 

dataset to assess and compare the DL models.  

Therefore, this chapter aims to design the DL models and evaluate their performance with various 

performance measurement metrics. First, we developed the CNN-FE model and compared its 

performance with the deep TL and fine-tuned models for LCLU classification using the UCM 

dataset. Second, we applied the recent advanced EfficientNetB7 pretrained network to design TL 

and fine-tune DL models for LCLU classification in RS images. Then finally, we evaluated the 

models, compared their performances using different performance evaluation metrics, and 

concluded that the fine-tuning model improved performance with efficient training time.  

6.2 Materials and Proposed Methods 

6.2.1 Datasets and Tools 

 

We used the publicly available University of California Merced (UCM) dataset for modeling the 

CNN, CNN-based TL, and fine-tuning. The UCM dataset is an LCLU data set collected from the 

earth, labeled manually, and introduced by [70] at the University of California Merced. It contains 

twenty-one classes. Each class contains 100 images with 256 × 256 pixels resolution and a spatial 

resolution of about 30 centimeters per pixel.  However, the UCM dataset is inconsistent since about 

44 images have different pixel shapes. This dataset is available at:  

http://weegee.vision.ucmerced.edu/datasets/landuse.html. 

As a tool, the Python high-level computer language is used. Python is a versatile and user-friendly 

programming language that can be used to create many interactive libraries for the DL model. 

Tensorflow and Keras are also other DL tools used with Python.  
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6.2.2 Proposed DL Methods 

 

Previously, the DL method was investigated for classification problems in RS images from various 

datasets. However, evaluating and comparing the DL developed from scratch with those trained 

on pretrained networks has not been widely investigated yet. Further investigations are still needed 

to design and assess the current DL techniques for LCLU classification using the RS datasets.  

Thus, to evaluate and compare the performances of different DL models applied for LCLU 

classification problems in the UCM RS dataset, we designed the CNN-FE model, the TL model 

and the fine-tuned model on an EfficientNet pretrained network. The EfficientNet was trained on 

the large-size dataset of "ImageNet" images. ImageNet is the most significant benchmark dataset 

introduced by [87] for designing DL models.  

CNN's performance was influenced by the DL hyperparameters [24]. For instance, according to 

[3], using different dropout values produced different performance results. We also showed that 

the dropout value (0.25) generated an accuracy of 84.76%, which is different from our previous 

work with the dropout value (0.50), which caused an accuracy of 89.76%. Therefore, by 

considering their effects, we set the same hyperparameters for all three DL models on the given 

dataset to evaluate the models' performances, as shown in Table 6.1.  

6.2.2.1 The convolutional neural network (CNN) algorithm  

The CNN algorithm is the most critical DL technique that could extract and automatically learn 

features from the data. From the input images, features are newly extracted and learned weights of 

pixels in the image in the new value (usually reduced). The CNN method consists of several sets 

of connected layers. These layers shared weights throughout the process, i.e., from the start to the 

end layer (classifier), as depicted in Figure 6.1. This process creates the feature map for the model's 

entire set of layers as well as the class prediction for the output layer. The feature map of the model 

can be built up with pixel-wise multiplication of the input image pixels and the provided weight 

or kernel pixels with learnable parameters [127], [173]. 

The CNNs can be capable of spatial feature representations for RS image classifications using the 

convolution technique in the form of pixels [174]. This convolution process updates weights with 

each layer's provided non-linear activation function. The input data types and weight calculations 
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in the convolution method make the CNNs different from other conventional ML approaches 

[123].  

In DL model training, Relu and Softmax non-linear activation functions are the most relevant 

functions to update the weights in the convolution process. We used the Relu at the entire 

convolutional layers to activate the weights in each convolution process and the softmax at the 

output layer since it is reliable for multiclass classification problems. The softmax function is a 

feature classifier based on a probability score for each class.   

As we discussed in Chapter 3 of this thesis, the number of convolutional and dense parameters 

(params) could be calculated using equations (3.5) and (3.6), respectively, in the convolution 

process. The total parameter numbers of the model are the summations of the computed results from 

the Conv2D and dense layers. We designed the CNN-FE model with four Conv2D layers that 

calculate the number of parameters for those layers in the same norm (3.5) and two dense layers 

(3.6). However, the calculation formula for dense parameters differs from Conv2D, as equated in 

(3.6). The number 1 means the bias associated with each filter for learning.  

We could get a total calculated parameter number according to (3.5) and (3.6). However, the 

number of parameters for all MaxPooling2D and Flatten layers is zero because these layers do not 

learn anything from weights (filters) or the built model. As a result, 1.68 million parameters were 

found and learned in the CNN-FE model, while 18.88 million parameters were found and learned 

in both the TL and fine-tuning models.  

 

Figure 6.1. Layers of CNN-FE model with the input sample images 
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6.2.2.2 The deep transfer learning (TL) method  

 

TL is a method of training the DL model by replacing the input layer with an image embedding as 

the EfficientNet transfers the knowledge learned from the much larger dataset called "ImageNet" 

to our classification problem. The TL has been trained by making the layers in EfficientNet on 

ImageNet images non-trainable (pre_trained_model.trainable = False). We trained only the last 

flatten (1D vector form) and two dense layers, including Relu and Softmax activation functions, 

and dropout optimization on the 21 LCLU RS UCM dataset classes. Therefore, the classification 

head with dense layers can be appended to manipulate our new classification problem. TL is an 

efficient, reliable DL technique used to propose various domains, especially the image 

classification problem in this study. Recently, TL has been applied for LCLU in RS image 

classifications [142], [158]. TL is used to train DL models in a short amount of time with improved 

results [129], [146]. However, deep TL is used for limited dataset training samples, while deep 

CNN from scratch is used for large dataset training samples. Therefore, we applied the TL model 

in this objective of the study to compare its performance with other DL techniques for LCLU 

classification in RS images.  

 

6.2.2.3 The fine-tuning technique on EfficientNet 

 

Fine-tuning is a DL technique used to train a model by allowing and adapting the EfficientNet 

pretrained layers on the ImageNet large dataset to be trainable (pre_trained_model.trainable = 

True). EfficientNet is a recent advanced CNN-based network that could be applied to classification 

tasks on ImageNet. To get the improved performance, EfficientNet has been fine-tuned, and the 

final fully connected layer is treated as the output classifier layer as we did in TL, except the layers 

are allowed to be trained.  

As stated by [58] and [37], fine-tuning a pretrained network is the optimal solution for a limited 

number of training samples. The EfficientNet pretrained network was introduced by [93] for 

rethinking model scaling for CNN. We selected the EfficientNet pretrained network as it is the 

most recent and advanced network, which has not been applied yet to the CLCU classification 

domain.  
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Fine-tuning the EfficientNet pretrained network has been trained on the last three fully connected 

layers on the ImageNet. The final, fully connected layers include a flatten layer that transforms the 

input image into vector form, two dense layers, dropout, relu, and activation functions. 

Accordingly, the pretrained weights are used randomly as initial weights for our fine-tuning neural 

network. Fine-tuning is used to compare the results of the fully connected layer and the 

convolutional layer. Thus, we proposed a fine-tuning technique to compare its performance with 

the convolutional layer-based CNN-FE model and the fully connected layer-based TL model.  

 

Table 6.1. The DL hyperparameters settings for training the datasets 

Hyperparameters  Values 

Optimizers  Adam  

Learning rate  0.001 

Batch size 64 

Epochs  100 

Loss function  Cross-entropy  

Activation functions Relu, softmax  

Dropout  0.25 

 

6.3 Experimental Results and Discussions 

6.3.1 Experimental Setting and Results 

 

We used the UCM dataset for experiments to design and evaluate the DL models for LCLU 

classification problems. We split each dataset used to train, validate, and test samples into 60%, 

20%, and 20%, respectively. We also set the DL hyperparameters as indicated in Table 6.1. Then 

we trained the models, validated them with the validation dataset during training, and evaluated 

their performances with the test dataset.   

After the experimental parameters were set, we trained and evaluated the model during and after 

the experiments with validation and test datasets, respectively. We evaluated the model’s 

performance using accuracy, precision, recall, f1-score, and confusion matrix (CM) metrics. CM 

measures the class performance, whether classified correctly or incorrectly in rows-column 

intersections. In addition to the accuracy, we used the categorical-cross-entropy loss function to 

calculate the errors. The training and validation losses or mistakes are expected to decrease as the 

epochs increment, as shown in Figure 6.2, Figure 6.3 and Figure 6.4 (on the right). 
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Therefore, we evaluated the models with 420 test or support images, as shown in Table 6.2, Table 

6.3, and Table 6.4, using the UCM dataset. The UCM is an imbalanced RS dataset. The accuracy 

performance metric, the percentage of correctly classified images, could not be suitable for the 

imbalanced dataset. Thus, each class’s performance is evaluated using errors, precision, recall, f1-

score, and CM metrics in addition to the accuracy metric. The f1-score is the harmonic mean of 

precision and recall metrics, and it generalizes the performance of each class and the average 

performance of the DL models built. If both precision and recall have the best performance result 

in a category, then the f1-score has the best performance result in that class. Whereas, if either 

precision or recall has a 0 performance result, then the f1-score has 0 performance, which is nothing 

the model is predicting. 

Accordingly, the categories that have scored best (100%) in the f1-score metric are agricultural and 

chaparral in CNN-FE (Table 6.2); chaparral, parkinglot, and storagetanks in the TL model (Table 

6.3); and agricultural, airplane, chaparral, freeway, and runway in a fine-tuning model (Table 6.4), 

respectively.  

Table 6.2. CNN-FE classification performances in precision, recall, and f1-score on 420 support 

images 

Class name Precision Recall F1-score Support 

Agricultural 1.00 1.00 1.00 20 

Airplane 1.00 0.85 0.92 20 

Baseballdiamond 0.89 0.80 0.84 20 

Beach 1.00 0.95 0.97 20 

Buildings 0.64 0.70 0.67 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.50 0.55 0.52 20 

Forest 0.86 0.95 0.90 20 

Freeway 1.00 0.90 0.95 20 

Golfcourse 0.80 0.60 0.69 20 

Harbor 0.87 1.00 0.93 20 

Intersection 0.88 0.70 0.78 20 

Mediumresidential 0.53 0.85 0.65 20 

Mobilehomepark 0.93 0.65 0.76 20 

Overpass 0.94 0.75 0.83 20 

Parkinglot 1.00 0.90 0.95 20 

River 0.76 0.95 0.84 20 

Runway 0.87 1.00 0.93 20 

Sparseresidential 0.83 0.95 0.88 20 

Storagetanks 0.95 0.95 0.95 20 

Tenniscourt 0.94 0.80 0.86 20 

Average performance  0.87 0.85 0.86 420 
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Table 6.3. TL classification performance in precision, recall, and f1-score on 420 support images 

Class name Precision Recall F1-score Support 

Agricultural 1.00 0.95 0.97 20 

Airplane 0.95 1.00 0.98 20 

Baseballdiamond 1.00 0.90 0.95 20 

Beach 0.95 0.95 0.95 20 

Buildings 0.90 0.90 0.90 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.56 0.50 0.53 20 

Forest 0.82 0.90 0.86 20 

Freeway 1.00 0.95 0.97 20 

Golfcourse 0.92 0.55 0.69 20 

Harbor 0.91 1.00 0.95 20 

Intersection 0.83 0.95 0.88 20 

Mediumresidential 0.57 0.80 0.67 20 

Mobilehomepark 0.67 0.50 0.57 20 

Overpass 0.95 0.90 0.92 20 

Parkinglot 1.00 1.00 1.00 20 

River 0.69 0.90 0.78 20 

Runway 1.00 0.95 0.97 20 

Sparseresidential 0.83 0.95 0.88 20 

Storagetanks 1.00 1.00 1.00 20 

Tenniscourt 1.00 0.80 0.89 20 

Average performance  0.88 0.87 0.88 420 
 

Table 6.4. Fine-tuning classification performance in precision, recall, and f1-score on 420 

support images 

Class name Precision Recall F1-score Support 

Agricultural 1.00 1.00 1.00 20 

Airplane 1.00 1.00 1.00 20 

Baseballdiamond 1.00 0.90 0.95 20 

Beach 0.95 0.95 0.95 20 

Buildings 0.80 0.80 0.80 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.62 0.65 0.63 20 

Forest 0.86 0.95 0.90 20 

Freeway 1.00 1.00 1.00 20 

Golfcourse 0.80 0.60 0.69 20 

Harbor 0.95 1.00 0.98 20 

Intersection 1.00 0.65 0.79 20 

Mediumresidential 0.66 0.95 0.78 20 

Mobilehomepark 0.61 0.55 0.58 20 

Overpass 0.91 1.00 0.95 20 

Parkinglot 0.95 1.00 0.98 20 

River 0.73 0.95 0.83 20 

Runway 1.00 1.00 1.00 20 

Sparseresidential 0.89 0.80 0.84 20 

Storagetanks 0.95 0.95 0.95 20 

Tenniscourt 1.00 0.80 0.89 20 

Average performance  0.89 0.88 0.89 420 
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The accuracy of the DL models is also measured in terms of accuracy and loss measurement 

metrics in graphical representation, as shown in Figure 6.2, Figure 6.3 and Figure 6.4 for CNN-

FE, TL, and fine-tuning models, respectively. The training accuracies (with a blue color curve) are 

smoothly increasing, while the validation accuracies (with a red color curve) are somewhat 

fluctuating in increasing the accuracies in all models, especially in fine-tuning, as depicted in 

Figure 6.2, Figure 6.3 and Figure 6.4 (on the left). We used the cross-entropy loss function to 

reduce errors in the model performance. The training losses (with a blue color curve) are smoothly 

decreasing, while the validation losses (with a red color curve) are somewhat fluctuating in 

reducing the errors in all models, as depicted in Figure 6.2, Figure 6.3 and Figure 6.4 (on the right).  

In addition to deploying precision, recalls, and f1-score, we used CM to evaluate class 

performances in each DL model. Like f1-score, better class performance is observed in most 

classes in the CM metric. The CM measures the class performance, whether it is classified 

correctly or incorrectly. CM considers each class label in rows (True labeled class) and columns 

(predicted labeled class), as depicted in Figure 6.5 through Figure 6.7. The probability score in the 

diagonal intersection showed the correct classified class. In contrast, the results in other rows-

columns wise are predicted in misclassified classes.   

For evaluating the model with test set sample images, we used the argmax function for predicting 

a class with the maximum argument probability score. For instance, our classification problem has 

twenty-one possible classes in the UCM dataset. If the output probabilities are [0.0, 0.0, 0.0, 0.0, 

0.05, 0.0, 0.55, 0.0, 0.0, 0.0, 0.05, 0.0, 0.30, 0.05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], the arg max 

(maximum argumentative-class) probability is 0.55 and it is associated with the dense-residential 

class that is predicted by the CNN-FE model as shown in Figure 6.5. Like ways, the arg max 

probability can correspond to each class prediction in CM metric. The sum of the output 

probabilities of each class is 1.00.  

While evaluating the class performance in CM metric, the lowest performance result in the two 

first classes are dense-residential (55%) and golf-course (60%) in CNN-FE, dense-residential 

(50%), mobile-home-park (50%)  and golf-course (55%) in TL and mobile-home-park (55%)  and 

golf-course (60%), as shown in Figure 6.5, Figure 6.6, and Figure 6.7, respectively. The lower 

result showed that the class property is mostly associated to other classes. For instance, the 
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property of dense-residential has a more common feature with class medium-residential. The class 

performance in the CM metric is generally better in the fine-tuning model.  

 

Figure 6.2. The training and validation accuracies and losses in the CNN-FE model 

 

 

Figure 6.3. The training and validation accuracies and losses in the TL model 

 

 

Figure 6.4. The training and validation accuracies and losses in the fine-tuning DL model 
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Figure 6.5. CM performance results for CNN-FE model in the UCM dataset 

 

Figure 6.6. CM performance results for TL model in the UCM dataset 



  

100 
 

 

Figure 6.7. CM performance results for fine-tuning model in the UCM dataset 

 

 

6.3.2 Discussions 

This objective of the study applied the DL models for LCLU classification using RS images. The 

performances of these models resulted from various measurement metrics and showed good 

performance results for the classification problem, as shown in Table 6.5. The experimental results 

showed that the proposed DL algorithms could adapt and learn features of RS images since the 

Adam (adaptive movement estimation) learning rate took on that responsibility. The TL and fine-

tuning performances are significantly improved over the CNN-FE. 

To address our objective stated in this section, Table 6.2 through Table 6.4 and Figure 6.2  through 

Figure 6.7 compare the DL model performances on the UCM dataset. From the results, good class 

performance has been achieved in precision, recall, F1-score, and CM though some class 
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performances scored lower in values. The training accuracy increases smoothly in CNN-FE, TL, 

and fine-tuning DL models, as shown in Figure 6.2, Figure 6.3 and Figure 6.4, respectively.  

The overall accuracy for each model is summarized in Table 6.5. According to Table 6.5, the fine-

tuning model has outperformed performance in accuracy (88%), precision (89%), recall (88%), and 

f1-score (89%) with efficient time. Whereas the CNN-FE model performed lower in each metric 

compared to the other two models, this could be why the dataset used was smaller. Moreover, the 

CNN-FE spent much more time training the model than the TL, and the fine-tuning.  

The maximum capability of a number of parameters in EfficientNet is 64 million. In TL and fine-

tuning models, 18.88 million parameters have been discovered and learned. This parameter number 

is about 18 times greater than the parameters found in CNN-FE mode, i.e., 1.68 million. This is why 

the convolution technique used in CNN-FE reduces the number of parameters. The fine-tuning 

technique is used to compare the performance of the DL models designed using the convolutional 

method and fully connected layers. As a result, improved performance in the fine-tuning model was 

achieved in less time than the other DL techniques used in this study's objective.  

Designing the CNN model from scratch is essential to identify the correct properties of the 

categories for large datasets that are usually recommended when they exceed about 5000 images 

per class. However, it may require a significant amount of training time and be prone to overfitting. 

This limitation could be overcome by the less training time-consuming DL techniques, TL, and 

fine-tuning. The TL and fine-tuning DL techniques are efficient in terms of training time and 

produce improved performance results. But we recommend that TL and fine-tuning DL be 

applicable for small data sizes that may be less than 5,000 images per class. Therefore, we can 

conclude that the TL and fine-turning DL techniques are economically relevant in terms of time 

savings and essential for performance improvement, as observed in Table 6.5.  
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Table 6.5. The DL model performance evaluations using performance measurement metrics in 

the UCM dataset and the time (in seconds) consumed for training each DL model 

DL Models DL Performance results in each measurement metrics  Training 

time (Sec.) 

Params# 

(millions) Precision  Recall  F1-score Accuracy  

CNN-FE 87.00 85.00 86.00 84.76 51.81 1.68 

TL 88.00 87.00 88.00 87.38 41.77 88.88 

Fine-tuning  89.00 88.00 89.00 88.10 36.39 18.88 

 

6.4 Chapter Summarization 

In this objective of the study, we designed the three DL models: CNN-FE, TL, and fine-tuning for 

LCLU classification problems using RS images. The TL and fine-tuning models have been trained 

on the recent EfficientNetB7 pretrained baseline network using the UCM dataset. The models' 

performances were evaluated using accuracy, precision, recall, f1-score, and CM metrics. The fine-

tuned model in the UCM dataset has a profound accuracy result. We could observe that the nature 

of the dense-residential class is mainly similar to the properties of the medium-residential category. 

Thus, its performance results in precision, recall, f1-score, and CM is the worst result compared to 

other class categories. In addition to those metrics, the training time is another critical evaluation 

metric that is used to compare the economic advantages of TL and fine-tuning models over the DL 

models developed from scratch. We found that the TL and fine-turning DL models are efficient in 

saving time and essential for performance improvements.  
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7. EVALUATING THE PERFORMANCE OF DEEP LEARNING 

CLASSIFICATION MODELS IN VARIOUS REMOTE SENSED 

HYPERSPECTRAL IMAGES 

 

7.1 Introduction 

Land cover is the earth’s surface covered with natural resources and artificial activities and 

contains dynamic information [175]. On the other hand, land use is the ability of human activities 

to utilize natural resources on the land cover. These two entities are essential for human life on 

earth since they are the base for everything. In the contemporary, dynamic world, proven LCLU 

classification learning systems are required to manage and monitor the earth’s environment. Thus, 

LCLU classification is an important and challenging task in RS [4], [61], as it contains dynamic 

data. As stated in the previous sections, this dynamic data could be collected by using advanced 

RS technologies. The collected data could be RBG, multispectral, or hyperspectral images. The 

hyperspectral dataset has a larger number of continuous spectral bands [45].  

RS images are vital information sources about the earth’s environment [7], [16], [66], [78] for 

LCLU classification problem analysis. The LCLU data are imbalanced, which caused the 

classification problem due to the model's imbalanced learning [14]. Thus, the recent challenging 

tasks in RS are the RS hyperspectral image (RSHI) classification [58], [66], [80], [167]. The DL 

approach could be applied to the hyperspectral image to solve the challenges.  

DL is a recent specialized ML approach that attracts researchers for its powerful ability to analyze 

large datasets and its dynamic performance improvement. Therefore, DL is the recently focused 

research area applied to RSHI domains, such as classification [7], [8], [16], [80], [84], recognition 

[53], and object detection [168]. It is also potentially challenging in many other domains [169].  

DL includes various techniques that are used to design task modeling, such as the classification 

task in this study. CNN is one of the most common DL methods in computer vision [18] and is 

used for feature extraction and LCLU modeling using RSHIs. Deep CNNs are the recent dominant 

paradigm in various domains. Thus, the CNN models have powerful feature extraction capability 

for classification performance improvement in RSHIs [48]. The Keras applications and deep CNN-
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based pretrained models used in this objective are EffificientNetB7 [93], InceptionV3 [90], [164], 

and MobileNet [92].  

In recent related work studies, very few studies have been conducted to design the 

EffificientNetB7, MobileNet, and InceptionV3 DL models from various perspectives, such as 

considering their hyperparameters and different datasets collected in other locations. The deep 

CNN model for LCLU classification and crop identification in the Indian Pines dataset was 

evaluated by [45] with the optimizers (Adam, SGD, Adagrad,  and RMSprop), the filter size (2 

and 3), and the activation functions (Relu and Tanh). In the case of using different datasets with 

different locations, the deep CNN models such as InceptionV3 and VGG19 for AID, UCM, and 

PatternNet datasets have been evaluated by [24]. Therefore, we selected the most examined UCM 

dataset and the recently used SIRI-WHU and RSSCN7 datasets to assess and compare the recent 

EfficientNetB7, InceptionV3, and MobileNet DL models to understand their effects on this 

objective.    

Therefore, this objective aims to design and evaluate DL models with various RSHIs that have 

different properties. The dynamic information collected on the earth’s surfaces has different 

properties that could affect the model’s performance [97], [111], [114].   

7.2 Materials and Methods 

7.2.1 Datasets 

The publicly available HRSI datasets were collected from various sources on the web. On the base 

of the channel, there are three types of RS images: RGB (that consists of three channels), 

multispectral (that consists of more than three and under hundreds of channels), and hyperspectral 

(that consists of hundreds of channels). We used the UCM, SIRI-WHU, and RSSCN7 datasets as 

described in Table 2.1. The sample images from each class have been depicted in Figure 3.9, Figure 

3.10, and Figure 3.11 for the UCM, SIRI_WHU, and RSSCN7 datasets, respectively.   

The UCM dataset is an LCLU data set collected from the earth, labeled manually, and introduced 

by [70]. It has twenty-one classes, each with 100 images that measure 256 × 256 pixels and have 

a spatial resolution of about 30 cm per pixel. However, the UCM dataset is inconsistent, as about 
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44 images have different pixel shapes. This dataset is available at:  

http://weegee.vision.ucmerced.edu/datasets/landuse.html.  

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China [75]. 

The dataset contains twelve categories with 200 images per category at 200 x 200 pixels. The 

dataset is available at: https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980.  

The RSSCN7 dataset is a challenging scene classification dataset collected from Google Earth and 

released by [41] at Wuhan University.  The dataset is divided into seven categories, each of which 

contains 400 images with a 400 x 400 pixels resolution. We selected this dataset due to its higher 

pixel size and the fact that it has not been more thoroughly investigated as a domain yet. The 

dataset is available at: https://www.kaggle.com/datasets/yangpeng1995/rsscn7. 

To this end, [176] and [177] have studied the performance of different methods in HRSI 

classification problems using the UCM and SIRI-WHU datasets, which are also used in this 

objective. In addition, the DBN was applied to the RSSCN7 HRSIs by [41]. 

7.2.2 DL Methods 

 

Previously, the DL method was investigated for classification problems in RSHIs using commonly 

used datasets. However, further investigations are still needed to design and evaluate the current 

DL methods on the most commonly and recently used datasets. 

Thus, to evaluate the effect of performances in different DL models for LCLU classification 

problems in different RSHIs datasets, we applied the deep CNN-based models, such as 

EfficientNet, InceptionV3, and MobileNet, to the selected two datasets described earlier. All of 

these DL models have been trained on the pretrained ImageNet images using the specified DL 

hyperparameters. The choices of DL hyperparameters have an impact on CNN performance [24]. 

We used almost all the same DL hyperparameters in this chapter for experimental settings as in 

designing deep CNN and TL, except the batch size is 128 instead of 64 and the learning rate is 

0.001 instead of 0.0001. We set the same hyperparameters for all three DL models on the two 

datasets to evaluate the models’ performances, as shown in Table 7.1.  
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Table 7.1. The DL hyperparameters settings for training the datasets 

Hyperparameters  Chosen values 

Optimizers  Adam with 0.0001 

Batch size 128 

Epochs  100 

Loss function  Cross-entropy  

Activation functions Relu, softmax  

Dropout  0.5 

 

7.3 Experimental Results and Discussions 

 

7.3.1 Experimental Setting and Evaluation Experimental Results 

We used the UCM and SIRI-WHU datasets for experiments to design and evaluate the DL models 

for LCLU classification problems. We split each dataset to train, validate, and test samples into 

60%, 20%, and 20%, respectively. We also set the DL hyperparameters as indicated in Table 7.1. 

Then we trained the models, validated them with the validation dataset during training, and 

evaluated their performances with the test dataset. 

After the experimental hyperparameters were set, we trained and evaluated the model during and 

after the experiments with validation and test datasets, respectively. We evaluated the DL models 

using accuracy, precision, recall, f1-score and confusion matrix (CM) metrics. CM measures the 

class performance whether it is classified correctly or incorrectly in rows-columns intersections. In 

addition to the accuracy, we used the categorical-cross-entropy loss function to calculate the errors. 

The training and validation losses or mistakes are expected to decrease in epoch increments, as 

shown in Figure 7.1 (a to c right), Figure 7.2 (a to c right) and Figure 7.3 (a to c right). 

We evaluated the EfficientNetB7, InceptionV3, and MobileNet models with 20, 40, and 80 test 

support images in the UCM (Table 7.2, Table 7.5, and Table 7.8), SIRI-WHU (Table 7.3, Table 

7.6, and Table 7.9), and RSSCN7 (Table 7.4, Table 7.7, and Table 7.10) datasets, respectively. 

Each class’s performance is good in each metric, especially in the harmonic mean metric f1-score. 

However, we observed the better class performance in the UCM dataset even though similar 

classes were found in the SIRI-WHU and RSSCN7 datasets, as shown in Table 7.2 through Table 
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7.10. On the UCM dataset, the best (100%) F1-score categories are agricultural, chaparral, harbor, 

parking lot, and runway in EfficientNetB7 (Table 7.2), agricultural in InceptionV3 (Table 7.5), 

and airplane, chaparral, and freeway in MobileNet (Table 7.8), whereas no classes scored best 

(100%) F1-score in the SIRI-WHU and RSSCN7 datasets. This is because the properties of the 

datasets are different.  

 

Table 7.2. EfficientNetB7 classification reports for the UCM dataset 

Class name Precision Recall F1-score Support 

Agricultural 1.00 1.00 1.00 20 

Airplane 0.95 1.00 0.98 20 

Baseballdiamond 0.94 0.80 0.86 20 

Beach 0.86 0.95 0.90 20 

Buildings 0.76 0.65 0.70 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.65 0.65 0.65 20 

Forest 0.71 1.00 0.83 20 

Freeway 0.95 0.95 0.95 20 

Golfcourse 0.75 0.75 0.75 20 

Harbor 1.00 1.00 1.00 20 

Intersection 0.84 0.80 0.82 20 

Mediumresidential 0.62 0.80 0.70 20 

Mobilehomepark 0.52 0.70 0.60 20 

Overpass 0.94 0.75 0.83 20 

Parkinglot 1.00 1.00 1.00 20 

River 0.75 0.45 0.56 20 

Runway 1.00 1.00 1.00 20 

Sparseresidential 0.89 0.85 0.87 20 

Storagetanks 1.00 0.95 0.97 20 

Tenniscourt 0.94 0.80 0.86 20 
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Table 7.3. EfficientNetB7 classification reports for the SIRI-WHU dataset 

Class name Precision Recall F1-score Support 

Agriculture 0.58 0.45 0.51 40 

Commercial 0.82 0.82 0.82 40 

Harbor 0.80 0.82 0.81 40 

idle_land 0.67 0.72 0.70 40 

Industrial 0.94 0.78 0.85 40 

Meadow 0.53 0.50 0.51 40 

Overpass 0.95 0.90 0.92 40 

Park 0.65 0.78 0.70 40 

Pond 0.74 0.72 0.73 40 

Residential 0.80 0.88 0.83 40 

River 0.76 0.78 0.77 40 

Water 0.89 0.97 0.93 40 

 

Table 7.4 EfficientNetB7 classification reports for the RSSCN7 dataset 

Class name Precision Recall F1-score Support 

Field 0.70 0.91 0.79 80 

Forest 0.82 0.94 0.88 80 

Grass 0.65 0.53 0.58 80 

Industry 0.73 0.55 0.63 80 

Parking 0.72 0.78 0.75 80 

Resident 0.88 0.72 0.79 80 

RiverLake 0.89 0.97 0.93 80 

 

Table 7.5. InceptionV3 classification reports for the UCM dataset 

Class name Precision Recall F1-score Support 

Agricultural 1.00 1.00 1.00 20 

Airplane 0.95 1.00 0.98 20 

Baseballdiamond 0.89 0.80 0.84 20 

Beach 0.86 0.95 0.90 20 

Buildings 0.87 0.65 0.74 20 

Chaparral 1.00 0.95 0.97 20 

Denseresidential 0.87 0.65 0.74 20 

Forest 0.86 0.90 0.88 20 

Freeway 0.95 1.00 0.98 20 

Golfcourse 0.82 0.45 0.58 20 

Harbor 0.95 1.00 0.98 20 

Intersection 0.93 0.65 0.76 20 

Mediumresidential 0.53 0.90 0.67 20 

Mobilehomepark 0.64 0.80 0.71 20 

Overpass 1.00 0.80 0.89 20 

Parkinglot 1.00 0.90 0.95 20 

River 0.57 0.80 0.67 20 

Runway 0.91 1.00 0.95 20 

Sparseresidential 0.86 0.95 0.90 20 

Storagetanks 1.00 0.90 0.95 20 

Tenniscourt 0.89 0.85 0.87 20 
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Table 7.6. InceptionV3 classification reports for the SIRI-WHU dataset 

Class labels Precision Recall F1-score Support 

Agriculture 0.80 0.50 0.62 40 

Commercial 0.90 0.88 0.89 40 

Harbor 0.78 0.88 0.82 40 

Idle_land 0.83 0.72 0.77 40 

Industrial 0.80 0.90 0.85 40 

Meadow 0.77 0.57 0.66 40 

Overpass 0.85 0.97 0.91 40 

Park 0.61 0.50 0.55 40 

Pond 0.63 0.90 0.74 40 

Residential 0.82 0.90 0.86 40 

River 0.82 0.70 0.76 40 

Water 0.85 1.00 0.92 40 

 

 

Table 7.7 InceptionV3 classification reports for the RSSCN7 dataset 

Class name Precision Recall F1-score Support 

Field 0.72 0.89 0.79 80 

Forest 0.85 0.94 0.89 80 

Grass 0.73 0.61 0.67 80 

Industry 0.62 0.49 0.55 80 

Parking 0.67 0.75 0.71 80 

Resident 0.82 0.64 0.72 80 

RiverLake 0.79 0.91 0.85 80 
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Table 7.8. MobileNet classification reports for the UCM dataset 

Class name Precision Recall F1-score Support 

Agricultural 0.95 0.95 0.95 20 

Airplane 1.00 1.00 1.00 20 

Baseballdiamond 1.00 0.85 0.92 20 

Beach 0.83 0.95 0.88 20 

Buildings 0.88 0.75 0.81 20 

Chaparral 1.00 1.00 1.00 20 

Denseresidential 0.75 0.60 0.67 20 

Forest 0.82 0.90 0.86 20 

Freeway 1.00 1.00 1.00 20 

Golfcourse 0.81 0.65 0.72 20 

Harbor 0.95 1.00 0.98 20 

Intersection 0.68 0.75 0.71 20 

Mediumresidential 0.51 0.90 0.65 20 

Mobilehomepark 0.69 0.55 0.61 20 

Overpass 1.00 0.70 0.82 20 

Parkinglot 1.00 0.95 0.97 20 

River 0.63 0.85 0.72 20 

Runway 1.00 0.95 0.97 20 

Sparseresidential 0.89 0.85 0.87 20 

Storagetanks 0.87 1.00 0.93 20 

Tenniscourt 1.00 0.70 0.82 20 

 

 

Table 7.9. MobileNet classification reports for the SIRI-WHU dataset 

Class labels Precision Recall F1-score Support 

Agriculture 0.93 0.68 0.78 40 

Commercial 0.97 0.95 0.96 40 

Harbor 0.82 1.00 0.90 40 

Idle_land 0.83 0.85 0.84 40 

Industrial 0.92 0.85 0.88 40 

Meadow 0.61 0.57 0.59 40 

Overpass 0.95 1.00 0.98 40 

Park 0.82 0.78 0.79 40 

Pond 0.88 0.88 0.88 40 

Residential 0.91 0.97 0.94 40 

River 0.84 0.95 0.89 40 

Water 1.00 0.97 0.99 40 
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Table 7.10 MobileNet classification reports for the RSSCN7 dataset 

Class name Precision Recall F1-score Support 

Field 0.65 0.90 0.76 80 

Forest 0.79 0.95 0.86 80 

Grass 0.72 0.53 0.61 80 

Industry 0.62 0.57 0.60 80 

Parking 0.84 0.72 0.78 80 

Resident 0.85 0.64 0.73 80 

RiverLake 0.81 0.94 0.87 80 

 

The training and validation accuracies and losses are also used for evaluating the models in the 

two datasets. The training accuracies (with a blue color curve) are smoothly increasing, while the 

validation accuracies (with a red color curve) are somewhat fluctuating in increasing the accuracies 

in all models and all datasets, as depicted in Figure 7.1 (a to c left), Figure 7.2 (a to c left), and 

Figure 7.3 (a to c left). We used the cross-entropy loss function to reduce errors in the model 

performance. The training losses (with a blue color curve) are smoothly decreasing, while the 

validation losses (with a red color curve) are somewhat fluctuating in reducing the errors in all 

models and all datasets, as depicted in Figure 7.1 (a to c right), Figure 7.2 (a to c right), and 

Figure 7.3 (a to c left). 

In addition to deploying accuracy error, precision, recalls, and the F1-score, we used CM to 

evaluate class performances in each DL model and all datasets. The CM metric, like the F1-score, 

shows better class performance in most classes in the UCM dataset. The CM measures the class 

performance, whether it is classified correctly or incorrectly. CM considers each class label in rows 

(the “true labeled class”) and columns (the “predicted labeled class”), as depicted in Figure 7.4 

through Figure 7.12. The probability score in the diagonal intersection showed the correct 

classified class while the results in other rows-columns wise are predicted to be in misclassified 

classes.   

While evaluating the class performance in CM, the worst accuracy was scored in each model and 

dataset. For instance, the river (45%), agriculture (45%), and grass (53%) in EfficientNet7, as shown 

in Figure 7.4, Figure 7.5, and Figure 7.6.; the golf-course (45%), agriculture (45%) and park (45%), 

and industry (48%) in InceptionV3, as shown in Figure 7.7, Figure 7.8, and Figure 7.9,  the mobile-

home-park (55%), meadow (57%)  and grass (53%)  in MobileNet, shown in Figure 7.10, Figure 7.11, 

and Figure 7.12 for UCM, SIRI-WHU, and RSSCN7 datasets, respectively.  In general, the class CM 

performance is better in UCM than SIRI-WHU datasets; for instance, the shared class agriculture has 
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the best CM performance in UCM but the worst performance in SIRI-WHU and RSSCN7.

 

a)  EfficientNetB7 

 
b)  MobileNet  

 
c) InceptionV3 

Figure 7.1. Training and Validation losses and accuracies of the three DL models (a, b, c) for the 

UCM dataset 
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a) EfficientNetB7 

 

b) MobileNet 

 

c) InceptionV3  

Figure 7.2.Training and Validation losses and accuracies of the three DL models (a, b, c) for the 

SIRI-WHU dataset 
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a) EfficientNetB7 

 
b) MobileNet  

 

c) InceptionV3    

Figure 7.3. Training and Validation losses and accuracies of the three DL models (a, b, c) for the 

RSSC7 dataset 
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Figure 7.4. CM results for EfficientNet7 model in the UCM dataset 

 

Figure 7.5. CM results for EfficientNet7 model in the SIRI-WHU dataset 
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Figure 7.6. CM results for EfficientNet7 model in the RSSCN7 dataset 

 

 

Figure 7.7. CM results for InceptionV3 model in the UCM dataset 
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Figure 7.8. CM results for InceptionV3 model in the SIRI-WHU dataset 

 

Figure 7.9. CM results for InceptionV3 model in the RSSCN7 dataset 
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Figure 7.10. CM results for MobileNet model in the UCM 

 

Figure 7.11. CM results for MobileNet model in the SIRI-WHU dataset 
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Figure 7.12. CM results for MobileNet model in the RSSCN7 dataset 

 

7.3.2 Discussions 

This objective aimed the DL models for LCLU classification using RSHIs. Table 7.11 shows the 

performance of these models as a result of various measurement metrics, with good accuracy 

results for the classification problem. 

To address our objective stated in this task, Table 7.2 through Table 7.10 and Figure 7.1 through 

Figure 7.12 compare the DL model performances on the UCM, SIRI-WHU, and RSSCN7 datasets. 

From the results, good class performance has been achieved in precision, recall, F1-score, and CM, 

though some class performances scored lower in values. The training accuracy increases smoothly 

in all DL models across all datasets, as shown in Figure 7.1, Figure 7.2 and Figure 7.3. The 

accuracy performance of each model has been evaluated with 420, 480, and 560 test images of the 

UCM, SIRI-WHU, and RSSCN7 datasets, respectively. The overall accuracy of each model is 

summarized in Table 7.11.  

MobileNet outperforms the other two DL models, with accuracy of 86.47% and 87.07% for the 

UCM and SIRI-WHU datasets, respectively. However, the EfficientNetB7 model outperforms all 

other models in the RSSCN7 dataset, despite the fact that all models trained on the UCM and SIRI-

WHU datasets outperformed those trained on the RSSCN7 dataset, as shown in Table 7.11.  
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Table 7.11. The DL model performances in performance measurement metrics in both datasets 

Dataset  DL Models DL Performances in performance measurement metrics  

Precision  Recall  F1-score Accuracy  

UCM EfficientNetB7 86.00 85.00 85.50 86.16 

InceptionV3 87.00 85.00 85.99 86.24 

MobileNet 87.00 85.00 85.99 86.47 

SIRI-WHU EfficientNetB7 76.00 76.00 76.00 76.04 

InceptionV3 79.00 79.00 79.00 79.54 

MobileNet 87.00 87.00 87.00 87.08 

RSSCN7 EfficientNetB7 77.00 77.00 77.00 77.14 

InceptionV3 74.00 75.00 74.50 74.64 

MobileNet 76.00 75.00 75.50 75.00 

 

7.4 Chapter Summarization 

In this chapter, we applied the recent DL models to the UCM, SIRI-WHU, and RSSCN7 datasets, 

which have different properties, using DL hyperparameters for LCLU classification problems. 

Therefore, we designed the three DL CNN models, namely EfficientNetB7, InceptionV3, and 

MobileNet, for classifying the LCLU classification using the UCM, SIRI-WHU, and RSSCN7 

datasets, which have different properties. Because of how well it worked, we added the 

EfficientNetB7 DL model to the LCLU classification. 

The model performances were evaluated and compared using accuracy, precision, recall, f1-score, 

and CM metrics. The MobileNet model outperformed the other models in the UCM and SIRI-

WHU datasets in terms of accuracy. The nature of the dataset had an effect on the DL performances 

in the majority of the measurement metrics we used. The better performance results in most metrics 

have been achieved in the UCM dataset rather than the SIRI-WHU and RSSCN7 datasets. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

In this research, we present the results of our investigation into the use of DL models for solving 

the LCLU classification problem in RS imagery datasets. We reviewed and analyzed different 

primary studies that had been retrieved from reputable databases in order to pinpoint the research 

gaps. DL methods for LCLU classification using RS are recent hot research areas in the field of 

ML and AI. As can be seen in Figure 2.4 and Figure 2.5, however, there has not been much research 

into the use of AI, namely DL approaches, for LCLU classification using RS images. Results from 

our review indicate that DL approaches are gaining popularity due to their potential to enhance 

classification system performance. The performance of DL modes has been studied by a number 

of researchers, such as [50] and [21], because of their advantages over LCLU classification 

utilizing RS images. So, we achieved our objective of reviewing by citing some of the researchers 

whose work we looked at and by pointing out where the literature was lacking and what these 

experts suggested for the future (see Table 2.2).  

After completing the review objective, we set four main experimental objectives to address the 

problem of LCLU classification in RS images. The first experimental task was designing an end-

to-end CNN-FE model. After developing this model on the inconsistent UCM dataset, we retrained 

it on the more stable SIRI-WHU dataset of RS images to see if the dataset had any effect on its 

performance. To further verify the prospective use of the CNN-FE, we also developed a VGG19 

pretrained DL model and tested its performance on both datasets. In this objective, we validated 

that CNNs are powerful DL techniques for evaluating RS images for LCLU classification systems. 

Due to the inconsistency of RS images, the results of any modeling done with pretrained networks 

will likely not be accurate. We evaluate its performance versus that of the VGG19 pretrained 

model, which was also trained with similar hyperparameters, and prior state-of-the-art studies. Our 

results, which include how the features of the dataset affect the model and how it could be used in 

different domains, show that the CNN-FE outperformed the previous works and the VGG-19 

pretrained model. 

The second experimental task was to build a TL model with the help of pretrained networks and 

bottleneck feature extraction. Our objective was to reduce training time for LCLU classification 
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in RS images using the TL model. According to the state-of-the-art study by [58], [146], TL can 

be trained more quickly than other deep CNN models (trained in seconds compared to days when 

they were trained from scratch). To enhance the speed and accuracy of the model's training, we 

applied the bottleneck feature extraction technique to extract features from previously trained 

models. The model’s performance is also prominent in all models, i.e., 92.46%, 94.36%, and 

99.64% of the accuracy results for Resnet50V2, InceptionV3, and VGG19, respectively. As a 

result, the improved performance of the TL models for LCLU classification in RS images was our 

finding. The VGG-19 model, on the other hand, achieves high accuracy in a short period of time. 

The third experimental task was to design and compare the CNN-FE, TL, and fine-tuning models 

for LCLU classification problems using RS images. The TL and fine-tuning models have been 

trained on the recent EfficientNetB7 pretrained baseline network, whereas the CNN-FE has been 

trained on the four blocks of CNNs using the UCM dataset. Here, the design of CNN-FE differs 

from our first experimental task designation by differentiating the batch size and learning rate 

values. The models are evaluated, and the fine-tuned model produces a higher accuracy 

performance in less time. In addition to the performance, the training time is another critical 

evaluation metric that is used to compare the economic advantages of TL and fine-tuning models 

over the DL models developed from scratch. We found that the TL and fine-turning DL models 

are good at saving time and important for improving performance. 

The fourth experimental task was to apply the recent DL models to the UCM, SIRI-WHU, and 

RSSCN7 RS imagery datasets with different properties using DL hyperparameters for LCLU 

classification problems. Therefore, we designed the three DL CNN models, namely 

EfficientNetB7, InceptionV3, and MobileNet, for classifying the LCLU categories using RSHIs 

in the UCM and SIRI-WHU datasets. We contributed the EfficientNetB7 DL model to LCLU 

classification in RSHIs because of its good performance. The three models were evaluated and 

compared, and profound accuracy and f1-score measure performances have been achieved in 

MobileNet rather than in other models in the UCM and SIRI-WHU datasets. In the RSSCN7 

dataset, EfficientNetB7 has higher accuracy and f1-score measure performance. The nature of the 

dataset had an effect on the DL performances in the majority of the measurement metrics we used. 

The better performance results in most metrics have been achieved in the UCM dataset rather than 

the SIRI-WHU and RSSCN7 datasets. 
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Our contributions in this study include exploring the potential application of the recent  DL models 

for LCLU classification problem using RS imagery data for the benefits of the RS communities 

and decision makers, improving the performances of the earlier studies, identifying the better 

performance of the models in terms of training times, dataset size and dataset properties, 

identifying the DL hyperparameters and properties of the dataset influence the DL performance in 

LCLU classification problem, and suggesting the future research direction to the future 

researchers.  

This study's significance values in its application of an intelligent LCLU classification system to 

the problem of scene identification for the RS communities. Sustainable development in the areas 

of agricultural and urban planning, environmental protection, and natural resource management 

would all greatly benefit from the use of the LCLU classification system. We also looked at how 

the DL models worked and improved their performance, showing that they could be used to 

classify LCLUs in RS images. 

However, the lack of powerful computational resources i.e., robust processor needs and time 

constraints resulting from the COVID-19 epidemic were the major challenges or limitations we 

faced during our study. Since we were working with a CPU processor and Google Colab instead 

of a GPU processor, we had to work with relatively small RS datasets. In addition, both the TL 

and fine-tuning modes work with small datasets. Developing DL models from scratch is time-

consuming and difficult, so the size of the dataset may have an effect on the DL performance. We 

didn't have enough time to compare typical ML methods with DL methods or test the effects of 

important DL hyperparameters that can't be learned, like the deeper number of layers, iteration, 

and batch normalization (mean and variance). 
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8.2 Recommendations 

 

The research objectives of this thesis have been achieved with constraints and challenges. 

Therefore, we would like to suggest the following major recommendations for further 

investigations in the area based on the aforementioned challenges and constraints: 

➢ The hardware processor requirements, such as the CPU, GPU, and VPU, are essential 

requirements for designing DL models. Because of its extremely fast computation and 

processing capabilities on large datasets, the GPU is required to improve model 

performance. VPU in the other way is also required to accelerate the performance of DL 

models and produce high-quality images with less power consumption by freezing up the 

CPU and GPU space. So, it might be better to run the experiments again with a powerful 

GPU or VPU to improve how well the DL models work on larger RSHIs datasets. 

➢ The various dataset properties and the DL hyperparameters could also affect the model's 

performance. So, the next step to improving DL performance in the domain would be to 

look into DL optimization techniques for LCLU classification using different datasets. 

➢ The TL and pretrained models are effective in terms of time and resources. But training the 

TL and pretrained models on the pretrained models may be hard because pretrained 

networks like "ImageNet" may have been trained on large images with different properties 

than the RS images. Therefore, we recommend that designing the DL model from scratch 

is better for validating the LCLU classification system. Moreover, TL is recommended for 

small datasets, which may be less than thousands of images per class. If the dataset exceeds 

thousands of images per class, we would like to recommend designing the DL model from 

scratch. 

➢ Moreover, the developed DL models need more improvements, validations, and 

comparisons with other traditional ML approaches on large datasets. Therefore, building 

DL and traditional ML approaches on other large datasets is our future task to compare 

their performances. 
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Appendix II: List of ML and DL Tools and Package Libraries for applications 

No  Python Libraries Type of library Descriptions 

1 Apache Singa 
ML, DL, NLP, 

Image processing  

Supporting scalable and distributed training for healthcare applications using ML 

algorithms 

2 H2o  ML framework  Used for statistical, ML and AI algorithms  

3 HDF5 
Data 

manipulation 

Enabling the storage of huge amounts of numerical data and manipulating the data easily 

from NumPy 

4 
Keras, TensorFlow, Theano, Caffe, 

Torch  
DL 

Providing fast and easy scientific computing of numerical data with deep neural networks, 

effectively handling mathematical expressions such as matrix values, modeling for 

language and vision applications  

5 

Matplotlib, Seaborn, Bokeh, Plotly, 

NetworkX, Basemap,d3py, ggplot, 

prettyplotlib 

Visualization 

Visualizing the data from Python quickly Plotting 2D graphs in various formats such as 

bar charts, plots, histograms, error charts, power spectra, and scatter plots across platforms 

using a few lines of code 

6 MLlib ML Encompassing sets of ML algorithms like classification and clustering  

7 NumPy 
Numerical 

Operations 

Supporting the scientific computing that is high-level mathematical functions over large, 

multi-dimensional arrays and matrices 

8 

NumPy, SciPy, matplotlib, 

OpenCV, scikit-learn, scikit-image, 

ilastik 

Image 

Processing 

Providing a set of algorithms for image processing, supporting geometric transformations, 

segmentation, filtering, color space manipulation, morphology, analysis, and feature 

detection 

9 Pandas Data Analysis 
Offering high-performance operations and data structures for time series and numerical 

tables manipulation 

10 PyBrain Neural Network 
Providing algorithms for reinforcement learning, neural networks, unsupervised learning, 

and evolution to analyze large-scale data 

11 RankLib ML 
Providing a set of learning to rank algorithms and supporting the evaluation using retrieval 

metrics 

12 
Scikit- Learn, Shogun, Pattern, 

PyLearn2, PyMC 
ML Algorithms 

Providing ML techniques (such as classification, clustering, and regression), 

Interoperating with the numerical and scientific libraries (such as NumPy and SciPy) 

13 Shogun  ML Providing different data structures and algorithms for ML problems 

14 Statsmodel 
Statistical 

Analysis 

Conducting statistical data exploration and statistical tests Performing statistical 

computations such as descriptive statistics and providing classes and functions to estimate 

different statistical models 

15 SymPy 
Statistical 

Applications 

Supporting symbolic mathematics and modeling the full-featured Computer Algebra 

System (CAS) 

 

 


