

LAND COVER AND LAND USE CLASSIFICATION IN

REMOTE SENSING DATA USING DEEP LEARNING

A THESIS

SUBMITTED TO THE DELHI TECHNOLOGICAL UNIVERSITY

FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

In

Computer Science & Engineering

By

ABEBAW ALEM

(2K18/PHD/CO/24)

Under the Supervision of

PROF. SHAILENDER KUMAR

Delhi Technological University, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Delhi-110042, India

February, 2023

© DELHI TECHNOLOGICAL UNIVERSITY, DELHI, 2023

ALL RIGHTS RESERVED

Dedication

To all Ethiopians who have taught me from elementary school until this

degree award, while they themselves are melting like a candle.

i

CANDIDATE DECLARATION

I, Abebaw Alem (2K18/PHD/CO/24), hereby declare that the thesis entitled "Land Cover and

Land Use Classification in Remote Sensing Data Using Deep Learning," submitted to Delhi

Technological University, Delhi, in partial fulfillment of the requirements for the award of the

degree of Doctor of Philosophy in the department of Computer Science and Engineering, is my

own original work and has been completed under the supervision of Prof. Shailender Kumar

(Supervisor), Department of Computer Science and Engineering, Delhi Technological University,

Delhi, India.

The explanations presented are based on how I read and comprehended the original texts. I have

never before submitted this work to any other institutions for the award of any other degree,

diploma, associateship, fellowship, or other title or honor.

Abebaw Alem

Roll No. 2k18/PHD/CO/24)

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad Daulatpur Main Bawana Road

Delhi-110042, India

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

(Govt. of National Capital Territory of Delhi)

Shahbad Daulatpur, main Bawana Road,

Delhi – 110042, India

Date: _________________

CERTIFICATE

This is to certify that the work embodied in the thesis entitled "Land Cover and Land Use

Classification in Remote Sensing Data Using Deep Learning" submitted by Mr. Abebaw Alem

(Roll No. 2K18/PHD/CO/24) as a full-time PhD scholar in partial fulfillment of the requirements

for the award of the degree of Doctor of Philosophy, to the Delhi Technological University, Delhi,

India, is carried out by the candidate under my supervision and guidance at the Department of

Computer Science and Engineering, Delhi Technological University, Delhi, India.

The results embodied in this thesis have not been presented to any other university or institute for

the award of any other degree or diploma.

 Prof. Shailender Kumar

Department of Computer Science and Engineering

Delhi Technological University

Delhi-110042, India

iii

ACKNOWLEDGMENTS

This study has been carried out in its entirety with the assistance of the following key players. It's

an honor to be able to publicly thank the people and organizations that have been so supportive of

me as I've conducted this study.

First of all, I want to begin by praising God and honoring His mother, Saint Mary, for keeping

me from dangers like the COVID-19 pandemic and providing the motivation and energy I needed

to complete this task. Nothing I have accomplished in my life has been possible without the grace

of God and the intercession of His holy mother, Saint Mary.

Second, I'd like to thank my advisor, Prof. Shailender Kumar, a Professor of Computer Science

and Engineering at Delhi Technological University, for all of his help throughout this research.

Throughout the whole process of developing this research strategy, from primary data analysis to

literature evaluation, his wealth of experience, enthusiasm, and insightful remarks have been

significant assets. In addition to the research work, I learned a lot about cryptography from him

and enjoyed his teaching manner in his "Information and Network Security" course.

Third, I'd like to thank Debre Tabor University and the Ethiopian Ministry of Education

(MOE) for their continued financial assistance with my tuition and living expenses throughout the

duration of this study. My gratitude also extends to the Embassy of Ethiopia in Delhi, which

supports my financial processes and follows up my progress to complete my work. It was

imperative that I give due recognition to these institutions, which I did.

Fourth, I'd like to express my gratitude to my Student Research Committee (SRC) and/or the

Department Research Committee (DRC) members, who offered insightful and pertinent comments

while this research proposal was being conducted. They have also provided ongoing follow-ups

and insightful suggestions for the research progress report on a semesterly basis ever since the

SRC was conducted. Those SRC/DRC members are Prof. Rajni Jindal (the former head of the

department of Computer Science and Engineering (CSE) and the chairman of the SRC/DRC),

Prof. Pravin Chandra and Prof. S.K. Dhurandhar (the experts of the SRC/DRC from outside

the university of DTU), Prof. Vinod Kumar (the HOD-CSE and the expert of the SRC/DRC from

inside the department within the DTU), and Prof. Rajesh Rohilla (the expert of the SRC/DRC

from outside the department within the DTU).

iv

Fifth, I'd like to express my gratitude to the people I've met during my time at Delhi Technological

University. This includes the faculty members of the Department of CSE for their unwavering

support during the course of this study, such as, Prof. Anil Singh Parihar, who taught me Natural

Language Processing (NLP), Dr. Akshi Kumar, who taught me Advanced Web and Internet

Technology (AWIT), and all the other lecturers in other departments who taught me Research

Methodology and its elective courses; the Data Mining Lab-mates, who assisted me with every

concern; the Academic Postgraduate Section staffs, who manipulate my every academic issues;

the International Affairs staffs, who assist me by liaising my related issues with the Embassy of

Ethiopia; the Examination Branch staffs, who communicated this thesis with external and

internal examiners; and the university security guards who secure me including my properties

in PG as well as in the university.

Sixth, I'd like to thank Google Teams for making it possible to use the Colaboratory cloud server.

This is an alternative way to use graphics processing unit (GPU) processors instead of central

processing unit (CPU) processors to implement the classification models used in this thesis.

Seventh, the journal paper editors and/or reviewers, and examiners of the thesis, who provided

pertinent and constructive comments for the thesis quality improvement are duly acknowledged.

Last but not least, I'd like to extend my family's sincere gratitude and appreciation. I'd like to

express my gratitude to my beloved wife, Genet Achenef, for being the patient rock upon whom

I could lean and for her unwavering support as I worked toward my study. This wouldn't have been

possible without her unwavering support and watchful eye over our family. More than that, I'd like

to express my gratitude to my parents and parents-in-law for always being there for me and

providing countless supports throughout my life.

Abebaw Alem

Roll No.: 2k18/PHD/CO/24)

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad Daulatpur Main Bawana Road

Delhi-110042, India

v

ABSTRACT

The classification of land cover and land use (LCLU) from remotely sensed imaging data has been

a motivating area of study. LCLU data includes dynamic remote sensed images that exhibit

inconsistencies due to limitations in sensor technology, seasonal changes, and spatial distance. The

LCLU classification problem has recently been solved with the help of deep learning, an

advancement in machine learning and artificial intelligence (AI). Recently, deep learning

classification systems have been recognized as a powerful and popular modeling tool for extracting

hidden information from remote sensing data for LCLU classification in the observed earth

environment. Since the LCLU classification system is based on deep learning, it is important to

look into these methods for environmental control, environmental management, agricultural

decisions, and urban development.

For the LCLU classification issue, we collected data from publicly available sources and

developed deep learning strategies employing convolutional neural networks, transfer learning,

and pretrained networks. Many recent studies have examined deep convolutional neural networks

in remote sensing categorization, with the networks having been trained using pretrained networks.

However, this has not been extensively explored because of the time and processing power

required to train convolutional neural networks for remotely sensed images. In order to classify

LCLUs in the University of California Merced (UCM) dataset, we used hyperparameters,

regularization, and early stopping in a convolutional neural network feature extractor (CNN-FE)

deep learning approach. In order to ensure cross-domain generalizability, we retrained the CNN-

FE model using the SIRI-WHU dataset and used the same hyperparameters to build the VGG19

pretrained feature extractor model. However, the training period for CNN model is very long. Deep

transfer learning (TL) modeling, which makes use of pretrained models to quickly build TL

models, could be used to solve this issue. The use of DL and machine learning techniques for

image classification has recently shifted its focus to transfer learning. And the pretrained networks

are efficient. Using various remote sensed hyperspectral images, we developed convolutional

neural network–based pre–trained models for LCLU classification, such as EfficientNetB7,

InceptionV3, and MobileNet deep learning models.

vi

We compared the results from the state-of-the-art studies and other built models with those from

the UCM, SIRI-WHU, and RSSCN7 datasets after building and training the DL models on those

datasets. The first experiment was designing CNN-FE. Results in this experiment showed

performance improvements for the CNN-FE model when compared to state-of-the-art baseline

studies and the VGG-19 pretrained model. Additionally, the CNN-FE model's performance was

better when trained on the UCM dataset compared to when trained on the SIRI-WHU dataset. The

second experiment was building the TL model. We used the InceptionV3, Resnet50V2, and

VGG19 pretrained models for LCLU classification in the UCM dataset, with the TL model trained

with bottleneck feature extraction. Based on these experiments, the TL model was developed, with

improved results of 92.46, 94.38, and 99.64 in Resnet50V2, InceptionV3, and VGG19,

respectively. The third experiment was the comparative evaluation of the CNN-FE and TL with

fine-tuning. In this experiment, the fine-tuning model has outperformed the CNN-FE and TL in

both the UCM and SIRI-WHU datasets. The fourth experiment was building the DL models, such

as EfficientNetB7, InceptionV3, and MobileNet, for different datasets of UCM, SIRI-WHU, and

RSSCN7 that have distinct parameters. In accuracy performance, the MobileNet outperformed the

competition on the UCM and SIRI-WHU datasets, while EfficientNetB7 performed better on the

RSSCN7 dataset. We also found that the dataset had an effect on the model's efficiency, with the

UCM dataset outperforming the SIRI-WHU and RSSCN7 datasets across the board in terms of

most measurement measures. The findings of this study indicated that it could provide significant

benefits to remote sensing communities and decision-makers. The need for a powerful processing

unit and the limited time frames caused by COVID-19 were the major challenges and limitations

of this research. Based on these challenges, we have come up with some recommendations for the

future, such as using a more powerful processor to improve the performance of DL models and

applying DL hyperparameters to the domain area.

Keywords: convolutional neural network, deep learning, end-to-end learning, land cover and use

classification, performance evaluations, pretrained model, remote sensed image, transfer learning.

vii

TABLE OF CONTENTS

CANDIDATE DECLARATION .. i

CERTIFICATE ... ii

ACKNOWLEDGMENTS .. iii

ABSTRACT .. v

TABLE OF CONTENTS .. vii

LIST OF ABBREVIATIONS .. x

LIST OF FIGURES ... xii

LIST OF TABLES ... xiv

1. INTRODUCTION .. 1

1.1 Land Cover and Land Use (LCLU) Classification ... 1

1.2 Deep Learning Techniques ... 2

1.3 Motivations of the Study ... 3

1.4 Research Objectives .. 4

1.5 Limitations of the Study .. 6

1.6 Significance of the Study .. 7

1.7 Organization of the Thesis .. 7

2. LITERATURE REVIEW AND RESEARCH GAPS IDENTIFICATION .. 9

2.1 Land Cover and Land Use (LCLU) Classification ... 9

2.2 Machine Learning Techniques .. 10

2.3 Deep Learning Methods .. 12

2.3.1 Convolutional Neural Networks (CNNs) for Classification ... 13

2.3.2 Transfer Learning .. 15

2.4 RS Dataset Descriptions.. 15

2.5 Research Survey Analysis ... 20

2.6 Research Gaps ... 21

2.7 Chapter Summarization... 22

3. RESEARCH METHODS AND MATERIALS .. 24

3.1 Deep Learning Methods and their Parameters .. 24

3.1.1 Convolution Neural Networks (CNNs) ... 24

3.1.2 Deep Transfer Learning and Fine-tuning .. 31

3.1.3 Deep Pretrained Networks .. 33

viii

3.1.4 DL Hyperparameters and Optimization Techniques ... 34

3.1.5 Fittings in Deep Learning ... 44

3.2 Remote Sensing Datasets .. 45

3.3 Tools and Frameworks for Designing DL Models ... 48

3.4 Chapter Summarization... 50

4. DESIGNING DL CONVOLUTIONAL NEURAL NETWORK MODEL FOR LCLU

CLASSIFICATION USING REMOTE SENSED IMAGES: AN END-TO-END APPROACH 51

4.1 Introduction ... 51

4.2 Methods... 53

4.2.1 DL Method: Convolutional Neural Network .. 53

4.2.2 Dataset Descriptions ... 56

4.3 Experimental Results and Discussions ... 57

4.3.1 Experimental Setting ... 57

4.3.2 Performance Evaluation Metrics and Experimental Results ... 59

4.3.3 Model Validations with VGG19 pretrained Network and SIRI-WHU Dataset 64

4.3.4 Discussions ... 70

4.4 Chapter Summarization... 73

5. DESIGNING TRANSFER LEARNING FOR LCLU CLASSIFICATION USING REMOTE

SENSED IMAGES ... 74

5.1 Introduction ... 74

5.2 Research Method: Deep Transfer Learning .. 75

5.3 Experiments and Performance Evaluations .. 78

5.3.1 Experimental datasets setting .. 78

5.3.2 Experimental Settings and Performance Results .. 79

5.4 Discussions ... 83

5.4.1 Discussions on results, methods, and TL performances ... 83

5.4.2 Discussions on similar studies .. 85

5.5 Chapter Summarization... 86

6. COMPARING THE PERFORMANCE OF CNN, TL AND FINE-TUNING MODELS FOR LCLU

CLASSIFICATION .. 88

6.1 Introduction ... 88

6.2 Materials and Proposed Methods .. 90

6.2.1 Datasets and Tools .. 90

6.2.2 Proposed DL Methods .. 91

ix

6.3 Experimental Results and Discussions ... 94

6.3.1 Experimental Setting and Results ... 94

6.3.2 Discussions ... 100

6.4 Chapter Summarization... 102

7. EVALUATING THE PERFORMANCE OF DEEP LEARNING CLASSIFICATION MODELS IN

VARIOUS REMOTE SENSED HYPERSPECTRAL IMAGES ... 103

7.1 Introduction ... 103

7.2 Materials and Methods .. 104

7.2.1 Datasets ... 104

7.2.2 DL Methods .. 105

7.3 Experimental Results and Discussions ... 106

7.3.1 Experimental Setting and Evaluation Experimental Results ... 106

7.3.2 Discussions ... 119

7.4 Chapter Summarization... 120

8. CONCLUSIONS AND RECOMMENDATIONS ... 121

8.1 Conclusions ... 121

8.2 Recommendations ... 124

REFERENCES ... 125

APPENDICES .. 144

Appendix I: Journal and Conference Publications .. 144

Appendix II: List of ML and DL Tools and Package Libraries for applications 145

x

LIST OF ABBREVIATIONS

AdaDelta: Adaptive Delta Algorithm

AdaGrad: Adaptive Gradient Algorithm

Adam: Adaptive Moment Estimation

AI: Artificial Intelligence

aka: also known as

ANNs: Artificial Neural Networks

CM: Confusion Matrix

CNN-FE: Convolutional Neural Network Feature Extractor

CNNs: Convolutional Neural Networks

CNTK: Microsoft Cognitive Toolkit

Colab: Colaboratory

Conv2D: Convolution with two Dimensions

COVID-19: Coronavirus Disease founded in 2019

CPU: Central Processing Unit

CV: Computer Vision

DBN: Deep Belief Network

DL: Deep Learning

ES: Expert Systems

FCN: Fully Connected layers/ Networks

GAN: Generative Adversarial Network

GIS: Geographic Information Systems

GPU: Graphics Processing Unit

IEEE: Institute of Electrical and Electronics Engineers

LCLU: Land Cover and Land Use

LR: Learning Rate

MDPI: Multidisciplinary Digital Publishing Institute

ML: Machine Learning

NLP: Natural Language Processing

Relu: Rectified Linear Unit

xi

ResNet: Residual Neural Network

RGB: Red, Green and Blue channels

RMSProp: Root Mean Square Probability

RNN: Recurrent Neural Network

RO: Research Objective

RS: Remote Sensed or Remote Sensing

RSHIs: Remote Sensed Hyperspectral Images

RSSCN: Remote Sensing Scene Classification image

SGD: Stochastic Gradient Descent

SVM: Support Vector Machines

Tanh: Tangent Hyperbolic Function

TL: Transfer Learning

VGG19: Visual Geometry Group with 19 convolutional layers

VGGNet: Visual Geometry Group Network

VPU: Vision Processing Unit

xii

LIST OF FIGURES

Figure 2.1. Machine Learning Techniques ... 11

Figure 2.2. Relation between AI, ML and DL and frameworks and methods of ML 13

Figure 2.3. Structure of CNNs adopted from [45] .. 14

Figure 2.4. Number of articles published in Web of Science Database since 2015 in Year wise 20

Figure 2.5. Number of articles published in the web of science database in our study area for a

general search on [“deep learning” AND “land cover” AND “land use” AND “remote sensing”].

... 21

Figure 3.1. Feature maps using weight/filter matrix ... 27

Figure 3.2. Reduced output image (feature map) using weight/filter matrix with stride of 2 and

valid padding ... 27

Figure 3.3. Feature maps using 3*3 weight/filter matrix with stride of 2 and same padding (1

layer = 1 padding) ... 28

Figure 3.4. Linear transformation from 2D to 1D i.e., from convolutional layer to fully connected

layer... 29

Figure 3.5. Graphical representations of the sigmoid function and its derivative (gradient) 37

Figure 3.6. Tanh Function and its Derivative ... 39

Figure 3.7. Relu function graphical representation ... 40

Figure 3.8. Graph of the gradient of relu function .. 41

Figure 3.9. Sample images in each class of the UCM dataset .. 46

Figure 3.10. Sample images in each class of the SIRI-WHU dataset used for CNN-FE model

checking .. 47

Figure 3.11. Sample images in each class of the RSSCN7 dataset used for evaluating DL

methods of the InceptionV3, EfficientNetB7 and MobileNet models performance comparisons 47

Figure 3.12. The overall DL Model for LCLU Classification processes 49

Figure 4.1. Structure of the CNN DL approach .. 56

Figure 4.2. Training and validation accuracies with and without applying early stopping

technique ... 62

Figure 4.3. Training accuracy and loss vs. Validation accuracy and loss 63

Figure 4.4. CM performance results for each labeled class .. 63

Figure 4.5. Training and validation accuracies in VGG19 with and without applying early in

stopping technique in UCM dataset .. 65

Figure 4.6. Training and validation losses in VGG19 with and without applying the early

stopping technique in the UCM dataset .. 66

Figure 4.7. CM performance results of VGG19 pretrained for each labeled class 66

Figure 4.8. Training and validation accuracies of CNN-FE model in SIRI-WHU dataset with and

without applying early stopping technique ... 67

file:///F:/Research/Proposal%20&%20Report/A%20Thesis-for-Submitting.docx%23_Toc125280079

xiii

Figure 4.9. Training and validation losses of CNN-FE model in SIRI-WHU dataset with and

without applying early stopping technique ... 67

Figure 4.10. CM performance results of CNN-FE for each class classification in SIRI-WHU ... 68

Figure 4.11. Training and validation accuracies of VGG19 in the SIRI-WHU dataset with and

without applying the early stopping technique ... 69

Figure 4.12. Training and validation losses of VGG19 in SIRI-WHU dataset with and without

applying early stopping technique .. 69

Figure 4.13. CM performance results of VGG19 for each class classification in SIRI-WHU 70

Figure 5.1. Sample Input Images Feeding into Pre-processing .. 77

Figure 5.3. Confusion Matrix of each Model on UC Merced dataset... 80

Figure 5.4. Accuracies in Training vs. Validation for TL Classification Models 82

Figure 5.5. Losses in Training vs. Validation for TL Classification Models 83

Figure 6.1. Layers of CNN-FE model with the input sample images ... 92

Figure 6.2. The training and validation accuracies and losses in the CNN-FE model 98

Figure 6.3. The training and validation accuracies and losses in the TL model 98

Figure 6.4. The training and validation accuracies and losses in the fine-tuning DL model 98

Figure 6.5. CM performance results for CNN-FE model in the UCM dataset 99

Figure 6.6. CM performance results for TL model in the UCM dataset 99

Figure 6.7. CM performance results for fine-tuning model in the UCM dataset 100

Figure 7.1. Training and Validation losses and accuracies of the three DL models (a, b, c) for the

UCM dataset ... 112

Figure 7.2.Training and Validation losses and accuracies of the three DL models (a, b, c) for the

SIRI-WHU dataset .. 113

Figure 7.3. Training and Validation losses and accuracies of the three DL models (a, b, c) for the

RSSC7 dataset ... 114

Figure 7.4. CM results for EfficientNet7 model in the UCM dataset ... 115

Figure 7.5. CM results for EfficientNet7 model in the SIRI-WHU dataset 115

Figure 7.6. CM results for EfficientNet7 model in the RSSCN7 dataset 116

Figure 7.7. CM results for InceptionV3 model in the UCM dataset... 116

Figure 7.8. CM results for InceptionV3 model in the SIRI-WHU dataset 117

Figure 7.9. CM results for InceptionV3 model in the RSSCN7 dataset 117

Figure 7.10. CM results for MobileNet model in the UCM ... 118

Figure 7.11. CM results for MobileNet model in the SIRI-WHU dataset 118

Figure 7.12. CM results for MobileNet model in the RSSCN7 dataset 119

file:///F:/Research/Proposal%20&%20Report/A%20Thesis-for-Submitting.docx%23_Toc125280108

xiv

LIST OF TABLES

Table 1.1. Achievements of ROs aligned with publications ... 6

Table 2.1. Most commonly used publicly available RS datasets ... 18

Table 2.2. Some recent primary studies in LCLU with DL in which most of our data were

extracted .. 19

Table 3.1. Pretrained Network DL architectures .. 33

Table 4.1. Hyperparameters settings compared with earlier comparative studies 58

Table 4.2. CM table format for performance evaluations ... 60

Table 4.3. Summarizations of the classification performance of CNN-FE for each class with

performance measurement metrics in the UCM dataset. .. 62

Table 4.4. Summarizations of the classification performance of VGG19 for each class in

performance measurement metrics in the UCM dataset ... 65

Table 4.5. Summarizations the classification performance of CNN-FE for each individual class

with performance measurement metrics in SIRI-WHU dataset ... 67

Table 4.6. Summarizations of the classification performance of VGG19 for each class with

performance measurement metrics in the SIRI-WHU dataset .. 68

Table 4.7. Class comparisons in precision, recall, and F1-score (%) on the two models and

datasets .. 72

Table 4.8. Results of accuracy (%) performances at random early stopping technique 73

Table 4.9. Comparisons of the accuracy (%) with the state-of-the-arts in the UCM target dataset

... 73

Table 5.1. Parameter settings for UCM dataset .. 78

Table 5.2. Hyperparameters Setting for Training Data... 79

Table 5.3. Inception_v3 model for class performances in Precision, Recall and F1-Score 80

Table 5.4. Resnet50v2 model for class performances in Precision, Recall, and F1-Score 81

Table 5.5. VGG19 model for class performances in Precision, Recall, and F1-Score 81

Table 5.6. Number of early stopping at epoch #, time is taken for training and overall accuracy in

the three models .. 82

Table 5.7. The best and worst class accuracies in precision, recall, and F1-score measurements 84

xv

Table 5.8. Comparative state-of-the-art classification methods and OA (in %) on the UCM

dataset ... 86

Table 6.1. The DL hyperparameters settings for training the datasets ... 94

Table 6.2. CNN-FE classification performances in precision, recall, and f1-score on 420 support

images ... 95

Table 6.3. TL classification performance in precision, recall, and f1-score on 420 support images

... 96

Table 6.4. Fine-tuning classification performance in precision, recall, and f1-score on 420

support images .. 96

Table 6.5. The DL model performance evaluations using performance measurement metrics in

the UCM dataset and the time (in seconds) consumed for training each DL model 102

Table 7.1. The DL hyperparameters settings for training the datasets 106

Table 7.2. EfficientNetB7 classification reports for the UCM dataset 107

Table 7.3. EfficientNetB7 classification reports for the SIRI-WHU dataset 108

Table 7.4 EfficientNetB7 classification reports for the RSSCN7 dataset 108

Table 7.5. InceptionV3 classification reports for the UCM dataset ... 108

Table 7.6. InceptionV3 classification reports for the SIRI-WHU dataset 109

Table 7.7 InceptionV3 classification reports for the RSSCN7 dataset 109

Table 7.8. MobileNet classification reports for the UCM dataset .. 110

Table 7.9. MobileNet classification reports for the SIRI-WHU dataset 110

Table 7.10 MobileNet classification reports for the RSSCN7 dataset.. 111

Table 7.11. The DL model performances in performance measurement metrics in both datasets

... 120

1

1. INTRODUCTION

1.1 Land Cover and Land Use (LCLU) Classification

The land itself is a natural resource because it is the medium of existence for all earthly things,

both living and nonliving. Potential components are land cover and land use (LCLU). While land

cover is a naturally occurring occurrence on Earth, land use is the result of human intervention in

order to use the land cover to the best possible advantage. The classification of LCLU is a difficult

phenomenon in RS that hinders effective management of the Earth's ecosystems. Features on Earth

are described and extracted from satellite data using LCLU. Land cover characterizes the earth's

surface in terms of its physical features, while land use describes the socio-economic function of

a certain area of land [1].

Satellite data is earth geospatial data with metadata. The metadata of satellite images describes the

location of objects on Earth. Spatial data, often known as geospatial data, is information about

locations and their features. It keeps tabs on data pertaining to the natural world. Because land

cover is a continuous representation of spatial data, it is useful for making decisions based on the

LCLU classification system when it is well organized and interpreted. Objects inside a geographic

system include the earth and everything on it, including trees, buildings, rivers, grasslands, and

people, which are all examples of objects for RS data collected from the earth’s environment.

LCLU is the extraction of features in the land from RS data, such as residential areas, rivers,

grasslands, forests, and the like. The extraction of land features from RS data is a crucial part of

urban and agricultural planning and decision-making.

In general, RS is the acquisition of information about any phenomenon without making physical

contact with the object; simply put, it is an onsite observation on the earth. It's the practice of

identifying and categorizing terrestrial features using data collected by sensors deployed from

spacecraft or airplanes. Geography, geoinformatics, AI, planning, and humanitarians are some of

its subject areas, while agriculture, healthcare, LCLU categorization, environmental monitoring,

climate change, geographic information systems (GIS), and urban planning are just a few of the

domain areas that can benefit from this field of study. It is possible to apply DL techniques to

create LCLU classification intelligent systems. There are publicly available RS datasets used to

design this LCLU classification system.

2

Agricultural spots, healthcare, language analysis, and image processing are all possible application

areas for DL techniques. Based on our examination of the existing literature, we have identified

three research gaps where more investigation is needed. Therefore, we plan to use DL techniques

for LCLU classification in RS image datasets.

1.2 Deep Learning Techniques

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have emerged as major

fields of study applied in many domain areas in recent years. AI is a broad area of research into

the development of intelligent software. The term "ML" is commonly used to describe the

evolution of AI-related system capabilities. Thus, ML approaches, where a computer learns from

incoming data and increases its efficiency and effectiveness, have made AI a prominent research

subject. AI has the potential to significantly alter many industries, including agriculture, the earth’s

environment, transportation, healthcare, language analysis, and the media.

Therefore, "ML" refers to the theory, practice, and method of modeling and analyzing the data-

driven computer learning process. When it comes to data management, ML approaches can be

broken down into two distinct camps: the classical or traditional ones and the recent or DL data-

driven solutions. Supervised learning, unsupervised learning, and reinforcement learning are three

areas that have recently attracted a lot of attention in ML research. Most research in both traditional

and DL methods is done in the supervised ML area, which can be used in a wide range of situations.

Multiple neural networks, some of which might more accurately be described as "artificial neural

networks" (ANNs), make up AI (ANNs). One AI method that has been applied to the task of

modeling and evaluating satellite imagery and data is the usage of ANNs. The more ANNs there

are, the more DL is created, and DL is the newest approach of advancing ML. Recently, DL has

risen to prominence as a key research area in the field of ML.

Different researchers have described DL as a subset of a new ML technique used for

interdisciplinary data analysis. The study of remote sensing (RS) image data might have benefited

from the deployment of DL algorithms, a promising field of ML. In circumstances where the agent

has no prior information, as may be the case, DL becomes crucial for unknown environments. The

geoinformatics and RS communities lack access to RS data. Therefore, DL allows for the

structuring of newly acquired information into generic, efficient representations for the purposes

of decision-making.

3

A variety of DL methods can be used to analyze and model RS data. Deep ANNs are ideal for

processing large amounts of data quickly in a specific real-world domain. Among these ANNs are

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative

adversarial networks (GANs). The most widely used supervised classification algorithms for

extracting image features are CNNs [2]. Thus, CNNs are the most prominent modeling technique

used by researchers in LCLU classifications. CNNs are available with dependable modeling

architectures, including AlexNet, GoogleNet (InceptionNet), VGGNet, ResNet, EfficientNet, and

MobileNet.

1.3 Motivations of the Study

With its performance improvements in large dataset processing skills, particularly in RS data, DL

has become a flourishing field of study and a recent active research area in many challenging

practical applications, which motivated us to begin this investigation. We were also inspired to

begin this research in part because of the suggestions or recommendations made in past

investigations.

The forwarded recommendations by the earlier researchers, such as using pretrained networks and

fine-tuning for satellite data classifications [3], [4], utilizing appropriate DL methods to better

scene classification tasks [5], analyzing the relation between the number of classes in the dataset

and the number of parameters in the ConvNet and their impact on the discrepancy between fine

tuning and full training processes [6], and evaluating the efficiency of CNN with very large scale

images [7], are also our motivations to do this study. Such prior research experience influenced

and motivated us to pursue this research problem that allows us to understand the challenges,

opportunities and significances and to identify the gaps of the domain area.

4

1.4 Research Objectives

The main goal of this study is to come up with DL methods for LCLU classification in Earth

Observation RS imagery data. To achieve this aim, the following specific objectives are proposed.

➢ To analyze state-of-the-art of deep learning methods for LCLU classification in RS data.

➢ To design a deep learning convolutional neural network model for LCLU classification.

➢ To design transfer learning for LCLU classification.

➢ To compare the performance of convolutional neural network and transfer learning for

LCLU classification.

➢ To evaluate deep learning methods for LCLU classification using different data sets.

After the aforementioned research objectives (ROs) have been set, we have performed each

objective using different DL methods and RS datasets. Therefore, the findings and achievements

for the ROs have been summarized in the following ways.

RO 1: In this objective, we have reviewed and analyzed the existing studies by retrieving them

from different databases to dig out the DL methods applied to the domain area. Reviewing and

surveying the earlier works is not an easy task. We have performed it from the start to the end of

our study. This RO enabled us to identify the research gaps that existed at the start of the study.

Therefore, we set it as the first RO, and we have achieved it by surveying the papers and identifying

the gaps.

RO 2: For this objective, we designed the deep CNN model for LCLU classification in RS images.

The model's ability to work in the domain was checked by comparing it to the VGG19 network

that had already been trained and retraining it on the other publicly available RS dataset.

RO 3: In this RO, the TL DL method has been designed for the classification problem. The TL

model was designed using different pretrained models for LCLU classification in RS images. This

model has been effective in terms of time and resource consumption.

5

RO 4: We designed and compared the CNN and TL for LCLU classification in the RS image. In

addition to these two DL models, we applied the fine-tuning technique. Each of the three models

has distinct advantages. In terms of efficient time consumption and resource requirements, the TL

and fine-tuning models are more significant than the developed CNN model. Whereas, in the case

of individual class feature analysis, the CNN model is more significant than the TL and the fine-

tuning models. Finally, the fine-tuning model outperformed the performances in a short period of

time.

RO 5: This RO described the performance evaluation of various DL models using various datasets.

This objective enabled us to identify that the properties of the dataset have significant influences

on the classification system's performance.

In general, we have achieved each research objective positively. The achievements of each

objective lined up with publications are summarized in Table 1.1.

6

Table 1.1. Achievements of ROs aligned with publications

ROs Publication per Ros

RO 1 A. Alem and S. Kumar, "Deep Learning Methods for Land Cover and Land Use

Classification in Remote Sensing: A Review," 2020 8th International Conference on

Reliability, Infocom Technologies and Optimization (Trends and Future Directions)

(ICRITO), Noida, India, June 4-5, 2020, pp. 903-908, doi:

10.1109/ICRITO48877.2020.9197824. (In IEEE Explore Scopus Indexed)

RO 2 A. Alem and S. Kumar (2022), End-to-end Convolutional Neural Network Feature

Extraction for Remote Sensed Images Classification, Applied Artificial

Intelligence, vol. 36 (1), art. no. 2137650, DOI: 10.1080/08839514.2022.2137650

(SCIE, IF: 2.777, best quartile- Q2)

RO 3 1. A. Alem and S. Kumar (2021), Transfer Learning Models for Land Cover and

Land Use Classification in Remote Sensing Image, Applied Artificial

Intelligence, vol. 36 (1), art. no. 2014192,

DOI: 10.1080/08839514.2021.2014192 (SCIE, IF: 2.777, best quartile- Q2)

2. Abebaw Alem, Shailender Kumar, Transfer Learning for Land Use Classification

in Remote Sensing. In Jamia Teachers’ Association Multidisciplinary

International Conference (JTACON-2020), New Delhi, India, February 16-18,

2020. (Presented)

RO 4 A. Alem and S. Kumar (2022) Deep Learning Models Performance Evaluations for

Remote Sensed Image Classification, IEEE Access, vol. 10, pp. 111784-111793,

DOI: 10.1109/ACCESS.2022.3215264 (SCIE, IF: 3.476, best quartile- Q1)

RO 5 A. Alem and S. Kumar (2022), “Deep Learning Models for Remote Sensed

Hyperspectral Image Classification,” 2022 13th International Conference on

Computing, Communication and network Technologies (ICCCNT), Kharagpur,

India, Oct 3-5, 2022, pp. 1-7, doi: 10.1109/ICCCNT54827.2022.9984282. (In IEEE

Explore Scopus Indexed).

1.5 Limitations of the Study

During working on this study, we faced limitations or constraints that could affect the models’

performances. These limitations include the lack of powerful computational resources, i.e., robust

processor needs and time constraints resulting from the COVID-19 epidemic. Since we were

working with a CPU processor and Google Colab instead of a GPU processor, we had to work

with relatively small RS datasets. In addition, both the TL and fine-tuning modes work with small

data sets. Developing DL models from scratch is time-consuming and difficult, so the size of the

dataset may have an effect on the DL performance. We didn't have enough time to compare typical

ML methods with DL methods or test the effects of important DL hyperparameters that can't be

learned, like the deeper number of layers, iteration, and batch normalization (mean and variance).

https://doi.org/10.1080/08839514.2021.2014192

7

1.6 Significance of the Study

The use of DL algorithms for LCLU classification employing RS imaging data has the potential

to bring about a variety of advantages for the communities located within the determined scope of

application. The findings of this research may have direct and indirect significances for the

community. The researchers are the primary direct beneficiaries of getting the academic promotion

awards by fulfilling requirements in the academic program and publishing the findings in peer-

reviewed reputable journals. Moreover, this study has the following direct or indirect significances

for its beneficiaries:

➢ To address the needs of the RS communities, an intelligent LCLU classification system

based on DL might be used to address the issue of scene classification. So, this research

could be the first step toward making a fully autonomous LCLU classification system that

could be used to classify, control, and manage Earth's natural resources more effectively.

➢ The study may also be useful for the decision-makers. Using the LCLU classification

system will considerably improve the likelihood of making decisions that contribute to

sustainable development in the areas of agricultural and urban planning, environmental

protection, and natural resource management.

➢ We also looked at how the DL models worked and improved their performance, showing

that they could be used to classify LCLUs in RS images. However, as mentioned earlier,

there are limitations to the study, and we suggest future research directions based on these

limitations. Therefore, future researchers will indirectly benefit from this work because

they can use its limitations as a starting point for their own investigations.

1.7 Organization of the Thesis

The thesis is organized into eight consecutive chapters to describe the thesis from the beginning to

the end. Each chapter has been described in the following manner:

Chapter 1: This chapter deals with the introduction of the thesis, which includes the general

concepts of the terms, the methods, the motivations, the objectives, the limitations, and the

significance of the thesis.

8

Chapter 2: This chapter states the literature review and the literature survey analysis that enable

us to retrieve related ideas and methods to identify the gaps. We have retrieved and analyzed the

related background details of the DL methods used for the LCLU classification domain. The

chapter includes the theoretical understanding, the survey analysis, the related works, and the

research gaps.

Chapter 3: The chapter deals with the research materials and the DL methods used in this study.

The chapter states the publicly available RS datasets, the reliable DL methods for the LCLU

classification problem, and the tools and DL frameworks used for implementing the identified

classification problem.

Chapter 4: The chapter describes the design of the CNN DL method for LCLU classification in

RS images. The model has been checked its applicability on the domain by comparing with the

pretrained VGG19 network and retraining it on the other publicly available RS dataset. We

checked that the CNN model was applicable in the domain area.

Chapter 5: In this chapter, the TL DL method has been designed for the classification problem.

The TL model was designed using different pretrained models for LCLU classification in RS

images. This model has been effective in terms of time and resource consumption.

Chapter 6: The sixth chapter deals with the comparisons of the CNN, TL, and fine-tuning for

LCLU classification in the RS image. Each of the three algorithms has distinct advantages. In the

case of less time consumption and resource requirement, the TL and fine-tuning models are more

significant than the CNN-FE model. Whereas, in the case of individual class feature analysis, the

CNN model is more significant than the TL and the fine-tuning models.

Chapter 7: The seventh chapter describes the performance evaluation of DL using various

datasets. In this chapter, we identified that the properties of the dataset have significant influences

on the classification system's performance.

Chapter 8: Finally, the last chapter deals with the conclusions and recommendations of the thesis.

This chapter describes the problem, objectives, methods, findings, contributions, significance,

limitations, and future suggestions based on the identified limitations.

9

2. LITERATURE REVIEW AND RESEARCH GAPS

IDENTIFICATION

2.1 Land Cover and Land Use (LCLU) Classification

Land is an important natural resource that supports all living and nonliving things on the earth.

Humans are in charge of managing this pillar resource, which allows for the existence of other

things. Fully automated land cover classification is a hard problem that requires ML and computer

vision tasks. Classifying land use from RS imagery is also important for monitoring and managing

human development [8].

Land cover expresses physical features of the earth's surface, whereas land use describes a piece

of land's socioeconomic function [1]. Land cover classification is a popular and thriving research

area in RS applications [9], and we would look into using deep CNNs to handle and challenge ML

tasks to improve performance when using trained augmentation data [3], [10].

Land cover and land use are two different terms, but we used them as one in our study. Because

the land use class (e.g., residential or commercial area) often consists of multiple classes of land

cover (e.g., buildings, trees, and roads) with great variance [11]. In this study, land cover and land

use are phrased as one and used interchangeably. LCLU is a description of the earth’s features and

an extraction of these features from satellite data. These include the extraction of various land

features such as roads, urban areas, buildings, agricultural lands, waterways, sports fields,

grassland, forests, and the like. LCLU is a description of the earth's features as well as human

interaction with it. This LCLU classification is an important task [12], and it contributes to

decision-making and planning in the earth observation environment, which is a domain of satellite

imagery classification.

Thus, in the earth observation environment, such as the rural and urban sectors, the LCLU

classification enables humans to make decisions and plan [13]–[15]. LCLU is an important source

of earth information and a research problem for DL systems that use automatic classification. To

utilize the classification system, many scholars have been investigating the classification of land

features with DL methods using satellite data. Therefore, LCLU classification is a recent popular

and important research field to utilize RS applications in various challenging tasks such as urban

10

planning, land resources management, environmental monitoring and detection, and governmental

management in RS technology [14], [16]–[18]. RS is becoming a dominant source for acquiring

images and performing LCLU classification tasks [17], and it plays a significant role in the field

of earth observation [19].

2.2 Machine Learning Techniques

AI is one of the newest multidisciplinary sciences and research areas in the recent "big data era."

It is a general field that encompasses ML and DL. It also includes many more approaches that

don’t involve any other learning tasks other than ML, as observed in Figure 2.2. Now days,

researchers have been investigating findings on AI domain areas such as image classification,

object detection, speech recognition, and language analysis by using recent ML approaches.

ML is the 21st century's hot research area in AI; it is an approach, a method, and a science of

modeling and analyzing computer learning processes using data, observations, examples, and

autonomously experiences. ML is an iterative process of training models and usually refers to the

changes in systems that perform tasks associated with AI. These changes in iterations of ML

systems could occur due to data preprocessing and feature selection, the algorithm selection and

parameters used, and the training data. The ML tasks in LCLU using RS imagery data involve

environmental classifications, monitoring, and detection (change and object); agricultural and

urbanization planning; land resource management; and government management (decision

making). ML systems use generic algorithms that can extract hidden information from a set of

data.

It is stated by [20] that the field of ML usually distinguishes three learning capability areas:

supervised, unsupervised, and reinforcement learning. Supervised learning is the ability of the

model to learn from the input and output data. It focuses on the classifications or predictions and

regression problems according to their categories. Unsupervised learning is the capability of the

model that is expected to learn features on its own without guidance. It aims to group or cluster

objects according to their similarities. Reinforcement learning focuses on the motivational

adaptation for successful performance by learning from its mistakes, as seen in Figure 2.1. The

reinforcement learning model could provide positive or negative feedback, which enabled a better

decision.

11

Supervised classification is the most active research area in satellite data analysis using both

conventional/classical and recent ML models. Very high spatial resolution (VHSR) images used

for supervised classification are still an open area of research in the RS [5].

Supervised learning is used to analyze structured (such as databases) and unstructured data (such

as images and audio). In this study, we are focusing on supervised classification using recent ML

methods called DL methods to analyze RS imagery data. Training data in DL models is a key

component of supervised learning, and most ML algorithms require a large number of training

data samples [21].

Data is the engine, coal, and input process for ML algorithms. For this reason, ML is considered a

data governance method. There are various datasets in various application areas. RS satellite data

is focused forward for LCLU classification. In this "big data era," there will be a paradigm shift

towards data-intensive science [22], and ML techniques are keys for analyzing big data in this era.

There are different approaches of ML in AI that could analyze and model satellite image data.

These ML algorithms could be categorized into two groups based on their depth. The first approach

is the classical/traditional algorithm that includes support vector machines (SVM), classical ANNs

(ANNs with one layer only), and maximum likelihood estimators [23]. The second approach is the

recent one (DL), which is the advancement of classical neural networks. DL methods, such as

CNNs [4], [24]–[26], RNNs [27], and DNNs classifiers [28], outperform traditional ML methods

in terms of performance and power for RS imagery classification. Therefore, we are motivated to

focus on DL methods to extract RS features.

Figure 2.1. Machine Learning Techniques

12

2.3 Deep Learning Methods

DL is a subdivision of the ML method that uses deep architectures to learn high-level image feature

representations. It is a recent technology that various researchers have focused on for its reliable

performance. More ANNs create DL, which is the capability to train more neural networks on a

given dataset. ML techniques are becoming increasingly important, and DL has proven to be an

extremely powerful method in many fields and one of the fastest-growing trends in big data

analysis [29]. Satellite image data sets have the characteristics of a large data volume and complex

image classification [30]. This complex image would be analyzed in DL. DL is a subset of ML

that focuses on learning successive layers of increasingly in depth and meaningful representations

of neurons. DL is an extension of classical ML methods, i.e., the depth of more ANNs, and has

become powerful in recent research focus areas. DL is an end-to-end learning (feature learning

and abstraction, model learning) method that consists of more than five processing layers, mostly

in supervised classification [31], [32]. Supervised DL, especially CNN, is the most fitting

modeling method for RS image classification [33]. The interconnection between AI, ML, and DL

is summarized in Figure 2.2.

Therefore, DL is a hotspot in the deep ML area and would have been used in RS image data

analysis. DL is essential for unknown environments, i.e., when the agent lacks knowledge. RS data

are not known by the geoinformatics and RS communities as they are hunted by RS technologies.

Therefore, DL enables the organization of new knowledge into general, effective representations

for decisions and planning.

Research results have found more accurate performance when performed with DL methods. The

deeper the network is the better the performance of the model. The performance of the LCLU

classification could be increased by adding more neural networks [15] and [34].

Recent studies used DL methods for LCLU classification in RS datasets with Deep Neural

Networks (DNNs) [28]. DL methods with DNNs include various modeling methods, such as CNNs

[4]–[8], [15], [24], [35]–[37], RNNs [38], GANs [39], [40], and deep belief networks (DBN) [41],

[42].

CNN is superior to other deep network algorithms due to its abilities [33], [43]. CNN has achieved

remarkable results in image classification, recognition, and other computer vision tasks [44].

13

Figure 2.2. Relation between AI, ML and DL and frameworks and methods of ML

2.3.1 Convolutional Neural Networks (CNNs) for Classification

In recent times, the most researched areas of AI could be categorized as symbolic and connectionist

AI. The symbolic research focuses on the symbolic AI that includes predicates and fuzzy logic

(rule-based systems), while the connectionist AI focuses on interconnected entities like nodes. The

connectionist AI is investigated in our research that dealt with the interconnected neurons, which

could be named neural networks. This focused research domain could be implemented in

traditional and advanced (DL) ML AI approaches. We focused on the advanced ML approaches

that included CNN in our study.

The CNNs are multi-layer neural networks that are used to extract image features, or pixels. CNNs

are one of the DL methods that are particularly designed for RS image classification based on

multi-layer ANNs, and they have been mostly used in recent research. DL CNN is a popular and

widely used method for LCLU classification using RS data [45]. CNNs are the most well-known

DL algorithms and have gained interest from researchers for RS image processing in recent years

[29]. According to many researchers, the interest in CNNs is growing rapidly due to their

impressive results. DCNNs have recently emerged as a dominant paradigm for ML in a variety of

domains, such as the RS domain for land cover classifications [8].

The exploration of the potentials of deep CNNs can be a complex task because of several

challenges, which are over-parameterized [6]. Application cases of CNN-based RS image

14

classification are classified into scene classification (based on RS contents), object detection

(labeling locations and types of the targets with bounding boxes), and object extraction (accurate

boundaries of the objects to be extracted in RS) [46], [47]. CNNs have shown powerful feature

representation capability to improve scene classification of RS imagery [48].

CNNs are built with a series of layers, including convolutional layers, pooling layers, fully

connected layers, and an output layer [32], [46], [47], [49], [50], as shown in Figure 2.3.

There are various architectures of CNNs that are used by researchers to build CNN models for

RS image classification. The most commonly used architectures are AlexNet, VGGNet, ResNet,

and GoogleNet [7], [50]–[53]. These architectures of CNNs have their own characteristics for RS

image classifications.

CNNs could be shallow in recurrent and feedback connections [54], or have a forward and

backward stream in a recurrent network in a fully convolutional network architecture [55].

Figure 2.3. Structure of CNNs adopted from [45]

15

2.3.2 Transfer Learning

Transfer learning (TL), gets more attention for reducing the training time and the dependence on

large amounts of training datasets [8], [56], [57]. The TL algorithm reuses the pretrained models

such as AlexNets, ResNets, InceptionNets, and VGGNets to build new models. We have been

trying to investigate the recommended work suggested by [3]. The TL is widely used for RS image

classification [5], [11], [58], [59] because RS images are essential for LCLU classification in DL

approaches [60].

2.4 RS Dataset Descriptions

Data are fuels and new oils for ML as well as DL. The LCLU classification problem could be

investigated using earth observation data called satellite data. Satellite data are earth observation

data, records of environmental information, and are used to make LCLU decisions when organized

because land cover is a continuous spatial data representative. A satellite image is an image of the

whole or part of the earth taken using artificial satellites [7].

RS is used to obtain the information from the earth's surface by using a satellite imaging system

[23]. The term "remote" means an agent without physical contact, and the term "sensing" means a

sense of observing the environment for measurement of information or data. Thus, RS is the

acquisition of information about any phenomenon without making physical contact with the

object; simply, it is an onsite observation on the earth. It is the use of satellite- or aircraft-based

sensor technologies to detect and classify objects on the earth.

RS image classification is still facing unprecedented and significant challenges and has been an

active research topic [36], [61]–[67] for DL applications in LCLU classification. Because RS

image data has high resolutions and is frequently multimodal, geolocated, and time-variable, it is

frequently used for object detection or classification [22].

Satellite RS data could be applied in both subject and domain areas to conduct research. RS has

applications in different disciplines such as geography, geoinformatics, AI, planning, and

humanitarian aid. Environmental management, agricultural planning, health studies, climate and

biodiversity monitoring, LCLU mapping, land change detection, spatial data analysis, water

resources, forestry, and GIS are some of the application domains for RS. Therefore, land use (LU)

16

planning based on the land cover is vital for development. For instance, urban planning benefits

from keeping track of the evolution of city centers or knowing how the land is used, such as for

public facilities, residential areas, or commercial areas [13].

RS data for those domain areas is open for any investigation and can be found mostly on USGS,

Earth Explorer, and other sites. Considering future research with big RS data to validate RS

systems in more urban areas of the world is important [68]. Satellite data with greater spectra

resolution and geographical variations could also be considered [5].

The role of RS image-based scene classification in LCLU classifications is significant [24], [69].

To design and evaluate DL methods for LCLU classifications, various RS datasets could be

collected from their sources. The United States Geological Survey (USGS), European Space

Agency (ESA), and Google Earth are the major sources of RS datasets. From our extensive

analysis of the literature review, we collected, described, and summarized the data in Table 2.1.

UCM (University of California Merced) data set: To address the problems of LCLU

classification, a number of researchers have been using the UCM Land Use data set. This dataset

was manually collected and introduced by [70] from the USGS National Map Urban Area Imagery.

This dataset consists of 21 land use and land cover classes that contain 100 images each with RGB

color bands, measuring 256 × 256 pixels with a spatial resolution of about 30 cm/pixel. This data

has been using by most researchers for LCLU classification. This data set has been used mostly

by many researchers and it is/was publicly available at:

http:// vision.ucmerced.edu/datasets/landuse.html.

AID (Aerial Image Dataset): this data set consists of 30 classes with 10000 images each in a size

of 600 × 600 pixels with 0.5-m to 8-m /pixel spatial resolutions. It was introduced by [71].

NWPU-RESISC45 (Northwestern Poly technical University-Remote Sensing Image Scene

Classification) dataset: this is a larger dataset that consists of 45 scene classes with 700 images

each and contains a total of 31,500 images with a size of 256 × 256 pixels in the RGB color space.

This large-scale data set was created by [69] at NWPU. The UC Merced, AID, and NWPU-

RESISC45 datasets were used by [72] to classify RS images using descriptive CNNs (D-CNNs)

and compare the results of each dataset with ML methods.

17

RSI-CB (RS Image Classification Benchmark) data set: is a worldwide large-scale benchmark

dataset with 0.22 to 3 m/pixel spatial resolution for RS image classification via crowdsourced data.

It was built with two versions of pixels: RSI-CB128 (128 × 128 pixels) and RSI-CB256 (256 ×

256 pixels), and constructed by collecting sample images from Google Earth imagery and being

mapped by [73]. The UCM, AID, and RSI-CB256 RS image datasets were used by [74] for cross-

domain semi-supervised learning classification using Classifier-Constrained Deep Adversarial

Domain Adaptation method.

EuroSAT- Sentile-2A: Sentile data sets have different versions and levels: Sentile 1, Sentile 2,

and Sentile 3 and above. However, Sentile 1 and 2 are mostly used, while Sentile 3 and above have

not been used yet for research, even if they are released by ESA. As stated and used by [35], the

satellite Sentinels data have been operated by ESA within its Copernicus program to improve earth

observation, and two satellite Sentinel datasets were successfully launched in June 2015 (Sentinel-

2A) and March 2017 (Sentinel-2B). The Sentile-2A EuroSAT is made up of ten classes with a total

of 27000 images in 64×64 pixels and a resolution of 10 meters per pixel that cover 34 European

urban atlases. [35] first mentioned this dataset.

RSSCN7 dataset: It was collected from Google Earth by [41]. It includes 2800 RS scene images

with 400 x 400 pixels resolution in each image and seven classes. The dataset is or was available

at https://sites.google.com/site/qinzoucn/documents.

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China [75].

The dataset contains twelve categories with 200 images per category with 200 x 200 pixels. The

dataset is available at: https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980.

LandSat is also one of the major data sets used in LCLU classifications. LandSat data has been

used by researchers. Landsat 1 through Landsat 9 data sets are available on the USGS website:

https://earthexplorer.usgs.gov. SAT4 and SAT6 data sets were used for LC classification in DL

architecture [30], [51], [52], [76]. This dataset was available at http://csc.lsu.edu/*saikat/deepsat.

Some RS datasets are summarized in Table 2.1. In general, we extracted the data from the selected

primary studies and summarized it in Table 2.2.

http://csc.lsu.edu/*saikat/deepsat

18

Table 2.1. Most commonly used publicly available RS datasets

Dataset Total

Images

No. of

classes

Av. Images/

classes

Resolutions

(m/pixel)

Size (in

pixels)

Introduced

year

Contributed

by

UCM 2100 21 100 0.3 256×256 2010 [70]

RSSCN7 2800 7 400 - 400×400 2015 [41]

SAT4 500000 4 83333 1 28×28 2015 -

SAT6 405000 6 67500 1 28×28 2015 -

SIRI-WHU 2400 12 200 2 200*200 2016 [75]

AID 10000 30 333 0.5-8 600×600 2017 [71]

RSI-CB256 24747 35 690 0.22-3 256×256 2017 [73]

RSI-CB128 36707 45 800 0.22-3 128×128 2017 [73]

NWPU-

RESISC45

31500 45 700 0.2-30 256×256 2017 [69]

EuroSAT 27000 10 2700 10-60 64×64 2019 [35]

19

Table 2.2. Some recent primary studies in LCLU with DL in which most of our data were extracted

No

.

Author(s) Application

Domains

RS Data Type ML Methods used Overall Result

(in %)

Future work Recommendations

1 [31] LU classification MCM Multiview DL 93.48 Performance improvement with combination of DNN cascading with other

neural networks and use one view scale per network

2 [15] Urban LCC ISPRS (Vaihingen

+Potsdam)

CNN - Performance with more networks

3 [35] LCLU Sentile 2A-

EuroSAT

CNNs 98.57 LCLU change detection and improvement of geographical maps

4 [72] RS image Scene UCM, AID, NWPU-

RESISC45

Descriptive CNNs 96.67,97.07,98.93

for each dataset

not clearly mentioned but pointed to more investigations on the AID and

NWPU-RESISC45 datasets

5 [3] Multi-label LC UCM CNNS with dynamic

data augmentation

82.29 using pretrained models and fine-tuning the architectures for multilabel

classification

6 [61] LU UCM and RSSCN7 Deep filter banks +

Fisher vector

92.7 and 90.4 for

both data

-

7 [5] Earth observation:

LU classifications

UCM CNN: feature fusion 92.4 Pretrained networks on a larger scale experiment in satellite data

8 [36] LU UCM Extream learning

machine (ELM) in

CNN

95.62 Accuracy improvement with integration operations such as overlapping

maxpooling and cross-channel and reduce training time using GPU

9 [9] LC ISPRS, GID Feature ensemble-FE-

Net

68.08,65.16 -

10 [7] Satellite image UCM AlexNet CNN 94 Utilizing appropriate DL methods to better features for target detection and

scene classification tasks

11 [6] Scene

Classifications

UCM, RS19, and

Brazilian Coffee

Scenes

ConvNets 97.78, 91.0 and

94.45 respectively

Analyzing the relation between the number of classes in the dataset, the

number of parameters in the ConvNet, and their impact in the discrepancy

between fine tuning and full training processes.

12 [63] Scene

Classifications

UCM, Sydney Gradient Boosting

Random ConvNet

Varying for d/t

learners

application of GBRCN on hyperspectral

applications

13 [8] Land cover UCM DNNS: CaffeNet,

GoogLeNet, ResNet

97.6,97.1,

98.5

-

14 [4] LULC Indian Pines,

San Francisco,

Pavia, Flevoland

CNN 94.64, 98.70,

83.43, 98.51

respectively

Deeper architecture and parameters of the network, evaluating the efficiency

of CNN with very large-scale images

15 [24] RS Scene AID, UCM,

PatternNet

CNN: TL

(InceptionV3 and

VGG19 models)

Varying per

model and

datasets

Begin from deep models and then try to reduce model’s size

 Proposed LCLU UCM, SIRI-WHU,

RSCNN7

CNN-FE, TL, Fine-

tuning

Various in

hyperparameters

Training DL models with GPU by considering hyperparameters on other

larger datasets for performance improvements.

20

2.5 Research Survey Analysis

We conducted our literature review using a systematic approach, which involves three stages: pre-

review (planning), review (conducting), and reporting [77]. The first phase of planning includes

identifying the needs of the review, formulating research questions, and developing and evaluating

a review protocol. The second phase of the review is concerned with analyzing the state of the art.

It could be used to search and identify the existing state-of-the-art research from online digital

libraries and journals relevant to the area. Then we selected primary studies related to our area and

extracted and synthesized the relevant data and parameters. The online digital archives used for

searching primary studies are IEEE Xplore, Web of Science, MDPI, SpringerLink, Google

Scholar, Taylor & Francis, and Wiley InterScience, with their corresponding journals. We also

analyzed the number of publications in line with the study area and year.

According to the literature survey, LCLU in the RS imagery domain has been identified as the

most recent study area, but AI has been identified with lower primary studies even though it is the

most recent attention area, as observed in Figure 2.4 and Figure 2.5. Different scholars have been

investigating DL algorithms using RS data for LCLU classification. Some of these are described

in Table 2.2. Thus, this research problem has been proposed for investigating DL methods for

LCLU classifications using RS data based on the literature survey.

Figure 2.4. Number of articles published in Web of Science Database since 2015 in Year wise

2020 2019 2018 2017 2016 2015

Publication Years 2020 2019 2018 2017 2016 2015

records 1 64 32 12 4 2

% of 115 0.87 55.652 27.826 10.435 3.478 1.76

0

500

1000

1500

2000

2500

P
u
b

li
sh

ed
 p

ap
er

s Number of published papers since 2015

21

Figure 2.5. Number of articles published in the web of science database in our study area for a

general search on [“deep learning” AND “land cover” AND “land use” AND “remote sensing”].

2.6 Research Gaps

In this digital age, a large amount of RS satellite imagery data is recorded on the earth by remotely

sensed technology. Satellite images are significant information sources for the earth's environment,

and the automatic classification of these images has always been an important research topic [78].

The LCLU classification problem takes into account RS satellite data with a higher level of spectral

resolution and differences in location [5].

Classification is a fundamental task for RS imagery analysis [44]. Because of its high cost and

labor-intensive nature, LCLU classification is a recent challenging task [3], [10].

0

10

20

30

40

50

60

70

80

90

100

No.of Papers

% ou of 115 tot.Records

22

DL is a hot research area in various domains. Validation of RS systems in DL by considering more

urban areas in the world is important [68]. However, DL models are still facing several challenges

for wide application, such as the fact that training samples and hyperparameter selection have large

influences on classification performances. Lack of sufficient training samples or a small number

of training samples, for instance, could be identified as the major limiting factor [1], [79][65], [66],

[78], [1], [79], whereas training a network with a large number of samples could improve DL

performance [67], [79]. Parameters selection such as depth of the features, number of hidden

layer, size of learning rate, selection of activation and lose functions are also challenges for DL

methods [42]. To increase the performance of DL models for LCLU classification, training deep

network models to fit different image data sources would be considered [1], [34].

Therefore, from the primary study analysis, we identified the following research gaps.

1. Designing DL models using deeper architecture and hyperparameter optimizations of the

network needs more investigation.

2. There aren't enough studies that compare the performance of DL models on different RS

datasets.

3. The performance evaluation of DL methods for LCLU classification with different scale

data sets in deep AI is still needed.

2.7 Chapter Summarization

In this chapter, we analyze the current primary studies using DL methods for LCLU classification

in RS. From the analysis, we identified that DL methods for LCLU classification using RS are

recent hot research areas in the field of ML and AI. RS data also have their own new challenges

for DL due to the nature of multi-modal, geo-located, geodetic measurements with controlled

quality that are time-dependent and face the big data challenge [29], [45]. RS imagery data

classification [46] is facing exceptional and significant challenges. LCLU monitoring and

management is also another challenge for making decisions. LCLU classification is a major

challenge for RS analysis, with tremendous needs for working solutions and many potential

applications [19], [23], [42], [44], [47]–[49].

To handle these challenges, DL models should be applied to satellite data analysis. The appearance

of DL has provided a chance for analyzing big RS data [30]. DL methods are preferred over

23

traditional ML methods as recent models for improving DL scene classification systems. Thus,

DL methods get significant attention in LCLU classification in the RS field and obtain better

improvements [50]. Improvements in DL for LCLU classification in RS data have been observed

[18].

From our point of view, some of the challenges of DL in satellite imagery data classification

research papers are listed in Table 2.2 with their corresponding suggestions. This literature review

would help us gain insights into the advancement of DL methods for LCLU classification in RS

and enable us to identify further investigations on more DL methods in RS image classification.

Thus, we identified the research gaps accordingly, as we stated in Section 2.6.

RS meets DL [11]. DL methods are recommended by many researchers for solving RS challenges.

Among DL methods, CNNs are the most convenient approaches for solving classification

problems. To make CNN effective, further research will be necessary to help the public's approval

and diffusion of CNNs [23] for RS classification. As a result, designing DL methods with CNN

models for LCLU classification in RS imagery is our next research topic, with a variety of

hyperparameters.

24

3. RESEARCH METHODS AND MATERIALS

In this section, we will describe the methods and materials, such as the datasets, development tools,

and software packages, that are used to accomplish the research objectives.

3.1 Deep Learning Methods and their Parameters

DL is a ML algorithm used to address AI challenges in areas such as natural language processing

(NLP), computer vision (CV), and expert systems (ES). The DL algorithms are implemented using

Python and its frameworks. Python is a high-level object-oriented programming language that is

used in DL frameworks like Keras, TensorFlow, PyTorch, and Caffe.

Why is DL used for LCLU classification in RS imagery? Or, why does RS imagery data use DL

for LCLU classification? There are probably numerous reasons and answers, but two of the most

crucial are its powerful ability to improve training performance and automatically extract features

from large datasets. The research methods will show how to use tools and techniques for

accomplishing the study. DL methods for LCLU classification in RS data have been successfully

proven by researchers, as observed in the state-of-the-art, and the improvement of their

performance has been profound [80]. DL approaches include CNN, RNN, and GANs. We would

use CNN, CNN-based transfer learning and its fine tuning, and CNN-based pretrained networks

in this study due to their capabilities for RS image classification.

3.1.1 Convolution Neural Networks (CNNs)

CNNs are feed-forward ANNs composed of interconnected neurons or nodes with learnable

weights and biases for image classification. CNNs with deep layers have achieved unprecedented

improvements in patch-based medium-resolution RS image classification [81]. The CNN method

is used for classifying the hyper-spectral RS imagery data based on pixels based on dimensional

windows. Image dimension could be h×w×d where h is the height, w is the width, and d is the

depth (number of filters) of the RS image. CNNs consist of sequential layers in which the output

of one layer is the input for other layers with various dimensions of computation. The CNN's

sequence consists of input, convolution, pooling, normalization, and fully connected layers

25

integrated with other DL hyperparameters. In this sequence, CNNs are convolved with filters

(kernels) and pooled with a pooling (downsampling) layer.

1. The input layer: it is the entire input image layer with h×w pixels shape.

2. The convolution (Conv2D) layer

CNNs are a specialized kind of neural network with a linear operation for processing grid-like

(2D) topology or pixel data. The CNN is built by the convolution layer using the basic units of the

series learnable filter, or "kernel," and the input volume, or "matrix." The convolution layer

receives the h×w image pixels and computes the perceptron with given f×f filters or kernels. The

input volume is then convolved with the filter provided to produce a feature map or output volume.

The size of the feature map is determined by the depth (number of filters or kernels), stride (number

of pixels shifted over the input weight matrix), and zero-padding, as equated in (3.1).

The CNNs use the filter or kernel to extract the feature maps from the input image by using the

convolution operation. Kernels are weights of the input images that are used to reduce the shape

of the input images for hidden layer processing. Then the CNNs learn from the filters automatically

and capture the spatial features (the arrangement of pixels) from an image. The spatial features

enable us to identify the object by looking at the specific feature of the image, such as a forest with

its specific feature of trees.

Convolution could be performed with valid convolution (no padding), same convolution (with zero

padding at the edges), and stride (slide or shift) convolution. The mathematical computation of the

output volume of the image in each layer could be calculated using the input volume (h×w), stride

(S), padding (p) parameters, and filter size (f×f). The stride (S) of the filter (f×f) is the interval at

which the filter jumps or shifts S number of shifts from the first elements in a pixel or in each

spatial dimension, while padding (P) is the number of pixels added at the outer edges of the input

image volumes (h×w). Filter is usually odd and smaller in size, that is 3×3, 5×5 and 7×7 with 1, 2,

and 3 padding, respectively. However, using a very large filter size, such 11×11 and 13×13 is

costly in terms of the learnable weights of the networks, and it is not recommended to use it in

more modern DL architectures. Therefore, the cheaper filter sizes, such as 3×3 and 5×5 are best

suited for learning weights or parameters, and we used 3×3 filters applied in sequence of the layers

in this study.

26

In Keras DL tool, no padding for image border to valid convolution but P number of zeros padding

for image border to same convolution. Thus, the mathematical computation of the output volume

of the image, which is the input for the next layer with computational results, in each layer could

be calculated using the input volume, stride, and padding parameters. Thus, the output volume

(nnew×wnew) of a layer could be computed with the mathematical computation in equation (3.1),

and the number of zeros padding or same convolution could be computed using equation (3.2)

when S = 1. When S>1, we could calculate the number of zeros padding using (3.3) to keep the

input image size same as of the output image size. However, the value of p could not be in fraction

and rounded it to the next higher integer when calculated in same padding. Moreover, if f >= S,

take the maximum value of max(f, S) instead of f to calculate the output feature. The default values

of the padding and stride is 0 or valid (no padding) and 1(the weight/filter matrix moves/shifts 1

pixel at a time only in horizontal and vertical edges), respectively.

h_new = [

(h − f + 2p)

s
] + 1

(3.1)

𝑝 =

𝑓 − 1

2

(3.2)

𝑝 =

((ℎ − 1)𝑠 − ℎ + 𝑓)

2

(3.3)

Suppose we have an input image of 6*6 and an initial weight/filter matrix of 3*3 that is used to

extract some features from the input image. As a result, as shown in Figure 3.1, we can calculate

the output of the new feature map (output image size) by adding the values of the element-wise

multiplication of the weight/filter matrix and the sample corresponding highlighted 3*3 shift of

the input image. So, the weights or filter are learned to pull out features from the original image

that help the model make a correct prediction.

If we use a stride of 2 for the same input image and weights with same padding, we could get either

more reduced output image size by reducing the input image dimensions (as shown in Figure 3.2)

or same output image size as the input image size by adding much zeros padding on each edge of

the input image (as shown in Figure 3.3). However, it is better to pad the input image with the

27

required layers of zero padding around each edge of the input image for a higher number of strides

(S>1) so that the output image size is not reduced in same padding. Thus, we pad the input image

with one layer of zeros padding (single zero padding) at each edge of the pixel to get the same

input and output image size. The added layer(s) is/are included by the 3*3 weight shifts in all round

and the weight shifts or jumps 1 pixel at a time, as we observed in Figure 3.3. When a single zero

of padding is added, a single stride or shift of weights or filters is used to keep the size of the input

image. So, we restored more information from the border and got the same input and output image

sizes.

Figure 3.1. Feature maps using weight/filter matrix

Figure 3.2. Reduced output image (feature map) using weight/filter matrix with stride of 2 and

valid padding

28

Figure 3.3. Feature maps using 3*3 weight/filter matrix with stride of 2 and same padding (1

layer = 1 padding)

Therefore, convolution is a dot product of a provided filter (or kernel). The symbol "*" indicates

the convolution, and it can be represented in different ways in implementation languages, such as

"conv-forward" in Python, "tf.nn.conv2d" in TensorFlow, and "Conv2D" in Keras. The output

depth or layer of the image would be the same as the number of filters (or kernels) applied on the

network. For instance, suppose we have an input image of size 256*256*3 and we apply 32

convolutions (filters) of size 3*3*3 with stride of 2 in both valid and same paddings. Then

according to (3.1), the output volume of the image could 127.5*127.5*32 and 128.5*128.5*32 for

valid and a single zero paddings. Nevertheless, the output dimensions could not be in fractions,

and they must be converted into integers by truncating towards zero for valid and rounding the

next integer for same padding since the image size is halved with a stride of 2. Therefore, the

output dimensions of the image would be 128*128*32 for both valid and a single zero padding.

In addition, the output of the convolution layer is a 2D matrix. After the convolution process has

been completed, the fully connected layer will follow. However, the fully connected layer accepts

a 1D image, i.e., in vector form. Therefore, the linear transformation function could be applied in

terms of weights and bias to convert the 2D matrix from the output feature of the convolution layer

or the input image (X) of the fully connected layer into the 1D vector form of the fully connected

layer, as indicated in Figure 3.1 and Figure 3.4.

The deep neural network models are the learnable algorithms that are able to find the DL parameter

values of the weights and bias (W, b) after training them from the input images using optimization

29

techniques. Linear transformation is used to transform matrix form (m, n), where m = h*w is the

number of features or inputs (X1,X2, … Xm) for this layer and n is the number of neurons (filters

or depth) in the layer, with the provided weight and constant bias matrixes to vectorization form.

The linear transformation process from 2D to 1D could be calculated using (3.4) in terms of the

input image (X), transposed matrix weight (WT), and constant bias (b), and the feature map has

been transformed into 1D, as shown in Figure 3.4. The number of weights depends on the

corresponding inputs, while the number of biases depends on the number of neurons. For instance,

if we have 3 neurons (aka perceptron or nodes) in the fully connected layer, the resulted feature

map depicted in Figure 3.1 matrix shape becomes (16, 3) and the linear transformation equations

could be used to compute the transformed result. This transformed result could be used later for

any nonlinear activation function. Thus, we could compute a linear function using the 3 biases and

16 weights since there are 3 neurons and 16 input pixels, or columns, respectively.

 𝑍 = 𝑊𝑇X + b (3.4)

Figure 3.4. Linear transformation from 2D to 1D i.e., from convolutional layer to fully connected

layer

Based on the CNN parameters of the input (X), the randomly initialized weight (W), and the bias,

the linear transformation equation could be applied, and a 1D vector of the weighted output has

resulted as shown in the following schema. With this result, the non-linear transformation function

could also be applied to get the classifier. According to Figure 3.4, we have sixteen input features

X with their consecutive weights, and the assumed number of neurons is three, i.e., the number of

biases becomes three as provided below.

30

Now, using the linear transformation equation (3.4), we can calculate the transformed Z result as

follow.

In the convolution process, the number of parameters (params) could be calculated using (3.5) and

(3.6). Parameters are internal variables learned or updated automatically based on the data during

the training process that determine the model’s behavior. These parameters are used to represent

the weights or coefficients that determine how the model maps input data to output prediction and

they are adjusted through an optimization algorithm to minimize the difference between predicted

and actual values with (3.8). There are convolution (Conv2D) layer and dense layer parameters,

which are equated in (3.5) and (3.6), respectively.

 Conv2Dparam# = #Outchannel ∗ (#Inchannel ∗ Fheight ∗ Fwidth + 1) (3.5)

 Denseparam# = #outputchannel ∗ (#inputchannel + 1) (3.6)

+
*

+

31

The total parameter numbers of the model are the summations of the calculated results from the

Conv2D and dense layers. We designed CNN-FE model with four Conv2D layers that calculate the

number of parameters for those layers in the same norm by (3.5) and two dense layers (3.6).

However, the calculation formula for dense parameters differs from Conv2D, as equated in (3.6).

The number 1 means the bias associated with each filter for learning.

We could calculate the total parameter number using (3.5) and (3.6). The number of parameters

for all MaxPooling2D and Flatten layers, on the other hand, is zero because these layers do not

learn anything from weights or filters, in addition to the built model.

3. Pooling (Downsampling) Layer: This layer is used to resize and down sample spatial

representations, which are then followed by convolution operations. The pooling layer

could be used for reducing the number of weights or the number of parameters and

controlling overfitting. In DL, there are four pooling operations: maximum, minimum,

average, and adaptive pooling. We used the common max pooling technique. Max pooling

could pick the most activated feature and could be used to reduce overfitting and reduce

the number of parameters.

4. Normalization Layer: This layer normalizes over local input regions to aid in

generalization.

5. Fully-connected Layer (FCN): feature classifiers located at the network's final two layers.

They include flatten layers, dense layers, and an output layer at the end. Perceptrons in an

FCN are fully connected to all previous layer activations. Each layer could include various

hyperparameters.

3.1.2 Deep Transfer Learning and Fine-tuning

DL, which is gaining popularity for solving classification problems, was used to extract earth

features from remotely sensed imagery data in order to manage the earth's land for proper deep

classification system utilization. DL algorithms have grown in popularity due to their ability to

automatically learn from large datasets [56], [80], [82]–[86]. They are widely used for their higher

performance and accuracy [5], [56], but they are more time-consuming to train and result in

overfitting [11], [56].

32

TL is a domain adaptation DL model that uses the previously developed model to create new DL

tasks. The developed model (pretrained) transfers its capabilities from existing experiences to the

new one to enhance learning capabilities. In this case, the source domain model (which has already

been trained) shares its experiences with the new model, which can learn from and adapt the

pretrained model's knowledge. So, the name "transfer learning" comes from this process of sharing

knowledge or experience. In this case, we can call TL a domain adaptation model.

TL gets more attentions for reducing the training time and the dependence on large amounts of

training datasets [8], [56], [57]. We are impressed by TL's efficient training time, and we are also

motivated to design TL based on the recommended work suggested by [3]. The TL algorithm is a

pretrained CNN-based DL model with non-trainable weights of the pretrained model, i.e., setting

the "pre_trained_model.trainableor tf.keras.applications.*.trainable = False" where * is any

pretrained network, such as AlexNets, ResNet, InceptionNets, VGGNets, EfficientNet, and

MobileNet. While applying TL, we simply allow the last dense layers to be trained for our new

model. The tf.keras.applications.* enables the model to have the pixel values in a specific range

like [0, 1] from the input images. If we allow all the pretrained layers to be trained i.e. setting the

"pre_trained_model.trainableor tf.keras.applications.*.trainable= True" the pretrained weights

are able to be used for the neural network's initial weights. In this case, we are transforming the

DL technique from TL to a new pretrained network called fine-tuning. Therefore, TL uses random

initializations of the deeper layers or the weights from the pretrained ImageNet network. Whereas

the fine-tuning technique initializes the deeper layers with values from the pretrained ImageNet.

TL adapts the existing pretrained classifier and learns on the top of the fully connected layers of

the entire network. TL is widely used for RS image classification [11], [58], [59] because RS

images are essential for LCLU classification in DL approaches [60]. TL is used to create a DL

model from the existing problem pretrained models. We have used ResNet50V2, VGG19, and

InceptionV3 pretrained models.

Fine tuning is a specific technique with in TL where the pretrained model’s weights are further

adjusted or fine tuned on the new dataset (task), whereas TL is used to train the final layers of the

pretrained model’s weights are usually kept fixed. Unlike TL, fine tuning is modifying not only

the final layers but also some other earlier layers of the pretrained model as we described it earlier

as the trainable layer’s weight is ‘True’.

33

3.1.3 Deep Pretrained Networks

Pretrained networks are DL approaches that have already been trained on large datasets. The

ImageNet large scale visual recognition challenge (ILSVRC) or simply "ImageNet" benchmark

dataset is one of the large datasets on which most pretrained networks have been trained. Most of

the pretrained networks have been trained on the large ImageNet dataset. The "ImageNet" dataset,

which consists of over 14 million images and 1000 categories, was introduced and contributed by

[87]. Pretrained networks consume less computational resources and training time (enabling faster

training), improved performance and enhanced generalization capabilities

Most pretrained networks are available in the Keras DL development tool, and they can be loaded

using the tensorflow "tf" package as "tf.keras.applications.*," where "*" is any pretrained

network. The pretrained networks serve as the foundation for TL and fine-tuning DL networks.

Currently, various modern DL architectures are being developed for DL applications in various

domains. Most of these pretrained DL architectures were introduced by the Google research team,

as shown in Table 3.1. Each pretrained network releases different versions from time to time. For

instance, for VGGNet, versions VGG16 and VGG19; for GoogleNet (InceptionV1), versions

InceptionV2 to InceptionV4; and for MobileNet, versions MobileNetV1 to MobileNetV7, are the

released versions by researchers. We used the latest version of each DL network in this study. To

sum up, the DL methods used in this study are the deep CNN, CNN-based TL, and pretrained

networks.

Table 3.1. Pretrained Network DL architectures

Pretrained network #Maximum

parameter

#Layers Year Introduced and contributed

by

AlexNet 60 million 8 2012 [88]

VGGNet 20 million 19 2014 [89]

GoogleNet

(InceptionNet)

22 million 22 2014 [90](Google team)

ResNet 23 million 152 2015 [91]

MobileNet 4 million 28 2017 [92] (Google team)

EfficientNet 64 million - 2019 [93] (Google team)

34

3.1.4 DL Hyperparameters and Optimization Techniques

Most DL algorithms are implemented with numerous hyperparameters that affect the model's

performance in terms of computational resources (the time and memory cost for running the

training). The DL hyperparameters and optimization techniques are the DL strategies that are used

to find the optimal performance or minimum error. Hyperparameters are the external configuration

choices or settings that define how the learning algorithm operates and controls the learning

algorithm’s behavior. The term hyperparameters are differ from parameters. Parameters internal

variables learned (updated) automatically based on the data, while hyperparameters are external

variables that are not learned (updated) from the data, simply they are set manually and often

require setting or adjusting to optimize the model performance.

The optimization technique includes the regularization technique, which limits the values of the

hyperparameters for optimization, training, or learning the model. Many DL strategies are being

considered in order to reduce test error. DL algorithms include optimization techniques in many

settings.

To build DL models, any DL algorithm would have different technical optimal hyperparameter

requirements. The optimization techniques enable the model to become better by minimizing

errors. The appropriate or optimal hyperparameters can be chosen either manually or automatically

(the default). These optimization techniques include optimizer (Adam), learning rate, dropout,

early stopping, number of epochs (iteration), back propagation, and the like. Some of the important

requirements are going to be described in the following sections.

3.1.4.1 Learning rate (LR)

The learning rate is used to facilitate the ability of the model to learn from the given data. It controls

the step size at each iteration or epoch during the optimization process and determines how quickly

or slowly the model learns from the data. It has various values such as 0.01, 0.001, and 0.0001.

However, if the larger LR is used, the fluctuation of training and learning could happen, and the

pretrained weights could be lost. If the LR is smaller, the convergence of the training and validation

losses to zero will be too slow. Therefore, the appropriate LR value is advisable to be used in

35

building DL models. So, we used the TR of 0.001 and 0.0001 to optimize our model with the

Adam optimizer.

Adam (Adaptive Momentum Estimation), which is the recent optimization technique in DL, is the

combination of adaptive delta algorithm (AdaDelta), Root Mean Square Probability (RMSProp),

and momentum. This optimization technique was introduced by [94] in 2015.

3.1.4.2 Dropout

Dropout is an optimization technique that is used to drop out randomly selected neurons or nodes

with a given percentage probability. This hyperparameter is used to reduce overfitting during the

training of the model but is not used in evaluating the model. The percentage values expressed in

decimal form are usually expressed as 0.2, 0.3, 0.4, and 0.5. In this study, we used 0.5 (i.e., 50%)

to reduce the overfitting of the training.

3.1.4.3 Loss functions (Error function)

The loss function is the difference between the actual and predicted output values in the DL model.

The minimized error value makes the model better. To minimize the error function, we could use

various DL optimization techniques, such as Adam, epochs, learning rate, dropout, and back

propagation. In DL modeling techniques, there are two loss functions: regression losses and

classification losses. Regression loss includes mean square error (MSE-L2) loss and mean absolute

error (L1) loss, and classification loss includes binary classification loss or binary cross-entropy

and multi-class classification loss or multi-class cross-entropy.

Cross-entropy loss (aka log loss) is used to measure the performance of the model that has an error

probability value between 0 and 1, which could be calculated using equation (3.7). We used a

multi-class cross-entropy loss function since our class is multi-classes of the RS images.

𝐸 = − ∑ Ok log(Yk)

𝑁

𝑘=1

(3.7)

36

where E is the cost, error, or loss function of the model, N is the number of total classes, k is the

number of neurons from 1 to N output neurons, O is the actual output, and Y is the predicted

output. However, the error function is a function of the weights and bias. Therefore, the

backpropagation algorithm of the minimization of cost function or error function (E(W, b)) could

be used to find the difference between the actual and predicted outputs, as equated in (3.8).

E(W , b) =
1

2
∑(𝑂𝑘 − 𝑌𝑘)

2

𝑁

𝑘=1

(3.8)

3.1.4.4 Activation functions

In the convolution process, the output feature 2D array is converted into a 1D array in the fully

connected layer, and each individual pixel value is considered a feature of the image. In the fully

connected layer, the linear and non-linear transformation operations are applied. We described the

linear transformation operation earlier. In addition to this transformation, the very vital non-linear

transformation component known as the activation function is applied at each layer of the neural

network depending on its availability. Therefore, we described the most important activation

functions that are non-linear transformations or functions in this section to have some know-how

idea about them.

Activation functions are used to update the weight values for the learning capability of the model.

There are various linear and non-linear activation functions used in DL. For all non-linear

functions, we can easily backpropagate the forward propagation process. DL CNNs have various

activation functions, which should be non-linear as linear functions have a constant derivative. The

most commonly used activation functions are sigmoid or logistic functions, tangent hyperbolic

(tanh), rectified linear unit (Relu), and softmax.

We used the Relu at the entire convolutional layer to activate the weights in each convolution

process and the Softmax at the output layer since it is reliable for our multiclass classification

problem. Relu is used after each convolution layer as they are faster at training the network without

considering accuracy. The softmax function is a feature classifier, and it introduces a probability

37

score for each class. The class with the highest probability score is predicted to be our predicted

class. This probability score will be used for performance evaluations.

3.1.4.5 Sigmoid

This function precedes any ranged numbers as inputs and generates the output value in the range of

0 to 1 with an "S" shaped curve. We represented the sigmoid function and its derivative (gradient)

with the input x mathematically in equations (3.9) and (3.10), respectively, and graphically in

Figure 3.5.

𝑓(𝑥) =

1

1 + 𝑒𝑥𝑝(−𝑥)
=

𝑒𝑥𝑝𝑥

1 + 𝑒𝑥𝑝𝑥

(3.9)

And its derivative (gradient) is:

 𝑓′(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥). (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) = 𝑓(𝑥). [1 − 𝑓(𝑥)] (3.10)

Figure 3.5. Graphical representations of the sigmoid function and its derivative (gradient)

The gradient function of the sigmoid values is approaching 0. Thus, the probability of the neural

network's learning ability could be very low. The function has been used in the output layers of

38

DL architectures as well as the loss function in binary classification problems and logistic

regression neural network applications.

3.1.4.6 Tangent Hyperbolic (tanh)

It is somewhat similar to that of the sigmoid function, but while the sigmoid function takes input

values between 0 and 1, the tanh function takes input values between -1 and 1, as depicted in Figure

3.6. The mathematical representation of the tanh function and its derivative is quantified in (3.11)

and (3.12), respectively.

𝑎 = tanh(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
=

2

1 + 𝑒−2𝑧
− 1

(3.11)

In Python with numpy (np) library, this activation function formula can be coded as:

a = (np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z)).

And the derivative of tanh(z) could be:

tanh′(z) =

da

dz
= 1 − 𝑎2

(3.12)

In Python, this derivative activation function can also be coded as da = 1-a**2. The graphical

representation of tanh and its derivative is plotted in Figure 3.6.

39

Figure 3.6. Tanh Function and its Derivative

In Figure 3.6, the tanh function produces the zero-centered output, and it is usually applied in the

hidden layers since its variety is between -1 to 1, i.e., -1 < variety < 1. Thus, the tanh is used to

center the data by approaching the mean of the hidden layer close to 0. In this case, the next ability

is much easier to learn and optimize than the sigmoid function. In the derivative function with a

blue-colored graph, the output value approaching 0 for the real number range is less than -3 and

greater than 3. The variety is between 0 and 1, i.e., 0 < variety < 1.

3.1.4.7 Rectified linear unit (Relu)

Relu has been used in almost all DL models nowadays, and its performance is better than the

sigmoid function. As a result, we used this function to classify RS imagery data for our deep TL

model. Relu returns x if x > 0 and 0 otherwise for any real number x. The mathematical and

graphical representation of Relu is represented in equation (3.13) and Figure 3.7.

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) = {

𝑥𝑖 , 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 < 0

(3.13)

40

Figure 3.7. Relu function graphical representation

From Figure 3.7, for the negative input value of x, the result becomes zero, which implies that the

neurons with the negative values are not activated except the neurons with positive values. The

algorithm for Relu could be:

def relu_func(x)

if x>0

print(x)

else:

print(0)

In this algorithm, if we call the function relu_func(4) and relu_func(-4), the output is 4 and 0,

respectively (also Figure 3.7).

The derivative, i.e., the gradients of Relu function, is represented in equation (3.14) as:

 𝑓′(𝑥) = {

1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

(3.14)

41

And the graph of the derivative (gradient) of the relu function has been plotted in Figure 3.8. The

gradient’s slope is constant i.e. ether 1 ∀x, x >= 0 or 0 ∀x, x<0.

Figure 3.8. Graph of the gradient of relu function

According to Figure 3.8, as stated earlier, for the negative input value of x, the gradient value is

always zero. This concept implies that the dead neurons with the negative values that never get

activated are created because weights and biases were not updated for some neurons during the

backpropagation process. Backpropagation is an algorithm in ML and AI that is used to fine-tune

the computational weight functions and to update the accuracy of the model or output in a chain

rule. It is used to calculate the gradient descents of the loss function with respect to the given

weights in the ANNs. For the positive input value of x in the other cases, the gradient value is

always one. In this case, some neurons are activated, and the capability of learning ability is taken

place.

42

In relu, errors could propagate easily, and multiple layers of the neurons have been activated. The

mathematical operation is simpler than that of the tanh and sigmoid functions because only a few

neurons are activated at a time to make the network competent and stress-free for computation.

3.1.4.8 Softmax (softargmax or normalized exponential function)

It is used to predict the class having the highest probability in multi-class classification problems

for the input labels. We used this function in this study since our RS imagery data is a multi-class

classification problem.

The softmax output is between 0 and 1, and the sum of each class probability is 1.0. If some N

elements of the input vector are N<0 or N>1, they would be between (0, 1) after using the softmax

function. Its equation 𝒇(𝐳𝒊,𝒋) over N classes is computed in the equation (3.15) given.

𝑠 = 𝑓(z𝑖,𝑗) =

exp(z𝑖)

∑ 𝑒𝑥𝑝(z𝑗)
𝑁
𝑗=1

=
ez𝑖

∑ ez𝑗𝑁
𝑗=1

(3.15)

The softmax function can be written in vector forms as:

 T(s):

Per each element, the softmax function looks like this: t𝑗(s) =
ex p(s𝑗)

∑ 𝑒𝑥𝑝(s𝑗)
𝑁
𝑘=1

=
e
s𝑗

∑ es𝑘𝑁
𝑘=1

 ,

𝑤ℎ𝑒𝑟𝑒, ∀𝑘 = 1,2, … ,𝑁

The derivatives of softmax can be calculated using matrix forms of equation (3.16).

𝛛𝐓

𝛛𝐒
=

[

∂t1
∂s1

∂t1
∂s2

…
∂t1
∂s𝑛…

∂tn
∂s1

∂tn
∂s2

…
∂tn
∂s𝑛]

(3.16)

s1

s2

…

sn

t1

t2

…

tn

43

And the derivative of softmax could be used to compute the error for every i and j elements as:

∂ti
∂sj

=
𝜕

𝑒si

∑ es𝑘 𝑁
𝑘=1

𝜕sj

Let us apply the quotient rule as:

𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
and𝑓′(𝑥) =

𝑔′(𝑥)ℎ(𝑥)−𝑔(𝑥)ℎ′(𝑥)

(ℎ(𝑥))2

In this equation, 𝑔(𝑥) = 𝑒siand ℎ(𝑥) = ∑ es𝑘 𝑁
𝑘=1 . Thus, the derivative of g(x) and h(x) is:

𝑔′(𝑥) = {
𝑒si , 𝑖𝑓 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, and ℎ′(𝑥) = 𝑒sj , ∀𝑘 = 1,2…𝑛, respectively.

Therefore, 𝑓′(𝑥) =
𝑔′(𝑥)ℎ(𝑥)−𝑔(𝑥)ℎ′(𝑥)

(ℎ(𝑥))
2

 =
𝑒sI . ∑ es𝑘 𝑁

𝑘=1 – 𝑒si . 𝑒sj

(∑ es𝑘 𝑁
𝑘=1)2

 =
𝑒sI

∑ es𝑘 𝑁
𝑘=1

. (
∑ es𝑘 𝑁

𝑘=1 – 𝑒sj

∑ es𝑘 𝑁
𝑘=1

)

 =
𝑒si

∑ es𝑘 𝑁
𝑘=1

. (1 −
𝑒sj

∑ es𝑘 𝑁
𝑘=1

) , ∀𝑖𝑗, 𝑖 = 𝑗

 𝑎𝑛𝑑
𝑒si

∑ es𝑘 𝑁
𝑘=1

.
𝑒sj

∑ es𝑘 𝑁
𝑘=1

, ∀𝑖𝑗, i ≠ j

∴ 𝑓′(𝑥) = {

ti. (1 − 𝑡j) , 𝑖𝑓 𝑖 = 𝑗

−ti. 𝑡𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.17)

By using the Kronecker delta function,

δ𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,

𝜕ti

𝜕s𝑗
= ti(δ𝑖𝑗 − tj). By applying this equation into equation (3.16), finally

we got the derivative of softmax function can be calculated using equation (3.18).

𝛛𝐓

𝛛𝐒
=

[

𝐭𝟏(𝛅𝟏𝟏 − 𝐭𝟏)𝐭𝟏(𝛅𝟏𝟐 − 𝐭𝟐) … 𝐭𝟏(𝛅𝟏𝒋 − 𝐭𝒋)

𝐭𝟐(𝛅𝟐𝟏 − 𝐭𝟏)𝐭𝟐(𝛅𝟐𝟐 − 𝐭𝟐) … 𝐭𝟐(𝛅𝟐𝒋 − 𝐭𝒋)

…

𝐭𝐢(𝛅𝒊𝟏 − 𝐭𝟏) 𝐭𝐢(𝛅𝒊𝟐 − 𝐭𝟐) … 𝐭𝐢(𝛅𝒊𝒋 − 𝐭𝒋)]

(3.18)

44

When we substitute δijby 1 or 0, the derivative of the softmax function in equation (3.18) can also

be simplified as in equation (3.19).

𝛛𝐓

𝛛𝐒
=

[

t1(1 − t1) − t1. t2 … − t1. t𝑗−1 − t1. t𝑗

−t2. t1t2(1 − t2) … − t2. t𝑗−1 − t2. t𝑗

…

−tit1ti(1 − t𝑗) …− ti. t𝑗−1 − ti. t𝑗]

(3.19)

The algorithm for simplified derivative matrix (equation (3.19)) could be represented as:

matrix = np.diag(t = np.arry([xijOriginalValues])

fori in range(len(matrix)):

for j in range(len(matrix)):

ifi == j:

matrix[i][j] = t[i] * (1-t[i])

else:

matrix [i][j] = -t[i]*t[j]

3.1.5 Fittings in Deep Learning

Fitting is a DL technique that is used to classify categorical features in different patterns. It has

effects on the performance of the DL in terms of bias and variance. There are three categories of

fittings observed in the ML and DL model performances, namely under-fitting, optimal fit, and

overfitting. Underfitting and overfitting are the two DL challenges that affect the performance of

the model. Underfitting occurs when high bias or low variance errors exist, the model does not fit

the training set correctly, and the model is not able to generalize to a new sample image. It also

occurs when the model generates high training errors on the training set. Overfitting occurs when

there are high variance or low bias errors and the model perfectly fits the training set, and the

model may be unable to classify a new unknown sample image. It also occurs when the gap

between the training error and the validation or test error is too large. Therefore, overfitting occurs

on the validation or test error with its high variance, while underfitting occurs on the training error

with its high bias.

45

Bias and variance in any ML model are unavoidable, but it is possible to make them optimal. When

a model has low bias and variance and performs well on new sample images, it is said to be

“optimally fitting.” However, the model could be doing poorly on the training set because of high

bias, and its performance on the validation or test set could be worse because of high variance. In

this case, the model becomes overfitting and underfitting simultaneously, and it is hard to apply it

to a specific task, such as classification, detection, or recognition.

Bias and variance contribute to errors. Therefore, bias and variance are errors of the classification

model, and high errors on the training data may result in under-fitting while nearly zero errors on

the training data may result in overfitting. In this idea, a complex model (overfitting) could be built

with high variance and low bias, while a simple model (under-fitting) could be built with low

variance and high bias. To calculate the total error, we might use various mathematical formulas

depending on the error metrics applied. For instance, we equated (3.7) and (3.8) for cross-entropy

error metrics and (3.20) for mean squared error metrics.

To overcome such problems, minimizing the error by utilizing optimization techniques is the

focus, but not the bias or variance specifically. Overfitting is the main unavoidable problem in DL

that could influence the model's performance. Nevertheless, it is possible to reduce it by using

optimization techniques such as dropout, early stopping, regularization, and data augmentation. It

is also possible to reduce bias and variance by changing the model architecture, even though that

is hard to identify and implement.

 𝐸𝑟𝑟𝑜𝑟 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (3.20)

3.2 Remote Sensing Datasets

The RS data are geospatial earth observation data and environmental records. These data are

collected by using RS technologies or sensors. The use of ML, particularly DL, to analyze this

imagery data is critical for solving the classification problem. In this imagery RS data,

classification has been a prominent research problem. As a result, RS imagery data classification

is a significant issue in a variety of domains [83], [84]. LCLU is an important domain area because

land cover is continuous spatial data.

46

To design and evaluate DL methods for LCLU classifications, various RS datasets would be

collected from their sources. The United States Geological Survey (USGS), European Space

Agency (ESA), and Google Earth are the major sources of RS datasets. The DL algorithms mostly

need large set of labeled data to train and classify the RS image, which might be available

commercially or publicly. Among the publicly available RS datasets listed in Table 2.1, we used

the UCM, SIRI-WHU, and RSSCN7 datasets to design and evaluate the DL algorithms. The

sample images in each class of these datasets are depicted in Figure 3.9, Figure 3.10, and Figure

3.11 for UCM, SIRI-WHU, and RSSCN7, respectively.

Figure 3.9. Sample images in each class of the UCM dataset

47

Figure 3.10. Sample images in each class of the SIRI-WHU dataset used for CNN-FE model

checking

Figure 3.11. Sample images in each class of the RSSCN7 dataset used for evaluating DL methods

of the InceptionV3, EfficientNetB7 and MobileNet models performance comparisons

48

3.3 Tools and Frameworks for Designing DL Models

Tools make ML and/or DL swift and rapid for complex tasks. ML tools provide an interface to the

ML developmental programming language; contain platforms that provide capabilities to run a

module or project; and contain various libraries that provide all the capabilities to complete a

project and provide different algorithms. These ML and DL tools have been used by programmers

and researchers for RS image classifications. Python is the most popular interpreted, interactive,

dynamically typed, garbage collected, and object-oriented general-purpose scripting high-level

language and tool, as listed in Appendix II.

There are various tools and frameworks used in designing DL methods. Such tools include the

central processing unit (CPU), Google Colaboratory, TensorFlow, Keras on API (application

programming interface), Caffe, Theano, and PyTorch. Google Colaboratory, or simply "Colab," is

an online cloud-based Jupyter notebook environment that allows us to train DL and ML models

on CPUs, graphics processing unit (GPU), and vision processing unit (VPU). Specifically, we used

the Python tool, Keras, and TensorFlow packages with other fitting libraries to design DL models

for experimental implementations. Moreover, to visualize and compute the statistical metrics, we

use the Panda and Scikit-Learning packages. These packages are listed and described in Appendix

II. By deploying the materials of the RS dataset, tools, and relevant packages, we applied the DL

methods for LCLU classification. The model design process is sketched in Figure 3.12.

49

Figure 3.12. The overall DL Model for LCLU Classification processes

The research title and objectives have been developed

Evaluating the

Models using

Test Datasets

Training the

Models with the

Preprocessed

Images

RS Images

inputs (H*W)

LCLU

Classification in

RS Data using

DL

Pre-Processing

images using

Extraction

Techniques

Validating the

Models with

Validation Datasets

Performance

Analysis using

Evaluation Metrics

50

3.4 Chapter Summarization

In this chapter, we describe the research methodologies that enabled us to accomplish the thesis.

These research methodologies include materials and methods. The materials we used in this study

include publicly available datasets, computer hardware, software, tools, and DL frameworks. The

methods also include the DL approaches, such as CNNs, TL, fine-tuning, and the pretrained

networks that are able to classify the LCLU classification in RS images. Moreover, we also

described the DL hyperparameters.

We used the UCM, RSSCN7, and SIRI-WHU RS imagery datasets. These datasets have different

properties, such as different pixel sizes, resolutions, categories, and locations, as we described in

Table 2.1. The CPU, Colab NVIDIA-SMI 460.32.03 Tesla T4 GPU hardware, and Python high-

level integrated language were used for implementing the objectives. Analytical tools such as

panda (pd), matplotlib (plt), numpy (np), and sckit-learn were used for statistical analysis.

Research methods are the algorithms that are used to design the DL models using materials, tools,

and frameworks. The DL methods, such as the CNN, TL, and fine-tuning technique with the base

line networks of pretrained neural networks, are applied in this research. The most recently applied

pretrained neural networks are listed and described in Table 3.1. To design these models, we used

the DL frameworks, such as TensorFlow and Keras, integrated with Python. Dropout, learning

rate, and number of epochs or iterations are used to demonstrate the impact of DL hyperparameters

on DL performance. Moreover, among the activation functions described in this chapter, Relu and

Softmax are used for weight adjustment and learning capability purposes.

51

4. DESIGNING DL CONVOLUTIONAL NEURAL NETWORK

MODEL FOR LCLU CLASSIFICATION USING REMOTE

SENSED IMAGES: AN END-TO-END APPROACH

4.1 Introduction

A RS is the art and science of extracting information about an object or phenomenon without

making physical contact using advanced sensing technologies. Sensing technologies [95] are

remote sensors used to collect large amounts of RS images [96] from the observed earth. RS

images are spatial data since they contain spatial information [97]. RS image classification is a hot

research challenge in many domains [37], [98], such as environmental monitoring, agricultural and

urban planning, and other related domains. Every day, RS technologies generate a large number

of RS images. They could be collected from the earth's environment or from space. These images

are difficult to analyze since they are varied due to weather, distance, and other determinants. The

images could be RGB [97], multispectral [99], [100], or hyperspectral [101]. We aimed to classify

LCLU using satellite RS multispectral images.

The LCLU classification problem is the recent focal point of research in RS images [3], [58],

[102]–[107]. LCLU in RS images has pixel-level classification and boundary mapping [9]. Thus,

RS images are sensitive, according to recent studies [108]. Land is one of the four pillars of

sustainable development (social, human, economic, and environmental). Therefore, managing,

controlling, and planning the land could be critical for any nation's development. It could better

support the tasks in machine-aided LCLU classification systems. The DL approaches, especially

CNNs, could be applied to LCLU classification in RS images [109].

The DL approach, CNN is proposed to solve the LCLU classification problem. DL is a robust

recent ML approach that enables performance improvement for RS images [26], [102], [103],

[110]–[112]. CNNs are prevalent DL techniques that consist of more than two layers [101], and

they involve convolution filters [37]. Convolution is the weighted sum of the pixel values of the

RS images. The purpose of using convolution is to reduce the size of the input image shape and

the total number of parameter in the network [113]. Therefore, the convolutional feature extractor

is our image extraction technique for our CNN-FE model.

52

In recent times, deep CNNs have become pillars and new trends in computer vision [114], and RS

image classification is one of the application domains in computer vision [115]. The CNNs could

be applied in various domains using RS imagery data, such as LCLU classifications [3], [98],

[116]–[119], and object detection [111], [120]–[122]. LCLU classification in labeled RS images

has been investigated in the recent era, and we selected this problem to solve with our proposed

DL method by applying its hyperparameters.

Nowadays, CNNs methods get more civility in RS image classification problems for their powerful

performance improvements [8], [26], [111], [116], [123]–[126], [37], [86], [97], [98], [101], [105],

[106], [110]. The CNNs DL approach consists of three main layers: convolutional, pooling, and

fully connected [111]. We used various optimization techniques in each of these layers. As a result,

CNNs perform various convolution processes from the input to fully trained CNNs. This process

makes end-to-end predictions [102]. Deep CNN is an efficient end-to-end approach for outstanding

results [5], [37], [104], [107], [127]. The end-to-end algorithms extract the image features from

the input to the output processes without using other feature extractor algorithms. Thus, CNN-FE

is end-to-end learning.

The deep CNNs models could be built for any classification problem, specifically RS images, in

three ways: from scratch development, using pretrained models, or retraining the pretrained

models. Pretrained models are modeled earlier on other large datasets, such as "ImageNet" images.

From the literature, we observed that most researchers used pretrained models, such as [58], [98],

[104], [106], [114], [119], [128], [129], for modeling LCLU classification in RS images.

However, training deep CNNs from scratch has not been widely investigated in RS images [97].

This could be the reason that building CNN models from scratch is difficult due to a lack of ample

training data and the large amount of time needed for training [126], [130]. According to our

review, very few researchers, such as [3], [35], have attempted to create CNN models in RS image

classification. Moreover, despite the prominent results of deep CNNs, there are some problems to

be solved regarding to parameter variations. This was our initiation to build the CNN-FE model

for LCLU classification in RS images in this study.

In this section, we are motivated to apply the recent DL approaches, especially CNNs, by using

various hyperparameters. Therefore, we applied the DL method, convolutional feature extractor

53

(CNN-FE), with various hyperparameters for LCLU classification using RS images to improve the

performance. The recent studies showed that the DL hyperparameters affect the performance of

the model [97], [111], [114]. For instance, varying values of the kernel size [117], [127], dropout

[3], [131], [132], training data percentages or training data sampling size [111], [116], [126], [128],

[133], learning rate [108], [111], [114], [131] could produce different performance results. This

demonstrates how changing the hyperparameters affects the performance of the DL model.

Therefore, we are also initiating the application of such hyperparameters with their valuable values

in this study.

The CNN-FE technique was designed with sixteen layers (three Conv2D, three pooling, three

dropouts, three batch normalization, one flatten, and three dense, including the output (softmax)

at the top), and evaluating the model with test dataset samples was performed. After training the

model, its performance was evaluated and compared with the pretrained network VGG19 in the

UCM dataset. The performance improvement has been achieved.

4.2 Methods

4.2.1 DL Method: Convolutional Neural Network

CNN is one of the relevant DL approaches that consists of several sequentially connected layers.

This study proposed CNN-based feature extraction (CNN-FE) for the LCLU classification

problem using the inconsistent RS images. To get better performance in CNN-FE, we used various

DL layers, as shown in Figure 4.1.

In this study, we used the most prominent DL approach for CNNs in the form of Conv2D, which

took the image shape (height, width, channel), i.e., (256, 256, 3). In recent studies, CNNs are

popular application areas in RS images [127]. As we have described earlier in Chapter 3 of this

study, the CNNs consist of the convolution, pooling, and fully connected layers with other DL

hyperparameters, including the activation functions. These are vital sequential parameters for the

end-to-end DL approach. The sequences of the CNN layers have been depicted in Figure 4.1.

1) The input layer and convolutional (Conv2D) layers

The input layer is the entire input image layer with height*width*channel pixels shapes. It is

introduced into the convolutional layer to be processed. Convolutional layers receive the input

54

layers and image pixels and compute the perceptron with a given filter (f, f) or kernel, strides, and

padding to the input image volume in a new output volume. The CNNs convolution could operate

the mathematical operation of matrix multiplications in given layers. The CNNs are different from

other conventional ML approaches in input data types and weight calculations [123] using the

convolution method. The feature map of the model is created by the overall process of the

convolutional layers.

Using downsampling and upsampling techniques, the model's feature map can be transformed into

other resolution feature maps. The downsample is a convolution operation with strides to reduce

the input image size and double the number of filters. In contrast, upsampling is a bilinear

interpolation operation to double the input image size and reduce the number of filter sizes [95].

The convolutional layers consist of convolution filters or kernels with learnable parameters [118],

[127]. Convolution could be performed with valid convolution (no padding), same convolution

(with padding), and stride (slide or shift) convolution. The mathematical computation of the output

volume of the image in each layer could be calculated using the input volume (height*width),

stride(S), and padding (P) parameters. The stride (S) of the filter (f × f) is the intervals of the filter

jumps or shifts S number of transitions from the first elements in a pixel or each spatial dimension,

while padding (P) is the number of pixels added at the outer edges of the input image volumes

(height × width). A filter is usually odd and small in size is 3×3, 5×5, and 7×7 with 1, 2, and 3

paddings, respectively. In the Keras DL tool, there is no padding for image border (0) to valid

convolution and padding for image border to same convolution. Thus, the output volume

(heightnew* widthnew) of a layer could be computed using (3.1), and the number of paddings for

same convolution could be calculated using (3.2). The default values of P and s are 0 and 1,

respectively.

In this study, we used same convolution with the filter size (3,3) and three paddings. The Conv2D

layers are used to extract the input image features by sliding a convolution filter size of (3, 3) to

produce a new output hierarchical feature map. There are three convolutional block layers in our

sequential model training, including 64, 128, and 256 convolution kernels with a filter size of three

each. Therefore, convolution is used as our feature extraction method for RS images.

The total parameter numbers of the model are the summations of the calculated results from the

Conv2D and dense layers. We design the model with four Conv2D layers that calculate the number

55

of parameters for those layers in the same norm by (3.5) and two dense layers by (3.6). However,

the calculation formula for dense parameters differs from Conv2D, as equated in (3.6). The number

1 means the bias associated with each filter for learning.

According to (3.5) and (3.6), we found the total parameter number to be 800,981. However, the

number of parameters for all MaxPooling2D and Flatten layers is zero because these layers do not

learn anything from the built model.

2) Pooling Layer

The pooling layer is used to resize and downsample the spatial representations. We used the

common pooling technique called max pooling. It was used for both avoiding overfitting and

reducing the number of parameters.

The pooling layers in CNNs are essential for the downsampling processes used to reduce the size

of the input RS images. In addition, the block layers involve various max-pooling with 2, the stride

with 2, and the padding with "same."

3) Fully-connected Layers (FCNs)

FCNs are feature classifiers in the last couple of layers of the network. They include flatten layers,

dense layers, and an output layer at the end. Perceptrons in an FCN are fully connected to all

previous layer activations.

CNNs also have various activation functions, which should be non-linear as linear functions have

a constant derivative, as described in earlier sections. These are softmax, Relu, tanh, and sigmoid

or logistic functions. We used the Relu at the entire convolutional layer to activate the weights in

each convolution process and the softmax at the output layer since it is common for our multi-

class classification. The softmax function is a feature classifier and introduces a probability score

for each class. The class with the highest probability score is predicted to be our predicted class.

This probability score will be used for performance evaluations later.

56

Figure 4.1. Structure of the CNN DL approach

4.2.2 Dataset Descriptions

The RS dataset was collected initially through advanced sensor technologies, and then it could be

labeled manually for research or other commercial purposes. On the base of the channel, there are

three types of RS images: RGB (that consists of three channels), multispectral (that consists of more

than three and under hundreds of channels), and hyperspectral (that consists of hundreds of

channels). Recently, various researchers have investigated these data types. We used the UCM RS

dataset, which is multispectral.

To test the built model's applicability to the target UCM, we used the rarely studied SIRI-WHU

dataset. For training, validating, and testing samples, we used 60%, 20%, and 20% of each labeled

dataset, respectively.

The UCM dataset is an LCLU data set collected from the earth, labeled manually, and introduced

by [70]. It has 21 classes, each with 100 images that measure 256 × 256 pixels and have a spatial

resolution of about 30 cm per pixel. However, the UCM dataset is inconsistent, as about 44 images

have different pixel shapes. The variety of properties of the dataset could affect the performance

results. Sample images in each class are depicted in Figure 3.9. This dataset is available at

http://weegee.vision.ucmerced.edu/datasets/landuse.html.

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China; it was

introduced by [75]. The dataset contains 12 categories and 200 images per category with 200*200

57

pixels in a spatial resolution of 200 cm per pixel. Sample images in each category are depicted in

Figure 3.10. The dataset is publicly available for research purposes at

https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980.

4.3 Experimental Results and Discussions

4.3.1 Experimental Setting

The dataset and the DL hyperparameters could be considered for their appropriate settings to build

our model. As we described in earlier sections, there are 2100 images in the UCM dataset and

2400 images in the SIRI-WHU dataset. Therefore, to reduce the overfitting of the model, we split

both the UCM and SIRI-WHU datasets into three sets: the training set, the validation set, and the

test set, which compromise 60%, 20%, and 20% of the dataset, respectively. Then, after splitting,

the total sample images in the training set, validation set, and test set become 1260, 420, and 420

for UCM and 1440, 480, and 480 for SIRI-WHU, respectively. Each dataset is loaded into the

experiment and preprocessed. First, we built the model on the UCM dataset as follows; then, we

rebuilt the model on the SIRI-WHU dataset for its applicability approval in the same manner.

Batch size is one of the hyperparameter that can influence on the model performance. It determines

the number of samples processed in each iteration or epoch during training. It also affects the speed

and stability of training, such as the larger batch sizes can speed up training but may require more

memory, and the smaller batch sizes may provide more stable updates but can slow down training.

The training set is a collection of 1260 images that have been used to fit and train our model with

a batch size of 64 and hundreds of epochs, as shown in Table 4.1 (right column).

Epoch or iteration is a complete pass of the entire dataset during training and it defines how many

times the model iterates over the entire dataset. Too few epochs may result underfitting while too

many epochs may lead to overfitting that effect on the model’s performance. Therefore, to avoid

such problems, we set the appropriate number of epoch (100), validate with validation dataset and

use early stopping technique.

In each epoch, the same training images are fed to the CNN-FE architecture recurrently, and the

model could learn and continue to learn from the hidden image features. In general, the model was

trained in four CNNs sequential layers on a training set, and its performance was evaluated with

the validation set during training and with a test set after training.

58

The validation set is a collection of 420 images separate from the training set that was used to

validate our model's performance during the training. Splitting the dataset into a validation set is

critical to reducing the overfitting of the training data and evaluating the model during its

development.

On the other hand, the test set is a set of 420 images used to evaluate the performance of our model

after completing the training. The test set is the support, as shown in the last column of Table 4.3,

Table 4.4, Table 4.5, and Table 4.6. It is used to analyze the performance evaluation metrics,

including accuracy, loss, precision, recall, F1-score, and confusion matrix.

In addition to setting the dataset splitting, we have chosen the DL hyperparameters to build,

compile, and fit our model on the UCM dataset and evaluate the model's performance, as shown

in Table 4.5. To reduce overfitting, dropout and early stopping hyperparameters are used. Early

stopping is a technique that could automatically stop the train when either validation loss has

stopped decreasing or validation accuracy has stopped increasing. In addition to these techniques,

the convolutional techniques were applied to preprocess and extract feature maps by reducing the

image shape (256, 256, 3) into other reduced feature maps.

Table 4.1. Hyperparameters settings compared with earlier comparative studies

DL

Hyperparameters

Chosen values for each DL hyperparameters in both earlier and our studies

CNN [35] CNN [3] CNN-FE (Ours)

Optimizers Stochastic gradient

descent (SGD)

Adagrad Adam

Batch size 16 10 64

Learning rate le-3 - 0.0001

Iteration Epochs 120 300 100

Loss function categorical_cross_en

tropy

binary_cross_entropy categorical_cross

_entropy

Activation

functions

Relu Relu, sigmoid Relu, softmax

Dropout - 0,0.25, 0.50, 0.75 0.5

Early stopping - - Automatically

stopping

59

4.3.2 Performance Evaluation Metrics and Experimental Results

After building the model, we evaluated its performance using the evaluation measurement metrics

of accuracy, precision, recall, F1-score, and confusion or error matrix (CM). In addition to these

evaluation metrics, we used the loss function, i.e., the categorical cross-entropy, to evaluate the

training and validation errors. The training losses are calculated during each epoch, whereas the

validation losses are computed after each training epoch for the errors. At most, when the number

of epochs increases, the losses are decreased, and the accuracy is increased.

The model's accuracy was evaluated in two ways, i.e., with and without using the early stopping

technique using equation (4.1). The early stopping has stopped at a random iteration epoch out of

100 epochs when either the validation accuracy has been stopped increasing (as depicted in Figure

4.2b, Figure 4.6b, Figure 4.8b,and Figure 4.11b) or the validation loss stopped decreasing (as

depicted in Figure 4.3b, Figure 4.6b, Figure 4.9b, and Figure 4.12b) while evaluating the models

with test set sample images. Therefore, from the experiments with and without early stopping, we

observed that the accuracy results increased using the early stopping technique in each model of

CNN-FE and VGG19 trained on both datasets, as shown in Table 4.8. In most circumstances, the

higher the number of iterations or epochs at which the early stopping technique has been applied,

the better the performance of the model could be achieved when comparing the iteration numbers,

as shown in Table 4.8.

In addition to evaluating the overall accuracy of both models, we assessed each class with 20 sample

images per class using precision, recall, and F1-score performance measurement merits as stated in

Table 4.3, Table 4.4, Table 4.5, and Table 4.6. The performance score for precision, recall, and F1-

scoremetrics could be computed using equations (4.2), (4.3) and (4.4), respectively, based on the

CM summarization Table 4.2.

Furthermore, the CM metric was also used to identify the predicted classes based on the higher

normalized probability values at each class intersection. CM analyzes errors and confusion

between the column with the occurrences in a predicted class and the row with the occurrences in

an actual class [124]. Because it categorizes errors, CM could also be called an error matrix.

60

The errors could be type I errors (false negatives-FF) or type II errors (false positives-FT), as

shown in Table 4.2. A type I error is an outcome where the model incorrectly predicts the positive

class when it is the actual negative value. In contrast, a type II error is an outcome where the model

incorrectly predicts the negative class when it is the actual positive value.

The CM considers the normalized probability values for each class category in rows (True labeled

class) and columns (predicted labeled class), as shown in Figure 4.4, Figure 4.7, Figure 4.10, and

Figure 4.13. CM measures the performance of the DL model, whether each class is correctly

classified or incorrectly classified. Therefore, according to Figure 4.4, Figure 4.7, Figure 4.10, and

Figure 4.13, the score in the diagonal intersection showed the correct classified classes with a

higher normalized probability. In contrast, the results in other rows-columns wise are predicted in

misclassified classes with lower a normalized probability. CM in table form is summarized in

Table 4.2.

Table 4.2. CM table format for performance evaluations

 Actual Values

True False

Predictive

Values

True TT FT/ Type I Error True Prediction achieved

by Precision

False FF/ Type II Error TF False Prediction

Accuracy is the measure of predictions that the model classified correctly.

Accuracy =

of correct predictions

Tot. #of predictions
=

TT + TF

TT + TF + FF + FT

(4.1)

Precision computes a positive predictive value, i.e., a ratio of the positive classes identified correctly

to all the expected positive classes. It determines how many positive identifications were actually

correct.

61

Precision =

Positive Predictions

Tot. #of Positive Predicts
=

TT

TT + FT

(4.2)

A recall is used to identify all actual correct relevant classes retrieved from the dataset.

Recall =

Correct Actual Positives

Tot. #of Actual Positives
=

TT

TT + FF

(4.3)

The F1 score is the harmonic mean of precision and recall. Its score becomes 1 when both precision

and recall are perfect and becomes 0 when either precision or recall results 0. The F1 score

measures the preciseness and robustness of the classification model.

F1 Score =
2(Precision ∗ Recall)

Precision + Recall
=

2 ((
TT

TT+FT
) ∗ (

TT

TT+FF
))

(
TT

TT+FT
) + (

TT

TT+FF
)

=
2TT

2TT + FT + FF

(4.4)

After training and modeling our model using various hyperparameters, we retrained it by

combining the training and validation datasets with an early stopping technique. Hereafter, the

training dataset becomes 80% of the dataset. The training has been stopped at a random iteration

out of 100 epochs. This is why the validation loss has stopped decreasing or the validation accuracy

has stopped increasing at this epoch. After retraining the model, which was stopped at a random

iteration number, we fit the model and evaluated it with 420 test sample images. While assessing

the model, precision, recall, f1-score, accuracy, and CM performance measurement metrics were

technically used according to Table 4.3.

After designing our CNN-FE model, we compared its performances with the VGG19 pretrained

feature extractor, which was trained in the same hyperparameters to check the applicability of

CNN-FE on RS image classifications. The performances of CNN-FE in various metrics have been

provided in Table 4.3, Figure 4.2, Figure 4.3, and Figure 4.4 on the UCM dataset and Table 4.5,

Figure 4.8, Figure 4.9, and Figure 4.10 on the SIRI-WHU dataset, respectively. Similarly, the

comparable performance of VGG19 has also been provided in Table 4.4, Figure 4.5, Figure 4.6,

and Figure 4.7 on the UCM dataset and Table 4.6, Figure 4.11, Figure 4.12, and Figure 4.13 on

the SIRI-WHU dataset, respectively.

62

Table 4.3. Summarizations of the classification performance of CNN-FE for each class with

performance measurement metrics in the UCM dataset.

Class name Precision Recall F1-score Support

Agricultural 0.91 1.00 0.95 20

Airplane 0.94 0.80 0.86 20

Baseballdiamond 0.85 0.85 0.85 20

Beach 0.95 1.00 0.98 20

Buildings 0.79 0.75 0.77 20

Chaparral 1.00 0.95 0.97 20

Denseresidential 0.57 0.80 0.67 20

Forest 0.86 0.95 0.90 20

Freeway 0.95 0.90 0.92 20

Golfcourse 0.80 0.60 0.69 20

Harbor 0.91 1.00 0.95 20

Intersection 0.88 0.75 0.81 20

Mediumresidential 0.58 0.90 0.71 20

Mobilehomepark 0.92 0.55 0.69 20

Overpass 0.81 0.85 0.83 20

Parkinglot 1.00 0.85 0.92 20

River 0.78 0.90 0.84 20

Runway 0.95 0.90 0.92 20

Sparseresidential 0.75 0.90 0.82 20

Storagetanks 1.00 0.90 0.95 20

Tenniscourt 1.00 0.70 0.82 20

a) Before applying early stopping b) After applying early stopping

Figure 4.2. Training and validation accuracies with and without applying early stopping

technique

63

a) Losses before applying early stopping b) Losses after applying early stopping

Figure 4.3. Training accuracy and loss vs. Validation accuracy and loss

Figure 4.4. CM performance results for each labeled class

64

4.3.3 Model Validations with VGG19 pretrained Network and SIRI-WHU

Dataset

After building and evaluating the CNN-FE model, we assured its possible applicability to the LCLU

classification in RS images by comparing its performance with the VGG19 feature extractor

network and retraining on another dataset called SIRI-WHU.

The VGG19 pretrained feature extractor was trained on the pretrained network, which was trained

on the large dataset “ImageNet” in the same hyperparameters to check the applicability of CNN-

FE for LCLU classification in RS images. The VGG19 was designed by [134] to analyze the neural

network depth effect on the accuracy of image recognition. Therefore, we created the VGG19

pretrained model to compare its performance with CNN-FE trained on UCM and SIRI-WHU.

While comparing the accuracy performances of both DL models, CNN-FE outperformed VGG19,

as shown in Table 4.8. Using the early stopping technique improved the accuracy performance of

VGG19 in both datasets as well as CNN-FE, as shown in Table 4.8.

We retrained the CNN-FE model on the SIRI-WHU dataset in addition to testing its applicability

on the other DL-pretrained model. As we stated earlier, the properties of the dataset could influence

the performance of DL models. To observe this effect, we used the SIRI-WHU dataset with

properties different from the target dataset UCM. After training the CNN-FE model on the SIRI-

WHU dataset, the validation accuracy and loss fluctuated, especially between epochs 60 and 80

than the validation accuracy and loss trained in UCM, as shown in Figure 4.8a, and Figure 4.9a.

65

Table 4.4. Summarizations of the classification performance of VGG19 for each class in

performance measurement metrics in the UCM dataset

Class name Precision Recall F-score Support

Agricultural 1.00 1.00 1.00 20

Airplane 0.95 0.90 0.92 20

baseballdiamond 1.00 0.90 0.95 20

Beach 1.00 0.95 0.97 20

Buildings 0.82 0.70 0.76 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.50 0.55 0.52 20

Forest 0.82 0.90 0.86 20

Freeway 1.00 0.85 0.92 20

Golfcourse 0.86 0.60 0.71 20

Harbor 1.00 1.00 1.00 20

Intersection 0.81 0.85 0.83 20

mediumresidential 0.69 0.90 0.78 20

mobilehomepark 0.61 0.55 0.58 20

Overpass 0.84 0.80 0.82 20

Parkinglot 0.95 0.95 0.95 20

River 0.76 0.95 0.84 20

Runway 0.87 1.00 0.93 20

Sparseresidential 0.90 0.90 0.90 20

Storagetanks 0.95 0.95 0.95 20

Tenniscourt 0.85 0.85 0.85 20

a) Before applying early stopping b) After applying early stopping

Figure 4.5. Training and validation accuracies in VGG19 with and without applying early in

stopping technique in UCM dataset

66

a) Before applying early stopping b) After applying early stopping

Figure 4.6. Training and validation losses in VGG19 with and without applying the early

stopping technique in the UCM dataset

Figure 4.7. CM performance results of VGG19 pretrained for each labeled class

67

Table 4.5. Summarizations the classification performance of CNN-FE for each individual class

with performance measurement metrics in SIRI-WHU dataset

Class name Precision Recall F1-score Support
Agriculture 0.81 0.65 0.72 40

Commercial 0.94 0.82 0.88 40

Harbor 0.88 0.75 0.81 40

idle_land 0.62 0.78 0.69 40

Industrial 0.90 0.90 0.90 40

Meadow 0.55 0.60 0.57 40

Overpass 0.92 0.90 0.91 40

Park 0.79 0.68 0.73 40

Pond 0.72 0.82 0.77 40

Residential 0.83 0.95 0.88 40

River 0.81 0.75 0.78 40

Water 0.93 1.00 0.96 40

a) Before applying early stopping b) After applying early stopping

Figure 4.8. Training and validation accuracies of CNN-FE model in SIRI-WHU dataset with and

without applying early stopping technique

a) Before applying early stopping b) After applying early stopping

Figure 4.9. Training and validation losses of CNN-FE model in SIRI-WHU dataset with and

without applying early stopping technique

68

Figure 4.10. CM performance results of CNN-FE for each class classification in SIRI-WHU

Table 4.6. Summarizations of the classification performance of VGG19 for each class with

performance measurement metrics in the SIRI-WHU dataset

Class name Precision Recall F1-score Support
Agriculture 0.91 0.50 0.65 40
Commercial 0.72 0.95 0.82 40
Harbor 0.88 0.93 0.90 40
idle_land 0.86 0.62 0.72 40
Industrial 0.85 0.88 0.86 40
Meadow 0.63 0.60 0.62 40
Overpass 0.80 0.97 0.88 40
Park 0.50 0.60 0.55 40
Pond 0.67 0.75 0.71 40
Residential 0.92 0.88 0.90 40
River 0.85 0.72 0.78 40
Water 0.98 1.00 0.99 40

69

a) Before applying early stopping b) After applying early stopping

Figure 4.11. Training and validation accuracies of VGG19 in the SIRI-WHU dataset with and

without applying the early stopping technique

a) Before applying early stopping b) After applying early stopping

Figure 4.12. Training and validation losses of VGG19 in SIRI-WHU dataset with and without

applying early stopping technique

70

Figure 4.13. CM performance results of VGG19 for each class classification in SIRI-WHU

4.3.4 Discussions

This study investigated the application of an end-to-end DL approach called CNN-FE for LCLU

classification using RS images. We showed the possibility of designing a CNN-FE model for

LCLU classification in complex RS images using two different datasets. We also developed a

comparative VGG19 pretrained network using the same hyperparameters. In addition to validating

this DL pretrained model, we retrained the CNN-FE on the SIRI-WHU dataset and assured its

applicability in the domain. Therefore, as far as our knowledge, CNN-FE is significant in this

study.

4.3.4.1 Discussions on Results

The performance of the CNN-FE model shows that DL models could be built and applied for the

LCLU classification domain. It is comparable to those trained from pretrained models in the UCM

dataset. When compared to the VGG-19 pretrained architecture, the significant results were

reported. In addition, the CNN-FE was retrained on the SIRI-WHU dataset, and a considerable

71

accuracy performance was achieved in the UCM, as shown in Table 4.8. To sum up, the

performance of the CNN-FE model resulting from various measurement metrics showed that it is

possible to prove its applicability to the classification problem in RS images.

Each class classification performance was evaluated with precision, recall, and an F1-score.

Therefore, according to Table 4.7, the classes such as chaparral, parkinglot, storagetanks and

tennis-court have the best precision performed, which means that these classes were precisely

predicted. However, the lower result precisions were reported for dense-residential (i.e., 0.57),

which means that it has inflexible properties to predict precisely. The classes such as agricultural

beach and harbor were classified in best recall performance, while mobile-home-park class scored

the lower recall performance. Classes with perfect or lower performance in both precision and

recall also have perfect or lower results in the F1-score. Thus, there were no classes with perfect

or lower performance in both metrics, and there were no perfect classes in the F1-score. However,

a lower F1-score was recorded in no in dense-residential (0.67) class. Perfect performance means

100% accurately and precisely classified when measured in given metrics.

To sum up, the individual class performance of the two models in the two datasets is summarized

in Table 4.7. The dense-residential class has lower performance in both methods than other classes

in the UCM dataset, while the meadow and park classes have lower performance in CNN-FE and

VGG19, respectively, in the SIRI-WHU dataset. In the case of CM metrics, better result

performance for each class has been observed in both methods in the UCM dataset than in the

SIRI-WHU dataset, as compared and shown Figure 4.4, Figure 4.7, Figure 4.10, and Figure 4.13.

The classes, such as agricultural, harbor, overpass, and river, are common in both datasets.

However, most of these classes have different performance values, as shown in Table 4.3, Table

4.4, Table 4.5, Table 4.6, and Table 4.7. This could be why the two datasets have inconsistent

properties, which were collected from different locations with different resolutions and pixel

values.

In addition to evaluating the individual classes, we also evaluated the two methods within the two

datasets. Thus, while comparing the CNN-FE from the pretrained VGG19 network, outperformed

results in CNN-FE have been achieved in both datasets, as shown in Table 4.8.

72

4.3.4.2 Discussions on State-of-the-art Studies Comparisons

In this objective, we aimed to improve the performance of the DL model from the existing state-

of-the-art studies studied by [3] and [35] by considering their limitations for the DL

hyperparameters. The DL hyperparameters influence the DL model’s performance. Therefore, to

see the effect, we used various hyperparameters, such as dropout, learning rate, batch size, epochs,

and early stopping, with their respective values. The study [3], has analyzed the dropout

hyperparameter effects on the CNN performance with different values (null, 0.25, 0.50, and 0.75),

which generates the accuracy of 81.2, 81.3, 81.4, and 79.7 with augmentation and 68.0, 73.7, 75.7,

and 77.7 without data augmentation technique, respectively. Among these provided accuracy and

dropout values, we listed and compared the last two accuracy performances with unaugmented

data, with corresponding dropout values of 0.5 and 0.75, respectively, shown in Table 4.9.

The CNN-FE model has achieved 89.76% and 80% accuracy in the UCM and SIRI-WHU datasets,

respectively. The VGG19 pretrained model has also achieved 85.95% and 78.33% accuracy, as

shown in Table 4.8. Moreover, the CNN-FE model outperformed the state-of-the-art studies and

the pretrained network, as shown in Table 4.9.

Table 4.7. Class comparisons in precision, recall, and F1-score (%) on the two models and

datasets

Dataset Method Precision performance Recall performance F1-score performance

Perfect (1)

classes

Lower (-)

classes

Perfect (1)

classes

Lower (-) classes Perfect

(1)

classes

Lower (-)

classes

UCM CNN-FE Chaparral,

parkinglot,

storagetanks, and

tenniscour

Denseresid

ential

(0.57)

Agricultural,

beach and

harbor

Mobilehomepark

(0.55) and

golfcourse (0.60)

None Denseresiden

tial

(0.67)

VGG19 Agricultural,

baseballdiamond

, beach,

charparral,

freeway, and

harbor

Denseresid

ential

(0.50)

Agricultural,

charparral,

harbor and

runway

Denseresidential

(0.55)

Agricultu

ral,

charparra

l, and

harbor

Denseresiden

tial

(0.52)

SIRI-

WHU

CNN-FE None Meadow

(0.55)

Water Meadow (0.60) None Meadow

(0.57)

VGG19 None Park (0.50) Water Agriculture None Park (0.55)

73

Table 4.8. Results of accuracy (%) performances at random early stopping technique

Dataset Methods Stopped at epoch

out of 100

Accuracy performance results

Before early stopping After early stopping

UCM CNN-FE 26 85.95 89.76

VGG19 42 85.00 85.95

SIRI-WHU CNN-FE 22 78.67 80.00

VGG19 41 76.88 78.33

Table 4.9. Comparisons of the accuracy (%) with the state-of-the-arts in the UCM target dataset

Method Dropout Precision Recall F1-score Accuracy

CNNs [3] 0.50 85.4 83.3 84.3 75.7

0.75 85.5 85.8 85.7 77.7

CNN [35] - - - - 82.38

CNN-FE (Ours) 0.50 90.00 88.00 88.99 89.76

VGG19 (Ours) 0.50 88.00 86.00 86.99 85.95

4.4 Chapter Summarization

In this chapter, we have applied the CNN-FE model to address the challenge of LCLU

classification in RS images. CNNs are powerful DL approaches to analyzing RS images for LCLU

classification systems. CNNs are powerful DL approaches to analyzing RS images for LCLU

classification systems. Therefore, designing CNNs models for LCLU classification in RS imagery

data needs more investigation. Some researchers have expressed concerns about the high cost of

training time and the scarcity of large datasets required to create CNN models from scratch. It is

vital to create CNNs from scratch for RS images since these images are inconsistent, and modeling

them from pretrained networks could affect their practical deployment.

Therefore, we applied an end-to-end CNN-FE DL model to extract the inconsistent UCM RS

image features for LCLU classification in RS images. We retrained this model on the other SIRI-

WHU dataset to analyze whether the dataset influences the model’s performance. We also built a

VGG19 pretrained DL model on both datasets and evaluated their performances to validate the

CNN-FE possible applicability in the domain. We compare its results to previous state-of-the-art

studies and the VGG19 pretrained model, which was trained in the same hyperparameters. The

CNN-FE outperformed the accuracy performance of state-of-the-art earlier studies and the VGG19

pretrained model. Therefore, we proved that the developed CNN-FE model is possibly applicable

to the domain area and improves performance.

74

5. DESIGNING TRANSFER LEARNING FOR LCLU

CLASSIFICATION USING REMOTE SENSED IMAGES

5.1 Introduction

Land cover is variable and dynamic on the earth’s surface [135], whereas land use is the

intervention of human activities on the earth. Land cover is the earth’s surface covered by physical

features like a forest, river, vegetation, or others. In contrast, land use is the ability of a human to

use natural resources for various purposes [136]. Thus, LCLU describe the earth’s features and

human interaction. Classification is needed in land cover mapping [3], [137], [138], and land use

resource management [47], [136], [139]. LCLU classification is an important and challenging task

[12], and it contributes to agricultural decision-making and urban forecasting in the earth

observation environment for sustainable development. This classification problem will be solved

using TL models for RS images.

RS images are geospatial earth observation data and environmental records. As they raise

exceptional problems to new scientific questions, RS data face "big data" challenges as well as

some new DL challenges [22]. RS imagery data classification is a significant problem in various

domains [83], [84], [99], [115], [124], [135], [140]–[142]. Thus, our consideration of classification

was one of the major research problems in RS imagery data. Nowadays, researchers are exploring

the application of DL to confront these challenges.

DL gets more attention for the LCLU classification problem in RS images [143]. The DL

approaches could extract the earth’s features from remotely sensed imagery data to manage the

earth’s environment by properly utilizing deep classification systems. DL algorithms are calling

focuses on their automatically learning ability from large datasets [22], [56], [144]–[147], [80],

[82]–[86], [140], [141].

In recent studies, the DL methods, especially CNNs, have been widely used in RS image

classification for their outstanding performance and accuracy [5], [56], [124], [143], [146].

However, DL algorithms could take more time and complexity, creating overfitting [11], [56],

[139], [148], [149] when training the DL models from scratch. TL, the innovative DL model in

ML, could overtake this problem because TL is an optimization technique used to reduce

processing time or improve performance or accuracy [150].

75

Thus, TL could apply formerly learned techniques to resolve new problems efficiently [151]. Now

a day, TL has gotten increasing attention lately for reducing training time for large datasets [8],

[56], [57], [60], [152], [153].

The TL models could be applied in various RS domains. For instance, it has been applied for forest

variable estimation [154], for object (airplane) detection [151], [155], for poverty mapping [85],

for labeling the Synthetic Aperture Radar (SAR) [148], for change analysis [156], and for marsh

vegetation classification [157].

In the domain area, related work has been attempted to investigate the CNN-based TL model. Few

researchers [5], [11], [24], [58], [59], [149], [153] have investigated CNN-based models using

pretrained architectures for RS image classification. Using TL, the LCLU classification problem

was investigated by [142], [158] using TL. However, TL in RS has not been widely explored yet

(Astola et al., 2021), especially in the LCLU classification. Thus, we applied deep neural network-

based TL [80] in LCLU classification using RS images.

Our motivation was to apply the deep TL model with pretrained models for the LCLU

classification in RS images and improve the performance efficiently. We have listed the related

studies with their recommendations in our previous work [159]. Therefore, we were also motivated

to investigate the recommended pretrained networks suggested by [3], [5]. Our objective in this

study was to apply the deep TL models and improve their performance efficiently for LCLU

classification in RS images. To achieve this objective, we followed the following procedures:

preprocessed the UCM imagery data, extracted the image features using the bottleneck feature

extraction technique, modeled the TL with four sequential layers (flatten, dense, two activations

(Relu and softmax), and dropout layers), and evaluated using a confusion matrix.

5.2 Research Method: Deep Transfer Learning

In this chapter, we proposed the Deep TL method, which is a deep CNN technique, for efficient

time consumption. Building the model for better performance uses various parameters, such as

pretrained models, learning rate, early stopping, dropout, optimizer, loss, and activation functions.

Pretrained models have recently been used in RS image classification problems [3], [5], [142],

[146], [160]. The pretrained CNN based [150] TL models used in this study included ResNet50V2

76

[115], [161], VGG19 [134], [162], [163], and InceptionV3 [90], [164]. These pretrained

architectures are the deep CNN pretrained models used to design a new TL model from the existing

problem.

Learning rate (LR) was used to facilitate the TL model’s learning from the UCM dataset. It has

various values such as 0.01, 0.001, and 0.0001. However, if the larger LR is used, training and

learning may fluctuate [158]. Therefore, the smaller LR value is advisable to be used in building

DL models. So, we used the LR of 0.0001 in this objective to optimize our model.

Reducing overfitting in the DL method is dynamic. Dropout and early stopping are the major

optimization techniques used for reducing overfitting when training data. The percentage values

for dropout expressed in decimal forms are usually recommended to use 0.2, 0.3, 0.4, and 0.5. We

used 0.5 (i.e.50%) to reduce the training overfitting since higher dropout could perform better than

lower values [3]. Early stopping is a deep CNN regularization technique used to stop the training

after random epochs when the model performance could not improve [158].

In DL modeling techniques, classification loss functions are widely used. This classification loss

could be binary cross-entropy or multi-class cross-entropy. We preferred the multi-class entropy

loss function since our class is multi-classes of the RS images.

Activation functions could be used afterward for each convolutional layer to raise the capability

of neural network [140]. In this study, the activation functions Relu [165] and softmax [58] were

used because they are better than other common nonlinear functions like tanh and sigmoid

functions. Relu and softmax are better at easily propagating errors; multiple layers of the neurons

have been activated, and their mathematical operation is simpler than that of tanh and sigmoid

functions.

Relu produces x if x>0 or 0 if x<0 as observed in (equation (3.13) and Figure 3.7). This output

implies that neurons with negative values are not activated, while neurons with positive values are.

The slope of the derivative (gradient) value of Relu is constant, i.e., either 1 ∀x, x >= 0 or 0 ∀x,

x<0 (equation (3.14) and Figure 3.8).

Softmax (softargmax) is used to predict the class having the highest probability in multi-class

classification problems for the input labels. We also used this function since our RS imagery data

is a multi-class classification problem. The forward weights of the softmax function could be

77

calculated using equation (12), and the backward or derivative function could be calculated using

the simplified equation (3.19). The softmax output is between 0 and 1, and the sum of each class

probability is 1.0. If some N elements of the input vector are N<0 or N>1, they would be between

(0, 1) after using the softmax function.

In summary of the method, the hyperparameters such as networks and weights were trained in the

pretrained InceptionV3, Resnet50V2, and VGG19 models. We used the bottleneck feature

extraction method to extract image features from these pretrained models. Bottleneck is a layer

with fewer neurons than the other layers in CNN. The bottleneck layers are used to reduce the

number of feature maps (channels) in a given network and to reduce the error (cost) function by

updating all the weights of the pretrained neural networks.

A fully connected network for pretrained models was removed, and then a new model was built,

and its weights were also removed. The bottleneck features, which become the inputs for FC, are

trained for UCM images, as shown in Figure 5.1. For each pre-trained model, the bottleneck feature

extracted the features of shape (1264, 6, 6, 2048) in training bottleneck prediction and the shape

of the features (420, 6, 6, 2048) in validation and testing bottleneck predictions.

Figure 5.1. Sample Input Images Feeding into Pre-processing

78

5.3 Experiments and Performance Evaluations

5.3.1 Experimental datasets setting

The University of California Merced (UCM) data set is used to solve the problem of LCLU

classification. The UCM Land Use data set was manually collected and introduced by [70] from

the USGS National Map Urban Area Imagery. This dataset is made up of 21 land use and land

cover classes, each with 100 images that measure 256 256 pixels and have a spatial resolution of

about 30 cm per pixel. The dataset was divided into a 60:20:20 ratio for training samples, validation

samples, and tasting samples for each class, respectively, as shown in Table 5.1.

Table 5.1. Parameter settings for UCM dataset

Classes Training Samples Validation Samples Test Samples Total

Agricultural 60 20 20 100

Airplane 60 20 20 100

Baseball diamond 60 20 20 100

Beach 60 20 20 100

Buildings 60 20 20 100

Chaparral 60 20 20 100

Dense residential 60 20 20 100

Forest 60 20 20 100

Freeway 60 20 20 100

Golf course 60 20 20 100

Harbor 60 20 20 100

Intersection 60 20 20 100

Medium residential 60 20 20 100

Mobile home park 60 20 20 100

Overpass 60 20 20 100

Parking lot 60 20 20 100

River 60 20 20 100

Runway 60 20 20 100

Sparse residential 60 20 20 100

Storage tanks 60 20 20 100

Tennis court 60 20 20 100

Total 1260 420 420 21000

79

5.3.2 Experimental Settings and Performance Results

As we discussed earlier, various hyperparameters do have important implications for classification

problems. So, we have used some of the important parameters in our experiment listed in Table

5.2. In addition to using the dropout (0.5) layer, we used the early stopping technique to reduce

the overfitting.

Table 5.2. Hyperparameters Setting for Training Data

Hyperparameters Parameter values used

Optimizer Adam

Activation functions Relu and Softmax

Loss function categorical cross entropy

Batch-size 64

Epochs 100

Learning rate 0.0001

We combined the training and validation data after validating the model during the process and

then evaluating the model’s performance with 20% of the testing data. CM measures the

performance of the TL model, whether it is classified correctly or incorrectly. We used the

classification metrics to calculate the model’s performance: accuracy, precision, recall, and F1

measures using equations (4.1) through (4.4), respectively.

There are N (N = 21) classes with an integer labeled 0 to N-1. The generated records were

transformed into a confusion matrix that generates the number of correctly classified classes out

of 20 test sample images, as depicted in Figure 5.2. The three TL models generated the class label

records for 21 classes ranging from 0 to 20 while testing each class with 20 samples. For instance,

in the Inception_v3 model in Figure 3a, the first class is labeled with 0, and among 20 testing

samples, 18 classes are correctly classified, but the other two classes, i.e., the actual class 3 and

18, are predicted as class 1.

Based on the confusion matrix depicted in Figure 5.2a, the performance of TL with the

Inception_v3 model has been calculated and recorded in Table 5.3. Similarly, the performance of

TL with the Resnet50v2 and VGG19 models has been measured in Table 5.4 and Table 5.5 based

on the confusion matrix (Figure 5.2b and Figure 5.2c), respectively.

80

a) Inception_v3 model b) Resnet50v2 model c) VGG19 model

Table 5.3. Inception_v3 model for class performances in Precision, Recall and F1-Score

Class Name Class Label Precision Recall F1-score Support

Agricultural 0 1.00 0.90 0.95 20

Airplane 1 1.00 1.00 1.00 20

Baseball diamond 2 0.86 0.90 0.88 20

Beach 3 0.95 0.95 0.95 20

Buildings 4 0.72 0.90 0.80 20

Chaparral 5 1.00 1.00 1.00 20

Dense residential 6 0.71 0.50 0.59 20

Forest 7 0.86 0.95 0.90 20

Freeway 8 1.00 0.95 0.97 20

Golf course 9 0.75 0.45 0.56 20

Harbor 10 0.95 1.00 0.98 20

Intersection 11 0.95 0.90 0.92 20

Medium residential 12 0.64 0.80 0.71 20

Mobile home park 13 0.78 0.70 0.74 20

Overpass 14 1.00 0.95 0.97 20

Parking lot 15 1.00 1.00 1.00 20

River 16 0.70 0.95 0.81 20

Runway 17 0.87 1.00 0.93 20

Sparse residential 18 0.85 0.85 0.85 20

Storage tanks 19 1.00 0.95 0.97 20

Tennis court 20 0.83 0.75 0.79 20

 Average Accuracy in each Measures 0.88 0.87 0.87 420

[[18 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 18 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 18 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 10 0 0 0 1 0 4 4 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 19 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 3 0 9 0 0 0 0 0 0 8 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 1 0 0 0 0 18 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 16 0 0 0 0 0 1 0 2]

[0 0 0 0 2 0 0 0 0 0 0 0 4 14 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0]

[0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 17 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0]

[0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 15]]

[[20 0]

 [0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

 [0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

 [0 0 0 19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 15 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 14 0 0 0 0 0 3 3 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 1 0 1 0 0]

 [0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 1 0 0 0 3 0 11 0 0 0 0 0 0 5 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 1 0 1 0 0 0 0 16 1 1 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 1 0 0 0 0 0 17 0 0 0 0 0 2 0 0]

 [0 0 0 0 1 0 5 0 0 0 0 0 2 12 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 3 0 0 1 0 0 16 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 19 0 0 0 0 0]

 [0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0]

 [0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 17 0 0]

 [0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 18 0]

 [0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 15]]

[[20 0]

[0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0]

[0 0 17 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 17 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 17 0 0 0 0 0 1 2 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 2 0 0 0 0]

[0 0 0 0 0 0 0 0 18 0 0 0 0 0 2 0 0 0 0 0 0]

[0 0 0 0 0 0 0 3 0 10 0 0 0 0 0 0 7 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 1 0 0 0 0 18 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 2 0 0 0 0 1 17 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 9 0 0 0 0 0 2 9 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 2 0 0 17 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 19 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0]

[0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 17]]

Figure 5.2. Confusion Matrix of each Model on UC Merced dataset

81

Table 5.4. Resnet50v2 model for class performances in Precision, Recall, and F1-Score

Class Name Class Label Precision Recall F1-score Support

Agricultural 0 1.00 1.00 1.00 20

Airplane 1 1.00 1.00 1.00 20

Baseball diamond 2 1.00 0.95 0.97 20

Beach 3 0.83 0.95 0.88 20

Buildings 4 0.75 0.75 0.75 20

Chaparral 5 1.00 1.00 1.00 20

Dense residential 6 0.56 0.70 0.62 20

Forest 7 0.86 0.90 0.88 20

Freeway 8 0.83 1.00 0.91 20

Golf course 9 0.85 0.55 0.67 20

Harbor 10 1.00 1.00 1.00 20

Intersection 11 0.84 0.80 0.82 20

Medium residential 12 0.65 0.85 0.74 20

Mobile home park 13 0.71 0.60 0.65 20

Overpass 14 1.00 0.80 0.89 20

Parking lot 15 1.00 0.95 0.97 20

River 16 0.71 0.85 0.77 20

Runway 17 1.00 1.00 1.00 20

Sparse residential 18 0.81 0.85 0.83 20

Storage tanks 19 1.00 0.90 0.95 20

Tennis court 20 1.00 0.75 0.86 20

Average Accuracy in each Measures 0.88 0.86 0.86 420

Table 5.5. VGG19 model for class performances in Precision, Recall, and F1-Score

Class Name Class label Precision Recall F1-score Support
Agricultural 0 1.00 1.00 1.00 20

Airplane 1 1.00 0.90 0.95 20

Baseball diamond 2 1.00 0.85 0.92 20

Beach 3 0.95 0.95 0.95 20

Buildings 4 0.94 0.85 0.89 20

Chaparral 5 1.00 1.00 1.00 20

Dense residential 6 0.52 0.85 0.64 20

Forest 7 0.86 0.90 0.88 20

Freeway 8 1.00 0.90 0.95 20

Golf course 9 0.83 0.50 0.62 20

Harbor 10 1.00 1.00 1.00 20

Intersection 11 0.82 0.90 0.86 20

Medium residential 12 0.85 0.85 0.85 20

Mobile home park 13 0.82 0.45 0.58 20

Overpass 14 0.85 0.85 0.85 20

Parking lot 15 1.00 1.00 1.00 20

River 16 0.61 0.95 0.75 20

Runway 17 0.87 1.00 0.93 20

Sparse residential 18 1.00 0.95 0.97 20

Storage tanks 19 1.00 1.00 1.00 20

Tennis court 20 1.00 0.85 0.92 20

Average Accuracy in each Measures 0.90 0.88 0.88 420

82

The accuracies of the three TL models for training and validation data are shown in Figure 5.3,

and the overall accuracies are recorded in Table 5.6. Since F1-Score finds the harmonic mean of

precision and recall, it shows how precise and reliable the classification model is.

The categorical-cross-entropy loss function was used while compiling the model. For the correct

class, the value of the loss function becomes closer to 0, as we observed in Figure 5.4.

Table 5.6. Number of early stoppings at epoch #, time is taken for training and overall accuracy

in the three models

Architecture Total #of

layers

Weight

layers used

Early stopping

at epoch#

Time (s) OA

Resnet50V2 152 3*3 19 6 92.46

InceptionV3 22 5*5 18 9 94.36

VGG19 16 3*3 95 5 99.64

a) Accuracy of resnet50V2 b) Accuracy of InceptionV3 c) Accuracy in VGG19

Figure 5.3. Accuracies in Training vs. Validation for TL Classification Models

83

a) Loss in resnet50V2 b) Loss in InceptionV3 c) Loss in VGG19

Figure 5.4. Losses in Training vs. Validation for TL Classification Models

5.4 Discussions

5.4.1 Discussions on results, methods, and TL performances

The experiments described in Section 5.3.2 prove that the pretrained models are applicable to

LCLU classification in RS images. Accuracy is also our aim, and we got better results in each

model and most individual classes. We evaluated each class’s accuracy using precision, recall, and

F1-score measurements for each model. Precision is outperformed, i.e., 88%, 88%, and 90% for

all three models, as shown in

Table 5.3, Table 5.4 and

Table 5.5, respectively. That means the relevant classes were retrieved and predicted correctly. If

the F1-score is perfect (1), i.e., 100% accurate for certain classes, precision and recall are also

perfect for all classes.

Precision was perfect in the agricultural, airplane, chaparral, freeway, overpass, and parking

classes, as shown in

Table 5.3 and Table 5.7 for the Inception_v3 model. On the other hand, the medium-residential

class had the worst result, with a precision of only 64%. The best recall results were in the airplane,

84

chaparral, harbor, parking lot, and runway classes, while the worst were in the golf course and

dense residential classes, with 45% and 50% recall results, respectively. Also, the f1-score is most

accurate for classes like airplane, chaparral, and parking lot, while it is least accurate for dense

golf course (56%) and residential (59%). For similar situations, we grouped classes according to

their best, worst, or poorest value under each Resenet50v2 and VGG19 model measurement in

Table 5.7.

In all three models, the medium and dense residential classes have the lowest precision, and the

golf course has the lowest recall. The poorest accuracy results could be the cause of image variant

similarity and resolution differences.

Table 5.7. The best and worst class accuracies in precision, recall, and F1-score measurements

Model Precision Recall F1-score

Perfect (1) class Worst

class/value

Perfect (1)

class

Worst

class/value

Perfect (1)

class

Worst

class/value

Inception_v3

(
Table 5.3)

Agricultural,

Airplane, Chaparral,

Freeway, Overpass,

Parking

Medium

residential/

0.64

Airplane,

Chaparral,

Harbor,

Parking lot,

Runway

Golf

course/0.45

and Dense

residential/

0.50

Airplane,

Chaparral,

Parking lot

Golf course

/0.56 and

Dense

residential

/0.59

Resnet50v2

(Table 5.4)

Agricultural,

Airplane, Baseball

diamond, Chaparral,

Harbor, Overpass,

Parking lot,

Runway, Storage

tanks, and Tennis

court

Dense

residential

/0.56 and

Medium

residential

/0.65

Agricultural,

Airplane,

Chaparral,

Freeway,

Harbor, and

Runway

Golf course

/0.55

Agricultural,

Airplane,

Chaparral,

Harbor, and

Runway

Dense

residential

/0.62 and

Golf course

/0.67

VGG19 (

Table 5.5)

Agricultural,

Baseball diamond,

Chaparral, Freeway,

Harbor, Parking lot,

Sparse residential,

Storage tanks, and

Tennis court

Dense

residential

/0.52

Agricultural,

Chaparral,

Harbor,

Parking lot,

Runway and

Storage

tanks

Mobile

home park

/0.45 and

Golf course

/0.50

Agricultural,

Chaparral,

Harbor,

Parking lot,

and Storage

tanks

Mobile

home park

/0.58

By applying the hyperparameters listed in Table 5.2, the TL model has been modeled using the

Adam optimizer with a LR of 0.0001 and compiled with the categorical-cross-entropy loss

85

function. The loss function predicts an integer value for each class N assigned from 0 to N-1 in

the UCM dataset, where N = 21 classes. The cross-entropy loss has become lower and lower for

the deeper network training process to identify the correct class. A correct cross-entropy value is

0 for a correct class. The value of the cross-entropy loss function increases for misclassified

classes, and the trained network fails to find the correct class [86]. In Figure 5.4, the training loss

graph with a blue color is closer to 0. So, the trained network is good for predicting the correct

class in TL.

In addition to dropout, we used the early stopping technique to reduce overfitting and improve

performance. The training was stopped early when either the performance of the validation loss

stopped decreasing even though the performance of the training loss decreased or the performance

of the validation accuracy stopped increasing even though the performance of the training accuracy

increased. We assigned the epoch value 100, and the early stopping stopped at epochs 19, 18, and

95 randomly when validation loss stopped decreasing for Resnet50v2, InceptionV3, and VGG19,

respectively. In this study, we observed that the larger number of epochs of early stopping

produced greater accuracy.

Therefore, VGG19 has superior TL model performance. As shown in Table 5.6, the VGG19 model

outperformed all other method with a superior accuracy of 99.64% for an 80% training ratio.

5.4.2 Discussions on similar studies

In this study, we utilize the Resnet50V2, InceptionV3, and VGG19 as our baselines. We compared

the classification performance accuracy of this study with the UCM dataset’s state-of-the-art

classification studies, as stated in Table 5.8. According to Table 5.8, all of the proposed TL models

outperformed the most state-of-the-art studies in terms of accuracy. We used the adaptive

optimizer with the smallest LR value, i.e., 0.0001, while the others used SGD with various

parameters. Most of the researchers listed in Table 5.8 have used the epoch number 50, but we

have used 100 epochs and early stopping while validating the model.

Therefore, the proposed VGG19 achieved the superior accuracy of 99.64% for a 70% training ratio

among all methods we used. The Resnet50v2 model results in lower performance than the other

86

two methods. The results in the three pretrained models demonstrate that the TL model can prove

its availability on RS images.

Table 5.8. Comparative state-of-the-art classification methods and OA (in %) on the UCM

dataset

Authors Methods Dataset Accuracy on UCM Optimizer

[158] Resnet50, VGG‐16 EuroSAT 99.04, 98.14 -

[142] ResNet50, VGG16,

Inception-v4

UCM, AID, NWPU 95.95, 92.50, 91.73 SGD

[139] RSSCNet UCM, RSSCN7,

WHU-RS19

99.81, 97.41, 99.46 SGD

[60] Inception‐V3,

VGG‐19

UCM, AID,

PatternNet

91.00, 94.3 SGD, Adam

and Adamax

[140] VGG-16: with

multiple pyramid

pooling

UCM, NWPU 93.24, 88.62 SGD

[124] VGG‐16- CapsNet

and Inception‐V3-

CapsNet

AID, UCM, NWPU 98.81

99.02

SGD

[70] bag-of-visual-words

(BOVW)

UCM 81.19 -

Proposed Resnet50V2,

Inception‐V3 and

VGG‐19

UCM 92.46, 94.36

99.64

 Adam

(Adaptive)

5.5 Chapter Summarization

In this chapter, we addressed the problem of LCLU classification in RS images using deep TL

models with bottleneck feature extraction. Our objective was to apply the TL model and improve

the classification performance for LCLU classification in RS images. The training time of TL is

more efficient (trained in seconds) than the other deep CNN models (trained in days when they

were trained from scratch), as observed in the state-of-the-art studies by [58], [146]. We used the

bottleneck feature extraction method to make the training of the model go faster and be more

accurate.

The model’s performance is also prominent in all models, i.e., 92.46%, 94.36%, and 99.64%

accuracy results for Resnet50V2, InceptionV3, and VGG19, respectively. However, the superior

accuracy is profound in the VGG19 model with efficient time. Most of the classes’ performances

87

are characterized by prominent accuracy except for some classes, such as the medium residential,

dense residential classes and the golf course, which have the poorest accuracy when evaluated by

precision, recall, and F1-score.

The LCLU classification in RS image contributes significant values [60], [166] to rural and urban

decision-making and planning. Our contribution is to use deep TL with bottleneck feature

extraction to solve the LCLU classification problem using RS images. This contribution directs

environmental resource management and sustainable development for agricultural and urban

planning. In addition to this contribution, we evaluated and improved the performance of the TL

models and proved their availability for the LCLU classification in RS images.

88

6. COMPARING THE PERFORMANCE OF CNN, TL AND FINE-

TUNING MODELS FOR LCLU CLASSIFICATION

6.1 Introduction

The LCLU classification learning system is essential for environmental monitoring, agricultural

decision-making, and urban planning in the contemporary dynamic world. The LCLU

classification using RS images is a critical issue in managing natural resources and human-made

activities that affect natural phenomena in the earth's environment. RS image classification is the

most recently focused area for the RS societies in the computer vision trends and image processing

research areas. From time to time, the world's population is increasing dramatically, and the

demand for land use is increasing. A learning system could be applied to the domain to utilize this

land properly.

Thus, the LCLU classification is the most recent hot and challenging task in RS [58], [66], [80],

[167]. RS images are satellite data collected from the earth's environment using advanced sensor

technologies. The DL method could be applied to solve the challenge.

The DL approach is a recent specialized ML approach that could automatically extract features of

the image for large datasets with admirable performance improvements. Thus, DL is a recently

focused research area applied in various domains, including classification [7], [8], [16], [80], [84],

recognition [53], and object detection [168]. It is also potentially challenging in many other

domains [169].

The DL techniques proposed in this objective are CNNs, TL, and fine-tuning, which make the

classification task more attractive. CNN is one of computer vision's most common DL methods

[18] for feature extraction and LCLU modeling using RS images. The CNN is a feedforward and

backward neural network consisting of convolutional calculations and deep structures. Therefore,

CNN models have powerful feature extraction capability for classification performance

improvement in RS images [48].

Nevertheless, the DL algorithms such as CNN require a large amount of data and very high

computational power to train the classification models [170] from scratch. Whereas TL [171] and

fine-tuning [37], [58] can solve the classification problem in smaller dataset training samples and

less training time. Thus, the main issue with deep CNN models is that training them from scratch

89

requires a large dataset and takes longer. To solve such DL problems, we proposed the TL and

fine-tuning approaches and compared their performances with the convolutional neural network

feature extractor (CNN-FE) model.

TL is another recent DL technique used to train the DL model by reusing pretrained networks. TL

and fine-tuning are used for smaller datasets and can be made from the top fully connected layer

of a network that has already been trained, so that the features can be used again. The training time

in TL and fine-tuning could be much less than that of deep CNN model. So, TL could solve the

problems of building DL models from scratch by training the models in less time with smaller

datasets by freezing the network that has already been trained.

TL adopts the features from the pretrained network to train the new models. Moreover, fine-tuning

is a DL technique used to train the model by unfreezing the pretrained networks. This technique is

vital to increasing the performance of the model. The TL adopts the properties of the pretrained

layers, excluding the last fully connected layer, i.e., the dense layer, which is replaced by our

classifier with a number of neurons of 21 and an activation function of softmax.

This objective of the study designed and evaluated the DL models CNN, TL, and fine-tuning. The

CNN has been developed with four CNN blocks. Using Keras applications, the deep CNN-based

TL and fine-tuning models have been developed on the pretrained model EffificientNetB7 [93].

Few studies have been conducted in recent years to compare the capabilities of DL models

developed from scratch with those developed using the pretrained network. For instance, [115] has

applied the TL and fine-tuning methods to the ResNet50 pretrained network and compared their

performances with other pretrained based networks in scene image classification. However, the

scratch development models' evaluation and comparison with pretrained development models have

not been widely researched. We chose the recently pretrained network, EffificientNetB7, which

was trained on the "ImageNet" large dataset, for designing the TL and fine-tuning the model.

Recently, [93] achieved 84.4% top-1 accuracy of the state-of-the-art EffificientNetB7 on the

“ImageNet.” According to [93], eight scaling-up series of EffificientNet pretrained models from

EffificientNetB0 through EffificientNetB7 were designed on the larger dataset called "ImageNet."

The performance of each successive version has improved.

90

According to [172], who have applied EfficientNetB3, larger versions of EfficientNet models

perform better than smaller ones. Thus, we proposed the EffificientNetB7 pretrained network to

design TL and fine-tuning models in the domain of LCLU classification using RS images to

evaluate their performances and compare them with the CNN-FE model. We selected the UCM

dataset to assess and compare the DL models.

Therefore, this chapter aims to design the DL models and evaluate their performance with various

performance measurement metrics. First, we developed the CNN-FE model and compared its

performance with the deep TL and fine-tuned models for LCLU classification using the UCM

dataset. Second, we applied the recent advanced EfficientNetB7 pretrained network to design TL

and fine-tune DL models for LCLU classification in RS images. Then finally, we evaluated the

models, compared their performances using different performance evaluation metrics, and

concluded that the fine-tuning model improved performance with efficient training time.

6.2 Materials and Proposed Methods

6.2.1 Datasets and Tools

We used the publicly available University of California Merced (UCM) dataset for modeling the

CNN, CNN-based TL, and fine-tuning. The UCM dataset is an LCLU data set collected from the

earth, labeled manually, and introduced by [70] at the University of California Merced. It contains

twenty-one classes. Each class contains 100 images with 256 × 256 pixels resolution and a spatial

resolution of about 30 centimeters per pixel. However, the UCM dataset is inconsistent since about

44 images have different pixel shapes. This dataset is available at:

http://weegee.vision.ucmerced.edu/datasets/landuse.html.

As a tool, the Python high-level computer language is used. Python is a versatile and user-friendly

programming language that can be used to create many interactive libraries for the DL model.

Tensorflow and Keras are also other DL tools used with Python.

91

6.2.2 Proposed DL Methods

Previously, the DL method was investigated for classification problems in RS images from various

datasets. However, evaluating and comparing the DL developed from scratch with those trained

on pretrained networks has not been widely investigated yet. Further investigations are still needed

to design and assess the current DL techniques for LCLU classification using the RS datasets.

Thus, to evaluate and compare the performances of different DL models applied for LCLU

classification problems in the UCM RS dataset, we designed the CNN-FE model, the TL model

and the fine-tuned model on an EfficientNet pretrained network. The EfficientNet was trained on

the large-size dataset of "ImageNet" images. ImageNet is the most significant benchmark dataset

introduced by [87] for designing DL models.

CNN's performance was influenced by the DL hyperparameters [24]. For instance, according to

[3], using different dropout values produced different performance results. We also showed that

the dropout value (0.25) generated an accuracy of 84.76%, which is different from our previous

work with the dropout value (0.50), which caused an accuracy of 89.76%. Therefore, by

considering their effects, we set the same hyperparameters for all three DL models on the given

dataset to evaluate the models' performances, as shown in Table 6.1.

6.2.2.1 The convolutional neural network (CNN) algorithm

The CNN algorithm is the most critical DL technique that could extract and automatically learn

features from the data. From the input images, features are newly extracted and learned weights of

pixels in the image in the new value (usually reduced). The CNN method consists of several sets

of connected layers. These layers shared weights throughout the process, i.e., from the start to the

end layer (classifier), as depicted in Figure 6.1. This process creates the feature map for the model's

entire set of layers as well as the class prediction for the output layer. The feature map of the model

can be built up with pixel-wise multiplication of the input image pixels and the provided weight

or kernel pixels with learnable parameters [127], [173].

The CNNs can be capable of spatial feature representations for RS image classifications using the

convolution technique in the form of pixels [174]. This convolution process updates weights with

each layer's provided non-linear activation function. The input data types and weight calculations

92

in the convolution method make the CNNs different from other conventional ML approaches

[123].

In DL model training, Relu and Softmax non-linear activation functions are the most relevant

functions to update the weights in the convolution process. We used the Relu at the entire

convolutional layers to activate the weights in each convolution process and the softmax at the

output layer since it is reliable for multiclass classification problems. The softmax function is a

feature classifier based on a probability score for each class.

As we discussed in Chapter 3 of this thesis, the number of convolutional and dense parameters

(params) could be calculated using equations (3.5) and (3.6), respectively, in the convolution

process. The total parameter numbers of the model are the summations of the computed results from

the Conv2D and dense layers. We designed the CNN-FE model with four Conv2D layers that

calculate the number of parameters for those layers in the same norm (3.5) and two dense layers

(3.6). However, the calculation formula for dense parameters differs from Conv2D, as equated in

(3.6). The number 1 means the bias associated with each filter for learning.

We could get a total calculated parameter number according to (3.5) and (3.6). However, the

number of parameters for all MaxPooling2D and Flatten layers is zero because these layers do not

learn anything from weights (filters) or the built model. As a result, 1.68 million parameters were

found and learned in the CNN-FE model, while 18.88 million parameters were found and learned

in both the TL and fine-tuning models.

Figure 6.1. Layers of CNN-FE model with the input sample images

93

6.2.2.2 The deep transfer learning (TL) method

TL is a method of training the DL model by replacing the input layer with an image embedding as

the EfficientNet transfers the knowledge learned from the much larger dataset called "ImageNet"

to our classification problem. The TL has been trained by making the layers in EfficientNet on

ImageNet images non-trainable (pre_trained_model.trainable = False). We trained only the last

flatten (1D vector form) and two dense layers, including Relu and Softmax activation functions,

and dropout optimization on the 21 LCLU RS UCM dataset classes. Therefore, the classification

head with dense layers can be appended to manipulate our new classification problem. TL is an

efficient, reliable DL technique used to propose various domains, especially the image

classification problem in this study. Recently, TL has been applied for LCLU in RS image

classifications [142], [158]. TL is used to train DL models in a short amount of time with improved

results [129], [146]. However, deep TL is used for limited dataset training samples, while deep

CNN from scratch is used for large dataset training samples. Therefore, we applied the TL model

in this objective of the study to compare its performance with other DL techniques for LCLU

classification in RS images.

6.2.2.3 The fine-tuning technique on EfficientNet

Fine-tuning is a DL technique used to train a model by allowing and adapting the EfficientNet

pretrained layers on the ImageNet large dataset to be trainable (pre_trained_model.trainable =

True). EfficientNet is a recent advanced CNN-based network that could be applied to classification

tasks on ImageNet. To get the improved performance, EfficientNet has been fine-tuned, and the

final fully connected layer is treated as the output classifier layer as we did in TL, except the layers

are allowed to be trained.

As stated by [58] and [37], fine-tuning a pretrained network is the optimal solution for a limited

number of training samples. The EfficientNet pretrained network was introduced by [93] for

rethinking model scaling for CNN. We selected the EfficientNet pretrained network as it is the

most recent and advanced network, which has not been applied yet to the CLCU classification

domain.

94

Fine-tuning the EfficientNet pretrained network has been trained on the last three fully connected

layers on the ImageNet. The final, fully connected layers include a flatten layer that transforms the

input image into vector form, two dense layers, dropout, relu, and activation functions.

Accordingly, the pretrained weights are used randomly as initial weights for our fine-tuning neural

network. Fine-tuning is used to compare the results of the fully connected layer and the

convolutional layer. Thus, we proposed a fine-tuning technique to compare its performance with

the convolutional layer-based CNN-FE model and the fully connected layer-based TL model.

Table 6.1. The DL hyperparameters settings for training the datasets

Hyperparameters Values

Optimizers Adam

Learning rate 0.001

Batch size 64

Epochs 100

Loss function Cross-entropy

Activation functions Relu, softmax

Dropout 0.25

6.3 Experimental Results and Discussions

6.3.1 Experimental Setting and Results

We used the UCM dataset for experiments to design and evaluate the DL models for LCLU

classification problems. We split each dataset used to train, validate, and test samples into 60%,

20%, and 20%, respectively. We also set the DL hyperparameters as indicated in Table 6.1. Then

we trained the models, validated them with the validation dataset during training, and evaluated

their performances with the test dataset.

After the experimental parameters were set, we trained and evaluated the model during and after

the experiments with validation and test datasets, respectively. We evaluated the model’s

performance using accuracy, precision, recall, f1-score, and confusion matrix (CM) metrics. CM

measures the class performance, whether classified correctly or incorrectly in rows-column

intersections. In addition to the accuracy, we used the categorical-cross-entropy loss function to

calculate the errors. The training and validation losses or mistakes are expected to decrease as the

epochs increment, as shown in Figure 6.2, Figure 6.3 and Figure 6.4 (on the right).

95

Therefore, we evaluated the models with 420 test or support images, as shown in Table 6.2, Table

6.3, and Table 6.4, using the UCM dataset. The UCM is an imbalanced RS dataset. The accuracy

performance metric, the percentage of correctly classified images, could not be suitable for the

imbalanced dataset. Thus, each class’s performance is evaluated using errors, precision, recall, f1-

score, and CM metrics in addition to the accuracy metric. The f1-score is the harmonic mean of

precision and recall metrics, and it generalizes the performance of each class and the average

performance of the DL models built. If both precision and recall have the best performance result

in a category, then the f1-score has the best performance result in that class. Whereas, if either

precision or recall has a 0 performance result, then the f1-score has 0 performance, which is nothing

the model is predicting.

Accordingly, the categories that have scored best (100%) in the f1-score metric are agricultural and

chaparral in CNN-FE (Table 6.2); chaparral, parkinglot, and storagetanks in the TL model (Table

6.3); and agricultural, airplane, chaparral, freeway, and runway in a fine-tuning model (Table 6.4),

respectively.

Table 6.2. CNN-FE classification performances in precision, recall, and f1-score on 420 support

images

Class name Precision Recall F1-score Support

Agricultural 1.00 1.00 1.00 20

Airplane 1.00 0.85 0.92 20

Baseballdiamond 0.89 0.80 0.84 20

Beach 1.00 0.95 0.97 20

Buildings 0.64 0.70 0.67 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.50 0.55 0.52 20

Forest 0.86 0.95 0.90 20

Freeway 1.00 0.90 0.95 20

Golfcourse 0.80 0.60 0.69 20

Harbor 0.87 1.00 0.93 20

Intersection 0.88 0.70 0.78 20

Mediumresidential 0.53 0.85 0.65 20

Mobilehomepark 0.93 0.65 0.76 20

Overpass 0.94 0.75 0.83 20

Parkinglot 1.00 0.90 0.95 20

River 0.76 0.95 0.84 20

Runway 0.87 1.00 0.93 20

Sparseresidential 0.83 0.95 0.88 20

Storagetanks 0.95 0.95 0.95 20

Tenniscourt 0.94 0.80 0.86 20

Average performance 0.87 0.85 0.86 420

96

Table 6.3. TL classification performance in precision, recall, and f1-score on 420 support images

Class name Precision Recall F1-score Support

Agricultural 1.00 0.95 0.97 20

Airplane 0.95 1.00 0.98 20

Baseballdiamond 1.00 0.90 0.95 20

Beach 0.95 0.95 0.95 20

Buildings 0.90 0.90 0.90 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.56 0.50 0.53 20

Forest 0.82 0.90 0.86 20

Freeway 1.00 0.95 0.97 20

Golfcourse 0.92 0.55 0.69 20

Harbor 0.91 1.00 0.95 20

Intersection 0.83 0.95 0.88 20

Mediumresidential 0.57 0.80 0.67 20

Mobilehomepark 0.67 0.50 0.57 20

Overpass 0.95 0.90 0.92 20

Parkinglot 1.00 1.00 1.00 20

River 0.69 0.90 0.78 20

Runway 1.00 0.95 0.97 20

Sparseresidential 0.83 0.95 0.88 20

Storagetanks 1.00 1.00 1.00 20

Tenniscourt 1.00 0.80 0.89 20

Average performance 0.88 0.87 0.88 420

Table 6.4. Fine-tuning classification performance in precision, recall, and f1-score on 420

support images

Class name Precision Recall F1-score Support

Agricultural 1.00 1.00 1.00 20

Airplane 1.00 1.00 1.00 20

Baseballdiamond 1.00 0.90 0.95 20

Beach 0.95 0.95 0.95 20

Buildings 0.80 0.80 0.80 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.62 0.65 0.63 20

Forest 0.86 0.95 0.90 20

Freeway 1.00 1.00 1.00 20

Golfcourse 0.80 0.60 0.69 20

Harbor 0.95 1.00 0.98 20

Intersection 1.00 0.65 0.79 20

Mediumresidential 0.66 0.95 0.78 20

Mobilehomepark 0.61 0.55 0.58 20

Overpass 0.91 1.00 0.95 20

Parkinglot 0.95 1.00 0.98 20

River 0.73 0.95 0.83 20

Runway 1.00 1.00 1.00 20

Sparseresidential 0.89 0.80 0.84 20

Storagetanks 0.95 0.95 0.95 20

Tenniscourt 1.00 0.80 0.89 20

Average performance 0.89 0.88 0.89 420

97

The accuracy of the DL models is also measured in terms of accuracy and loss measurement

metrics in graphical representation, as shown in Figure 6.2, Figure 6.3 and Figure 6.4 for CNN-

FE, TL, and fine-tuning models, respectively. The training accuracies (with a blue color curve) are

smoothly increasing, while the validation accuracies (with a red color curve) are somewhat

fluctuating in increasing the accuracies in all models, especially in fine-tuning, as depicted in

Figure 6.2, Figure 6.3 and Figure 6.4 (on the left). We used the cross-entropy loss function to

reduce errors in the model performance. The training losses (with a blue color curve) are smoothly

decreasing, while the validation losses (with a red color curve) are somewhat fluctuating in

reducing the errors in all models, as depicted in Figure 6.2, Figure 6.3 and Figure 6.4 (on the right).

In addition to deploying precision, recalls, and f1-score, we used CM to evaluate class

performances in each DL model. Like f1-score, better class performance is observed in most

classes in the CM metric. The CM measures the class performance, whether it is classified

correctly or incorrectly. CM considers each class label in rows (True labeled class) and columns

(predicted labeled class), as depicted in Figure 6.5 through Figure 6.7. The probability score in the

diagonal intersection showed the correct classified class. In contrast, the results in other rows-

columns wise are predicted in misclassified classes.

For evaluating the model with test set sample images, we used the argmax function for predicting

a class with the maximum argument probability score. For instance, our classification problem has

twenty-one possible classes in the UCM dataset. If the output probabilities are [0.0, 0.0, 0.0, 0.0,

0.05, 0.0, 0.55, 0.0, 0.0, 0.0, 0.05, 0.0, 0.30, 0.05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], the arg max

(maximum argumentative-class) probability is 0.55 and it is associated with the dense-residential

class that is predicted by the CNN-FE model as shown in Figure 6.5. Like ways, the arg max

probability can correspond to each class prediction in CM metric. The sum of the output

probabilities of each class is 1.00.

While evaluating the class performance in CM metric, the lowest performance result in the two

first classes are dense-residential (55%) and golf-course (60%) in CNN-FE, dense-residential

(50%), mobile-home-park (50%) and golf-course (55%) in TL and mobile-home-park (55%) and

golf-course (60%), as shown in Figure 6.5, Figure 6.6, and Figure 6.7, respectively. The lower

result showed that the class property is mostly associated to other classes. For instance, the

98

property of dense-residential has a more common feature with class medium-residential. The class

performance in the CM metric is generally better in the fine-tuning model.

Figure 6.2. The training and validation accuracies and losses in the CNN-FE model

Figure 6.3. The training and validation accuracies and losses in the TL model

Figure 6.4. The training and validation accuracies and losses in the fine-tuning DL model

99

Figure 6.5. CM performance results for CNN-FE model in the UCM dataset

Figure 6.6. CM performance results for TL model in the UCM dataset

100

Figure 6.7. CM performance results for fine-tuning model in the UCM dataset

6.3.2 Discussions

This objective of the study applied the DL models for LCLU classification using RS images. The

performances of these models resulted from various measurement metrics and showed good

performance results for the classification problem, as shown in Table 6.5. The experimental results

showed that the proposed DL algorithms could adapt and learn features of RS images since the

Adam (adaptive movement estimation) learning rate took on that responsibility. The TL and fine-

tuning performances are significantly improved over the CNN-FE.

To address our objective stated in this section, Table 6.2 through Table 6.4 and Figure 6.2 through

Figure 6.7 compare the DL model performances on the UCM dataset. From the results, good class

performance has been achieved in precision, recall, F1-score, and CM though some class

101

performances scored lower in values. The training accuracy increases smoothly in CNN-FE, TL,

and fine-tuning DL models, as shown in Figure 6.2, Figure 6.3 and Figure 6.4, respectively.

The overall accuracy for each model is summarized in Table 6.5. According to Table 6.5, the fine-

tuning model has outperformed performance in accuracy (88%), precision (89%), recall (88%), and

f1-score (89%) with efficient time. Whereas the CNN-FE model performed lower in each metric

compared to the other two models, this could be why the dataset used was smaller. Moreover, the

CNN-FE spent much more time training the model than the TL, and the fine-tuning.

The maximum capability of a number of parameters in EfficientNet is 64 million. In TL and fine-

tuning models, 18.88 million parameters have been discovered and learned. This parameter number

is about 18 times greater than the parameters found in CNN-FE mode, i.e., 1.68 million. This is why

the convolution technique used in CNN-FE reduces the number of parameters. The fine-tuning

technique is used to compare the performance of the DL models designed using the convolutional

method and fully connected layers. As a result, improved performance in the fine-tuning model was

achieved in less time than the other DL techniques used in this study's objective.

Designing the CNN model from scratch is essential to identify the correct properties of the

categories for large datasets that are usually recommended when they exceed about 5000 images

per class. However, it may require a significant amount of training time and be prone to overfitting.

This limitation could be overcome by the less training time-consuming DL techniques, TL, and

fine-tuning. The TL and fine-tuning DL techniques are efficient in terms of training time and

produce improved performance results. But we recommend that TL and fine-tuning DL be

applicable for small data sizes that may be less than 5,000 images per class. Therefore, we can

conclude that the TL and fine-turning DL techniques are economically relevant in terms of time

savings and essential for performance improvement, as observed in Table 6.5.

102

Table 6.5. The DL model performance evaluations using performance measurement metrics in

the UCM dataset and the time (in seconds) consumed for training each DL model

DL Models DL Performance results in each measurement metrics Training

time (Sec.)

Params#

(millions) Precision Recall F1-score Accuracy

CNN-FE 87.00 85.00 86.00 84.76 51.81 1.68

TL 88.00 87.00 88.00 87.38 41.77 88.88

Fine-tuning 89.00 88.00 89.00 88.10 36.39 18.88

6.4 Chapter Summarization

In this objective of the study, we designed the three DL models: CNN-FE, TL, and fine-tuning for

LCLU classification problems using RS images. The TL and fine-tuning models have been trained

on the recent EfficientNetB7 pretrained baseline network using the UCM dataset. The models'

performances were evaluated using accuracy, precision, recall, f1-score, and CM metrics. The fine-

tuned model in the UCM dataset has a profound accuracy result. We could observe that the nature

of the dense-residential class is mainly similar to the properties of the medium-residential category.

Thus, its performance results in precision, recall, f1-score, and CM is the worst result compared to

other class categories. In addition to those metrics, the training time is another critical evaluation

metric that is used to compare the economic advantages of TL and fine-tuning models over the DL

models developed from scratch. We found that the TL and fine-turning DL models are efficient in

saving time and essential for performance improvements.

103

7. EVALUATING THE PERFORMANCE OF DEEP LEARNING

CLASSIFICATION MODELS IN VARIOUS REMOTE SENSED

HYPERSPECTRAL IMAGES

7.1 Introduction

Land cover is the earth’s surface covered with natural resources and artificial activities and

contains dynamic information [175]. On the other hand, land use is the ability of human activities

to utilize natural resources on the land cover. These two entities are essential for human life on

earth since they are the base for everything. In the contemporary, dynamic world, proven LCLU

classification learning systems are required to manage and monitor the earth’s environment. Thus,

LCLU classification is an important and challenging task in RS [4], [61], as it contains dynamic

data. As stated in the previous sections, this dynamic data could be collected by using advanced

RS technologies. The collected data could be RBG, multispectral, or hyperspectral images. The

hyperspectral dataset has a larger number of continuous spectral bands [45].

RS images are vital information sources about the earth’s environment [7], [16], [66], [78] for

LCLU classification problem analysis. The LCLU data are imbalanced, which caused the

classification problem due to the model's imbalanced learning [14]. Thus, the recent challenging

tasks in RS are the RS hyperspectral image (RSHI) classification [58], [66], [80], [167]. The DL

approach could be applied to the hyperspectral image to solve the challenges.

DL is a recent specialized ML approach that attracts researchers for its powerful ability to analyze

large datasets and its dynamic performance improvement. Therefore, DL is the recently focused

research area applied to RSHI domains, such as classification [7], [8], [16], [80], [84], recognition

[53], and object detection [168]. It is also potentially challenging in many other domains [169].

DL includes various techniques that are used to design task modeling, such as the classification

task in this study. CNN is one of the most common DL methods in computer vision [18] and is

used for feature extraction and LCLU modeling using RSHIs. Deep CNNs are the recent dominant

paradigm in various domains. Thus, the CNN models have powerful feature extraction capability

for classification performance improvement in RSHIs [48]. The Keras applications and deep CNN-

104

based pretrained models used in this objective are EffificientNetB7 [93], InceptionV3 [90], [164],

and MobileNet [92].

In recent related work studies, very few studies have been conducted to design the

EffificientNetB7, MobileNet, and InceptionV3 DL models from various perspectives, such as

considering their hyperparameters and different datasets collected in other locations. The deep

CNN model for LCLU classification and crop identification in the Indian Pines dataset was

evaluated by [45] with the optimizers (Adam, SGD, Adagrad, and RMSprop), the filter size (2

and 3), and the activation functions (Relu and Tanh). In the case of using different datasets with

different locations, the deep CNN models such as InceptionV3 and VGG19 for AID, UCM, and

PatternNet datasets have been evaluated by [24]. Therefore, we selected the most examined UCM

dataset and the recently used SIRI-WHU and RSSCN7 datasets to assess and compare the recent

EfficientNetB7, InceptionV3, and MobileNet DL models to understand their effects on this

objective.

Therefore, this objective aims to design and evaluate DL models with various RSHIs that have

different properties. The dynamic information collected on the earth’s surfaces has different

properties that could affect the model’s performance [97], [111], [114].

7.2 Materials and Methods

7.2.1 Datasets

The publicly available HRSI datasets were collected from various sources on the web. On the base

of the channel, there are three types of RS images: RGB (that consists of three channels),

multispectral (that consists of more than three and under hundreds of channels), and hyperspectral

(that consists of hundreds of channels). We used the UCM, SIRI-WHU, and RSSCN7 datasets as

described in Table 2.1. The sample images from each class have been depicted in Figure 3.9, Figure

3.10, and Figure 3.11 for the UCM, SIRI_WHU, and RSSCN7 datasets, respectively.

The UCM dataset is an LCLU data set collected from the earth, labeled manually, and introduced

by [70]. It has twenty-one classes, each with 100 images that measure 256 × 256 pixels and have

a spatial resolution of about 30 cm per pixel. However, the UCM dataset is inconsistent, as about

105

44 images have different pixel shapes. This dataset is available at:

http://weegee.vision.ucmerced.edu/datasets/landuse.html.

The SIRI-WHU dataset was collected from Google Earth and covered urban areas in China [75].

The dataset contains twelve categories with 200 images per category at 200 x 200 pixels. The

dataset is available at: https://figshare.com/articles/dataset/SIRI_WHU_Dataset/8796980.

The RSSCN7 dataset is a challenging scene classification dataset collected from Google Earth and

released by [41] at Wuhan University. The dataset is divided into seven categories, each of which

contains 400 images with a 400 x 400 pixels resolution. We selected this dataset due to its higher

pixel size and the fact that it has not been more thoroughly investigated as a domain yet. The

dataset is available at: https://www.kaggle.com/datasets/yangpeng1995/rsscn7.

To this end, [176] and [177] have studied the performance of different methods in HRSI

classification problems using the UCM and SIRI-WHU datasets, which are also used in this

objective. In addition, the DBN was applied to the RSSCN7 HRSIs by [41].

7.2.2 DL Methods

Previously, the DL method was investigated for classification problems in RSHIs using commonly

used datasets. However, further investigations are still needed to design and evaluate the current

DL methods on the most commonly and recently used datasets.

Thus, to evaluate the effect of performances in different DL models for LCLU classification

problems in different RSHIs datasets, we applied the deep CNN-based models, such as

EfficientNet, InceptionV3, and MobileNet, to the selected two datasets described earlier. All of

these DL models have been trained on the pretrained ImageNet images using the specified DL

hyperparameters. The choices of DL hyperparameters have an impact on CNN performance [24].

We used almost all the same DL hyperparameters in this chapter for experimental settings as in

designing deep CNN and TL, except the batch size is 128 instead of 64 and the learning rate is

0.001 instead of 0.0001. We set the same hyperparameters for all three DL models on the two

datasets to evaluate the models’ performances, as shown in Table 7.1.

106

Table 7.1. The DL hyperparameters settings for training the datasets

Hyperparameters Chosen values

Optimizers Adam with 0.0001

Batch size 128

Epochs 100

Loss function Cross-entropy

Activation functions Relu, softmax

Dropout 0.5

7.3 Experimental Results and Discussions

7.3.1 Experimental Setting and Evaluation Experimental Results

We used the UCM and SIRI-WHU datasets for experiments to design and evaluate the DL models

for LCLU classification problems. We split each dataset to train, validate, and test samples into

60%, 20%, and 20%, respectively. We also set the DL hyperparameters as indicated in Table 7.1.

Then we trained the models, validated them with the validation dataset during training, and

evaluated their performances with the test dataset.

After the experimental hyperparameters were set, we trained and evaluated the model during and

after the experiments with validation and test datasets, respectively. We evaluated the DL models

using accuracy, precision, recall, f1-score and confusion matrix (CM) metrics. CM measures the

class performance whether it is classified correctly or incorrectly in rows-columns intersections. In

addition to the accuracy, we used the categorical-cross-entropy loss function to calculate the errors.

The training and validation losses or mistakes are expected to decrease in epoch increments, as

shown in Figure 7.1 (a to c right), Figure 7.2 (a to c right) and Figure 7.3 (a to c right).

We evaluated the EfficientNetB7, InceptionV3, and MobileNet models with 20, 40, and 80 test

support images in the UCM (Table 7.2, Table 7.5, and Table 7.8), SIRI-WHU (Table 7.3, Table

7.6, and Table 7.9), and RSSCN7 (Table 7.4, Table 7.7, and Table 7.10) datasets, respectively.

Each class’s performance is good in each metric, especially in the harmonic mean metric f1-score.

However, we observed the better class performance in the UCM dataset even though similar

classes were found in the SIRI-WHU and RSSCN7 datasets, as shown in Table 7.2 through Table

107

7.10. On the UCM dataset, the best (100%) F1-score categories are agricultural, chaparral, harbor,

parking lot, and runway in EfficientNetB7 (Table 7.2), agricultural in InceptionV3 (Table 7.5),

and airplane, chaparral, and freeway in MobileNet (Table 7.8), whereas no classes scored best

(100%) F1-score in the SIRI-WHU and RSSCN7 datasets. This is because the properties of the

datasets are different.

Table 7.2. EfficientNetB7 classification reports for the UCM dataset

Class name Precision Recall F1-score Support

Agricultural 1.00 1.00 1.00 20

Airplane 0.95 1.00 0.98 20

Baseballdiamond 0.94 0.80 0.86 20

Beach 0.86 0.95 0.90 20

Buildings 0.76 0.65 0.70 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.65 0.65 0.65 20

Forest 0.71 1.00 0.83 20

Freeway 0.95 0.95 0.95 20

Golfcourse 0.75 0.75 0.75 20

Harbor 1.00 1.00 1.00 20

Intersection 0.84 0.80 0.82 20

Mediumresidential 0.62 0.80 0.70 20

Mobilehomepark 0.52 0.70 0.60 20

Overpass 0.94 0.75 0.83 20

Parkinglot 1.00 1.00 1.00 20

River 0.75 0.45 0.56 20

Runway 1.00 1.00 1.00 20

Sparseresidential 0.89 0.85 0.87 20

Storagetanks 1.00 0.95 0.97 20

Tenniscourt 0.94 0.80 0.86 20

108

Table 7.3. EfficientNetB7 classification reports for the SIRI-WHU dataset

Class name Precision Recall F1-score Support

Agriculture 0.58 0.45 0.51 40

Commercial 0.82 0.82 0.82 40

Harbor 0.80 0.82 0.81 40

idle_land 0.67 0.72 0.70 40

Industrial 0.94 0.78 0.85 40

Meadow 0.53 0.50 0.51 40

Overpass 0.95 0.90 0.92 40

Park 0.65 0.78 0.70 40

Pond 0.74 0.72 0.73 40

Residential 0.80 0.88 0.83 40

River 0.76 0.78 0.77 40

Water 0.89 0.97 0.93 40

Table 7.4 EfficientNetB7 classification reports for the RSSCN7 dataset

Class name Precision Recall F1-score Support

Field 0.70 0.91 0.79 80

Forest 0.82 0.94 0.88 80

Grass 0.65 0.53 0.58 80

Industry 0.73 0.55 0.63 80

Parking 0.72 0.78 0.75 80

Resident 0.88 0.72 0.79 80

RiverLake 0.89 0.97 0.93 80

Table 7.5. InceptionV3 classification reports for the UCM dataset

Class name Precision Recall F1-score Support

Agricultural 1.00 1.00 1.00 20

Airplane 0.95 1.00 0.98 20

Baseballdiamond 0.89 0.80 0.84 20

Beach 0.86 0.95 0.90 20

Buildings 0.87 0.65 0.74 20

Chaparral 1.00 0.95 0.97 20

Denseresidential 0.87 0.65 0.74 20

Forest 0.86 0.90 0.88 20

Freeway 0.95 1.00 0.98 20

Golfcourse 0.82 0.45 0.58 20

Harbor 0.95 1.00 0.98 20

Intersection 0.93 0.65 0.76 20

Mediumresidential 0.53 0.90 0.67 20

Mobilehomepark 0.64 0.80 0.71 20

Overpass 1.00 0.80 0.89 20

Parkinglot 1.00 0.90 0.95 20

River 0.57 0.80 0.67 20

Runway 0.91 1.00 0.95 20

Sparseresidential 0.86 0.95 0.90 20

Storagetanks 1.00 0.90 0.95 20

Tenniscourt 0.89 0.85 0.87 20

109

Table 7.6. InceptionV3 classification reports for the SIRI-WHU dataset

Class labels Precision Recall F1-score Support

Agriculture 0.80 0.50 0.62 40

Commercial 0.90 0.88 0.89 40

Harbor 0.78 0.88 0.82 40

Idle_land 0.83 0.72 0.77 40

Industrial 0.80 0.90 0.85 40

Meadow 0.77 0.57 0.66 40

Overpass 0.85 0.97 0.91 40

Park 0.61 0.50 0.55 40

Pond 0.63 0.90 0.74 40

Residential 0.82 0.90 0.86 40

River 0.82 0.70 0.76 40

Water 0.85 1.00 0.92 40

Table 7.7 InceptionV3 classification reports for the RSSCN7 dataset

Class name Precision Recall F1-score Support

Field 0.72 0.89 0.79 80

Forest 0.85 0.94 0.89 80

Grass 0.73 0.61 0.67 80

Industry 0.62 0.49 0.55 80

Parking 0.67 0.75 0.71 80

Resident 0.82 0.64 0.72 80

RiverLake 0.79 0.91 0.85 80

110

Table 7.8. MobileNet classification reports for the UCM dataset

Class name Precision Recall F1-score Support

Agricultural 0.95 0.95 0.95 20

Airplane 1.00 1.00 1.00 20

Baseballdiamond 1.00 0.85 0.92 20

Beach 0.83 0.95 0.88 20

Buildings 0.88 0.75 0.81 20

Chaparral 1.00 1.00 1.00 20

Denseresidential 0.75 0.60 0.67 20

Forest 0.82 0.90 0.86 20

Freeway 1.00 1.00 1.00 20

Golfcourse 0.81 0.65 0.72 20

Harbor 0.95 1.00 0.98 20

Intersection 0.68 0.75 0.71 20

Mediumresidential 0.51 0.90 0.65 20

Mobilehomepark 0.69 0.55 0.61 20

Overpass 1.00 0.70 0.82 20

Parkinglot 1.00 0.95 0.97 20

River 0.63 0.85 0.72 20

Runway 1.00 0.95 0.97 20

Sparseresidential 0.89 0.85 0.87 20

Storagetanks 0.87 1.00 0.93 20

Tenniscourt 1.00 0.70 0.82 20

Table 7.9. MobileNet classification reports for the SIRI-WHU dataset

Class labels Precision Recall F1-score Support

Agriculture 0.93 0.68 0.78 40

Commercial 0.97 0.95 0.96 40

Harbor 0.82 1.00 0.90 40

Idle_land 0.83 0.85 0.84 40

Industrial 0.92 0.85 0.88 40

Meadow 0.61 0.57 0.59 40

Overpass 0.95 1.00 0.98 40

Park 0.82 0.78 0.79 40

Pond 0.88 0.88 0.88 40

Residential 0.91 0.97 0.94 40

River 0.84 0.95 0.89 40

Water 1.00 0.97 0.99 40

111

Table 7.10 MobileNet classification reports for the RSSCN7 dataset

Class name Precision Recall F1-score Support

Field 0.65 0.90 0.76 80

Forest 0.79 0.95 0.86 80

Grass 0.72 0.53 0.61 80

Industry 0.62 0.57 0.60 80

Parking 0.84 0.72 0.78 80

Resident 0.85 0.64 0.73 80

RiverLake 0.81 0.94 0.87 80

The training and validation accuracies and losses are also used for evaluating the models in the

two datasets. The training accuracies (with a blue color curve) are smoothly increasing, while the

validation accuracies (with a red color curve) are somewhat fluctuating in increasing the accuracies

in all models and all datasets, as depicted in Figure 7.1 (a to c left), Figure 7.2 (a to c left), and

Figure 7.3 (a to c left). We used the cross-entropy loss function to reduce errors in the model

performance. The training losses (with a blue color curve) are smoothly decreasing, while the

validation losses (with a red color curve) are somewhat fluctuating in reducing the errors in all

models and all datasets, as depicted in Figure 7.1 (a to c right), Figure 7.2 (a to c right), and

Figure 7.3 (a to c left).

In addition to deploying accuracy error, precision, recalls, and the F1-score, we used CM to

evaluate class performances in each DL model and all datasets. The CM metric, like the F1-score,

shows better class performance in most classes in the UCM dataset. The CM measures the class

performance, whether it is classified correctly or incorrectly. CM considers each class label in rows

(the “true labeled class”) and columns (the “predicted labeled class”), as depicted in Figure 7.4

through Figure 7.12. The probability score in the diagonal intersection showed the correct

classified class while the results in other rows-columns wise are predicted to be in misclassified

classes.

While evaluating the class performance in CM, the worst accuracy was scored in each model and

dataset. For instance, the river (45%), agriculture (45%), and grass (53%) in EfficientNet7, as shown

in Figure 7.4, Figure 7.5, and Figure 7.6.; the golf-course (45%), agriculture (45%) and park (45%),

and industry (48%) in InceptionV3, as shown in Figure 7.7, Figure 7.8, and Figure 7.9, the mobile-

home-park (55%), meadow (57%) and grass (53%) in MobileNet, shown in Figure 7.10, Figure 7.11,

and Figure 7.12 for UCM, SIRI-WHU, and RSSCN7 datasets, respectively. In general, the class CM

performance is better in UCM than SIRI-WHU datasets; for instance, the shared class agriculture has

112

the best CM performance in UCM but the worst performance in SIRI-WHU and RSSCN7.

a) EfficientNetB7

b) MobileNet

c) InceptionV3

Figure 7.1. Training and Validation losses and accuracies of the three DL models (a, b, c) for the

UCM dataset

113

a) EfficientNetB7

b) MobileNet

c) InceptionV3

Figure 7.2.Training and Validation losses and accuracies of the three DL models (a, b, c) for the

SIRI-WHU dataset

114

a) EfficientNetB7

b) MobileNet

c) InceptionV3

Figure 7.3. Training and Validation losses and accuracies of the three DL models (a, b, c) for the

RSSC7 dataset

115

Figure 7.4. CM results for EfficientNet7 model in the UCM dataset

Figure 7.5. CM results for EfficientNet7 model in the SIRI-WHU dataset

116

Figure 7.6. CM results for EfficientNet7 model in the RSSCN7 dataset

Figure 7.7. CM results for InceptionV3 model in the UCM dataset

117

Figure 7.8. CM results for InceptionV3 model in the SIRI-WHU dataset

Figure 7.9. CM results for InceptionV3 model in the RSSCN7 dataset

118

Figure 7.10. CM results for MobileNet model in the UCM

Figure 7.11. CM results for MobileNet model in the SIRI-WHU dataset

119

Figure 7.12. CM results for MobileNet model in the RSSCN7 dataset

7.3.2 Discussions

This objective aimed the DL models for LCLU classification using RSHIs. Table 7.11 shows the

performance of these models as a result of various measurement metrics, with good accuracy

results for the classification problem.

To address our objective stated in this task, Table 7.2 through Table 7.10 and Figure 7.1 through

Figure 7.12 compare the DL model performances on the UCM, SIRI-WHU, and RSSCN7 datasets.

From the results, good class performance has been achieved in precision, recall, F1-score, and CM,

though some class performances scored lower in values. The training accuracy increases smoothly

in all DL models across all datasets, as shown in Figure 7.1, Figure 7.2 and Figure 7.3. The

accuracy performance of each model has been evaluated with 420, 480, and 560 test images of the

UCM, SIRI-WHU, and RSSCN7 datasets, respectively. The overall accuracy of each model is

summarized in Table 7.11.

MobileNet outperforms the other two DL models, with accuracy of 86.47% and 87.07% for the

UCM and SIRI-WHU datasets, respectively. However, the EfficientNetB7 model outperforms all

other models in the RSSCN7 dataset, despite the fact that all models trained on the UCM and SIRI-

WHU datasets outperformed those trained on the RSSCN7 dataset, as shown in Table 7.11.

120

Table 7.11. The DL model performances in performance measurement metrics in both datasets

Dataset DL Models DL Performances in performance measurement metrics

Precision Recall F1-score Accuracy

UCM EfficientNetB7 86.00 85.00 85.50 86.16

InceptionV3 87.00 85.00 85.99 86.24

MobileNet 87.00 85.00 85.99 86.47

SIRI-WHU EfficientNetB7 76.00 76.00 76.00 76.04

InceptionV3 79.00 79.00 79.00 79.54

MobileNet 87.00 87.00 87.00 87.08

RSSCN7 EfficientNetB7 77.00 77.00 77.00 77.14

InceptionV3 74.00 75.00 74.50 74.64

MobileNet 76.00 75.00 75.50 75.00

7.4 Chapter Summarization

In this chapter, we applied the recent DL models to the UCM, SIRI-WHU, and RSSCN7 datasets,

which have different properties, using DL hyperparameters for LCLU classification problems.

Therefore, we designed the three DL CNN models, namely EfficientNetB7, InceptionV3, and

MobileNet, for classifying the LCLU classification using the UCM, SIRI-WHU, and RSSCN7

datasets, which have different properties. Because of how well it worked, we added the

EfficientNetB7 DL model to the LCLU classification.

The model performances were evaluated and compared using accuracy, precision, recall, f1-score,

and CM metrics. The MobileNet model outperformed the other models in the UCM and SIRI-

WHU datasets in terms of accuracy. The nature of the dataset had an effect on the DL performances

in the majority of the measurement metrics we used. The better performance results in most metrics

have been achieved in the UCM dataset rather than the SIRI-WHU and RSSCN7 datasets.

121

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In this research, we present the results of our investigation into the use of DL models for solving

the LCLU classification problem in RS imagery datasets. We reviewed and analyzed different

primary studies that had been retrieved from reputable databases in order to pinpoint the research

gaps. DL methods for LCLU classification using RS are recent hot research areas in the field of

ML and AI. As can be seen in Figure 2.4 and Figure 2.5, however, there has not been much research

into the use of AI, namely DL approaches, for LCLU classification using RS images. Results from

our review indicate that DL approaches are gaining popularity due to their potential to enhance

classification system performance. The performance of DL modes has been studied by a number

of researchers, such as [50] and [21], because of their advantages over LCLU classification

utilizing RS images. So, we achieved our objective of reviewing by citing some of the researchers

whose work we looked at and by pointing out where the literature was lacking and what these

experts suggested for the future (see Table 2.2).

After completing the review objective, we set four main experimental objectives to address the

problem of LCLU classification in RS images. The first experimental task was designing an end-

to-end CNN-FE model. After developing this model on the inconsistent UCM dataset, we retrained

it on the more stable SIRI-WHU dataset of RS images to see if the dataset had any effect on its

performance. To further verify the prospective use of the CNN-FE, we also developed a VGG19

pretrained DL model and tested its performance on both datasets. In this objective, we validated

that CNNs are powerful DL techniques for evaluating RS images for LCLU classification systems.

Due to the inconsistency of RS images, the results of any modeling done with pretrained networks

will likely not be accurate. We evaluate its performance versus that of the VGG19 pretrained

model, which was also trained with similar hyperparameters, and prior state-of-the-art studies. Our

results, which include how the features of the dataset affect the model and how it could be used in

different domains, show that the CNN-FE outperformed the previous works and the VGG-19

pretrained model.

The second experimental task was to build a TL model with the help of pretrained networks and

bottleneck feature extraction. Our objective was to reduce training time for LCLU classification

122

in RS images using the TL model. According to the state-of-the-art study by [58], [146], TL can

be trained more quickly than other deep CNN models (trained in seconds compared to days when

they were trained from scratch). To enhance the speed and accuracy of the model's training, we

applied the bottleneck feature extraction technique to extract features from previously trained

models. The model’s performance is also prominent in all models, i.e., 92.46%, 94.36%, and

99.64% of the accuracy results for Resnet50V2, InceptionV3, and VGG19, respectively. As a

result, the improved performance of the TL models for LCLU classification in RS images was our

finding. The VGG-19 model, on the other hand, achieves high accuracy in a short period of time.

The third experimental task was to design and compare the CNN-FE, TL, and fine-tuning models

for LCLU classification problems using RS images. The TL and fine-tuning models have been

trained on the recent EfficientNetB7 pretrained baseline network, whereas the CNN-FE has been

trained on the four blocks of CNNs using the UCM dataset. Here, the design of CNN-FE differs

from our first experimental task designation by differentiating the batch size and learning rate

values. The models are evaluated, and the fine-tuned model produces a higher accuracy

performance in less time. In addition to the performance, the training time is another critical

evaluation metric that is used to compare the economic advantages of TL and fine-tuning models

over the DL models developed from scratch. We found that the TL and fine-turning DL models

are good at saving time and important for improving performance.

The fourth experimental task was to apply the recent DL models to the UCM, SIRI-WHU, and

RSSCN7 RS imagery datasets with different properties using DL hyperparameters for LCLU

classification problems. Therefore, we designed the three DL CNN models, namely

EfficientNetB7, InceptionV3, and MobileNet, for classifying the LCLU categories using RSHIs

in the UCM and SIRI-WHU datasets. We contributed the EfficientNetB7 DL model to LCLU

classification in RSHIs because of its good performance. The three models were evaluated and

compared, and profound accuracy and f1-score measure performances have been achieved in

MobileNet rather than in other models in the UCM and SIRI-WHU datasets. In the RSSCN7

dataset, EfficientNetB7 has higher accuracy and f1-score measure performance. The nature of the

dataset had an effect on the DL performances in the majority of the measurement metrics we used.

The better performance results in most metrics have been achieved in the UCM dataset rather than

the SIRI-WHU and RSSCN7 datasets.

123

Our contributions in this study include exploring the potential application of the recent DL models

for LCLU classification problem using RS imagery data for the benefits of the RS communities

and decision makers, improving the performances of the earlier studies, identifying the better

performance of the models in terms of training times, dataset size and dataset properties,

identifying the DL hyperparameters and properties of the dataset influence the DL performance in

LCLU classification problem, and suggesting the future research direction to the future

researchers.

This study's significance values in its application of an intelligent LCLU classification system to

the problem of scene identification for the RS communities. Sustainable development in the areas

of agricultural and urban planning, environmental protection, and natural resource management

would all greatly benefit from the use of the LCLU classification system. We also looked at how

the DL models worked and improved their performance, showing that they could be used to

classify LCLUs in RS images.

However, the lack of powerful computational resources i.e., robust processor needs and time

constraints resulting from the COVID-19 epidemic were the major challenges or limitations we

faced during our study. Since we were working with a CPU processor and Google Colab instead

of a GPU processor, we had to work with relatively small RS datasets. In addition, both the TL

and fine-tuning modes work with small datasets. Developing DL models from scratch is time-

consuming and difficult, so the size of the dataset may have an effect on the DL performance. We

didn't have enough time to compare typical ML methods with DL methods or test the effects of

important DL hyperparameters that can't be learned, like the deeper number of layers, iteration,

and batch normalization (mean and variance).

124

8.2 Recommendations

The research objectives of this thesis have been achieved with constraints and challenges.

Therefore, we would like to suggest the following major recommendations for further

investigations in the area based on the aforementioned challenges and constraints:

➢ The hardware processor requirements, such as the CPU, GPU, and VPU, are essential

requirements for designing DL models. Because of its extremely fast computation and

processing capabilities on large datasets, the GPU is required to improve model

performance. VPU in the other way is also required to accelerate the performance of DL

models and produce high-quality images with less power consumption by freezing up the

CPU and GPU space. So, it might be better to run the experiments again with a powerful

GPU or VPU to improve how well the DL models work on larger RSHIs datasets.

➢ The various dataset properties and the DL hyperparameters could also affect the model's

performance. So, the next step to improving DL performance in the domain would be to

look into DL optimization techniques for LCLU classification using different datasets.

➢ The TL and pretrained models are effective in terms of time and resources. But training the

TL and pretrained models on the pretrained models may be hard because pretrained

networks like "ImageNet" may have been trained on large images with different properties

than the RS images. Therefore, we recommend that designing the DL model from scratch

is better for validating the LCLU classification system. Moreover, TL is recommended for

small datasets, which may be less than thousands of images per class. If the dataset exceeds

thousands of images per class, we would like to recommend designing the DL model from

scratch.

➢ Moreover, the developed DL models need more improvements, validations, and

comparisons with other traditional ML approaches on large datasets. Therefore, building

DL and traditional ML approaches on other large datasets is our future task to compare

their performances.

125

REFERENCES

[1] H. Yang, F., Rottensteiner, “Classification of Land Cover and Land Use based on

Convolutional Neural Networks,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.,

vol. IV, no. 3, pp. 251–258, 2018, doi: https://doi.org/10.5194/isprs-annals.

[2] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote sensing image

classification : A survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 6, p. e1264, 2018,

doi: 10.1002/widm.1264.

[3] R. Stivaktakis, G. Tsagkatakis, and P. Tsakalides, “Deep Learning for Multilabel Land

Cover Scene Categorization Using Data Augmentation,” IEEE Geosci. Remote Sens. Lett.,

vol. 16, no. 7, pp. 1031–1035, 2019, doi: 10.1109/LGRS.2019.2893306.

[4] M. Carranza-García, J. García-Gutiérrez, and J. C. Riquelme, “A Framework for

Evaluating Land Use and Land Cover Classification using Convolutional Neural

Networks,” Remote Sens., vol. 11, no. 3, p. 274, 2019, doi: 10.3390/rs11030274.

[5] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep Learning Earth Observation

Classification Using ImageNet Pretrained Networks,” IEEE Geosci. Remote Sens., vol. 13,

no. 1, pp. 105–109, 2016, doi: 10.1109/LGRS.2015.2499239.

[6] K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, “Towards Better Exploiting

Convolutional Neural Networks for Remote Sensing Scene Classification,” Pattern

Recognit., vol. 61, pp. 539–556, 2016, doi: 10.1016/j.patcog.2016.07.001.

[7] M. A. Shafaey, M. A. Salem, H. M. Ebied, M. N. Al-Berry, and M. F. Tolba, “Deep

Learning for Satellite Image Classification,” in Hassanien, A., Tolba, M., Shaalan, K.,

Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent

Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and

Computing, 2019, vol. 845, pp. 383–391. doi: 10.1007/978-3-319-99010-1_35.

[8] G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis, “Training

Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution

Imagery,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 4, pp. 549–553, 2017, doi:

10.1109/LGRS.2017.2657778.

[9] S. Dong, Y. Zhuang, Z. Yang, L. Pang, H. Chen, and T. Long, “Land Cover Classification

From VHR Optical Remote Sensing Images by Feature Ensemble Deep Learning

126

Network,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1396–1400, 2020, doi:

10.1109/LGRS.2019.2947022.

[10] K. Karalas, G. Tsagkatakis, M. Zervakis, and P. Tsakalides, “Land Classification Using

Remotely Sensed Data: Going Multilabel,” IEEE Trans. Geosci. Remote Sens., vol. 54,

no. 6, pp. 3548–3563, 2016, doi: 10.1109/TGRS.2016.2520203.

[11] B. Zhao, B. Huang, and Y. Zhong, “Transfer Learning With Fully Pretrained Deep

Convolution Networks for Land-Use Classification,” IEEE Geosci. Remote Sens. Lett.,

vol. 14, no. 9, pp. 1436–1440, 2017, doi: 10.1109/LGRS.2017.2691013.

[12] Z. Huang, C. O. Dumitru, Z. Pan, B. Lei, and M. Datcu, “Classification of Large-Scale

High-Resolution SAR Images with Deep Transfer Learning,” IEEE Geosci. Remote Sens.

Lett., vol. 18, no. 1, pp. 107–111, 2021, doi: 10.1109/LGRS.2020.2965558.

[13] Y. Xu et al., “Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and

Land Cover Classification : Outcome of the 2018 IEEE GRSS Data,” IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens., vol. 12, no. 6, pp. 1709–1724, 2019, doi:

10.1109/JSTARS.2019.2911113.

[14] T. W. Cenggoro, S. M. Isa, G. P. Kusuma, and B. Pardamean, “Classification of

Imbalanced Land-Use/Land-Cover Data using Variational Semi-supervised Learning,” in

2017 International Conference on Innovative and Creative Information Technology

(ICITech), 2017, pp. 1–6. doi: 10.1109/INNOCIT.2017.8319149.

[15] M. Kampffmeyer, A. Salberg, and R. Jenssen, “Urban Land Cover Classification With

Missing Data Modalities Using Deep Convolutional,” IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens., vol. 11, no. 6, pp. 1758–1768, 2018, doi: 10.1109/JSTARS.2018.2834961.

[16] A. Hamida, A. Benoit, P. Lambert, and C. Amar, “3-D Deep Learning Approach for

Remote Sensing Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8,

pp. 4420–4434, 2018, doi: 10.1109/TGRS.2018.2818945.

[17] A. Elshamli, G. W. Taylor, A. Berg, and S. Areibi, “Domain Adaptation Using

Representation Learning for the Classification of Remote Sensing Images,” IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 9, pp. 4198–4209, 2017, doi:

10.1109/JSTARS.2017.2711360.

[18] X. Liu et al., “Classifying urban land use by integrating remote sensing and social media

data,” Int. J. Geogr. Inf. Sci., vol. 31, no. 8, pp. 1675–1696, 2017, doi:

127

10.1080/13658816.2017.1324976.

[19] S. Song, H. Yu, Z. Miao, Q. Zhang, Y. Lin, and S. Wang, “Domain Adaptation for

Convolutional Neural Networks-Based Remote Sensing,” IEEE Geosci. Remote Sens.

Lett., vol. 16, no. 8, pp. 1324–1328, 2019, doi: 10.1109/LGRS.2019.2896411.

[20] P. Russell, S., & Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Upper

Saddle River, New Jersey: Pearson Education, Inc., 2003.

[21] A. M. Abdi, “Land cover and land use classification performance of machine learning

algorithms in a boreal landscape using Sentinel-2 data,” GIScience Remote Sens., vol. 57,

no. 1, pp. 1–20, 2019, doi: 10.1080/15481603.2019.1650447.

[22] X. X. Zhu et al., “Deep Learning in Remote Sensing: A Comprehensive Review and List

of Resources,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8–36, 2017, doi:

10.1109/MGRS.2017.2762307.

[23] K. Ali et al., “Land Usage Analysis: A Machine Learning Approach,” Int. J. Comput.

Appl., vol. 141, no. 12, pp. 23–28, 2016, doi: 10.5120/ijca2016909936.

[24] R. P. de Lima and K. Marfurt, “Convolutional Neural Network for Remote ‐ Sensing

Scene Classification : Transfer Learning Analysis,” Remote Sens., vol. 12, no. 1, p. 86,

2020, doi: 10.3390/rs12010086.

[25] X. Sun, L. A. N. Liu, C. Li, J. Yin, J. Zhao, and W. E. N. Si, “Classification for Remote

Sensing Data With Improved CNN-SVM Method,” IEEE Access, vol. 7, pp. 164507–

164516, 2019, doi: 10.1109/ACCESS.2019.2952946.

[26] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep Learning Classification of

Land Cover and Crop Types Using Remote Sensing Data,” IEEE Geosci. Remote Sens.

Lett., vol. 14, no. 5, pp. 778–782, 2017.

[27] E. Ndikumana, D. H.T.Minh, N. Baghdadi, D. Courault, and L. Hossard, “Deep Recurrent

Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for

Camargue , France,” Remote Sens., vol. 10, no. 8, p. 1217, 2018, doi:

10.3390/rs10081217.

[28] M. E. Yuksel, N. S. Basturk, H. Badem, A. Caliskan, and A. Basturk, “Classification of

high resolution hyperspectral remote sensing data using deep neural networks,” J. Intell.

Fuzzy Syst., vol. 34, no. 4, pp. 2273–2285, 2018, doi: 10.3233/JIFS-171307.

[29] X. X. Zhu et al., “Deep Learning in Remote Sensing: A Review,” arXiv:1710.03959,

128

2017, doi: 10.1109/MGRS.2017.2762307.

[30] Y. Zhong, F. Fei, Y. Liu, B. Zhao, H. Jiao, and L. Zhang, “SatCNN : satellite image

dataset classification using agile convolutional neural networks convolutional neural

networks,” Remote Sens. Lett., vol. 8, no. 2, pp. 136–145, 2017, doi:

10.1080/2150704X.2016.1235299.

[31] F. P. S. Luus, B. P. Salmon, F. Van Den Bergh, and B. T. J. Maharaj, “Multiview Deep

Learning for Land-Use Classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12,

pp. 2448–2452, 2015, doi: 10.1109/LGRS.2015.2483680.

[32] W. Li, H. Liu, Y. U. Wang, Z. Li, Y. Jia, and G. Gui, “Deep Learning-Based

Classification Methods for Remote Sensing Images in Urban Built-up Areas,” IEEE

Access, vol. XX, no. c, pp. 1–9, 2018, doi: 10.1109/ACCESS.2019.2903127.

[33] J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, and A. Plaza, “Remote Sensing

Image Superresolution Using Deep Residual Channel Attention,” IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 11, pp. 9277–9289, 2019, doi: 10.1109/TGRS.2019.2924818.

[34] G. Chen, X. Zhang, Q. Wang, F. Dai, Y. Gong, and K. Zhu, “Symmetrical Dense-Shortcut

Deep Fully Convolutional Networks for Semantic Segmentation of Very-High-Resolution

Remote Sensing Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 11, no. 5,

pp. 1633–1644, 2018, doi: 10.1109/JSTARS.2018.2810320.

[35] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep

learning benchmark for land use and land cover classification,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens., vol. 12, no. 7, pp. 2217–2226, 2019, doi:

10.1109/JSTARS.2019.2918242.

[36] Q. Weng, Z. Mao, J. Lin, and W. Guo, “Land-Use Classification via Extreme Learning

Classifier Based on Deep Convolutional Features,” IEEE Geosci. Remote Sens. Lett., vol.

14, no. 5, pp. 704–708, 2017, doi: 10.1109/LGRS.2017.2672643.

[37] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional Neural Networks

for Large-Scale Remote-Sensing Image Classification,” IEEE Trans. Geosci. Remote

Sens., vol. 55, no. 2, pp. 645–657, 2017, doi: 10.1109/TGRS.2016.2612821.

[38] D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, “Land Cover Classification via

Multitemporal Spatial Data by Deep Recurrent Neural Networks,” IEEE Geosci. Remote

Sens. Lett., vol. 14, no. 10, pp. 1685–1689, 2017.

129

[39] J. Dong, R. Yin, X. Sun, Q. Li, Y. Yang, and X. Qin, “Inpainting of Remote Sensing SST

Images with Deep Convolutional Generative Adversarial Network,” IEEE Geosci. Remote

Sens. Lett., vol. 16, no. 2, pp. 173–177, 2019, doi: 10.1109/LGRS.2018.2870880.

[40] Y. Zhan, D. Hu, Y. Wang, and X. Yu, “Semisupervised Hyperspectral Image

Classification Based on Generative Adversarial Networks,” IEEE Geosci. Remote Sens.

Lett., vol. 15, no. 2, pp. 212–216, 2018, doi: 10.1109/LGRS.2017.2780890.

[41] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep Learning Based Feature Selection for

Remote Sensing Scene Classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11,

pp. 2321–2325, 2015, doi: 10.1109/LGRS.2015.2475299.

[42] Y. Chen, X. Zhao, and X. Jia, “Spectral – Spatial Classification of Hyperspectral Data

Based on Deep Belief Network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8,

no. 6, pp. 2381–2392, 2015.

[43] M. Rezaee, M. Mahdianpari, Y. Zhang, and B. Salehi, “Deep Convolutional Neural

Network for Complex Wetland Classification Using Optical Remote Sensing Imagery,”

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 11, no. 9, pp. 3030–3039, 2018, doi:

10.1109/JSTARS.2018.2846178.

[44] G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, “Classification for high resolution remote

sensing imagery using a fully convolutional network,” Remote Sens., vol. 9, no. 5, pp. 1–

21, 2017, doi: 10.3390/rs9050498.

[45] K. Bhosle and V. Musande, “Evaluation of Deep Learning CNN Model for Land Use

Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing

Images,” J. Indian Soc. Remote Sens., vol. 47, no. 11, pp. 1949–1958, 2019, doi:

10.1007/s12524-019-01041-2.

[46] J. Song, S. Gao, Y. Zhu, and C. Ma, “A survey of remote sensing image classification

based on CNNs,” Big Earth Data, vol. 3, no. 3, pp. 232–254, 2019, doi:

10.1080/20964471.2019.1657720.

[47] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land Use Classification in

Remote Sensing Images by Convolutional Neural Networks,” ArXiv Prepr., no. arXiv:

1508.00092v1, 2015.

[48] X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu, and Y. Zheng, “Siamese Convolutional Neural

Networks for Remote Sensing Scene Classification,” IEEE Geosci. Remote Sens. Lett.,

130

vol. 16, no. 8, pp. 1200–1204, 2019, doi: 10.1109/LGRS.2019.2894399.

[49] G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, “Remote Sensing Image Scene

Classification Using Bag of Convolutional Features,” IEEE Geosci. Remote Sens. Lett.,

vol. 14, no. 10, pp. 1735–1739, 2017, doi: 10.1109/LGRS.2017.2731997.

[50] G. Li, C. Zhang, M. Wang, F. Gao, and X. Zhang, “Scene classification of high-resolution

remote sensing image using transfer learning with multi-model feature extraction

framework,” Commun. Comput. Inf. Sci., vol. 875, pp. 238–251, 2018, doi: 10.1007/978-

981-13-1702-6_24.

[51] M. Papadomanolaki, M. Vakalopoulou, S. Zagoruyko, and K. Karantzalos,

“Benchmarking Deep Learning Frameworks for the Classification of Very High

Resolution Satellite Multispectral Data,” ISPRS Ann. Photogramm. Remote Sens. Spat.

Inf. Sci., vol. 3, no. 7, pp. 83–88, 2016, doi: 10.5194/isprsannals-iii-7-83-2016.

[52] M. A. Kadhim and M. H. Abed, “Convolutional Neural Network for Satellite Image

Classification,” in Studies in Computational Intelligence, vol. 830, Springer, Cham:

Springer International Publishing, 2019, pp. 165–178. doi: 10.1007/978-3-030-14132-5.

[53] F. Özyurt, “Efficient Deep Feature Selection for Remote Sensing Image Recognition with

Fused Deep Learning Architectures,” J. Supercomput., vol. 76, no. 11, pp. 8413–8431,

2019, doi: 10.1007/s11227-019-03106-y.

[54] N. Imamoglu, P. Martínez-Gómez, R. Hamaguchi, K. Sakurada, and R. Nakamura,

“Exploring recurrent and feedback CNNs for multi-spectral satellite image classification,”

Procedia Comput. Sci., vol. 140, no. 2018, pp. 162–169, 2018, doi:

10.1016/j.procs.2018.10.325.

[55] L. Mou and X. Xiang, “RiFCN : Recurrent Network in Fully Convolutional Network for

Semantic Segmentation of High Resolution Remote Sensing Images,” ArXiv, vol.

abs/1805.0, no. 1805.02091v1, pp. 1–29, 2018.

[56] A. Das, R. Giri, G. Chourasia, and A. A. Bala, “Classification of Retinal Diseases Using

Transfer Learning Approach,” in Proceedings of the 4th International Conference on

Communication and Electronics Systems, ICCES 2019, 2019, no. Icces, pp. 2080–2084.

doi: 10.1109/ICCES45898.2019.9002415.

[57] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, A survey of transfer learning, vol. 3, no.

1. Springer International Publishing, 2016. doi: 10.1186/s40537-016-0043-6.

131

[58] M. Mahdianpari, B. Salehi, M. Rezaee, F. Mohammadimanesh, and Y. Zhang, “Very

Deep Convolutional Neural Networks for Complex Land Cover Mapping using

Multispectral Remote Sensing Imagery,” Remote Sens., vol. 10, no. 7, p. 1119, 2018, doi:

10.3390/rs10071119.

[59] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng.,

vol. 22, no. 10, pp. 1345–1359, 2010, doi: 10.1109/TKDE.2009.191.

[60] R. P. de Lima and K. Marfurt, “Convolutional neural network for remote-sensing scene

classification: Transfer learning analysis,” Remote Sens., vol. 12, no. 1, p. 86, 2020, doi:

10.3390/rs12010086.

[61] H. Wu, B. Liu, W. Su, W. Zhang, and J. Sun, “Deep Filter Banks for Land-Use Scene

Classification,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1895–1899, 2016,

doi: 10.1109/LGRS.2016.2616440.

[62] Y. Liu and Y. Zhong, “Scene Classification Based on a Deep Random-Scale Stretched

Convolutional Neural Network,” Remote Sens., vol. 10, no. 3, p. 444, 2018, doi:

10.3390/rs10030444.

[63] F. Zhang, B. Du, and L. Zhang, “Scene Classification via a Gradient Boosting Random

Convolutional Network Framework,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3,

pp. 1793–1802, 2016, doi: 10.1109/TGRS.2015.2488681.

[64] X. Yu, X. Wu, C. Luo, and P. Ren, “Deep learning in remote sensing scene classification :

a data augmentation enhanced convolutional neural network framework,” GIScience

Remote Sens., vol. 54, no. 5, pp. 741–758, 2017, doi: 10.1080/15481603.2017.1323377.

[65] Y. Liu, L. Gross, Z. Li, X. Li, X. Fan, and W. Qi, “Automatic Building Extraction on

High-Resolution Remote Sensing Imagery Using Deep Convolutional Encoder-Decoder

with Spatial Pyramid Pooling,” IEEE Access, vol. 7, pp. 128774–128786, 2019, doi:

10.1109/ACCESS.2019.2940527.

[66] B. Liu, X. Yu, P. Zhang, A. Yu, Q. Fu, and X. Wei, “Supervised Deep Feature Extraction

for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no.

4, pp. 1909–1921, 2018, doi: 10.1109/TGRS.2017.2769673.

[67] Q. Liu, R. Hang, H. Song, and Z. Li, “Learning Multiscale Deep Features for High-

Resolution Satellite Image Scene Classification,” IEEE Trans. Geosci. Remote Sens., vol.

56, no. 1, pp. 117–126, 2018, doi: 10.1109/TGRS.2017.2743243.

132

[68] M. Chi, Z. Sun, Y. Qin, J. Shen, and J. A. Benediktsson, “A Novel Methodology to Label

Urban Remote Sensing Images Based on Location-Based Social Media Photos,” Proc.

IEEE, vol. 105, no. 10, pp. 1926–1936, 2017, doi: 10.1109/JPROC.2017.2730585.

[69] G. Cheng, J. Han, and X. Lu, “Remote Sensing Image Scene Classification: Benchmark

and State of the Art,” Proc. IEEE, vol. 105, no. 10, pp. 1865–1883, 2017, doi:

10.1109/JPROC.2017.2675998.

[70] Y. Yang and S. Newsam, “Bag-of-Visual-Words and Spatial Extensions for Land-Use

Classification,” in Proceedings of the 18th SIGSPATIAL International Conference on

Advances in Geographic Information Systems, 2010, pp. 270–279. doi:

10.1145/1869790.1869829.

[71] G. S. Xia et al., “AID: A benchmark data set for performance evaluation of aerial scene

classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017,

doi: 10.1109/TGRS.2017.2685945.

[72] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When Deep Learning Meets Metric

Learning : Remote Sensing Image Scene Classification via Learning Discriminative

CNNs,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5, pp. 2811–2821, 2018, doi:

10.1109/TGRS.2017.2783902.

[73] H. Li, C. Tao, Z. Wu, J. Chen, J. Gong, and M. Deng, “RSI-CB : A Large-Scale Remote

Sensing Image Classification Benchmark via Crowdsource Data”, [Online]. Available:

https://github.com/lehaifeng/RSI-CB

[74] W. Teng, S. Member, N. Wang, H. Shi, Y. Liu, and J. Wang, “Classifier-Constrained

Deep Adversarial Domain Adaptation for Cross-Domain Semisupervised Classification in

Remote Sensing Images,” IEEE Geosci. Remote Sens. Lett., pp. 1–5, 2019, doi:

10.1109/LGRS.2019.2931305.

[75] B. Zhao, Y. Zhong, G. S. Xia, and L. Zhang, “Dirichlet-Derived Multiple Topic Scene

Classification Model for High Spatial Resolution Remote Sensing Imagery,” IEEE Trans.

Geosci. Remote Sens., vol. 54, no. 4, pp. 2108–2123, 2016, doi:

10.1109/TGRS.2015.2496185.

[76] V. Unnikrishnan, A., Sowmya and P. K. Soman, “Deep learning architectures for land

cover classification using red and near-infrared satellite images,” Multimed. Tools Appl.,

vol. 78, no. 13, pp. 18379–18394, 2019, doi: 10.1007/s11042-019-7179-2.

133

[77] B. Kitchenham, Guidelines for performing systematic literature reviews in software

engineering version 2.3. Technical Report EBSE-2007-01, vol. Version 2. 2007. doi:

10.1109/ACCESS.2016.2603219.

[78] G. Xu, X. Zhu, and N. Tapper, “Using Convolutional Neural Networks Incorporating

Hierarchical Active Learning for Target-Searching in Large-Scale Remote Sensing

Images,” Int. J. Remote Sens., vol. 41, no. 11, pp. 4057–4079, 2020, doi:

10.1080/01431161.2020.1714774.

[79] W. Zhou, S. Newsam, C. Li, and Z. Shao, “PatternNet : A benchmark dataset for

performance evaluation of remote sensing image retrieval,” ISPRS J. Photogramm.

Remote Sens., vol. 145, pp. 197–209, 2018, doi: 10.1016/j.isprsjprs.2018.01.004.

[80] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. Benediktsson, “Deep Learning for

Hyperspectral Image Classification : An Overview,” IEEE Trans. Geosci. Remote Sens.,

vol. 57, no. 9, pp. 6690–6709, 2019, doi: 10.1109/TGRS.2019.2907932.

[81] A. Sharma, X. Liu, X. Yang, and D. Shi, “A patch-based convolutional neural network for

remote sensing image classification,” Neural Networks, vol. 95, pp. 19–28, 2017, doi:

10.1016/j.neunet.2017.07.017.

[82] U. Côté-Allard et al., “Deep Learning for Electromyographic Hand Gesture Signal

Classification Using Transfer Learning,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27,

no. 4, pp. 760–771, 2019, doi: 10.1109/TNSRE.2019.2896269.

[83] X. Liu, R. Wang, Z. Cai, Y. Cai, and X. Yin, “Deep Multigrained Cascade Forest for

Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10,

pp. 8169–8183, 2019, doi: 10.1109/TGRS.2019.2918587.

[84] C. Deng, Y. Xue, X. Liu, C. Li, and D. Tao, “Active Transfer Learning Network: A

Unified Deep Joint Spectral-Spatial Feature Learning Model for Hyperspectral Image

Classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3, pp. 1741–1754, 2019,

doi: 10.1109/TGRS.2018.2868851.

[85] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, “Transfer learning from deep

features for remote sensing and poverty mapping,” ArXiv, arXiv:1510.00098v2, 2016.

[86] A. Bahri, S. Ghofrani Majelan, S. Mohammadi, M. Noori, and K. Mohammadi, “Remote

Sensing Image Classification via Improved Cross-Entropy Loss and Transfer Learning

Strategy Based on Deep Convolutional Neural Networks,” IEEE Geosci. Remote Sens.

134

Lett., vol. 17, no. 6, pp. 1087–1091, 2020, doi: 10.1109/LGRS.2019.2937872.

[87] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J.

Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015, doi: 10.1007/s11263-015-0816-y.

[88] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Systems

25 (NIPS 2012), vol. 25, 2012, pp. 1097–1105.

[89] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-scale

Image Recognition,” arXiv Prepr. arXiv1409.1556v1, pp. 1–10, 2014.

[90] C. Szegedy et al., “Going Deeper with Convolutions,” arXiv Prepr. arXiv1409.4842v1,

pp. 1–12, 2014.

[91] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

arXiv Prepr. arXiv1512.03385v1, pp. 1–12, 2015.

[92] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications,” arXiv Prepr. arXiv1704.04861v1, pp. 1–9, 2017, doi:

10.48550/arXiv.1704.04861.

[93] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks,” arXiv Prepr. arXiv1905.11946v1, pp. 1–10, 2019.

[94] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, 2015, pp. 1–15.

[95] J. Wang, Y. Zhong, Z. Zheng, A. Ma, and L. Zhang, “RSNet: The Search for Remote

Sensing Deep Neural Networks in Recognition Tasks,” IEEE Trans. Geosci. Remote

Sens., vol. 59, no. 3, pp. 2520–2534, 2021, doi: 10.1109/TGRS.2020.3001401.

[96] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. DIng, and X. Huang, “SemiCDNet: A

Semisupervised Convolutional Neural Network for Change Detection in High Resolution

Remote-Sensing Images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 5891–

5906, 2021, doi: 10.1109/TGRS.2020.3011913.

[97] X. Zheng, T. Gong, X. Li, and X. Lu, “Generalized Scene Classification from Small-Scale

Datasets with Multitask Learning,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–11,

2022, doi: 10.1109/TGRS.2021.3116147.

[98] W. Huang, Q. Wang, and X. Li, “FEATURE SPARSITY IN CONVOLUTIONAL

135

NEURAL NETWORKS FOR SCENE CLASSIFICATION OF REMOTE SENSING

IMAGE School of Computer Science and Center for OPTical IMagery Analysis and

Learning (OPTIMAL),” in IGARSS 2019 - 2019 IEEE International Geoscience and

Remote Sensing Symposium, 2019, pp. 3017–3020. doi: 10.1109/IGARSS.2019.8898875.

[99] M. M. Alam et al., “Classification of Deep-SAT Images under Label Noise,” Appl. Artif.

Intell., vol. 35, no. 14, pp. 1196–1218, 2021, doi: 10.1080/08839514.2021.1975381.

[100] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A Multiscale and Multidepth

Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening,” IEEE J.

Sel. Top. Appl. EARTH Obs. Remote Sens., vol. 11, no. 3, pp. 978–989, 2018.

[101] Y. Chen, Y. Wang, Y. Gu, X. He, P. Ghamisi, and X. Jia, “Deep Learning Ensemble for

Hyperspectral Image Classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,

vol. 12, no. 6, pp. 1882–1897, 2019, doi: 10.1109/JSTARS.2019.2915259.

[102] W. Kang, Y. Xiang, F. Wang, and H. You, “DO-Net : Dual-Output Network for Land

Cover Classification From Optical Remote Sensing Images,” IEEE Geosci. Remote Sens.

Lett., vol. 19, no. Art no. 8021205, pp. 1–5, 2022, doi: 10.1109/LGRS.2021.3114305.

[103] Q. Sang, Y. Zhuang, S. Dong, G. Wang, and H. Chen, “FRF-Net : Land Cover

Classification From Large-Scale VHR Optical Remote Sensing Images,” IEEE Geosci.

Remote Sens. Lett., vol. 17, no. 6, pp. 1057–1061, 2020, doi:

10.1109/LGRS.2019.2938555.

[104] B. Li et al., “Further Exploring Convolutional Neural Networks’ Potential for Land-Use

Scene Classification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 10, pp. 1687–1691,

2020, doi: 10.1109/LGRS.2019.2952660.

[105] P. Du, E. Li, J. Xia, A. Samat, and X. Bai, “Feature and Model Level Fusion of Pretrained

CNN for Remote Sensing Scene Classification,” IEEE J. Sel. Top. Appl. EARTH Obs.

Remote Sens., vol. 12, no. 8, pp. 2600–2611, 2019, doi: 10.1109/JSTARS.2018.2878037.

[106] N. Liu, L. Wan, Y. Zhang, T. Zhou, H. Huo, and T. Fang, “Exploiting Convolutional

Neural Networks With Deeply Local Description for Remote Sensing Image

Classification,” IEEE Access, vol. 6, pp. 11215–11228, 2018, doi:

10.1109/ACCESS.2018.2798799.

[107] R. Fan, R. Feng, L. Wang, J. Yan, and X. Zhang, “Semi-MCNN: A Semisupervised Multi-

CNN Ensemble Learning Method for Urban Land Cover Classification Using Submeter

136

HRRS Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 4973–4987,

2020, doi: 10.1109/JSTARS.2020.3019410.

[108] Y. Zhang, X. Zheng, Y. Yuan, and X. Lu, “Attribute-Cooperated Convolutional Neural

Network for Remote Sensing Image Classification,” IEEE Trans. Geosci. Remote Sens.,

vol. 58, no. 12, pp. 8358–8371, 2020, doi: 10.1109/TGRS.2020.2987338.

[109] Y. Han and J. Wang, “Application of Convolutional Neural Networks in Remote Sensing

Image Classification,” in Proceedings - 2019 2nd International Conference on Safety

Produce Informatization, IICSPI 2019, 2019, pp. 279–282. doi:

10.1109/IICSPI48186.2019.9096058.

[110] Z. Shao, K. Yang, and W. Zhou, “Performance Evaluation of Single-Label and Multi-

Label Remote Sensing Image Retrieval Using a Dense Labeling Dataset,” Remote Sens.,

vol. 10, no. 6, p. 964, 2018, doi: 10.3390/rs10060964.

[111] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate Object Localization in Remote Sensing

Images Based on Convolutional Neural Networks,” IEEE Trans. Geosci. Remote Sens.,

vol. 55, no. 5, pp. 2486–2498, 2017, doi: 10.1109/TGRS.2016.2645610.

[112] G. J. Scott, R. A. Marcum, C. H. Davis, T. W. Nivin, A. U. C. Merced, and L. Use,

“Fusion of Deep Convolutional Neural Networks for Land Cover Classification of High-

Resolution Imagery,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 9, pp. 1638–1642,

2017, doi: 10.1109/LGRS.2017.2722988.

[113] J. J. Senecal, J. w. Sheppard, and J. A. Shaw, “Efficient Convolutional Neural Networks

for Multi-Spectral Image Classification,” in 2019 International Joint Conference on

Neural Networks (IJCNN), 2019, no. 14-19 July 2019, pp. 1–8. doi:

10.1109/IJCNN.2019.8851840.

[114] C. Nagpal and S. R. Dubey, “A Performance Evaluation of Convolutional Neural

Networks for Face Anti Spoofing,” in IJCNN 2019. International Joint Conference on

Neural Networks, 2019, no. 14-19 July 2019, pp. 1–8.

[115] A. Shabbir et al., “Satellite and Scene Image Classification Based on Transfer Learning

and Fine Tuning of ResNet50,” Math. Probl. Eng., vol. 2021, p. 5843816, 2021, doi:

10.1155/2021/5843816.

[116] J. Liang, Y. Deng, and D. Zeng, “A Deep Neural Network Combined CNN and GCN for

Remote Sensing Scene Classification,” IEEE J. Sel. Top. Appl. EARTH Obs. Remote

137

Sens., vol. 13, pp. 4325–4338, 2020, doi: 10.1109/JSTARS.2020.3011333.

[117] D. Chen, P. Hu, and X. Duan, “Complex Scene Classification of High Resolution Remote

Sensing Images Based on DCNN Model,” in 2019 10th International Workshop on the

Analysis of Multitemporal Remote Sensing Images (MultiTemp), 2019, pp. 1–4. doi:

10.1109/Multi-Temp.2019.8866895.

[118] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “FULLY CONVOLUTIONAL

NEURAL NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION Inria

Sophia Antipolis - M ´ editerran ´ ee , TITANE team ; 2 Inria Saclay , TAO team , France

Email : emmanuel.maggiori@inria.fr,” in 2016 IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), 2016, pp. 5071–5074. doi:

10.1109/IGARSS.2016.7730322.

[119] B. Petrovska, E. Zdravevski, P. Lameski, R. Corizzo, I. Štajduhar, and J. Lerga, “Deep

Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene

Classification,” Sensors, vol. 20, no. 14, p. 3906, 2020, doi: 10.3390/s20143906.

[120] B. Hou, J. Li, X. Zhang, S. Wang, and L. Jiao, “Object Detection and Trcacking based on

Convolutional Neural Networks for High-Resolution Optical Remote Sensing Video,” in

IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium,

2019, pp. 5433–5436. doi: 10.1109/IGARSS.2019.8898173.

[121] Y. Hu, X. Li, N. Zhou, L. Yang, L. Peng, and S. Xiao, “A Sample Update-Based

Convolutional Neural Network Framework for Object Detection in Large-Area Remote

Sensing Images,” vol. 16, no. 6, pp. 947–951, 2019, doi: 10.1109/LGRS.2018.2889247.

[122] J. Pang, C. Li, J. Shi, Z. Xu, and H. Feng, “R2-CNN: Fast Tiny Object Detection in Large-

Scale Remote Sensing Images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp.

5512–5524, 2019, doi: 10.1109/TGRS.2019.2899955.

[123] M. Kim et al., “Convolutional Neural Network-Based Land Cover Classification Using 2-

D Spectral Reflectance Curve Graphs With Multitemporal Satellite Imagery,” IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens., vol. 11, no. 12, pp. 4604–4617, 2018, doi:

10.1109/JSTARS.2018.2880783.

[124] W. Zhang, P. Tang, and L. Zhao, “Remote Sensing Image Scene Classification Using

CNN-CapsNet,” Remote Sens., vol. 11, no. 5, p. 494, 2019, doi: 10.3390/rs11050494.

[125] P. Lin, M. Sun, C. Kung, and T. Chiueh, “FloatSD : A New Weight Representation and

138

Associated Update Method for Efficient Convolutional Neural Network Training,” IEEE

J. Emerg. Sel. Top. CIRCUITS Syst., vol. 9, no. 2, pp. 267–279, 2019, doi:

10.1109/JETCAS.2019.2911999.

[126] M. J. Bosco, G. Wang, and Y. Hategekimana, “Learning Multi-Granularity Neural

Network Encoding Image Classification Using DCNNs for Easter Africa Community

Countries,” IEEE Access, vol. 9, no. 2021, pp. 146703–146718, 2021, doi:

10.1109/ACCESS.2021.3122569.

[127] C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang, “Densely Based Multi-Scale and Multi-

Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image

Semantic Segmentation,” IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens., vol. 12, no.

8, pp. 2612–2626, 2019, doi: 10.1109/JSTARS.2019.2906387.

[128] M. J. Bosco and W. Guoyin, “Deeply Fine-Tune a Convolutional Neural Network in

Remote Sensing Image Classification : Easter Africa Countries (EAC),” in 2021 IEEE

2nd International Conference on Pattern Recognition and Machine Learning (PRML),

2021, pp. 13–20. doi: 10.1109/PRML52754.2021.9520703.

[129] A. Alem and S. Kumar, “Transfer Learning Models for Land Cover and Land Use

Classification in Remote Sensing Image,” Appl. Artif. Intell., vol. 60, no. 1, p. 2014192,

2022, doi: 10.1080/08839514.2021.2014192.

[130] X. Yin, W. Chen, X. Wu, and H. Yue, “Fine-tuning and Visualization of Convolutional

Neural Networks,” in 12th IEEE Conference on Industrial Electronics and Applications

(ICIEA), 2017, pp. 1310–1315. doi: 10.1109/ICIEA.2017.8283041.

[131] Y. Li, Y. Zhang, and Z. Zhu, “Learning Deep Networks under Noisy Labels for Remote

Sensing Image Scene Classification,” in IGARSS 2019 - 2019 IEEE International

Geoscience and Remote Sensing Symposium, 2019, pp. 3025–3028. doi:

10.1109/IGARSS.2019.8900497.

[132] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout :

A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol.

15, no. 56, pp. 1929–1958, 2014.

[133] J. Zhang et al., “Training Convolutional Neural Networks with Multi ‐ Size Images and

Triplet Loss for Remote Sensing Scene Classification,” Sensors, vol. 20, no. 4, p. 1188,

2020, doi: 10.3390/s20041188.

139

[134] K. Simonyan and A. Zisserman, “Very Veep Convolutional Networks for Large-scale

Image Recognition,” arXiv:1409.1556v6, pp. 1–14, 2015, doi: 10.48550/arXiv.1409.1556.

[135] H. A. Abdu, “Classification accuracy and trend assessments of land cover- land use

changes from principal components of land satellite images,” Int. J. Remote Sens., vol. 40,

no. 4, pp. 1275–1300, 2019, doi: 10.1080/01431161.2018.1524587.

[136] C. Cao, S. Dragićević, and S. Li, “Land-use change detection with convolutional neural

network methods,” Environ. - MDPI, vol. 6, no. 2, 2019, doi:

10.3390/environments6020025.

[137] X.-Y. Tong et al., “Land-cover classification with high-resolution remote sensing images

using transferable deep models,” Remote Sens. Environ., vol. 237, no. February 2020, p.

111322, 2020, doi: 10.1016/j.rse.2019.111322.

[138] B. Fang, R. Kou, L. Pan, and P. Chen, “Category-sensitive domain adaptation for land

cover mapping in aerial scenes,” Remote Sens., vol. 11, no. 22, p. 2631, 2019, doi:

10.3390/rs11222631.

[139] S. Hung, H. Wu, and M.-H. Tseng, “Remote Sensing Scene Classification and

Explanation Using RSSCNet and LIME,” Appl. Sci., vol. 10, no. 18, p. 6151, 2020, doi:

https://doi.org/10.3390/app10186151.

[140] Y. Yao, H. Zhao, D. Huang, and Q. Tan, “Remote sensing scene classification using

multiple pyramid pooling,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.

Photogramm. Image Anal. Munich Remote Sens. Symp., vol. XLII-2/W16, no. 18-20

September,2019, Munich, Germany, 2019.

[141] G. Cheng, X. Xie, J. Han, L. Guo, and G. S. Xia, “Remote Sensing Image Scene

Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and

Opportunities,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 3735–3756,

2020, doi: 10.1109/JSTARS.2020.3005403.

[142] D. Zhang, Z. Liu, and X. Shi, “Transfer learning on EfficientNet for remote sensing image

classification,” in Proceedings - 2020 5th International Conference on Mechanical,

Control and Computer Engineering, ICMCCE 2020, 2020, pp. 2255–2258. doi:

10.1109/ICMCCE51767.2020.00489.

[143] A. Vali, S. Comai, and M. Matteucci, “Deep Learning for Land Use and Land Cover

Classification based on Hyperspectral and Multispectral Earth Observation Data : A

140

Review,” Remote Sens., vol. 12, no. 15, p. 2495, 2020, doi: 10.3390/rs12152495.

[144] X. Pan, J. Wang, X. Zhang, Y. Mei, L. Shi, and G. Zhong, “A deep-learning model for the

amplitude inversion of internal waves based on optical remote-sensing images,” Int. J.

Remote Sens., vol. 39, no. 3, pp. 607–618, 2018, doi: 10.1080/01431161.2017.1390269.

[145] W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, “On combining multiscale deep learning

features for the classification of hyperspectral remote sensing imagery,” Int. J. Remote

Sens., vol. 36, no. 13, pp. 3368–3379, 2015, doi: 10.1080/2150704X.2015.1062157.

[146] M. Rashid et al., “A Sustainable Deep Learning Framework for Object Recognition using

Multi-layers Deep Features Fusion and Selection,” Sustain., vol. 12, no. 12, p. 5037, 2020,

doi: 10.3390/su12125037.

[147] B. G. Weinstein, S. Marconi, S. Bohlman, A. Zare, and E. White, “Individual tree-crown

detection in rgb imagery using semi-supervised deep learning neural networks,” Remote

Sens., vol. 11, no. 11, p. 1309, 2019, doi: 10.3390/rs11111309.

[148] M. Rostami, S. Kolouri, E. Eaton, and K. Kim, “Deep transfer learning for few-shot SAR

image classification,” Remote Sens., vol. 11, no. 11, p. 1374, 2019, doi:

10.3390/rs11111374.

[149] M. Y. Zou and Y. Zhong, “Transfer Learning for Classification of Optical Satellite,” Sens.

Imaging, vol. 19, no. 1, pp. 1–13, 2018, doi: 10.1007/s11220-018-0191-1.

[150] S. Kumar, M. Talib, Naman, and P. Verma, “Covid Detection from X-RAY and CT Scans

using Transfer Learning – A Study,” in Proceedings of the International Conference on

Artificial Intelligence and Smart Systems (ICAIS-2021), 2021, pp. 85–92. doi:

10.1109/ICAIS50930.2021.9395784.

[151] Z. Chen, T. Zhang, and C. Ouyang, “End-to-end airplane detection using transfer learning

in remote sensing images,” Remote Sens., vol. 10, no. 1, pp. 1–15, 2018, doi:

10.3390/rs10010139.

[152] Y. Zhu et al., “Heterogeneous Transfer Learning for Image Classification,” Proc. Twenty-

Fifth AAAI Conf. Artif. Intell. Heterog., pp. 1304–1309, 2011.

[153] X. Zhang, Y. Guo, and X. Zhang, “Deep convolutional neural network structure design for

remote sensing image scene classification based on transfer learning,” in IOP Conf.

Series: Earth and Environmental Science 569 (2020) 012046 IOP, 2020, p. 012046. doi:

10.1088/1755-1315/569/1/012046.

141

[154] H. Astola, L. Seitsonen, E. Halme, M. Molinier, and A. Lönnqvist, “Deep neural networks

with transfer learning for forest variable estimation using sentinel-2 imagery in boreal

forest,” Remote Sens., vol. 13, no. 12, p. 2392, 2021, doi: 10.3390/rs13122392.

[155] M. Zhu, Y. Xu, S. Ma, S. Li, H. Ma, and Y. Han, “Effective airplane detection in remote

sensing images based on multilayer feature fusion and improved nonmaximal suppression

algorithm,” Remote Sens., vol. 11, no. 9, p. 1062, 2019, doi: 10.3390/rs11091062.

[156] Y. Qian, W. Zhou, W. Yu, L. Han, W. Li, and W. Zhao, “Integrating backdating and

transfer learning in an object-based framework for high resolution image classification

and change analysis,” Remote Sens., vol. 12, no. 24, p. 4094, 2020, doi:

10.3390/rs12244094.

[157] M. Liu, B. Fu, D. Fan, P. Zuo, S. Xie, and H. He, “Study on transfer learning ability for

classifying marsh vegetation with multi-sensor images using DeepLabV3+ and HRNet

deep learning algorithms,” Int. J. Appl. Earth Obs. Geoinf., vol. 103, p. 102531, 2021.

[158] R. Naushad and T. Kaur, “Deep Transfer Learning for Land Use Land Cover

Classification : A Comparative Study,” arXiv:2110.02580v2, Online available at

https://arxiv.org/abs/2110.02580, 2021.

[159] A. Alem and S. Kumar, “Deep Learning Methods for Land Cover and Land Use

Classification in Remote Sensing: A Review,” in ICRITO 2020 - IEEE 8th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions), 2020, no. Amity University, Noida, India. June 4-5, 2020, pp. 903–908. doi:

10.1109/ICRITO48877.2020.9197824.

[160] V. Risojevic and V. Stojnic, “The Role of Pre-Training in High-Resolution Remote

Sensing Scene Classification,” arXiv:2111.03690v1, vol. 14, no. 8, pp. 1–10, 2021.

[161] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

doi: 10.1109/CVPR.2016.90.

[162] J. Xiao, J. Wang, S. Cao, and B. Li, “Application of a Novel and Improved VGG-19

Network in the Detection of Workers Wearing Masks,” J. Phys. Conf. Ser., vol. 1518, no.

2020, p. 012041, 2020, doi: 10.1088/1742-6596/1518/1/012041.

[163] M. Mateen, J. Wen, Nasrullah, S. Song, and Z. Huang, “Fundus Image Classification

Using VGG-19 Architecture with PCA and SVD,” Symmetry (Basel)., vol. 11, no. 1, p. 1,

142

2019, doi: 10.3390/sym11010001.

[164] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the Inception Architecture

for Computer Vision,” arXiv:1512.00567v3, 2015.

[165] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann

Machines,” in Proceedings of the 27th International Conference on International

Conference on Machine Learning, Haifa, Israel,21–24 June 2010, 2010, pp. 807–814. doi:

10.1123/jab.2016-0355.

[166] E. A. Alshari and B. W. Gawali, “Development of classification system for LULC using

remote sensing and GIS,” Glob. Transitions Proc., vol. 2, no. 1, pp. 8–17, 2021, doi:

10.1016/j.gltp.2021.01.002.

[167] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring Hierarchical Convolutional

Features for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol.

56, no. 11, pp. 6712–6722, 2018, doi: 10.1109/TGRS.2018.2841823.

[168] J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, “Object Detection in Optical Remote

Sensing Images based on Weakly Supervised Learning and High-Level Feature

Learning,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325–3337, 2015, doi:

10.1109/TGRS.2014.2374218.

[169] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Ducoffe, “Potential,

Challenges and Future Directions for Deep Learning in Prognostics and Health

Management Applications,” Eng. Appl. Artif. Intell., vol. 92, no. May, p. 103678, 2020,

doi: 10.1016/j.engappai.2020.103678.

[170] U. Zahid et al., “BrainNet : Optimal Deep Learning Feature Fusion for Brain Tumor

Classification,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/1465173.

[171] B. Yang, S. Hu, Q. Guo, and D. Hong, “Multisource Domain Transfer Learning Based on

Spectral Projections for Hyperspectral Image Classification,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens., vol. 15, pp. 3730–3739, 2022, doi:

10.1109/JSTARS.2022.3173676.

[172] H. Alhichri, A. S. Alswayed, Y. Bazi, N. Ammour, and N. A. Alajlan, “Classification of

Remote Sensing Images Using EfficientNet-B3 CNN Model with Attention,” IEEE

Access, vol. 9, no. 2021, pp. 14078–14094, 2021, doi: 10.1109/ACCESS.2021.3051085.

[173] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural

143

networks for remote sensing image classification,” in 2016 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 5071–5074. doi:

10.1109/IGARSS.2016.7730322.

[174] Z. Zeng, X. Chen, and Z. Song, “MGFN: A Multi-Granularity Fusion Convolutional

Neural Network for Remote Sensing Scene Classification,” IEEE Access, vol. 9, pp.

76038–76046, 2021, doi: 10.1109/ACCESS.2021.3081922.

[175] Y. Hu, Q. Zhang, Y. Zhang, and H. Yan, “A deep Convolution Neural Network Method

for Land Cover Mapping: A Case Study of Qinhuangdao, China,” Remote Sens., vol. 10,

no. 12, pp. 1–17, 2018, doi: 10.3390/rs10122053.

[176] B. Zhao, Y. Zhong, L. Zhang, and B. Huang, “The fisher Kernel coding framework for

high spatial resolution scene classification,” Remote Sens., vol. 8, no. 2, p. 157, 2016, doi:

10.3390/rs8020157.

[177] Q. Zhu, Y. Zhong, B. Zhao, G. Xia, and L. Zhang, “Bag-of-visual-words scene classifier

combining local and global features for high spatial resolution imagery,” IEEE Geosci.

Remote Sens. Lett., vol. 13, no. 6, pp. 747–751, 2016, doi: 10.1109/LGRS.2015.2513443.

144

APPENDICES

Appendix I: Journal and Conference Publications

Journal Papers:

1. A. Alem and S. Kumar (2022). Deep Learning Models Performance Evaluations for

Remote Sensed Image Classification, IEEE Access, vol. 10, pp. 111784-111793, DOI:

10.1109/ACCESS.2022.3215264 (SCIE, IF: 3.476, best quartile- Q1)

2. A. Alem and S. Kumar (2022). End-to-end Convolutional Neural Network Feature

Extraction for Remote Sensed Images Classification, Applied Artificial Intelligence, vol.

36 (1), art. no. 2137650, DOI: 10.1080/08839514.2022.2137650 (SCIE, IF: 2.777, best

quartile- Q2)

3. A. Alem and S. Kumar (2021). Transfer Learning Models for Land Cover and Land Use

Classification in Remote Sensing Image, Applied Artificial Intelligence, vol. 36 (1), art.

no. 2014192, DOI: 10.1080/08839514.2021.2014192 (SCIE, IF: 2.777, best quartile-

Q2)

Published and Presented Conference Papers:

1. A. Alem and S. Kumar (2022), “Deep Learning Models for Remote Sensed Hyperspectral

Image Classification,” 2022 13th International Conference on Computing, Communication

and network Technologies (ICCCNT), Kharagpur, India, Oct 3-5, 2022, pp. 1-7, doi:

10.1109/ICCCNT54827.2022.9984282. (IEEE Explore Scopus Indexed)

2. A. Alem and S. Kumar, "Deep Learning Methods for Land Cover and Land Use

Classification in Remote Sensing: A Review," 2020 8th International Conference on

Reliability, Infocom Technologies and Optimization (Trends and Future Directions)

(ICRITO), Noida, India, 2020, pp. 903-908, doi: 10.1109/ICRITO48877.2020.9197824.

(IEEE Explore Scopus Indexed)

3. Abebaw Alem, Shailender Kumar, Transfer Learning for Land Use Classification in Remote

Sensing. In Jamia Teachers’ Association Multidisciplinary International Conference

(JTACON-2020), New Delhi, India, February 16-18, 2020. (Presented)

https://doi.org/10.1080/08839514.2021.2014192

145

Appendix II: List of ML and DL Tools and Package Libraries for applications

No Python Libraries Type of library Descriptions

1 Apache Singa
ML, DL, NLP,

Image processing

Supporting scalable and distributed training for healthcare applications using ML

algorithms

2 H2o ML framework Used for statistical, ML and AI algorithms

3 HDF5
Data

manipulation

Enabling the storage of huge amounts of numerical data and manipulating the data easily

from NumPy

4
Keras, TensorFlow, Theano, Caffe,

Torch
DL

Providing fast and easy scientific computing of numerical data with deep neural networks,

effectively handling mathematical expressions such as matrix values, modeling for

language and vision applications

5

Matplotlib, Seaborn, Bokeh, Plotly,

NetworkX, Basemap,d3py, ggplot,

prettyplotlib

Visualization

Visualizing the data from Python quickly Plotting 2D graphs in various formats such as

bar charts, plots, histograms, error charts, power spectra, and scatter plots across platforms

using a few lines of code

6 MLlib ML Encompassing sets of ML algorithms like classification and clustering

7 NumPy
Numerical

Operations

Supporting the scientific computing that is high-level mathematical functions over large,

multi-dimensional arrays and matrices

8

NumPy, SciPy, matplotlib,

OpenCV, scikit-learn, scikit-image,

ilastik

Image

Processing

Providing a set of algorithms for image processing, supporting geometric transformations,

segmentation, filtering, color space manipulation, morphology, analysis, and feature

detection

9 Pandas Data Analysis
Offering high-performance operations and data structures for time series and numerical

tables manipulation

10 PyBrain Neural Network
Providing algorithms for reinforcement learning, neural networks, unsupervised learning,

and evolution to analyze large-scale data

11 RankLib ML
Providing a set of learning to rank algorithms and supporting the evaluation using retrieval

metrics

12
Scikit- Learn, Shogun, Pattern,

PyLearn2, PyMC
ML Algorithms

Providing ML techniques (such as classification, clustering, and regression),

Interoperating with the numerical and scientific libraries (such as NumPy and SciPy)

13 Shogun ML Providing different data structures and algorithms for ML problems

14 Statsmodel
Statistical

Analysis

Conducting statistical data exploration and statistical tests Performing statistical

computations such as descriptive statistics and providing classes and functions to estimate

different statistical models

15 SymPy
Statistical

Applications

Supporting symbolic mathematics and modeling the full-featured Computer Algebra

System (CAS)

