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Abstract

The Fourier Transform is a powerful mathematical tool that decomposes a function or a
signal into its constituent frequencies, revealing the underlying frequency content and pro-
viding insights into its behavior. This thesis presents a comprehensive exploration of the
Fourier Transform, covering its theoretical foundations, various techniques for implemen-
tation, and a wide range of applications across different fields.
The thesis begins by providing a comprehensive overview of Fourier series, introducing
the key concepts and mathematical foundations. The fundamental properties of periodic
functions and the Fourier series representation are elucidated, including the convergence,
linearity, and symmetry properties.
Furthermore, this thesis explores the broad spectrum of applications of the Fourier Trans-
form. It examines its role in signal processing, such as filtering, spectral analysis, and noise
reduction. Additionally, it discusses the use of Fourier Transform in image processing, in-
cluding image enhancement, compression, and pattern recognition.
In conclusion, this thesis provides a comprehensive overview of the Fourier Transform, elu-
cidating its theoretical foundations, implementation techniques, and versatile applications.
It highlights the transformative impact of the Fourier Transform in diverse fields and em-
phasizes its significance as a fundamental tool for understanding and manipulating signals
and data in the frequency domain.
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Chapter 1

INTRODUCTION

Infinite series are used frequently in modern analysis today.With the introduction of arith-
metic operations in the field of numbers, the idea of ”infinite series” originated.There is solid
proof that Greek mathematicians like Archimedes, Eudoxous, and others employed infinite
series for good in geometry, including calculating the area enclosed by simple curves, the
volume of simple bodies, and other subjects.With the exception of a few, mathematicians
employed infinite series instead of having a clear understanding of the amount that the series
represented because they saw infinite series as a prolongation of the process of computing fi-
nite sums.They thought that the typical approach that works for finite sums would ipso facto
work for infinite series as well.Due to this idea of infinite series, mathematicians ran into a
lot of inconsistencies that caused them to question the validity of mathematics as a whole
because of its unfailing ability to arrive at the right result.Mathematicians with taste sought
to employ infinite series as little as possible.However, infinite series became a necessary
tool after calculus was discovered in the seventeenth century, and the issue became more
serious because infinite series could no longer be avoided.The only corrective measures
taken at the time by mathematicians were to choose series on which arithmetic operations
were unquestionably applicable and to utilise those series in the demonstrations.However,
an infinite series’ sum was no longer an arithmetic sum of numbers.When Cauchy’s the-
ory of the convergence of infinite series was developed, it vanished.In 1821, A.L. Cauchy
provided a method to calculate the sum of an infinite series based on the idea of limit in
his book ”Analyse Algebrique.” According to this concept, let

∑∞
n=0 un be a given infinite
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series and sn denotes the nth partial sum of the series
∑∞

n=0 un. That is

sn =
n∑

n=0

uk ;n = 0, 1, 2, 3, ....

Suppose there is a number s, such that for any ϵ > 0 there is a natural number m (depends
upon ϵ) such that

|sn − s| < ϵ, for all n ≥ m

, then the sum of the series
∑∞

n=0 un is s,that is the limit of the sequence sn. Since the
limit is unique, no infinite series can have two different sums. Cauchy called a series for
which the sum s of an infinite series

∑∞
n=0 un exists, a convergent series and such of the

other series for which the sum based on the above concept did not exist were termed as
non-convergent or divergent series. The infinite series that were non-convergent were out-
side the understandable domain of mathematics and can be treated as useless phantoms of
mathematics. As a result, Cauchy’s concept of convergence could give a sum to only a few
infinite series, which were excluded from the valid domain of mathematics. Because it was
so simple and effective, Cauchy’s method for calculating the sum of an infinite series was
adopted almost without exception by the mathematic community of the time.For a while, it
seemed as though the sum and applications of infinite series problem had been entirely and
definitively solved. Soon later, it became apparent that some divergent series caused issues
with the use of mathematics in physics. Despite the approximation of some series used
in dynamical astronomy agreeing with the evaluated data, the actual series was divergent.
Even though Fourier series had many uses in wave mechanics, they weren’t always con-
vergent in the Cauchy sense. The concept of series convergence put forth by Cauchy had a
far-reaching impact and helped put many oddities to rest, but mathematicians soon realised
that this was not the end of the road. Researchers resumed their investigation into divergent
series.Fejer developed a theorem in 1904 that states the arithmetic mean of the partial sums
of a continuous function’s Fourier series always converges to the function itself. It didn’t
take long for curious mathematicians to realise that Cauchy’s idea of a sum to the infinite
series is only a procedure, and that comparable methods could be created to assign sums to
a larger class of infinite series. This mathematical insight led to the discovery of summa-
bility methodologies’ foundation. Great mathematicians including Abel, Cesàro, Holder,
Nörlund, Reisz, Borel, and Hausdorf developed some of the most well-known procedures,
which are named after them.The use of functional analysis techniques in recent years has
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had an impact on a number of contemporary fields, including probability theory, number
theory, and functional analysis. It has also aided in the development of a rich and fruitful
summability theory, which has helped in the elimination of numerous puzzles from the field
of mathematical analysis.

In the preceding sentences, we provide a detailed breakdown of the many concepts and
terminologies in the summability theory that are pertinent to the chapter’s argument.

P is a summability technique. A series is said to be summable using the procedure
P if it assigns a sum to the infinite series

∑∞
n=0 un . The phrase

∑∞
n=0 un in P is also

used. Similar to the last illustration,
∑∞

n=0 un means that
∑∞

n=0 un cannot be summed
up with P . The idea of convergence has simply been enlarged to include summability.
The introduction of absolutely summability methods is analogous to the generalisation of
absolutely convergence.

Summability methods are devices to associate a sum in a reasonable way to some non-
convergent series.

A summability method will not be worthwhile, if it fails to assign a sum to a series which
is not convergent in Cauchy’s sense. Further more if the new sum of the series coincides
with Cauchy’s sum, the method will be more useful. Accordingly we define the followings

(1)A summability technique P is deemed conservative if a series’ convergence implies
the method’s P summability.

(2) If absolute convergence of a series means that it is absolutely summable by the
method P , then the method P is said to be absolutely conservative.

(3) If a summability method P is conservative and maintains the sum of the convergent
series (which coincides with Cauchy’s sum), it is considered to be regular.

(4) If a summability method ”P ” is both absolutely conservative and regular, it is said
to be absolutely regular.

(5) If two summability methods do not sum a series to two different sums, they are
considered to be consistent. As usual, ”N,Z,Q,R” stands for the set of natural, integer,
rational, and real numbers, respectively. ”C” or ”K” stand for the set of complex numbers,
respectively.

(6) Let {xn} be a sequence. Then the difference operator ∆ on {xn} is recursively
defined by

∆xn = xn − xn+1, n = 0, 1, 2, . . . .

∆kxn = ∆
(
∆k−1xn

)
for k ∈ N.
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Basic Technique
The process of summability approaches involves transforming a given infinite series or
sequence of partial sums into another series or sequence, which can then be analyzed and
evaluated using Cauchy’s method as the fundamental technique. Summability approaches
fall into one of two groups, depending on the type of change. The T -Process and the φ
Process are them.

T-Processes
Let’s have a look at the collection of all real or complex number sequences. The sequences
over a complex or real field form an infinite-dimensional vector space, which we’ll denote
as S. “Within this space, we define a linear transformation T that maps the sequence space
onto itself. Which is

T (x {sn}+ y {tn}) = xT ({sn}) + yT ({tn})

for any two sequences {sn} , {tn} of the sequence space S and x, y are elements of the
field.

A summability method P belongs to the T-process if it is a linear transformation from
a sequence space into itself. If P can be represented by an infinite matrix, denoted as
(amn)∞×∞, then we refer to P as a matrix transformation.” Thus a matrix transformation is
a matrix P = (amn)∞×∞ that transformations a sequence {sn} into another sequence {tn}
as follows:

{tn} = P {sn}

or

({tm}) = P ((sn))

= ((amn)) ((sn))

tm =
∞∑
n=0

amnsn,m = 0, 1, 2, . . .

4



The necessary and sufficient condition for the matrix method P = (amn)∞×∞ to be
regular are :

sup
m

∞∑
n=0

|amn| ≤ H

where H is an absolute constant,

lim
m→∞

amn = 0, for every fixed n,

lim
m→∞

∞∑
n=0

amn = 1

Toeplitz initially established these conditions for triangular matrices, while Steinhaus
later demonstrated that they also hold true for general matrices. If the condition holds for
every value ofm = 0, 1, 2, . . ., the matrix T is referred to as completely regular.

Sequence of partial sums {sn} of a series
∑∞

n=0 un with its is said to be absolutely P -
summable if theP -transform of {sn} is a function of bounded variation. Therefore

∑∞
n=0 un

is absolutely P -summable or simply
∑∞

n=0 un ∈ |P | if

∞∑
n=1

|tn − tn−1| = O(1)

where tn is as definition. The necessary and sufficient conditions for absolutely regu-
larity of P -methods are:

∞∑
n=0

amn is convergent for allm

∞∑
m=1

∣∣∣∣∣
p∑

n=1

(amn − am−1,n)

∣∣∣∣∣ ≤ K

K is an absolute constant.
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Chapter 2

FOURIER SERIES

The synthetic theory has had a significant impact on Fourier analysis. It became evident
that Cauchy’s method of assigning sums to infinite series was inadequate when applied to
Fourier series. This led to the development of summation theory, which aimed to determine
the value of the generating function whenever a Fourier series of a continuous function con-
verged. Fejer and Lebesgue’s findings confirmed that the Fourier series of any summable
function (C, 1) could be summed almost everywhere. This result resolved the problem of
convergence that Cauchy’s method was unable to address.

The recognition of this fact sparked the rapid advancement of synthesis theory. Fourier
analysis greatly benefited from the utilization of summability methods, as it allowed for
the resolution of various anomalous situations encountered in both ordinary and absolute
summability methods. Simultaneously, the application of summability methods to infinite
series contributed significantly to their progress and refinement.

Given an integrable function f(x) of period 2π, the series

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

is called the Fourier series of f(x); where

a0 =
1

π

∫ π

−π

f(x)dx

ak =
1

π

∫ π

−π

f(x) cos kxdx, for k = 1, 2, 3, . . .

bk =
1

π

∫ π

−π

f(x) sin kxdx, for k = 1, 2, 3, . . .
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{ak} and {bk} are called Fourier constant of f(x). This indicates that the series is the
Fourier series of f(x) and then we write

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

As per Hurwitz, it is crucial to emphasize that there is no assumption made regarding
the series being convergent or converging to f(x)when expressing it. However, it is known
that if f(x) is a periodic function with period 2π, integrable over the interval [−π, π], and
exhibits continuity or finite discontinuity at a particular point, there exists a positive value
δ such that for all h in the interval [0, δ], the two ratios

f(x+ h)− f(x+)

h
and

f(x− h)− f(x−)

h

are integrable over the interval [0, δ].
Let

1

2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt)

=
1

2
a0 +

∞∑
n=1

An(t)

be the Fourier series of f(t). series

∞∑
m=1

(bn cosnt− an sinnt) =
∞∑
n=1

Bn(t)

is called conjugate series of the Fourier series

1

2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt)

Let {λn} be a sequence of real constants. Then the string
∑
λnBn(x) is called the

associative conjugate.
We use the following notation

ϕ(t) =
1

2
{f(x+ t) + f(x− t)}

and

7



ψ(t) =
1

2
{f(x+ t)− f(x− t)}

We can easily have

An(t) =
2

π

∫ π

0

ϕ(t) cosntdt

and

An(t) =
2

π

∫ π

0

φ(t) cosntdt

We also have

Ψ0(t) = ψ(t)

Ψβ(t) =
1

Γ(β)

∫ t

0

(t− u)β−1ψ(u)du, β > 0

ψβ(t) = Γ(β + 1)t−βΨ̄β(t), β ≥ 0

[x] = greatest integer not exceeding x,

U =

[
1

u

]
, τ =

[
1

t

]
.

2.1 METHODS OF SUMMABILITY

CESÀROMETHOD OF SUMMABILITY
There is a familiar particularization of T -process where we defined in , we take

where Aα
n =

(
n+ α

α

)
Weobtain a specific summability technique known as the Cesàromethod of By applying

a specific sequence-to-sequence transformation, we obtain a summability technique known
as the Cesàro method of summation. In this method, the sequence of partial sums of the
infinite series is denoted as sn, while the transformed sequence is represented by

∑
un.

Vn =
1

Aα
n

n∑
k=0

Aα−1
n−ksk, n ∈ N

Cesàro is credited with developing the summing method for positive integral orders.
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Knopp later expanded it to include all positive fractional orders, and Chapman and Hardy
and Chapman expanded it to include negative orders > −1.

It is obvious that the Cesàro technique of order 0., which is equivalent to convergence
and absolute convergence, respectively, is (C,O) and |C, 0|. The (C, 1) approach and the
method of summing by arithmetic methods are same as well. It is possible to confirm the
regularity and consistency of all Cesàro procedures for summing of positive order (α > 0).

Fekete established the concept of the absolute Cesàro technique of summing for positive
integral orders. Then Kogbetliantz widened it to incorporate all orders. He also defined the
inclusion relations for both ordinary and absolute Cesàro summabilities for β ≥ α > −1.

(C, α) ⊆ (C, β)

and

|C, α| ⊆ |C, β|

NÖRLUND METHOD OF SUMMABILITY
In the T-method, if we take,

ank =


pn−k

Pn
, if Pn ̸= 0 for k ≤ n

0, if k > n

where {pn} is a sequence of complex or real constants and Pn =
∑n

k=0 pk ̸= 0, we
obtain a synthesis method known as Nörlund synthesis. Thus, the sequence transformation

tn =
1

Pn

n∑
k=0

pn−ksk, Pn ̸= 0, n ∈ N

determines the Nörlund mean of the series
∑
un or the sequence {sn} generated by the

coefficient series {pn}. If limn→∞ tn = s is a finite number, then the series
∑
un is said to

be Nörlund summable, or more specifically, (N, pn) can be summed to s. Furthermore if

∑
|tn − tn−1| <∞

the string
∑
un is said to be completely composable in a Nörlund fashion, or simply

|N, pn| is composable in s. The regularity conditions of this method are

9



(i) lim
n→∞

pn
Pn

= 0

and

(ii)
n∑

k=0

|pk| ≤ C |Pn|

where C is a constant.
In 1919, Nörlund introduced the method a independent way. Since then, the method has

remained widely identified by its name. If special, we take

Pn = Aα−1
n =

Γ(n+ α)

Γ(n+ 1)Γα
, α > 0

then the method (N, pn) reduces to the method (C, α).

RIESZ SUMMABILITY
If in the defined T method, we take

ank =

{
pk
Pn
, Pn ̸= 0, for k ≤ n

0, if for k > n
,

}
.

where {pn} is a sequence of real or complex constants and Pn =
∑n

k=0 pk ̸= 0, we get
a summation method called Riesz summability or

(
N̄ , pn

)
summability. If {tn} converges

to s, a finite numbers, then the sequence
∑
un is Riesz composable or ( barN, pn) - can

add up to s. Also, if {tn} ∈ BV , ie

∑
|tn − tn−1| <∞

The sequence-to-sequence transformation given by

tn =
1

Pn

n∑
k=0

pksk, Pn ̸= 0, n ∈ N

determines the average (N̄ , pn) of the series
∑
un or the sequence {sn} with the coef-

ficient sequence {pn}. the string
∑
un is said to be fully composable according to Riesz,

or simply
∣∣N̄ , pn∣∣ is composable to s

10



Specifically, if we take pn = 1, for every n then
(
N̄ , pn

)
means reduce to (C, 1) means

. Also, for pn = en for every n,
(
N̄ , pn

)
is equivalent to convergence.

The regularity conditions of the method
(
N̄ , pn

)
are

(I) lim
n→α

|Pn| = ∞

And

(ii)
n∑

k=0

|pk| ≤ C |Pn|

where C is an absolute constant. This summing method was first introduced by Riesz
in 1909.

ABEL SUMMABILITY
If
∑
un is an infinite series with a sequence of partial sums {sn}, we can define a sequence

transformation into a function by

t(x) = (1− x)
∞∑
n=0

xnsn

where t(x) is assumed to exist for all x in the domain 0 ≤ x < 1, we define the
functional transformation t(x) of Abel summation for the series

∑
un. If limx→1 t(x) = b,

a finite number, then the sequence
∑
un is said to be Abel composable, or simply possible

sums up (A), to s. Furthermore, if t(x) ∈ BV in [0, 1) then the sequence
∑
un called Abel

is completely composable, or simply |A|-is composable.
Abel’s method is widely recognized as a robust and effective summation technique, re-

garded as both conventional and absolute. It encompasses the methods of Cesàro and Nör-
lund, making it particularly powerful. However, it is important to note that Whittakar has
demonstrated through examples that the convergence of a series does not always guarantee
the existence of a sum under the |A| (Abel) method. Even before Abel, mathematicians
extensively employed this method to assign sums to infinite series. Euler, in particular,
frequently utilized this technique to assign finite values to non-convergent series. With the
introduction of the concept of a limit by Cauchy, Abel precisely described this method in
terms of limits, and as a result, it became associated with his name.

11



(N, p, q) SUMIMABILITY METHOD

Let amn =

{
pm−nqn

rm
for n ≤ m,

0 for n > m,
,

where {pn} and {qn} are two sequences of real or complex constants such that

rm =
m∑

n=0

pm−nqn ̸= 0, for allm

then convert the sequence to the sequence given by

tm =
1

rm

m∑
n=0

pm−nqnsn

is m-th (N, p, q) mean of {sn}. This method was first introduced by Borwein. In this
method if we put {pn} = {1} then reduces to (N̄ , q)mean of {sn} and if we put {qn} = {1},
then it reduces to (N,P ) mean of {sn}

12



Chapter 3

FOURIER TRANSFORM

When transitioning from Fourier series to Fourier transform, the term ”transition” is appro-
priate because it signifies the shift from analyzing periodic functions to aperiodic functions.
As we extend the period of a function, we consider aperiodic functions as a limiting case.
However, this process does not directly yield the desired result. Obtaining the Fourier trans-
form from the Fourier coefficients requires some additional adjustments, but it leads to a
smooth transition and an intriguing exploration.

Example: Square function and it’s Fourier transform. Let’s look at a concrete, simple
example. Consider the rectangle function defined by , or “Rect” for short.

Π(s) =

1, |s| < 1/2

0, |s| ≥ 1/2

This is a not-so-complicated graphic.

Π(t) is even - centerod at the origin - and has width 1 . One function that we will consider

13



is Π(t), which can be envisioned as representing a switch that is turned on for one second
and off for the remaining time. Π is commonly referred to as the top hat function due to its
graphical shape.

Π(t) is not periodic. There is no Fourier series. In case you’re having trouble, I’ve
experimented with periodization a bit and want to do it with Π for a specific purpose.Π(t),
when viewed as a periodic version, repeats the non-zero segment of the function at regular
intervals, with longer intervals where the function is zero. A visualization of this can be
imagined by turning the switch on for 1 second and then repeating this pattern, leaving it
off for an extended period while intermittently turning the switch on. This concept is often
associated with the term ”duty cycle.” Below is a plot of Π(t) periodized with a period of
15.

The provided graphs depict the Fourier coefficients of periodic rectangular functions with
periods 2, 4, and 16. Since the function is real and even, the Fourier coefficients are real in
all cases. Therefore, these graphs display the actual coefficients, and the magnitude squared
is not shown.
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It can be seen that the frequencies get closer and closer as the period increases. It will be
as follows. Indeed, the coefficients of the Fourier series exhibit a specific pattern or curve
for the given example. Analyzing this particular example and combining it with further
examples can lead to general statements and insights. By studying the behavior of the
coefficients, we can uncover broader principles and understanding in the context of Fourier
analysis.

The Fourier series has the form

f(t) =
∞∑

n=−∞

cne
2πint/T

In the spectrum of a signal, the frequencies are spaced apart by 1/T , where T represents
the period of the signal. As the period T increases, the points in the spectrum become more
closely packed, leading to a higher density of frequencies. This observation is evident in the
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provided pictures, where the spacing between the points in the spectrum becomes smaller
as the period T increases. The nth Fourier coefficient is given by

cn =
1

T

∫ T

0

e−2πint/Tf(t)dt =
1

T

∫ T/2

−T/2

e−2πint/Tf(t)dt

We can find the Fourier coefficient for Π(t) :

cn =
1

T

∫ T/2

−T/2

e−2πint/TΠ(t)dt =
1

T

∫ 1/2

−1/2

e−2πint/T · 1dt

=
1

T

[
1

−2πin/T
e−2πint/T

]t=1/2

t=−1/2

=
1

2πin

(
eπin/T − e−πin/T

)
=

1

πn
sin
(πn
T

)
.

The spectrum is represented by a discrete set of points indexed by n, where each point
in the spectrum corresponds to n/T for n = 0,±1, . . ..

We’re approaching the desired point, but we haven’t quite reached it yet. If we intend
to consider a limit such as T → ∞ for every n, then n/T will become very small as T
becomes very large,

1

πn
sin
(πn
T

)
is about size

1

T
(remember sin θ ≈ θ if θ small)

That is, for each n of this so-called transformation,

1

πn
sin
(πn
T

)
It tends to 0, like 1/T . To compensate for this, we scale up by T . i.e. instead of

( periodicized Π)
(n
T

)
= T

1

πn
sin
(πn
T

)
=

sin(πn/T )
πn/T

.

In fact, the scaled transformation plot is shown above. And if T is large, you can con-
sider replacing the dense discrete points n/T with a continuous variable like s.

( periodicized Π)(s) =
sin πs
πs

.
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(n
T

)
= T · cn

=

∫ T/2

−T/2

e−2πint/Tf(t)dt.

Now, let’s envision the scenario where we take the limit as T approaches infinity and
replace the discrete variable n/T with a continuous variable s. We can also shift the limits
of integration to−∞ and+∞. In this context, the functionΠwould refer to the rectangular
function defined previously. The (limited) conversion formula for

Π̂(s) =

∫ ∞

−∞
e−2πistΠ(t)dt

Let’s solve the integral. (I’ve seen the discrete form before, so I know what the answer
is.)

Π̂(s) =

∫ ∞

−∞
e−2πistΠ(t)dt =

∫ 1/2

−1/2

e−2πst · 1dt = sin πs
πs

Here are the graphics. Now, if we observe the continuous curve, it will closely follow
and shadow the plot of the discrete scaled Fourier coefficients.
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A function sinc(t) = sin(πt)
πt

is encountered frequently in this subject and is commonly
referred to as the sinc function.

sinc t =
sin πt
πt

As

sinc 0 = 1

by well-known limit

lim
t→0

sin t
t

= 1

It is quite common for electrical engineers to be familiar with and encounter the sinc
function frequently in their field of study and work.
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How common is that? If you start periodicizing almost any function with the intention
of T → ∞ you’ll run into the same idea, namely scaling Fourier coefficients with T .
Suppose f(t) is outside |t|.Zero ≤ 1/2. (It can be any interval; we just want to assume that
the function outside the interval is zero.)

cn =
1

T

∫ T/2

−T/2

e−2πint/Tf(t)dt =
1

T

∫ 1/2

−1/2

e−2πint/Tf(t)dt.

|cn| =
1

T

∣∣∣∣∣
∫ 1/2

−1/2

e−2πint/Tf(t)dt

∣∣∣∣∣
≤ 1

T

∫ 1/2

−1/2

∣∣e−2πint/T
∣∣ |f(t)|dt = 1

T

∫ 1/2

−1/2

|f(t)|dt = A

T
,
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where

A =

∫ 1/2

−1/2

|f(t)|dt

which remains constant regardless of the values of n and T . It is worth noting that cn
approaches zero as 1/T , so we can rescale it by multiplying with T and examine

( Scaled transform of f)
(n
T

)
= Tcn =

∫ T/2

−T/2

e−2πint/Tf(t)dt

In the limit as T → ∞ we replace n/T by s and consider As we take the limit of T
approaching infinity, we substitute n/T with s and consider the following expression:

f̂(s) =

∫ ∞

−∞
e−2πistf(t)dt

We have now arrived at the integral formula for the Fourier transform.
The Fourier transform of a function f(t) is defined as follows:

f̂(s) =

∫ ∞

−∞
e−2πistf(t)dt

Let’s consider this as an initial definition. We will later explore the conditions under
which such an integral exists. Suppose we have a function f(t) defined for all real numbers
t. For each s in the set of real numbers R, we can evaluate the integral of the product of
f(t) and e−2πist with respect to t. This integral results in a complex-valued function of s,
denoted as f̂(s), which represents the Fourier transform of f(t). It is worth noting that if
t has the dimension of time, then s must have the dimension of 1/time to ensure that the
argument st of the exponential function e−2πist is dimensionless.

Fourier transforms can escape the desire to find spectral information about aperiodic
functions, but the added complexity and richness of the results will quickly feel like you’re
in a whole other world. . The definitions given here are good in that they are rich in content,
albeit complex.

The spectrum of a periodic function consists of a discrete set of frequencies, which may
be infinite if there are sharp transitions in the function. On the other hand, the Fourier trans-
form of an aperiodic signal results in a continuous spectrum, representing a continuum of
frequencies. In some cases, the Fourier transform f̂(s) can be identically zero for suffi-
ciently large values of |s|, which is a characteristic of a significant class of signals known
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as bandlimited signals. Alternatively, a non-zero value of f̂ expands(s) to ±∞ or f̂(s)
expands to some value of s can be null only.

The Fourier transform allows us to break down a signal into its constituent frequency
components. However, the process of reconstructing the original signal in the time domain
from its frequency domain representation might not be immediately clear. How can we
recover the time domain signal f(t) using the information provided in the frequency domain
f̂(s)?

Recovering f(t) from f̂(s)

To retrieve the original function f(t) from its Fourier transform f̂(s), we can utilize
the idea of representing non-periodic functions as limits of periodic functions. Suppose we
have a situation where f(t) is zero outside a specific interval.“ By introducing a large period
T and making f(t) periodic, we can express it as a Fourier series expansion,

f(t) =
∞∑

n=−∞

cne
2πint/T

The Fourier coefficients can be expressed in terms of the Fourier transform of f calcu-
lated at the points sn = n/T .

cn =
1

T

∫ T/2

−T/2

e−2πint/Tf(t)dt =
1

T

∫ ∞

−∞
e−2πint/Tf(t)dt

( we can extend the limits to ±∞ since f(t) is zero outside of [−T/2, T/2])

=
1

T
f̂
(n
T

)
=

1

T
f̂ (sn) .

Putting into the expression for f(t) :

f(t) =
∞∑

n=−∞

1

T
f̂ (sn) e

2πisnt

Now, if we consider the points sn = n
T
, we observe that these points are spaced 1

T
apart.

To simplify notation, we can denote 1
T
as ∆s.” Then, the sum above can be interpreted as

a Riemann sum, which approximates the integral of the function.

∞∑
n=−∞

1

T
f̂ (sn) e

2πisnt =
∞∑

n=−∞

f̂ (sn) e
2πisnt∆s ≈

∫ ∞

−∞
f̂(s)e2πistds.
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As the period T approaches infinity, the spacing between the points sn becomes in-
finitesimally small. Consequently, the Riemann sum approaches an integral, and the limits
on the integral extend from negative infinity to positive infinity. This allows us to capture
the entire frequency spectrum of the function f(t), including both positive and negative
frequencies. we expect

f(t) =

∫ ∞

−∞
f̂(s)e2πistds

By applying the inverse Fourier transform, we have successfully retrieved the original
function f(t) from its Fourier transform f̂(s).

The inverse Fourier transform, denoted as g(s), is defined as the function obtained by
applying the inverse Fourier transform operation to a given function. The integral expres-
sion we derived earlier can be considered as a standalone “transform that computes the
inverse Fourier transform.That is

ǧ(t) =

∫ ∞

−∞
e2πistg(s)ds (upside down hat - cute)

Again, for the moment we will treat this formally and not discuss the conditions under
which the integral makes sense. With this in mind, I also created the Fourier Inversion
Theorem. That is

f(t) =

∫ ∞

−∞
e2πistf̂(s)ds

(f̂)2 = f

The inverse Fourier transform bears a resemblance to the Fourier transform, with the
main difference being the presence of a minus sign.” In subsequent discussions, we will
delve deeper into the remarkable symmetry that exists between the Fourier transform and
its inverse.

By the way, you can also start with f̂ as a primitive instead of f and consider the whole
argument above. Doing this gives the complementary result of the inverse Fourier trans-
form.

(ǧ) = g.
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Here’s a brief summary of our progress in the guide so far. We have covered essential
concepts that are crucial to understanding the topic. It is challenging to condense all the
information into a concise summary, and we appreciate your patience as we work on com-
pleting the guide.

• The Fourier transform of f(t) is

f̂(s) =

∫ ∞

−∞
f(t)e−2πistdt

This function f̂(s) is a function with complex values for different values of s. However,
it’s worth noting that one particular value is easy to compute and worth highlighting: when
s = 0, we have

f̂(0) =

∫ ∞

−∞
f(t)dt

The integral of a function represents the area under its graph. In calculus, the concept of
integration involves calculating the area beneath the graph of a function. “When applying
the Fourier transform to a real-valued function, such as f(t), the Fourier transform value
at f̂(0) is also a real number. This is because f̂(0) represents the average value or the
DC component of the function, which is a real quantity. However, it is worth noting that
other values in the Fourier transform may be complex numbers, indicating the existence of
frequency components with both magnitude and phase information.

• To add to that, the spectrum of a signal represents the distribution of energy of the
signal across all frequencies. In other words, the spectrum describes howmuch of the
signal’s energy is concentrated in different frequency bands. The Fourier transform
provides a way to analyze a signal and determine its spectrum, which is often useful
in a variety of applications, including signal processing, communications, and control
systems.

• Not all frequencies necessarily appear in the Fourier transform f̂(s) of a function.
The value of f̂(s) can be zero for certain values of s, indicating the absence of those
frequencies in the signal.

f̂(s) = 0 for |s| large
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• The inverse Fourier transform is defined by

ǧ(t) =

∫ ∞

−∞
e2πistg(s)ds

Combining the Fourier transform and its inverse, the Fourier inversion theorem provides
a way to switch between two (equivalent) representations of a signal.

One important consequence of Fourier inversion is that

f(0) =

∫ ∞

−∞
f̂(s)ds

It is difficult to computationally comprehend this outcome. The integral of a complex-
valued function is represented on the right-hand side of the equation, but the outcome is
real (presuming that f(0) is real).

The Fourier transform of a periodic function is the accumulation of δ functions. The
same is required of us, but it requires work. where f̂(s) is a complex-valued function that
has been converted and may be equivalent” to f(t), but has entirely distinct characteristics.
Do keep that in mind. Is it accurate to say that we can just put f̂(s) into the inverse Fourier
transform equation if it exists? With the exception of the negative sign forward transforma-
tion, this is likewise a faulty integral. - And does f(t) actually yield anything? Really? It
merits consideration.

• The squared quantity |f̂(s)|2 is called the power spectrum (especially when used
in communications) or the power spectral density (especially when used in optics).
spectrum (especially in other contexts).

The Parseval identity in the Fourier transform establishes an important relationship be-
tween the energy of a signal in the time domain and its energy distribution in the frequency
domain. ∫ ∞

−∞
|f(t)|2dt =

∫ ∞

−∞
|f̂(s)|2ds

Notational warning: Please note that the notational choices in the context of the Fourier
transform are not perfect and vary depending on the specific operation and circumstances.
This can lead to frustration and confusion due to the need to switch between transforms and
their inverses, variable naming conventions, presence or absence of variable representation,
alteration of signs, and incorporation of complex conjugates. These routine operations, if
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not carefully managed, can result in significant confusion. To illustrate this point, I can
provide several examples that highlight the common challenges and complaints associated
with Fourier transform notation.

In the context of the Fourier transform, it is common to use uppercase letters, such as F ,
to represent the transformed function when the original function is denoted by a lowercase
letter, like f . This convention applies to various variables, such as a and A, z and Z”, and
so on. However, it’s important to note that the variables in the original and transformed
functions usually have different names, for example, f(x) (or f(t)) and F (s). This use of
“capitalization” is prevalent in engineering, but it often leads to confusion regarding the
concept of ”duality” explained below.

Moreover, when we view the Fourier transform as an operation that takes a function
and produces a new function, it can be beneficial to represent this operation using specific
notation.For instance, it is common to express f̂(s) as Ff(s), which fully indicates the
transformation being applied. The complete definition can be defined as:

Ff(s) =
∫ ∞

−∞
e−2πistf(t)dt

This notation provides clarity and helps minimize ambiguity. Similarly, the process of
calculating the inverse Fourier transform is symbolized as F−1, emphasizing the inverse
relationship of the transformation.So,

F−1g(t) =

∫ ∞

−∞
e2πistg(s)ds

Use the Ff notation more often. Again, this is far from ideal as keeping variables
straight is a problem - as you can see. After all, a function and its Fourier transform must
form a “Fourier pair”. To represent this sibling relationship, various notations have been
devised. one is

f(t) 
 F (s)

It is important to note that while the canonical definition of the Fourier transform ex-
ists, it is not the only one. There are different conventions regarding where to include the
factor of 2π. Some approaches incorporate it as an exponential factor, while others treat
it as a separate element or omit it altogether. Additionally, there is the question of which
operation represents the Fourier transform and which represents its inverse, including the
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consideration of the minus sign in the exponential conversion. These various conventions
and rules are employed in the field on a daily basis. I mention this to ensure that when
discussing Fourier transforms with a friend, you are both aware of the rules and avoid mis-
understandings.
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Chapter 4

APPLICATION OF FOURIER
TRANSFORM

The exploration of the Fourier transform can be compared to the study of calculus in many
respects. When delving into calculus, individuals begin by comprehending the distinct for-
mulas for differentiation and integration applicable to various functions and function types,
such as powers, exponentials, and trigonometric functions. Moreover, they acquire knowl-
edge of the fundamental principles and rules of differentiation and integration, including
concepts like the product rule, chain rule, and inverse functions, enabling them to handle
more intricate combinations of functions. Similarly, in the examination of the Fourier trans-
form, it is necessary to establish a collection of specific functions and their transforms that
one can rely upon, while concurrently developing general principles and outcomes pertain-
ing to the operations and characteristics of the Fourier transform.

Examples
We have previously examined the example of Fourier transform of the rectangular function:

Π̂ = sinc or FΠ(t) = sinc t

utilizing the F notation. Now, let’s explore few additional examples.

The triangle function , defined by
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Λ(y) =

1− |y| |y| ≤ 1

0 otherwise

Now, For the Fourier transform we compute :

FΛ(t) =

∫ ∞

−∞
Λ(y)e−2πitydy =

∫ 0

−1

(1 + y)e−2πitydy +

∫ 1

0

(1− y)e−2πitydy

=

(
1 + 2iπt

4π2t2
− e2πit

4π2t2

)
−
(
2iπt− 1

4π2t2
+
e−2πit

4π2t2

)
= −e

−2πit (e2πit − 1)
2

4π2t2
= −e

−2πit (eπit (eπit − e−πit))
2

4π2t2

= −e
−2πite2πit(2i)2 sin2 πt

4π2t2
=

(
sin πt
πt

)2

= sinc2 t.

It is no coincidence that the Fourier transform of trigonometric functions is the square
of the Fourier transform of rectangular functions. This has to do with convolution.

The graph of sinc2 s is:
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The exponential decay, which is frequently encountered, can be defined as follows:

f(x) =

0 y ≤ 0

e−ay y > 0

where ‘a’ is a constant that is positive. The function represents a signal that initi-
ates from zero, gradually increases, and then exponentially decays. The graphs for a =

2, 1.5, 1.0, 0.5, 0.25 are shown below.
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To return to the exponential decline, we may easily determine its Fourier transform.

Ff(s) =
∫ ∞

0

e−2πiste−btdt =

∫ ∞

0

e−2πist−btdt

=

∫ ∞

0

e(−2πis−b)tdt =

[
e(−2πis−b)t

−2πis− b

]t=∞

t=0

=
e(−2πis)t

−2πis− b
e−bt

∣∣∣∣
t=∞

− e(−2πis−b)t

−2πis− b

∣∣∣∣
t=0

=
1

2πis+ b

Unlike the Fourier transforms of the rectangular function and the triangular function, the
Fourier transform of the exponential decay function is complex. This is due to the absence of
even symmetry in the exponential decay function. We will explore the concept of symmetry
in more detail later. However, since the exponential decay function lacks this symmetry, its
Fourier transform becomes complex.

The power spectrum of exponential decay function is given by the expression:
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|Ff(s)|2 = 1

|2πis+ b|2
=

1

b2 + 4π2s2

Below are graphs of the power spectrum function for the same values of ’b’ as shown
in the graphs of the exponential decay function:

Which comes first? It’s a significant issue that you’ll quickly learn to recognise in
relation to the time-domain images. Also take notice that, despite Ff(s) not being an even
function of s, |Ff(s)|2 . Indeed, although the power spectrum |Ff(s)|2 exhibits a shape
reminiscent of a ”bell curve,” it is not a Gaussian function. The Gaussian function will be
discussed later. It is worth noting that this power spectrum is frequently encountered in the
analysis of transition probabilities and lifetimes of excited states in atoms. The curve is
known as a Lorenz profile.

It is universally accepted that, as a fundamental requirement, one must be acquainted
with the remarkable equation:

32



∫ ∞

−∞
e−x2

dx =
√
π

The direct application of the Fundamental Theorem of Calculus is not applicable in
obtaining the integral because the function f(x) = e−x2 does not possess an elementary
antiderivative. One of the most well-known mathematical tricks is the fact that it may be
assessed precisely. You shouldn’t go through life without understanding it since it is due
to Euler. It’s also worthwhile to watch again even if you’ve already watched it; see the
discussion that follows this paragraph.

Regardless of the specific problem at hand, normalizing the Gaussian function such that
the total area under the curve is equal to 1 consistently proves to be advantageous. There
are various methods to accomplish this, but as we shall see, the greatest option for Fourier
analysis

f(x) = e−πx2

The integral of e−x2 is ∫ ∞

−∞
e−πx2

dx = 1

Now calculating the Fourier transform,

Ff(s) =
∫ ∞

−∞
e−πx2

e−2πisxdx

Differentiate w.r.t. s :

d

ds
Ff(s) =

∫ ∞

−∞
e−πx2

(−2πix)e−2πisxdx

The integration by parts method is well-suited for this situation. Let’s designate dv =

−2πixe−πx2
dx and u = e−2πisx. By integrating dv, we obtain v = ie−πx2 .

When we evaluate the product uv at the limits of ±∞, it becomes clear that it equals
zero.Thus
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d

dt
Ff(t) = −

∫ ∞

−∞
ie−πx2

(−2πit)e−2πitxdx

= −2πs

∫ ∞

−∞
e−πx2

e−2πitxdx

= −2πsFf(t)

So Ff(t) satisfies the differential equation

d

dt
Ff(t) = −2πsFf(t)

The solution that satisfies the given initial condition is unique and can be expressed as
follows:

Ff(t) = Ff(0)e−πt2

But

Ff(0) =
∫ ∞

−∞
e−πx2

dx = 1

Hence

Ff(t) = e−πt2

We have made an extraordinary discovery that the Gaussian function, represented as
f(x) = e−πy2 , is equal to its own Fourier transform.

We aim to calculate:

I =

∫ ∞

−∞
e−y2dy

The variable of integration can be assigned any arbitrary name, allowing us to express
the integral as:

I =

∫ ∞

−∞
e−x2

dx

∴

I2 =

(∫ ∞

−∞
e−y2dy

)(∫ ∞

−∞
e−x2

dx

)

34



Since the variables are not “coupled” in this case, we can combine this into a double
integral. ∫ ∞

−∞

(∫ ∞

−∞
e−x2

dx

)
e−y2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x

2+y2)dxdy

Now, we will introduce a variable change using polar coordinates, represented as (r, θ).
Initially, let’s examine the integration limits.Allowing both x and y to range from −∞ to
∞ covers the entire plane. In polar coordinates, encompassing the entire plane corresponds
to r ranging from 0 to ∞, and θ ranging from 0 to 2π.

Next, we replace the term e−(x
2+y2) with e−r2 , as it is expressed more conveniently

in polar coordinates. Furthermore, the area element dxdy is transformed into rdrdθ. It is
crucial to observe the additional factor of r in the area element, as it plays a significant role
in the subsequent computations. With this change to polar coordinates, we can continue our
analysis. we have

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x

2+y2)dxdy =

∫ 2π

0

∫ ∞

0

e−r2rdrdθ

∫ ∞

0

e−r2rdr = −1

2
e−r2

]∞
0

=
1

2

I2 =

∫ 2π

0

1

2
dθ = π

∫ ∞

−∞
e−x2

dx = I =
√
π

General Properties and Formulae

We have begun to compile a database of certain transformations. Let’s now go the other
route for a moment and create some generic characteristics. We will set aside any concerns
you may have about transformations existing, integrals converging, or anything else for the
purposes of this discussion, as well as for the majority of our work in the next lectures.
Unwind and relish the journey.
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4.1 Fourier transform pairs and duality

The Fourier transform and inverse Fourier transform exhibit a significant characteristic of
symmetry, which is not present in Fourier series. In Fourier series, the ”inverse transform”
corresponds to the series itself, where the coefficients are determined by an integral (trans-
forming f(t) into f̂(n)). The key distinction between the Fourier transforms F and F−1

lies in the sign of the exponential term. Specifically, replacing s with −s in the Fourier
transform formula gives the inverse Fourier transform. This symmetry enhances our un-
derstanding of the relationship between the transforms and allows for a more unified per-
spective.

Likewise, the Fourier transform can be obtained by replacing t :

Ff(−s) =
∫ ∞

−∞
e−2πi(−s)tf(t)dt =

∫ ∞

−∞
e2πistf(t)dt = F−1f(s)

and with −t in the equation for the inverse Fourier transform.We get,

F−1f(−t) =
∫ ∞

−∞
e2πis(−t)f(s)ds =

∫ ∞

−∞
e−2πistf(s)ds = Ff(t)

Typically, the two variables, s and t, are associated with distinct domains in the context
of the forward and inverse transforms. One represents the frequency domain while the
other corresponds to the time domain. This differentiation can sometimes be confusing and
requires careful consideration.

However, it is important to recognize that both domains are intertwined and play sig-
nificant roles in the expressions and equations involved. This apparent complexity may
arise intermittently, but it is a challenge that can be surmounted. Let us approach it with
mathematical reasoning: Transformations are manipulations of functions that create new
functions. When writing a formula that involves evaluating a transform of a variable, it is
important to note that the variable itself is just a symbol, and its name is arbitrary. What
truly matters is that it is clear and understandable what the variable represents and how it
functions within the formula. Also note what the expression notation indicates and, equally
important, what it does not. For example, the first expression demonstrates the outcome of
performing the Fourier transform on f and subsequently evaluating it with −s. It’s not a
F(f(−s)) expression like ”change s in f expression to −s and then convert”. Put the first
equation, denoted as (Ff)(−s) = F−1f(s), by enclosing F f in parentheses. can also be
written in I put a to emphasize it, but I found it too clumsy. Please be careful.
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The equations

Ff(−s) = F−1f(s)

F−1f(−t) = Ff(t)

The symmetry observed in the formulas of the Fourier transform and its inverse is rooted
in a fundamental mathematical principle. According to this principle, if the original function
is defined in certain groups (which are not explicitly specified here), the transformation (also
well-defined) is defined in the corresponding dual group.’“ In the case of Fourier series,
where the function is periodic, its natural domain corresponds to a circle (visualize a circle
representing the interval [0, 1] with the endpoints identified). Remarkably, it is found that
the dual of the group of circles is the set of integers, leading to the Fourier transform f̂

yielding integer values for n. Similarly, when considering the group of real numbers R, its
dual group is once again R. Consequently, the Fourier transform of a function defined on
R is also defined on R. Examining the general definitions of the Fourier transform and its
inverse within this context, we arrive at the symmetrical outcomewe observe. This property
is commonly referred to as the duality property of the transform. It signifies that the pair of
Fourier transforms, f and Ff , are connected through duality, indicating an interchanging
relationship between the two. Although they may initially appear as distinct statements,
they can be transformed from one to the other.

Here’s an example that demonstrates the use of duality. As we know

FΠ = sinc

and

F−1sinc = Π

Using duality, we can find F sinc:

Fsinc(t) = F−1sinc(−t) = Π(−t)

Now, with the additional knowledge that Π is an even function (−Π(−t) = Π(t)), we
can conclude that

Fsinc = Π
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Let’s employ the same reasoning to determine F sinc2. We know that

FΛ = sinc2

F−1 sinc2 = Λ

But

F sinc2(t) =
(
F−1 sinc2

)
(−t) = Λ(−t)

since Λ is even,

F sinc2 = Λ

Duality and Reverse Signals:
Duality can be understood in slightly different ways, but I prefer the interpretation that

keeps variables in check and is easy to remember. Let’s start with a signal f(s) and define
the inverse signal f− as

f−(s) = f(−s).

Note that reversing the signal twice gives back the original signal.
It’s worth noting that the conditions for a function to be even or odd can be conveniently

expressed using the reversed signals:

f is odd if f− = −f,

f is even if f− = f,

In other words, a signal is even if its reversal does not change the signal, and it is odd if
its reversal changes the sign.” We will delve into this concept further in the next section.

Reversing the signal simply means reversing time, but this operation is applicable in a
general sense, regardless of the signal type or the variable being considered. By utilizing
this notation, we can rephrase the initial duality equation Ff(−s) = F−1f(s) as:

(Ff)− = F−1f.

Similarly, we can rewrite the second duality equation F−1f(−t) = Ff(t) as:
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(
F−1f

)−
= Ff.

Indeed, these equations essentially convey the same idea, with one being the reverse or
mirror image of the other.

Moreover, employing this notation facilitates a quicker derivation of results such as
F sinc = Π.

F sinc =
(
F−1 sinc

)−
= Π− = Π.

Let’s explore the behavior of Ff−, which represents the Fourier transform of the re-
versed signal. By definition, we have:

Ff−(s) =

∫ ∞

−∞
e−2πistf−(t)dt =

∫ ∞

−∞
e−2πistf(−t)dt

To simplify the integral, we perform a change of variable. Let’s consider the substitution
v = −t, which implies dv = −dt or dt = −dv. As t ranges from −∞ to ∞, the variable
v = −t ranges from ∞ to −∞. With this change of variable, we obtain the following
expression: ∫ ∞

−∞
e−2πistf(−t)dt =

∫ −∞

∞
e−2πis(−v)f(v)(−dv)

=

∫ ∞

−∞
e2πisuf(v)dv

= F−1f(s)

Hence, we find that Ff− = F−1f .
Moreover, substituting F−1f = (Ff)− , we have:

Ff− = (Ff)−

It’s important to note the placement of parentheses in this equation.
To explore the behavior of F−1f−, we can utilize the previous duality results:

F−1f− = (Ff−)− = (F−1f)−

In simpler terms, the duality relation states that if we reverse a signal and then apply the
inverse Fourier transform, it is equivalent to applying the inverse Fourier transform first and
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then reversing the resulting signal. Therefore, we have the relationship: F−1(f−) = Ff .
In essence, the entire list of duality relations can be reduced to just two :

Ff =
(
F−1f

)−
Ff− = F−1f

4.2 Even and odd symmetries and the Fourier transform

The concept of even and odd functions has been useful in several instances, taking ad-
vantage of their symmetry. When dealing with real-valued functions, the notion of even
and odd functions has a clear interpretation in terms of graph symmetry. However, when
considering complex-valued functions, graphing becomes challenging as we cannot visu-
ally represent complex values on a graph, leading to a loss of geometric intuition. “Even
though the algebraic definitions of even and odd functions apply to both complex-valued
and real-valued functions, the graphical representation is limited to real-valued functions.

How is the symmetry of a function reflected in the properties of the Fourier transform?
I won’t go into detail, but I’ll point out some important cases.

• if a function f(x) is either even or odd, then its Fourier transform will also exhibit
the same evenness or oddness, respectively.

Using the concept of reversed signals, we need to demonstrate that if a function f is
even, then its reversed Fourier transform, denoted as (Ff)−, is equal to the regular Fourier
transform of f , denoted asFf . Similarly, if f is odd, then (Ff)− is equal to the negative of
the regular Fourier transform of f , represented as −Ff . This result can be derived quickly
using the equations we previously obtained.

(Ff)− = Ff− =

F(−f) = −Ff if f is odd

Ff, if f is even

Due to the complex-valued nature of the Fourier transform of a function, we can also ex-
plore additional symmetries concerning the behavior under complex conjugation forFf(s).

The derivation process is essentially the same, it can be beneficial to review it as an
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exercise to observe the similarities.

(Ff)−(s) = F−1f(s)

=

∫ ∞

−∞
e2πistf(t)dt

=

∫ ∞

−∞
e−2πistf(t)dt

= Ff(s)

Furthermore, it is interesting to note that one can verify F(F(F(Ff)))(s) = f(s),
which means that applying the Fourier transform four times yields the original function,
implying that F4 is the identity transformation.

If the function f(t) exhibits symmetry, we can further explore its properties by com-
bining the previously discussed results and considering the nature of complex numbers.
Specifically, a complex number is considered real if it is equal to its conjugate, and it is
purely imaginary if it is equal to its conjugate with a negative sign. Taking this into ac-
count, we can deduce the following expression:

• If the function f is even and real valued, it follows that its Fourier transform is also
even. This symmetry property is a characteristic of even functions and their corre-
sponding Fourier transforms.

• If the function f is real-valued and an odd function, its Fourier transform possesses
the characteristics of being an odd function and purely imaginary.

This principle becomes evident whenwe examine the Fourier transform of specific func-
tions such as the rectangular function Π(t) and the trigonometric function Λ(t).” In both
cases, these functions possess even symmetry, meaning they are symmetric about the y-axis.
As a result, their respective Fourier transforms, sinc and sinc2, also exhibit the property of
even symmetry and are real-valued.

4.3 Linearity

The Fourier transform possesses an important property called linearity, which allows it to
operate on functions in a straightforward manner.
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• The Fourier transform of the sum of two functions, f and g, is equal to the sum of
their individual Fourier transforms: F(f + g)(t) = Ff(t) + Fg(t).

• The Fourier transform of a scalar multiple of a function, αf , is equal to the scalar
multiple of its Fourier transform: F(αf)(t) = αFf(t), where α can be any real or
complex number.

These linear properties can be easily verified by comparing them to the corresponding prop-
erties of integrals. For example, to show the linearity of the sum, we can evaluate the inte-
gral:

F(f + g)(t) =

∫ ∞

−∞
(f(x) + g(x))e−2πitxdx

=

∫ ∞

−∞
f(x)e−2πitxdx+

∫ ∞

−∞
g(x)e−2πitxdx

= Ff(t) + Fg(t).

In previous discussions, I applied the property of multiplication without explicitly men-
tioning it when stating F(−f) = −Ff in relation to odd functions and their transforma-
tions. Although we hadn’t formally listed the property, it is indeed a valid application of
linearity.

4.4 The shift theorem

A time shift or delay in the variable t has a straightforward impact on the Fourier transform.
The magnitude of the Fourier transform“ |Ff(s)| is expected to remain unchanged because
a time shift in the original signal should not alter the energy at any point in the spectrum.
The only difference is a phase shift in Ff(s), and that is indeed what occurs.

To find the value of Fourier transform f(t + a), where a is a constant, we can employ
the following expression:
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∫ ∞

−∞
f(t+ a)e−2πistdt =

∫ ∞

−∞
f(v)e−2πis(v−a)dv

( substituting v = t+ a; the limits still go from −∞ to∞)

=

∫ ∞

−∞
f(u)e−2πisve2πisadv

=e2πisa
∫ ∞

−∞
f(v)e−2πisvdv = e2πisaf̂(s).

The most appropriate notation to convey this property is commonly the pair notation,
f 
 F.7 Thus:

• If f(t) 
 F (s) then f(t+ a) 
 e2πisaF (s).

A little more generally, f(t± a) 
 e±2πisaF (s).
It is worth noting that, as promised, the magnitude of the Fourier transform remains

unchanged when a time shift is applied. This is due to the fact that the factor in front of the
transform has a magnitude of 1 :

∣∣e±2πisaF (s)
∣∣ = ∣∣e±2πisa

∣∣ |F (s)| = |F (s)|

4.5 The stretch (similarity) theorem

How does stretching or shrinking the variable in the time domain impact the Fourier trans-
form? Specifically, we want to understand the changes in the Fourier transform of f(at)
whenwe scale the variable t by a factor of a. Let’s first consider the case where a is positive.
Then ∫ ∞

−∞
f(at)e−2πistdt =

∫ ∞

−∞
f(u)e−2πis(u/a) 1

a
du

=
1

a

∫ ∞

−∞
f(u)e−2πi(s/a)udu =

1

a
Ff
(s
a

)
When a < 0, if we perform the variable permutation u = ax, the limit of the integral is
inverted, resulting in a transformed function given by (−1/a)Ff(s/a)with an increase. we
can combine both cases to provide a comprehensive expression of the stretching theorem.
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• If f(x) 
 F (s) then f(ax) 
 1
|a|F

(
s
a

)
The aforementioned transformation, where the variable is changed from x to ax, is

commonly referred to as the similarity theorem. This term is used because altering the
variable by a factor of a represents a change in scale, which is often associated with the
concept of similarity.

The Stretch Law reveals an important observation. Assuming a is positive for clarity,
when a is large , the graph of f(at) in the time domain is horizontally compressed compared
to f(t). However, in the frequency domain, two distinct changes take place. Firstly, the
Fourier transform becomes (1/a)F (s/a), indicating that if a is large, F (s/a) is stretched
instead of being compressed in comparison to F (s). Secondly, multiplying by 1/a com-
presses the values of the transform.

On the other hand, when a is small, the graph of f(at) in the time domain is stretched
horizontally compared to f(t). However, in the frequency domain, a different effect occurs.
The Fourier transform is compressed horizontally while being stretched vertically. This
phenomenon is commonly referred to as the inability to precisely locate the signal and is a
topic of frequent discussion.

Now, let’s address some typographical concerns. The notation Ff(t + b) may cause
confusion regarding what is being transformed and the connection to the variable s. The
hat notation, such as f(t̂+ b), poses similar challenges due to limited space for the variable
s. It is important to converge in both the time and frequency domains to clarify this principle
more precisely.

To summarize, we can conclude that when a function is expanded in the time domain,
it becomes compressed in the frequency domain, and conversely, when a function is com-
pressed in the time domain, it becomes expanded in the frequency domain. This resembles
what happens in the spectrum of long-term or short-term periodic functions.” Assuming
the period is T , where points are spaced by 1/T in the spectrum, if T is large, the function
is distributed over a longer time period, but the spectrum becomes narrower since 1/T is
smaller. On the contrary, if the value of T is small, the function experiences compression in
the time domain, indicating that it repeats more rapidly. However, in the frequency domain,
the spectrum widens as the value of 1/T increases.

It is important to note that in the above discussion, I have attempted to avoid focusing
solely on the graphical properties of transformations, although there may have been some
inadvertent implications. Indeed, the presence of complex values in transforms adds to the
complexity of the phenomenon. Nonetheless, the compression and diffusion effects can be
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visualized geometrically by analyzing the plot of the function. These graphical representa-
tions provide insights into the observed compression and broadening phenomena.

example: The term ”Stretched Rectangle” is not precisely accurate, but it is frequently
used in various applications. It can be defined as p > 0, where p represents a positive value.

Πp(t) =

1 |t| < p/2

0 |t| ≥ p/2

In other words, Πp(t) can be seen as a rectangular function with a width of p. We can
determine its Fourier transform through direct integration, or alternatively, we can apply
the stretch theorem if we observe that,

Πp(t) = Π(t/p).

the definition of Π is,:

Π(t/p) =

{
1 |t/p| < 1/2

0 |t/p| ≥ 1/2
=

{
1 |t| < p/2

0 |t| ≥ p/2
= Πp(t).

Now since Π(t) 
 sinc s, by the stretch theorem

Π(t/p) 
 p sinc ps

and so

FΠp(s) = p sinc ps

The graphs of the Fourier transform pairs for p = 1/5 and p = 5 are provided, and it’s
crucial to note the scales on the axes.

This observation is intriguing as it aligns with the well-known Heisenberg Uncertainty
Principle in quantum mechanics, which exemplifies similar behavior.

It would be valuable to revisit the example of the one-sided exponential decay and its
Fourier transform. By doing so, you can compare the graphs of |Ff | for different parameter
values and establish relevant connections.
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Chapter 5

Conclusion

In conclusion, this thesis has delved into the topic of Fourier Transform and its significance
in various domains. The Fourier Transform is a fundamental mathematical tool that has
revolutionized signal processing, data analysis, and scientific research.

Through this research, we have gained a deep understanding of the mathematical princi-
ples behind the Fourier Transform. It provides a powerful technique to decompose complex
signals or functions into simpler sinusoidal components. By representing signals in the fre-
quency domain, we can extract valuable information about their spectral content, enabling
us to analyze, manipulate, and interpret them more effectively.

The applications of the Fourier Transform are extensive and far-reaching. In the field
of signal processing, it has been instrumental in areas such as telecommunications, audio
and video compression, image analysis, and filtering. The ability to analyze signals in the
frequency domain has led to significant advancements in communication systems, allowing
for efficient data transmission and improved audiovisual experiences.
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